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Abstract 

 
In this paper we analyze speech for low-level 

cognitive features using linear component analysis. 

We demonstrate generalizable component 

‘fingerprints’ stemming from both phonemes and 

speakers. Phonemes are fingerprints found at the 

basic analysis window time scale (20 msec), while 

speaker ‘voiceprints’ are found at time scales around 

1000 msec. The analysis is based on homomorphic 

filtering features and energy based sparsification. 

 

 

1. Introduction 

 
The human perceptional system can model 

complex multi-agent scenery. It is well documented 

that humans use a broad spectrum of cues for 

analyzing perceptual input and for identification of 

individual signal producing agents, such as speakers, 

gestures, affections etc. Such unsupervised signal 

separation has also been achieved in computers using 

a variety of independent component analysis (ICA) 

algorithms [1]. It is an intriguing fact that 

representations found in human and animal perceptual 

systems closely resembles the theoretically optimal 

representations obtained by independent component 

analysis on visual contrast detection [2], on visual 

features involved in color and stereo processing [3], 

and on representations of sound features [4]. 

Ref. [5] defined and investigated the independent 

cognitive component hypothesis, which basically asks 

the question: Do humans also use these information 

theoretically optimal ‘ICA’ methods in more generic 

and abstract data analysis. We proposed to use the 

term cognitive component analysis (COCA) for 

unsupervised learning algorithms that present such 

‘spontaneous cognition’. 

Here we are interested in pursuing this idea in the 

context of speech. We are interested in purely auditory 

aspects, not contents per se. We will focus on two 

aspects, phoneme features and speaker features. Our 

presentation will be qualitative, mainly based on 

simple visualizations of data, thus we avoid 

unnecessary algebraic complication. 

Grouping of events or objects in more or less 

distinct categories is fundamental to human cognition. 

In machine learning, classification is a rather well-

understood task when based on labeled examples [6]. 

In this case classification belongs to the class of 

supervised learning problems. On the other hand 

clustering which is related to unsupervised learning 

problem, uses general statistical rules to group objects, 

without a priori providing a set of labeled examples. It 

is a fascinating finding in many real world data sets 

that the label structure discovered by unsupervised 

learning closely coincides with labels obtained by 

letting a human or a group of humans perform 

classification, labels derived from human cognition. 

Grouping by ICA has been earlier pursued for several 

abstract data types including text, dynamic text (chat), 

images, and combinations hereof, see e.g., [7, 8, 9, 10, 

11]. It was found in these research works that ICA is a 

more appropriate model than both principal 

component analysis (PCA), which is too constrained, 

and clustering, which may in some instances be too 

flexible as a representation of text data [5].  

 

2. Cognitive component analysis 
 

Lee and Seung introduced the method of non-

negative matrix factorization (NMF) [12] as a scheme 

for parts-based object recognition. The factorization of 

an observation matrix in terms of a relatively small set 

of cognitive components leads to a parts-based object 

representation. The values of the non-negative 

representation for objects in images and text have been 

demonstrated. In 2002, similar parts-based 

decompositions were obtained in a latent variable 

model based on non-negative linear mixtures of non- 

negative independent source signals [13]. Holistic, but 



parts-based, recognition of objects is frequently 

reported in perception studies across multiple 

modalities and increasingly in abstract data, where 

object recognition is a cognitive process. Together 

these findings are often referred to as instances of the 

more general Gestalt laws. 

 

2.1. Latent semantic indexing (LSI) 
 

Principal component analysis (PCA) is a very 

useful tool for dimensionality reduction and may be 

used to find group structure in data when the signal-to-

noise ratio is high. PCA has been used for basic 

perceptual feature analysis, such as in images under 

the name Karhunen-Loeve transform [14], and for 

analysis of abstract data such as text under the name 

latent semantic indexing (LSI) [15]. Our approach is 

inspired by LSI, and the main innovation here is the 

active search for generalizable non-orthogonal linear 

features that may be described in terms of an 

independent component generative model.  

Salton proposed the so-called vector space 

representation for statistical modeling of text data, for 

a review see [16]. A term set is chosen and a 

document is represented by the vector of term 

frequencies. A document database then forms a so-

called term-document matrix. The vector space 

representation can be used for classification and 

retrieval by noting that similar documents are 

somehow expected to be ‘close’ in the vector space. A 

simple Euclidean distance metric can be used if 

document vectors are properly normalized, otherwise 

angular distance may be used. This approach is 

principled, fast, and language independent. Deerwester 

and co-workers developed the concept of latent 

semantics based on PCA of the term-document matrix 

[15]. The fundamental observation behind the LSI 

approach is that similar documents use similar 

vocabularies, hence, the term vectors of a given topic 

could appear as produced by a stochastic process with 

highly correlated term-entries. By projecting the term-

frequency vectors on a relatively low dimensional 

subspace, determined by the maximal amount of 

variance one would be able to filter out the inevitable 

‘noise’. Noise should here be thought of as individual 

document differences in term usage within a specific 

context. For well-defined topics, one could simply 

hope that a given context would have a stable core 

term set that would come out as a ‘direction’ in the 

term vector space. Below we will explain why this is 

likely not to happen in general document databases, 

and LSI is therefore often used as a dimensionality 

reduction tool, which is then post-processed to reveal 

cognitive components, e.g., by interactive 

visualization schemes [17]. 

2.2. Independent component analysis 
 

Blind signal separation is the general problem of 

recovering source signals from an unknown mixture. 

This aim is in general not feasible without additional 

information. If we assume that the unknown mixture is 

linear and the sources are statistically independent 

processes, it is often possible to recover sources and 

mixing, using a variety of ICA techniques [1]. Here 

we will discuss some basic characteristics of mixtures 

and the possible recovery of sources. 

First, we note that LSI/PCA is not able to 

reconstruct the mixing. PCA, being based on co-

variance is simply not informed enough to solve the 

problem. To see this let the mixture be given as 
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where Xj,t is the value of j’th feature in the t’th 
measurement, Aj,k is the mixture coefficient linking 

feature j with the component k, while Sk,t is the level of 

activity in the k’th source. In a text instance a feature 

is a term and the measurements are documents, while 

the components can be interpreted as topical contexts.  

As a linear mixture is invariant to an invertible 

linear transformation we need to define a 

normalization of one of the matrices A, S. We do this 

by assuming that the sources are unit variance. As they 

are assumed independent the covariance will thus be 

trivially given as the unit matrix. LSI, hence PCA, of 

the measurement matrix is based on analysis of the 

covariance 
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Clearly the information in AA
T
 is not enough to 

uniquely identify A, since if one solution A is found, 

any (row) rotated matrix A
~
 = AU, UU

T
 = I is also a 

solution, because A
~
 has the same outer product as A. 

This is a potential problem for LSI based analysis. 

If the document database can be modeled as in (1) 

then the original characteristic context histograms will 

not be found by LSI. The field of ICA has on the other 

hand devised many algorithms that use more informed 

statistics to locate A and thus S, see [1] for a recent 

review. 

The histogram of a source signal can roughly be 

described as sparse, normal, or dense. Scatter plots of 

projections of mixtures drawn from source 

distributions with one of these three characteristics are 

shown in Fig. 1. In the upper panel of Fig. 1, we show 

the typical appearance of a sparse source mixture. The 

sparse signal consists of relatively few large 

magnitude samples in a background of a large number 

of small signals. When mixing such independent 

sparse signals as in (1), we obtain a set of ‘rays’ 



emanating from the origin. The directions of the rays 

are given by the column vectors of the A-matrix. If the 

sources are normally distributed (middle panel of Fig. 

1) there is no additional information but the 

covariance matrix. Hence, in some sense this is a 

worst case for separation. Fortunately, many 

interesting real world data sets are very sparse, hence, 

more similar to the upper panel of Fig. 1. 

 

3. Component analysis of speech 
 

In the authoritative textbook ‘Discrete-Time 

Processing of Speech Signals’ by Deller et al. [18] the 

phoneme is defined as the class of sounds that are 

consistently perceived as representing a certain 

minimal linguistic unit. In American English 

approximately 40 phonemes are in use, of which 12 

are vowels. Vowels vary in temporal duration between 

40-400msec [18].  

The processes in the speech production system are 

generally considered stationary for time intervals on 

the order of 20 msec [18], hence, we will use an 

analysis window of this duration. In each window we 

represent the sound signal, i.e., 200 signal values for a 

sampling rate of 10 kHz, by a relatively low-

dimensional feature vector. This feature vector is 

obtained by homomorphic filtering, as often invoked 

in speech recognition. The resulting, so-called cepstral 

coefficients are designed to reduce the influence of the 

speech pitch, i.e., the speaker’s ‘tone’ [18]. The 

cepstral coefficients are used in speaker independent 

speech recognition, because in this context the pitch is 

a confound. The speaker dependent and speaker 

independent aspect are separated in the cepstral 

coefficient representation, hence, we use this 

representation to emphasize the linguistic content and 

suppress the speakers ‘voice print’.  

A small set of four simple utterances (‘s’, ‘o’, ‘f’, 

‘a’) from the TIMIT database [19] were used for this 

demonstration. For the analysis we used 20 msec 

analysis windows with 50% overlap. The windows 

were represented by 16 cepstral coefficients. The 

temporal development of the cepstral representation of 

the four utterances is presented in two versions in Fig. 

2, in the upper panel for the training set, and in the 

lower panel for a test set. After variance normalization 

we sparsified the coefficients by zeroing windows of 

normalized magnitudes with a statistical z < 1.7. In 

Fig. 3 we show the scatter plot of the set of windows 

projected onto the first two principal components 

derived from the 16 x 16 sparsified feature covariance 

matrix. There is a marked ‘ray’ structure with rays 

emanating from the origin of the coordinate system 

(0,0). The projected features from the set of analysis 

windows  have  been  annotated  with  their   utterance 

 
 

Fig. 1. Prototypical feature distributions 
Prototypical feature distributions produced by a linear 
mixture, based on sparse (top), normal (middle), or 
dense source signals (bottom), respectively. The 
characteristic of the sparse signal is that it consists of 
relatively few large magnitude samples on a 
background of small signals. 

 

 
Fig. 2. Cepstral coefficient sequences for 

training and test sets 
Four separate utterances are concatenated for this 
experiment, representing the sounds ‘s’, ‘o’, ‘f’, ‘a’. 
Each concatenated set of utterances is represented 
twice: in a training set and in a test set. The boundaries 
between the four utterances are clearly visible, and we 
note that the utterances show much similarity between 
the two samples (test and train), however, they are of 
quite different duration. The first of the two phones of 
the utterance ‘s’ is the opening a-like phoneme. In the 
upper panel we have added a set of vertical lines to 
indicate positions of analysis windows that belong to a 
generalizable finger print feature further discussed in 
Fig. 3. 



 
Fig. 3. Scatter plot of data on latent space 

We show the latent space formed by the two first principal components of the training data consisting of four separate 
utterances shown in figure 2 representing the sounds ‘s’, ‘o’, ‘f’, ‘a’. The structure clearly resembles the sparse 
component mixture in Fig. 1, with ‘rays’ emanating from the origin (0,0). The ray marked with an arrow contains a 
mixture of ‘s’ and ‘f’ analysis windows. The locations of these windows were indicated by vertical lines in Fig. 2. This 
feature also contains a mixture of windows from both the training and test utterances, hence, is a generalizable 
characteristic feature associated with the vowel a-like sound that opens both an ‘s’ and an ‘f’.  
 

 

origin. The arrow points to a linear ray structure which 

contains windows from utterances ‘s’ and ‘f’. In order 

to understand which part of the utterances these 

windows belong to, we have marked up several points 

(windows) in Fig. 3 and have indicated the temporal 

location of these windows as vertical stripes in Fig. 2. 

It is clear that the feature is related to the similar a-like 

sound that opens both ‘s’ and ‘f’. The generalizability 

of this structure was proved by creating a similar plot 

with the projections of the test set windows (data not 

shown). This structure is indeed generalizable in 

contrast to some of the other ray-like structures that 

apparently are too specific to provide generalization 

from the relative small set of training data. 

The results seem to indicate that generalizable 

cognitive components corresponding to phonemes can 

be identified using linear component analysis. The ray 

structures representing the phonemes are not aligned 

with the directions of the principal components, hence, 

an ICA scheme is required. Phoneme recognition is an 

active research field in speech recognition, see e.g., 

[20], and it is an interesting issue for further research 

whether the generalizable structure found in this work 

can assist phoneme recognition in general. 

 

4. Voice print components 
 

While phonemes are universal components of 

language and generalizable in large populations, 

speaker identity plays an important role both in social 

contexts and in speech based engineering applications, 

e.g., related to access control [21]. 

Speaker recognition has two aspects: Speaker 

identification, and speaker verification. Speaker 

verification is the process of determining whether a 

postulated speaker identity is correct, while speaker 

identification is the process of finding the identity of 

an unknown speaker by comparing his/her voice with 

all the registered/known speakers in the database [22]. 

In the case that the unknown speaker must come from 

a fixed set of enrolled speakers, the system is referred 

to as a closed-set system. Speaker recognition systems 

are moreover divided according to the spoken text 

modality: text-dependent and text-independent. 

Compared to text-dependent speaker recognition, text-

independent systems are more flexible, but also more 

complex. The most widely accepted features for 

speaker recognition are mel-frequency cepstral 

coefficients (MFCC). The MFCCs are perceptually 

weighted cepstral coefficients [18].  

According to our basic hypothesis the speaker 

dependent generalizable ‘cognitive’ components 

should be elucidated by Latent Semantic Indexing 

(LSI). To test the hypothesis we study here three 

speakers’ voice messages from our in-house ELSDSR 

speech database [23]. In this database, read text is 

recorded using a MARANTZ PMD670 portable solid 

state recorder, and stored in PCM (wav) format. The 

sampling frequency is 16 kHz. ELSDSR contains 

voice messages from a total of 22 speakers (12M/10F) 

of age from 24y to 63y. 

Speaker identity information in speech can be 

categorized into a hierarchy ranging from low-level 

cues, such as the basic sound of a person’s voice, 

which is related to physical traits of the vocal 

apparatus, to high-level cues, such as particular word 

usage (idiolect), conversational patterns and even 

topics of conversations, which is related to learned 

habits and style [24]. 



For the first text-dependent speaker recognition 

experiment, signals from speakers F1, F2 and M1 

reading the same text content were selected, and 

divided into training set (52.5sec) and test set 

(35.5sec). The windows with 20 msec signal content 

were blocked without overlap, and 12 MFCCs were 

extracted from each window. To form the long-term 

features, 50 basic analysis windows were concatenated. 

The dimensionality of the aggregate representation is 

thus 50 x 12. The total number of such expanded 

windows in the analysis was 522. After variance 

normalization, energy based sparsification was 

performed on the high dimensional data, and the upper 

1% fraction was retained. Finally, LSI (PCA) was 

performed on the sparsified data to get the scatter plot 

of the data on the subspace spanned by three latent 

dimensions (LD), shown in Fig. 4. We annotated the 

data points for the training set of the three speakers as: 

F1 (red square), F2 (blue diamond) and M1 (black x); 

and test  set  as:  F1 (cyan  +),  F2 (green  triangle) and  

 

 
Fig. 4. Text-dependent speaker recognition 

We focus on text-dependent speech. The basic 
analysis window of the speech signal is represented by 
12 MFCCs. 50 basic analysis windows are 
concatenated to form an intermediate time scale 
representation. We sparsified the coefficients by 
retaining the upper 1% magnitude fraction. We used a 
training set from speakers F1, F2 and M1. The data 
from the training set is submitted for LSI, we show the 
scatter plots of both training and test data in the space 
of the 1

st
, 4

th
 and 5

th
 latent components. The upper left 

display shows all data points. There is an evident ray 
structure corresponding to a generative ICA model 
based on linear mixing of sparse sources, i.e., similar 
to the situation seen at the basic time scale analysis 
window (20 msec). The structure is indeed speaker 
dependent in the sense that the ray systems are offset 
from the origin. We conclude that we find a mixture of 
phoneme like features and speaker identity features. 

M1 (magenta circle). Since the speakers read the same 

text content (training and test set are different) the red, 

blue and black points emanate from (0,0), and show 

similar sparse ICA ‘ray’ structures. These features of 

same text also carry characteristics of the given words, 

i.e., similar to the phoneme features found above. 

However, importantly the rays also show speaker-

dependent characteristics. This is most easily 

appreciated by inspecting the three plots to the right in 

Fig. 4. Here the situations for the individual speaker 

are depicted as seen, the features do not generalize in a 

simple way, it appears that there is an offset between 

test data and training data, which is speaker dependent. 

We therefore stipulate that this effect is an interaction 

between the text content and the speaker identity. 

We now turn to text-independent speech. We 

study the same three speakers as before, two female 

and one male. The representation is identical to the 

one used for the text-dependent experiment. The 

scatter plot of test and training data is shown in 3D 

subspace based on latent dimensions 2
nd
, 4

th
 and 5

th
. 

Fig. 5 shows that data points from 2 female speakers 

and the male speaker are aligned for both training and 

test set. The right side panel shows a zoomed in and 

projected subset of the data belonging to the two 

female speakers in latent dimension 4 and 5. Thus the 

generalizable ray structure emanates from (0,0) 

without offsets. 

 
Fig. 5. Text-independent speaker recognition 
We focus on text-independent speech. The setup is the 
same as text-dependent case. In the left panel all data 
points are shown as represented in the space of the 
2

nd
, 4

th
 and 5

th
 latent components. There is an evident 

ray structure corresponding to a generative ICA model 
based on linear mixing of sparse sources. In contrast 
to the text-dependent case we see that the ray 
structure is solely determined by the speaker identity. 
The right hand side plot shows a close up of the 
structure for the female speaker F2: emphasizing the 
generalizability. The rays from the training and test 
sets are closely aligned. 



5. Conclusion 
 

We have proposed to define cognitive component 

analysis as the process of unsupervised grouping of 

data such that the ensuing group structure is well-

aligned with that resulting from human cognitive 

activity. In this paper we have studied the derived 

cognitive components of speech signals. We used 

homomorphic filtering to derive features, and analyzed 

the excursion set after thresholding based on energy.  

At short time scales, we found generalizable 

features corresponding to phonemes. Phonemes are 

universal linguistic atoms recognized by large 

populations. Humans swiftly and reliably recognize 

other human’s voice. We have shown that at 

intermediate time scales, 500-1000msec, there are 

generalizable speaker specific sparse components. 

The fact that we find such cognitively relevant 

component by simple unsupervised learning based on 

sparse linear component analysis lends further support 

to our working hypothesis that humans could use such 

information theoretical representations, not only in 

basic perception tasks, but also when analyzing more 

abstract data. 

 

6. Acknowledgment 
 

This work is supported by the Danish Technical 

Research Council, through the framework project 

‘Intelligent Sound’, www.intelligentsound.org (STVF 

No. 26-04-0092). 

 

References 
 
[1] A. Hyvarinen, J. Karhunen, and E. Oja, Independent 

Component Analysis, John Wiley & Sons, 2001. 

[2] Anthony J. Bell and Terrence J. Sejnowski, “The 

‘independent components’ of natural scenes are edge 

filters,” Vision Research, vol. 37, no. 23, pp. 3327–3338, 

1997. 

[3] Patrik Hoyer and Aapo Hyvrinen, “Independent 

component analysis applied to feature extraction from colour 

and stereo images,” Network: Comput. Neural Syst., vol. 11, 

no. 3, pp. 191–210, 2000. 

[4] M.S. Lewicki, “Efficient coding of natural sounds,” 

Nature Neuroscience, vol. 5, no. 4, pp. 356–363, 2002. 

[5] L. K. Hansen, P. Ahrendt, and J. Larsen, “Towards 

cognitive component analysis,” in AKRR’05 -International 

and Interdisciplinary Conference on Adaptive Knowledge 

Representation and Reasoning. Jun 2005, Pattern 

Recognition Society of Finland, Finnish Artificial 

Intelligence Society, Finnish Cognitive Linguistics Society. 

[6] C.M. Bishop, Neural Networks for Pattern Recognition, 

Oxford University Press, Oxford, 1995. 

[7] L. K. Hansen, J. Larsen, and T. Kolenda, “On 
1233456789012334567890123345678901233456789012331233456

7890123345678901233456789012334567890123301233012330123

independent component analysis for multimedia signals,” in 

Multimedia Image and Video Processing, pp. 175–199. CRC 

Press, Sep 2000. 

[8] L. K. Hansen, J. Larsen, and T. Kolenda, “Blind 

detection of independent dynamic components,” in IEEE 

International Conference on Acoustics, Speech, and Signal 

Processing 2001, 2001, vol. 5, pp. 3197–3200. 

[9] T. Kolenda, L. K. Hansen, and J. Larsen, “Signal 

detection using ICA: Application to chat room topic 

spotting,” in Third International Conference on Independent 

Component Analysis and Blind Source Separation, 2001, pp. 

540–545. 

[10] T. Kolenda, L. K. Hansen, J. Larsen, and O.Winther, 

“Independent component analysis for understanding 

multimedia content,” in Proceedings of IEEE Workshop on 

Neural Networks for Signal Processing XII, H. Bourlard et al. 

Ed., Piscataway, New Jersey, 2002, pp. 757–766, IEEE 

Press, Martigny, Valais, Switzerland, Sept. 4-6, 2002. 

[11] J. Larsen, L.K. Hansen, T. Kolenda, and F.AA. Nielsen, 

“Independent component analysis in multimedia modeling,” 

in Fourth International Symposion on Independent 

Component Analysis and Blind Source Separation, Shun ichi 

Amari et al. Ed., Nara, Japan, apr 2003, pp. 687–696, Invited 

Paper. 

[12] D.D. Lee and H.S. Seung, “Learning the parts of objects 

by non-negative matrix factorization,” Nature, vol. 401, pp. 

788–791, 1999. 

[13] Pedro A. D. F. R. Højen-Sørensen, Ole Winther, and 

Lars Kai Hansen, “Mean-field approaches to independent 

component analysis,” Neural Comput., vol. 14, no. 4, pp. 

889–918, 2002. 

[14] R. O. Duda and P. E. Hart, Pattern Classification and 

Scene Analysis, John Wiley & Sons, 1973.  

[15] Scott C. Deerwester, Susan T. Dumais, Thomas K. 

Landauer, George W. Furnas, and Richard A. Harshman, 

“Indexing by latent semantic analysis,” JASIS, vol. 41, no. 6, 

pp. 391–407, 1990. 

[16] Gerard Salton, Automatic Text Processing: The 

Transformation, Analysis, and Retrieval of Information by 

Computer, Addison-Wesley, 1989.  

[17] T.K. Landauer, D. Laham, and M. Derr, “From 

paragraph to graph: latent semantic analysis for information 

visualization,” Proc Natl Acad Sci, vol. 101, no. Sup. 1, pp. 

5214–5219, 2004. 

[18] John R. Deller, John H. Hansen, and John G. Proakis, 

Discrete Time Processing of Speech Signals, IEEE Press 

Marketing, 2000. 

[19] J. S. Garofolo et al., DARPA TIMIT Acoustic Phonetic 

Continuous Speech Corpus CDROM, NIST, 1993. 

[20] Ofer Dekel, Joseph Keshet, and Yoram Singer, “An 

online algorithm for hierarchical phoneme classification,” in 

MLMI, 2004, pp. 146–158.  

[21] http://www.research.ibm.com/VIVA Demo, 2005. 

[22] D. A. Reynolds, “An overview of automatic speaker 

recognition technology,” in ICASSP 2002, 2002. 

[23] http://www.imm.dtu.dk/~lf/ELSDSR.htm, 2005. 

[24] J.P. Campbell, D.A. Reynolds, and R.B. Dunn, “Fusing 

high- and low-level features for speaker recognition,” in 

Proceedings of Eurospeech-2003 (Geneva, Switzerland), 

2003, pp. 2665–2668. 


