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Abstract

The airline industry is notably one of the success stories with respect to the use
of optimization based methods and tools in planning. Both in planning of the as-
signment of available aircraft to flights and in crew scheduling, these methods play a
major role.

Plans are usually made several months prior to the actual day of operation. As
a consequence, changes often occur in the period from the construction of the plan
to the day of operation. Optimization tools play an important role also in handling
these changes.

However, at the day of operation, no planning tool have been able to cope with
the complexity of the re-planning given that the time span for proposing a solution
is only a few minutes. Numerous suggestions for such subsystems have been put
forward, but today no general tool is able to handle aircraft, crew, and passenger
concurrently in a single system.

Currently, there is a gap between the reality faced in operations control and the
decision support offered by the commercial it-systems targeting the recovery process.
Though substantial achievements have been made with respect to solution methods,
and hardware has become much more powerful, even the most advanced prototype
systems for integrated recovery have severe limitations.

The current review accounts for the majority of subsystems mentioned in the
literature in terms of the sub-problem addressed and the method used in each par-
ticular contribution. For each proposed system, also the computational experiments
supporting the practical usability of the system is reported.
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1 Introduction

First we describe the basic planning processes of the larger modern airline companies,
setting the scene for the key problem of disruption management shortly before or at the
day-of-operation..

1.1 The planning process

Prior to the departure of any aircraft, a sequential planning approach normally takes place:
First, the flight schedule is determined based on forecasts of passenger demand, available
slots at the airports, and other relevant information. Thereafter, specific types of aircraft
are assigned to the individual flights of the schedule providing anonymous rotations for
flights in each fleet - this process is termed fleet assignment and aircraft routing. The
different rotations must respect various types of constraints as e.g. maintenance and night
curfews. In the following crewing phase, flight crew and cabin crew are assigned to all
flights based on the schedule and the fleet assignment. The planning of flight and cabin
crew is slightly different. For both crew groups individual flights are grouped to form
pairings. Each pairing starts and ends at the same crew base. Note that these pairings
are anonymous. Afterwards, pairings are grouped to form rosters for a given person. In
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Figure 1. The time-line for the daily operation of an airline.

bidline rostering occasionally used for flight crew scheduling the pairings are grouped
together to form anonymous rosters. The crew members then bid for these anonymous



rosters, where usually senior crew members are favoured when assigning rosters to crew.
Rosters are typically lines of work for 14 days or 1 month. Finally, physical aircraft from

a given fleet are assigned to flights in the tail assignment process. The complete process
is illustrated in Figure 1.

Constructing such a plan is in each case complicated as for aircraft maintenance rules
have to be taken into account, the right capacity must be at the right place at the right time,
and the characteristics of each individual airport have to be respected. For crew, there are
regulations on flying time, off-time etc. based on international and national rules, but also
regulations originating in agreements with unions, local to each airline.

After the planning phase follows the tracking phase, where changes in plans due to
e.g. crew sickness, aircraft breakdowns, and changes in passenger forecasts are taken into
account. This phase normally resides with the planning department.

The plans for aircraft assignments, crew assignments and maintenance of the flight
schedule is handed over from the planning department to the operations control centre
(OCC) a few days days ahead of the day of operation. The deadlines are different for dif-
ferent resources. Short-haul plans are usually handed over one day ahead of the operation
date, while long-haul information is handed over three to five days before.

As the plan is handed over, it becomes the responsibility of OCC to maintain all
resources so that the flight plan seen as an integrated entity is feasible. Events like crew
sickness and late flight arrivals have to be handled. Furthermore, not only the immediately
affected flights but also knock-on effects on other parts of the schedule can cause serious
problems. The common practice in the industry of planning flight crew, cabin crew and
aircraft separately reinforces the problem.

Generally, a disrupted situation (often just denoted a disruption) is a state during the
execution of the current operation, where the deviation from the plan is sufficiently large
to impose a substantial change. This is not a very precise definition, however, it captures
the important point that a disruption is not necessarily the result of one particular event.

To produce recovery plans is a complex task since many resources (crew, aircraft, pas-
sengers, slots, catering, cargo etc.) have to be re-planned. When a disruption occurs on
the day of operation, large airlines usually react by solving the problem in a sequential
fashion with respect to the problem components: aircraft, crew, ground operations, and
passengers. Infeasibilities regarding aircraft are first resolved, then crewing problems are
addressed, ground problems like stands etc. are tackled, and finally the impact on passen-
gers is evaluated. Sometimes, the process is iterated with all stakeholders until a feasible
plan for recovery is found and can be implemented. In most airlines, the controllers per-
forming the recovery have little IT-based decision support to help construct high-quality
recovery options. Often, the controllers are content with producing only one viable plan
of action, as it is a time consuming and complex task to build a recovery plan. Further-
more the controllers have little help in estimating the quality of the recovery action they
are about to implement.

One generally available recovery option is cancellation of single flights or round trips



between two destinations. From the resourcing perspective, cancellation is ideal - it re-
quires no extra resources, it may even result in the creation of free resources, and little
re-planning is required. However, from the passenger point-of-view it is the worst option,
since a group of customers will not receive what they paid for. Indeed, determining the
quality of a recovery option is difficult. The objective function is composed of several
conflicting and non-quantifiable goals as e.g. minimizing the number of passenger delay
minutes, returning to the plan as quickly as possible, and at the same time minimizing the
cost of the recovery operation.

The current paper reviews the disruption management tools and recovery tools pro-
posed in the OR literature. The terminology and general concepts regarding disruption
management are assumed to be known, but are for convenience included in the Appendix.
Part of the terminology was developed in the R&D project DESCARTES supported by
the European Commission under the IST program in the 5th Framework programme.

Tools for planning, recovery and disruption management are in most cases based on a
network representation describing how flights can be sequenced either in a rotation or in a
crew pairing. To establish a common base for the presentation of the models and results in
the succeeding sections, Section 2 presents the commonly used network representations
and illustrates their use in modelling. Section 3 gives examples of prototypical papers
on aircraft and crew planning, and Section 4 describes aircraft, crew, and integrated re-
covery as proposed in the literature. Section 5 briefly discusses robustness in relation to
disruption management. Finally, Section 6 contains discussions of future prospects for
disruption management systems in the airline industry. An appendix contains a descrip-
tion of the concepts and the terminology related to disruption management in the airline
industry.

2 Network Models for Airline Optimization Problems

In this section we review standard network optimization models for airline planning prob-
lems. Though the details may vary, the networks used in these models are very similar.
We first review the two basic networks used in planning, and then a network specifically
designed to handle the recovery situation.

Based on the network descriptions, we then sketch prototypical models for fleet as-
signment and scheduling, for crew scheduling, and for disruption management. For sim-
plicity, we consider a set of flight legs of a single fleet of aircraft in a given planning
period.

2.1 Networks for Airline Optimization Models

The idea of theeonnection networkr time-space networis to represent the possibilities
for building rosters for aircraft (or crew). The network is an Activity-On-Node network



— the flights correspond to nodes in the network. It consists of a set of nddeme

for each flight leg. A flight leg is given by its origin, destination, departure time and
date, and arrival time and date. The nadepresenting the flight ley is connected by a
directed edgé¢, j) to the nodej representing the flight leg if it is feasible with respect

to turn-around-times and airport to flyimmediately aftei; using the same aircraft. In
addition, there are nodes indicating the position of each of the aircraft in the fleet both at
the beginning and in the end of the planning horizon. These nodes are connected to those
leg nodes which are feasible as first resp. last legs in the planning period. A path in the
network now corresponds to a sequence of flights feasible as part of a rotation. Schedule
information is not represented explicitly in the network, but used when building this.
Maintenance restrictions are easily incorporated through the concept of a maintenance
feasible path, which is a path providing sufficient extra time with the required intervals
at a node corresponding to a station, where maintenance can take place. Note that the
number of feasible paths may be very large - it grows exponentially with the planning
time horizon.

The connection network resembles the networks seen in vehicle routing problems.
The flights correspond to customers, the aircraft to vehicles, and the edges of the network
describes which customers are feasible as successors of a given customer on a route.

In Table 1, a small sample of flights connecting Copenhagen (CPH), Oslo (OSL),
Aarhus (AAR), and Warsaw (WAV) are given. Assume that the turn-around-time for an
aircraft is 40 minutes in CPH and OSL and 20 minutes in AAR and WAV. The corre-
sponding connection network is given in Figure 2.

| Aircraft | Flight | Origin | Destination | Departure | Arrival | Flight time |

AC1 11 OSL CPH 1410 1520 1:10
12 CPH AAR 1600 1640 0:40
13 AAR CPH 1730 1810 0:40
14 CPH OSL 1850 2000 1:10
AC 2 21 CPH WAV 1430 1530 1:00
22 WAV CPH 1550 1650 1:00
23 CPH WAV 1730 1830 1:00
24 WAV CPH 1850 1950 1:00
AC 3 31 AAR OSL 1500 1620 1:20
32 OSL AAR 1700 1820 1:20

Table 1: A sample schedule for Sample Air

One problem with the connection network is that it is difficult to view as a represen-
tation in time and space of the possible schedules. The basic itieaesfine networkss
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Figure 2: The sample schedule shown as a connection network. The feasible rotation for
AC 1 shown in table 1 corresponds to the path OSL-11-12-13-14-OSL.

to represent the possible schedules in a natural way in a network. A time-line network has
a node for each event, an event being an arrival or a departure of an aircraft at a particular
station. Each station corresponds to a line to be thought of as the “time line” of that sta-
tion, and all event-nodes for that station is located on the time line at the corresponding
points in time. The length of the time line corresponds to the planning horizon. The edges
of the network connect event-nodes corresponding to events that may follow each other
in a sequence of events for one particular aircraft. Edges connecting nodes on the time
lines for different stations correspond to flights feasible with respect to flying time, edges
connecting nodes on the time line for a particular station correspond to grounded aircratft.
Maintenance time is normally included in the flying time, so if maintenance is performed
at the arriving station, the event time for the arrival is set to the true arrival time plus the
maintenance time. In the same way as for the connection network, it is possible to de-
scribe a possible part of a rotation by a path in the network. However, time-line networks
are Activity-on-Edge networks: Edges correspond to activities of an aircraft, and sched-
ule information is represented explicitly by the event nodes of the path. The time-line
network for Sample Air is shown in Figure 3.

To cope with disruptions, a third type of network calkane-band networkas been
proposed. The basic idea is to represent the schedule in a time-line network fashion
leaving out all arcs except those corresponding to the flights of the schedule. No ground
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Figure 3: The sample schedule shown as a time-line network. The feasible rotation for
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arcs are included - the arrival nodef a flight is simply joined with the departure nogle
of the next flight of the aircraft arriving in node The location of the node with respect to
the time axis is that of plus the turn-around time, i.e. tlaailability timeof the aircraft,
cf. Figure 4.

The time-band network is constructed in case of a disruption e.g. by an aircraft being
out of service, that is, the network is not constructed a priori, but dynamically as a disrup-
tion occurs. Activities within discrete time intervals denoted time bands are aggregated at
each station. The network has one node per station for each time band, called station-time
nodes. In addition, there are station-sink nodes representing the end of the recovery pe-
riod. The edges in the network are edges representing the scheduled flights. A scheduled
A-to-B flight has an emanating edge for each A-time node, in which there is an aircraft
available, and for which the flight can be flown within the recovery period. Each of these
edges will end in the B-time node corresponding to the time where the aircraft becomes
available at B. When drawn in a time-band figure, the edges appear as parallel edges from
the A-station time line to the B-station time line. Finally, there are edges connecting
each station-time node with the station-sink node for the relevant station. A re-schedule
now corresponds to a flow in the network where edges of the original schedule carrying
no flow correspond to canceled flights, and where re-timings correspond to flow in the
“new” flight edges, indicating that flights are flown at a later time than scheduled. Each
station-time node has a time label with the availability time of the first available aircraft
in the corresponding time band.

The time-band network model for the sample schedule with AC 2 out of service from
14:00 until 21:00 due to maintenance and with time bands of 30 minutes is shown in
Figure 5. The network is constructed in a stepwise fashion to avoid representing time-
station nodes with no aircraft availability.

Two flows in this network, one starting from OSL, one starting from AAR, one ending
in OSL, and one ending in AAR, determine a way to use the aircraft resources available.
As an example, the path

OSL:1400-1429- CPH:1600-1629— WAV:1700-1729- CPH:1900-1929
— OSL:2030-2059- OSL:sink

represents a non-delayed flight 11, followed by a 1 hour delayed service to WAV on flight
21, then flight 22 (delayed 1 hour and 30 minutes) and then finally flight 14 delayed 10
minutes.

2.2 Optimization Models based on Networks

In the following, we describe three simplified prototype models from the literature illus-
trating the use of the networks just described in modelling airline optimization problems.
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Figure 5: The Time-Band Network of the sample time schedule

2.2.1 Aircraft Fleeting and Routing with Connection Networks

The model described below can be found in “Benders Decomposition for Simultane-
ous Aircraft Routing and Crew Scheduling” [16] by Cordeau, StojgpBoumis, and
Desrosiers. Assume that the fleeting problem has been solved, so a particular fleet has
been assigned to each flight. For a given fleet consider the problem of assigning aircraft
to flights over a fixed time horizon while respecting maintenance requirements. To keep
the model simple we do not include considerations on the connectivity of the rotations,
i.e. that the paths representing lines of work for the aircraft should form a connected
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network, if origin and destination nodes representing the same station are joined.

The set of available aircraft is called, and for each aircraff € F, an origino’
and a destination’ relative to the planning horizon is given. The set of nod&s =
N U {o/,d’} consists of the flights, the origins and destinations. There are edges from
each origin node to flights feasible as first flights for an aircraft located at the origin node,
and edges into destination nodes from flights feasible as last flights with respect to the
origin. Furthermore, the sét’ denotes the set of feasible paths betweeando? in the
network. If maintenance is to be taken into account, only maintenance feasible paths are
considered. The relations between the flights and the paths are given by binary parameters
al, taking the value 1 iff flight is on pathw.

To determine which aircraft are to fly which flights, we define binary decision vari-
ablesr,, taking on the value 1 iff the flights on the path givendois flown by the aircraft
determined by the origin node of the path. The constraints of the problem are that each
flight must be in one of the selected paths, and that one path must be chosen for each
aircraft. The routing problem now becomes:

minimize S5 ez,
feF weQf
subject to S S ax,=1 ieN
feF weQf
Yoox, =1 fer
weQf
z, € {0,1} feFweQf

Note the similarity with models for vehicle routing - the flights can be seen as cus-
tomers and the aircraft as vehicles serving the customers. The connection network de-
scribes the possible routes of the vehicles in terms of feasible successor relations between
customers. Hence, an immediate solution approach is Branch-and-Price, i.e. LP-based
Branch-and-Bound combined with column generation, where each column represents a
feasible path, cf. [9]. Further comments on the model and experimental results are given
in Section 4.3.

2.2.2 Aircraft Fleeting and Routing with Time Line Networks

The model described in the following is a simplified version of a model appearing in
“Flight String Models for Aircraft Fleeting and Routing” [7] by Barnhart, Boland, Clarke,
Johnson, and Nemhauser. Consider the situation, in which the fleeting problem has not yet
been solved, and let” be the set of fleets. One possibility is to use the time-line network
model. Again, a path in the network is a representation of an aircraft rotation, here called
a string. Assume now that maintenance requirements are taken into account: Feasible
strings start at some maintenance station, end at a possibly different maintenance station,
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and has sufficient time for maintenance to be performed whenever necessary during the
rotation. An augmented string is a string with the necessary maintenance time attached to
the end of the string. The set of strings is denateadnd for flighti, S;f, andS;” denote
the set of augmented strings starting with the edge of flightsp. ending with and
maintenance.

The model has a binary decision variabfefor each string € S and for each fleet,
and parameters;, describing the relationship between fliglgnd paths. The purpose of
the model is to assign fleets to flights in a maintenance feasible fashion. As in the aircraft
rotation model, a set of constraints ensuring that each flight is assigned to exactly one
fleet is necessary:

ZZaisxlg =1 1€eF

keK seS

zs € {0,1} se S

In order to account for balance constraints in terms of number of aircraft at mainte-
nance stations, given that strings start and end at maintenance stations and that not too
many aircraft of a given fleet can be used simultaneously, count variggbm defined
for each ground edge of the model including ground edges with maintenance. The value
of yf is the number of aircraft from fleét on the ground at the station and time interval
corresponding to the ground edge

Consider now a specific flighitand fleetk. If an augmented string starting ini and
using fleetk is chosen for the solution, then the number of aircraft from fieet the
ground just before take-off of flightmust be one larger than the corresponding number
just after take-off. This can be expressed as follows:

Soab—yf s Y x =0 i€FEEK
ORI (¢

i,d*i,d
sESj

Here, the indiceg, i, d, and —k resp. +k of the ground variables indicate the last
fleet+ event ¢) at the relevant station before (“-”) resp. after (“+”) the departubeof
flighti. Likewise, ifi arrives at a maintenance station as the last station, we need a balance
constraint reflecting this:

= 2w Y H Y sy =0 TERKER

s€S;”

Finally, the complete model also contains constraints describing that not more than
the available number of aircraft in flegtis used simultaneously. These make use of a
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so-called count time, which is a point in time where all aircraft are counted, both the
grounded ones and those in the air:

erx’§+ pryf <Nk ke K

sES; JEG

Here, ! resp. p} counts the number of times stringresp. ground arg cross the
count time, andV* is the number of aircraft in flegt.

2.2.3 Disruption Management with Time-Band Networks

The time-band network model described below is from “Optimizing aircraft routings in
response to groundings and delays” [6] from 2001 by Bard, Yu, and Arguello. The model
is as indicated previously used in connection with disruptions, for example when an air-
craft becomes unavailable. Formally, the model becomes an integral minimum cost flow
network model with constraints ensuring flow balance, and with indicator variables for
cancellation of aircraft. The model has binary decision variabf;;sepresenting flow

from station-time nodéto station-time nodg for flight k£, andy;, representing the possi-

ble cancellation of flight:. One set of constraints of the model ensures that each flight is
either canceled or flown:

Z Z xf}—kyk =1 keF

i€P(k) jeH (ki)

Here, P(k) is the set of possible origin station-time nodes for flighandH (k, i) the
set of destination station-time nodes for flight starting at node.
The flow balance at each station-time nade modeled as follows:

Z Z :Efj%—zi—z Z :pfl =q; 1€1

keG(i) jeH (k,i) keL(i) jEM (k,i)

Here, z; is the number of aircraft from station-time nodeouted directly to the cor-
responding station-sink nodé&: (i) denotes the set of flights originating at nogd.(7)
the set flights terminating at M (k, ) the set of origin station-time nodes for flight
ending in node, anda; the number of aircraft becoming available at nods time 0.
The corresponding flow balance constraint for a station-sink raslas follows:

Z Z .’L’?i—FZZj =h; 1€J
)

keL(i) jeM(k,i) JjEQ(i
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The objective function in the model reflects the costs of delay and cancellation:

mmz Z Z dfﬁf}‘FZCkyk

keF ieP(k) jeH (ki) keF

The model can be solved to optimality using integer programming packages, or it can
be handled using heuristics, if solution time is a critical factor.

2.3 Crew Scheduling

Crew Scheduling is the task of assigning a group of people to a set of tasks. Beside airlines
similar crew scheduling problems appear in numerous transport contexts eg. in bus and
rail transit, road and rail freight transport.

On passenger aircraft there are two groups of crew; flight crew flying the aircraft
and cabin crew servicing the passengers. Each of the crew groups are further divided
according to rank. Crew will typically get a plan of work for a two- or four-week period.
The task of assigning crews to itineraries is generally a complex task. Therefore it is split
into two stages: crew pairing and crew assignment (also known as crew rostering). The
planning process usually takes place 2-6 weeks before the flights are operated.

In the crew pairing problem pairings are constructed. A pairing is a sequence of flights
starting and ending at the base of the crew. The pairing is in this stage not assigned to
a person, that is, it is a piece of work for an anonymous person. A pairing consists of
flight legs where the crew member is working, and deadheads. Legs are grouped into
duty periods (equal to a working day) which are separated by overnight stops. A schedule
is sometimes referred to as a line of work (LoW).

In practice pairings for short and medium-haul problems may consist of up to 4 duty
periods, while long-haul problems often result in longer duty periods. A legal pairing
must satisfy a multitude of rules, partly governmental regulations, partly as collective
agreements.

Based on the pairings the crew rostering problem or crew assignment problem assigns
pairings to named persons. Here, the objective is to produce legal plans covering all
pairings and in addition also incorporating vacation, training etc.

Basically, the crew pairing and the crew assignment models are Set Partitioning and
Set Covering problems with one constraint for each task to be performed. In the crew
pairing problem the task is a flight to be covered and in the crew assignment problem the
task is a pairing/other work to be covered.

Crew pairing models are typically formulated as Set Partitioning problems. Here we
want to find a minimum cost subset of the feasible pairings such that every flight is cov-
ered by exactly one selected pairing.

Let F' be the set of flights to be covered aRdhe set of all feasible pairings. Decision
variabley, is equal tol iff pairing p is included in the solution, an@ otherwise. The
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relation between pairing and flight: is given bya,,, which is 1 if p containsi and 0
otherwise. The cost of a pairing is denotgdand includes allowances, hotel and meal
costs, ground transport costs and paid duty hours.

min Zpep CpYp
subjectto > papy, = 1 i€F
yp € {0,1} peP

The crew pairing problem is often solved in three phases: daily, weekly exceptions,
and transition.

The daily problem is the problem most often discussed in the academic literature. The
daily problem only considers flights that are flown at least 4 days a week. These flights
are treated as if they were flown on a daily basis. The solutions are in the vast majority of
cases only of academic importance e.g. for European and international traffic the solution
is not directly applicable, mainly because of the substantial number of “irregularities” just
before and during the weekend.

Therefore the weekly exceptions problem builds pairings by considering flights flown
less that 4 days a week. Flights are associated to a specific day. At this phase special
flights, charters etc. can be incorporated. The exceptions problem has been subject to less
research than other areas of crew scheduling. One reference is [21].

Combining the solution of the daily problem with the weekly exceptions result in a
solution that cover all flights in the weekly schedule exactly once.

Finally it is sometime necessary to solve the transition problem that appears when
moving from one schedule to a new one. Here pairings for the small changeover period
are constructed.

In order to solve the pairing problem as stated above one possibility is to construct all
legal pairings. The challenge is that the number of legal pairings can be extremely large,
typically varying from 500,000 for a small airline to billions for large airlines.

Generation of pairings is done using one of the two network representations presented
earlier: The flight network (mainly used for domestic and short-haul operations) and the
duty time-line network (mainly appropriate for international and long-haul operations).

A legal pairing is represented by a path from the source to the sink in the network,
where these are usually crew bases. Note that many paths from source to sink do not
represent legal pairings. The network guarantees that connected flights match wrt. arrival
and departure airport and that turn-around times are respected, but it does not prevent the
path from violating rules like maximum flying hours etc.

In the other type of network, the duty period network, it is possible to build the duty
period rules into the network, resulting in an extended set of arcs. In the duty period
network nodes represent the departure and arrival of each duty period. Arcs in the network
represent possible duty periods as well as legal connections between the duty periods. As
in the flight network we complete the representation with a source and a sink.
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In the duty period network numerous rules are satisfied by all source-sink paths, more
than in the flight network. However, there will still be some rules that are not enforced
by the network structure. These rules must be checked for each possible path in order to
ensure legality.

Each flight path from source to sink that fulfills the constraints define a legal pairing.
For smaller problems all legal pairings can be generated a priori. For larger problems, a
limited a priori generation can be used as a heuristic. Here, only “good” pairings are gen-
erated. For example, instead of investigating every possible extension of the current path
from a given node one may enforce that the crew has to leave on one of the four immedi-
ately succeeding connections. Optimality is not guaranteed, but a sound solution results.
Recent approaches generate the pairings as they are needed in a column generation pro-
cess. The problem of generating the pairings then becomes a variant of the shortest path
problem.

Crew assignment problems are solved for each crew type (ie. captain, first officer
etc.). The constraints of the crew assignment problem is:

e Each crew member should be assigned to exactly one work schedule. In case the
airline is not required to use all crew members, a crew member might be assigned
an empty schedule containing no work.

e Each pairing in the crew pairing solution is contained in the appropriate number
of selected schedules (depending on how many crew members of each type are
required).

Using the notation of [8], lef be the set of crew members of a given type and let
P be the set of dated pairings to be covered. For each crew méntberset of feasible
work schedules is denotef. n, is the minimum number of crew members needed to
cover pairingy and~, is 1 in pairingp is included in scheduleando0 otherwise.c’ is the
cost of schedule for crew k. Decision variables are”, which arel if schedules € S*
is assigned to crew € K and0 otherwise. We can now formulate the crew assignment
problem:

min ZkeK Zsesk’ nglz
subjecto Y, Y ocqk ik > n, peP
e L =1 kekK
z* € {0,1} seStkeK

Basically this problem is solved in the same way as the pairing problem. Either we
a priori generate the rosters by constructing a path from source to sink in a network of
pairings. This a priori phase can be done optimally or heuristically. Alternatively, we
use a column generation approach and only generate the rosters as they are needed. The
network representation is similar to the pairing problem, but instead of defining a path of
flights as in the pairing problem the path consists of pairings.
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3 Planning

To set the scene for the review of papers addressing recovery and disruption management,
we review selected important papers regarding planning in the airline industry in this
section. These papers discuss fleeting and routing, crew scheduling, and an integration of
both of these.

3.1 Aircraft Fleeting and Routing

The issue addressed in “The aircraft rotation problem” [13] from 1997 by Clarke, John-
son, Nemhauser, and Zhu is to produce optimal rotations given the value of letting specific
flights follow others (the so-called through value). The problem is initially described by

a time-line network, where ground arcs have cost according to their through value. The
model used in the solution procedure is, however, based on a connection network in order
to allow an easy way of expressing that a solution must connect all flights into a tour, i.e.
that broken rotations are not feasible. The problem is solved using Lagrangean relaxation
where the relaxed constraints are subtour elimination constraints and constraints ensuring
maintenance feasibility. The Lagrangean dual is solved with subgradient optimization.
Test data for the method are from a major US carrier and consist of 11 instances rang-
ing from 43 flights to 3818 flights. Two types of problems are solved: through value
problems, in which the solutions may not be maintenance feasible, and rotation problems,
which in case the through value solution is not feasible, produces a service feasible so-
lution. For through value problems, the method gives provably optimal solutions for all
instances in less than a minute. For rotation problems, the solutions lies within 5% of the
solution of the through value problem. Here, the solution times are substantial, although
less than an hour for the test instances.

The problem studied in “Flight String models for Aircraft Fleeting and Routing” [7]
from 1998 by Barnhart, Boland, Clarke, Johnson, and Nemhauser is a combined fleeting
and routing problem for aircraft. Models based on time-line networks as well as models
based on connection networks are used. The solution technique is based on generating
strings of flights respecting maintenance conditions. These strings are used in a Branch-
and-Price framework, where the general model is time-line based, but where the column
generation step is tailored and uses connection networks. The algorithm is tested on data
provided by a long-haul airline with a planning horizon of a week, and with 1124 flights
visiting 40 cities, and 9 fleets with 89 aircraft. The solutions are provably within 1 %
of optimum and are found in appr. 5 hours. Also, a routing problem with connectivity
constraints and through values is studied - this is modelled using connection networks
and solved with a Branch-and-Cut-and-Price algorithm. The test data is 10 data sets from
short-haul operations. All but one instance are solved to optimality, and the solution times
range from a few seconds to 10 hours.

17



3.2 Crew Scheduling

Crew scheduling is generally acknowledged to be an extremely complicated task. In
“Solving Airline Crew Scheduling Problems by Branch-and-Cut” [19] from 1993 by
Hoffman and Padberg, the authors describe a Branch-and-Cut optimizer for solving both
pure Set Partitioning Problems originating from crew scheduling and crew scheduling
problems, which include other types of constraints specifying e.g. even distribution of
time away from home base. The optimizer takes as input a very large set of columns each
corresponding to a feasible crew rotation (roster). The resulting huge Set Partitioning
problem is first reduced using simple, but efficient column and row reduction techniques.
Then, an LP-based heuristic is applied in order to get a tight upper bound before start-
ing the Branch-and-Cut module. The Branch-and-Cut module consists of an LP-based
Branch-and-Bound combined with polyhedral cuts derived for the Set Packing polytope
(e.g. clique cuts and odd-cycle cuts). The cuts are generated efficiently on-the-fly by
specially tailored procedures. All components of the optimizer are described in detail,
and extensive computational results are reported. These show that for many real-life
problems, the combination of the tight upper bound found by the heuristic and the cut
generation solves the problem without branching. In most cases (including those where
branching appears), the solution time is small (less than 100 seconds) both for pure Set
Partition problems and problems with base constraints. The authors nevertheless point
out that a few of the test problems require much more computational effort - this is in line
with the fact that the problem addressed is NP-hard.

3.3 Integrated Solutions

The complexity of integrated planning of resources such as crew and aircraft is orders of
magnitude harder than separate planning of each resource. The topic is from an airline
perspective extremely interesting, and the paper “Benders Decomposition for Simulta-
neous Aircraft Routing and Crew Scheduling” [16] from 2001 by Cordeau, Stajkovi
Soumis, and Desrosiers is the first to address the issue. The research reported can be con-
sidered to be the first step to evaluate the technical difficulties and the potential benefits
from a truly integrated planning system for crew and aircratft.

The basic idea is to construct two connection networks, one for the fleet, and one for
the set of crew for the fleet. The underlying mathematical program is a mixed integer
linear programming model, which contains constraints as those indicated in section 2 for
each of the resources as well as constraints combining the resources - notably that crew
does not change aircraft when connection time does not allow this. As noted in section 2,
the decision variables of the model correspond to feasible paths for aircraft and feasible
rosters for crew. Even for one resource, such a model presents a problem regarding solu-
tion. Therefore, the model is decomposed using Bender's decomposition. Each feasible
aircraft assignment gives rise to a primal subproblem, which is the LP-relaxation of the
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MILP problem for crew given the fixed aircraft assignment. This problem is solved using
column generation, and the dual information is fed back into the Benders master problem,
which is the LP-relaxation of the aircraft assignment problem with additional constraints.
These are added incrementally as usual in the Bender's decomposition approach. The
procedure alternates between solving master and subproblems until a specified stopping
criterion is achieved. The integer version of Bender’'s master problem is solved with a
heuristic, which implies that suboptimal solutions are found. Finally, an integer crew
solution is found based on the solution to the primal subproblem.

The method is tested on the data of a weekly schedule supplied by a Canadian airline
with 3205 short-haul legs. After fleet assignment, three fleets cover 2950 of these, and
three problems hence result. For each of these, after determining the initial positions and
the routing of aircraft, a crew scheduling problem is then solved to determine the crewing
of the proposed routing. Each aircraft is assigned exactly one crew. Based on the initial
positioning of the aircraft and crew, the integrated problem is then solved both using a
direct approach without decomposition, and the described decomposition approach. Fi-
nally, the solutions obtained from the integrated planning approach are compared with
those available from the traditional sequential planning performed. In general, the results
are promising with savings between 5% and 10%. The solution times reported are though
measured in hours not prohibitive given the planning horizon. The paper demonstrates
the potential of integrated solution techniques, but it also implicitly highlights the com-
plexity - the proposed solution corresponds to that crew are rostered in teams rather that
individually.

The paper “Integrated Airline Planning” [35] by Sandhu and Klabjan formulates an
integrated model covering the tactical planning of fleet assignment, aircraft routing, and
crew pairing. The model is built on a time-line network representation of the problem,
integrating de-facto standard models for fleeting and routing, and pairing. Two solution
methods for this model are then compared with respect to efficiency and solution quality.
The test problems used are problems from a major US carrier with a heavy hub-and-spoke
structure, 5 crew bases, and eight hubs. The hardware used is a cluster of 27 900 MHz
PCs. One solution method is based on Lagrangean relaxation and column generation, the
other on integrality relaxation and Bender’s decomposition.

Both solution approaches for the integrated model are computationally heavy: The
running time for the most difficult problem is appr. 30 hours running all 27 processors
in parallel. On the other hand, both approaches show a substantial benefit in terms of in-
creased profit. When compared to the traditional stepwise planning approach, the yearly
increase in profit for the largest problem in the test set is appr. 50 million USD. The pa-
per documents the potential of integrated planning solutions, however, the computational
resources required to reach the goal are non-standard.
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4 Disruption Management

In this section we comment on most of the papers published on recovery and disruption
management over the last 15 years. For each paper we comment on the problem ad-
dressed, the type of model used, the solution techniques discussed, and the computational
experiences reported (including to some extent details on the computational equipment).
The section is subdivided by resources (aircraft, crew, ...) and for each resource, the
papers appear in chronological order).

In addition to the literature reviewed in this paper the conferences of the AGIFORS
organisation often feature presentations within the area of airline disruption management.
As contributions from these conferences at best are available in the form of presentation
slides they are not considered in this paper. AGIFORS is the Airline Group of the Inter-
national Federation of Operational Research Societies. Further information can be found
at www.agifors.org.

The following subsections reviewing published papers are organized according to the
resources (aircraft, crew, passengers etc.), which form the goal of the recovery procedures.
However, a few papers with a more general approach deserve mentioning.

Rakshit et al. provide interesting insights to the potential savings of a decision support
system in the paper entitled "System Operations Advisor: A Real-Time Decision Support
System for Managing Airline Operations at United Airlines" [32]. The decision support
system was implemented in 1992 and its impact convinced United Airlines of the need to
develop other decision support systems for managing daily operations. The first version
of the system were able to swap aircraft between flights and to propose re-timings. Later
versions also considered cancellations (see the description of the work by Jarrah et al.
[20]on page 22).

In "Irregular Airline Operations: A Review of the State-of-the-practice in Airline Op-
erations Control Centers" from 1998 [15] Clarke provides an overview of the state-of-the-
practice in Operations Control Centers (OCC) in the airline industry in the aftermath of
irregular operations. The overview is based on field studies to several airlines. Clarke pro-
vides an extensive review of the literature within airline disruption management. Finally,
Clarke propose a decision framework that addresses how airlines can re-assign aircraft to
scheduled flights after a disruptive situation.

The paper "How Airlines and Airports Recover from Schedule Perturbations: A Sur-
vey" [18] by Filar et al. describes techniques that enhances utilization of airport capaci-
ties. In addition, methods that limit damage or provide recovery in disruptive situations
are reviewed. The paper describes methods involving the Traffic Management, airport
authorities and airlines (Operations Control).

In the paper "Airline Disruption Management: Perspectives, Experiences and Out-
look™ [22] from 2004 Kohl et al. provide a general introduction to airline disruption
management including a description of the planning processes in the airline industry. The
present (almost manual) mode of dealing with disruption and recovery is presented, fol-
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lowed by a review of existing litterature on developments within automated optimized
recovery. Furthermore, the paper reports on the experiences obtained during the large-
scale research and developement project DESCARTES, supported by EU, on airline dis-
ruption management. Among the results of the project were a first prototype of a multiple
resource decision support system.

4.1 Aircraft Recovery

Teodorovic and Guberinic were among the first to study the aircraft recovery problem in
“Optimal Dispatching Strategy on an Airline Network after a Schedule Pertubation” [43]
from 1984. Here, one or more aircraft are unavailable and the objective is to minimize the
total passenger delays by reassigning and retiming the flights. The problem is solved sep-
arately for each fleet. The model is based on a type of connection network, which consists
of two types of nodes. The first type represents the flights to be flown whereas the other
represents operational aircraft. The model is solved by finding the shortest Hamiltonian
path in the network which is solved using a Branch-and-Bound algorithm. The authors
present a very simple example with only 8 flights.

“Model for Operational Daily Airline Scheduling” [44] from 1990 by Teodorovic and
Stojkovic extends the previous work described above to consider also airport curfews.
Nodes in the network represent flights to be flown and are grouped in stages. Each stage
represents a flight number in the chain of flights to be made by the first aircraft consid-
ered. An initial node with arcs to all nodes in stage 1 is added. Stage 1 contains only
nodes representing the flights starting from airports with available aircraft. The following
stages contains flights to be flown later. An arc in the network indicate that the two flights
can be operated in succession. The cost of an arc is the total time loss of passengers on
the i’'th departure after th¢; — 1)'st takeoff. The solution method is greedy: First, a
shortest path (schedule) for the first aircraft is generated. Nodes used in this shortest path
are removed and the shortest path method is invoked again to generate the schedule for
the next plane, and so forth. The method is tested on a small example of 14 aircraft and
80 flights. By extracting sub-problems hereof a test-set of 13 instances is generated and
tested. Running times on a PC/XT are in the range of 5 to 180 seconds. The quality of
the solutions is not discussed.

In “Model to Reduce Airline Schedule Disturbances” [45] from 1995, Teodorovic
and Stojkovt further extend their model to include also crew considerations. The model
proposed still solves the problem individually for each aircraft type. Their approach is
based on two objectives where the first priority objective is to maximize the total number
of flights flown and the second objective is to minimize the total passenger time loss on
flights that are not canceled. The proposed framework schedules crew before aircratft.
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The authors also conducted experiments with the reverse order of scheduling. However,
computation time increases as this problem is much larger and scheduling of the aircraft
requires constant checks on crew feasibility. The question on whether to first design
the crew or the aircraft rotations is similar to the “cluster-first or route-first” decision in
vehicle routing. Crew rotations are scheduled using either the “first-in-first out” (FIFO)
principle or a sequential approach based on dynamic programming (DP). When linking
legs into routes by the FIFO principle, every leg arriving at an airport is linked to the first
leg departing from the same airport. A chain is completed when the crew member is out
of hours. The DP approach constructs a connection network with flight legs as nodes.
An edge from leg to leg j indicates the feasibility of crew flying immediately after.

The cost of each edge represents the corresponding ground time for the crew. Now, the
shortest path containing the maximum number of legs is found. This is the rotation for the
first crew. The flights covered by this rotation is then removed from the network, and the
process is repeated for the next crew group rostered together. A connection network with
the rotations for crew as “legs” is the generated. An edge represents that a particular tail is
able to fly the two rotations involved in sequence. The length of the edge is defined to be
the number of flights in the latter of the rotations constituting the edge. A longest path in
this network is identified, corresponding to a line of work for an aircraft including as many
flights as possible. If two paths are equally long the path with the smallest passenger delay
is chosen. Thereafter, the nodes and corresponding edges are removed from the network,
and the process is repeated in a greedy fashion.

Teodorovic and Stojkogipropose an algorithm that describes how the checks of the
technical maintenance requirements are handled. If infeasibilities are found the dispatcher
first tries to reshuffle the aircraft rotations. If this does not work the dispatcher changes
one of the parameters (for instance cancel or re-time a flight). The proposed method is
tested on 240 different randomly generated numerical examples. The largest examples
consist of 80 legs. 4-5 disturbances are generated at random for each of the 240 instances.
The method performs at least as good as “naive solutions” (simply canceling disturbed
flights) in almost all of the cases. The tests were run on a 16 MHz 286 PC. Running times
for the FIFO approach was 2 seconds and for the DP approach 140 seconds for the biggest
instances with 80 legs.

The paper “A Decision Support Framework for Airline Flight Cancellations and De-
lays” [20] from 1993 by Jarrah, Yu, Krishnamurthy, and Rakshit discusses the two major
techniques for solving the aircraft recovery problem: cancellation and re-timing. A time-
line network is used to model the problem data and three methods ared discussed: The
successive shortest path method for cancellations, and two models based on the same type
of network and allowing cancellations resp. re-timings. Also, the possibility of swapping
aircraft is taken into account, where swaps can be with spare aircraft or with overnight
layovers. The time-line network has two types of nodes per station - flight nodes and air-
craft nodes. These are used to model the aircraft-to-flight assignments. Both models are
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minimum cost flow models. The models are tested on a network with three airports each
having considerable air traffic. The re-timing model can typically save part of the delay
minutes and produce a substantially better solution with respect to cost. Both minor and
major disruptions are tested in the test scenarios. The results from the cancellation model
are not as easy to interpret. The three test scenarios here are based on United Airlines’
B737 fleet and a regional subdivision of the United States. In both cases, the running time
of the models are counted in seconds on a DEC workstation - short enough to allow for
real-time use.

In “Decision Support for Airline System Operations Control and Irregular Operations”
[30] from 1996 Mathaisel describes the business process as well as the IT challenges
faced with the desig and implementation of a decision support system for airline disrup-
tion management. Furthermore, the paper discusses how a simple network flow problem
can be used for modelling the aircraft recovery problem. First, the non-disruptive network
is constructed. Here, all planned aircraft routings are represented by setting the upper and
lower bounds of the binary flow variables to “1”. The network is then altered in order to
describe the disruptive situation. The author discusses several types of disruptions that
must be taken into account when designing the algorithm that alters the network. These
include ground delays, inflight delays, cancellations, station closure and diversions. The
altered network is an expanded version of the non-disruptive network usually consisting
of a larger number of arcs and in some cases also additional nodes. The lower bounds of
the flow variables are reset to “0” and the resulting problem is solved by the Out-of-Kilter
algorithm. The model is capable of using cancellation as well as retiming. However, the
paper does not discuss multiple types of aircraft, crew considerations, or solution time.

“Swapping Applications in a Daily Airline Fleet Assignment” [42] from 1996 by Tal-
luri investigates the challenge of changing equipment type while maintaining feasibility
of the schedule. The problem is to change the AC type on a specific flight at a mini-
mum cost. As this process is done at operations control after the original planing phase
computation speed is an important issue, and a solution must be found within 2 minutes.
Solutions are categorized wrt. the number of overnight swaps needed. Being able to make
the change without affecting the overnight position of an AC is desirable mainly due to
maintenance. An algorithm with polynomial running time that finds a possible swap con-
tained in the same day is presented. If no such swap exists, the algorithm returns this
negative answer. Furthermore an algorithm allowing at mosvernight changes also
with polynomial running time is presented. Both algorithms are based on the connection
network. The solutions delivered by the algorithms are valid wrt. turn around rules, fleet
size, and assignment of each flight, whereas maintenance and crew considerations are not
checked. Testing is very limited and only documented by a single instance. For a connec-
tion network of two equipment types, 700 arcs and 200 nodes ten swapping solutions was
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found within 4 seconds on an IBM RS560.

“A GRASP for Aircraft Routing in Response to Groundings and Delays” [4] from
1997 by Arguello, Bard, and Yu describes a heuristic approach for the reconstruction
of aircraft routes when one or several aircraft are grounded. The heuristic is based on
randomized neighborhood search. An initial solution to the problem consists of aircraft
routes and cancellation routes (sequences of flights operated by an individual aircraft,
and sequences of canceled flights, which could be operated by an individual aircraft). In
each step of the solution process, all pairs of two routes (of which at least one must be
an aircraft route) from the current solution are investigated. For each such pair, all sets
of feasible re-routes covering the flights from the two routes are constructed respecting
flight coverage and aircraft balance at stations. Each set of feasible re-routes is assigned
a score reflecting the cancellation cost and delay cost of the route set. A limited number
of these are stored in a restricted candidate list. The selection is based either on quality
relative to the current solution or on absolute quality. Finally, a random member of the
candidate list is chosen as the starting solution for the next step of the algorithm. Each run
is allowed 2 CPU seconds, and 5 independent runs per instance is performed. The quality
of the solution is established through a comparison with a lower bound found using the
LP-relaxation of a time-band formulation of the recovery problem. The method is tested
on B757 fleet data from Continental Airlines with 16 aircraft and 42 flights. The recovery
period is set to one day. All instances grounding from 1 to 5 out of the 16 aircraft at the
beginning of the day are investigated. The results obtained by the proposed method are
clearly superior to just canceling the flights serviced by the grounded aircraft. In more
than 70% of the instances, the GRASP solution is within 5% of optimality.

In the working paper "The Airline Schedule Recovery Problem” from 1997 by Clarke
[14], an approach to the aircraft recovery problem is presented that in many ways cor-
responds to the classical fleet assignment approach. Here, the time-space or connection
network used in many airline-related solution methods is called a "Schedule Map". The
network is used to generate legal paths throughout the time horizon. Flights can be re-
timed by incorporating delay arcs into the model. These arcs are incorporated before
running the solution algorithm. An integer programming model with binary variables
for using a path and for canceling of flights is presented. The model provides primitive
extensions for crew, slots and gates. The paths are generated using an algorithm for the
constrained shortest path problem. The objective is a sum of direct costs of reassignment,
revenue spill costs and operating revenues. Experimental results for 3 different solution
procedures (ranging from a simple greedy approach to a complex column generation ap-
proach) are presented for test sets from a major US domestic carrier. Tests are run on a
Sun Sparc 20 workstation. The case studies have multiple aircraft types, 35-177 aircrafts,
180-612 flights and 15 or 37 airports. The results suggest that it is possible to reschedule
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flights in the aftermath of irregularities, although no running times are reported so it is
hard to see if it remains feasible in a dynamic on-line environment.

The papers “Airline Scheduling for the Temporary Closure of Airports” [49] and
“Multifleet routing and multistop flight scheduling for schedule perturbation” [50] from
1997 by Yan and Lin, resp. Yan and Tu are based on the same underlying model and can
both be seen as preliminary investigation of methods for aircraft recovery. The topic of
[49] is recovery when an airport is temporarily completely closed, whereas [50] addresses
the particular situation of temporary shortage of one aircraft. The underlying model is a
time-line network, in which flights are represented by edges from origin to destination.
Furthermore, the network has position arcs corresponding to potential ferrying of an air-
craft. The possibility of retiming an aircraft is modeled by introducing several arcs per
flight and imposing a constraint indicating that at most one of these can be in the solution.
Finally, the possibility of modifying a one-stop flight fromover j to k£ in a non-stop
i — k flight possibly supplemented with- j or j — £ flights is introduced. Maintenance
considerations are not taken into account.

In [49], the models resulting from adding any combination of these possibilities to the
basic time-line network are investigated. The solution methods are network flow methods,
and if side constraints are present, these are combined with Lagrangean relaxation and
Lagrangean heuristics. Tests are performed on data from China Airlines (Taiwan) with 39
flights to be served by 17 aircraft. The experiments on this small data set show a major
advantage using all three proposed network modifications, and the running times reported
are short (49 seconds at worst on an HP735).

[50] considers the situation, in which one aircraft becomes non-operational, but con-
siders several fleets of aircraft. The network described above is modified with a supply
node added at the point in time and space, where the absent aircraft is recovered. One
such network is built for each fleet in question. If an aircraft type C can substitute an-
other type B, the network for type C contains edges corresponding to the flight flown with
type B (since a C-aircraft might fly such a flight). Hereby, swapping between fleets are
made possible. To allow for re-timing, edges “parallel” with the flight edges are included
with specific time intervals. The model becomes an integer multi-commodity flow model,
which is solved using a combination of Lagrangean relaxation and network simplex, and
a Lagrangean heuristic. Results are provided again based on data from China Airlines
with 24 stations, 273 flights and 3 types of aircraft. Several types of recovery strate-
gies are tested including limited re-timing, positioning, and the modification of multistop
flights. 10 scenarios with all combinations of strategies are again tested, and convergence
to within 1% of optimality is reported within 30 minutes computing time (HP735) for
most scenarios.

The two papers “A Decision Support Framework for Handling Schedule Perturba-
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tion” and “A Decision Support Framework for Multi-Fleet Routing and Multi-Stop Flight
Scheduling” [51, 52] from 1996 by Yan and Yang resp. Yan and Young describe the same
models as the papers [49, 50]. Furthermore, much of the text in the papers is identical.
Also, the case study described originates from the same data set. [51] has a more detailed
experimental section than [49], but the essential conclusions are the same. Regarding
[52], the differences to [50] are more profound. Though the modeling framework and the
solution methods suggested are identical, the proposed strategies for solving the pertur-
bation problem are slightly different. Again, the experimental section is more elaborate,
but the main conclusions remain the same.

“Real-time Decision Support for Integration of Airline Flight Cancellations and De-
lays Part | (resp. II): Mathematical Formulation (Resp. Algorithms and Computational
Experiments)” [11] and [12] from 1997 by Cao and Kanafani make use of the same type
of time line network as [20] discussed above, however, the model presented allows for
a solution combining delays and cancellations. The model derived is a special type of
quadratic 0-1 integer program, the quadratic term in the objective function stemming
from the cost incurred by interdependent changes in aircraft-to-flight assignments. The
authors present a tailored Linear Programming Approximation algorithm for the problem,
which finds a locally optimal solution. By subdividing their solution space and running
the algorithm on each subdivision, they enhance the probability of identifying the global
optimal solution to the problem. The algorithm is tested on a set of randomly generated
scenarios with 20-50 airports, 30-150 aircraft, 5-12 surplus aircraft, 65-504 flights, and
appr. 25% delayed aircraft. The running times range from 26 seconds to 869 seconds
(VAX-6420). The scenarios tested have a high number of stand-by aircraft and hence
seem quite unrealistic, and the quality of the solutions is difficult to assess. Furthermore,
the work by [25], in which a reproduction of the results have been tried without success,
suggests that the description of the model is not complete.

“Airline Schedule Perturbation Problem: Landing and Takeoff with Nonsplitable Re-
source for the Ground Delay Program”, “Airline Schedule Perturbation Problem: Ground
Delay Program with Splitable resources”, and “On the Airline Schedule Perturbation
Problem Caused by the Ground Delay Program” [28, 27, 29] by Lou and Yu all address
the problem of schedule perturbation resulting from the Ground Delay Program of the
Federal Aviation Authorities. The last two papers are, though the publishers are different,
identical. Each operating airline of an airport has at the beginning of each day a number
of assigned slots for landing and take-off. The slots exactly match the activities of the
airline. The arrival slots for the airlines may, however, be changed due to e.g. deteriorated
weather conditions. In that case, slots may be moved in time or possibly canceled. The
problem for each airline is now to determine the assignments of flights to available slots to
minimize inconvenience and knock-on effects. Hence, delays are not directly connected
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to a specific flight leg but to the fact that the landing slots for each airline are moved in
time. The problem is therefore to reschedule the flights. In [28] from 1998, the subprob-
lem in which aircraft and all crew are scheduled together is considered. A number of
different objectives are discussed. For all of these, the problem is an assignment problem
and very efficient solution methods are readily available. The paper is theoretical and
methodological in nature. No implementations or experiments are reported. Consider-
ing schedules, in which aircraft and crew are scheduled separately, the problem becomes
more complex. If the objective is to minimize the maximum delay of out-flights, which

is crucial because these delays are the ones giving rise to down-line knock-on effects, the
general problem is strongly NP-hard. In [27, 29], also from 1998, a special version is
shown to be polynomial, and a heuristic is developed for the general version. The pa-
per presents the result for a real-life problem from American Airlines with 71 incoming
flights. A large improvement in the number of aircraft delayed more than 15 minutes
compared to the original schedule can be achieved by the rescheduling of flights using the
proposed methods. The solution time is appr. 15 seconds.

The master thesis “Disruption Management in the Airline Industry” [25] from 2001
by Leve and Sgrensen takes as starting point the model of [11, 12] described above. The
results are, however, discouraging, and therefore, alternative methods for employing can-
cellations and retimings in response to disruptions are investigated. The methods are local
search based heuristics. The results show that steepest descent local search is almost as
good as other local search based heuristics in terms of quality, and much faster with a
running time of few seconds even for large problem instances. Also, the work shows
that solutions are sensitive to the costs assigned to the different recovery strategies, such
that structurally different solutions can be obtained by varying the relative importance of
the costs. The data used in [25] are randomly generated. However, in the DESCARTES
project [22] a feasibility study on real data from British Airways with 80 aircraft, 44
airports, and 340 flights has been carried out showing the same general tendency. The
Dedicated Aircraft Recovery module of the DESCARTES project is based on the meth-
ods described in the project. A summary of the findings can be found in [26].

The two papers “Balancing user preferences for aircraft recovery during irregular op-
erations” and “Multiple fleet aircraft schedule recovery following hub closures” [46, 47]
by Thengvall, Yu, and Bard from 2000 resp. 2001 are both based on the classical time-
line network as described by [49, 50], which in addition to flight arcs and ground arcs has
protection arcs and through-flight arcs. The two latter types of arcs makes it possible in
the evaluation of a proposed recovery schedule to prioritize the deviation from the orig-
inal schedule by giving special emphasis to flying all legs in a flight with several stops
with the same aircraft. In [46] the model is used to produce recovery schedules for sin-
gle fleet recovery in case of minor disruptions as e.g. unavailability of a limited number

27



of aircraft. Crewing and maintenance are not taken into consideration. The model is an
integer single-commodity network flow problem with side constraints, which is solved
by standard optimization software. As a supplement, a heuristic to construct an integral
solution from a fractional LP-solution is implemented. The approach is tested on real-
life data from Continental Airlines (B757 schedule with 16 aircraft and 13 stations, and
B737-100 with 27 aircraft and 30 stations). Results indicate that the approach clearly
allows for construction of different recovery schedules corresponding to changes in pri-
orities between delay minute costs, cancellation costs, and cost of deviation from original
schedule. Computing times are sufficiently small to allow for real-time use.

"Balancing User Preferences for Aircraft Schedule Recovery during Irregular Oper-
ations" [46] from 2000 by Thengvall, Bard, and Yu addresses the situation of complete
closure of a hub, i.e. a situation causing a major disruption for a larger airline. The model
described above is extended to allow for multiple fleets. Each fleet may have subfleets
organized hierarchically, and substitution within subfleets are allowed accordingly. Three
models are built: Two so-called preference models, of which one is a pure network model
and one is a generalized network model, and a model based on time bands as introduced
in [5]. The preference models are both based on time-line networks as described previ-
ously for each subfleet. The models are all MIP-models. Their relative performances are
initially investigated leading to the choice of the first preference model for detailed in-
vestigation. Detailed experiments are performed leading to the conclusion that the model
produces reschedules of quite high quality in computing times less that 30 minutes for the
largest problem with a hub closure of 10 hours and a recovery period of 24 hours for a
schedule with 3 hubs and 2921 flights between 149 stations.

In “Optimizing aircraft routings in response to groundings and delays” [6] from 2001,
Bard, Yu and Arguello introduces the time-band network described in Section 2. The
resulting model is an integral minimum cost flow model with additional constraints en-
suring that a flight is either canceled or flown by a unique aircraft. The authors develop a
solution methodology with an initialization step, in which the flight schedule is input and
the time bands decided followed by the generation of the time band network. Finally, the
mathematical formulation of the integer programming problem is derived.

This problem is then relaxed by ignoring the integrality constraints and solved to op-
timality. Based on the LP-solution, an integer-valued solution is derived, which is finally
turned into a schedule. The cost is calculated and compared to the lower bound pro-
vided by the LP-relaxation. The approach is tested on a Continental Airlines B737-100
fleet schedule with 162 flights covering 30 stations and serviced by 27 aircraft. 427 test
cases are reported: 27, in which one aircraft is grounded, and 100 cases for each case of
two, three, four and five aircraft grounded. The time bands are varied from 5 minutes to
30 minutes, allowing also variations between hub stations and spoke stations. Using the
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lower bounds derived and the actual cost of the solutions, the quality of the solutions can
be assessed, and also the solution time is reported. The results depend on the time band
resolution, but are generally encouraging with respect to quality. Regarding solution time,
these are highest for fine resolutions, the maximum being 750 seconds on Sun Sparc 10.

The thesis “The Flight Perturbation Problem - operational aircraft rescheduling” [3]
of Andersson considers the aircraft recovery problem. Based on the same model three
different solution methods are developed. The model used is based on the connection
network resulting in a multi-commodity flow formulation. An aircraft is represented by
two nodes: an “aircraft source node” (where and when is the aircraft at the start of the re-
covery period) and a corresponding “flight sink node”. It is assumed that the aircraft must
pick up its original schedule after the recovery period. The three solution methods are a
Lagrangian relaxation-based heuristic, a method based on Dantzig-Wolfe decomposition,
and finally a heuristic based on tabu search. Computational results are based on data from
a domestic carrier from Sweden operating 5 fleets with a total of 30 aircraft. Instances
consist of 98-215 flights and 19-32 airports. Results are only reported for the last two
heuristics as the performance of the first is described as being be clearly inferior. While
the Dantzig-Wolfe-based method is good for the smaller instances, larger ones have to
be solved using tabu search. Solution times range from 10 seconds to 1100 seconds for
the Dantzig-Wolfe based method. The running time of the tabu search approach remains
below 10 seconds and the method consistently delivers competitive solutions.

The paper “Rerouting Aircraft for Airline Recovery” [33] from 2003 by Rosenberger,
Johnson and Nemhauser considers the case of aircraft recovery. The proposed model ad-
dresses each aircraft type as a single problem. The model principally follows an approach
traditionally used in planning problems, namely a Set Partitioning master problem and
a route generating procedure. The objective is to minimize the cost of cancellation and
retimings, and it is the responsibility of the controllers to define the parameters accord-
ingly. In order to solve the master problem in due time, a heuristic is used to select only
a subset of aircraft to be involved in the Set Partition problem. The heuristic determines
for each disrupted aircraft a number of other aircraft with routes allowing a swap with
the disrupted aircraft. The legs of these routes are those included in the route genera-
tion procedure. This approach results in running times between 6 and 16 seconds for 3
real-size problem instances. The paper contains an impressive testing using SimAir [34]
simulating 500 days of operations for the three fleets ranging in size from 32 to 96 aircraft
servicing 139-407 flights.
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Functionality Data Dimensions Solution

Authors Model || Canx | Retim3 | Fleets AC | Fleets| Flights | time Objectives

Teodorovic, Guberinic [43] CN No Yes No G 3 1 8 | NA Delay minutes

Teodorovic, Stojkovi [44] CN Yes | Yes No G 14 |1 80 | 180 canx and delay min
utes

Teodorovic, Stojkow [45] CN Yes | Yes No G NA | 1 80 | 140 canx and delay min
utes

Jarrah, Yu, Krishnamurthy, Rakr TLN Yes | Yes No RL NA | 9 NA | 0-30 delay, swap and fert

shit [20] rying

Mathaisel [30] TLN Yes | Yes No NA NA | NA NA | NA “disruption effects”

Talluri [42] CN No No Yes G NA | NA NA | 10 swaps when chang-
ing AC type

Arguello, Yu, Bard [4] - Yes | Yes Yes RL 16 |1 42| 2 route cost and can-
cellation cost

Clarke [14] CN Yes | Yes Yes RL 177 | 4 612 | NA costs  minus  revd
enues

Yan, Lin [49] TLN Yes | Yes No RL 17 |1 39| 49 COSts minus revenusg

Yan, Tu [50] TLN Yes | Yes yes RL 273 | 3 3| 1800 Costs minus revenug

Cao, Kanafani [11, 12] TLN Yes | Yes No G 162 | 1 504 | 869 revenue minus costs

Lou, Yu [27, 29] NA No Yes NA RL NA | NA 71| 15 number of delayed
flights

Lou, Yu [28] NA No Yes NA RL NA | NA 71| 15 delayed flights

Lave, Sgrensen [25] TL Yes | Yes No RL 80 |1 340 | 6 revenue minus costs

Thengvall, Bard, Yu [46] TLN Yes | Yes No RL 27 |1 162 | 6 revenue minus cost

Thengvall, Yu, Bard [47] TLN Yes | Yes Yes RL 332 | 12 2921 | 1490 revenue minus cost

Bard, Yu, Arglello [6] TBN Yes | Yes No RL 27 |1 162 | 750 delay and canx

Andersson [3] CN Yes | Yes Yes RL 30 |5 215| 10-110@ || revenue

Rosenberger, Johnson,NA Yes | Yes No G 96 |1 407 | 16 cost of canx and ref

Nemhauser [33] timings

Table 2: Model is either connection network (CN), time line network (TLN), time band network (TBN). Data is either
generated (G) or real-life (RL) instances. Solution times are in seconds. Yan, Yang [51] is not mentioned as it is identical to
[49]. Fleets indicate whether multiple fleets can be dealth with concurrently.

aThe tabu search has a max of 10 seconds, whereas the Dantzig-Wolfe algorithm goes as high as 1100



4.2 Crew Recovery

“The Operational Airline Crew scheduling Problem” [41] from 1998 by Stojkp8ioumis,

and Desrosiers formulates the crew recovery problem as an integer non-linear multicom-
modity flow problem. The idea is that in the disrupted period, the duties of the crew are
dissolved in order to make replanning feasible. The master problem is a Set Partition type
model which is solved by Branch-and-Bound with LP-relaxation and column generation.
The subproblems are shortest path problems based on a time line network, in which duties
are represented as edges between the start node and the end node of the duty. A separate
graph is constructed for each crew member. The model and method is tested on data from
a major U.S. carrier, and only cockpit personnel for one fleet positioned at the carrier's
base is considered. The disruptions considered consist of three delayed aircraft, and one
indisposed crew member away from base. Scenarios with one or two crew members per
aircraft are tested, and both one day horizons and seven days horizons are tested. The
results are encouraging, showing that the column generation approach though varying
considerably with respect to computing times is feasible for smaller problems.

Crew management as a Crew Pairing Repair (CPR) problem is treated by Wei et al.
in “Optimization Model and Algorithm for Crew Management During Airline Irregular
Operations” and "A Decision Support Framework for Crew Management During Airline
Irregular Operations” [48, 37] from 1997/98. The two papers are, though the publishers
are different, identical. Here the underlying assumption is that the flight schedule has been
fixed and thus is given. The challenge is now to repair the pairings that are broken by the
modified schedule. The objective is to return the entire system to the original schedule as
soon as possible and in the cheapest way. The problem is solved based on a space-time
network, which is considered for a certain time window. Start of the window is the current
time and the end of the window is the end of the recovery period by which the resources
should have returned to their original schedule.

Each airport is described by two columns of nodes. The first column represents crew
that has arrived to the airport from another flight or that are signing in here. They are
placed according to when they are ready. Flight nodes in the second column represent the
departure of flights. Reserve nodes (placed in the first column) represent the availability
of stand-by crew. Return nodes force the crew to return to their original schedule at the
end of the window. There are four types of arcs in the network: flight arcs represent
the flight from one airport to another, stand-by arcs emanates from stand-by crew nodes
to those flights at the same airport that can be served by standby crew, scheduled arcs
emanate from crew nodes to the originally scheduled flight nodes, and finally return arcs
represent the returning of crew to their original schedule.

The cost of the arcs reflect preferences or penalties. It is assumed that each crew
member can be associated with only one fleet type. Furthermore several crew members
are grouped and rostered together, i.e. they have the same roster. The network basicly
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defines the feasible pairings. A generalised Set Covering problem with the constraints of
covering all flights is then solved. Solution time is restricted to only a few minutes and
the operations controller needs multiple good solutions. The solution method is a depth-
first Branch-and-Bound algorithm. At each node, the problem is defined by the set of
(still) uncovered flights and a list of pairings that are modified. When the set of uncovered
flights is empty the corresponding Branch-and-Bound node represents a feasible solution
to the CPR problem. At each non-leaf node in the search tree a flight is selected among
the set of uncovered flights. A candidate crew list is built and the best crew member is
chosen. The change pairing of the crew member must satisfy:

e it must be possible to return the crew member to the return node,
¢ the pairing must be legal, and

¢ the new pairing should be as close to the original one as possible.

If the two first items cannot be satisfied the node is fathomed. A further pruning
feature is that a node is fathomed if the number of modified pairings is larger than that of
the solution found so far.

The stopping criterion of the algorithm is that a predetermined time limit has been
reached or a required number of solutions has been produced. Computational experiments
are based on data from an unknown source. The largest instance comprises 6 airports, 51
flights in a two-day period, and 18 pairings. This rather small instance is the basis of 8
scenarios with a different number of delays and cancellations. The running times range
from a fraction of a second to 6 seconds producing from 1 to 3 solutions (3 solutions being
one of the stopping criteria).

In “Airline Crew Recovery” [24] from 2000 Lettovsky et al. presents a method for
recovering crew in the case of disruptions. Preprocessing techniques are used to extract
a subset of the schedule for rescheduling. Among the techniques are that only selected
pairings (a restricted set of crews) are broken up, and not necessarily into single flight legs
but consecutive flights with no swapping opportunities. A fast crew-pairing generator then
constructs feasible continuations of partially flown crew trips. Deadheads can be given
a priori. The crew recovery problem is then formulated and solved as a generalised Set
Covering problem using 3 different branching strategies and incorporating variable fixing.
Delaying flights is also incorporated but it is not clear how.

A test of the method on a schedule of 1296 flight legs from a major U.S. carrier is
presented. The legs are covered by 177 pairings. Three scenarios of irregular operations
are set up: 1) is a small-size maintenance-related disruption, 2) represents a weather dis-
ruption implying decreased landing capacity at an airport and finally 3) presents a major
disruption having three airports hit by a snowstorm. The first two scenarios required no
branching. Solution times range from 1 to 115 seconds. For the longest solution time
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4642 new pairings were generated. In scenario 1 no flight had to be canceled whereas
scenario 2 and 3 resulted in up to 21 cancellations. It should be noted that “crew mem-

bers” are aggregated into groups of people that cannot be split for the length of the pairing.

This situation is seldomly found among European airlines.

"Airline Crew Scheduling - From Planning to Operations" by Medard and Sawhney
[31] discusses the crew recovery problem. The authors stress that the problem is struc-
turally different from the crew pairing and rostering problems because contrary to the
planning phase these two subproblems have to be solved at the same time in the recov-
ery phase. This means that both rules on the pairing and the rostering level have to be
respected. Thus, they note that the recovery challenge is to merge the pairing character-
istics into a rostering problem which is modeled at the flight level. Medard and Sawhney
consider the so-called rostering time window decomposition technique and refer to the
fixed part of the roster before (and after) the disruption as the carry in (and the carry out)
for the crew member in question. Within the recovery window, flights are de-assigned
from the disrupted crew as well as from a group of other crew, referred to as helper crew.
It should be noted that some crew member might have days off or training duties within
the time window, these cannot be changed. Also, newly scheduled flights may be added
to the pool of de-assigned flights. Medard and Sawhney propose an optimization model
which is the flight-based equivalent to the original pairing-based rostering model, where
the de-assigned flights replace the pairings. The optimization model is formulated as a
Set Covering model which is solved using column generation. The columns are generated
by finding shortest paths either by the use of a Depth First Search strategy (DFS) or by a
reduced cost column generator (COLGEN). Medard and Sawhney test their methods on
small to medium sized scenarios ranging from 14 to 885 planned crew members with up
to 77 illegal rosters. The computation times range from 12 to 840 seconds on a 1 GHz
PC. The results are encouraging however for some of the more complicated scenarios the
time limit of a few minutes is not respected and the authors conclude that the column
generation schemes must be refined. This can for instance be obtained by applying more
crew specific information in the generation scheme.

“A Proactive Crew Recovery Decision Support Tool for Commercial Airlines during
Irregular Operations” by Abdelghany et al. [1] addresses the problem of flight crew re-
covery for an airline with a hub-and-spoke network structure. The paper discusses the
disruption management problem in detail and subdivides the recovery problems into four
categories: Misplacement problems, rest problems, duty problems, and unassigned prob-
lems. Based on detailed information regarding the current plan and pool of problems, the
recovery problem is then solve in steps. In the solution method, delaying, using stranded
crew, swapping, deadheading, and using standby crew are used as means of recovery. The
proposed model is an assignment model with side constraints, which takes into account
timings and bounds on regarding the use of different means (as e.g. use of undisrupted
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crew members in the recovery solution). Due to the stepwise approach, the proposed so-
lution is suboptimal. Computational results are reported for a situation from a US carrier
with 18 problems. The solution involves 121 crew members and is found in less than 2
minutes using CPLEX to solve the mathematical model. From the information given it is
hard to judge the practical applicability of the proposed method.

4.3 Integrated Recovery

A framework for integrated airline recovery is presented in Lettovsky’s Ph.D. thesis “Air-
line Operations Recovery: An Optimization Approach” [23] from 1997. This is the first
presentation of a truly integrated approach in the literature, although only parts of it is
implemented.

The thesis presents a linear mixed-integer mathematical problem that maximizes total
profit to the airline while capturing availability of the three most important resources: air-
craft, crew and passengers. The formulation has three parts corresponding to each of the
resources, that is, crew assignment, aircraft routing and passenger flow. In a decomposi-
tion scheme these three parts are “controlled” by a master problem denoted the Schedule
Recovery Model.

The Schedule Recovery Model (SRM) determines a plan for cancellations and delays
that satisfy some of the constraints. Now the three other problems can be solved sepa-
rately. For crew and aircraft we have a Crew Recovery Model (CRM) and an Aircraft
Recovery Model (ARM). The Passenger Flow Model (PFM) will find new minimum cost
itineraries for disrupted passengers.

The solution algorithm is derived by applying Benders’ decomposition to a mixed-
integer linear programming model of the problem. SRM determines a plan for cancel-
lation, delays and equipment assignment considering landing restrictions. Then for each
equipment typef we solve ARM; and for each crew groupwe solve CRM returning
Benders feasibility or optimality cuts to the SRM. Finally PFM evaluates the passenger
flow. In this way the built-in hierarchy of the framework to a large extent resembles the
present manual process at many airlines. Lettovsky points out that as the model can be-
come large and complex to solve it is important to keep the recovery period as small as
possible. As in other approaches, all assignments of duties outside the recovery period
are fixed and only tasks within the recovery period can be changed. It is also noted that
multiple solutions can be generated. By only adding Benders optimality cuts from the
PFM the framework will produce the most “passenger friendly” solution, still adding fea-
sibility cuts from the ARM and CRM.

Rescheduling aircraft and pilots for one day is the topic in “An Optimization Model
for the Simultaneous Operational Flight and Pilot Scheduling Problem” [38, 40] by Sto-
jkovi¢ and Soumis from 2000/2001. The disruption addressed is either that of disrupted
crew schedules or that of delayed incoming aircraft. The problem is “to modify planned
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Functionality Dimensions | Solution

Authors Model | Canx | Retiming| Indv. Rostering| Data| Crew | Flights | time Objectives

Stojkovic, Soumis, Desrosiers [41]| TLN | No Yes Yes RL | NA | 210 1200 pairing costs

Wei, Yu, Song [48, 37] STN | No Yes No NA | 18 51 6 Return to schedulg
cheapest way

Lettovsky, Johnson, Nemhauser [24TLN | Yes | (Yes) No RL | 38 1296 | 115 revised pairing cost

Medard, Sawhney [31] TLN | NA | Yes Yes NA | 885 | NA 840 lllegal crew, uncovereq
flights, and affecteg
crew

Abdelgahny et al. [1] NA No Yes Yes RL | 121 | NA 2 Deadhead, standby, an
swap

Table 3: TLN Time Line Network. STN Space Time Network. RL Real-life. Solution times are in seconds
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duties for a set of available pilots to cover a set of flights by delaying (if necessary) some
of them”. Some flights have fixed departure times, some others have more flexible times
in terms of a flight specific time window. Stand-by pilots are available at some stations.
The paper uses a connection network with explicit representation of each pilot, and the
model hence becomes an integer non-linear multicommodity flow model with additional
constraints. The problem is solved using column generation with a master problem and a
subproblem per pilot. The solution may include the use of stand-by pilots. The model and
solution method has been tested on three problems the largest of which has 59 pilots, 79
aircraft, and 190 flights of which 52 are originally delayed. The solution strategy of com-
bining the modification of the aircraft schedule and the crew schedule using the proposed
model is compared with a “simulated” traditional manual solution procedure, where first
aircraft and then crew are dealt with. The results are encouraging, both in terms of quality
and in terms of computing times.

The working paper “The Operational Flight and Multi-Crew Scheduling Problem”
[39] again by Stojkowt and Soumis from 2000 builds on the model derived in [38, 40],
but extends this to work with multiple crew members. This makes the situation addressed
more realistic. The extension is achieved by using a number of copies of each flight corre-
sponding to the number of crew required. A set of constraints ensuring that the departure
time for all copies of each flight is added to the model. The solution process is similar to
that described in [38, 40]. Three different models are tested: One corresponding to that
from the previous work with strict flight covering constraints, one in which there is a lin-
ear cost for missing crew members, and one with a cost for each flight with missing crew.
In the solution process, artificial crew members are used to ensure feasible solutions. Re-
sults are reported for four test scenarios each originating in the closure of a domestic hub
airport. It is demonstrated that using both the second and the third model, substantial im-
provement compared to the initial situation can be obtained. However, the solution times
for large problems are prohibitive in an on-line situation (more than an hour).

The paper "Flight Operations Recovery: New Approaches Considering Passenger Re-
covery" by Bratu and Barnhart [10] presents two models that considers aircraft and crew
recovery and through the objective function focuses on passenger recovery. These are
based on the flight schedule network. Retiming is incorporated by representing & flight
by several arcs, one for each possible departure time. The same technique is used in eg.
[3, 46]. While crew is incorporated into the models they do not consider how to recover
disrupted crews.

In the Passenger Delay Model (PDM) model delay costs are modelled more exactly
by explicitly modelling disruptions, recovery options and delays costs, whereas in the
Disrupted Passenger Metric (DPM) model delay costs are only approximate. Based on the
single instance for which both methods are tested the execution time for PDM is roughly
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a factor 25 higher than for DPM. The models are solved using OPL Studio. To test the
models an OCC simulator is developed. Data are provided for the domestic operations of
a major US airline. It involves 302 aircraft divided into 4 fleets, 74 airports and 3 hubs.
Furthermore 83869 passengers on 9925 different passenger itineraries per day are used. 3
different scenarios with different levels of disruption is presented. Execution times ranges
from 201 to 5042 seconds. Due to its excessive execution times the PDM is considered
unfit for operational use. For all scenarios the DPM generate solutions with noticeable
reductions in passenger delays and disruptions.

5 Disruption Management by Robustness

An interesting research topic closely related to disruption management is robust planning.
The central idea is to incorporate the possibility to absorb disruptions and remain feasible
(or at least facilitate an easy recovery) into the schedule.

In the masters thesis of Y. Ageeva entitled "Approaches to Incorporating Robustness
into Airline Scheduling" [2] an approach for producing robust aircraft assignments is
developed. The approach is an extension of the classical flight string model [7]. The
measurement of robustness is based on identifying and building a schedule where strings
meet each other as often as possible in order to create opportunities to change the sched-
ule. Two definitions are central. Two sequences of flights meet at pBirgad P, within
0 on departure, if the departure airport at the two points are identical and the departure at
the points are withid in time, in other words, the strings meet at the two poifitand
P, for at least) minutes. Overlaps are used in the notion of robustness by the following
definition: An overlap withintim@7" occurs at a poin#; if two sequences meet on depar-
ture or arrival. A sequence is now called robust within tiéfiéif there exists an overlap
within time 67" at some pointP’. In general, a way to increase robustness of an airline
schedule is to provide ways for more aircraft routes to intersect at different points, so that
aircraft can switch strings if needed. Specifically, the goal is to minirRize A, where
P is the number of potential overlaps ardis the actual number of overlaps. Ageeva
incorporates the robustness measure in the flight string model now maximizing profit and
P — A. The model is implemented using ILOG’s OPL optimization language. Basicly a
column generation scheme is used to generate an optimal LP-solution thereafter solving
the resulting the LP-model as an IP-model. Furthermore, constraints are added in order to
generate all possible optimal solutions. Experiments are carried out on 4 instances with
the number of flights ranging from 14 to 37. Larger problems were too complex and time
consuming to solve. No computing times are reported. For each subset a number of al-
ternative optimal solutions are compared based on robustness. In some cases the model
provides an increase in robustness of up to 35% as compared to the original string model.
Furthermore, the optimal cost of the final solution was preserved.
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“Constructing Robust Crew Schedules with Bicriteria Optimization” [17] from 2002
by Ehrgott and Ryan describes the construction of robust crew schedules as a measure of
avoiding disruptions. The basic observation is that knock-on effects from disruptions are
often caused by short ground times between consecutive flight legs in a roster requiring
change of aircraft. Rosters chosen to minimize costs often contain short ground times
and are therefore vulnerable to disruptions. Therefore, a method to generate rosters with
longer ground times and fewer changes of aircraft will have a potential for generating a
robust crew schedule. Technically, the robustness of a roster is measured by the expected
amount of delay based on historical data. The delay is only incurred if a change of aircraft
occurs after the delayed leg. The problem now becomes a bi-criterion multi-objective gen-
eralized Set Partition problem. The paper describes the development of a constraint-based
solution method, which is then applied to data from a domestic New Zealand carrier. The
results show that at a small cost, robustness can be built into the generated rosters. The
extra cost originates in an increase in the number of two days rosters. The rosters in gen-
eral display larger median ground times. Also, experiments aiming directly at minimizing
the number of aircraft changes are reported. These again show more two days rosters, but
surprisingly also smaller median ground times due to that some very large waiting times
between consecutive flights are eliminated by the two days rosters.

Shebalov and Klabjan addresses the robustness in crew pairing from another point of
view in “Robust Airline Crew Pairing” [36], where the idea is to construct pairings, which
allows for “move-up crew”, in the DESCARTES project called crew re-linking. When a
crewc; member comes in late, it may be possible to let another crew memtade over
the line of work ofc; and letc, fly the remaining part of;’s line of work, i.e. to perform
a relinking of the linked schedules of andc,. The hypothesis of the paper is that plans
with many possibilities for crew move-up are less sensitive to disruptions.

Maximizing the number of possible move-ups is achieved by including the number
of move-up crew in the objective function of the pairing problem. The traditional Set
Partition model for the crew pairing problem is extended with constraints describing the
feasibility of potential move-ups, e.g. that the two pairings in question has the same
number of days remaining.

The model is solved using a combination of Lagrangean relaxation and column gen-
eration. The approach is then tested on three real-life instances with varying number of
crew bases and hubs. The computational environment is a PC with a Pentium 111 333
Mhz processor and 512 MB memory using CPLEX 7.5. The paper contains a detailed
evaluation of the effect of different parameters on the solution as well as a study of the
robustness of the generated pairings compared with the original pairings. The robustness
is measured by number of values as e.g. deadheads, number of uncovered legs, and oper-
ational flight-time-credit (which measures the operational crew cost). The comparison is
also given in terms of annual savings, showing considerable savings with one disruption

38



per day, and less saving in case of fewer disruptions. The main conclusion is that “there is
a fine line where the trade-off (between robustness and crew cost) is beneficial and robust
solutions produce significant annual savings”.

6 Conclusion and Further Research

The field of disruption management in the airline industry has been increasingly active
over the last decade, and in the last years also commercial tools for disruption manage-
ment have become available.

The requirements for a tool as seen from the airline companies are, however, still
substantially different from the services offered by commercial tools, and from the per-
formance seen in all the prototype tools proposed in the literature. The fact that virtually
all papers published address single reaource systems (aircraft, crew or passenger recov-
ery) is indicative of this fact. Although development in computational speed indicate that
during the next decade a number of performance infeasibilities will be resolved, the sub-
stantial gap between the ideal integrated recovery tool and the prototype tools proposed
by software companies and research institutions will most likely not be closed in the near
future.

It is worth mentioning that despite the large number of papers on the topic, the under-
lying graph models are more or less identical, and the resulting mathematical programs
are in most cases multicommaodity flow problems with side constraints.

A large number of subjects for further research within the field of disruption manage-
ment are readily available. We mention just a few of these here: Quality versus computing
time for both dedicated and integrated recovery methods, disruption management versus
robustness, and disruption management and robustness for other transportation industries
as e.g. the railway industry. Therefore we expect that disruption management will be
a very active research area in the future, both in the context of transportation, and more
generally in connection with logistics as e.g. supply chain management optimization.

References

[1] Ahmed Abdelgahny, Goutham Ekollu, Ram Narisimhan, and Kahled Abdelgahny.
A Proactive Crew Recovery Decision Support Tool for Commercial Airlines during
Irregular OperationsAnnals of Operations Researct?7:309-331, 2004.

[2] Yana Ageeva. Approaches to incorporating robustness into airline scheduling. Mas-
ter's thesis, Massachusetts Institute of Technology, 2000.

[3] Tobias AndersonThe Flight Pertubation Problem - Operational Aircraft Reschedul-
ing. PhD thesis, Linkdbing University, Sweden, 2001.

39



[4] Michael F. Arguello, Jonathan F. Bard, and Gang Yu. A GRASP for Aircraft Routing
in Response to Groundings and Delay€0, 5:211-228, 1997.

[5] Michael Francis Arguello. Framework for Exact Solutions and Heuristics for
Approximate Solutions to Airlines’ Irregular Operations Control Aircraft Routing
Problem PhD thesis, The University of Texas at Austin, May 1997.

[6] Jonathan F. Bard, Gang Yu, and Michael F. Arguello. Optimizing aircraft routings
in response to groudings and delall& Transactions33:931 — 947, 2001.

[7] C. Barnhart, N. Boland, L.W. Clarke, E.L. Johnson, and G.L. Nemhauser. Flight
string models for aircraft fleeting and routind.ransportation Scienge32:208 —
220, 1998.

[8] Cynthia Barnhart, Amy M. Cohn, Ellis L. Johnson, Diego Klapjan, George L.
Nemhauser, and Pamela H. Vance. Airline Crew Scheduling. In Randolph W. Hall,
editor,Handbook of Transportation Sciend€duwer Academic Publishers, Boston,
2003.

[9] Cynthia Barnhart, Ellis L. Johnson, George L. Nemhauser, Martin W. P. Savels-
bergh, and Pamela H. Vance. Branch-and-price: Column Generation for Solving
Huge Integer Program®perations Resear¢cd6:316—-329, 1998.

[10] Stephane Bratu and Cynthia Barnhart. Flight operations recovery: New approaches
considering passenger recovery. Working paper, 2004.

[11] Jia-Ming Cao and Adib Kanafani. Real-Time Decision Support for Integration of
Airline Flight Cancellations and Delays PartTransportation Planning and Tech-
nology, 20:183-199, 1997.

[12] Jia-Ming Cao and Adib Kanafani. Real-Time Decision Support for Integration of
Airline Flight Cancellations and Delays Part Transportation Planning and Tech-
nology, 20:201-217, 1997.

[13] L. Clarke, E. Johnson, G. Nemhauser, and Z Zhu. The aircraft rotation problem.
Annals of OR69:33-46, 1997.

[14] Michael D. D. Clarke. The airline schedule recovery problem. Working paper,
October 1997.

[15] Michael Dudley Delano Clarke. Irregular Airline Operations: A Review of the
State-of-the-practice in Airline Operations Control Cenfieurnal of Air Transport
Management4:67—-76, 1998.

40



[16] J-F. Cordeau, G. StojkowjF. Soumis, and J. Desrosiers. Benders decomposition for
simultaneous aircraft routing and crew scheduliftgansportation Scien¢e85:375
— 388, 2001.

[17] Matthias Ehrgott and David M. Ryan. Constructing robust crew schedules with
bicriteria optimization.Journal of Multi-Criteria Decision Analysjsl1:139 — 150,
2002.

[18] Jerzy A. Filar, Prabhu Manyem, and Kevin White. How airlines and airports recover
from schedule perturbations: A survédOR 108:315 — 333, 2001.

[19] K. Hoffman and M. Padberg. Solving Airline Crew Scheduling Problems by Branch-
and-Cut.Management Scienc@9:657—-682, 1993.

[20] A.l. Z.Jarrah, G. Yu, N. Krishnamurthy, and A. Rakshit. A Decision Support Fram-
work for Airline Flight Cancellations and Delay3ransportation Scienc@7:266—
280, 1993.

[21] J. Klincewicz and M. Rosenwein. The Airline Exception Scheduling Problem.
Transportation Scienc9:4-16, 1995.

[22] Niklas Kohl, Allan Larsen, Jesper Larsen, Alex Ross, and Sergey Tiourine. Airline
Disruption Management - Perspectives, Experiences and Outlook. Technical Report
2004-16, Informatics and Mathematical Modelling (IMM). Techical University of
Denmark (DTU), September 2004.

[23] Ladislav LettovskyAirline Operations Recovery: An Optimization Approa&tihD
thesis, Georgia Institute of Technology, Atlanta, USA, 1997.

[24] Ladislav Lettovsky, Ellis L. Johnson, and George L. Nemhauser. Airline Crew Re-
covery. Transportation Scien¢e84(4):337-348, 2000.

[25] Michael Lgve and Kim R. Sgrensen. Disruption management in the
airline industry. Master’s thesis, Informatics and Mathematical Mod-
elling (IMM). Techical University of Denmark (DTU), March 2001.
http://www.imm.dtu.dk/documents/ftp/ep2001/ep16_01-a.html.

[26] Michael Lgve, Kim R. Sgrensen, Jesper Larsen, and Jens Clausen. Disruption Man-
agement for an Airline - Rescheduling of Aircraft. In Stefano Cagnoni, Jens Got-
tlieb, Emma Hart, Martin Middenhof, and Gunther R. Raidl, editéysplications
of Evolutionary Computingvolume 2279 ofLecture Notes in Computer Science
pages 315-324. Springer, 2002.

41



[27] S. Luo and G. Yu. Airline Schedule Pertubation Problem: Ground Delay Program
with Splitable Resources. In Gang Yu, edit@perations Research in the Airline
Industry. Kluwer Academic Publishers, Boston, 1998.

[28] S. Luo and G. Yu. Airline Schedule Pertubation Problem: Landing and Takeoff
with Nonsplitable Resource for the Ground Delay Program. In Gang Yu, editor,
Operations Research in the Airline Industiluwer Academic Publishers, Boston,
1998.

[29] Songjun Luo and Gang Yu. On the airline schedule perturbation problem caused by
the ground delay progranTransportation Science&1(4):298 — 311, 1997.

[30] Dennis F. X. Mathaisel. Decision Support for Airline System Operations Control
and Irregular Operation€€omputers & Operations Resear@8:1083-1098, 1996.

[31] Claude P. Medard and Nidhi Sawhney. Airline Crew Scheduling: From Planning to
Operations, 2003.

[32] Ananda Rakshit, Nirup Krishnamurthy, and Gang Yu. System Operations Advisor:
A Real-Time Decision Support System for Managing Airline Operations at United
Airlines. Interfaces 26:50-58, 1996.

[33] Jay M. Rosenberger, Ellis L. Johnson, and George L. Nemhauser. Rerouting air-
craft for airline recovery. Technical Report TLI-LEC 01-04, Georgia Institute of
Technology, 2001.

[34] Jay M. Rosenberger, Andrew J. Schaefer, David Goldsmans, Ellis L. Johnson, An-
ton J. Kleywegt, and George L. Nemhauser. A stochastic model of airline operations.
Transportation Scien¢&6(4):357 — 377, 2002.

[35] Rivi Sandhu and Diego Klabjan. Integrated Airline Planning, 2004.

[36] Sergey Shebalov and Diego Klabjan. Robust Airline Crew Pairing: Move-up Crews,
2004.

[37] M. Song, G. Wei, and G. Yu. A Decision Support Framework for Crew Management
During Airline Irregular Operations. In Gang Yu, edit@perations Research in the
Airline Industry. Kluwer Academic Publishers, Boston, 1998.

[38] Mirela Stojkovic and Francois Soumis. An Optimization Model for the Simultane-
ous Operational Flight and Pilot Scheduling Problem. Technical Report G-2000-01,
GERAD and Ecole Polytechnique de Montreal, January 2000.

[39] Mirela Stojkovic and Francois Soumis. The Operational Flight and Multi-Crew
Scheduling Problem. Technical Report G-2000-27, GERAD and Ecole Polytech-
nique de Montreal, June 2000.

42



[40] Mirela Stojkovic and Francois Soumis. An optimization model for the simultaneous
operational flight and pilot scheduling probleManagement Sciencé7(9):1290 —
1305, 2001.

[41] Mirela Stojkovi, Frangois Soumis, and Jacques Desrosiers. The Operational Airline
Crew Scheduling ProblenTransportation Scien¢&2:232—-245, 1998.

[42] Kalyan T. Talluri. Swapping Applications in a Daily Airline Fleet Assignment.
Transportation Scien¢&0:237-248, 1996.

[43] Dusan Teodoro¥i and Slobodan Guberini Optimal Dispatching Strategy on an
Airline Network after a Schedule PertubatioEuropean Journal of Operational
Research15:178-182, 1984.

[44] Dusan Teodorow and Goran Stojkogi Model for Operational Daily Airline
Scheduling.Transportation Planning and Technolagy4:273-285, 1990.

[45] Dusan Teodoroiand Goran Stojko¢i Model to Reduce Airline Schedule Distur-
bances.Journal of Transportation Engineering21:324-331, 1995.

[46] Benjamin G. Thengvall, Jonathan F. Bard, and Gang Yu. Balancing User Prefer-
ences for Aircraft Schedule Recovery during Irregular OperatidBsransactions
32:181-193, 2000.

[47] Benjamin G. Thengvall, Gang Yu, and Jonathan F. Bard. Multiple fleet aricraft
schedule recovery following hub closurégansportation Research Part, 85:289
— 308, 2001.

[48] Gou Wei, Gang Yu, and Mark Song. Optimization Model and Algorithm for Crew
Management During Airline Irregular Operation¥ournal of Combinatorial Opti-
mization 1:305-321, 1997.

[49] Shangyao Yan and Chung-Gee Lin. Airline Scheduling for the Temporary Closure
of Airports. Transportation Scien¢g1:72—-82, 1997.

[50] Shangyao Yan and Yu-Ping Tu. Multifleet Routing and Multistop Flight Scheduling
for Schedule PerturbationEuropean Journal of Operational Reseayd03:155—
169, 1997.

[51] Shangyao Yan and Dah-Hwei Yang. A Decision Support Framework for Handling
Schedule Pertubation$ransportation Resear¢i30:405-419, 1996.

[52] Shangyao Yan and Hwei-Fwa Young. A Decision Support Framework for Multi-
Fleet Routing and Multi-Stop Flight Schedulingransportation Resear¢l30:379—
398, 1996.

43



Appendix

Planning and Disruption Management - Concepts and Ter-
minology

The airline industry is known for its extensive use of acronyms, abbreviations and spe-
cialised jargon. In this section we introduce the most essential concepts and terminology
related to the planning processes on the day of operations.

Furthermore, we provide the reader with an introduction to more general papers deal-
ing with planning problems on the day of operations within the airline industry.

Concepts and terminology

Terms and concepts used in planning and operations:

Timetable The official set of flights to be flown by the airline described by
the departure and arrival times for each of the flights in the pro-
gramme.

Schedule A set of plans listing all tasks to be completed in order to cover the

flight programme. The term is also used to describe the present
situation: The operations are said to “run according to the sched-
ule”.

Planning The process of planning the tasks to be carried out before the plans
are published. The exact timings of the planning phase differs
across airlines and the resourced being planned. The planning
phase for the flight and the cabin crew members usually ends 4-6
weeks before the day of operations, when the crew planning de-
partments publish the crew rosters for the coming 4 weeks period.

Tracking The process of monitoring and maintaining the plans between the
time of publication and the day, when plans are handed over to
operations control. Again, the exact timings differ across airlines
and the resources being planned for. Usually, the plans are handed
over to operations control 24 hours before the day of operations
for short-haul flights and three to five days before for long-haul

flights.
Operations Con- The process of managing all resources (i.e. aircraft, crew, passen-
trol gers, cargo, terminals, catering etc.) on the day of operations.

General airline industry terms:
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Base

Out station

Curfew

Long-haul
Short-haul

An airport central to the airline. Itis usually the base for both crew
and aircraft. In a hub-and-spoke network the base corresponds to
a hub.

An airport that is not a base airport for the airline in question. In a
hub-and-spoke network the out stations correspond to the spokes.
Special restrictions for an airport regarding conditions for operat-
ing aircraft. A curfew may e.g. define a certain time interval for
which specific aircraft types cannot operate in that airport. One
example is thaight jet banwhich means that landings and take-
offs are forbidden during a specified time interval.

A long distance flight, typically used for intercontinental flights.

A short to medium distance flight, typically used for national and
transcontinental flights.

Through connec- Two flight legs to be flow by the same aircraft, usually for reasons

tion

of convenience for passengers.

Concepts and terminology specific to crew:

Duty

Pairing

Roster

Dead-heading

Night stop

A set of subsequent flights for a crew member. For some airlines
a duty is defined as the set of flights spanning one day.

A set of subsequent duties starting and ending at the crew mem-
bers home base. Some airlines also refers to a pairing as a trip,
indicating the round-trip for the crew.

A set of subsequent pairings starting and ending at the crew mem-
bers home base. In addition to activities as flying flight legs, the
roster also holds off-duty days, leave, training etc.

Re-positioning of crew. The crew members fly as passengers in
order to be available at another airport. Dead-heading crew is
costly as the crew takes up seats and is paid to fly as passengers.
a Crew member’s duty ending at an outstation. The crew mem-
ber will be away from the base during the night. Night stopping
is expensive as this incurs costs for hotel accommodation and al-
lowances. On the other hand, night stopping is necessary for an
airline to be able to offer early flights from outstations to the base.

Concepts and terminology specific to aircraft:
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Fleet

Fleet assignment
Aircraft rotation
Tail number

Tail swapping

Ferrying

All aircraft of a specific type used by an airline. An airline is
said to be a single-fleet airline when the airline only operates one
specific type of aircraft. For example, Ryan Air is a single-fleet
airline since they only operate Boeing 737 aircraft. Multi-fleet
airlines, on the other hand, operate several types of aircraft. Each
fleet of aircraft may be divided into subfleets. For example, an air-
line may decide to operate part of their 737 fleet without business
class seats to increase the passenger capacity.
The process of making the initial assignment of each flight to a

particular aircraft fleet.

The route or the schedule of a particular physical aircraft. Identi-
cal to aircraft routing.

The unique identification of a particular aircraft in a fleet, also
called the aircraft registration.

The process of moving flights planned for a particular aircraft reg-
istration to a different registration of the same aircraft type.
Re-positioning of aircratft, i.e flying without passengers. Ferrying
is extremely costly and is used very rarely.

Concepts and terminology common to both crew and aircraft:

Turn-around-
time

Open flight

Standby

The minimum required time in the schedule from the arrival of
one flight leg to the departure of the subsequent flight leg. The
turn-around-time for an aircraft is usually used for refueling,
loading and unloading the baggage, cleaning, reloading catering
etc. Each aircraft type has a specific minimum turn-around-time.
Larger aircraft usually have longer turn-around-times as it takes
longer time to refuel and clean a larger aircraft. The minimum
turn-around-time for crew is a union-agreed time period which
might depend on the airport, whether or not the subsequent leg is
an international flight and the time of day.

Also referred to as an uncovered flight. A flight leg which has
not been assigned the required number of cabin or flight crew
members or alternatively a flight leg that has not been assigned
a specific aircraft tail. It is the responsibility of the Operations
Controllers to ensure to that all open flights are covered at the
time of take-off.

Crew or aircraft not assigned to a particular flight leg. Standby
aircraft and/or crew are said to be a free resources, which can be
allocated to uncovered flight legs.

Disruption management definitions:
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Disruption An event or a series of events that renders the planned schedules
for aircraft, crew, etc. infeasible. A complete list of disruptions is
not possible as a disruptions often is caused by a combination of
events going wrong at the worst point in time. Simple disruptions
include e.g. a late incoming aircraft due to technical problems
before take off at the preceding departure airport, crew calling in
sick, technical problems with an aircraft, and bad weather imply-
ing a reduced number of operations at the airports.

Delay The situation when a flight is coming in late due to unforeseen
circumstances.

Tools of recovery within disruption management:

Retiming The change of the departure time of a flight to later point in time,
usually due to a delay or another disruption.

Fleet swapping The process of moving flights planned for a particular aircraft
registration to a different registration on a different aircraft type
(compared with tail swapping).

Re-linking Splitting a crew member’s original itinerary due to a disrupted
service, assigning an alternative sequence of legs to operate.

Terminology for Disruption management systems:

Dedicated recov- A system producing feasible options for a specific resource. For

ery system example, a dedicated flight crew recovery system resolves disrup-
tions by looking solely at the flight crew resource and ignoring
aircraft, cabin crew, passengers etc.

Integrated recov- a system producing options that are feasible across the resources

ery system in question. An integrated recovery system must have access to
all information for the resources affected in order to be able to
produce a set of options that are feasible for these.

47



