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Preface

This thesis is the result of work carried out at the section for Electronics and Signal
Processing, OrstedeDTU, Technical University of Denmark (DTU). The thesis accounts
for 30 ECTS units and is a partial requirement for obtaining the degree of Master of
Science in Electrical and Electronic Engineering (M.Sc.E.E.). The work has been car-
ried out over a period of six months, in cooperation with the Danish Defence Research
Establishment (DDRE) (Forsvarets Forskningstjeneste, FOFT).

The thesis is intended as a contribution to reducing the problems introduced by cast
shadows, when detecting moving objects in systems for automated video surveillance. It
is assumed that the reader has a basic knowledge within the areas of image analysis and
statistics. Key flowcharts, which are referred to throughout the thesis, are additionally
placed in the final appendix [F] page [I91] for the convenience of the reader.

Svanemgllen Kaserne, September 16, 2004.

Sgren Gylling Erbou, s990087.
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Abstract

This thesis describes and implements methods for segmentation of cast shadows from
moving objects, detected in an outdoor surveillance application. Cast shadows reduce
the general ability of robust classification, and tracking, of moving objects in such appli-
cations.

A data set, consisting of 90 different foreground objects including cast shadows, is
obtained using a high resolution digital video camera, in a typical surveillance scenario.
18 of the foreground objects constitute a training set used for manually optimizing central
parameters. 72 foreground objects constitute the test set, used for validation.

A state-of-the-art statistical-based method for handling cast shadows, suggested by
Javed et al. [2I], is implemented as a reference, and its central parameters optimized using
the training set. A physics-based method for shadow removal in still images, suggested by
Finlayson et al. [15] and not previously applied in a surveillance application, is examined
for use in such an application, but found to be too sensitive when used with a standard
dynamic range of 8 bits. Instead an enhanced method for segmentation of cast shadows
is suggested, combining an improved color segmentation of regions, with the introduction
of an enhanced similarity feature for classification of regions. None of the methods are,
in practice, limited by spatial assumptions.

Based on the 72 examples of the test set, the enhanced method for shadow removal
significantly improves the mean absolute accuracy (69.2%), and mean relative accuracy
(14.9%), at a 5% significance level, compared to the reference method, whose mean abso-
lute accuracy is 64.9%. The enhanced method tends to improve examples substantially,
where the reference method fails completely. Therefore the enhanced method is also more
robust than the reference method.
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Resumé

I denne afhandling beskrives og implementeres metoder til segmentering af kaste-
skygger fra objekter i bevaegelse, i et system til automatisk udendgrs videoovervagning.
Kasteskygger er et generelt problem i overvigningssystemer, da de har negativ indflydelse
pé den senere klassifikation og sporing af objekter.

Et datasaet bestaende af 90 forskellige forgrundsobjekter med kasteskygge, er blevet
optaget med et digitalt videokamera, i et typisk overvagningsscenarie. 18 forgrunds-
objekter udggr et traeningssaet, der anvendes til at optimere centrale parametre, og 72
forgrundsobjekter udggr et testsat, der anvendes til validering.

En state-of-the-art statistik-baseret metode, foreslaet af Javed et al. [21I], imple-
menteres som referencemodel, og dens ydelse optimeres i fht. centrale parametre, ud
fra treeningssaettet. En fysik-baseret metode, til fjernelse af skygger fra enkelt-billeder
og foreslaet af Finlayson et al. [I5], undersgges ogsa for anvendelse i videoovervagning.
Denne vurderes at veere for folsom ved anvendelse af et videokamera med et standard
dynamikomrade pa 8 bits. I stedet for foreslas en forbedret metode til segmentering af
kasteskygger, som kombinerer en bedre farvesegmentering med indfgrelsen af en ny egen-
skab til klassifikation. Ingen af metoderne er i praksis begraenset af spatiale antagelser
om sammensatningen af forgrundsobjekterne.

Pa baggrund af treeningssettet viser den forbedrede metode en signifikant forbedring
i absolut middel-ngjagtighed (69.2%), og i relativ middel-ngjagtighed (14.9%), sammen-
lignet med referencemetoden, hvis absolute middel-ngjagtighed er 64.9%. Den forbedrede
metode giver en meget stor forbedring i tilfaelde hvor referencemetoden fejler fuldsteendigt,
hvorfor den forbedrede metode derfor ogsa er mere robust end referencemetoden.

v
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Chapter 1

Introduction

For several decades video cameras have been a popular means for crime solving by
surveillance. Conventional surveillance applications require an operator to determine
when action is needed. A single operator can only monitor a limited amount of scenes
simultaneously, for a limited amount of time, because the process of manual surveillance
becomes tedious. The introduction of digital video cameras, and recent advances in
computer technology, make it possible to apply (semi-)automated processing steps to
reduce the amount of data presented to the operator. This way the amount of trivial
tasks are reduced, and the operator can focus on a correct and immediate interpretation
of the activities in a scene.

In recent years the main attention has been on surveillance applications where it is
necessary to take immediate action because human lives or installations of vital interest
are at stake. This could e.g. be scenarios where a terrorist leaves a bag containing a bomb
in a scene, or perimeter surveillance where it is crucial to detect unwanted intrusion. In
such surveillance applications it is vital to ensure a consistent way of monitoring and
registration of objects of interest. Automated or semi-automated video surveillance are
steps in this direction, since they are capable of monitoring larger scenes over a longer
period of time.

The Danish Defence Research Establishment (DDRE) is currently focusing part of it’s
research on implementing a system for automated video surveillance. The main objectives
of the DDRE are to gain general knowledge in this area, and eventually implement an
automated surveillance application that is capable of detecting, tracking and classifying
moving objects of interest.

At this point the DDRE has carried out some initial studies [28] 18] in testing and
implementing parts of the W4-system [19] for automated video surveillance. The W*-
system effectively detects moving objects, tracks them through simple occlusions (blocking
of the view), classifies them and performs an analysis of their behavior. This procedure
corresponds well to the system that the DDRE would like to implement, and therefore the
W+* has been chosen as a primary reference. One limitation of W# is that the tracking,
classification and analysis of objects fails when large parts of the moving objects are
actually cast shadows.

Distinguishing between cast shadows and self shadows is crucial for the further analysis
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of moving objects in a surveillance application. Self shadows occur when parts of an object
are not illuminated directly, but only by diffuse lighting. Cast shadows occur when the
shadow of an object is cast onto background areas, cf. figure [[.I} The latter are a
major concern in today’s automated surveillance systems because they make shape-based

classification of objects very difficult. Furthermore cast shadows can make objects that

e

interact difficult to track.

Self shadow
(part of object)

Cast shadow
(cast onto background)

Figure 1.1: Types of shadows. Self shadow is shadow on the object itself, a person in this case.
Cuast shadow is the shadow cast onto the background.

1.1 Motivation

Cast shadows in outdoor scenarios are very likely to occur, and the problem of cast
shadows in surveillance applications, is yet to be solved in general. Several approaches
have been tried, but they all are limited by context dependent threshold optimized for
specific applications and data sets. The DDRE surveillance application also lacks a robust
shadow handling for the moving objects detected.

In [I8], Hansen implements and improves upon a method for cast shadow removal
based on work by Hsieh et al. [20]. The use of the method is limited to people in standing
posture, because of some initial spatial assumptions of the composition of objects. For
instance it often fails to segment cast shadows from vehicles. This makes the method
less useful if the outdoor environment to be monitored, contains roads or parking lots, as
required by the DDRE.

Javed et al. [2I] use a statistical approach for segmenting foreground pixels darker
than a reference image into cast shadow, self shadow and object pixels darker than the
background. This method is considered state-of-the-art in surveillance applications but
still faces fundamental problems concerning some very context dependent parameters.

Finlayson et al. [15] use a physics-based approach to derive an illumination invariant
(therefore shadow free) gray-scale image of an RGB image. From this image the original
RGB image, without shadows, is derived. Finlayson’s approach is aimed at shadow
elimination in general in images obtained with a standard digital still camera. Due to
assumptions in the model, and in the derivation of the shadow free RGB image, the
method is far from perfect, but shadows are attenuated significantly. The method has
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not been applied in a surveillance application yet.
The topic of the present thesis is therefore based on the need for a more robust way
of dealing with cast shadows in surveillance applications.

1.2 Objectives

The main objective is to contribute to the design of an overall system for automated
outdoor video surveillance. More specifically the focus is on methods for robust segmen-
tation of cast shadows from moving objects.

An overview of recent methods for shadow removal is given, with emphasis on two
fundamentally different appoaches: A statistical approach suggested by Javed et al. [21]
and a physics-based approach suggested by Finlayson et al. [15]. Both methods are
studied in detail and are implemented in Matlab [23]. In order to evaluate and compare
methods, a data set consisting of images typical of the environment that the DDRE wishes
to monitor, is acquired.

Finlayson’s approach has not previously been applied in a surveillance application or
when using a digital video camera. Using such a setup, Finlayson’s approach is examined
to determine it’s applicability.

Javed’s statistical approach is considered state-of-the-art and is optimized with respect
to a training set and chosen as a reference (J). Then an improved version of Javed’s
approach (I) is suggested based on the results from the training set. Finally Finlayson’s
ideas are combined with Javed’s improved approach in an enhanced algorithm for shadow
removal (E).

The three methods (/,/ and E) are then compared to each other using a test set, to
determine if there are any statistically significant improvements in performance and from
where such improvements might originate.

1.3 System Specifications

Several specifications for a system for shadow removal are outlined by the DDRE and
the author to encompass a suitable master thesis.

The focus of the thesis is on applications using a single camera, for which reason a
single digital video camera should be used to obtain the data set used to train and test
the methods. The data set should represent objects that are relevant in reference to the
present DDRE application, i.e. vehicles, people and bicycles. Input for the shadow re-
moval algorithm are the moving foreground pixels detected by the algorithm implemented
by Hansen [18], for the DDRE. These consist of both object pixels and cast shadow pix-
els (cf. figure . The segmentation of pixels should not be limited by any spatial
assumptions of the object, since this would limit the object types that the method can
handle. The implementation of Javed’s method is used as a reference, since it is con-
sidered a state-of-the-art method for shadow removal. From an analysis of the reference
method and Finlayson’s ideas for shadow removal, the enhanced method for shadow re-
moval should result in an increased performance. Finally, the data set used for comparing
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the methods should be of an appropriate size to ensure statistical significance at a 5%
level, when interpreting the results.

1.4 Thesis Overview

Chapter 2 gives an introduction to computer vision in automated video surveillance
with the W4-system as the key reference. Several approaches for shadow removal are
compared, with emphasis on the statistical approach by Javed et al. and the physics-
based approach by Finlayson et al.

Chapter 3 describes the equipment used for data acquisition and the data sets used
for training and validation of the methods. In chapter 4 Finlayson’s ideas for shadow
removal are examined for the digital video camera at hand, i.e. the illumination invariant
image is estimated including a color calibration of the camera.

Chapter 5 gives a brief overview of the implementation of the background model and
detection of foreground objects. Then performance measures are introduced leading to
the implementation and optimization of Javed’s shadow removal (J), which is used as a
reference. Using the training set an improved version of Javed’s method is suggested (I).
Finally the latter is combined with some of Finlayson’s ideas for shadow removal in an
enhanced algorithm (F). In chapter 6 the three methods are applied on a test set and
compared to each other.

Chapter 7 discusses the results obtained and how they should be interpreted. It also
summarizes the work of the thesis and gives proposals for future work. Chapter 8 is the
final conclusion. Appendices contain supplementary figures, results and Matlab routines.
The final appendix [F] page [I91] contains the key flowcharts, for the convenience of the
reader.



Chapter 2

Related Work

In order to make appropriate decisions on how to design a robust system for shadow
handling, that corresponds to the intentions of the DDRE, a detailed study of important
previous work is presented in this chapter. Both work related to video surveillance in
general, and shadow removal in particular, are described.

2.1 Computer Vision in Video Surveillance

Computer Vision is a broad term covering a range of applications. When applied
in surveillance tasks, it usually consists of one or more of the following parts: Object
detection, tracking, classification and/or analysis. The use varies from traffic monitoring
through video conference applications to use in security systems. In the relevant literature
several approaches have been tried in order to obtain robust and good results in the highly
complex task of interpreting video sequences. Outdoor surveillance in particular is a diffi-
cult task because of non-stationary conditions imposed by various types of weather, time
of day, season, etc. Therefore the best performance is achieved for specialized systems,
using a lot of a prior: information and assumptions. The drawback being the inability to
apply the methods in other situations.

Moeslund et al. [25] make a comprehensive survey (2001) of computer vision systems
for human motion capture. Systems are divided into three application areas: Surveil-
lance, control and analysis. Surveillance tasks usually take place in uncontrolled outdoor
environments, requiring a high degree of robustness. As a state-of-the-art example, the
W* system [19)] is emphasized, cf. section . It uses a robust monocular 2D-approach,
and deals with all of the previously mentioned aspects of surveillance. Control appli-
cations are characterized by an increasing number of assumptions, typically in indoor
scenes, concerning e.g. gesture recognition etc. Complex 2D or 3D human models are
often introduced, e.g. Pfinder/SPfinder by Wren et al. [39]. Analysis applications are
even more specialized, typically for clinical use, and therefore of no relevance within the
present framework.

Other interesting work within the area is performed by Gavrila et al. [I6] and Siden-
bladh et al. [33] using complex 3D-models. 3D-models presently have the drawback of
being too slow for realtime systems, and they often require an advanced camera setup
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and a number of model assumptions. Siebel [34] implements a 2D-system for detection
and tracking of moving objects in a London underground station. An active shape model
is employed on single persons in standing posture, in order to do an analysis of their
behavior. It cannot handle postures other than standing and assumes diffuse constant
lighting (no shadows), making it unsuitable for outdoor use.

McKenna et al. [24] use color histograms to detect and track people, also through
occlusions. Histogram methods can estimate any distribution, but require a large number
of samples, which grow exponentially with the dimensionality [2]. Park et al. [27] segment
and track interacting human body parts under occlusion and shadowing in a three step
process. At pixel level a Gaussian mixture model is used to classify individual pixel colors.
Then a Markov Random Field model is used to merge similar pixels into blobs, and finally
a model of the human body is applied to handle occlusions. Certain types of occlusion
are reported to still produce errors.

Background subtraction is a computationally effective, and therefore popular, way of
detecting moving objects in a scene. The idea is to subtract an image of the scene without
moving objects from a new frame of the scene. If the resulting image contains areas where
the intensity has changed significantly, it is likely to be caused by a moving object. This
works fairly well in indoor scenes, where there is little change in the background. However
in outdoor environments, with changing illumination, vegetation moving due to wind etc.,
background subtraction is insufficient, even when using averaged background images.
Usually re-initializing the model is done when large parts of an image are considered
moving pixels.

In [21I] Javed et al. design a robust system for outdoor surveillance, based on a
statistical model (mixture of Gaussians) for adaptive background subtraction developed
by Stauffer et al. [35]. Then they apply statistical modelling of shadows and use recurrent
motion of objects to classify them as a single person, a group of persons or a vehicle. If a
single person is found, symmetry analysis is used to detect objects carried by the person.
The system performs well for an outdoor system, although it fails under sudden changes in
lighting conditions and when irrelevant objects move e.g. flags waving. These drawbacks
are general for state-of-the-art systems. The handling of shadows has difficulties in some
cases, which will be described in section

Elgammal et al. [I1] suggest modelling the background and foreground using non-
parametric kernel density estimation, thereby avoiding making any assumptions of the
shape of the probability density functions (pdf’s). Gaussian kernel functions are chosen
and the model is reported to be able to detect moving targets against a cluttered back-
ground. It handles a background which is not completely static, as well as slow changes
in illumination. Nonparametric modelling using kernel estimators requires much more
computation, and therefore is difficult to implement in realtime.

2.2 W*- A System For Automated Video Surveillance

The W* developed by Haritaoglu et al. [I9] (2000), is a system for real time surveil-
lance of people and their activities. It detects moving objects using a statistical back-



2.2 W%*- A SYSTEM FOR AUTOMATED VIDEO SURVEILLANCE 7

ground model and classifies objects into single people, groups of people and "other" ob-
jects, using a histogram based technique for head detection. Detected objects are tracked
by a second order motion model and a silhouette correlation. When a single person is
tracked, an appearance model is build to handle occlusions and the different body parts
and the posture are detected from the silhouettes. Finally symmetry and periodicity
analysis are employed to determine whether the person is carrying an object. People
in groups are segmented by detecting their heads from the silhouettes and then using a
distance map. Figure shows the system architecture of the W4, with an indication of

which stage to implement a step for shadow removal (step 3 in red).

GHOST BACKPACK
Single Pt St
Person : osture i ymmelry |
Analysis Standing Analysis
= 5A BA
= Not i
Background t Carrying
Model (1) % Body Part Object Periodicity | i
@ Detection Analysis {  TRACKING
New o (5B) (6B)
Image Shadow = o — m—_ - '
Removal % [ Mcr:’clic;tll?gA)
(3) x Peaple i Image
z glp e in Analyzed
. Y P 3 ) roup HYDRA ] Appearance —>
oregroun & 4 Model (8B)
Detection (2) £ i Head Person
[ P Detection Segmentation —
(7TA) (7B) Trajectory
Recovery (BC)
Other (non-people)

Figure 2.1: The system architecture of W* [19] with additional shadow removal. Step 3 (red)
indicates when the shadow removal should be performed.

Originally W* was implemented using monocular video sources, i.e. grayscale or
infrared, and runs at 25Hz for 320x240 resolution images on a 400MHz dual-Pentium
II PC. Real time implementation had a high priority in designing W* thus a relatively
simple background model was chosen, namely a statistical model of the background to
subtract from each new frame. It uses the minimum and maximum intensity values and
the maximum intensity difference between consecutive frames in a training period, in
which there is assumed to be no moving objects present. The background model is then
updated using both a pixel-based and an object-based method.

This simple model is susceptible to noise, but more robust background models have
been developed in [IT], 35]. Furthermore the W* does not take shadows into account at
all. This is reported to produce significant problems in the silhouette based analysis, and
is the key motivation for this thesis. While the tracking handles occlusions quite robustly,
the silhouette based methods have problems detecting body parts during occlusions by
stationary objects. In general W performs well, but still has problems with sudden
changes in illumination, a non-stationary background and shadows. Never the less it is
state-of-the-art and one of the only systems that implements a surveillance application
from detection through tracking and classification to an analysis of behavior. This is the
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main reason for the DDRE to use W* as the key reference in developing a system for
automated video surveillance.

Hansen [I8] implemented a histogram-based method and the kernel-based method
by Elgammal for the DDRE, and showed that the latter is more robust. Therefore it is
Hansen’s implementation, slightly changed to improve the speed in Matlab, of Elgammal’s
kernel-based method that will be used as the background model for detection of moving
objects in this thesis.

2.3 Shadow Removal in General

There are two types of shadows, self shadow and cast shadow. Self shadow occurs
when part of an object is in shadow, i.e. when part of an object is not illuminated by direct
light. Cast shadow is the shadow cast onto background regions, i.e. when background
regions are not illuminated by direct light because an object blocks the direct light, cf.
figure [[.I] Cast shadows are a major concern in tracking and recognition tasks. A
variety of approaches have been tried in search of a robust method to deal with shadows
depending on the application. In [29, [30] Prati et al. give a comparative evaluation
of the most important methods up until 2001. They conclude that the more general
situations a system is designed to handle, the less assumptions should be made, and if
the scene is noisy, a statistical approach is preferable to a deterministic model due to
the uncertainty introduced in the classification. Typical features can be divided into
(extension of [29][30]):

e Spectral features.

— Gray level.
— Color.

— Infrared.
e Spatial features.

— Local (pixel).
— Regional.

e Temporal features.

— Static.

— Dynamic.

The vast majority of recent methods (2001 —) use color information in shadow han-
dling because it provides extra information. The single reason for using gray levels only,
is to reduce computations in realtime systems. Infrared sensors are typically used in
dark environments. Some methods introduce processing at regional level as an extension
of pixel-based processing. Temporal features are introduced to exploit information from
analysis of previous frames. The assumptions used when applying features can be very
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different. Most methods use a priori knowledge of how shadows affect surfaces: That the
chromaticity of a pixel is largely unchanged, and that the intensity is somewhat attenu-
ated. Some methods try to model the shadows statistically, e.g. [20} 21], making various
spatial assumptions. Others suggests more physics-based approaches, e.g. [15] 26].

2.4 Statistical-Based Shadow Removal

2.4.1 Hsieh et al.

In [20], Hsieh et al. focus on removing cast shadows from pedestrians using a statistical
model combined with spatial assumptions. Only situations with pedestrians in an upright
posture are handled and the cast shadows are assumed to touch their feet. The shadow
detection uses the output of a simple background subtraction method, and is done in
two stages. From the central moments of the moving object the orientation of the object
is determined. Combined with a vertical histogram difference and a silhouette curve
a straight line is computed to separate the cast shadow from the rest of the object as
a rough approximation. In the second stage pixels roughly detected as shadow pixels
are modelled as a Gaussian using the variance-normalized intensity differences between
background and foreground, and the spatial displacement of the pixel from the centroid
(center-of-mass) of the roughly separated cast shadow. If the probability of a pixel still
being part of the cast shadow is below a certain threshold it is not considered a cast
shadow after the second stage classification.

The described method is intended for single-shadow elimination but is also imple-
mented to handle multiple shadows. Using a vertical projection histogram and a vertical
edge histogram, it distinguishes several persons from each other. It is reported to work
very well with an average accuracy of 94% (detected shadow pixels / manually obtained
ground truth) on images with a cluttered background. No average false alarm rate is com-
puted in the article [20], but the examples shown reveal a false alarm rate from 1 —10%, .
As a reference model they implement a physics-based approach by Nadimi et al. [26] (cf.
section which is reported to have an average accuracy of 58.7% on the same data set.

Hansen [Ig] implements an improved version of Hsieh’s single shadow elimination
algorithm using color information and some spatial criteria to prevent the algorithm
from failing when objects are vehicles. Color information is reported not to improve
performance. In the less specialized cases, as assumed in [20], the method fails in a
number of cases:

e If the object is not a person in an upright posture.
e If the object is not "solid", that is if there are holes in the binary moving object.

e If the cast shadow does not touch the objects feet, e.g. when part of the cast shadow
is occluded by the object itself or by other objects.

All in all, Hsieh’s method for shadow elimination is found to be too specific for use in a
surveillance system for the DDRE, mainly due to the limitations of the first bullet point
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mentioned above. The spatial assumptions made previous to the statistical modelling
constrains the model too much.

2.4.2 Javed et al.

Javed et al. [2I] use a Gaussian mixture model suggested by Stauffer et al. [35]
for adaptive background subtraction. They make no spatial assumptions of posture or
composition prior to the statistical shadow modelling. Instead they assume that only
moving object pixels, darker than the background image, in both the R-,G- and B-channel,
candidate as shadow pixels. These can belong to:

e (Cast shadow.
e Self shadow.
e Part of the object, darker than the background pixel.

A flowchart of Javed’s method for shadow removal is depicted in figure[2.2] corresponding
to step 3 in figure 2.1}

Javed's Original Shadow Removal (3)

Color Segmentation

Detected §Object

Foreground : Shad " c rod Rod Foat : Pixels
Pixels | adow -means onnecte egion eature - {onl
Candidates Clustering Component Merging Extraction C|a5(5:ls'f::c;1t|0rl Y
(3A) (3B)) Analysis (3C, (3D,) (3E) J i

Figure 2.2: Flowchart of shadow remowval as suggested by Javed. Corresponds to step 3 in figure
21

When pixel-candidates are found (step 3A;) a K-means approximation of the EM-
algorithm (Ezpectation-Mazimization) [2] is used to perform unsupervised color segmen-
tation of the pixel candidates (step 3Bj;). Each pixel candidate is assigned to one of the
K existing Gaussian distributions if the Mahanalobis distance is below a certain
threshold. If above this threshold a new distribution is added with it’s mean equal to
the pixel value. All distributions are assumed to have the same fixed covariance matrix

2

¥ = 0?1, where o2 is a fixed variance of the colors and I is the identity matrix. After a

pixel candidate is assigned to a distribution, the distribution mean is updated as follows:

1
Pnt1 = pn + ﬁ(mn+l - )U"n)a (21)

where z is the color vector of the pixel and pu, is the mean of the Gaussian before the
n-+1th pixel is added to the distribution. The Mahanalobis distance D? is defined as [6]:

D* = (i1 — Nn)TZ_l(anrl — fin), (2.2)

and is a variance normalized measure of distance between a new sample and the center
of a distribution.
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Using a connected component analysis (step 3C;) the spatially disconnected segments
are divided into multiple connected segments. Smaller segments are then merged with
the largest neighboring segment using region merging (step 3D ). Then each segment is
assumed to belong to one of the three classes, cast shadow, self shadow or part of the
object darker than the background image. To determine which of the segments are cast
shadows, the textures of the segments are compared to the texture of the corresponding
background regions. Because the illumination in a cast shadow can be very different from
the background the gradient direction is used. It is well suited as an illumination invariant
feature (step 3E;):

0 = arctan &, (2.3)

x
where € is the gradient direction and f, and f, are the vertical and horizontal derivatives
respectively. If the correlation is more than 0.75, the region is considered a cast shadow.
Otherwise it is either self shadow or dark part of the object (step 3Fy). Figure shows
examples of shadow elimination using Javed’s method [21].

!
(h) (c)

(f)

Figure 2.3: Shadow elimination using Javed’s method [Z1]. (a) and (d) show the bounding box of
the object including shadow. (b) and (e) show the background subtraction results for the bounding
bozx. (c¢) and (f) show object mask after shadow elimination.

When tested, the shadow algorithm was only applied when more than 30% of an
object was darker than the background image. It is reported to perform well on 70%
of the frames with significant shadows in which the object was visible. In 25% of the
frames it did not remove the shadows and in 5% of the frames parts of the true object
were removed. The majority of errors are reported to be caused by large self shadows on
objects and due to failure of the segmentation procedure to divide cast shadows and self
shadows into different regions.
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The major strength of Javed’s method when compared to Hsieh’s method, is that no
spatial assumptions are made, making it suitable for handling objects of any shape. This
is very important in reference to the interest of the DDRE. Only a few assumptions are
made: That the shadows are not strong enough to completely wipe out any details of the
underlying surface, and that the underlying surface is not smooth, i.e. it contains gradient
features. It is not reported if the failures could be due to the texture of the object and
the texture of the background being too alike. This could be a problem when using only
the gradient direction to distinguish cast shadows from the other classes. Furthermore
the segmentation using K-means with a fixed covariance and the correlation measure are
sensitive to how thresholds are chosen. Still Javed’s method is chosen as a reference in
this thesis because of its general applicability.

2.5 Physics-Based Shadow Removal

2.5.1 Nadimi et al.

In |26] Nadimi et al. use a Gaussian mixture model for background modelling. After-
wards they apply a number of steps in a physics-based shadow detection algorithm. Each
step exploits various features based on the following assumptions:

e Background does not contain moving objects.

e Surface reflectance due to sky illumination is shifted toward the blue.

e Pixels in shadow regions are illuminated by the sky only.

e Inter-reflections due to nearby objects are negligible

e Cast shadow pixels have the same reflectance properties as the background.

e Shadow pixels are darker than their reference in all three channels (R,G,B).

e Background surfaces are generally matte and different from moving object surfaces.
5 steps are applied in the shadow detection:

1. Initial shadow pizel reduction. As in Javed’s method, only pixels darker than their
background (in R,G and B) are considered shadow candidates.

2. Blue ratio test. Shadows are assumed to be illuminated by a blue sky only. Re-

flectance changes in R and G are assumed to be larger than reflectance change in
B.

3. Albedo ratio segmentation. A measure combining ratios of differences between two
neighboring pixels with ratios of differences between foreground and background
pixels is defined and called the albedo ratio. It combines both spatial and temporal
information and is used as a measure of similarity between two neighboring pix-
els. After the albedo ratio segmentation connected component analysis and region
merging are done.
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4. Ambient reflection correction. Reflection due to the sky is considered an additive
component. Foreground pixel values are now subtracted from the background pixels,
to remove the reflection due to ambient light.

5. Body color segmentation. A dichromatic reflection model is used to estimate the
average body color of each surface. The total radiance of the reflected light is de-
scribed as a sum of diffuse (body) and specular (surface) reflections. Applying some
physical assumptions, the body color is estimated using singular value decomposi-
tion (SVD). These estimates are compared to initial estimations from step 1 and
the regions within an acceptable threshold are classified as shadow regions.

No average performance measure is reported, but it is indicated that the algorithm
performs very well. Four examples in the article classify 66-81% of the shadow pixels
correctly, and the rest are missed. Less than 0.01% pixels are false positives. The frames
used for testing include varying background and daylight. One difficult case is noted,
when a part of the object in self shadow has similar color as the background. In this case
the self shadow is classified as cast shadow. Exploiting the higher luminance of the self
shadow compared to the cast shadow is suggested to solve this problem. The blue ratio
test is sensitive to the sensor and the background color saturation. It is therefore bypassed
when background is saturated or the sky is cloudy. Also the body color segmentation has
problems with puddles etc. since the dichromatic reflection model does not handle highly
reflective surfaces very well.

Nadimi’s method also has the advantage of making no spatial assumptions. But with
a number of deterministic physics-based segmentation steps several thresholds need to be
optimized. Some of the steps seem more relevant than others, especially step 1, which
is also used by Javed (cf. sec. . But also the albedo ratio segmentation, combining
temporal and spatial features when doing the connected component analysis, could be of
relevance.

2.5.2 Finlayson et al.

Finlayson et al. [I3], [I5] derive a grayscale illumination invariant shadow free image
from a single RGB image taken with a color calibrated camera. The gradient of the
shadow free image is then compared to the gradient of the original image and the edges
of the shadows are removed. Re-integrating the gradient image reveals a shadow free full
color image. Several physics-based assumptions are made making the method susceptible
to noise.

A flowchart of how to apply Finlayson’s suggested method for shadow removal is
depicted in figure [2.4] corresponding to step 3 in figure 2.1} Only steps 3Bp,3CF and
3D are addressed by Finlayson [13| 15].
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Finlayson's Suggested Shadow Removal (3)

Steps Adressed by Finlayson %Object

Feature . .
Extraction Clasig—';;‘tlon :
(3E)

Figure 2.4: Flowchart of shadow removal as suggested by Finlayson. Corresponds to step 3 in

figure [2.1]
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Deriving an Illumination Invariant Image

Barrow et al. [1] originally proposed a decomposition of an image I(x,y) into a product
of two "intrinsic" images, a reflectance image R(x,y) and an illumination image L(x,y):

I(z,y) = R(z,y)L(z,y). (2.4)

These intrinsic images were derived to ease typical segmentation tasks. But the derivation
is an ill-posed problem with twice as many unknowns as equations. Weiss [37] suggests a
statistical method for retrieving one reflectance image from an image sequence of a scene
with constant reflectance and changing illumination. Finlayson et al. take the idea of
intrinsic images a step further and propose a method for deriving an illumination invariant
image from a single image and a color calibrated camera [13] [15].

The color of a pixel in an image depends on the illumination, the surface reflection and
the camera sensors. Denoting the spectral power distribution of the illumination E()),
the surface spectral reflection function S()\), and the camera sensor sensitivity functions
Qr(\) (k = R,G, B), the RGB color pj at a pixel can be described as an integral over
the visible wavelengths A:

pk:/E(A)S(A)Qk(A)dA . k={R.G,B). (2.5)

This description assumes no shading and distant lighting and camera placement. If the
camera sensitivity functions Qg () are furthermore assumed to be narrow-band, they can
be modelled by Dirac delta functions Qx(A\) = qxd(\ — Ag), where ¢ is the strength of
the sensor. Substituting this into reveals:

pe=EX)SNae . k={R,G,B}. (2.6)
Lighting is approximated using Planck’s law:
c -1
E\T) = Ie A~ (eT% - 1) : (2.7)

where [ is the intensity of the incident light, T is the color temperature, and ¢; and ¢y
are equal to 3.74183 - 10~ ' Wm? and 1.4388 - 10 2K'm respectively. Planck’s law is valid
for objects with black-body radiation, also called Planckian lights. When plotted in a
chromaticity diagram, Planckian lights describe a Planckian locus for varying tempera-
tures. Daylight is very near to the Planckian locus since the sun can be described as
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a black-body object (100% absorption for all A). The illumination temperature of the
sun is in the range from 2500K to 10000K (red through white to blue). For the visible
spectrum (400-700nm) the exponential term of is somewhat larger than 1. This is
Wien’s approximation [21]:

E\T) ~ I\ e Th. (2.8)

If the surface is Lambertian (perfectly diffuse reflection) shading can be modelled as the
cosine of the angle between the incident light a and the surface normal n [9, 4]. This
reveals the following narrow-band sensor response equation:

pr = (a-n)Ie A Pe 5S(\)g, , k={R,G, B} (2.9)
Defining band-ratio chromaticities r; remove intensity and shading variables:

re=2% | k={R,B). (2.10)
P

Taking the natural logarithm (In) of (2.10]) isolates the temperature:

r, =In(ry) = lIn(sy/sq) + (ex —eq)/T , k={R,B}, (2.11)
sp = A OS(\)qr, (2.12)
ex = —C2/ Mg (2.13)

For every pixel the vector (r’,%5)7 is formed as a constant vector plus a vector (eg —
eg,ep — eq)’ times the inverse color temperature. As the color temperature changes,
pixel values are constrained to a straight line in 2D log-chromaticity space, since
is the equation for a line. By projecting the 2D color into the direction orthogonal to the
vector (er — eq,ep — eq)’, the pixel value only depends on the surface reflectance and
not temperature hence illumination (cf. figure :

€R — €@ €R — €q
'y — 77"'3 = In(sp/sq) — —
€ — €@ €B — €@

= f(sr,sc,sB). (2.14)

In(sp/sa),

Applying (2.14) to all pixels reveals the illumination invariant image gs(z,y):

gs(x, y) = alr,}%(x’y) + GQTSB(:I;ay)v (2-15)

where the constant vector a = (a1, az)” is orthogonal to (egr —eq, ep —eg)?, determined
by the camera sensitivity functions only (2.14])(2.13)), and scaled to unit length.

al

la’[|”

1
a = ( nee ) (2.16)
_eB—eG

This derivation corresponds to step 3By in figure . Figure (b) shows an example
of an illumination invariant grayscale image, where edges due to shadows are not visible.
Figure 2.5[a) and [2.5(c) show the original image, and the normal grayscale image.

a =
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Figure 2.5: Finlayson’s approach to shadow removal [15]. (a): Original image. (b) Illumination
invariant grayscale image. (c): Grayscale of original image. (d): Edge map for invariant image.
(e): Edge map for non-invariant image. (f): Recovered shadow-free image.

If the sensor functions of the camera, and thereby A of , are unknown, [I3] and
[15] outline a procedure for camera color calibration. The invariant direction is estimated
by comparing a number of images taken during the day with changing illumination, cf.
figure 2.6l Daylight is assumed to be Planckian with varying temperature. Each image
contains different standard color patches from the Macbeth Color Chart (cf. App. .

S
.
N Ny
%N '
m(ﬂéfe)ﬂl [} 1] 1 1z |n(HfG)
(b) (©)

Figure 2.6: Finlayson’s color calibration of the HP912 digital still camera [15]. (a): Test image
of the Macbeth Color Chart. (b): Chromaticities of 24 color patches from 14 images taken during
the day. (c¢): Invariant directions recovered using camera sensors (solid line) and using the image
sequence (dashed line).

The various assumptions made to derive the illumination invariant image, are of course
limitations to the model in way of describing realistic scenes. Each assumption affects
the model in the following ways:
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1. Narrowband sensors are assumed in order to be modelled by a Dirac delta function.
Worthey et. al [38] show that holds for sensitivity widths of around 100nm.
If the widths exceed 300nm the model fails completely. A standard digital camera
can have quite broad sensor functions, which leads to a non-linear function in the
2D color space. This leads to images being not totally illumination invariant but
with shadows still more or less attenuated [15]. A discussion of how to sharpen
the spectral sensitivity functions, and optimize this sharpening, can be found in
12, [8, 4, ©]. It is done by applying a linear transform of the sensor functions,
resulting in an improved illumination invariant image. This way the approximation

of (2.6)) is improved.

2. Planckian light is assumed in order to use Planck’s law . Daylight in the visible
spectrum approximates Planckian light quite well [I3][15]. In [4] the approximation
is studied in detail. While daylight is a good approximation of Planckian light,
fluorescent light is a very poor approximation, due to highly localized emission
spikes. Therefore the model will tend to decreased performance on images taken
under indoor fluorescent light. Most types of light though, are placed near to the
Planckian locus in the chromaticity plot, even additive combinations of Planckian

light [13].

3. Lambertian surfaces are totally diffuse. This means that no matter what the angle
of the viewer is, the brightness of the surface is constant. Specularities from non-
diffuse surfaces can be incorrectly characterized in the illumination invariant image.
In [14] Finlayson et. al outline a way of including specularities using a 4-sensor
camera.

If the intensity in the shadow regions is too dark (near zero), the intensity image cannot
be correctly formed. Furthermore, only for colored surfaces are the illumination edges
eliminated while the reflectance edges are kept. For white, gray or black surfaces, the
reflectance edges will also be eliminated, since they are all neutral in color |15, 4]. Finally
it should be noted that the derivation of the illumination invariant image is only valid for
linear images, that is, if e.g. gamma-correction is done , the invariant direction in
the 2D log color space will change:

o — Y(pk)
r, — vlog(sg/sa) +vlex —ea)/T . k={R,B}. (2.17)

If the invariant direction is found using camera calibration, it will automatically contain
this change, but that is not the case if the sensor functions are used directly.

Despite these limitations and drawbacks, the illumination invariant image could be
quite useful in conjunction with shadow removal, because the shadows are still attenuated
in the worst case scenario.

Reconstructing an RGB-Image Without Shadows

The shadow edges are detected by comparing the gradient of each channel in the origi-
nal log image, Vp'(z,y), with the gradient of the illumination invariant image, Vgs(z,y),
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cf. figure 2.5(d) and .5|e). The idea is that if the gradient in p/(z,y) is high, while it
is low in gs(z,y), the edge is most likely to be a shadow edge. The following threshold
function reveals a gradient image of the log response where gradients due to shadows are
eliminated (set to zero). This is step 3Cp in figure

0 if Vo' (z,y)| > ta
S(Vo'(z,y), Vgs(z,y)) = and [[Vgs(z,y)[| < t2 (2.18)
Vo' (z,y) otherwise,

where #; and t2 are context dependent thresholds. By integrating S a log response image
without shadows is recovered. This corresponds to solving the following Poisson equation

(step 3D in figure [2.4)):
V2 (z,y) = V- S(Vp'(2,y). Vgs(z,y)), (2.19)

where V? is the Laplacian and ¢’ is the log of the image without shadows. The gradient
image of S equals the Laplacian of ¢’ for each color band. Assuming Neumann boundary
conditions (V¢ = 0 for boundary normals), ¢’ can be solved uniquely up to an additive
constant. When exponentiating ¢’ to arrive at the shadow free image ¢ the unknown
constant becomes multiplicative. For the colors to appear "realistic" in each band, the
mean of the top 1-percentile of pixels is mapped to maximum of the RGB image. In this
way the unknown constants are fixed, and a shadow free image ¢ is derived, cf. figure
23f).

The major drawback of this method is reported to be defining the shadow edges. It
turns out that using a robust edge detection algorithm (e.g. Canny or SUSAN [I5]) and
setting the thresholds are crucial factors. Furthermore a morphological opening is applied
on the binary edge map to thicken the shadow edges and thereby improve the suppression
of shadow gradients before the re-integration step.

Despite all of the assumptions and difficulties reported the method shows good results
on the images shown in [I3, 15, 4]. It should be noted that the gradient images and
thresholds are very context dependent. However, even when the method performs poorly
it still attenuates the shadows. This is often the case for shadows with diffuse edges.
Therefore the method is interesting in conjunction with surveillance tasks, where the
artifacts introduced by the imperfect shadow edge detection and the re-integration are
not crucial. The main concern of [15] is delivering photo-quality images, not using the
method in automated surveillance tasks. The Finlayson approach can be applied to
surveillance tasks in several ways.

1. The shadow free RGB image could be used as described above. The drawback being
robust detection of shadow edges to obtain an RGB image without artifacts.

2. The illumination invariant grayscale image can be used in the background subtrac-
tion step. This would remove/attenuate all shadows (static and dynamic) revealing
a shadow free image for moving object detection. The drawback being the loss of
color information.
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3. The shadow free image could also be used on the foreground object only, to improve
the classification of cast shadows. This way updating the background model is not
affected by artifacts introduced by Finlayson’s method.

2.6 Comparison

Of the two statistical approaches examined, Javed’s method [21] is chosen as a refer-
ence method to be implemented. This is primarily based on the fact it does not make
any spatial assumptions of the composition and posture of the object, contrary to Hsieh’s
method [20]. This is important because the DDRE require a robust method that applies
under general conditions.

Javed uses the moving object detection as origin and attempts to model the pixels sta-
tistically. This approach has the advantage of only focusing on moving object pixels that
could cause problems for the later shape analysis. However the method has a number of
context dependent parameters that need to be set during segmentation and classification:

e Same fixed variance and fixed Mahanalobis for all Gaussians when modelling fore-
ground pixels using K-means, which influence the number of Gaussians needed to
model all the foreground pixels. The more Gaussians, the less pixels are assigned
to each region and the method is thereby more susceptible to noisy areas e.g. near
edges.

e Regions less than a certain size are merged with their largest neighbor. The size
criteria should be set in a way so that small noisy regions near edges are merged with,
and thereby classified as, their largest neighbor without affecting the correlation
measure too much. Choosing the size criteria depends on how many pixels the
object consists of, since large objects tend to have larger areas of noisy pixels along
the edges of the regions.

e The correlation measure is also context dependent. Setting a global threshold to
determine if a region is a cast shadow or an object region is a non-trivial task. Too
high a threshold results in too many cast shadow regions classified as object regions.
Too low a threshold results in the opposite.

How these parameters are set is not mentioned in [2I]. The author contacted Javed [22]
to confirm that the parameters indeed are optimized to best performance for the specific
data set. In optimization terms this corresponds to using the training error and not the
test error to evaluate the performance of a specific algorithm. This is a problem when
the goal is to design a system that automatically adapts to the scene.

The physics-based approach by Nadimi et al. [26] applies several deterministic seg-
mentation steps, all of which need to be optimized. Instead focus is on the quite elegant
physics-based method suggested by Finlayson [15].

Finlayson derives an RGB image invariant to illumination, i.e. a shadow free image.
Since the approach has not yet been applied in a surveillance application, Finlayson only
address steps 3Bp,3CF and 3Dp of figure @, the method is chosen as an additional
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method for implementation in this thesis. The limiting assumptions are that it only
works for diffuse (Lambertian) surfaces, the lighting should be close to Planckian, and a
narrowband camera should be used, either calibrated or with known sensitivity functions.
The major drawback is that the suggested thresholding of gradients is far from robust.
Even when these limitations influence the resulting image, the shadows are reported to
be somewhat attenuated.

Common strengths of both Javed’s and Finlayson’s methods are that no spatial as-
sumptions are made, assuring their use is not limited to certain object types, e.g. humans
in upright posture. However, both methods assume that shadows are not so dark that
the underlying texture is completely attenuated.

2.7 Summary

A range of dedicated computer vision systems for various surveillance tasks have been
designed over the years. Systems for general outdoor surveillance face the most difficult
problems because of complex non-stationary scenes due to varying weather conditions
etc. The W4-system is chosen as a key reference by the DDRE, since it describes an
implemented system that relatively successfully tracks moving objects, classifies them, and
analyzes their behavior. W* reports problems with analyzing moving objects containing
cast shadows. In [I8] Hansen implements an improved version of Hsieh’s method for
shadow removal [20]. For instance it assumes that objects are persons in standing posture,
and that the cast shadow always touches their feet. The intention of this thesis is to avoid
any spatial assumptions of the composition of objects in the detection of their shadows.

Several state-of-the-art methods for shadow removal are described, with emphasis on
a statistical approach by Javed [2I] and an elegant physics-based approach by Finlayson
[15].

The prior method applies unsupervised color segmentation of object pixels that are
darker than the reference image. This is followed by a connected component analysis
and region merging. Finally each region is compared to the background image where
the correlation between their gradient directions is used to classify the region to either
object or cast shadow. The method assumes that the shadows are significant enough
to completely wipe out any gradient information, and that the underlying surface is not
smooth. Several parameters are context dependent. It performs well on 70% of images
with significant shadows in which the object was visible. In 25% of the cases it did not
remove the shadows and in 5% of the cases parts of the true object were removed.

Finlayson’s method has not previously been applied in surveillance tasks. In this thesis
the method will be examined for use in such an application. The key idea of the method is
the derivation of an illumination invariant grayscale image which is derived from a single
RGB-image and is used to detect edges from shadows. The edge of these shadows are then
set to zero in the gradient image of the original RGB-image, and an RGB-image without
shadows is derived from this altered gradient image. The method requires knowledge of
the camera sensor functions or alternatively a color calibration can be performed. In the
derivation of the illumination invariant image, the lighting is assumed to be Planckian so
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it can be modelled by Plancks law. Furthermore narrowband camera sensors and diffuse
(Lambertian) surfaces are assumed. These assumptions are reportedly not very strict.
The major difficulty reported is how to automatically determine which edges are due to
shadows and which are not.

Neither of the two emphasized methods make use of any spatial assumptions. They
do however have some drawbacks, which will be examined in detail in chapter [



Chapter 3

Data Acquisition

This chapter describes the digital video camera used for obtaining video sequences,
and the data sets used for calibration, optimization and validation of the methods. This
provides, in detail, an overview of how data is obtained and used, and is an important
chapter to understanding how the results should be interpreted.

3.1 Camera

The camera which DDRE have acquired for their surveillance projects is a SVS-
VISTEK 204CFCL state-of-the-art industry camera. The resolution is 1024x768 pixels
10-bit and the maximum frame rate specified is 39 frames per second (fps). It is connected
to a frame grabber in a PC by a "CameraLink" connector. Each movie sequence is saved
uncompressed in the agvi-format. This makes saving data to the hard disk drive on the PC
the bottleneck of the data acquisition. A maximum frame rate of 20 fps 8-bit is currently
possible. No processing of data is done prior to saving the sequences ensuring linear
images as required when deriving Finlayson’s illumination invariant image, cf. section
2.5.2l The camera has a single CCD with an optical Bayer filter [32] in front of it
to produce RGB-colors. A Bayer filter produces horizontal lines of repeating red and
green pixels alternating with lines of repeating green and blue pixels as shown in figure
B There are twice as many green pixels as red and blue pixels because the luminance
response curve of the human eye is more sensitive to green and therefore reveals images
that seem more "natural" to the human eye [32].

Using a Bayer filter requires processing the raw data to obtain an RGB-image. This
is done by filtering the raw image with some simple masks depending on the pixel type
and which color is to be extracted. Table Bl shows the masks used. This is a standard
non-adaptive method for recovering a full RGB-image. Due to irregularities between the
green pixels G1 and G2 in the camera used, the green color G in the green pixels G'1 and
G2 is averaged. According to the manufacturer these irregularities are most likely due to
crosstalk. Filtering images introduces artifacts along edges where false colors may occur.
Alternatively more advanced methods for obtaining RGB-images could be used [32] but
these artifacts are not assessed to be critical in the present surveillance application.

Applying the masks of table [3.I] results in the spectral response curves of figure [3.2]

22
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Figure 3.1: Pizel pattern produced by an optical Bayer filter [32]. Half of the pizels are green
due to the human eye being more sensitive to green.
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Table 3.1: Masks applied to the raw Bayer image of figure for obtaining an RGB-image.
Rows are the R,G and B masks applied to each pizel as a function of the pixel type in the Bayer
filter (columns).

as specified by the manufacturer [36]. The response is measured relative to green with
center frequencies Ay as shown in table [3.2]

k R G B
Ae[nm] | 613 540 462

Table 3.2: Center frequencies in nm of spectral response curves shown in figure [543

During the early stage of recording sequences with the camera there was a clear shift
towards reddish colors. The lack of an optical filter suppressing the infrared part of
the spectrum (IR-cut filter) was causing these false colors because of increasing CCD-
sensitivity in the IR part of the spectrum (> 700nm) [3]. Using a standard IR-cut filter
(B+W 489), cutting frequencies above 780nm, solved the problem. Figure shows an
example of the same image taken before and after the use of an IR-cut filter. The image
to the right seems a bit greenish because no white balance is applied.

For all sequences the shutter speed is fixed and the aperture is set manually (F5.6-F22)



24 CHAPTER 3 DATA ACQUISITION
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Figure 3.2: Spectral response curves of the SVS-204CFCL digital camera [36].

at
~ 2

Figure 3.3: Image acquired before (left) and after (right) use of an IR-cut filter (780nm). The
CCD is sensitive in the infrared part of the spectrum revealing reddish colors.

assuring appropriate exposure. Focus is also set manually to obtain maximum sharpness
in the specific scene.

3.2 Data Sets

The data sets are carefully chosen to both resemble an actual surveillance application
and to represent the typical problem of cast shadows from moving objects. Figure [3.3]
shows the scene from which the majority of sequences are recorded. It contains many of
the typical problems a surveillance application will face: A non-stationary background due
to wind and changing illumination, occlusions, objects to be included in the background
model (e.g. a parked car) and, of course, shadows. The typical moving objects are
vehicles, people and bicycles.

Each sequence is converted into bitmap images (bmp) using the color recovery filter
masks of table[3.I] Each object is used only once to avoid stochastic dependence between
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samples when validating the results statistically. Therefore only every 4th frame is ex-
tracted, making it possible to focus on frames where cast shadows are an actual problem.
A slightly improved version of Hansen’s implementation [I8] of the Elgammal’s kernel-
based background model, as described in section [5.1] is used for segmenting foreground
objects. For each frame a binary foreground magk is extracted so the foreground extrac-
tion only needs to be done once. When choosing which objects to use for optimization
and validation only the actual object of interest in the foreground mask is used. Segments
due to noise or objects of no interest are suppressed manually. This of course would be
done automatically in an online surveillance application.

Scenes illuminated by direct sunlight contain the most distinct shadows giving rise to
the major cast shadows in moving objects. Because of the limited dynamic range of the
camera CCD (8 bit in each color band) there is a trade-off between saturation of bright
regions and completely wiping out the texture of dark regions (shadows). From a shadow
removal point-of-view, experience shows that in direct sunlight it is better to saturate
very bright regions to retain texture in shadows. This reasoning is not necessarily valid
for other parts of a surveillance system. Therefore exploiting all 10 bits dynamic range
should be examined in future work.

Appendix [B] contains the 90 foreground objects that constitute the total data set.
Fach of them are specified by a sequence name, a frame number, and an object number.
The total data set is split into a training set of 18 foreground objects (20%), used for
optimizing the methods (chapter [5)), and a test set of 72 foreground objects (80%) used
for validation (chapter @ Only 20% of the data set is used for training, since the manual
optimization is very time consuming, and because the size of the test set influences the
statistical support of the results in the validation. Optimizing the parameters of the
models is done manually. Numerical optimization algorithms would be even more time
consuming to implement, but they could be useful to fine tune the parameters if a larger
data set was available. This is beyond the scope of the present thesis. 5 of the 18
foreground objects used for training are shown in figure [3.4] Each of them are identified
by the name of the video sequence, a frame number and an object number. It should be

noted that all video sequences are named "Test...".

This is not an indication of which
data set they belong to. The training set is designed to be representative of the total data
set, as shown in table . It consists of 9 vehicles, 4 persons and 5 bicycles/motorcycles,

with variable object size and weather type.

Type of Foreground Object | Training Set  Test Set | Total Data Set
Vehicle 9 (50%) 37 (51%) 46
Person 4 (22%) 16 (22%) 20
Bicycle/Motorcycle 5 (28%) 19 (26%) 24
Total Size 18 (20%) 72 (80%) 90

Table 3.3: Data set split into training set and test set, cf. appendiz[B

Validation of methods with statistical significance requires a large number of examples.
Ideally, more than 72 examples should be obtained in order to produce statistical result
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Test402 - Frame 89 - Object 1

Test429 - Frame 141 - Object 1 Test53 - Frame 205 - Object 1

Figure 3.4: Foreground objects used for training. Identified by the name of the video sequence,
a frame number and an object number.

that are highly significant. The size of the data set of course has natural limits due to the
nature of a master thesis. Still, the 72 examples of the test set can produce reasonable
statistical significance, as will be discussed in chapter [6] It can also be argued that 18
examples are far to few to train such complex methods. However, due to the very time
consuming manual training, 18 examples will have to suffice in this thesis.

3.3 Summary

The camera used is a state-of-the-art industry digital video camera (SVS-204CFCL)
with a resolution of 1024x768 pixels. The frame rate currently available is 20 fps., with
a dynamic range of 8 bits, and with colors obtained through standard Bayer filtering. A
typical scene for a surveillance application is chosen where the typical moving objects are
vehicles, people and bicycles.

An improved version of Hansen’s implementation [18] of a kernel-based background
model is used to segment foreground objects. Only one frame of an object is used in
the data set (App. to avoid stochastic dependence between samples. 18 foreground
objects are used in a manual optimization of model parameters and 72 foreground objects
are used for validation and comparison of methods.



Chapter 4

Finlayson’s Approach Using a Video
Camera

In order to apply Finlayson’s approach for shadow removal using a digital video cam-
era, the illumination invariant direction must be derived, and the effect of the assumptions
in the model must be assessed. This is done in the present chapter, where Finlayson’s
ideas described in section 2.5 are examined using the SVS-204 camera described in section
B.1] In the overall framework for shadow removal, this corresponds to step 3Bp of figure
2.4 More specifically the illumination invariant direction in the log-chromaticity space,
derived from the spectral response curves, is compared to the direction obtained from a
camera calibration.

4.1 Spectral Sensor Functions

For the camera at hand the illumination invariant direction in the log-chromaticity
space, described section [2.5.2] can be obtained if the center frequencies of the spectral
response curves are known. In table they are given as [R, G, B] = [613, 540, 462]nm.
Inserting these values into equation (2.13)) and (2.16) reveals the illumination invariant
direction a = [0.817,0.576]7 = 35.2° in the log-chromaticity space [In(R/G),In(B/G)].
The direction most variant to illumination then is —54.8° (blue line in figure . This
is more or less the same general direction as the calibration of the camera in figure [2.6]
Figure [d.1(a) and [£.1(b) show an image (SVS-204 camera) and it’s illumination invariant
derived from the spectral sensor functions. The result is not optimal since there is a clear

distinction between the grass region inside and outside the shadow. The texture inside
the shadow has a diagonal-like pattern which is probably due to some correlated noise in
the camera that degrades the signal-to-noise ratio in dark areas when the relative color
(chromaticity) is computed. This does not originate from the Bayer filtering because
the pattern is periodic over several pixels (=~ 10) and is dependent on the intensity, cf.
figure In the invariant image of figure [2.5(b) there is no distinction between shadow
and non-shadow indicating that some of the model assumptions are not valid or that
the invariant direction obtained from the spectral sensor functions of the camera is not

27
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the optimal illumination invariant direction. To test if the latter is the case a camera
calibration is done.

(b) (c)

Figure 4.1: (a): Image acquired by the SVS-204 camera. (b): Illumination invariant of (a).
Direction obtained using spectral sensor functions. (¢): (b) zoomed.

4.2 Color Calibration

To ensure that the optimal illumination invariant direction corresponds to the direc-
tion derived in section a color calibration is performed as described in [I3][15] and
section [2.5.2] The spectral sensor functions can change with ageing but that is not very
likely for the present camera since it is relatively new. Still it is important to carry out
a calibration in order to validate the optimal direction.

The idea is to vary only the temperature of a Planckian light source for a specific set
of camera sensors and surface patches. The Macbeth Color Chart containing 24 matte
color patches (Appendix is used in various types of daylight since it has been shown
that daylight is a good approximation of Planckian light [I3].

In the first experiment a number of sequences were recorded between 10am and 4pm
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in all types of weather (sunny, cloudy, rainy). 24 images from these sequences were chosen
in such a way that no bright color patches where saturated and the dark patches still gave
a response. A Matlab routine was developed, cf. appendix [E.20] to ease the annotation
of the images. From each color patch, of every image, the mean of around 1000 pixels
was used to approximate the RGB-values which were then plotted in the log-chromaticity
plot. The principal direction of each color patch is determined as a least-squares fit of a
line. Figure shows the resulting plot.

1 T T

Principal direction derived from:

* 1-Dark Skin 0
2-Light Skin
LY # 3-Blue sky
\\ Spectral sensitivity (blue line) = -54.8 deg. 4-Foilage Green
’%9% Calibration of 24 images (red line) = -38.6+/-36 deg. # 5-Blue Flower
\ 6-Bluish Green
O 7-Orange
§-Purplish Blue
< 9-Moderate Red
10-Purple
<& 11-Yellow Green

0.5

12-Orange Yellow [T
»  13-Blue

14-Green
% 15-Red
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Ln(B/G)

19-White
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21-Medium Gray 1
22-Medium Gray 2
23-Dark Gray M
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Figure 4.2: Calibration of the camera using 24 color patches from 24 images shot with varying
types of daylight illumination (cloudy, sunny, rainy). Short lines are the general direction of
each color patch. The blue dotted line is the most illumination-variant direction from the spectral
sensors. The red and black lines are the most illumination-variant and -invariant directions
derived from the calibration. Legend numbers refer to the color patches of the Macbeth Color
Chart.

Each color patch has a separate marker and the principal direction of each color patch
is plotted as the thin lines around the origin. The mean principal direction is the red line
and the black line is the orthogonal direction (invariant direction). The blue dotted line
is the direction obtained from the spectral sensor functions. The plot shows that there is
hardly a principal direction supported by all color patches. The standard deviation (std.)
of the mean direction is 36°. The green color (14-x) has a direction nearly orthogonal to
most others and the bluish colors (3-* and 6-") are also nearly orthogonal even though
they are situated rather close in the log-chromaticity plot. The white color patch (19-e)
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tends to saturate in some images since they are near to the origin. For an ideal white
light source all types of colorless patches should be situated in the origin.

Since the samples are spread in a circular cloud for some of the colors, the principal
direction is very sensitive to noise. This can be caused by three things: The temperature
of the daylight not being varied enough as compared to random noise, the Planckian
assumption not being valid for all of the images used or the narrowband assumption of
the spectral sensor functions of the camera not being valid. The spectral sensor functions
of the camera used in figure [13] are not much different from those of the SVS-204
camera. The reason for the poor calibration must then lie in the Planckian assumption or
the data. Several articles describe the calibration as very simple [13], 15, [4]: Just record
some images during the day and estimate the principle direction. They do not discuss
the effect of diffuse illumination in cloudy or rainy weather. The Planckian assumption
might not be valid in these cases. In all calibration images of figure [£.2] the color chart
was placed on the matte black roof of a building recording the sequences through an open
window. This ensures that the major sources of illumination are direct sunlight or diffuse
light from clouds.

To examine what causes the large variation of the principal directions in figure [4.2]
a second experiment was performed. Again several sequences were shot from sunrise to
sunset over a couple of days. In this experiment 12 images only with direct sunlight
were used in the calibration procedure to eliminate possible errors due to non-Planckian
diffuse light from clouds. The selection of which images to use to ensure a large variation
in color temperature was done very carefully. Figure shows two calibration images
with a clear difference in illumination caused by a varying color temperature. Such a
large variation was not observed in the first calibration experiment. The calibration of
the second experiment is presented in figure [4-3] Legends and labels are similar to those

of figure [:2]

The color patches in figure do have a more clear principal direction. In particular
two images stand out. They have a very yellowish illumination compared to the other
images (cf. figure page . The mean principal direction from calibration is 50.6°
with a std. of 6.9°. Even though the std. is small compared to the first experiment the
direction derived from the spectral sensor functions is still within one std. of the mean
direction of the calibration. This supports the direction found in section [f.1]and does not
encourage finding a more optimal direction and thereby a "better" illumination invariant
image. The std. is similar to the one reported in [I3] and can largely be explained by
spectral sensors not being ideal delta functions. When comparing the two experiments
it shows that the variation in color temperature of the first experiment was not large
enough compared to the deviations from the Planckian assumption that the daylight
showed, resulting in a much larger std. Further experiments could reveal whether or not
the Planckian assumption is appropriate for diffuse light, compared to direct sunlight.
The narrowband assumption of the sensors can be further tested by making similar ex-
periments with an artificial Planckian light source with variable color temperature. Under
these conditions it is only the narrowband assumption that can cause deviations. These
experiments are interesting for the DDRE in order to gain knowledge of their camera but
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Figure 4.3: Calibration of the camera using 24 color patches from 12 images shot in direct
sunlight at different times throughout the day. Short lines are the general direction of each color
patch. The blue dotted line is the most illumination-variant direction from the spectral sensors.
The red and black lines are the most illumination-variant and -invariant directions derived from
the calibration. Legend numbers refer to the color patches of the Macbeth Color Chart.

are beyond the scope of this thesis and therefore not further pursued here.

Figure shows the illumination invariant image of figure (a) using the projection
obtained from the calibration (—50.6° + 90° = 39.4°). There is no visible difference in
the illumination invariant images obtained from the two projections. This is expected
since the angle of projection is only changed by 4.2°. As a last experiment a number of
illumination invariant images were computed by projecting from [—90°,89°] in steps of
1° to see how the texture of the different regions change. This supports the illumination
invariant directions previously found as the optimal directions.

Even with the optimal illumination invariant projection there is a difference between
regions inside and outside the shadow. The Planckian assumption has been shown to be
valid for direct sunlight but it has not been possible to show that it is valid for diffuse
daylight, e.g. regions in shadow, due to insignificant variation in color temperature. Since
the examples in figure and in [I3] 15] are very promising it must be differences in the
cameras that cause the inability to reproduce illumination invariant of the same quality
as in [I3} [15]. The spectral response curves shown in figure can not be assumed delta
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(a) (b)

Figure 4.4: (a): Illumination invariant of figure (a). Direction obtained from color calibra-
tion. (b): (a) zoomed.

functions, but exactly how crucial this assumption is for the present camera is hard to say.
In [13], Finlayson et al. show that if the response curves are sensitive in a range less than
100nm the assumption indeed is valid, and if it exceeds 300nm it is far from valid. For the
SVS-204 camera the spectral response curves are sensitive within a range of approximately
150 — 200nm and the response of the green curve even seems to increase for wavelengths
above 650nm (red — infrared). This may be the reason why the illumination invariant
image is of poor quality. Methods for sharpening the spectral response curves are outlined
in [12, 13 4]. These might enhance the quality of the illumination invariant image, but
the methods are too extensive to be examined in this thesis.

The limited dynamic range of 8 bits can also cause poor illumination invariant images.
Dark areas would be more susceptible to truncation errors because the chromaticity is a
measure of relative color. For low values of green (denominator) quantization artifacts
may occur. The HP912 camera used for obtaining figure (a) has the capability of
producing 10- or 12 bits images in rew-format increasing the dynamic range substantially.
[13] does not mention the dynamic range used when obtaining figure 2.5(a). It is not
currently possible to exploit the full 10-bits color depth that the SVS-204 is specified
for, but this should be examined by the DDRE at some point to determine the effect
on the invariant images. A simple experiment was carried out were the aperture was
varied in order to control the exposure. Figures [4.5(a)-(d) show zoomed images, and
their illumination invariants, figures [£.5((e)-(h), with the invariant direction obtained from
calibration, for different exposures.

It is evident that the exposure which reveals the best similarity between a region inside
and outside of shadow is when the region outside is not saturated and the region inside is
as bright as possible (fig. [£.5{c)/(g)). For images with less exposure (fig. [£.5(a)/(e)) the
noisy diagonal pattern is also more evident suppressing the true texture. This pattern
indicates some camera dependent artifacts in the dark areas of the illumination invariant
images. As previously mentioned this could be due to correlated noise in the electronics
of the camera e.g. 50H z noise from the power supply.
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(a) ib) (c) (d)

(e) ® @ (h)

Figure 4.5: Images, (a)-(d), and their illumination invariants, (e)-(h) (zoomed), when varying
exposure illustrating sensitivity to dynamic range.

Using the illumination invariant image for determining which edges are caused by
shadows as suggested by Finlayson seems to be a very difficult task using the SVS-204
camera. Finlayson reports the edge detection to be very susceptible to noise even for the
good-quality invariant image in figure .5(b). The invariant images in figures [4.1(b) and
a) contain clear edges along shadow borders. The use of the illumination invariant
image is discussed in section [5.5.1]

4.3 Summary

Deriving the optimal illumination invariant direction in the log-chromaticity space is
done using the spectral response curves of the SVS-204 digital video camera and by doing
a color calibration with daylight of varying color temperatures. The camera calibration
was found to be very sensitive to the weather type in the images used. It was not
possible to do a calibration with images obtained in rainy or cloudy weather, because
the color temperature did not vary enough compared to stochastic noise. Only when
carefully choosing images illuminated by direct sunlight did the calibration reveal useful
results. The direction derived from the spectral response curves only deviates 4.2° from
the direction derived through calibration, a difference of less than 1 std. The illumination
invariant images are constructed by projecting pixels onto the line with an angle of 39.4°.

Ilumination invariant images obtained from the SVS-204 camera still have a clear
distinction between regions inside and outside the shadow. This is not the case for
the images presented in the literature (cf. figure . The assumption of daylight as
Planckian light is well supported, though the effect of diffuse light in cloudy or rainy
weather is not discussed [I3]. Therefore it is the approximation of the camera sensors
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as narrowband that does not apply. Furthermore it is found that the 8-bits color depth,
currently available, severely influences the quality of the invariant images produced since
the chromaticity of dark regions are influenced by noise of a certain pattern likely to
originate from the camera electronics. All in all illumination invariant images using the
SVS-204 camera are assessed not to be robust enough for use in an algorithm for robust
detection of shadow edges.



Chapter 5

Implementation and Optimization

A brief overview of the implementation of the background model and the noise re-
duction used in the foreground detection is given in this chapter, corresponding to steps
1 and 2 in figure 2.1} page [l This provides a basic understanding of how the moving
foreground pixels are detected, which is the basis for the shadow handling algorithms,
step 3 in figure 2.1}

Then several measures of performance are defined in a framework used for evaluation of
the methods, leading towards a description of the actual implementation and optimization
of Javed’s method, denoted (J) (cf. figure page [10), with respect to the training set.
By analyzing the results of Javed’s method on the training set, an improvement of the
K-means color segmentation is suggested (denoted method I). Finally Javed’s improved
method is combined with some of Finlayson’s ideas (cf. figure page for shadow
removal in a new enhanced method for shadow removal (denoted method E).

Implementation is done in Matlab [23] and the routines can be seen in appendix
At the present stage in designing a system for shadow handling, real-time implementation
is not considered. However, real-time implementation should be possible in C++ or by
the use of designated hardware. In the present Matlab implementation the segmentation
of cast shadows takes from a few seconds to several minutes, on a standard 3GHz PC,
depending on the size of the foreground object and the parameter values of the methods
used. The high resolution of 1024x768 pixels results in severe computational demands,
but can be adjusted according to a specific application. Instead of considering real-time
implementation at this stage, focus is on making a comprehensive examination of state-
of-the-art methods and applying, and improving, these in an application for the DDRE.

5.1 Background Modelling and Noise Reduction

Hansen [18] implemented a kernel-based background model suggested by Elgammal
[11]. This implementation with minor modifications is used in this thesis. The parameters
are fixed as suggested in [18] to ensure a uniform way of treating the data.

A history of 10 frames are used in the background model. For each pixel the kernel
density is estimated using Gaussian kernels at each data point in the history. Kernel
estimators have the advantage of being able to model non-parametric densities. This is a
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convenient property for pixels that change between several modes, e.g. due to vegetation
moving in the wind. The variances of the Gaussian kernels are set as a function of the
median of the difference between pixels in the history. For a discussion of how these
parameters are set, consult [18].

When a new frame is at hand, the probability of each pixel belonging to the back-
ground model is computed, and if below a certain threshold the pixel is considered a
foreground pixel. Vegetation moving in the wind still produces foreground pixels con-
sidered as noise. The majority of these noisy foreground pixels are suppressed by doing
a connected component analysis and removing segments smaller than 50 pixels. Then a
morphological closing is applied to avoid small holes in the foreground objects followed
by a morphological opening to further suppress noisy segments that are not actual ob-
jects. Finally an erosion is done to remove edge pixels of objects that are blurred by the
Bayer-filtering. The procedure for noise reduction is based on empirical results, and is
performed as a preprocessing step prior to the shadow handling.

The final mask of the foreground objects in the new frame is saved as a bmp-image, to
be able to split up the background modelling and the shadow removal. Figure [5.1] shows
an example of foreground detection using the algorithm just described. A new frame and
the foreground detection before and after noise reduction are depicted. Several, but not
all, noisy pixels of the moving vegetation are suppressed. General shifts in illumination
due to clouds blocking the sun are also a major problem for any background subtraction

scheme.

£
3 2

(b) (c)

Figure 5.1: Foreground detection using a kernel-based background model. (a): New frame. (b):
Foreground pizels before noise reduction. (c): Final foreground mask.

The foreground mask is now available for the shadow removal algorithm to remove cast
shadows before a further analysis of the object is done. In this thesis only the foreground
pixels connected to the object of interest in the shadow mask are used. Objects of no
interest are manually suppressed in order to focus the attention on shadow removal.

A 2-class classifier scheme is used, where pixels darker than their corresponding back-
ground pixel are classified as either cast shadow pixel or object pixel. Determining which
foreground pixels to classify is done by comparing the mean value of the background
model for each pixel to the value of the pixel in the new frame. This corresponds to the

approach in [21], 26].
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5.2 Measuring Performance

All foreground pixels are manually labelled into three classes using standard paint
software. These labelled images are used as "ground truth", and are to be compared to
the results from the different algorithms. The three classes are "cast shadow" (dark gray),
"self shadow" (light gray) and "object not in shadow" (white) (cf. fig. and app. [B).

The background is black.

A

(@) (b) (c)

Figure 5.2: (a): Original image zoomed. (b): Foreground pizels to be classified (darker than
corresponding background pizels). (c): Manual labelling of pizels. "Cast shadow" = dark gray,
"Self shadow" = light gray, "object not in shadow" = white.

Once labelled, a Matlab routine (cf. app. is developed to automatically compute
the performance of a classifier. In section [2.4] it is mentioned that the performance of
Javed’s classifier is influenced by the amount of self shadow pixels relative to the total
amount of object pixels to be classified. This is the reason for manually labelling fore-
ground pixels into three and not two classes, i.e. object pixels are divided into object
pixels in "self shadow", and object pixels "not in shadow".

Several measures of performance are defined to evaluate the algorithms. Perfect per-
formance occurs when a classifier outputs a labelled image identical to the manually
labelled image, which is very unlikely to happen. A standard way of presenting the per-
formance of a classifier is using a confusion matrix [I7]. Table defines the use, in this
thesis, of a 2-by-2 confusion matrix:

Predicted
Negative Positive
(Cast Shadow) (Object)
Negative (Cast Shadow) A B
Actual Positive (Object] C D

Table 5.1: 2-by-2 confusion matriz. A standard way of presenting results from a classifier [177)].

e A is the number of correct predictions that a pixel is negative - cast shadow pixels.
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e B is the number of incorrect predictions that a pixel is positive - cast shadow pixels
classified as object pixels.

e ( is the number of incorrect of predictions that a pixel is negative - object pixels
classified as cast shadow pixels.

e D is the number of correct predictions that a pixel is positive - object pixels.

5 measures of performance are defined. The accuracy (AC) is the proportion of the total
number of predictions that are correct:

A+ D
AC_A+B+O+D' (5:1)

The true positive rate (1'P) is the proportion of positive cases that are correctly identified,
i.e. the proportion of correctly classified object pixels:

D
C+D’

The false positive rate (FP) is the proportion of negatives cases that are incorrectly

TP = (5.2)

classified as positive, i.e. the proportion of cast shadow pixels incorrectly classified as

object pixels:
B

A+ B’
The true negative rate (TN) is defined as the proportion of negatives cases that are

FP =

(5.3)

classified correctly, i.e. the proportion of correctly classified cast shadow pixels:

A
A+ B’

The false negative rate (FN) is the proportion of positives cases that are incorrectly

TN = (5.4)

classified as negative, i.e. the proportion of object pixels incorrectly classified as cast
shadow pixels:

C
C+D’
Throughout the rest of the thesis, these measures are converted to percentage points,

FN =

(5.5)

denoted by % for a the simpler notation. Each measure provide useful insight into the
strengths and weaknesses of a classifier. The accuracy is the most appropriate sole mea-
sure of how well a classifier performs, the other measures are interesting when examining
and comparing specific cases and to ensure that the interpretation of the accuracy is use-
ful. It should be noted that there is some redundancy in using all the 4 latter measures,
since they pair wise sum to one. However, they are all mentioned since they ease the
interpretation of the performance.

When the relative amount of pixels in the two classes are far from equal, the combina-
tion of e.g. the FP and the TP gives more insight into the classifiers limitations. This is il-
lustrated graphically in the "Receiver operating characteristics", or ROC-curve [17], which
is a useful way to determine the influence on the performance of threshold-dependent
model parameters. A ROC-curve is defined as a 2D-plot where (z,y) = (F P,TP). Opti-
mum performance is at the coordinate (0%, 100%).
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5.3 Javed’s Method

The implementation of Javed’s shadow removal algorithm, cf. figure 2.2] is straight-
forward as described in section 2.4 The K-means algorithm is initialized with a Gaussian
centered at an arbitrary pixel. All pixels are sequentially assigned to an old distribution or
a new distribution is added. Then the connected component analysis is done, followed by
a region merging which sequentially merges regions smaller than a certain size with their
largest neighbor. Many smaller regions often occur along edges due to noise. The region
merging is done sequentially to avoid that these small, noisy, and connected regions are
assigned to the largest region, which might not be connected to all of them. Finally, for
every region, the correlation of gradient directions between foreground and background
image is computed, and a correlation threshold is used in the final classification.

The aim of the optimization is to find a set of parameters that produce a relatively
good performance on the training set, i.e. high AC/TP and TN, combined with a low
FP and FN. Because of the limited number of examples in both training and testing,
it cannot be expected that a fine tuning of the optimization, on the training set, will
reveal an improved performance on the test set. Therefore a simple manual optimization
is done. 3 parameters in Javed’s method are optimized:

e Fixed variance (02) of Gaussians in the K-means modelling.
e Size criteria when performing region merging.
e Threshold of correlation when classifying regions.

Since all Gaussians have similar diagonal covariance matrices with the same variance in the
diagonal, varying the threshold of the Mahanalobis distance corresponds to varying
the fixed variance. Therefore a fixed threshold of the Mahanalobis distance is chosen,
and the fixed variance is optimized instead. Optimization is done manually selecting
a set of values for each parameter to be optimized. For every combination of values
the performance of the algorithm on the training set is computed. Table show the
parameter values used in the optimization. Values are chosen so as to represent a suitable
part of the parameter domain where the optimum performance is expected to be found,
based on initial tests. Good performance is defined as a high accuracy (AC) , or as a
large true positive rate (TP) (5.2), combined with a small false positive rate (FP) (5.3)).
The data sets are described in section [3.2] and appendix [B] Figure B.4] show 5 of the 18

Fixed variance o2 25 36 49 64 81 100
Merging size threshold [pizels] | 10 30 50 70 100 150
Correlation threshold 0.00 0.05 0.10 0.15 0.20 0.30

Table 5.2: Parameter values used in optimization of Javed’s method for shadow removal. Values
in boldface produce optimum average performance on the training examples.

foreground objects used for training. The ROC-curve for all combinations of parameters
is depicted in figure [5.3] The colors denote the correlation threshold values, which is
the far most performance sensitive parameter of the three. Each color is represented 36
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Figure 5.3: Receiver Operating Characteristics (ROC) for all combinations of parameter values
of Javed’s method from table [5.2 Colors denote correlation threshold values, which is the most
sensitive parameter. The performance of the optimal set of parameters is denoted by an *, at the
point (FP,TP) = (28,80).

times corresponding to the combinations of the two other parameters. These parameters
influence the performance much less. This is expected since only the correlation threshold
is used as a classification feature. The * denote the set of parameters chosen as the optimal
set (typeset in boldface in table . It is a trade-off seeking to maximize the FP while
minimizing the TP. Other sets of parameters could also be argued to be optimal, but the
choice made will always depend on the specific application.

The chosen correlation threshold is 0.05. This is a small value compared to the value of
0.75 reported by Javed [21]. The gradient direction as a similarity measure is quite context
dependent and a correlation coefficient of 0.05 is only a very weak correlation between
two regions. The variance seems to influence the performance less. An optimum value of
81 is much larger than the 32 reported by Javed [22]. The region merging threshold seems
to have an optimum value around 100 pixels. Table [5.3] shows the average performance
measures of Javed’s method optimized on the training set. The mean value of the AC,

AC TP FP TN FN
Mean value [%] 7T 80 28 72 20
Standard deviation [%] | 13 18 27 27 18

Table 5.3: Average training performance of Javed’s method with optimal parameters.

77%, is somewhat mediocre. A larger FP than TN, and smaller FN than FP, indicate
that object pixels are easier to classify correctly, than are cast shadow pixels. This is also
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supported by the very high standard deviations of the FP and TN (27%). The high std.
also indicate that the method is not robust enough to handle the variation of the training
set. A larger data set would be likely to produce a decreased standard deviation. The
large mean value and std. of the FP furthermore indicate that there are examples where
large parts of cast shadow are misclassified as object.

Figure shows performance surfaces (AC) as a function of o2 and the merging
size threshold, for the 6 values of the correlation threshold, all averaged over the 18
examples. The x denote the optimal set of parameters chosen. Again the major influence

Correlation threshold = 0 Correlation threshold = 0.05 Correlation threshold = 0.1

Accuracy (AC) [%]

Accuracy (AC) [%]

Accuracy (AC) [%]
3

150
100

50
ot 20 Merging size o 20 Merging size st 20 Merging size
threshold [pixels] threshold [pixels] threshold [pixels]

Correlation threshold = 0.15 Correlation threshold = 0.2 Correlation threshold = 0.3

S B
150
100

Accuracy (AC) [%]

Accuracy (AC) [%]

Accuracy (AC) [%]
=

o 20 Merging size o 20 Merging size o 20 Merging size
threshold [pixels] threshold [pixels] threshold [pixels]

Figure 5.4: Accuracy (AC) of Javed’s method as a function of fized variance o and merging
size threshold, for 6 values of the correlation threshold, averaged over the 18 training examples.
The = denote the optimal set of parameters chosen.

of the correlation threshold on the performance is evident. A correlation threshold of 0.1
produce a better accuracy, but still a value of 0.05 is chosen as optimal due to a significant
decrease in the FP, cf. figure There is no obvious pattern in the way the merging
size threshold and the fixed variance influence the accuracy. It depends on the specific
value of the correlation threshold.

Figure [5.5] shows the result of the region merging for the subset of 5 training examples
from figure [3.4] page 20} on which the classification is partly based. The arrows indicate
regions consisting of parts of both the actual object and the actual cast shadow. Test300,
and Test429 in particular, have large regions where this is the case. Since the classifier
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cannot split up regions, the region merging limits the classifiers ability to achieve optimum
performance. This is a trade-off between suppressing small noisy regions, while at the
same time avoiding regions consisting of both object and cast shadow.

Test75 » Test402 Test300

a
4 Frame no. 101 Frame no. 89 Frame no. 429
Object no. 1 x Object no. 1 Object no. 1
n 11 merged reg. 15 merged reg. T 18 merged reg.
‘;’ S

Test429
Frame no. 141
Ohject no. 1

Tests3
Frame no. 205
Object no. 1

20 merged req. 61 merged reg.

<

Figure 5.5: Merged regions of part of the training set using Javed’s method with optimal pa-
rameters. Arrows mark regions consisting of parts of both the actual object and the actual cast
shadow, leading to a decreased overall performance.

Figure shows the individual classifications of part of the training set. [blue, yellow,
red, green] denote [TN, | FN,TP] respectively. For example, the accuracy (AC),
(5.1), is the sum of green and blue pixels relative to the total amount of pixels. Test300
and Test429 are examples of limitations of Javed’s method. Appendix [B]shows that there
are several of the training examples where the FP is very high. The training set contains
foreground objects of varying size, from 5,000 to 121,000 pixels to be classified. From
the few examples there is no indication of performance depending on object size in pixels.
Appendix [B]| contains more information on the training set.

Test300 and Test429 have more than 50% false positives, i.e. cast shadow pixels
incorrectly classified as object pixels. This is due to the fact that some regions consist of
both cast shadow and object (cf. figure , which again is due to the limited dynamic
range of the camera. The darkest parts of the shadows contain very little texture, hence
very little gradient information. Therefore very dark areas of both cast shadow and
object (self shadow) are likely to be assigned to the same distribution in the K-means
color segmentation. This drawback is also reported by Javed [2I]. Other parts of the
shadow are cast on areas so bright, that they are actually saturated in the background
model, and therefore do not contain any gradient information either. Since the classifier
classifies a region with a high correlation (similarity) as cast shadow, and regions of low
correlation as object, exceeding the dynamic range will tend to reveal more cast shadow
pixels classified as object pixels, i.e false positives (FP).

This is the reason for Test300 and Test429 having a notable lower accuracy (AC) than
the other examples. Examining Test300 and Test429 for other sets of parameter values
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Test75 Test402 Test300
Frame no. 101 L g Frame no. 89 Frame no. 429

-
Object no. 1 Object no. 1 Object no. 1
AC =81.9% AC = 92% « AC=76.2%
. TN =525%
FP =10.3% FP =3.7% FP = 47.5%

Test429 Test53

Frame no. 141 Frame no. 205
Obiject no. 1 Object no. 1
AC =70.6% AC = 84.7%
T = 36.7%)
FP = 63.3% FP =13.7%

Figure 5.6: Classification of part of the training set using Javed’s method with optimal parame-
ters. [blue, yellow, red, green] denote [T N, , F'N, T P] respectively. Test300 and Test429 have
large FP’s because there are regions that are saturated in the background image or are too dark
to contain any gradient information, resulting in regions containing both object pizels and cast

shadow pizels.

revealed a pronounced decrease in performance due to this effect. However, on average
the optimization still gives the best performance, given the model and the training set.

Prior to incorporating Finlayson’s ideas for shadow removal, it is found necessary
to improve the K-means color segmentation due to the reasons just described. The im-
provement should make the segmentation more sensitive in the darkest areas. How to
incorporate this change in Javed’s model is the topic of section [5.4] However, in order
to separate the effect of the improvement in the color segmentation, from the effect of
applying Finlayson’s methods, these are applied separately. Parameters of both steps are
optimized with respect to the training set, and their performance are compared using the
test set in chapter [6]

5.4 Improving Javed’s Method

Since the performance of Javed’s method on the training set is limited by the K-means
color segmentation as described in the previous section, an improved color segmentation
(denoted I) is suggested.

Javed suggests a K-means color segmentation using the same fixed variance for every
Gaussian distribution, cf. figure[2.2] Because of the limited dynamics range of the camera
at hand, dark areas of cast shadow and self shadow can be very difficult to separate, as
is the case for Test300 and Test429 in figure [5.5] Testing this fixed variance for values
between 25 and 100, revealed an optimum value of 81. For very dark areas this seems
quite a large value because the Mahanalobis threshold is fixed at 4. A new pixel would
then be assigned to a distribution if it does not differ more than 4+/4-81 = +18 from
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the mean.

To improve this separation the use of a variance that is a function of the mean in-
tensity of the distribution a new pixel is compared to, is suggested. A simple piecewise
linear function is suggested that assigns small variances to distributions with a low mean
intensity and larger variances to distributions with a higher mean intensity. Figure
shows the variances suggested as a function of the mean intensity of a distribution.

— 100 [
— &1
— 64
— 49
— 36

25

Variance of distribution

0 50 100 150 200 250
Mean intensity of distribution

Figure 5.7: Suggested improvement of K-means color segmentation. Variance as a function of
mean intensity of distribution. 6 piecewise linear functions are tested.

The piecewise linear variance has an offset of 4 for zero mean intensity increasing
linearly to a value between 25 and 100 at the mean intensity 128. Above 128 the value
remains constant. This is based on the observation that only the darkest areas (distri-
butions with a low mean intensity) should have a small variance. The variance at mean
intensity 128 therefore determines the slope of the first part of the function. Other func-
tions than simple piecewise linear functions could also be used, but compared to a fixed
value, the piecewise linear function is a found to be a relevant choice. The 6 variance
functions are denoted by their constant value for high intensities. The performance on
the training set, of the 6 functions, are compared to determine the optimum function.
The optimization of Javed’s method with improved color segmentation uses the same sets
of parameter values as in the optimization of Javed’s original method, cf. table[5.2] The
only difference is that the variance is not fixed, but a function of the intensity.

The ROC-curve of the optimization is depicted in figure[5.8] Colors denote values of
the correlation threshold which is the most performance sensitive parameter, as in Javed’s
original method. The optimal set of parameter values, denoted by an *, are chosen so as
to obtain a lower FP at the expense of a lower TP. The values are: Variance function =
81, Merging size threshold = 10 and Correlation threshold = 0.05. Table [5.4] shows the
mean values and std. of performance measures. The accuracy is only slightly lower than

AC TP FP TN FN
Mean value [%] 75 72 21 79 28
Standard deviation [%] | 9 9 16 16 9

Table 5.4: Average training performance of Javed’s method, with improvements in the K-means
color segmentation, using optimal parameters.

for Javed’s original method. The TP is somewhat lower, but so is FP. Most interesting
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Figure 5.8: ROC-curve for all combinations of parameter values of Javed’s method with improved
color segmentation from table[5.3 Colors denote correlation threshold values, which is the most
sensitive parameter. The performance of the optimal set of parameters is denoted by an *, at the
point (FP,TP) = (21,72).

are the standard deviations, which are lower for all measures, and even halved for the
TP and FN. This is an indication of the improved method with the chosen parameters
performing more robustly on the training set, than Javed’s original method with its chosen
parameters. The much smaller variances used in the color segmentation are likely to cause
the smaller std.’s in the results. This is due to a larger amount of regions, of smaller size,
decreasing the occurrence of large regions consisting of both cast shadow pixels and object
pixels.

Figure [5.9] shows that the number of regions indeed are increased, compared to figure
(.5 avoiding the occurrence of large regions consisting of both types of pixels. Due to
the amount of regions it can be hard to distinguish all regions in the figure. However,
it is stressed that the two regions marked with arrows in figure [5.5] are split into several
regions in figure 5.9

The performance on part of the training set is shown in figure[5.10] The large amount
of smaller regions produce a minor decrease in performance for most objects. However,
they also produce a major increase in performance in cases that previously had large
regions consisting of both types of pixels (cf. Test429 in figure . This is yet an
indication of why the standard deviations of the results are far smaller than for Javed’s
original method.

This improvement in segmentation is the basis for introducing an extra similarity
feature in the classification procedure, as suggested in section [5.6] This feature is derived
from an analysis of Finlayson’s method for shadow removal using the SVS-204 video
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Figure 5.9: Merged regions of part of the training set using Javed’s method with improved color
segmentation and optimal parameters. Far less large regions consisting of both actual object and
actual cast shadow, when compared to figure,

Test?5

Frame no. 101
Object no. 1
AC =68.9%
FP=41%

Test429

Object no. 1
AC =88.7%
FP =1.9%

4

Figure 5.10: Classification of part of the training set using Javed’s method with improvements

using optimal parameters. [blue, yellow, red, green] denote [T N,

camera.
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, FN, T P] respectively.

5.5 Finlayson’s Shadow Removal Applied for Surveillance

This section examines ways of incorporating the elegant physics-based method for
shadow removal, suggested by Finlayson (cf. figure page , in a surveillance appli-
cation. In the literature the method shows promising results, and therefore it is found
relevant to examine the method with the goal of applying it in a surveillance application.
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The method makes use of the illumination invariant grayscale image and of the recon-
structed "shadow-free" RGB-image. Both are discussed. The objective is to apply parts
of Finlayson’s ideas to improve the shadow handling of the methods described in previous
sections.

5.5.1 Detecting Edges due to Shadows

In order to obtain a "shadow-free" RGB-image, edges due to shadows need to be
detected. Finlayson suggests doing this by using the illumination invariant image (cf.
section and step 3CF in figure .

Once the illumination invariant direction is obtained from the spectral sensor func-
tions or from a color calibration of the camera (cf. chapter , obtaining the illumination

invariant grayscale image is simple using equations (2.10]),(2.11) and (2.15)). Before com-

puting the band-ratio chromaticities, the dynamic range is shifted from [0, 255] to [1, 256]
to avoid division by zero.

In chapter[it is shown that the illumination invariant image is sensitive to the limited
dynamic range of the camera and to the spectral sensor functions of the camera not being
delta functions. Because of this, determining edges due to shadows in a robust way
becomes very difficult. Finlayson et al. also reports this to be the major drawback of the
method [15].

An important observation to make is that a foreground mask is available from the
background model in a surveillance application. This can be used to eliminate artifacts
from false shadow edges outside the foreground mask, and should be exploited in the de-
tection of shadow edges. Figure show the steps applied in the shadow edge detection
using Test300 as an example. Figures[5.11j(a) and [5.11|(b) shows the original image and
the corresponding illumination invariant image. The noisy diagonal pattern in dark areas,
discussed in section should be noted. Figure (c) is a Canny edge detection of the
illumination invariant image, and [5.11}(d) is a dilation of these edges. Figure [5.11fe) is
the total Canny edge detection of each color band of the original image. The difference
between figures [5.11|d) and [5.11)(e) should, ideally, reveal edges only due to shadows and
not edges due to changes in the surface. That is far from the case due to the limitations
of the model and the camera as previously discussed in section and chapter [d Figure
5.11[f) is the difference between figures [5.11|(d) and [5.11|(e), masked with the foreground
mask. It contains a number of false edges and lacks large parts of shadow edges. Canny
edge detectors are used because they use two thresholds, detecting both weak and strong
edges. Weak edges are then only kept if they are connected to strong edges. The Canny
edge detectors used are optimized to a single image but still the result is poor. Appendix
[CI] shows the results of using the same parameters on 5 of the training images. These
images reveal even worse results.

Figures [5.11](g) and [5.11)(h) illustrate how the amount of false shadow edges are re-
duced by suppressing edges inside the foreground mask. Figure (g) is a dilated edge
of the foreground mask of the object. It is used as a mask on[5.11{f) and results in[5.11j(h)
after a dilation. The resulting image still has some false shadow edges along the border
of the foreground object, and substantial parts of the shadow edges are still not detected.
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(a) Original image (b) lll.-invariant of a (c) Edges of b (d) Dilation of ¢
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Figure 5.11: Detection of shadow edges. (a): Original image. (b): Illumination invariant.
(c): Edge detection of (b). (d): Dilation of (c). (e): Edges of (a) for all color channels. (f):
Dilation of difference between (d) and (e) masked with the foreground mask. (g): Dilation of edge
of foreground mask. (h): Dilation of (f) masked with (g).

However, all the false edges inside the foreground mask in figure [5.11(f) are suppressed.
Applying this approach to 5 of the training images (cf. appendix |C.1) still produces poor
results.

Based on the limitations of the camera described in chapter [ the assumptions of the
model, and the poor results when applying Finlayson’s illumination invariant image on
the training set, it is assessed to be much too sensitive to be used for shadow detection
in the present framework.

Instead another approach is suggested to determine which gradients to suppress before
reconstructing the "shadow-free" image. It is not optimal in the sense that it will detect
all shadow edges and not detect any false shadow edges. Instead it assumes that shadow
edges are most likely to occur along the edge of the foreground pixels, i.e. along the
edge of the foreground mask. The idea is to suppress all gradients along the edge of the
foreground mask (cf. figure [5.11](g)) and reconstruct a "semi-shadow-free" image, which
contains shadows that are removed along the edge. This image contains information that
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in section [5.6] is suggested to improve the final segmentation of foreground pixels into
shadow regions and object regions. The reason for suppressing gradients all along the
edge of the foreground mask (figure [5.11fg)), and not only along parts of the edge as
in figure 5.11f(h), is that the latter approach does not seem to be the least robust when
applied to more than one image. Therefore an approach is taken that is likely to reveal
some useful results in the majority of cases due to the fact that cast shadows usually
somehow touch the edge of the foreground mask. In these cases the cast shadow will be
suppressed revealing a change that can be used in the segmentation.

5.5.2 Reconstructing the RGB-image without Shadows

After determining which edges to suppress in the gradient image, the reconstruction of
the "shadow-free" RGB image can be done (cf. step 3D in figure 2.4 page[14). Finlayson
et al. [I5] do not mention how they solve the Poisson equation in , which is repeated
here for convenience:

V2q'(w,y) :V-S(Vp'(w,y),Vgs(x,y)), (5'6)

where V2 is the Laplacian, ¢ is the logarithm of the image without shadows, and S is
the gradient of the logarithm of the original image, with edges suppressed that are due
to shadows. In order to solve this equation, Neumann boundary conditions are assumed,
i.e. derivatives on boundary normals are assumed to be zero.

Since the image of which the Poisson equation should be solved is rectangular, a
Fourier transform method can be applied [3I]. More specifically the cosine transform is
used since it ensures that the Neumann boundary conditions are valid since the derivative
of the cosine is the sine which attains zero value at multiples of 7 (on the borders of the
image). It can be shown [31] that applying the cosine transform to a zero-padded version
of V - § for each color band, followed by applying equation and the inverse cosine
transform, the Poisson equation (5.6)) can be solved.

~ V- Smn

! = 5.7

9 mn 2(008ﬁ§n —i—COSWEn — )7 ( )
m = {0,1,....J —1},

n = {0,1,..,L—1},

where the hat (7 ) denotes the discrete cosine transform, and J and L denote the dimen-
sions of the zero-padded image. ¢’ is then exponentiated to reveal ¢ which is uniquely
determined except for a multiplicative constant in each color band (cf. section . This
constant is determined by mapping the color bands to the full dynamic range of an 8-bit
image, 0 — 255. The mean value of the brightest 5% pixels of each band is mapped to
maximum value, 255. Finlayson suggest mapping the mean of the brightest 1% pixels
to maximum, but this revealed reconstructed training images where shadow regions were
hardly attenuated at all.

Figure[5.12|a) shows an image and a version of it, figure[5.12|(b), that is reconstructed
without suppressing any gradients. Therefore the two images are similar. Figure (c)
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(a) (b) (c) (d)

Figure 5.12: Reconstruction of an image. (a): Original image. (b): Reconstructed image
without suppressed gradients. (c): Suggested mask for suppressing gradients. (d): Reconstructed
image with suppressed gradients.

shows the mask suggested in section for suppressing gradients, and figure (d)
shows the corresponding reconstructed image. FEven though both shadow and object
gradients are suppressed, figure (d) clearly contains additional information that could
improve the segmentation of cast shadows.

5 of the training images are also reconstructed using the gradient masks of figure
B.11)f) and p.11](h), to ensure that they do not prove useful as predicted in section [5.5.1]
This indeed is the case, supporting the use of the gradient mask of figure (c) obtained
from the total edge of the foreground mask. Section [5.0] suggests how the additional
information of figure (d) can be applied in an enhanced algorithm for segmentation
of the cast shadows.

5.6 Enhanced Shadow Removal

In section |5.3[and it is shown that the performance of the segmentation algorithms
is most sensitive to how the correlation threshold is set. Instead of using only the gradient
direction to measure similarity of two regions, an additional similarity feature, , is
suggested based on the reconstruction of an RGB-image with gradients suppressed along
the edge of the foreground mask, as described in section [5.5.2] The color segmentation
of pixels into regions, and the following region merging is similar to the improved color
segmentation described in section [5.4]

Figure [5.13] corresponding to step 3 in figure 2.I] page [7] depicts the total enhanced
shadow removal as suggested by the author. Steps with subscript E (red) are the enhanced
steps introduced.
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Enhanced Shadow Removal (3)

Shadow Improved Connected Region
Detected : » Candidates K-means Component Merging
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Figure 5.13: Flowchart of enhanced shadow removal as suggested in this thesis. Corresponds to
step 3 in figure[2.1} Subscripts denote from where the original idea came: J=Javed, F=Finlayson
and E—=Enhanced steps suggested by the author (red).

5.6.1 Enhanced Similarity Feature

The new similarity feature compares corresponding pixels of the reconstructed image
and the background image, for every color segmented region:

K
1
CS=5——"F—= R; — BG;)? 5.8

where CS is the similarity feature of a region, K is the number of pixels of the region,
R and BG are the intensity values of the #’th pixels in the reconstructed image and the
background image, respectively. &%{7 g 1S a variance normalization factor, which is the
estimated variance between all pixels in a background image, BG, and all pixels in a
reconstructed image, R, of a new frame containing no foreground objects. Estimating this
variance normalization factor is illustrated in the upper part of figure [5.14]

Calibration Background Estimated | Reconstructed New Frame Without
(Performed Once) Image (BG) Variance Image (R) B Foreground Objects
1
A 4

!:or Every Region Background New Similarity Reconstructed | New Frame fncluding
ina New Frame Image (BG) Feature (CS) Image (R) h Foreground Object

Input to Classification

Figure 5.14: Flowchart illustrating the enhanced similarity feature (CS). (Upper): Variance
between background image and new frame without any foreground objects is estimated once.
(Lower): In a new frame, including detected foreground objects, the enhanced similarity feature
(C'S) is computed for every region and is a part of step 3Eg of figure .

Performing a variance normalization of C'S' makes it a relative measure of similarity
that, ideally, only contains variation due to the region not being cast shadow, and not
contains variation due to the experimental setup and the complex processing of the images.
The estimate of the variance is based only on one sequence (Test77), since it was difficult to
obtain sequences, without foreground objects, that were static while an entire background
model was estimated, and also static for a new frame. The estimate of the variance of
255 is therefore a rough, but useful, estimate. The lower part of figure [5.14] illustrates
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how the similarity feature, C'S, is obtained for every color segmented region. Figure [5.14]
corresponds to step 3Eg in figure [5.13]

The CS measures a normalized mean value between regions in the reconstructed
foreground image, cf. figure d), and corresponding regions in the background image.
If the reconstructed image contains shadow regions along the border of the foreground
mask, cf. figure (c), these shadows regions are attenuated in the reconstructed image,
making them more similar to the background image. This is the key observation that the
enhanced similarity feature, C'S, is based on. Therefore a large value of C'S corresponds
to little similarity, which indicates that the region is part of the object. Small values of
C'S indicate high similarity, i.e. the region is then part of a cast shadow.

It is emphasized that CS only supplies useful information when the shadow edges are
actually part of the edge of the foreground mask. In some cases it will not supply any
additional information, e.g. when edges due to objects instead of shadows are suppressed.
This will tend to smear neighboring background and object regions, for which reason it is
suggested only to apply the C'S in cases where the correlation threshold does not produce
confident results. This corresponds to introducing a reject class |2] for the correlation
feature.

Figure [5.15] shows the suggested enhanced classification of color segmented regions,
corresponding to step 3Fp of figure [5.13] The left part corresponds to the classification

Region is
Object

Figure 5.15: Flowchart illustrating the enhanced classification of color regions (step 3Fg in
figure . The enhanced similarity feature, (CS), classifies all regions that the correlation
feature assign to a reject class (0.5-Corr. threshold < Correlation < Corr. threshold = reject
class).

Javeds Suggested handling of reject class

Criginal Method
Correlation < N
J5+Corr. Threshold
Yes

[ Region is Cast Shadow ] [ Region is Object ] [ Region is Cast Shadow ]

For Every
Region

Correlation >
Corr. Threshold

originally suggested by Javed, using a simple correlation threshold. The enhanced clas-
sification introduces a reject class if the correlation lies in an interval between 0.5 and 1
times the Correlation threshold introduced by Javed [2I]. If the regions in the reject class
have a CS larger than the CS threshold they are classified as object regions. Otherwise
they are classified as cast shadow regions.

This is the total enhanced shadow removal suggested, which is depicted in figure [5.13]

5.6.2 Applying the Enhanced Similarity Feature

Similar to the other methods applied, the enhanced method is also manually op-
timized, with respect to the training set, for different sets of parameter values. The
parameter values are based on initial tests to ensure reasonable performance. Table [5.5]
shows the set of parameter values used in the optimization. As previously mentioned the
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improved color segmentation of section [5.4] is applied. Values in boldface denote those
values chosen as optimal.

Variance function (upper value) 25 49 81
Merging size threshold [pizels] 10 50 70 100
Correlation interval for reject class | 0.05-0.10 | 0.075 — 0.15 | 0.10 — 0.20
CS threshold 3 5 7

Table 5.5: Parameter values used in optimization of enhanced method for shadow removal.
Values in boldface produce optimum average performance on the training examples.

Figure [5.16] shows the ROC-curve, zoomed, for the parameter values, averaged over
the training set. Colors denote varying values of the CS threshold, and the marker types
denote varying intervals of the correlation reject class. The latter are denoted by their
upper value in the legend. The optimal set of parameters chosen, are denoted by an
x, (FP,TP) = (26,83). Table shows the averaged performance measures for the
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Figure 5.16: ROC-curve for all combinations of parameter values of enhanced method from table
[5-4 Colors denote values of the CS threshold, which is the most sensitive parameter. Marker
types denote varying intervals of the correlation reject class. The latter are denoted by their upper
value in the legend. The performance of the optimal set of parameters is denoted by an *, at the
point (FP,TP) = (26,83).

optimal set of parameters. All of the 5 measures show better performance than did
Javed’s method, cf. section [5.3] and this even with a decrease in the standard deviations
of the measures. Comparing to Javed’s method with improved color segmentation, section
, the enhanced method is better at detecting object pixels correctly (TP), but worse
at detecting shadow pixels correctly (TN). The total accuracy is better for the enhanced
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AC TP FP TN FN
Mean value [%] 78 83 26 74 17
Standard deviation [%] | 12 11 22 22 11

Table 5.6: Average training performance of enhanced method, using optimal parameters.

method, but all of the standard deviations are somewhat larger.

Examining the 5 training examples of figure [5.17] it is evident that the enhanced
method improves the classification when comparing to the other methods, figures[5.6] and
(.10} The enhanced method and the method with improved color segmentation both show

Test?s Test402 Test300
Frame no. 101 L g Frame no. 89 rd Frame no. 429

Object no. 1 Object no. 1 Object no. 1
AC=722% AC =73.5% « AC=81.1%
TN = 68.3%
FP =4.9% FP =31% FP =31.7%

Test429 Test53

Frame no. 141 Frame no. 205
Obiject no. 1 Object no. 1
AC = 86% AC = 84%

TN = 92.8%
FP =27 2% FP =7 2%

4

Figure 5.17: Classification of part of the training set using enhanced method and optimal pa-
rameters. [blue, yellow, red, green] denote [TN, ,FN,TP] respectively.

better performance on very dark regions, Test300 and Test429. However, they also show
a major decrease in performance on the other 3 objects, although the enhanced method
is slightly better than the method with improved color segmentation.

All in all, the enhanced method for shadow removal is found to improve upon the
shadow removal suggested by Javed, based on a training set of 18 images, with optimized

parameters.

5.7 Summary

Three methods for shadow removal are implemented and optimized manually on a
training set consisting of 18 images. Each method classifies foreground pixels, that are
darker than their background pixels, as either cast shadow pixels or object pixels (2-class
problem). All foreground pixels are manually labelled, to serve as ground truth, when
evaluating the classifiers. Several measures of performance are defined, e.g. the overall
accuracy (AC), which is the proportion of pixels that are correctly classified.
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Javed’s original method (J) is optimized to the training set and used as a reference.
From an analysis of the results, Javed’s method is shown to fail in cases where there
are large dark regions consisting of both actual cast shadow pixels and actual object
pixels. This is due to the limited dynamic range (8 bits) of the video camera, a limitation
often encountered in real-world applications. However, an improved color segmentation
is suggested (method I), resulting in a larger amount of regions of smaller size, that
are to be classified. The latter method solves the problems of large dark regions, but is
susceptible to smaller regions being misclassified, leading to a decreased accuracy, though
it is more robust than Javed’s original method.

Finlayson’s ideas for shadow removal are then implemented, i.e. the illumination
invariant image is derived, from which shadow edges are detected and suppressed, and
finally a "shadow-free" image is reconstructed. Due to limitations in deriving the illu-
mination invariant image, described in previous chapters, it was not possible to design
a robust shadow edge detection that produced the least promising results on more than
one of the images of the training set. Instead it was suggested that the gradients of all
pixels along the edge of the foreground mask, obtained from the foreground detection, be
suppressed. This is based on the assumption that the cast shadows in the vast majority
of cases constitute parts of the edge of the foreground object. Then a "semi-shadow-free"
image is obtained. From this image an enhanced similarity feature, C'S, is derived, which
compares regions of the reconstructed "semi-shadow-free" image with the corresponding
regions of the background image.

Due to the assumptions when deriving the enhanced similarity feature, it is only
applied in cases where the correlation feature suggested by Javed, does not produce a
confident classification, i.e. a rejection class is introduced. This is the final enhanced
method for shadow removal suggested (method E). With optimized parameters it pro-
duces slightly better results on the training set, than does Javed’s original method.



Chapter 6

Validation and Comparison

Based on the optimized parameters found in chapter [3], the three methods for shadow
removal (J,I and E) are validated on the test set, and compared. Validation is the process
of determining how the methods generalize to unknown data. It is done by distinguishing
between the data used for optimizing model parameters and the data used for determining
the performance of the models. How the total data set is split into a training set and a
test set is discussed in section [3.2 and appendix [B] The test set consists of 72 foreground
objects to be classified. On average, the examples of the test set consist of 55% object
pixels, with a std. of 17%, and the rest being cast shadow pixels.

Initially, the absolute performance of the three methods on the test set is described,
followed by the introduction of measures that express relative improvements between
methods. Then the setup for statistical testing is described, which is applied to determine
any significant differences in performance of the three methods.

The methods are compared pair wise using different statistical methods and tests, each
contributing to the overall evaluation. A simple binomial variable is used to, pair wise,
compare methods, per-example. Furthermore a paired t-test is used to reveal significant
differences in both the absolute mean values of the results, and the relative mean values.
Only the measures AC, TP and TN are used when testing, since the measures FP and
FN are given when the others are known and therefore provide no additional information.
A significance level & = 0.05 is used through all tests.

6.1 Absolute Performance

Table [6.1] shows the mean and std. of the absolute performance measures, based on
the test set, for the three methods. The results of each example can be found in appendix
Dl

As expected the general performance of all methods on the test set is worse than
that based on the training set. This, of course, is due to the fact that the methods have
parameters optimized to the training set. However, many of the same trends appear, as
appeared on the training set. Is it emphasized that only trends can be extracted from
the averaged values. Any final conclusions must be based on tests revealing statistical
significance. The following trends should be noted:

o6
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Method AC TP FP TN FN
J - Mean (Std.) [%] | 64.9 (17.8) | 63.4 (30.0) | 35.3 (33.4) | 64.7 (33.4) | 36.6 (30.0)
I - Mean (Std.) [%] | 67.5 (13.8) | 63.1 (18.9) | 29.3 (23.3) | 70.7 (23.3) | 36.9 (18.9)
E - Mean (Std.) [%] | 69.2 (13.7) | 69.7 (18.3) | 34.0 (23.9) | 66.0 (23.9) | 30.3 (18.3)

Table 6.1: Absolute performance of the three methods (J,I and E) based on the test set of 72
examples. Mean values and standard deviations are shown.

e The enhanced method (E) seems to perform better than Javed’s method (/) in all
measures as well as in robustness (low std.).

e (E) also performs better than (I) for the measures AC, TP and FN.

e (I) has the same tendency, of a lower std. and a better TN and FP, than (J) does,
as the training set also indicated.

e The accuracy of (I) is better, compared to that of (/). This was not the case for
the training set.

e However, all the mean values are quite close when taking the std.’s into account.

Figure illustrates some of the results from table Figure [6.1(a) and [6.1}b)
compare the accuracy, for each example in the test, of (I) and (E), to that of (J).

If samples lie to the right of the diagonal, the accuracy is better compared to Javed’s
method, and vice versa. The mean values are denoted by an x. There is no general trend
for any of the methods to outperform the other, when looking at each example on its
own. Still, the average values indicate some trends.

Both plots show that in general, examples that give low AC’s in (J), give better AC’s
in both (/) and (E). The opposite is the case for examples that give high AC’s in (J).
However, there is a trend that examples with a higher AC in (/) and (£), are improved
more than the examples with decreased AC, are decreased. This gives rise to the higher
mean values, and supports the conclusions of chapter [5 that fewer examples tend to have
much better AC, while more examples tend to have slightly decreased AC.

Figure [6.1)(c) shows the mean TP as a function of mean FP for the three methods,
based on the training set and the test set respectively. This illustrates the differences
in performance collectively. Figure [6.1fd) shows the histograms of the AC of (J) and
(E), along side their fitted Gaussians. This is another illustrative way of presenting the
tendency of (£) to be higher and more robust.

6.2 Relative Performance

The performance measures introduced in section [5.2] are absolute measures, for each
method individually, in the sense that they make no distinction between improving a
poor performance, and improving a good performance. However, in the comparison of
methods, the following relative performance measures are suggested to indicate relative
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Figure 6.1: Comparison of performance. (a): Accuracy of Javed’s method (J), as a function of
accuracy of improved method (1), based on the test set. (b): Accuracy of Javed’s method (J), as a
function of accuracy of enhanced method (E), based on the test set. (c): Mean TP as a function
of mean FP for the three methods, based on the training set and the test set. (d): Histograms and
fitted Gaussians of J and E, based on the test set.

improvements between two methods:

AC

ACR xy — ﬁ —1, (6.1)
TP

TPr xy — ﬁ —1, (6.2)
TN

TNz xy — TN; —1, (6.3)

X={JI}, Y={I,E}, X#Y,

where R denotes the measure being relative, X denotes the reference method, and Y
denotes the method being tested for improvements. Positive values indicate better per-
formance of Y than of X. Only improvements between methods J and I (denoted JI), I
and E (denoted I/E), and between J and E (denoted JE), are examined explicitly, since
it is the intention to determine from which of the new methods (7, J) any improvements
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originate. Similar measures FPg xy and FNpg xy are not suggested, since they are sen-
sitive to near-zero values of the denominator, and they produce redundant information.
Table [6.2) shows the relative improvements in performance based on the test set. E.g.
JE show the relative improvements in performance, when using method FE instead of
method J. Mean values and standard deviations are shown in %. It should be noted that
only examples where the denominator of equations , and is above zero, are
used for computing the relative measures. For the measures {AC, TP,TN}, {72,72,66}
examples were used respectively. Similar to the absolute measures, only trends can be

Compared methods (XY) ACR7XY TPR7XY TNR,XY
JI - Mean (Std. [%] 13.5 (60.0) | 86.5 (34.7) | 31.2 (115)
IE - Mean (Std.) [%] 3.20 (12.0) | 13.4 (24.0) | —5.90 (13.7)
JE - Mean (Std.) [%] 14.9 (44.2) | 108 (380) 22.1 (113)

Table 6.2: Relative improvements in performance based on the test set of 72 examples. E.g. JE
show the relative improvements in performance, when using method E instead of method J. Mean
values and standard deviations are shown in %.

shown from mean values. Final conclusions must be based on tests producing statistical
significant results. The trends of the relative performance measures are similar to those
of the absolute measures, with a few exceptions:

e Both methods I and E improves upon method J for all measures.

e Some of the standard deviations are quite large, due to the nature of the relative
measure.

e Examples far from the diagonal of figures [6.1p and [6.Ip produce relative measures
far from zero.

e The mean relative increase in AC, of methods I and F as compared to J, is nearly
the same, though E has a smaller std.

e Method E improves upon I in both relative AC and TP, but not in relative TN.

Compared to the absolute measures, the relative measures indicate that the suggested
methods, in particular, improve upon Javed’s method, when the latter produces mediocre

performance.

6.3 Comparison Per-Example (Binomial)

In this section the methods are compared per-example, to see how often one method
outperforms another method.

A random binomial variable p is defined as the proportion of examples, out of the
total number of independent examples, that produce e.g. method E superior to method
J.
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JI=1>J | IE=E>I | JE=E>J
Pac 33/72 | 50/72 37/72
pac (%] | 45.8 69.4 51.4

Table 6.3: Comparison of methods per-ezample. pac is the estimate of the proportion out of the
total test set, that shows higher accuracy for one method compared to another.

Table[6.3] shows the estimate, p4c, of the proportion of the examples that show higher
accuracy. Fewer examples produce higher AC for I than for J. Only slightly more than
half of the examples show higher performance for £ than for J. This is also shown in
figures [6.1fa) and [6.1[b). The confidence interval (CI) is influenced by the number of
examples, as illustrated in figure [6.2 Using the curve of 50 examples produce a 95%
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Figure 6.2: 95% confidence interval of the mazximum likelihood estimate of a binomial variable,
as a function of the number of examples [10].

confidence interval of approximately [0.36;0.66] for p = 0.51 [10, B, [7]. If the CI is
computed repeatedly for new observations, 95% of the CI’s will contain the true mean
value of the variable. Ideally e.g. 250, or more, examples would reveal narrow confidence
intervals, but when the estimate of p is so near to 50% the only conclusion to make, is that
there is no significant improvement in the proportion of examples with higher accuracy,
when using F compared to J. The same conclusion is made when comparing method 7
to method J. However, when comparing method £ to method I, the CI is approximately
[0.54;0.82] for p = 0.69. Therefore it is likely to obtain better accuracy per-example using
method FE, compared to using method 1.
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6.4 Comparison of Means (Paired t-Test)

Instead of comparing the methods per-example, the mean of the performance measures
can be compared. This is done by applying a paired t-test, which is described in this
section.

The paired t-test is applicable in situations where the same examples of a random
sample are treated by two different methods that are to be compared [7]. The paired t-
test then tests for any significant differences in the mean values, i.e. is there a significant
difference in the way the methods treat the data.

The following example illustrates how a one-sided paired t-test is applied for testing
if method F produce a significantly higher accuracy, AC, than method J does.

Jac and Ez¢ are random variables of the accuracies produced by applying methods J
and F on the detected foreground objects. pj,, and p,,, are the corresponding expected
(mean) values of the accuracies. Then Dgc = Eac — Jac¢ is the difference in accuracy
of the two methods. The D4¢ is then assumed to be normally distributed with mean
LD ac = HEso — Hises and variance o

Do- The null hypothesis, Hy, and the alternative
hypothesis, Hj, then are [7]:

H() : ,LLDAC = 0,
H,: pp,, >0, (one-sided),
dac (6.4)

SDAC/\/E’
Rejection region for level a test: ¢ > tqpn—1,

Test statistic value: ¢ =

where d4¢ and sy .o are the sample mean and std., respectively, computed for the n = 72
examples of the test set. a = 0.05 is the significance level of the test. The null hypothesis
is rejected at a 5% level if the test statistic ¢ lies in the rejection region determined by
ta,n—1 of the t-distribution [7, [5]. The test is considered significant if the null hypothesis
is rejected. If so, method F produces a significantly higher mean accuracy than does
method J. In addition to this interpretation of the test, the p-value can be reported. It
denotes the highest level of significance, i.e. lowest value, where the test would still reject
the null hypothesis. This is useful additional information, but should not be used to set
the a-value. Furthermore a lower confidence bound (LCB) for pup,. can be estimated,
for the one-sided test, using [7]:

LCB = dac — tan_ - Sl)ﬁ (6.5)

If the LCB is computed repeatedly for new experiments, with a = 0.05, then 95% of the

LCB’s will be a lower bound of the interval where the true mean value of the variable lies

A one-sided test is used, since it is the intention to examine if methods I and F

produce actual improvements for the various measures, not only to test for differences of
the measures.

The assumption of D being normally distributed should of course be validated prior

to interpreting the results. This is done using the central limit theorem (CLT). The

CLT states that for a large number of samples, > 30 [7], the assumption of a normally
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distributed variable is valid. When calculating confidence bounds or intervals, more than
40 examples should be used [7]. Therefore the 72 examples of the test set should suffice
for the normal assumption to be valid.

6.4.1 Absolute Means

In this section the absolute performance measures (AC,TP and TN) are compared to
determine any significant improvements of methods E and I, as compared to J.

Table [6.4] shows results of comparing methods using the paired t-test, described in
section

Variable (ny) ACXY TPXY TNXY
JI=I—-J 0 (0.082) | 0(0.530) |1 (0.022)
IE=E—T1 [1(0.019)]1 (<0.001) |0 (0.999)
JE=FE—J [1(0.009)] 1(0.020) |0 (0.326)

Table 6.4: Statistical comparison of the absolute measures. 0 denote that the mean values cannot
be rejected to be equal at a 5% level, and 1 that the difference of the means is significantly positive.
p-values are shown in parentheses.

0 denotes that the means cannot be rejected to be equal at a 5% level, and 1 that the
difference of the means is significantly positive. The p-values are shown in parentheses.
The following conclusions can be made at a significance level of o = 0.05:

e AC, TP and FN are not significantly different when applying methods I and J.

e Method I improves the TN and FP compared to both method J and E. The latter
can be seen from the p-value, of the TN of I E, being larger than 0.95.

e Method E produces significantly better AC, TP and FN, compared to both I and
J.

e Method F does not produce a significantly different TN or FP, when compared to
J.

The lower confidence bounds of the difference in mean values, at a 95% confidence
level are shown in table They should be interpreted as one instance of estimating
the lower bound of the interval where the true mean value of the variable lies. If this
is done repeatedly, 95% of the LCB’s will contain the true value. If above 0, it is very
likely that the true mean difference is positive, i.e. that method Y is better than method
X. The LCB’s show that the difference in true mean values of the absolute AC and TP
for method E, are likely to be at least 1.3% above those of method J. Furthermore the
difference in mean value of the absolute TN of I is likely to be at least 1.1% above that
of J.
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Variable (ny) ACXY TPXY TNXY
JI=1-J%) | —0.47 | —=5.19 | 1.13

IE=E—1I%] | 035 | 469 | —6.99
JE=E—J% | 131 | 1.28 | —3.42

Table 6.5: Lower confidence bounds for the differences in mean values for the absolute measures,
at a 95% confidence level.

6.4.2 Relative Means

The relative measures of performance are compared to determine any significant im-
provements.

Table [6.6] shows the results of the comparison using the paired t-test described in
section [6.4] The random variable is defined as a difference between logarithms, since it
corresponds to the logarithm of the relative measures, and since the logarithmic transform
produces the variable Dxy as a sum of variables, (X and Y'), ensuring the assumption of
a normal distribution, due to the CLT, to be valid [7]. At a significance level of & = 0.05

Variable (ny) ACR7XY TPRJ(Y TNR7XY
JI'=In(I) —In(J) |1(0.047) | 1(0.011) |1 (0.012)
IE' = In(E) —in(I) | 1 (0.022) | 1 (< 0.001) | 0 (0.999)
JE' =In(E) —In(J) | 1 (0.005) | 1 (< 0.001) | 0 (0.180)

Table 6.6: Statistical comparison of the relative measures. 0 denote that the mean values cannot
be rejected to be equal at a 5% level, and 1 that the difference of the means is significantly positive.
p-values are shown in parenthesis.

the following conclusions are made:
e Method I improves all relative measures compared to method J.
e F improves ACr and TPg compared to both I and J.
e TNg of F is significantly lower than that of I
e There is no significant difference between TNg, for J and E.

The 95% LCB’s of the differences in mean values of the relative measures are shown in
table The main result is that it is likely that for future observations, the enhanced

Variable (Dxy) | ACgr,xv | TPrxv | TNgxv
JI [%] 0.1 6.5 3.7
IE [%) 0.5 7.8 —10.9
JE [%] 3.1 20.0 4.1

Table 6.7: Lower confidence bounds for differences in the mean values of the relative measures,
at a 95% confidence level.

method, E, will produce an improvement in relative accuracy of at least 3.1%, due to an
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improvement in the relative true positive rate of at least 20.0%, as compared to Javed’s
method, J. Furthermore it is likely that the improvement in relative accuracy from method
I to E is at least 0.5%.

6.5 Summary

In this chapter the performances on the test set of the three methods, (J,/ and E),
are compared. The test set consists of 72 examples independent of the examples used for
optimizing the parameters of the methods. In this way the performance measures are more
true estimates of how well the methods generalize. Both absolute and relative performance
measures are suggested, that indicate how well the methods perform, individually, and
with respect to each other.

A statistical comparison is done in three ways: Comparing methods per-example,
comparing the absolute means, and comparing the relative means. The chosen level of
significance is @ = 0.05. The accuracy (AC) is chosen as the most important sole measure,
measuring the total detection rate. The comparison of differences in mean values, requires
that the differences are normally distributed. This assumption is valid, by applying the
central limit theorem, due to the size of the test set.

When comparing the methods per-example, a binomial random variable is defined as
the proportion of examples that show better performance of one method as compared to
another. Neither method I or E produce a significantly better or worse absolute AC,
than does method J, which is used as a reference. This is partly due to the size of the test
set, which influences the confidence interval (CI) severely. Method F is likely to produce
a better accuracy per-example than method I, with a CI of [0.54,0.82].

The absolute means of the performance measures are compared using a one-sided,
paired, t-test, testing for a significant improvement in difference of the mean values of
two methods. The mean values of the absolute AC’s are: ACy = 64.9%, AC; = 67.5%
and ACg = 69.2%. Their corresponding lower confidence bounds (LCB) of the difference
in mean values are —0.47%, 0.35% and 1.31%. This means that, at the chosen level of
confidence, there is no significant difference between the absolute AC of J and I. However,
there is a significant difference between that of £ and those of J and [ respectively.

For the relative accuracy, the mean values are: ACg j; = 13.5%, ACg 1 = 3.2% and
ACRr g = 14.9%, with corresponding LCB’s of the difference in mean values: 0.1%, 0.5%
and 3.1%. This shows that both methods I and E produce significantly better relative
accuracy than J, and that £ produces a significantly better relative accuracy than I does.
For convenience, the main results are shown in table [6.8]

When analyzing the other measures of performance, the sources of the general im-
provements in accuracy becomes evident. Method I improves the absolute and relative
detection of cast shadow pixels, TN, as compared to both J and E. However, method E
improves the absolute and relative detection of object pixels even more, as compared to
both J and I. This, combined with the fact that the examples generally consist of slightly
more object pixels than cast shadow pixels (55%), makes method E significantly superior
to the other methods.
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(2]
Mean absolute accuracy (AC) of reference method J 64.9
Mean absolute accuracy (AC) of enhanced method E 69.2
95% LCB for the absolute AC of E —J 1.3
Mean relative improvement in AC from J to E 14.9
95% LCB for relative AC of E — J 3.1
Per-example proportion of AC of E being higher than AC of J 51.4
95% CI for the per-example proportion [36; 66]

Table 6.8: Main results of performance. Accuracy is used as the main measure.

Therefore the final conclusion is that the suggested improvement, I, of Javed’s method,
J, is significantly better, as is the suggested enhanced method, E. In spite of the limita-
tions of Finlayson’s suggested method for shadow removal, and of the camera used, the
enhanced method for shadow removal, as suggested by the author, have proved superior
in a surveillance application, as compared to the other methods implemented.



Chapter 7

Discussion

In this chapter the different parts of the thesis will be discussed in a broader perspec-
tive. The results will be compared to the system specifications, and the limitations of the
methods will be used as a basis for outlining directions for future work.

7.1 Results

In section [I.3] the system specifications for handling cast shadows were outlined. This
was done based on the interests of the DDRE, state-of-the-art within the area, and the
requirements of a master thesis. The vast majority of goals, set forth, were achieved:

e A data set of real-world objects was obtained using a digital video camera, available
by courtesy of the DDRE.

e The size of the data set ensured statistical significance in the majority of results.

e A state-of-the-art method for shadow removal, Javed’s statistical-based method,
was implemented and used as a reference.

e A thorough examination of Finlayson’s physics-based approach for shadow removal
was done, leading to the suggestion of an enhanced method, combining elements of
Javed’s methods, with new elements.

e All methods were optimized on a training set to produce optimal performance.

e The methods were then validated on a test set to determine their generalization to
unknown data.

e The suggested enhanced method for shadow removal showed significant improve-
ments in the detection of object pixels, leading to a significant improvement in both
the absolute and the relative overall accuracy. Only when comparing the accura-
cies per-example, using a binomial measure, was the test set to small to reveal any
significant improvements.

Based on the fact that almost all specifications were met, the results are found to be
successful. However, it is far from an indication of there being no work left to do.
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7.2 Limitations

As emphasized during the thesis, there are several assumptions, of the methods for
shadow removal, that limit their use. These limitations are discussed step-by-step in this
section.

7.2.1 Data Acquisition

The acquisition of data is the initial problem of automated surveillance applications.
Complex outdoor scenes make it very difficult to design algorithms that are robust with
respect to illumination, weather types, etc. Therefore it was important for this thesis to
obtain and use real-world data from a typical outdoor scene. This of course influenced
the results, but gave a much more realistic interpretation of how state-of-the-art methods
can be applied in actual applications.

The digital video camera used produced high resolution images at high frame rates.
This made real-time considerations meaningless at the present stage, using a standard
3GHz PC. However, real-time implementation is possible if using e.g. dedicated hardware.
More important is the limited dynamic range (8-bits) of the camera, which make bright
areas saturate, while dark areas show very little response. This affects the methods for
shadow removal negatively, since their assumptions are no longer valid in those cases.
Furthermore the exposure of the camera was fixed manually for each recorded sequence.
This is not possible to do in a real application.

7.2.2 Javed’s method

The main drawbacks of Javed’s method for shadow removal, J, are the context de-
pendent parameters. The fixed variance used in the color segmentation produces large
regions consisting of both actual object and actual cast shadow pixels, when areas of self
shadow are adjacent to areas of cast shadow. This would not be the case with images
having unlimited dynamic range, though it is a severe limitation to the method when
using a standard digital video camera. The methods suggested using improved color seg-
mentation, I and FE, handle cases where Javed’s method severely fails. The threshold
for region merging is also context dependent, but seems to influence the performance
less. The correlation threshold is the most context dependent, and therefore performance
sensitive, parameter.

Javed’s method fails to classify regions correctly, that contain little or no texture,
since it uses the gradient directions of regions as a similarity feature.

7.2.3 Finlayson’s method

Finlayson suggests deriving an image invariant to the color temperature of the illu-
mination source. The method applies for Planckian light sources, e.g. daylight, if the
camera sensor functions are narrowband, and if the surface has diffuse reflection. These
assumptions are most often valid, except when the camera sensor functions are only ap-
proximately narrowband. Furthermore it is shown that the limited dynamic range of
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the camera, severely degrades the quality of the illumination invariant image, making it
useless for robust detection of shadow edges, using the present camera.

7.2.4 Enhanced method

The enhanced method for shadow removal, suggested by the author, handles the
color segmentation problems and region classification problems of Javed’s method, more
robustly. However, it still has some limitations. The thresholds of the rejection class of
the correlation feature, are context dependent, though the rejection class improves the
robustness compared to Javed’s classification. Suppressing all gradients along the edge
of the foreground mask prior to reconstructing the "semi-shadow-free" image, is far from
optimal. If a better shadow edge detection could be achieved, a different classification
scheme would most likely improve performance.

7.3 Future Work

The limitations described in the previous sections, are the basis for a number of
suggestions concerning future work within the area of shadow removal in automated
surveillance applications. These suggestions are intended for the DDRE application.
They are however, of interest to anyone working within this area.

In order to fully understand how the SVS-204 camera is affected by the assumptions of
Finlayson’s illumination invariant image, the following experiments should be performed:

e Exploiting the 10-bits dynamic range of the camera, available according to the man-
ufacturer. At present only 8-bits are available to due limitations in the hardware.

e Investigation of the nature of the noisy diagonal pattern, which is prominent in dark
regions of the illumination invariant image, cf. figure [L.5] page [33]

e Investigating the effect of the sensor functions not being ideal delta functions. This
could be done in an experimental setup using an artificial Planckian light source,
with variable color temperature. Additionally the effect of methods for spectral
sharpening could be examined [12].

Furthermore, several parts of the methods for shadow removal should be examined in the
future:

e The effect, on the performance, of large parts of an object consisting of self shadow,
should be investigated further.

e If better illumination invariant images are produced, the shadow edge detection,
as suggested by Finlayson, should be examined further for ways of more robust
detection.

e In the classification step other similarity features should be examined for additional
information. This could e.g. be a similarity feature comparing the reconstructed
image with the foreground image. High similarity would indicate that no shadows
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were removed, i.e. indicating that the region is part of the object. However, if the
cast shadows are very weak, high similarity could also occur for regions that are
part the background.

e Due to the limited amount of time outlined for the thesis, spatial and temporal
features have not been examined. These would most likely improve classification.
Temporal features exploit information between consecutive frames of the same ob-
ject. Spatial features should be interpreted as exploiting spatial information at
a local region level, i.e. between neighboring regions e.g. similar to the Markov
random fields method.

e Feedback could also be introduced to improve segmentation.

e Using active shape models in addition, e.g. the snakes algorithm, could improve the
segmentation further.

e Another way of improving performance could be by introducing distance measures.
These could, for instance, be obtained using a pulsed laser and gated viewing. This
method is also superior to thermal vision, and is able to detect shapes through fog
etc. The DDRE has substantial knowledge within the area of gated viewing.

e However, applying more complex methods, introduce more parameters and is com-
putationally expensive. To decide whether or not to seek a further improvement in
shadow removal, a foreground region classifier (step 4 in figure page [7)) should
be applied to determine how good a detection rate the shadow removal should pro-
duce, for obtaining satisfactory results in the foreground object classification and
the later tracking algorithm.

e The fact that the performance on the training set is substantially higher, than the
performance on the test set, indicates that a larger training set should be used for
optimizing the methods

o If using a larger training set, it would be natural to implement a simple optimization
algorithm for optimizing parameters. This would ease the computational costs of
the optimization. Since we are dealing with a 2-class classification problem and not
a regression problem, minimizing the cross-entropy error function would be more
appropriate than minimizing the standard sum-of-squares error, as described in [2].

e Using a larger test set would decrease confidence intervals and thereby increase
significance levels of the statistical tests.

7.4 Perspectives

The need for robust shadow removal in automated surveillance applications is evident.
The methods described and implemented in this thesis indicate, that it is possible to
design such methods that work fairly well, in an outdoor scenario, on a limited data set.
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However, it is important to validate these methods on a larger data set containing other
types of foreground objects, obtained in other scenarios. This is the only way to get
an indication of how the methods would perform in unrestricted scenarios, on unknown
object types.

Today’s outdoor surveillance systems are far from perfect in the sense that they are
only able to perform simple tasks, due to the high degree complexity in typical outdoor
scenarios. However, improving each step in the overall surveillance system is necessary for
improving the overall performance. The segmentation steps, in particular, are extremely
important to improve, since all the other steps depend upon an accurate segmentation of
objects. Therefore this thesis gives a minor, but important, indication of how the shadow
handling can be improved, for the specific setup.
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Conclusion

In recent years the Danish Defense Research Establishment (DDRE) has been focus-
ing on the area of automated outdoor video surveillance. The main effort has been on
implementing and improving moving object detection and tracking, based on the W*-
system [I9]. One of the major problems in surveillance tasks, are cast shadows. They
are detected as part of moving objects, which makes the tracking and classification of
objects very difficult. So far the DDRE has implemented an algorithm for detection of
foreground objects [18], sensitive to cast shadows. This is the basis for the thesis.

8.1 Implementation of State-of-the-Art Reference Method

A state-of-the-art method (J) for cast shadow detection, suggested by Javed et al.
[21], is implemented and applied on a data set obtained with a high resolution digital
video camera. The data set consists of 90 different foreground objects detected using a
background subtraction algorithm supplied by the DDRE. 18 of the foreground objects
constitute a training set used for manually optimizing the performance of the method,
with respect to three central parameters. 72 foreground objects constitute the test set,
which is used for validation of the method, i.e. to determine the methods ability to
generalize to unknown data.

Javed suggests a statistical color segmentation of all pixels in an object, that are
darker than the background image. Then a connected component analysis and region
merging are applied, and each region is classified as part of a cast shadow, or part of an
object. The classification feature applied, is the correlation of the gradient direction of
pixels in each region. A simple context dependent threshold is used in the classification.

8.2 Improving Reference Method

Based on the training set, an improvement in the color segmentation of method J is
suggested (method 7). It improves the segmentation of large dark regions, consisting of
both cast shadow pixels and object pixels. Such regions often cause method J to produce
a very poor performance. The performance of method [ is also manually optimized with
respect to its central parameters, using the training set, and validated using the test set.
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8.3 Applying Physics-Based Method

A fundamentally different approach for shadow removal is suggested by Finlayson et
al. [15]. This method is physics-based, in the sense that it applies laws of physics in
the derivation of a grayscale image, invariant to illumination, constrained by a number
of assumptions. Ideally, this illumination invariant image does not contain edges due
to shadows, only edges due to surface structures. By comparing detected edges of the
illumination invariant image, with detected edges of the normal grayscale image, edges
due to shadows are found. Then the gradients along the shadow edges are suppressed
and a full color "shadow-free" image is reconstructed.

Finlayson’s method for shadow removal has not previously been applied in surveillance
applications, using a digital video camera. Therefore it is done in this thesis, to determine
it’s applicability in a surveillance application. The conclusion is that the quality of the
illumination invariant image is not good enough for a robust detection of shadow edges to
be performed. This is due to artifacts introduced by the specific video camera used (SVS-
204). Due to a limited dynamic range (8 bits), the areas of shadow, often were so dark
that only very little response was detected by the CCD. The use of a relative measure of
color in the model, makes the illumination invariant image very sensitive to noise in dark
areas, which furthermore makes a robust shadow edge detection very difficult. The limited
dynamic range made it difficult to ensure enough response in dark areas, while avoiding
saturation of bright areas. Another assumption in the model regards the cameras spectral
sensor functions, which should be narrowband. Only further experiments can show how
the quality of the illumination invariant image is affected by this assumption.

Even though the elegantly derived illumination invariant image did not apply well
using a camera with a dynamic range of 8 bits, the idea of suppressing gradients due to
shadow edges, followed by a reconstruction of a "shadow-free" image, still applies. It is
used in an enhanced method for shadow removal (method E), suggested in this thesis.
The assumption made, is that cast shadows are almost always somehow adjacent to the
edge of the foreground object detected by the background subtraction algorithm. Sup-
pressing gradients along the border of the foreground mask, prior to the reconstruction,
produce a full color "semi-shadow-free" image, where dark shadows often are significantly
suppressed. The drawback of this approach is the risk of also suppressing edges due to
objects, and thereby degrading the distinction between object and background. Still, in
many cases there is additional information in using the "semi-shadow-free" image.

The enhanced method (F) suggested, combines the improved color segmentation, with
the introduction of a new similarity feature (CS), based on the "semi-shadow-free" image.
This new similarity feature is applied in cases where the correlation feature suggested by
Javed, assigns a region to a reject class, i.e. when the correlation feature is not a confident
measure. The performance of method F is manually optimized with respect to the central
parameters, using the training set, and validated using the test set.
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8.4 Final Results

The performances of the three methods are computed by comparing each foreground
object with a manually segmented ground truth. The accuracy (AC) is defined as the
percentage of correctly classified pixels in a foreground object, and is used as a primary
measure of performance.

The main results are shown in table [8.I] The mean absolute accuracy of method E
is 69.2%, 4.3 percentage point higher than that of method J. The 95% lower confidence
bound (LCB) of the difference in absolute accuracy, is 1.3 percentage point. It is therefore
concluded that method F produces a significantly higher mean accuracy than method J.

(%]
Mean absolute accuracy (AC) of reference method J 64.9
Mean absolute accuracy (AC) of enhanced method E 69.2
95% LCB for the absolute AC of E — J 1.3
Mean relative improvement in AC from J to £ 14.9
95% LCB for relative AC of E — J 3.1
Per-example proportion of AC of E being higher than AC of J 51.4
95% CI for the per-example proportion [36; 66]

Table 8.1: Main results of performance (similar to table .

The mean relative improvement in AC from method J to method E, is 14.9%, with
a LCB of 3.1 percentage point. This also shows a significant improvement using method
E. The relative measure emphasizes absolute improvements of poor accuracies, showing
that method E improves a lot upon method J, in cases where the latter severely fails.

When comparing the accuracies, per-example, using a binomial measure, indicating
that the AC of E is the higher, only 51.4% of the examples in the test set show higher
AC for E. Due to the number of examples, the 95% confidence interval (CI) is rather
wide, and contains 50%. This shows that there is no significant increase in accuracy,
per-example, by applying E instead of J.

Neither of the three implemented methods make use of any strict spatial assumptions
regarding the composition of the foreground object with cast shadows. However, in cases
where method E applies the enhanced classification feature, there is an assumption of
the cast shadows to be adjacent to the edge of the foreground mask. This is not at all a
strict assumption, since it is only applied when the correlation feature does not produce
convincing classification.

8.5 Contributions

The main contributions of this thesis are summarized as follows:

e A state-of-the-art statistical-based method for shadow removal, making no spatial
assumptions on the composition of objects, is implemented as reference.
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A data set of 90 relevant foreground objects is obtained, ensuring statistical signif-
icant results in two out of three overall performance measures.

e A physics-based method for shadow removal, not previously applied in a video
surveillance application, is thoroughly examined, and found not to be directly ap-
plicable with the specific camera.

¢ An enhanced method for shadow removal is suggested, combining an improved color
segmentation with the introduction of an enhanced similarity feature.

e The enhanced method for shadow removal significantly improves the mean absolute
accuracy (69.2%), and mean relative accuracy (14.9%), at a 5% significance level,
compared to the reference method, whose mean absolute accuracy is 64.9%.

All the specifications set forth, were achieved, except for the data set not being large
enough to ensure statistical significance at a 5% level, when comparing methods per-
example, and that the enhanced similarity feature makes a loose spatial assumption of
object composition. However, due to the enhanced feature only being applied when the
correlation feature is uncertain, the spatial assumption does not degrade performance,
when compared to the reference method.

The final conclusion therefore is, that the suggested enhanced method for shadow
removal, on average is better than the state-of-the-art method suggested by Javed. The
enhanced method is also more robust than Javed’s method, since it tends to improve the
accuracy a lot, for examples where J tends to fail completely.

Combining an improved version of Javed’s statistical-based method with some of the
physics-based ideas of Finlayson, and some new ideas, therefore reveals a better and more
robust algorithm for segmentation of cast shadows from moving objects.

The use of the illumination invariant image, suggested by Finlayson, might be able to
improve the performance even more, but requires a larger dynamic range than the 8 bits
currently available with the present camera provided by the DDRE.
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Appendix A

Macbeth Color Chart

Mac)efh ColorChecker * Color Rendition Chart
-

Figure A.1: Images of Macbeth Color Chart with different color temperatures of direct sunlight.

(Left): Evening sun - yellowish. (Right): Midday sun - greenish.

1-Dark 2-Light 3-Blue 4-Foilage 5-Blue 6-Bluish
Skin Skin Sky Green Flower Green
7-Orange | 8-Purplish | 9-Moderate 10-Purple 11-Yellow 12-Orange
Blue Red Green Yellow
13-Blue 14-Green 15-Red 16-Yellow 17-Magenta 18-Cyan
19-White 20-Light 21-Medium | 22-Medium 23-Dark 24-Black
Gray Gray 1 Gray 2 Gray

Table A.1: Numbering of color patches of Macbeth Color Chart.
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Appendix B

Data Sets - Foreground Objects to

Classify

Every foreground object is shown in three zoomed versions: the original image (left),
the foreground pixels (middle), and the manually segmented image (right). Foreground
objects are classified into three classes: "cast shadow" (dark gray), "self shadow" (light
gray), and "object not in shadow" (white). The background is black. The origin of the
foreground objects can be traced by the name of the video sequence from which they are
obtained (e.g. Test36), the frame number, and object number. Furthermore, information
of absolute and relative size of classes is given: Absolute number of pixels to be classified
and relative to total number of foreground pixels, absolute and relative size of true object
and true cast shadow pixels, relative to the number of pixels to be classified. Finally the
number of true object pixels in self shadow relative to the total number of true object

pixels is given.

B.1 Training Set
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Test36- Frame no. 188 - Chjectno. 1
Mo of pixels to classify

21953 = 89.5% of all foreground pixels
Mo. of true ohject pixels

13088 = 69.5%

Mo, of true cast shadow pixels

8888 =40.5%

No. of ohject pixels in self shadowy
8211 = B2.8%

Testd5 - Frame no. 147 - Ohjectno 1
Ma. of pixels to classify

12489 = 67.7% of all foreground pixels
Mo, of true object pixels:

B457 = 51.8%

Mao. of true cast-shadow pixels:

6012 =48.2%

Mao. of ohiect pixels in self shadow:
B457 = 100%

Testdf - Frame no. 108 - Shjectno 1
Ma. of pixels to classify

11226 = 56% of all foreground pixels
Mo, of true object pixels:

4847 =43.2%

Ma. af true cast'shadow pixels:

f379 = 56.8%

Mo, of ohject pixels in self shadow:
4847 = 100%
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Tests3 - Frame no. 205 - Chjectno, 1
Mo of pixels to classify:

72790 = B8.3% of all foreground pixels
Mo of true object pixels:

JB004 =48.5%

Mo oftrue cast shadow pixels

36786 =50.5%

Mo of ohject pixels in self shadow
25766 =71 6%

Test300 - Frame no. 428 - Chjectno. 1
Mo of pixels to classify

49725 = 77.8% of all foreground pixels
Mo of true ohject pixels:

30537 = B14%

Mo of true cast shadow pixels

19188 = 38 6%

Mo of ohject pixels in self shadow
28331 = 96.1%

Test420 - Frame no. 426 - Ohjectno 1
Ma, of pixels to classify

121436 =82 3% of all foreground pixels
Mo, of true ohject pixels:

51148 = 504%

Mo of true cast'shadow pixels:

BOZEE = 40.6%

Mo, of ohigct pixels in self shadow:
51148 = 100%

Test428 - Frame no. 141 - Ohjectno 1
Mo, of pixels to classify

968516 = 81 6% of.all foreground pixels
Mo, of true object pixels:

52389 = 54.3%

Mo, of true cast'shadow pixels:

44127 = 45.7%

Mo, of ohject pixels in self shadow.
52389 = 100%

Test432 - Frame no. 233 - Objectno 1
1o, of pixels to classify

71200 =91.2% of all foreground pixels
Mo, of true object pixels:

44204 = 62.1%

Mo, af true cast-shadow pixels:

26986 = 37 8%

Mo of ohject pixels in seif shadow
3BB62 = BT 4%

Test434 - Frame no. 245 - Chjectno. 1
Mo of pixels to classify

89841 = B7.2% of all foreground pixels
Mo of true object pixels:

54188-= 60.3%

Mo of true cast shadow pikels

36643 = 38.7%

MNo. of oliject piels in self shadow
54198 = 100%

Test?s- Frame no. 101 - Ghjectno. 1
Mo of pixels to classify

74495 = 84.:3% of all foreground pixels
Mo of true ohject pixels:

5167 = 68.8%

Mo of true cast shadow pixels
2328=1311%

Mo of ohject pizels in self shadow
1105 =214%
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Test352 - Frame no. 145 - Ohjectho 1
Mo, of pixels to classify

5872 = B1.1% of all foreground pixels
Mo, of true object pixels

4479 = 5%

Mo. of true cast shadow peels

1493 = 25%

Mo, of ohject pixels in self shadow:
4309 = 98%

Testd 11 - Frame no. 168 - Ohjectno. 1
No. of pixels to classify

5422 = B7.8% of all foreground pixels
Mo of true object pixels

2903 = 53.5%

Na. of true cast shadow preels

2518 =46.5%

o of ohject-pixels In self shadow

6582 =23.8%

Testd189 - Frame no. 287 - Ohjectno. 1
Mo of pixels to classify

11831 = 96 3% of all foreground pixels
Mo of true ohject pixels

T4 =612%

No. of frue cast shadow pizels

4517 = 38B%

Mo of ohject-pixels In self shadow
7114 = 100%

Testd00 - Frame no. 101 - Ohjectno. 1
Mo of pixels to classify

11418 = 30.8% of all foreground pixels
Mo of true ohject pixels

5248 =45.9%

No. of frue cast shadow pizels
B172.=54.1%

Mo of ohject-pixels In self shadow
52468 = 100%

Test402 - Frame fo, 89 - Ohjectno. 1
Mo of pixels to classify

9074 = B6.6% of all foreground pixels
No. of true object pixels

3532 =33.8%

Mo of true cast shadow pixels

5542 = 61.1%

No. of ohiect pixels in self shadow
3532 = 100%
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Test4089 - Frame no. 165 - Glhijectno 1
Mo of pizels to classify

14425 = 82 8% of all fareground pixels
Mo, of true abject pixels:

B322=567.7%

Mo. of true cast'shadow pixels:

B103 =42.3%

Mo. of ohject pixels in seif shacdow.
g322=100%

Test421 - Frame no. 141 - Chjectno. 1
Mo of pixels to classify

16902:= 80.5% of all fareground pixels
Mo of true ohject pixels:

5332 =31 .5%

MNo. of true cast shadowy prels

11570 = B8.5%

Mo of ohject pixels in self shadow
5332 = 100%

Test435 - Frame no. 49 - Ghjectno. 1
Mo of pixels to classify:

14795 = 94.8% of all foreground pixels
Mo of true ohject pixels:

10028 = B7 8%

Mo of true cast shadow prels

4787 = 32.2%

MNo. of ohject pixels in self shadow
10028 = 100%
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B.2 Test Set

Test12 - Frame no. 136 - Ohject no. 1
No of pikels to classify

1775 = 33.5% of all foreground pixels
Ma. of true ohject pixels

715 =40.3%

Mo, of true cast shadow pizels

1080 = 59.7%

o of ohject pixels in self shadow

B4 = 8.95%

Test13- Frame no. 57 - Ohjectno 1
Mo, of pixels to classify

12035 = 75 3% of.all foreground pixels
Mo. of true ohject pixels:

B213 = BB.2%

Nao. of true cast'shadow pixels:

3822 =131.8%

Mo, of ohject pixels in self shadow:
B213=100%

Test20- Frame no. 209 - Ohject no. 1
Mo of pixels to classify:

47326 = 93.9% of all foreground pixels
MNo. of true ohject piels

J97ET = B4%

Ko of true cast shadow pixels

7558 = 168%

Mo of ohbject pixels irr self shadow
3298 = 8.29%

Test21 - Frame no. 277 - Chjectno 1
Mo, of pixels to classify

20864 = 81.2% of all foreground pixels
Mo, of true object pixels:

9735 =46.7%

Ma. of true cast shadow pixels:

11128 = 53:3%

No, of ohjectpixels in self shadow:
8735 =100%

Test22- Frame no. 125- Olject no. 1
MNo. of pixels to classify

31433 = 97.7% of all foreground pixels
o. of true ohject pixels

13753 =43.8%

Mo of true cast shadow preels

17680 = 56.2%

Mo of ohject pixels in self shadow
13783 = 100%
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Test23 - Frame no. 248 - Objectno 1
Ma. of pixels to classify

11887 = 83 % of all foreground pixels
Mo, of true object pixels:

5885 =40.2%

MNo. af true cast shadow pixels

BOG2 = 50.8%

No. of chiect pixels in self shadow:
5885 = 100%

Test24 - Frame no. 113 - Okjectno 1
Mo, of pixels to classify

9207 = 80.9% of all foreground pixels
Mo of true object pixels:

5703 = B1.8%

Mo. of true cast shadow piels

3504 = 38.1%

No. of ohiect pixels in self shadow:
5703 =100%

Test24 - Frame no. 581 - Okjectno. 2
Mo, of pixels to classify

22089 = 94.9% of all foreground pixels
Mo, of true object pixels:

14471 = 62.9%

MNo. of true cast'shadow pixels

518 =37.1%

No. of chiect pixels in self shadow:
14057 = 97.1%

Test24 - Frame nao. 701 - Ghjectno. 3
Mo of pixels to classify:

76843 = B3.3% of all foreground pixels
Mo of true ohiect pixels:

43883 =457.1%

Mo of true cast shadow pixels

32060 =42.8%

Mo of ohject pixels in self shadow
43083 = 100%

Test24 - Frame fa. 745 - Gljectno. 4
Mo of pixels to classify:

58979 = B5.5% of all foreground pixels
Mo of true ohject pixels:

6042 =61.1%

Mo of true cast shadow pixels

22837 = 38.8%

MNo. of olject pixels in self shadow
2E04Z = 100%

Test25 - Frame na. 101 - Ghjectno. 1
Mo of pixels to classify

82653 = 91.2% of all foreground pixels
Mo of true ohiect pixels:

41804 =45.1%

Mo, of true cast shadow pixels

50849 = 54.8%

Mo of ohject pixels in self shadow
37364 = BHA%
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Test25 - Frame no. 285 - Chjectno, 2
Mo of pixels to classify

BB181 = 72 4% of all foreground pixels
No_ of true ohject pixels

34775 =52.6%

Mo of true cast shadow pixels

418 =47 5%

No. of ohject pixels iri self shadow
34775 = 100%

Test27 - Frame na. 737 - Chject no. 3
Mo of pixels to classify

18254 = 85 5% of all foreground pixels
No_ of true object pixels

9660 = 50 2%

No of true cast shadow pixels

8584 =48 8%

No. of ohject pixels iri self shadow
9278 =96 1%

Test29 - Frame no. 105 - Ohject no. 1
Mo of pixels to classify

3829 = 51.7% of all foreground pixels
Mo of true ohject pixels

1324 = 34 6%

Mo, of true cast shadow przels

2506 = B54%

No. of ohject pixels inself shadow
1105 = 83 5%

Test28- Frame no. 141 - Chjectno. 2
Mo of pixels to classify

5E381 = 78.7% af all foreground pixels
No_ of true ohject pixels

34656 = B1.68%

No of true cast shadow pixels

21736 = 38.6%

No. of ohject pixels iri self shadow
34654 = 100%

Testa0 - Frame no. 61 - Okijectno 1
Ma, of pixels to classify

27338 = B8.7% of all fareground pixels
Mo, of true object pixels:

14181 = 51 8%

Ma. of true cast'shadow pixels:

13157 = 48.1%

Mo, of ohiect pixels in self shadow:
13338 =84 1%

Test3! - Frame no. 45 - Chjectno. 1
Mo of pixels to classify

13499 = 89.5% of all foreground pixels
No. of true object pixels

9188 = B8.1%

Mo of true cast shadow pixels

4300 = 31.8%

No of ohject pixels in self shadow
9183 =100%
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Test31 - Frame no. 77 - Chjectno, 2
Mo of pixels to classify:

18888 = 85 7% of all foreground pixels
Mo of true object pixels:

14685 = 77.3%

Mo oftrue cast shadow pixels

4314 =22.7%

Mo of ohject pixels in self shadow
13968 =86.1%

Testd? - Frame no. 241 - Ohjectno 1
MNa, of pixels to classify

1058 = 34.6% of all foreground pixels
Mo. of true object pixels:

185 = 15:6%

Mo, of true cast shadow piels

B93 = B4 4%

INa. of ohject pixels in self shadow:
1685 = 100%

Testd2 - Frame no. B97 - Chjectno. 2
Mo of pixels to classify

9807 = 86 4% of all foreground pixels
No. of true ohject pixels:

5122 =53.3%

o of true cast shadow prxels
4485.=46.7%

No. of ohject pizels in self shadow
6122 = 100%

Testd7 - Frame no. 149 - Chjectno. 1
Mo of pixels to classify

70095 = B7.8% of all foreground pixels
Mo of true obyect pixels:

28645 = 55.1%

Mo, of true cast shadow pixels

31450 =44.9%

Mo of ohject pixels in self shadow
25682 = BE.5%

Test45 - Frame no. 283 - Ghjectno. 2
Mo of pixels to classify

55406 = 57 2% of all foreground pixels
Mo of true ohject pixels:

35866 = 64.7%

Mo oftrue cast shadow pixels

18540 = 35.3%

MNo. of ohject pixels in self shadow
25866 = 100%

Testd7 - Frame no. 173 - Chjectno. 1
Mo of pixels to classify

12668 = 55.7% of all foreground pixels
Mo of true object pixels:

7919 =594%

Mo, of true cast shadow pixels

5148 = 40.68%

Mo of ohject pixels in self shadow
7219 = 100%

Test48 - Frame no. 185 - Ghjectno, 1
Mo of pixels to classify

BRSTE = 87 4% of all foreground pixels
Mo of true ohject pixels:

39074 = 43%

Mo, oftrue cast shadow prels

505802 = 57%

MNo. of ohject pixels in self shadow
17258 =453%
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Testdd - Frame no. 181 - Chjectno 1
Ma, of pixels to classify

15989 = 71 3% of all foreground pixels
Mo, of true object pixels:

Ba02 = 51.9%

Ma. of true cast-shadow pixels:

TEET =48.1%

Ma. of chiect pixels in self shadow:
Ba02=100%

Tests2 - Frame no. 61 - Objectno. 1
Mo. Bf pixels to classify:

9791 = 83 4% of all fareground pixels
MNo. of true object pixels

1135 ="1186%

No. of true cast shadow poeels:

8656 =8B 4%

Mo, of ohject pixels in self shadow:
1135 = 100%

Test74 - Frame no. 81 - Ghjectno. 1
MNa. of pixels to classify

11312 = 48.7% of all foreground pixels
No. of true object pixels

B242 =72 8%

o of true cast shadow pixels

3073 =27 2%

No. of ohject pixels in self shadow
8242 = 100%

Test?5 - Frame no. 1871 - Ohjectno 2
Mo, of pixels to classify

8991 = 56 6% of all foreground pixels
Mo of true ohject pixels:

7414 = B2.5%

Ma. af true cast shadow pixels:

1877 =17.5%

No. of chiect pixels in self shadow
7414 = 100%

Test?6 - Frame no. 93 - Ohkjectno 1
Ma. of pixels to classify

17366 = 852.9% of all foreground pixels
Mo, of true ohject pixels:

12668 = 72.8%

Ma. of true cast shadow pixels:

4698 = 27. 1%

Ma. of ohject pixels in self shadow:
g752=T77T%

Test?T - Frame no. 105 - Chjectno 1
Ma, of pixels to classify

10169 = 78 8% of all foreground pixels
Mo, of true object pixels:

7848 = 78.2%

Ma. of true cast-shadow pixels:

2220 ="21.8%

Mo, of chiect pixels in self shadow:
78489 =100%
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Test78 - Frame na. 141 - Chjectno 1
Mo, of pixels to classify

1339 = 54.7% of all foreground pixels
Mo, of true ohject pixels:

513=38.3%

Mo. of true cast shadow pixels

826 =61.7%

No. of ohigct pixels in self shadow:
513=100%

Test?9 - Frame nao. 237 - Ohjectno. 1
Mo, of pixels to classify

17671 = 58.68% of all foreground pixels
Mo, of true object pixels:

12900 = 73%

MNo. of true cast'shadow pixels

4771 = 27%

No. of chiect pixels in self shadow:
12900 = 100%

TestA0 - Frame no. B9 - Ohjectno, 1
Mo of pixels to classify:

18987 = 90.5% of all foreground pixels
Mo of true ohiect pixels:

16875 =84 4%

Mao. of true cast shadow piels
IM12=158%

Mo of ohject pixels in self shadow
16875 = 100%

TestB1 - Frame Ao, 277 - Ghjertno., 1
Mo of pixels to classify:

31815 = 43 4% of all foreground pixels
Mo of true ohject pixels:

20968 = 65.8%

Mo oftrue cast shadow pixels

10847 = 34.1%

MNo. of ohject pixels in self shadow
10784 = 51.8%

Testd1 - Frame no. 383 - Ohjectno. 2
Ma. of pixels to classify

3915 = B8.1% of all foreground pixels
Mo, of true ohject pixels:

2668 = B5.6%

Mo, of true cast shadow pixels

1347 = 34.4%

[No. of ohject pixels in self shadow,
2568 = 100%

TesthZ - Frame no. 337 - Ohjectno. 1
MNo. of pixels to classity

1368 = 59.3% of all foreground pixels
Mo, of true object pixels:

350 =62.1%

No. of true cast shadow pixels
§18=37 8%

Nao. of ohject pixels inself shadow:
850 = 100%

TestBZ - Frame na, 361 - Chjectno, 2
Mo of pikels to classify

45926 = 80.7% of all foreground pixels
Mo of true ohject pixels:

38204 = 84%

MNo. oftrue cast shadow prels

7332 = 16%

Mo. of ohject pixels in self shadow
3919 = 10.2%



92

APPENDIX B DATA SETS - FOREGROUND OBJECTS TO CLASSIFY

TestB3 - Frame no. 297 - Shijectno. 1
Mo, of pixels to classify

1467 = B8 7% of all foreground pixels
Mo, of true object pixels:

806 =84 8%

Ma. of true cast shadow pixels:

BE1 =45.1%

[No. of ohject pizels in self shadow
806 = 100%

TestB3 - Frame no. 321 - Chjectno 2
Ma, of pixels to classify

18003 = 61 7% of all foreground pixels
Mo, of true object pixels:

12548 = 66%

Ma. of true cast-shadow pixels

B454 = 34%

Mo, of chigct pixels in self shadow:
4132=132.8%

Test300 - Frame ho. 233 - Chjectno 3
Ma. of pixels to classify

2831 = 72.9% of all foreground pixels
Mo, of true object piels

472=18%

Nao. of true cast shadow pixels

3148 =82%

Mo, of ahject pixels in self shadow:

472 = 100%

Testd00 - Frame no. 429 - Ohjectno, 2
Mo of pixels to classify

22089 = 98.7% of all foreground pixels
Mo of true ohject pixels

15387 = B9.6%

Mo of true cast shadow pixels

6712 =30 4%

Mo of ohject pixels in self shadoe
15387 = 100%

Test300- Frame no. 861 - Chjectno. 4
Mo. of pixels to classify

15185 = 88 8% of all foreground pixels
No. of true object pixels

10130 = 66 7%

Mo. af true cast:shadow pixels

5086 = 33.3%

No. of ohject peels in self shadow:
9768 = 96.4%

Testal2 - Frame no 165- Objectno. 1
Mo of pixels to classify:

43511 = 92.6% of all foreground pixels
MNo. of true ohject piels

29221 =67.2%

Mo of true cast shadow pixels

14280 = 32 8%

No of ohject pixels in self shadow
26704 =31 T4

Test303 - Frame no. B1 - Ohject no 1
Mo of pixels to classify

12886 = 85 4% of all foreground pixels
No. of true ohject pixels

G267 =48.3%

Mo of true cast shadow pixels
B718=1517%

No. of ohject pixels iri self shadow
B267 = 100%
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Test00 - Frame no. 185 - Ohjectno. 2
Mo of pixels to classify

26253 = 95:3% of all foreground pixels
No. of true ohject pixels:

15363 =58.5%

Mo of true cast shadew pixels

10880 =41 5%

Mo. of ohject pixels in self shadow
18363 = 100%

Test400 - Frame no. 185 - Ohjectno 2
Mo. of pixels to classify

26811 = 74 8% of all foreground pixels
No. of true ohject pixels:

16018 =58.5%

MNo. of true cast shadow pixels:

10893 = 40.5%

Na. of ohject pixels in self shadow:
14108 = BB 1%

Test403 - Frame no. 468 - Ghjectno, 1
Mo of pixels to classify

5833 = B0 4% of all foreground pixels
Mo of true ohject pixels:

505 =851%

Mo of true cast shadew pixels

5428 = 81 5%

Mo. of ohject pixels in self shadow

505 = 100%

Test406 - Frame no. 113 - Olhijectno 1
Mo, of pixels to classify

22124 = 82 A% of all foreground pixels
Mo, of true object pixels:

12518 = 56.6%

Mo. of true castshadow pixels:

9607 =43.4%

Mo. of ohject pixels in self shacdow.
12516 = 100%

Test407 - Frame no. 308 - Objectno. 1
Mo of pizels to classify

107883 = 81 B% of all foreground pixels
Mo, of true object pixels:

67356 = G2.4%

Mo of true cast shadow pixels

40537 = 37 6%

No. of ohject pixels i self shadow
48826 = 72.5%

Test408 - Frame no. 233 - Ghjectno. 1
Mo of pixels to classify

BOD65 = 90.6% of all foreground pixels
Mo of true ohject pixels:

48077 = B2.4%

Mo of true cast shadoiy piels

30088 = 37 6%

Mo of ohject pixels in self shadow
41551 = 83.1%

Test10- Frame no. 187 - Ghjectno. 1
Mo of pixels to classify

33678 = 93 6% of all fareground pixels
Mo of true ohject pixels:

14247 =43 3%

Mo of true cast shadow pikels

19431 = 87.7%

MNo. of olject pixels in self shadow
12041 = 84.5%
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Testd12 - Frame no. B9 - Shijectno. 1
Mo, of pixels to classify

800 = 86 2% of all foreground pixels
Mo, of true object pixels:

248 =27 8%

Ma. of true cast shadow pixels:

G52 =724%

[No. of ohject pizels in self shadow.
248 = 100%

Testd 12 - Frame no. 221 - Chjectna 2
Mo, of pixels to classify

35936 = B2.1% of all fareground pixels
Mo. of true ohject pixels

3083 = 78.68%

No. of true cast shadow pixels

B43 =21 4%

No. of ahject pixels in self shadow:
3083 = 100%

Testd13 - Frame no. 127 - Ohjectno 1
Mo, of pixels to classify

8492 = 45 5% of all foreground pixels
Mo, of true-ohject pixels

6935 = 81.7%

Mo. of true cast shadow peels

1857 = 18.3%

Ma. of ohiect pixels in self shadow:
6835 = 100%

Testd14 - Frame ro, 193 - Ohjectno, 1
Mo of pixels to classify

28542 = 58% of all foreground pixels
No. of true ohyect pixels

18328 = B3 1%

No oftrue cast shadew pixels

8213 = 30.9%

No. of ohject pixels in self shadowy
183208 = 100%

Testd15 - Frame no. 267 - Ohjectho 1
Mo, of pixels to classify

70461 = 88.7% of all foreground pixels
Mo, of true object pixels

32000 = 46.8%

Mo. of true cast shadow ppels

37471 = 83.2%

Mo, of ohject pixels in self shadow:
32990 = 100%

Testd 18- Frame no. 213 - Ghjectno 1
Mo. of pixels to classify

7610 = 88% of all fareground prels
Mo. of true object pixels

37849 =50.1%

No. of true cast shadow pixels

37761 = 48.8%

Mo, of ohject pixels in self shadow:
32835 = 86.8%

Test416 - Frame no. 521 - Ohjectng. 2
Mo of pixels to classify

7246 = 93 1% of all foreground pixels
Mo of true ohject pixels

4335 = 59.8%

Mo of true cast shadow prels

2811 =40.2%

Mo of ohject pixels in self shadow
4335 = 100%
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Test418 - Frame no. B8 - Ohjectno 1
Mo, of pixels to classify

7134 = 87 8% of all foreground pixels
Mo, of true abject pixels:

4287 = B0.1%

No. of true cast shadow pixels

2847 =30.8%

INo. of ohject pixels in self shadow:
4387 = 100%

Test419- Frame no, 501 - Chjectno, 2
Mo of pixels to classify

12256 = 84.2% of all foreground pixels
No_ of true object pixels:

4883 =40.7%

Mo of true cast shadow pikels

7273 =08.3%

MNo. of ohject pixels in self shadow
4863 = 100%

Testd21 - Frame no. 168 - Chijectno 2
Ma, of pixels to classify

58825 = 84.68% of all foreground pixels
Mo, of true ohject pixels:

36860 = 23.6%

Mo. of true cast shadow pixels:

31865 = 46.4%

Mo, of ohject pixels in self shadow:
1675 = B5.9%

Test422 - Frame no. 248 - Olijectno 1
Mo, of pizels to classify

17226 = B4 5% of all foreground pixels
Mo, of true abject pixels:

B318 = 36.7%

Mo of true cast'shadow pixels:

10307 = 63.3%

Mo of ohject pixels in self shacdow.
6318 =100%

Test423 - Frame no. 213 - Chjectno. 1
Mo of pixels to classify

66851 = 92.5% of all foreground pixels
Mo of true ohject pixels:

34584 =51.7%

Mo of true cast shadowy piels

32257 =48.3%

Mo of ohject pixels in self shadow
27712 =80.1%

Testd24 - Frame no. 237 - Ghjectno. 1
Mo of pixels to classify

68133 = 88.7% of all foreground pixels
Mo of true ohject pixels:

39779 = 584%

MNo. of true cast shadowy prels
28355.=41.6%

Mo of ohject pixels in self shadow
34712 = 87 3%

Test425 - Frame no. 145 - Okjectno. 1
Mo, of pixels to classify

72987 = 90.6% of all foreground pixels
Mo, of true object piels:

40788 = 55 8%

MNo. af true cast-shadow pixels:

32179 =44.1%

Mo, of ohject pixels in selif shadow.
34467 = 84 5%
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Test426 - Frame na. B5 - Ohjectno. 1
Mo of pixels to classify

81171 = 79.2% of all foreground pixels
No. of true object pixels

2771 =34 2%

No. of true cast shadow pizels

5340 = B5.8%

No. of ohiect pixels in self shadow
2771 = 100%

Test428 - Frame no. 193 - Ohject no. 1
Mo of pixels to classify

101184 = 85.7% of all foreground pixels
No. of true ohject pixels:

52558 =519%

Mo of true cast shadow pixels

48628 =48.1%

MNo. of ohject piels in self shadow
52558 = 100%

Test430- Frame no. 177 - Chjectno, 1
MNa. of pixels to classify

20383 = 96% of all foreground pixels
No. of true ohject pixels

9362 =45 9%

No of true cast shadew pizels

11021 =54 1%

No. of ohject pixels in self shadomey
8838 =04.3%

Tesi31 - Frame no. 137 - Ohjectna. 1
Mo of pixels to classify

25111 = a7 1% of all foreground pixels
No. of true object pixels

13138 =52 3%

Neo. oftrue cast shadow pixels

11872 =47 7%

No. of ohject pixels in self shadow
13138 =100%

Testd33 - Frame no. 108 - Ghjectno. 1
Mo, of pixels to classify

3785 = B1.8% of all foreground pikels
Mo, of true object pixels

1047 = 27 7%

Mo. of true cast shadow pixels

2738 = V2.3%

INo. of ohject pixels in self shadow:
1047 = 100%

Test434 - Frame no. 485 - Ghjectno. 2
Mo, of pixels to classify

13331 = 46 4% of all foreground pixels
Mo, of true object pixels

0=0%

Mo. of true cast'shadow peels

13331 = 100%

Mo. of ohiect pixels in self shadow:

0= NaN%

Test435 - Frame no 287 - Object no. 2
[o. of pixels:to classify:

61966 = B2.6% of all foreground pixels
Io. of true ohject pixels:

34208 = 55.2%

No. of frue cast shadow pixels

27TET = 44 8%

No. of ohject pixels in self shadow
34205 = 100%



Appendix C

Additional Figures

C.1 Detecting Shadow Edges from Illumination-Invariants

Test75 - Frame No. 101 - Object No. 1

(@) Original image (b) lll-invariant of a (c) Edges of b (d) Dilation of ¢

L]

(e) Edges of a

() Dil. of ((e-d)*fg. mask) (g) Dil. edge of fg. mask (h) Dil. of (f"g)

97
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Test53 - Frame No. 205 - Object No. 1

(a) Original image (b) lll-invariant of a (c) Edges of b (cl) Dilation of ¢

(e) Edges of a () Dil. of ((e-d)*fg. mask) (g) Dil. edge of fg. mask (h) Dil. of (fFg)

Test300 - Frame No. 429 - Object No. 1

(a) Original image (b) lll-invariant of a (c) Edges of b (d) Dilation of c

(e) Edges of a (f) Dil. of ((e-d)*fg. mask) (g) Dil. edge of fg. mask (h) Dil. of (Fg)
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Test402 - Frame No. 89 - Object No. 1

(@) Original image (b) lll-invariant of a (c) Edges of b (d) Dilation of ¢

L ]
o -
£ ° a» L -
L] *
o L
(e) Edges of a (f) Dil. of ((e-d)*fg. mask) (g) Dil. edge of fg. mask (h) Dil. of (f"g)

Test411 - Frame No. 169 - Object No. 1
Ly s -

(a) Original image (b) lll-invariant of a (c) Edges of b (d) Dilation of ¢

#ﬁrg J
-— o

(e) Edges of a (f) Dil. of ((e-d)™fg. mask) (g) Dil. edge of fg. mask (h) Dil. of (F"g)



Appendix D

Additional Results

Several results are shown for every detected foreground object of the training and test
sets. 6 subfigures are shown to visualize various steps, and differences in methods, for
each example:

Upper left: Merged regions using Javed’s method, J.
Upper middle: Merged regions using improved color segmentation, method L.

Upper right: Reconstructed image, where gradients along the edge of the foreground
object are suppressed.

Lower left: Segmentation using Javed’s method, J.
Lower middle: Segmentation using improved color segmentation, method 1.

Lower right: Segmentation using enhanced method, F.

Furthermore are shown the number of merged regions using Javed’s and the improved
color segmentation, and also the absolute performance measures, in %, for the three
methods:

AC: Accuracy - Proportion of correctly classified pixels.

: True positive rate - Correctly classified object pixels.

: False positive rate - Actual cast shadow pixels classified incorrectly as object pixels.
FNN: False negative rate - Actual object pixels classified incorrectly as cast shadow pixels.

TN: True negative rate - Correctly classified cast shadow pixels.

The following colors are used to visualize the performance measures: [blue, yellow, red,
green] denote [TN, |, F'N,T ] respectively. The validation of methods is based on the
test set, for which reason both absolute and relative measures for the test set are shown
in tables [D.I] and [D:2] The relative measures are defined as relative improvements, in
%, in performance, when using e.g. method F instead of method J. As an example the
relative improvement in accuracy, when using method FE instead of method J, is denoted
ACg,sE-

100
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D.1 Performance of Training Set

Test36 - Frame no., 189
Object no. 1

Javed . 30 merged reg.
ABBEeYed pdli ondad rog-
J I E

Q- TN

Tezstd4b - Frame no., 141
Object no. 1

Javed: 21 merged reg.
Improved: 81 merged reg.

Absolute Performance:
J & B
AC: 73.3 67.9 B7.7

53.5 8 o

46.5 31,9 B32.8

Test46 — Frame no, 109
Object no, 1

Javed: 25 merged reg.
Improved: 102 merged reg.

Absolute Performance:
Bl I B
s BT S

8 1 57,1
52.2 42,9 42.9

Test53 - Frame no. 205
Object no, 1

Javed ! 61 merged reg,
Improved; 442 merged reqg.

Absolute Performance:

I I E
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Test300 - Frame no. 429
Cbject no. 1

Javed: 18 merged reg.
Improved: 251 merged reg.

Abzolute Performance:

I I B

ATy 76.2 87.7 €1.1

ERY 4y .5 2800 3.7

Test420 — Frame no, 425
object no. 1

Javed: 56 merged reg.
Improved: 276 merged reg.

Absolute Performance:
o I E

g0.6 82.1 88.0

Test429 — Frame no, 141
Object no. 1

y Javed: 20 merged reg,
Improved: 214 merged reg.

absolute Performance
J I E
AC: 70,6 88,7 86.0

Test432 - Frame no, 233
Object no. 1
Javed: 21 merged reg,
Improved: 221 merged reg.
Absolute Performance:

F I B
AT 67,3 83,1 83.8

Test434 — Frame no. 245
Object no, 1

Javed 44 merged reg.
Improved: 326 merged reg.

Absolute Performance:
J I E
81.2 82.3 86.1
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Test75 - Frame no. 101
Cbject no. 1

Jawved: 11 merged reg.
Improved: %3 merged reg.

Absolute Performance:

AC: 81.9 §8.9 72.2

Tegt3b2 = Frame no. 145
Object no. 1

Javed: 13 merged reg.
Improved: 78 merged reg.

Absolute Performance:
I I 3¢
AC: 88.3 74.0 74.7

Testdll - Frame no. 168
Objeect no. 1
Javed: 7 merged reg.

Improved: 47 merged reg,

Absolute Performance:

AC: 93.9 86.8 87.0
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Test419 - Frame no. 297
Object no, 1

Javed ! 14 merged reg.
Improved: 96 merged reg,

Absolute Performance:

AC. 94.6 79.4 79.7

Test400 - Frame no, 101
Object no. 1

Javed: 7 merged reg.
Improved; 75 merged reg.

Absolute Performance:

AC: 87.2 70.2 65.8

Epy  13.0 41.,& 42.4
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Test402 - Frame no, 89
Object no, 1

Jawved 15 merged reg.
Improved: 110 merged reg.

absolute Performance:

FEE 3.7 24.6 31.0

Test40% - Frame no. 1&5
Object no, 1

Javed: 13 merged reg.
Improved: 174 merged reg.

Absolute Performance:

AE:  PEG 78.8 TR
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Test42l — Frame no. 141
Object no. 1

Javed: 19 merged req.
Improved: 164 merged reg.

Absolute Performance:
J I E

AC: 51,2 75.3 75.4

FB: 50,8 18, % 20,3

Test435 — Frame no, 49
Object no. 1

Javed. 18 merged reg.
Improved: 216 merged reg,

Absolute Performance:
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D.2 Performance of Test Set

[ Abs. performance | AC; g% | TPy 5(%] FPy1el% [ FNyel% | TNyel%)
Test12-136-1 91.4[71.5]71.5 | 100.0[75.1]75.1 | 14.330.9]30.9 | 0.0[24.9[24.9 | 85.7]69.1]69.1
Test13-57-1 27.4|43.1]45.7 | 20.4|38.7]42.8 57.6|47.6|48.2 | 79.6/61.3|57.2 | 42.4]52.4|51.8
Test20-209-1 80.7|66.4|74.2 | 90.0|69.4/80.1 68.4|49.0/56.4 | 10.0|30.6]/19.9 | 31.6/51.0|43.6
Test21-277-1 57.9|78.5/80.2 9.7/59.9|64.4 0.0]5.316.0 90.3|40.1|35.6 | 100.0]94.7|94.0
Test22-125-1 80.3]79.1|79.4 | 55.1[52.9|53.6 0.0[0.4[0.6 | 44.9]47.1]46.4 | 100.0]99.6/99.4
Test23-249-1 82.9]79.9|80.1 | 67.4]62.9]63.4 2.0[3.6]3.7 | 32.6]37.1]36.6 | 98.0]96.4/96.3
Test24-113-1 61.9]49.7/60.3 | 38.7]29.9]48.8 | 0.3]18.0]21.1 | 61.3[70.1|51.2 | 99.7]82.0|78.9
Test24-581-2 72.2|65.0[70.4 | 76.2]63.0[81.3 | 34.7[31.7]48.0 | 23.8(37.0[18.7 | 65.3]68.3/52.0
Test24-701-3 61.0]68.2]64.5 | 84.1|73.8]87.0 | 69.8]39.3[65.5 | 15.9]26.2|13.0 | 30.2]60.7|34.5
Test24-745-4 71.2|70.5(65.1 | 60.0]58.4]86.0 | 11.2[10.4]67.9 | 40.0[41.6/14.0 | 88.8/89.632.1
Test25-101-1 86.9]80.8/86.6 | 88.0[70.7]90.7 | 14.1]10.9[16.8 | 12.0]29.3]9.3 | 85.9]89.1|83.2
Test25-285-2 87.1[81.5[85.1 | 89.378.4[85.4 | 15.3]15.2[15.2 | 10.7|21.6]14.6 | 84.7|84.8[84.8
Test27-737-3 87.0]69.9|81.0 | 75.1[43.4]65.5 1.0[34]3.4 | 24.956.6]34.5 | 99.0/96.6]96.6
Test29-105-1 82.0]63.3(64.6 | 57.2]27.5]32.5 | 4.9|17.8[18.5 | 42.8|72.5]67.5 | 95.1]82.2[81.5
Test29-141-2 68.7]76.0|73.6 | 89.6]75.8]89.4 | 69.7|23.6[55.4 | 10.4[24.2]10.6 | 30.3]76.4[44.6
Test30-61-1 97.5]86.8/86.5 | 100.0[81.5]81.5 | 5.3|7.5[8.2 0.0]18.5]18.5 | 94.7/92.5]91.8
Test31-45-1 54.3|54.3]55.6 | 33.0/45.9/51.8 0.0]27.8/36.3 67.0|54.1]48.2 | 100.0|72.2|63.7
Test31-77-2 74.0/68.4]76.2 | 81.1]66.1|77.1 50.0|123.6]27.1 | 18.9]33.9]22.9 | 50.0/76.4|72.9
Test32-241-1 15.6/85.9/56.7 | 100.0|49.1]49.7 | 100.0|7.3|42.0 0.0/50.9|50.3 0.0/92.7|58.0
Test32-697-2 94.1|68.7|63.0 | 90.8/46.9/80.5 2.1]6.5|57.0 9.2|53.1]19.5 97.9|93.5|43.0
Test37-149-1 89.7|82.5/84.6 | 88.1|76.3/80.1 8.519.9/9.9 11.9]23.7|19.9 | 91.5|90.1]|90.1
Test45-293-2 67.2|64.2|73.1 78.2|67.9/81.7 53.2|42.7|42.7 | 21.8/32.1]18.3 | 46.8/57.3|57.3
Test47-173-1 48.6|55.4|55.6 | 17.7|27.0/27.3 6.3|3.1]3.1 82.3|73.0|72.7 | 93.7]|96.9]96.9
Test48-185-1 87.6|82.1|84.6 | 86.1]70.276.2 | 11.4]8.99.0 | 13.9]29.823.8 | 88.6/91.1|91.0
Test49-161-1 76.8|74.3]75.2 | 77.9|72.1|74.3 24.5|23.2|23.8 | 22.1|27.9]25.7 | 75.5/76.8|76.2
Testb2-61-1 61.6|61.1|61.0 | 22.8/55.3/55.3 33.3|38.1|38.3 | 77.2|44.7]44.7 | 66.7/61.9|61.7
Test74-81-1 61.2|60.0/61.0 | 54.9]|51.8/53.2 22.0|18.1]18.1 | 45.1]|48.2/46.8 | 78.0/81.9|81.9
Test75-181-2 55.6|61.8/62.2 | 46.2|67.8/68.2 0.3]66.1]66.1 53.8|32.2|31.8 | 99.7|33.9|33.9
Test76-93-1 58.8]55.2]60.2 | 72.6]66.573.8 | 78.5]75.5/76.4 | 27.4[33.5[26.2 | 21.5]24.5[23.6
Test77-105-1 37.3[43.5/68.9 | 22.7]32.4]65.0 | 10.8]16.8[17.2 | 77.3]67.6|35.0 | 89.2]83.2[82.8
Test78-141-1 38.3]75.3|75.3 | 100.0[53.253.2 | 100.0[11.0]11.0 | 0.0[46.8[46.8 | 0.0]89.0|89.0
Test79-237-1 41.1]50.8|50.4 | 34.7]42.8[42.8 | 41.4]27.5[29.0 | 65.3[57.2|57.2 | 58.6]72.5|71.0
Test80-69-1 25.9]65.4/70.0 | 12.2]65.0]70.5 | 0.0[32.3]32.3 | 87.8|35.0/29.5 | 100.0|67.7|67.7
Test81-277-1 74.7|67.3(68.4 | 67.9]57.9|59.7 | 12.1]14.714.7 | 32.1]42.1]40.3 | 87.9|85.3|85.3
Test81-393-2 69.9]63.2/63.2 | 81.9]69.569.5 | 52.9|48.9[48.9 | 18.1|30.5[30.5 | 47.1|51.1|51.1
Test82-337-1 62.1]51.8/53.9 | 100.0[64.9]68.4 | 100.0[69.9/69.9 | 0.0|35.1]31.6 | 0.0]30.1]30.1
Test82-361-2 55.6]65.8/74.6 | 56.1]68.6]79.1 | 46.9]48.9[49.0 | 43.9[31.4]20.9 | 53.151.1|51.0
Test83-297-1 54.9]37.8|37.8 | 100.0[68.6]68.6 | 100.0]99.8(99.8 | 0.0|31.431.4 0.0[0.2[0.2

Test83-321-2 39.8]30.4[30.4 | 60.2[45.8[45.9 | 100.0]99.6/99.6 | 39.8|54.2[54.1 |  0.0]0.4]0.4

Test300-233-3 85.8]81.0[79.5 | 21.2]80.7]80.7 | 0.0[18.9]20.8 | 78.8]19.3[19.3 | 100.0[81.1|79.2
Test300-429-2 47.4]50.4]82.3 | 40.239.4[85.6 | 36.2|24.2]25.3 | 59.8|60.6/14.4 | 63.8]75.8|74.7
Test300-561-4 71.6|74.2/63.7 | 90.267.6|73.1 | 65.9]12.5]55.0 | 9.8[32.4]26.9 | 34.1|87.5/45.0
Test302-165-1 61.7/58.5/59.3 | 86.8[82.2|83.6 | 89.7|90.1/90.4 | 13.2|17.8[16.4 | 10.3/9.9/9.6

Test303-61-1 40.3|39.3|39.4 | 83.4/76.276.5 | 100.0]95.2]95.2 | 16.623.8/23.5 |  0.0[4.8]4.8

Test400-185-2 79.0|85.7/87.8 | 65.984.588.3 | 2.5[12.6]12.9 | 34.1|15.511.7 | 97.5|87.4|87.1
Test400-185-3 68.3[74.0[75.3 | 96.4|87.7|89.8 | 73.0]46.1/46.1 | 3.6/12.3]10.2 | 27.0/53.9/53.9
Test403-469-1 58.2|80.4[82.5 | 46.7|28.5(54.3 | 40.8[14.8[14.8 | 53.3[71.5/45.7 | 59.2/85.2|85.2
Test406-113-1 58.5|73.7|73.7 | 100.0[97.6]97.8 | 95.557.557.7 | 0.0[2.4]2.2 4.5]42.5]42.3
Test407-309-1 71.4]79.0/82.0 | 97.1/85.0/90.0 71.3|31.0/31.2 2.9|15.0|10.0 28.7|69.0]68.8
Test408-233-1 68.1|76.5|79.3 | 96.7|86.3/90.9 79.3]39.8/39.9 3.3|13.7/9.1 20.7|60.2|60.1
Test410-157-1 59.5|64.3|64.5 5.9|49.0|49.7 1.2|24.6|24.7 94.1|51.0/50.3 | 98.8/75.4|75.3
Test412-69-1 22.7|139.1]36.3 | 13.7]|52.4]52.4 73.9]66.0/69.8 | 86.3]|47.6|47.6 | 26.1|34.0|30.2
Test412-221-2 32.4|52.5/53.7 | 14.0]43.9]45.5 | 0.0]16.0]16.0 | 86.0|56.154.5 | 100.0|84.0/84.0

Continued on next page
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Abs. performance | AC,11p[%] | TPyne(®l [ FPynel%l | FNynel%l [ TNy &% |
Continued from previous page
Test413-121-1 69.1]39.1138.2 | 75.9|33.6]34.1 | 61.3|36.5|43.7 | 24.1|66.4|65.9 | 38.7|63.5/56.3
Test414-193-1 56.5]72.6]73.9 | 59.2|71.3|73.2 | 49.5|24.3]|24.4 | 40.8|28.7|26.8 | 50.5|75.7|75.6
Test415-261-1 68.6]79.6]81.2 | 63.8]89.9/94.5 | 27.2|29.5|30.5 | 36.2|10.1|5.5 | 72.8|70.5/69.5
Test416-213-1 79.2]76.4]76.8 | 92.1|92.4]93.3 | 33.7]39.6|39.7 7.9|7.6/6.7 66.3]60.4/60.3
Test416-521-2 44.1156.1|56.3 | 6.6/32.3]32.6 0.0/8.4/8.4 93.4]67.7|67.4 | 100.0/91.6]|91.6
Test418-69-1 57.0153.8]52.4 | 28.5/29.1/30.8 | 0.0/8.9]15.1 71.5]70.9]69.2 | 100.0/91.1|84.9
Test419-501-2 60.7]194.9]196.1 | 3.3]89.2|93.1 0.0[1.2]1.9 96.7/10.8/6.9 | 100.0/98.8|98.1
Test421-169-2 86.0]79.2|81.3 | 94.0(87.7]91.6 | 23.1]30.7|30.7 | 6.0[12.3]8.4 76.9]69.3/69.3
Test422-249-1 57.1163.164.7 | 23.8|38.2]43.1 | 23.6|22.4]22.7 | 76.2|61.8|56.9 | 76.4|77.6|77.3
Test423-213-1 59.8|80.9(81.0 | 95.5|90.3]|90.7 | 78.5/29.2|29.3 4.5|9.7/9.3 21.5|70.8/70.7
Test424-237-1 74.0|78.6]76.9 | 88.3|74.9|81.4 | 46.0/16.1|29.3 | 11.7|25.1|18.6 | 54.0|83.9|70.7
Test425-145-1 62.8|76.5|77.4 | 63.3|86.9/88.6 | 37.7/36.7|36.8 | 36.7|13.1|11.4 | 62.3|63.3|63.2
Test426-65-1 67.2|165.9|72.1 | 4.1]42.3]63.8 | 0.0/21.8|23.6 | 95.9/57.7|36.2 | 100.0|78.2|76.4
Test428-193-1 72.8|83.0(82.9 | 88.0|92.2]92.2 | 43.6|27.0|27.2 12.0/7.8|7.8 56.4|73.0|72.8
Test430-177-1 79.7|76.8|78.9 | 65.6|68.7|74.8 | 8.3|16.3|17.6 | 34.4|31.3|25.2 | 91.7|83.7|82.4
Test431-137-1 78.1|66.6|67.1 | 63.2|51.3|52.8 | 5.6/16.7|17.1 | 36.8/48.7|47.2 | 94.4|83.3|82.9
Test433-109-1 88.2|82.0(80.7 | 59.1|78.3|78.4 | 0.6/16.6/18.4 | 40.9/21.7|21.6 | 99.4|83.4|81.6
Test434-465-2 78.0|72.1]73.0 | 64.6|59.5/61.8 | 11.6]18.1|18.2 | 35.4]|40.5|38.2 | 88.4/81.9|81.8
Test435-297-2 71.0|78.7|80.5 | 79.0|83.8/87.3 | 38.8/27.6|27.8 | 21.0[16.2|12.7 | 61.2|72.4|72.2
Mean 64.9]67.5(69.2 | 63.4/63.1169.7 | 35.3|29.3]|34.0 | 64.7|70.7|66.0 | 36.6|36.9/30.3
Standard deviation | 17.8]/13.8/13.7 | 30.0|18.9|18.3 | 33.4|23.3]|23.9 | 33.4/23.3|23.9 | 30.0/18.9]18.3

Table D.1: Absolute performance measures for the test set.

Relative performance | ACg y1j1gsel%] | TPruniesel% | TNgsiesel%] |

Test12-136-1

—21.8]0.0] —21.8

—24.9 0.0 | —24.9

~19.4 [ 0.0 | —19.4

Test13-57-1

57.316.0 | 66.8

89.7 | 10.6 | 109.8

23.6 | —1.1 | 22.2

Test20-209-1

—17.7]11.7 | =8.1

—22.9 | 15.4 | —11.0

61.4 | —14.5 | 38.0

Test21-277-1

35.6 | 2.2 | 38.5

517.5 | 7.5 | 563.9

—5.3| —0.7 | 6.0

Test22-125-1

—15]04| —1.1

—4.0 1.3 ] —2.7

—04]—0.2]—-06

Test23-249-1

—3.6]03 | —3.4

—6.7]0.8 | —5.9

—16] —0.1]—1.7

Test24-113-1

—19.7]21.3 | —2.6

—22.7]63.2 | 26.1

—17.8 | —3.8 | —20.9

Test24-581-2

—10.0]83] —25

—17.3]29.0 | 6.7

46| —23.9| —20.4

Test24-701-3

11.8 | —5.4 5.7

—12.2]17.9 ] 3.4

101.0 | —43.2 | 14.2

Test24-745-4

—1.0| —7.7] -86

2.7 473|433

0.9 —64.2 | —63.9

Test25-101-1 —7.0[7.2[-03 —19.7] 283 | 3.1 3.7]—6.6] —3.1
Test25-285-2 —6.4 44|23 —122]8.9 | —4.4 0.1]0.0[0.1
Test27-737-3 —19.7| 159 | —6.9 | —42.2 [ 50.9 | —12.8 —2.4]0.0 —24

Test29-105-1

—22.8] 21| —21.2

—51.9 | 18.2 | —43.2

—13.6| —0.9 | —14.3

Test29-141-2

106 | —3.2 [ 7.1

—15.4 [ 17.9 | —0.2

152.1 | —41.6 | 47.2

Test30-61-1 —11.0| —0.3 | —11.3 | —185|0.0 | —18.5 | —2.3|—0.8| —3.1
Test31-45-1 002424 39.1]12.9|57.0 | —27.8 | —11.8 | —36.3
Test31-77-2 —7.6 | 11.4 ] 3.0 —18.5|16.6 | —4.9 52.8 | —4.6 | 45.8

Test32-241-1

450.6 | —34.0 | 263.5

~50.9 | 1.2 | —50.3

Inf| =374 Inf

Test32-697-2

—27.0| —8.3 | =33.0

—48.3 | 71.6 | —11.3

—4.5 | —54.0 | —56.1

Test37-149-1 —8.0 25| —=5.7 —13.4]5.0| —-9.1 —-1.5]0.0| =15
Test45-293-2 —4.5]13.9]8.8 —13.2]20.3] 4.5 22.4 0.0 | 22.4
Test47-173-1 14.0 [ 0.4 | 14.4 52.5 | 1.1 | 54.2 340034
Test48-185-1 —6.3]3.0 —3.4 —185 85| —11.5 2.8 —0.1]2.7
Test49-161-1 —33]1.2] —2.1 —74[3.1]—46 1.7]-0.81]0.9
Continued on next page
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Relative performance ‘

ACg s1118)78[%]

TPrnieEl%) |

TNg j118178[%]

Continued

from previous page
Test52-61-1 —08]—02|—1.0 | 1425[0.0|1425 | —7.2|—03]—7.5
Test74-81-1 —20]1.7]-03 —5.6 27| —3.1 5.0 [ 0.0 | 5.0
Test75-181-2 11.2]0.6 | 11.9 46.8]0.6 | 47.6 —66.0 | 0.0 | —66.0
Test76-93-1 —6.1]9.1 |24 —84(11.0| 1.7 14.0 [ —3.7] 9.8

Test77-105-1

16.6 | 58.4 | 84.7

42.7 | 100.6 | 186.3

—6.7] —05| —7.2

Test78-141-1

96.6 | 0.0 | 96.6

—46.8] 0.0 | —46.8

Inf 0.0 | Inf

Test79-237-1

23.6 | —0.8 | 22.6

233/ 0.0 | 23.3

23.7 | —2.1 | 21.2

Test80-69-1

152.5 | 7.0 | 170.3

432.8 | 8.5 | 477.9

—32.3]0.0 | —32.3

Test81-277-1 —9.9|1.6| —84 | —14.7|3.1| —12.1 | —3.0]0.0 | —3.0
Test81-393-2 —9.6]0.0| —9.6 | —15.1]0.0 | —15.1 8.5]0.0|8.5
Test82-337-1 —16.6 | 4.1 | —13.2 | —35.1| 5.4 | —31.6 Inf 0.0 | Inf
Test82-361-2 18.3 ] 13.4 | 34.2 22.3 ] 15.3 | 41.0 —38] 02| —4.0
Test83-297-1 —31.1]0.0 | —31.1 | —31.4 0.0 | —31.4 Inf 0.0 | Inf
Test83-321-2 —23.6 0.0 | —23.6 | —23.9]0.2| —23.8 Inf 0.0 | Inf

Test300-233-3

56| —1.9] 7.3

280.7 | 0.0 | 280.7

—18.9 | —2.3 | —20.8

Test300-429-2

6.3]63.3 | 73.6

—2.0 [ 117.3 ] 112.9

18.8 | —1.5 | 17.1

Test300-561-4

3.6 | —14.2 | —11.0

—25.18.1] —19.0

156.6 | —48.6 | 32.0

Test302-165-1 —5.2|1.4] -39 —5.3 | 1.7 | —3.7 —3.9|—3.0]—6.8
Test303-61-1 —25[03] —2.2 —86 04| —83 Inf 0.0 | Inf
Test400-185-2 8525 | 1.1 282 | 4.5 340 | —10.4 | —0.3 | —10.7
Test400-185-3 83| 1.8]10.2 —9.0 24| —638 99.6 | 0.0 | 99.6
Test403-469-1 38.1[2.6 | 41.8 ~39.0 [ 90.5 | 16.3 43.910.0 | 43.9
Test406-113-1 26.0 [ 0.0 | 26.0 —24[02] 22 | 8444 —0.5 ] 840.0

Test407-309-1

10.6 [ 3.8 | 14.8

—125|5.9| —7.3

140.4 | —0.3 | 139.7

Test408-233-1

12.3[3.7 | 16.4

—10.8 | 5.3 | —6.0

190.8 | —0.2 | 190.3

Test410-157-1

8.1]0.3]8.4

730.5 | 1.4 | 742.4

—23.7] —0.1 | —2338

Test412-69-1

722 —7.2]59.9

282.5 | 0.0 | 282.5

303 | —11.2 | 15.7

Test412-221-2

62.0 | 2.3 | 65.7

213.6 | 3.6 | 225.0

—~16.0 ] 0.0 | —16.0

Test413-121-1

434 | —2.3| 447

—55.7 | 1.5 | —55.1

64.1 | —11.3 | 45.5

Test414-193-1

285 | 1.8 | 30.8

204 | 2.7 | 23.6

49.9 ] —0.1|49.7

Test415-261-1

16.0 [ 2.0 | 18.4

40.9 | 5.1 | 48.1

—32 ] —14|—45

Test416-213-1 —35]05]—3.0 03[1.01.3 —89]—-0.2]—9.0
Test416-521-2 27204 | 27.7 389.4 0.9 | 393.9 —84]00] -84
Test418-69-1 —5.6 | —2.6 | —8.1 2.1]58 8.1 —8.9| —6.8 | —15.1
Test419-501-2 56.3 | 1.3 | 58.3 2603.0 [ 4.4 | 27212 | —1.2] —0.7] —1.9
Test421-169-2 —7.9|27]| -5.5 —6.7 44| —26 —9.9]0.0]—9.9
Test422-249-1 105 | 2.5 | 133 60.5 | 12.8 | 81.1 1.6 —0.4]1.2
Test423-213-1 35.3 | 0.1 35.5 —5.4 04| —5.0 | 229.3] —0.1]228.8
Test424-237-1 6.2 —2.2[3.9 —15.2 [ 8.7 | —7.8 | 55.4| —15.7 | 30.9
Test425-145-1 21.8 [ 1.2 ] 232 37.3 ] 2.0 | 40.0 1.6 —0.2] 1.4
Test426-65-1 ~1.9[94]73 931.7 | 50.8 | 1456.1 | —21.8 | —2.3 | —23.6
Test428-193-1 14.0 | —0.1 ] 13.9 4800438 29.4 | —0.3 | 29.1
Test430-177-1 —3.6 27| —1.0 4789 14.0 —8.7| —1.6 | —10.1

Test431-137-1

“14.7 [ 0.8 | —14.1

—18.8 29| —165

—11.8 | —0.5 | —12.2

Test433-109-1

—7.0] —1.6] -85

325 0.1 1327

—16.1 | —2.2 | —17.9

Test434-465-2

—76[1.2] —6.4

—7.9]3.9] —4.3

—7.4|—01|—75

Test435-297-2

10.8 [ 2.3 | 13.4

6.1]4.210.5

18.3 [ —0.3]18.0

Mean

13.5 [ 3.20 | 14.9

86.5 | 13.4 | 108

312 | —5.90 | 22.1

Standard deviation

60.0 | 12.0 | 44.2

34.7 [ 24.0 | 380

115 13.7 | 113

Table D.2: Relative performance measures for the test set. Example: ACR ;g denote the relative
improvement, in %, in accuracy, when using method E instead of method J. For the relative TN,
only 66 examples are used for computing mean and std. and in the statistical tests. Those names
in italic are not used, since they obtain zero value for the absolute TN of method J, and therefore
are not defined (inf) for the relative measure.
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APPENDIX D ADDITIONAL RESULTS

Testl2 - Frame no, 136

| Object no. 1

Javed ! 6 merged reg.
Improved: 25 merged reqg.

Absolute Perfermance;

AC: 91.4 71 .5 71.5

FP: 14,3 30.9 30.9

Testl? — Frame no. 57
Gbject no. 1

Javed 22 merged reg.
Improved: 244 merged reg.

Abgolute Performance:
J I 3}
w < ATy 27 .4 43.1 45,7

42 .4 B2.4 5

57 .6 47,6 48.2

- S

Test20 - Frame no, 209
Object no. 1

= Javed: 44 merged reg,
Improved: 340 merged reg.

Absolute Performance:
J I E
AC: 80.7 66.4 74.2

68.4 49.0 56.4
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Test2]l — Frame no. 277
Object no, 1

Javed: 24 merged req.
Improved: 179 merged reg.

Absolute Performance:
J I E

AT 57%.92 78.5 80.2

Test22 - Frame no. 125
Object no, 1

Javed 35 merged reg
Improved: 269 merged reg.

Absolute Performance;
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APPENDIX D ADDITIONAL RESULTS

Tegt23 — Frame no, 249
Object no, 1

Jawved ! 12 merged reg.
Improved: 65 merged reg,

Abgolute Performance:

Test24 - Frame no. 113
Objeect no. 1

Javed: 11 merged reg.
Improved, 102 merged reg,

. Absolute Performance:

A 61.9 4% .7 60.3
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TegtZ2d - Frame no. 58&1
Object no, 2

Javed: 19 merged req.
Improved: 207 merged reg.

Absolute Performance:

AC: 72,2 85.0 70 .4

FR: 847 3.7 8.0

Te=st24 - Frame no, 701
Object no., 3

Javed: 62 merged reg.
Improved: 443 merged reg.

Absolute Performance:
J I E
ABC: 61,0 68.2 64.5

F02 B

TestZ4 — Frame no. 745

" Object no: 4

Javed: 392 merged reg,
Improved: 250 merged reg.

Absolute Performance:
J I E
AC!H Yl FE.5 653

BRI 104 8.

Tegt28 - Frame no. 101
Object no. 1
Javed: 67 merged Teg.
Improved: 340 merged reg.
kbzolute Performance:

Jl E B
AC: 86.9 80.8 85.6

IA0l 10:8 15.8
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Testa5 - Frame no, 285
Object no. 2

Javed: 74 merged reg.
Improved: 383 merged reg.

. |

Absolute Performance
o I E
&gy Swl 8.5 88,1

84, .7 84,8 84

FEL  ABLS 15, & 5,2

Test2? - Frame no. 737
Ohject no. 3

Javed: 19 merged reg.
Improved: 175 merged reg.

Absolute Performance:

AC: 87.0 89.9 81.0

Test2% — Frame no. 105
Object no. 1

Javed: 10 merged reg.
Improved; 37 merged reg.

Absolute Performance!

AC: 82.0 63.3 64.6

EE) 4.9 180 488
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Test29 - Frame no. 141
Ohject no. 2

Javed: 47 merged reg.
Improved; 364 merged reg.

‘Absolute Performance!
J BE B

L S
3 76,4 44 .6
HE g9 7 23 g 58 o

Test30 — Frame no. &1
| Object no, 1
Jawed! 12 merged reg.
Improved: 180 merged reg.

Absolute Performance:

47.5 86.% 6.5

Test3l - Frame no. 45

| Object no. 1

Javed: 15 merged Teg.
Improved: 211 merged reg.

Absolute Performance:
=ik I B

AC: 54,3 54.3 55.6

2Hflole)

BB B 2% 8 33
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Test3l - Frame no. 77
Obhject no. 2
| Javed: 18 merged reg.

o Improved: 219 merged reg.

ERY B0 238 2

Test32 — Frame no. 241
Object no. 1

Javed: 1 merged reg,
Impreoved: 12 merged reg.

Abgolute Performance:

Ay IB.% 8B.9 BE Y

FB: 106.0 7.3 42.0

e

Test32 — Frame no. 697
Object no. 2

Javed: 9 merged reg.
- Improved: 68 merged reg.

Absolute Performance:

AC: 94.1 68.7 63.0
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Test37 - Frame no. 149
Cbject no., 1

Jawved: 67 merged reg,
Improved: 393 merged reg.
Abzolute Performance:

3 i E
9.7 82, .5 84.6
31 0.1 820

1
9

Testd45 - Frame no. 293
Object no. 2

Javed: 45 merged Teg.
Improved: 348 merged reg.
Absolute Performance:

Test4? — Frame no., 173
Object no., 1

Javed: 22 merged reg.
Improved: 106 merged reg.

Abgolute Performance:
J I E
AC; 48,6 55,4 55,8

Teztd48 - Frame no, 185
Object no. 1

Javed; 79 merged reg,
' Improved: 597 merged regq.

Absolute Performance:

J I E

AC: B87.6 B2.1 84.6

Test49 - Frame no, 161
Object no, 1

Javed 27 merged reg,
Improved: 160 merged reg.

Abgolute Performance:

J I E
AL TE.8 T4E PERG2
FPy 24,5 28,2 23,8
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APPENDIX D ADDITIONAL RESULTS

TegthZ - Frame no. &1
Object no. 1

Javed.| 26 merged reg,
Improved: 98 merged reg,

Abzsolute Performance:

— . — AC: 61,6 61.1 61.0

Fp: 23,3 38.1 28,3

Test?4 - Frame no, 81
Chject no. 1
Javed: 18 merged reg.
Improved: 87 merged reg.
Abzolute Performance:

J I b3

ACY 61,2 60,0 51.0

Te=st75 - Frame no. 181
Object no. 2

Javed 11 merged reg.
Improved: 77 merged reg.

Absolute Ferformance:
J I E
AC: 55.6 61.8 62.2

BT 0.3 66.1 66,1
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Test%6 — Frame no, 93
Object no., 1
Javed: 21 merged reg.

Improved: 126 merged reg.

Absolute Performance:
J I F
60.2

Test77 - Frame no, 105
Object no. 1

Javed: 15 merged reg.
Improved: 14% merged reg.

Absolute Performance:

J I E

Tegt?8 — Frame no. 141
Object no. 1

Javed: 2 merged reg.
Improved: 18 merged req.

Absolute Performance:

ACT 38.3 75.3 75.8

ce o [ 5 s

Test79 — Frame no. 237
Ghject no. 1

Javed: 26 merged redqg.
Improved: 146 merged reg.

| Absolute Performance:
J I E

AC, 41,1 50.8 50.4

41.4 27,5 29.0

e

Tegt80 - Frame no, 69
Object no. 1

Javed 15 merged reg,
Improved: 156 merged reg.

| 2b=olute Performance:
dJ I B
28,8 65,4 70,0

G0 3303 3&.3

AC

ED
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Test81 — Frame no, 277
Object no, 1

Javed: 48 merged reg.
Improved: 251 merged reg.

Absolute Performance:
. E E
AC: 747 B7.3 88,4

5, % &5

FEl AEh 1407 LT

Tegt8l - Frame no. 383
Ohject no. 2

Javed: 11 merged req.
Improved: &4 merged Teg.

Abhsolute Performance:

AC: 69,9 63.2 63,2

FP: 52,9 48.9 48 .9

Test82 - Frame neo. 337
Object no. 1

Javed: 3 merged reg.
Improved: 30 merged reg.

Absolute Performance:

FBy 100.,0 §9,2 §9.9

Test82 - Frame no, 361
QObject no. 2

Javed: 31 merged reg,
Improved: 217 merged reg.

Absolute Performance:
J I E
55.6 65.8 74.86

AT

FP: 46,9 48,9 42,0
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Tegt83 — Frame no. 297
Ohject no. 1

Javed: 2 merged reg.
Improved: 12 merged reg.

Absgolute Performance:

AC: 54,9 37.8 37.8

Epy 100,00 &% & 98,8

Tegt83 - Frame no. 321
Object no. 2

B Javed: 12 merged reg.

Improved: 70 merged reg.

Abgolute Performance:
J il B

AC: 39.8 30.4 30.4

TH 0.0 B.4 0.4
FP: 100.0 99.5 99.6

Tegt300 - Frame no, 233
Object no. 3

Javed: 8 merged reg.
Improved: 28 merged reg.

Absolute Performance.

I I E
AC: 85.8 81.0 V9.5
e 2

0.0 1&.8 20.8

Test300 - Frame no. 429
Object no. 2

Javed: g merged reg.
Improved: 110 merged reg.

Absolute Performance:
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APPENDIX D ADDITIONAL RESULTS

Test300 — Frame no. B&l
Chkject no. 4

Javed: 11 merged reg.
Improved. 163 merged reg.

Abseolute Performance:

AC: 71,6 74,2 63.7

FB: 6E8 TREE (EED

Test302 - Frame no, 165
CObject no. 1

Javed 22 merged reg.
Improved! 267 merged reg.

Abgolute Performancs:
J I E

AC, 61,7 58,5 5%.3

FR: 88 7 S0 90 o4

Tegt303 - Frame no. 61
Object no. 1

Javed: 9 merged reg.
Improved: 84 merged reg.
Abgolute Performance:

Test400 - Frame no. 185
Object no. 2

Javed: 1% merged reg.
Improved: 224 merged red.

Absolute Performance:

I I E

B 48 12 1209
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Test400 - Frame no. 185
Object no. 3

Javed: 18 merged reg.
Improved: 140 mergsd reg.

Absolute Performance;
J I E
AC! 68.3 74.0 75.3

Test403 - Frame no. 469
Object no. 1

Javed: 14 merged reg.
Improved: 60 merged reg.

absolute Performance:

J T E

A 58.2 80.4 82.5

FP: 40.8% 14.8 14.8

Test406 — Frame no, 113
Object no., 1

Javed: 5 merged reg,
Improved, 93 merged reg,

Absolute Performance:

Test407 - Frame no., 309

| Object no., 1

Javed: 42 merged Teg.
Improved: 423 merged reg.
Absolute FPerformarice:

Tegtd408 - Frame no. 233
Cbject no., 1
Javed: 29 merged reg,
Improved: 295 merged reg.
Absolute Performance:

7 I E
8.1 76.5 79.3
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APPENDIX D ADDITIONAL RESULTS

Test410 - Frame no. 157
Object no, 1

Javed: 15 merged reg.
Improved: 181 merged reg.

Abselute Performance:

ACH 59,5 64.3 54.5

Test4l2 - Frame no. &9
Okject no. 1

Javed: 3 merged reg.
Improved: 20 merged reg,

Abgolute Performance:

J I E

Tegtdla — Frame no. 221
Object no, 2

Javed: 7 merged reg
Improved: 60 merged reg.

Abzolute Performance;
i

o I E

AC: 32.4 5.5 53.7
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Tegt4l3 = Frame no., 121
Object no, 1

Javed: 16 merged reg.
Improved; 74 merged reg,

Absolute Performance:
J T E
A B9l 3901 32

51,3 38,5 43.%

Testd4ld4d — Frame no, 193
Object no, 1

Javed ! 39 merged reg,
Improved: 201 merged reqg.

Absolute Performance:

Test4l5 - Frame no, 261
Object no. 1

Javed: 26 merged reg.
Improved: 175 merged regqg.

. Absolute Performance:
I I E
58 .6 79.6 &t.

70,5

Test4l6 - Frame no, 213
Object no. 1

Javed: 34 merged reg.
Improved: 256 merged regqg.

Absolute Performance;
Fa £ i)
i I B O S T

G 39,6 39 %
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Testd4leé - Frame no. 521
Object no. 2

Javed: 8 merged reg,
Improved; 78 merged reg.

Absolute Performance:

ACy 44,1 56.1 56.3

14 g.0 8.4 8.4

Testdld - Frame no, 69
Obiject no, 1

Javed: 9 merged Teqg.
Improved! &1 merged req.

Abgolute Performance:
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Tegt419 — Frams no. 501
Object no, 2

Javed 13 merged reg.
Improved: 59 merged reg,

Absolute Performance:

AC, 50.7 94.9 26,1

e Testd2]l — Frame no, 169
Object no. 2

Javed: 32 merged reg,
Improved: 197 merged regqg.

.| Abzolute Performance:
J ) E
AC: 86.0 79.2 81.3

Fp: 23,1 30,7 30,7

Test422 - Frame no. 249
Object no, 1

Javed: 31 merged reg
Improved: 222 merged reg.

Ab=olute Performance:
J I E

AU 8%, T 48,1 B4

FEY 2.6 204 989
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Test423 — Frame no, 213
Object no, 1

Javed: 30 merged reg.
Improved: 225 merged reg.

_ | Absolute Performance:
J i E
JF B

Test424 — Frame no. 237
Object no, 1

Javed: 35 merged reg.
Improved: 283 merged reg,

Abzolute Performancs:!
J I E
AC: 74.0 78.6 76.9

A gl T 1 29

—= . Testd25 — Frame no. 145
il Object no. 1

Javed; 38 merged reg,

Improved: 292 merged reg.

Absolute Performance:
J I E
£€2.8 76.5 77.4

37 .7 26,7 36,8

Test426 — Frame no. 65
Cbhject no, 1

Jawved: 9 merged reg
Improved: 104 merged reg,

Absolute Performance:

I I I

ACy  6%.2 65,9 72l

e
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Test428 - Frame no, 193
Object no. 1

Javed: 34 merged reg.
Improved: 260 mergsd Teg.

Absolute Performance:

J I B

ATy ¥3.8 83.0 58.9

FPY 43,6 2.0 2%, 2

Test430 — Frame no. 177
Object no. 1

Javed: 16 merged req.
 Improved: 183 merged reg.

Absolute Performance:

AC: 78 6 8 TR9

SRR 8.3 246 .3 17,6

Test431l - Frame no. 137
Gbject no. 1

Javed: 38 merged reg.
Improved, 350 merged reg.

Absolute Performarnce
J I E

AZy 78,1 66,6 67 .1

FP 5.6 1.7 k7.1
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Test433 - Frame no. 109
Object no. 1

Javed: 12 merged reg.
Improved, 36 merged reg.

Absolute Performance:
g E B

AC: BB.Z 82.0 BO.7

TP 0.6 16,6 18.4

Testdi24 - Frame no, 465
Object no. 2

Javed : 40 merged reg.
Improved: 338 merged reg.

¥ N
. f‘ - ~ Abgolute Performance;

<

J 2L E
AC, 78.0 72,1 73.0

Test435 - Frame no. 297
Object no. 2
Javed ! 30 merged Teg.
Improved: 191 merged reg.
Abgolute FPerformance:

J E E
AC: 71.0 78.7 &0

FP: 38.8 27.6 27.8




Appendix E

Matlab Routines

This appendix contains the Matlab routines used. A description of each file is given
in their respective headers. Figure is a flowchart illustrating how the central Matlab
routines interact. Numbers correspond to section titles.

Video Bit
Data Sequence RGBI :‘nap
Acquisition Ab[ 1-MakeFiles.m |—>[ 2-BayerGR_fastm -images
[
Y
Foreground ‘4-ChooseFrames.m]—>[3-main01_SGE.mHS-Noise_Reduction_SGE.m
Detection
Detected Foreground Objects
v (Including Cast Shadows)
‘ 7-DataSets.m 6-DoShadow.m J
8-Javed.m J + LQ-JavedImproved.m

4 4
10-MergeRegions.m
Color Segmentation,

Classification Using
Gradient Directionr Only

A 4 Y

—[ 11-Finlayson_IIl_I nv.m]—b[ 13-SolvePoisson.m H 12-Finlayson_FGmask.m ]—

Classification Using I
Enhanced Similanty
Feature (CS) [1 5-DetectVariance.mH 14-EnhancedSegmentation.m ]
Measuring ¢

Performance [16-Performance.mH 17-Compare.m |—>[ 18-PlotComparison.m ]

19-PlotPerfomance m

Figure E.1: Flowchart of central Matlab routines.
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E.1 MakeFiles.m

BRI LL Il h I T Tt ol h oo oo toToTo T oo T o o o o o o T T T o o oo o o o 2o o o ot T T o o o o o o 2o o T T o oo o oo o o o 2o 2 2o T T o oo

% Filename: "MakeFiles.m"

% Description: Script that performs reconstruction of full color images
% from Bayer-filtered images on several video sequences at a time.

% Input: Video sequences in "avi"-format.
% Output: Bitmap Reconstructed RGB-image.

% Author: Sgren Erbou
% Last Revision: August 6, 2004
Tt ol o toto o o Tl ToTo o o o ToTo o 1o o T To T o 1o o o To T o o o o T o 0 1o o o To o 0 0o o o To o o 0o o o T o 0 o oo T o o o o o To o o o o o Jo o 2 s o oo

close all;
clear all;
clc;

CalibrationSequence=0;
N0=[424:435];
for j=1:length(N0)
No=NO(j);
if CalibrationSequence
Dir=’E:\SGE\Video\CalSeq\’;
else
Dir=’E:\SGE\Video\’;
end
DestFolder=[’Test’,num2str(No)];
if exist([Dir,DestFolder],’dir?’)~=7
01dDir=pwd;
cd(Dir);
mkdir(DestFolder);
cd(01dDir);
end
FileInfo=aviinfo([Dir, ’Test’,num2str(No),’.avi’]);
StartString=[Dir,’Test’,num2str(No),’\Test’ ,num2str(No),’_’];
EndString=’.bmp’;
Frame=1;
Frames=1:4:FileInfo.NumFrames;
for i=1:size(Frames,2)
TheMovie=aviread([Dir, ’Test’ ,num2str(No),’.avi’] ,Frames(i));
Test=TheMovie(l).cdata(:,:,:);
Test=im2double(Test);
Test2=BayerGR_fast(Test);
MiddleString=int2str((i-1)*4+1);
E=strcat(StartString,MiddleString,EndString);
imwrite(Test2,E, bmp’);
disp([’Test ’,num2str(No),’ frame ’,num2str(i),’...°]);
end
end
disp(’done...’”);

E.2 BayerGR fast.m

Tl m Rt il bt T b toto T o oo to T oo Tota oo o Tt o ot To o o o T T o ot T oo o 2o To oo 2o T T oo o Tt oo o ot o oo 2 T o o

% Filename: "BayerGR_fast.m"

%

% Description: A function that reconstructs a RGB-image from a Bayer-filtered image.

%
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% Input: Bitmap Bayer-filtered image.
% Output: Bitmap Reconstructed RGB-image.

% Author: Erik Thiesen (ET)
% Last Revision: March 3, 2004
Tt ot o to o ot T o e o T Tt o T T o T o o T To o T To e o T o o T o s o T o o T o o e o o o T T ol T o o o o Tt o Vo o o Ve o o o o o o s

function im=BayerGR_fast(ImBW)

im=zeros([size(ImBW) 3]);
for y=2:2:size(ImBW,1)-1
for x=2:2:size(ImBW,2)-1
im(y,x,1)=(ImBW(y-1,x-1)+ImBW(y+1,x-1)+ImBW(y-1,x+1)+ImBW(y+1,x+1))/4;
im(y,x,2)=(ImBW(y-1,x)+ImBW(y+1,x)+ImBW(y,x-1)+ImBW(y,x+1))/4;
im(y,x,3)=ImBW(y,x);
end
end
for y=2:2:size(ImBW,1)-1
for x=3:2:size(ImBW,2)-1
im(y,x,1)=(ImBW(y-1,x)+ImBW(y+1,x))/2;
im(y,x,3)=(ImBW(y,x-1)+ImBW(y,x+1))/2;
im(y,x,2)=(4*ImBW(y,x)+ImBW(y-1,x-1)+ImBW(y-1,x+1)+ImBW(y+1,x-1)+ImBW(y+1,x+1))/8;
end
end
for y=3:2:size(ImBW,1)-1
for x=2:2:size(ImBW,2)-1
im(y,x,1)=(ImBW(y,x-1)+ImBW(y,x+1))/2;
im(y,x,2)=(4*ImBW(y,x)+ImBW(y-1,x-1)+ImBW(y-1,x+1)+ImBW(y+1,x-1)+ImBW(y+1,x+1))/8;
im(y,x,3)=(ImBW(y-1,x)+ImBW(y+1,x))/2;
end
end
for y=3:2:size(ImBW,1)-1
for x=3:2:size(ImBW,2)-1
im(y,x,3)=(ImBW(y-1,x-1)+ImBW(y+1,x-1)+ImBW(y-1,x+1)+ImBW(y+1,x+1))/4;
im(y,x,2)=(ImBW(y-1,x)+ImBW(y+1,x)+ImBW(y,x-1)+ImBW(y,x+1))/4;
im(y,x,1)=ImBW(y,x);
end
end

E.3 main01 SGE.m

TR bbbttt Tololo oo o oo to o toToTo o o oo o o o Jo oo toto T To o o o o o o o o o o oo To o o o oo o o 2o 2 Fo T T o o o o oo o 2o o 2o o T T o o oo o

% Filename: "mainO1_SGE.m"

% Description: Script performing Kernel-based background modelling (Elgammal),
% and noise reduction, used for detecting moving foreground objects.

% Input: Bitmap images of video sequence to analyze

% Output: Bitmap images of detected foreground regions before and after
% noise reduction, and mean image of background model for every analyzed
% frame

% Remarks: Input images should be named "Test??7.bmp", where 7?7 is the
% frame number. This is a revised version of the file "mainOl.m" made by
% Morten Hansen (MH). Remarks in danish are due to MH.

% Author: Morten Hansen (MH)
% Revised by: Sgren Erbou (SGE)
% Last Revision: September 13, 2004
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I I Tl bbbt tototototo oo oo tototototodo o o o o o o o Jo oo toto o oo o o o o o o oo o oo o o o o o oo o o oo o oo o o o o oo oo o o o e o o o o

clc
close all
clear

TESTS=[424:435] ;
for c=1:length(TESTS)
% Initialization
TestNo=TESTS(c);
TestFolder=[’Test’ ,num2str(TestNo)];
DestFolder=[’SGE\Video\’,TestFolder,’_Object’];

if exist([’E:\’,DestFolder],’dir’)~=7
Dir=pwd;
cd(PE:\?);
mkdir(DestFolder);
cd(Dir);
end
DestFolder=[’E:\’,DestFolder,’\’];
addpath([’E:\SGE\Video\’,TestFolder]);

h----- Erklering af variable-----------------ooooomooooooo

Fit_to_baggrund = 10; %Tid i sek. der skal g& fgr en forgrundspixel tilskrives baggrunden
min_areal = 50; %Minimum areal der skal benyttes i "noise_reduction.m"

taerskel = 1le-20; %Terskelvaerdi

N = 10; %Antallet af frames der skal benyttes i

%estimattet for pixel intensitets fordelingen

global FRAME_RATE; ¥%Global variabel

FRAME_RATE = 20; %#Den frame rate videosekvenserne er optaget med
global FRAME_JUMP; YGlobal variabel
FRAME_JUMP = 4; %Springet ml frames

fps = FRAME_RATE/FRAME_JUMP; %Antal frames pr. sekund
namel = [TestFolder,’_’];

name2 = [?.bmp’];

%Nummeret p& den frame som programmet skal starte ved
ChooseFrames;

%Filnavn pd forgrundsbillede som skal indl®ses

str = num2str(frame_no);

filename = [namel,str,name2];

[Y,X,Z] = size(imread(filename));

%Variabel der holder styr pad hvilken frame der skal overskrives for hver pixel
varl = uint8(ones(1,X*Y));

%Allokerer plads i hukommelsen til N billeder (RGB).
pic_data = uint8(zeros(N,Y*X,3));
for n = 1:N;
pic_in = imread(filename);
pic_data((n-1)*X*Y*Z+1:n*X*Y*Z) = pic_in(:)’;
frame_no = frame_no + FRAME_JUMP;
str = num2str(frame_no);
filename = [namel,str,name2];
end
Foreground_history = uint8(zeros(1,Y*X));
fg_data={};
fg_ind={};
fg_count=1;
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foerste_fr = frame_no + FRAME_JUMP;

while (frame_no < stop_frame)

t=cputime;
pack;

Differens = uint8(abs(diff(double(reshape(pic_data,X*Y*Z,N)?),1,1)));
Medi = uint8(median(double(Differens),1)); %Finder medianen af differensen

Medi(find(Medi==0))=1;
MediInv=1./double(Medi);

KernelConst = (0.68/sqrt(pi))*Medilnv;
ExpConst = -(0.68"2)*Medilnv."2;

%----Variable tzlles Op----------=-—-—————-c-oo——--

frame_no = frame_no + FRAME_JUMP;

h----- Indlazser nyt billede------------—-——c--ooooooo-

str = num2str(frame_no);
filename = [namel,str,name2];
pic_temp = imread(filename);
pic_in = pic_temp(:)’;

YAREEE Estimerer intensitets fordelingen for pixels--------

Pr = zeros(1,X*Y);
pic_bg_gray = zeros(1,Xx*Y);
for i = 1:N,

Temp = KernelConst.*exp(ExpConst.*(double(pic_in)-...
double(pic_data((i-1)*X*Y*Z+1:i%X*Y*Z)))."2);
Pr = Pr + Temp(1:X*Y).*Temp(X*Y+1:2%X*Y) .*Temp(2*X*Y+1

end

Pr = Pr/N;

Y el
h----- Evaluering af billede i forhold til tarskelvardi

Pic_foreground = (Pr < taerskel);

=== Opdatering af baggrundsmodel------------------o----

%0pdateringen foregir pa pixel plan

%Baggrundspixels anvendes til at opdatere baggrundsmodellen

IndBG=find(Pic_foreground==0);

IndBG_rgb=reshape((((1:Z)-1)’*ones(1,length(IndBG))*X*Y+. ..
repmat(IndBG,Z,1))’,1,length(IndBG)*Z) ;
pic_data(repmat((double(var1(IndBG))-1).*X*Y*Z,1,3)+IndBG_rgb)=pic_in(IndBG_rgh);

IndFG=find(Pic_foreground==1); JForgrundspixels

IndFG_rgb=uint32(reshape((((1:Z)-1)’*ones(1,length(IndFG))*X*Y+. ..

repmat (IndFG,Z,1))?,1,length(IndFG)*Z));
#Forgrundspixels historie inkrementeres

Foreground_history(IndFG) = uint8(double(Foreground_history(IndFG))+1);

fg_data{fg_count} = pic_in(IndFG_rgb);
fg_ind{fg_count} = IndFG_rgb;

%Pixels der har varet forgrund lznge tilskrives baggrund.

IndFG2BG=find (Foreground_history>=Fit_to_baggrund*fps);

if length(IndFG2BG)>0

IndFG2BG_rgb=reshape((((1:Z)-1)’*ones(1,length(IndFG2BG))*XxY+. ..
repmat (IndFG2BG,Z,1))’,1,length(IndFG2BG) *Z) ;
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% Hvis fg-pixels szttes til bg-pixels, skal de sidste
% Fit_to_baggrund*fps antal frames i baggrundsmodellen opdateres til
% forgrundpixelen.
temp_fg_count=fg_count;
for i=0:Fit_to_baggrund*fps-1
varl_temp=double(varl(IndFG2BG))-1i;
IndTemp=1;
while length(IndTemp)
IndTemp=find(varl_temp<1);
varl_temp(IndTemp)=varl_temp(IndTemp)+N;
end
IndTemp2=find(ismember (fg_ind{temp_fg_count}, IndFG2BG_rgb)==1);
pic_data(repmat((varl_temp-1).*X*Y*Z,1,3)+IndFG2BG_rgb) = ...
fg_data{temp_fg_count}(IndTemp2);

temp_fg_count=temp_£fg_count-1;

if temp_fg_count<1
temp_fg_count=Fit_to_baggrund*fps;

end

end
end
Foreground_history([IndFG2BG, IndBG])=uint8(0) ;
% SGE - Baggrundsgratonebilleder opdateres
pic_bg_rgb_mean=reshape(uint8(mean(double (reshape(pic_data,Y*X*Z,N)),2)°),Y,X,Z);

%Vazlger hvilken baggrundsframe der skal opdateres:
var1([IndBG,IndFG2BG]) = uint8(double(varl([IndBG,IndFG2BG])) + 1);
IndVari=find(vari>N);

varl(IndVari)=1;

fg_count=fg_count+1;
if fg_count>Fit_to_baggrund*fps

fg_count=1;
end
if 1
Y e
Pic_foreground = reshape(Pic_foreground,Y,X);
imwrite(Pic_foreground, [DestFolder,namel, [’binart_’],str,’_Noisy’,name2]);
h----- Stgjreduktion SGE------—----ooo oo
bin_pic = Noise_Reduction_SGE(Pic_foreground,min_areal);
imwrite(bin_pic, [DestFolder,namel, [’binart_’],str,’_SGE’,name2]);
Y= — — o o e
h----- Shadow removal MH-----— - oo
imwrite(pic_bg_rgb_mean, [DestFolder,namel,’middel_’,str,’_bg_rgb_SGE’,name2]);
Y e
if 0
h=--=--- Foretager tracking af objekt-------------—------—————-
track_before_detect(namel,frame_no)
Y= = e
%--Funktion der viser de forskellige stadier i systemet---
plot_4_windows (namel,frame_no)
Y el
end
end

%End p& while-lgkke
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disp([TestFolder,’, Frame no. ’,num2str(frame_no), > done in ’,...
num2str(cputime-t,3),’ seconds...’]);

clear Medi Medilnv KernelConst ExpConst bin_pic Pic_foreground pic_bg_rgb_mean pic_in

clear Differens Temp pic_bg_gray IndBG IndBG_rgb IndFG IndFG_rgb Pr pic_temp
pack;
end
end

disp(’Program kgrt fardig’)

E.4 ChooseFrames.m

TRl h I Tl Tl oo o oo to o toToTo o T oo oo o oo ot to T To o o o o o o T o o T oo T o o o o o o o 2o 2 T T T o o o o oo o 2o o 2 2 T T o o oo o

% Filename: "ChooseFrames.m"

% Description: Script that determines the frame numbers of different test
% sequences.

% Input: Sequence number and number of images processed so far
% Output: Start and Stop frame
% Remarks: Used by "main01_SGE.m"

% Author: Sgren Erbou (SGE)
% Last Revision: June 11, 2004
It I Tt e Tt o Tt T o T Tt T Tt o Tt o Tt o o T T o T Tt T Tt o Tt s e T o o T To o e o T T T T o T T s e o T o Tt o T o o T e T o e o e T o

switch TestNo
case 12 % 60,460
start_frame = 60-(N+1)*FRAME_JUMP;
stop_frame = 460;
case 27 % 45,797 ;209-350; Store lysskift 350-700
start_frame = 209-(N+1)*FRAME_JUMP;
stop_frame =350;
otherwise
start_frame = 45-(N+1)*FRAME_JUMP;
FileList=dir([’E:\SGE\Video\’,TestFolder,’\*.bmp’]);
FRAMENO=[];
for g=1:length(FileList)
UnderscoreInd=find(FilelList(q) .name==’_’);
FRAMENO (end+1)=str2double(FileList(q) .name(Underscorelnd+1l:end-4));
end
stop_frame = max(FRAMENO);
end

E.5 Noise Reduction SGE.m

TRl hh Tl lolo oo oottt toToTo o T oo oo o 2o oo Tt T To o o o o o o o o o T T o T o o o oo o o 2o 2 T T T o o o o oo o 2o o 2 2 T T o o oo o

% Filename: "Noise_Reduction_SGE.m"

% Description: Performs noise reduction on detected foreground objects
% Input: Noisy foreground mask

% Output: Noisereduced foreground mask

% Author: Sgren Erbou (SGE)
% Last Revision: September 13, 2004
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bl oot oo T ot o o oo ot o 1o o T To T o 1o o e To T o o o T T To o o o o T T o o 0o o T To T o 0o o T T o 0 o o T o 0o o o o T o 0o o o o To o 0 s o oo
function pic_out = Noise_Reduction_SGE(pic_in,min_areal_1);

pic_out = zeros(size(pic_in));

% connected component with "8-connected neighbors"
[L,NUM] = bwlabeln(pic_in);

%compute area

S = regionprops(L, ’Area’);

% removes small segments

pic_out = ismember(L, find([S.Area] >= min_areal_1));
Yremove noise

se = strel(’disk’,3);

pic_out=imclose(pic_out,se);
pic_out=imopen(pic_out,se);
pic_out=imerode(pic_out,strel(’disk?’,2));

E.6 Do Shadow.m

BRIl bttt bbbl bbb to o to o e b b bbb o oo Tota oo o o o ot o Tt T T T o o o o o o ot Tt T T e o o o o o 2o T T o o

% Filename: "Do_Shadow.m"

% Description: Script applying various methods for shadow removal,
% computing performance measures, and comparing methods.

% Input: Bitmap images of object to analyze, mask of foreground detected
% object with and without noise, clean version of foreground mask,
% background image, possibly manually labelled image.

% Output: Various figures in "png"-format, and images and variables in
% "mat"- or "bmp"-format.

% Remarks: Input images should be produced using the "main01_SGE.m" file.

% Before applying "Do_Shadow.m" a clean version of the foreground mask

% should be produced manually, with the extension "Clean_7.bmp" to the

% filename, where 7 denotes the object number, (usually only one object per
% sequence). Example: If the noisereduced foreground mask is named

% "Test400_binart_101_SGE.bmp", then the clean version should be named

% "Test400_binzrt_101_SGE_Clean_1.bmp"

% Author: Sgren Erbou (SGE)
% Last Revision: September 13, 2004
Dbl toto o o Tl Toto o o o T To T o o T To T 1o o o T T 0o 0 o o T To 0o 0 o o T T o o o o T T T o 0o o o T T 0 0 o oo To 2 0 o o o To o o 2o o o To o 0 s o oo

close all;
clear all;
clc;

global DestFolder
global TestFolder
global ImNo
global ObjectNo
global Perf;

CHOOSE_DATASET=1; %0=Traing set, 1= Test Set
DoLabelling=1; %0=none, 1=Write image to bmp for manually labelling.

% 1 should be performed prior to applying DoPerformance.

DoShadow=3; %0=none, 1=Javed 2=JavedImproved, 3=Finlayson using FG mask and enhanced segmentationm,
%4=Finlayson with foreground mask and enhanced segmentation.

% 1 or 2 should be performed prior to 3 and 4
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UseJavedImproved=1; %0=Use Javeds color segmentation, 1=Use Improved color segmentation
%Determines which color segmentation to use in DoPerformance

DoPerformance=1; %0=none, 1=Javed, 2=Enhanced, 3=figures of objects, 4=figure of training examples
% 3 and 4 produce figures similar to those seen in the report

DoComparison=1; % Collects data from all examples and saves it in a single file for anlysis

Tight=1;
Offset = 0; % How much darker than the background image should shadow candidates be...

Yhh%h Javed %h%%%

% K-Means

VAR=[81]; %[25 36 49 64 81 100];

% Merging

MERGINGSIZE=[10];%[10 30 50 70 100 150]
% Correlation

CORRTHRES=[0.15]; %[0 0.05 0.1 0.15 0.2 0.3]
Tl oo o To o fo o

%kt Improved %hhhhhh

VAROFFSET=[4];

Wl bt h oo oot o o oo o o

%%h% Enhanced %A%%AALY

RBTHRES=[3]; % [3,5,7]

Wb bbb bttt to h ot oo

if CHOOSE_DATASET
DestFolder=[’SGE\Video\FilesTestSet’];

else
DestFolder=[’SGE\Video\FilesTrainingSet’];

end

Drive = ’E:\?;

if exist([Drive,DestFolder],’dir’)~=7
Dir=pwd;
cd(Drive);
mkdir([DestFolder]);

cd(Dir);
end
if exist([Drive,DestFolder,’\Performance’],’dir’)~=7
Dir=pwd;
cd(Drive);
mkdir([DestFolder, ’\Performance?’,]);
cd(Dir);
end

DestFolder=[Drive,DestFolder,’\’];
addpath(DestFolder);

DATASET=DataSets (CHOOSE_DATASET); % O=Training Set (18 examples), 1=Test Set (72 examples)

Perf.ac=-1*ones(size(DATASET,1),4);
Perf.tp=-1%ones(size(DATASET,1),4);
Perf.fp=-1%ones(size(DATASET,1),4);
Perf.tn=-1*ones(size(DATASET,1),4);
Perf.fn=-1%ones(size (DATASET,1),4);
Perf.NoOfPixels=-1*ones(size(DATASET,1),4);
Perf.TrueObj=-1%ones(size(DATASET,1),4);
Perf.TrueShadow=-1*%ones(size(DATASET,1),4);
Perf.TrueSelfShadow=-1%ones(size(DATASET,1),4);

% Loop over all sets of variables
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for VarCount=1:length(VAR)
for MerCount=1:length(MERGINGSIZE)
for CorrCount=1:length(CORRTHRES)
for VarOffsetCount=1:length(VAROFFSET)
for RBCount=1:length(RBTHRES)
RBThreshold=RBTHRES (RBCount) ;
VarOffset=VAROFFSET (VarOffsetCount) ;
Var=VAR(VarCount) ;
MergingSizeLimit=MERGINGSIZE(MerCount) ;
CorrThreshold=CORRTHRES (CorrCount) ;
if mod(CorrThreshold,0.1)==
Parameters=[’_Var’,num2str(Var),’_Mer’ ,num2str(MergingSizeLimit),...
’_Corr?,sprintf(’%.1£’,CorrThreshold),’_’];
else
Parameters=[’_Var’,num2str(Var),’_Mer’ ,num2str(MergingSizeLimit),...
’_Corr’,sprintf(’%.2f’,CorrThreshold)];
end
ParametersImproved=[’_VarOffset’,num2str(Var0ffset)];
ParametersEnhanced=[’_RB’,sprintf(’%.1f’,RBThreshold),’_’];
count=0;
% loop over examples in DATASET
for j=[1:size(DATASET,1)]
count=count+1;
TestNo=DATASET(j,1);
ImNo=DATASET(j,2);
ObjectNo=DATASET(j,3);
TestFolder=[’Test’ ,num2str(TestNo)];
disp([’Processing ’,TestFolder,’ - Frame no. ’,num2str(ImNo),...
> - Object No. ’,num2str(ObjectlNo),’...’1);

addpath([’E:\SGE\Video\’,TestFolder]);
addpath([’E:\SGE\Video\’,TestFolder,’_Object’]);

filename=[TestFolder,’_’ ,num2str(ImNo),’.bmp’];

fg_filename=[TestFolder,’_binart_’,num2str(ImNo),’_SGE.bmp’];

fg_clean_filename=[TestFolder,’_binert_’,num2str(ImNo),’_SGE_Clean_’,...
num2str(0bjectNo),’.bmp’];

fg_noisy_filename=[TestFolder,’_binert_’,num2str(ImNo),’_Noisy.bmp’];
bg_filename=[TestFolder,’_middel_’,num2str(ImNo),’_bg_rgb_SGE.bmp’];
label_filename=[DestFolder,TestFolder,’_Truelabel_’,num2str(ImNo),’.mat’];

pic_in = imread(filename);
pic_in_org=pic_in;
if (exist(fg_clean_filename)==2)
fg_mask_full = double(imread(fg_clean_filename));
else
fg_mask_full = double(imread(fg_filename));
end

fg_noisy_mask = double(imread(fg_noisy_filename));
bg_in = imread(bg_filename);

Stat_All = regionprops(fg_mask_full, ’Area’,’BoundingBox’);
Border= 10;

if length(Stat_All)
[YOrg,X0rg,Zl=size(pic_in_org);
Stat_All = regionprops(fg_mask_full, ’Area’,’BoundingBox’);
BBoxAll=Stat_All.BoundingBox;
BBoxAl11=[BBoxA11(1)-Border,BBoxAl1(2)-Border,BBoxA11(3)+2*Border,...
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BBoxAll(4)+2*Border] ;

if BBoxAl1l(1)<1
BBoxA11(3)=BBoxA11(3)-(0.5-BBoxA11(1));
BBoxAl11(1)=0.5;

end

if BBoxAl1l(1)+BBoxAl1l(3)>X0rg+1
BBoxA11(3)=X0rg-BBoxA11(1)-0.5;

end

if BBoxAll(2)<1
BBoxA11(4)=BBoxA11(4)-(0.5-BBoxAl1(2));
BBoxAl11(2)=0.5;

end

if BBoxAl1l(2)+BBoxAl1l(4)>Y0rg+1
BBoxAl11(4)=Y0rg-BBoxA11(2)-0.5;

end

if Tight
pic_in=imcrop(pic_in,BBoxAll);
fg_mask=imcrop(fg_mask_full,BBoxAll);
fg_noisy_mask=imcrop(fg_noisy_mask,BBoxAll);
bg_in=imcrop(bg_in,BBoxAll);

else
fg_mask=fg _mask_full;

end

[Y,X,Z]=size(pic_in);

fg_mask = fg_mask;

dark_mask = double((pic_in(:,:,1))<(double(bg_in(:,:,1))+0ffset)) & ...
double((pic_in(:,:,2))<(double(bg_in(:,:,2))+0ffset)) & ...
double((pic_in(:,:,3))<(double(bg_in(:,:,3))+0ffset));

dark_mask = dark_mask.*fg_mask;

dark_mask_full=uint8(zeros(size(fg_mask_full)));

dark_mask_full(round (BBoxA11l(2)):(round(BBoxAl1l(2))+fix(BBoxA11(4))),...
round (BBoxA11(1)): (round(BBoxA11(1) )+fix(BBoxA11(3))))=dark_mask;

[L,NUM] = bwlabeln(dark_mask);
Stat = regionprops(L, ’Area’,’BoundingBox’);
dark_mask = ismember(L, find([Stat.Area] >= 20));

fg_only=uint8(zeros(Y,X,Z2));
dark_fg_white=uint8(zeros(Y,X,Z));
dark_fg=uint8(zeros(Y,X,Z));
for i=1:Z
fg_only(:,:,1i) uint8(double(pic_in(:,:,1i)).*fg_mask);
dark_fg(:,:,1) uint8(double(fg_only(:,:,1i)).*dark_mask);
dark_fg_white(:,:,i)=uint8(double(dark_fg(:,:,i))+...
(2565.*ones(Y,X) .*"dark_mask));

end

if DoLabelling==1
if Tight
imwrite(dark_fg_white, [DestFolder,TestFolder,’_LabelIm_’,...
num2str(ImNo),’_?,num2str(ObjectNo),’.bmp’]);
else
imwrite(dark_fg_white, [DestFolder,TestFolder,...
’_LabelImFullSize_’ ,num2str(ImNo),’_’,...
num2str(0bjectNo),’.bmp’]1);
end
F4=figure(4);
subplot 121
imshow(pic_in, [0 255]1);
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title([TestFolder,’ - Frame No. ’,num2str(ImNo),...
> - Object No. ?,num2str(ObjectNo)]1);
subplot 122
imshow(dark_fg_white, [0 2565]);
if Tight
saveas(F4, [DestFolder,TestFolder,’_Image_’ ,num2str(ImNo),’_’,...
num2str(0bjectNo),’.png’], ’png’);
else
saveas(F4, [DestFolder,TestFolder, ’_ImageFullSize_’,...
num2str(ImNo),’_’,num2str(0bjectNo),’.png’], ’png’);
end
close(F4);
end

switch DoShadow
case 1
disp(’Javed...?);
Javed(pic_in,fg_mask,bg_in,dark_mask,0ffset,MahThres,Var,...
MergingSizeLimit,CorrThreshold);
case 2
disp(’Improved color segmentation...’);
JavedImproved(pic_in,fg_mask,bg_in,dark_mask,0ffset,MahThres,...
VarQOffset,Var,MergingSizeLimit,CorrThreshold);
case 3
disp([’Finlayson with foreground mask and enhanced 7,...
’classification...’]);
Finlayson_FGmask(pic_in_org,BBoxAll,fg_mask);
EnhancedSegmentation(pic_in,bg_in,BBoxAll,UseJavedImproved,. ..
Parameters,ParametersImproved,CorrThreshold,RBThreshold,...
RFThreshold);
case 4
disp([’Finlayson with illumination invariant and enhanced °’,...
‘classification...’]);
Finlayson_Ill_Inv(pic_in_org,BBoxAll,fg _mask);
EnhancedSegmentation(pic_in,bg_in,BBoxAll,UseJavedImproved,. ..
Parameters,ParametersImproved,CorrThreshold,RBThreshold,...
RFThreshold);
end
if DoPerformance
Performance;
end
if DoComparison
Compare;
end
disp(’done...’);
else
disp([’No foreground objects in ’,TestFolder,’ frame no. ’,...
num2str (ImNo),?...%]);
end
end
end
end
end
end
end

E.7 DataSets.m
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% Filename: "DataSets.m"
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% Description: Function returning the final datasets
% Input: Variable denoting training set or test set

% Output: Vector of appropriate dataset, containing sequence number, image
% number, and object number.

% Author: Sgren Erbou (SGE)
% Last Revision: August 27, 2004
bttt Todo s o Toto o ToTo o o To s o Tt o T T s o o 0o T To o o Tt o T o 2o o T s o T o o Tt o T o o T 2o o T s o T 0o T s o o 2o o T o o Tt o T

function [DataSet] = DataSets(Set)

TrainingSet=[36,189,1;... %[TestNo, ImNo,ObjectNo,. ..
45,141,1;. ..
46,109,1;...
53,205,1;...
300,429,1;...
420,425,1;...
429,141,1;. ..
432,233,1;...
434,245,1;. ..
75,101,1;...
352,145,1;...
411,169,1;. ..
419,297,1;...
400,101,1;...
402,89,1;...
409,165,1;...
421,141,1;. ..
435,49,17;

TestSet=[12,136,1;...
13,57,1;...
20,209,1;...
21,277,1;...
22,125,1;...
23,249,1;. ..
24,113,1;...
24,581,2;...
24,701,3;...
24,745,4;...
25,101,1;...
25,285,2;...
27,737,3;...
29,105,1;...
29,141,2;...
30,61,1;...
31,45,1;...
31,77,2;...
32,241,1;...
32,697,2;...
37,149,1;...
45,293,2;. ..
47,173,1;...
48,185,1;...
49,161,1;. ..
52,61,1;...
74,81,1;. ..
75,181,2;...
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76,93,1;...
77,105,1;. ..
78,141,1;. ..
79,237,1;...
80,69,1;...
81,277,1;...
81,393,2;. ..
82,337,1;. ..
82,361,2;...
83,297,1;. ..
83,321,2;...
300,233,3;...
300,429,2; . ..
300,561,4;. ..
302,165,1;. ..
303,61,1;. ..
400,185,2;. ..
400,185,3;. ..
403,469,1;. ..
406,113,1;. ..
407,309,1;. ..
408,233,1;. ..
410,157,1;. ..
412,69,1;...
412,221,2;. ..
413,121,1;. ..
414,193,1;...
415,261,1;. ..
416,213,1;. ..
416,521,2;. ..
418,69,1;. ..
419,501,2;. ..
421,169,2;. ..
422,249,1;. ..
423,213,1;. ..
424,237,1;. ..
425,145,1;. ..
426,65,1;...
428,193,1;. ..
430,177,1;. ..
431,137,1;...
433,109,1;. ..
434,465,2;. ..
435,297,2];

if Set==0
DataSet=TrainingSet;
else
DataSet=TestSet;
end

E.8 Javed.m

Wbt h bbbl o loto b totoTolo oo to T o oo To oo 1o Tt oo o o To oo o T T o oot T oo ot T oot 2o T o oo o o o oo o o o oo o o o oo
% Filename: "Javed.m"

%

% Description: Function that applies Javed’s method for shadow removal.

% K-means, connected component annalysis, region merging and

% classification.

% Input: Bitmap images of frame to analyze, mask of foreground detected
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% object without noise, mask of shadow candidates, background image,
% various parameters.

% Output: Color segmented image, and correlation vector as "mat"-files

% Author: Sgren Erbou (SGE)
% Last Revision: September 13, 2004
It bl e oot o e e Tt o o o T T o o o o T T o To 0o o o T o T 2o o T To T o o o T T T o o o T T T T o o o T T o o o o T T o s o o T o o o Yo To s o oo

function Javed(pic_fg_rgb,pic_fg_bin_all,pic_bg_rgb,pic_fg_bin_cand,DarknessMargin,...
MahThres,Var,MergingSizeLimit,CorrThreshold)

global DestFolder
global TestFolder
global ImNo
global ObjectNo

if mod(CorrThreshold,0.1)==0
Parameters=[’_Var’,num2str(Var),’_Mer’,num2str(MergingSizeLimit),...
’_Corr’,sprintf(’%.1f’,CorrThreshold),’_’];
else
Parameters=[’_Var’,num2str(Var),’_Mer’,num2str(MergingSizeLimit),...
’_Corr’,sprintf(’%.2f’,CorrThreshold)];
end
disp([Parameters]);
ind_fg_cand = find(pic_fg_bin_cand==1);
ind_fg_all_not_cand = find(pic_fg_bin_all& pic_fg_bin_cand);
[Y,X,Z]=size(pic_fg_rgb);

filename_JavedMerged=[DestFolder,TestFolder,’_JavedMerged_’,num2str(ImNo),’_’,...
num2str(0bjectNo) ,Parameters(l:end-8),’ .mat’];

t=cputime;

% Is Javed’s color segmentation already done?

if exist(filename_JavedMerged) =2

disp(’K-Means...”);

%% K-Means
SigmalInv=(1/Var)*eye(Z); % Fixed standard deviation on all distributions

pic=reshape(pic_fg_rgb,¥*X,Z);

pix_cand_rgb=double(pic(ind_fg_cand,1:Z)’);

no_of_pix=size(pix_cand_rgb,2);

Mean=pix_cand_rgb(:,1); % Intialised with a distribution centered on the first pixel candidate

pix_in_dist=1; % Number of pixels assigned to a specific distribution
pix_class_raw=1;
Mah=0;
for i=2:no_of_pix % Every pixel is classified
j=1;
MatchFound=0;
while (j<=size(Mean,2))&("MatchFound) % Tested on every existing distribution
Centered=pix_cand_rgb(:,i)-Mean(:,j);
Mah(i)=Centered’*Sigmalnv*Centered; % Squared Mahanalobis distance
if Mah(i)<MahThres~2 % Mahanalobis distance measure used for assignment

pix_in_dist(j)=pix_in_dist(j)+1;
Mean(:,j)=Mean(:,j)+1./(pix_in_dist(j)).*(Centered); % Distribution updated
pix_class_raw(i)=j;
MatchFound=1;
else
if j==size(Mean,2) % New distribution added if no match on existing distributions
Mean(:,end+1)=pix_cand_rgb(:,i);



146 APPENDIX E MATLAB ROUTINES

pix_in_dist(end+1)=1;
pix_class_raw(i)=j+1;
MatchFound=1;

end

j=j+1; % If no match in j’th distribution, j is incremented

end
end
end

pic_fg_class_raw=uint8(zeros(Y,X));
pic_fg_class_raw(ind_fg_cand)=uint8(pix_class_raw);
pic_fg_class_raw_rgb=label2rgb(pic_fg_class_raw);

%% Connected Components and merging

disp([’...’ ,num2str(cputime-t,4),’ seconds.’]);

disp([’Connected Components...’]);

t=cputime;

pic_fg_class_conn=zeros(Y,X);

no_of_conn_classes=0;

for j=1:size(Mean,2)
TempIm=uint8(zeros(Y,X));
TempIndRaw{j}=find(pix_class_raw==j);
TempIm(ind_fg_cand(TempIndRaw{j}))=1;
[TempImConn,no_Temp_classes]=bwlabel(TempIm,8);

TempImConn(ind_fg_cand(TempIndRaw{j}))=TempImConn(ind_fg_cand(TempIndRaw{j}))+...

no_of_conn_classes;
pic_fg_class_conn=pic_fg_class_conn+double(TempImConn) ;
no_of_conn_classes=no_of_conn_classes+no_Temp_classes;
end
%% Merging
disp([’...’,num2str(cputime-t,4),’ seconds.’]);
disp([’Merging...’]);
t=cputime;

[pic_fg_class_merged,Stats,no_of_merged_classes]=...
MergeRegions(pic_fg_class_conn,MergingSizeLimit);
pic_fg_class_merged_rgb=label2rgb(pic_fg_class_merged);
else
disp(’Merging exists...’);
load(filename_JavedMerged);
no_of_merged_classes=max(pic_fg_class_merged(:));
end

%% Gradient

disp([’...’° ,num2str(cputime-t,4),’> seconds.’]);
disp([’Classification...’]);

t=cputime;

[fx_bg,fy_bgl=gradient(double(pic_bg_rgb));
[fx_fg,fy_fgl=gradient(double(pic_fg_rgb));
theta_bg=reshape(atan2(fy_bg,fx_bg) ,Y*X,Z);
theta_fg=reshape(atan2(fy_fg,fx_£fg),¥*X,Z);
castshadow=[];

object_class=[];
pic_fg_class_final=uint8(zeros(Y,X));

% Classification of regions
for j=1l:no_of_merged_classes
ind_class{j}=find(pic_fg_class_merged==j);

CorrData=[reshape(theta_fg(ind_class{jl},:),length(ind_class{j})*Z,1),...

reshape(theta_bg(ind_class{j},:),length(ind_class{j})*Z,1)];
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if “sum(var(CorrData)==0)
Temp=corrcoef (CorrData) ;

else
Temp=[1;0];

end

Corr(j,1)=Temp(2,1);

if Corr(j,1)>CorrThreshold
castshadow(end+1,1)=j;
pic_fg_class_final(ind_class{j})=uint8(128);

else
object_class(end+1,1)=j;
pic_fg_class_final(ind_class{j})=uint8(255);

end

end

save([DestFolder,TestFolder,’_JavedMerged_’,num2str(ImNo),’_’,num2str(ObjectNo),...
Parameters(1l:end-8),’.mat’],’pic_fg_class_merged’);
save([DestFolder,TestFolder,’_JavedCorr_’ ,num2str(ImNo),’_’,num2str(0bjectNo),...
Parameters(1l:end-8),’.mat’], ’Corr?);
imwrite(pic_fg_class_final, [DestFolder,TestFolder,’_JavedLabel_’,num2str(ImNo),...
’_? ,num2str(ObjectNo) ,Parameters,’.bmp’]);

pic_fg_class_final(ind_fg_all_not_cand)=uint8(3);
disp([’...°,num2str(cputime-t,4),’> seconds.’]);
pic_fg_rgb_all=uint8([]);
pic_fg_rgb_cand=uint8([]);
pic_out=pic_fg_bin_cand;

E.9 Javedlmproved.m

TR bl IRl bbbt Tote e b o o oo oo to T T T o o o o o o o o T T T T T e o o o o o o T T T T o e o o o o o T T o oo

% Filename: "JavedImproved.m"

% Description: Function that applies the improved color segmentation used
% for shadow removal. K-means, connected component annalysis, region merging and
% classification.

% Input: Bitmap images of frame to analyze, mask of foreground detected
% object without noise, mask of shadow candidates, background image,
% various parameters.

% Output: Color segmented image, and correlation vector as "mat"-files
% Author: Sgren Erbou (SGE)

% Last Revision: September 13, 2004
Tt e h ot o e e o to oo o T T To oo o T e o To 1o o o T o T o o o o To T o o o o T o o o T o o o o o T T o o o o T T T 0 o o T 2 o o o T 2 s o oo

function JavedImproved(pic_fg_rgb,pic_fg_bin_all,pic_bg_rgb,pic_fg_bin_cand,DarknessMargin,...

MahThres,VarOffset,Var,MergingSizeLimit,CorrThreshold)

global DestFolder
global TestFolder
global ImNo
global ObjectNo

if mod(CorrThreshold,0.1)==

Parameters=[’_Var’,num2str(Var),’_Mer’ ,num2str(MergingSizeLimit),’_Corr’,sprintf(’%.1£7,.

CorrThreshold),’_’];
else

Parameters=[’_Var’,num2str(Var),’_Mer’ ,num2str(MergingSizeLimit),’_Corr’,sprintf(’%.2f’,.

CorrThreshold)];
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end

ParametersImproved=[’_VarQffset’,num2str(Var0ffset)];
disp([ParametersImproved,Parameters]);

ind_fg_cand = find(pic_fg_bin_cand==1);
ind_fg_all_not_cand = find(pic_fg_bin_all& pic_fg_bin_cand);
[Y,X,Z]=size(pic_fg_rgb);

% Variance as a function of intensity
VarianceFunction=[VarOffset+[0:127]’*(Var-VarOffset)/127;Var*ones(128,1)];

filename_JavedMerged=[DestFolder,TestFolder,’_JavedImprovedMerged_’,num2str(ImNo),’_?,...
num2str(0bjectNo) ,ParametersImproved,Parameters(l:end-8),’ .mat’];

t=cputime;

% Is the improved color segmentation already done?
if exist(filename_JavedMerged) =2

disp(’K-Means improved...’);

%% K-Means

pic=reshape(pic_fg_rgb,Y*X,Z);
pix_cand_rgb=double(pic(ind_fg_cand,1:Z)’);
no_of_pix=size(pix_cand_rgb,2);

Mean=pix_cand_rgb(:,1); % Intialised with a distribution centered on the first pixel candidate

% Variance of distribution a function of illumination
Variance=VarianceFunction(fix(mean(Mean(:,1))));
SigmalInv=(1/Variance)*eye(Z);

pix_in_dist=1; % Number of pixels assigned to a specific distribution
pix_class_raw=1;
Mah=0;
for i=2:no_of_pix % Every pixel is classified
j=1;
MatchFound=0;
while (j<=size(Mean,2))&( MatchFound) % Tested on every existing distribution
Centered=pix_cand_rgb(:,i)-Mean(:,j);
SigmaInv=(1/Variance(j))*eye(Z);
Mah(i)=Centered’*Sigmalnv*Centered; % Squared Mahanalobis distance
if Mah(i)<MahThres~2 % Mahanalobis distance measure used for assignment
pix_in_dist(j)=pix_in_dist(j)+1;
Mean(:,j)=Mean(:,j)+1./(pix_in_dist(j)).*(Centered); % Distribution updated
Variance(j)=VarianceFunction(fix(mean(Mean(:,j))));
pix_class_raw(i)=j;
MatchFound=1;
else
if j==size(Mean,2) % New distribution added if no match on existing distributions
Mean(:,end+1)=pix_cand_rgb(:,i);
Variance(end+1)=VarianceFunction(fix(mean(Mean(:,j))));
pix_in_dist(end+1)=1;
pix_class_raw(i)=j+1;
MatchFound=1;
end
j=j+1; % If no match in j’th distribution, j is incremented
end
end
end

pic_fg_class_raw=uint8(zeros(Y,X));
pic_fg_class_raw(ind_fg_cand)=uint8(pix_class_raw);
pic_fg_class_raw_rgb=label2rgb(pic_fg_class_raw);
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%% Connected Components and merging

disp([’...’° ,num2str(cputime-t,4),’ seconds.’]);

disp([’Connected Components...’]);

t=cputime;

pic_fg_class_conn=zeros(Y,X);

no_of_conn_classes=0;

for j=l:size(Mean,2)
TempIm=uint8(zeros(Y,X));
TempIndRaw{j}=find(pix_class_raw==j);
TempIm(ind_fg_cand(TempIndRaw{j}))=1;
[TempImConn,no_Temp_classes]=bwlabel(TempIm,8);
TempImConn(ind_fg_cand(TempIndRaw{j}))=...

TempImConn(ind_fg_cand(TempIndRaw{j}))+no_of_conn_classes;

pic_fg_class_conn=pic_fg_class_conn+double(TempImConn) ;
no_of_conn_classes=no_of_conn_classes+no_Temp_classes;

end

%% Merging

disp([’...’,num2str(cputime-t,4),’ seconds.’]);

disp([’Merging...’]1);

t=cputime;

[pic_fg_class_merged,Stats,no_of_merged_classes]=...
MergeRegions(pic_fg_class_conn,MergingSizeLimit);
pic_fg_class_merged_rgb=label2rgb(pic_fg_class_merged);

else
disp(’Merging exists...’);
load(filename_JavedMerged) ;
no_of_merged_classes=max(pic_fg_class_merged(:));
end

%% Gradient

disp([’...’ ,num2str(cputime-t,4),’> seconds.’]);
disp([’Classification...’]);

t=cputime;

[fx_bg,fy_bgl=gradient (double(pic_bg_rgb));
[fx_fg,fy_fgl=gradient(double(pic_fg_rgb));
theta_bg=reshape(atan2(fy_bg,fx_bg) ,Y*X,Z);
theta_fg=reshape(atan2(fy_=fg,fx_£fg),Y*X,Z);
castshadow=[];
object_class=[];
pic_fg_class_final=uint8(zeros(Y,X));
% Classification of regions
for j=1:no_of_merged_classes
ind_class{j}=find(pic_fg_class_merged==j);
CorrData=[reshape(theta_fg(ind_class{j},:),length(ind_class{j})*Z,1),...
reshape (theta_bg(ind_class{j},:),length(ind_class{j})*Z,1)];
if “sum(var(CorrData)==0)
Temp=corrcoef (CorrData);
else
Temp=[1;0];
end
Corr(j,1)=Temp(2,1);
if Corr(j,1)>CorrThreshold
castshadow(end+1,1)=j;
pic_fg_class_final(ind_class{j})=uint8(128);
else
object_class(end+1,1)=j;
pic_fg_class_final(ind_class{j})=uint8(255);
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end
end

save([DestFolder,TestFolder,’_JavedImprovedMerged_’ ,num2str(ImNo),’_’,num2str(0bjectNo),...
ParametersImproved,Parameters(1:end-8),’.mat’], pic_fg_class_merged’);

save([DestFolder,TestFolder,’_JavedImprovedCorr_’,num2str(ImNo),’_’ ,num2str(0bjectNo), ...
ParametersImproved,Parameters(l:end-8),’.mat’],’Corr?’);

imwrite(pic_fg_class_final, [DestFolder,TestFolder,’_JavedImprovedLabel_’,num2str(ImNo),...

’_? ,num2str(0bjectNo) ,ParametersImproved,Parameters,’.bmp’]);
pic_fg_class_final(ind_fg_all_not_cand)=uint8(3);
disp([’...?,num2str(cputime-t,4),’ seconds.’]);

pic_fg_rgb_all=uint8([1);
pic_fg_rgb_cand=uint8([]);
pic_out=pic_fg_bin_cand;

E.10 MergeRegions.m
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% Filename: "MergeRegions.m"
gehieg

% Description: Function that merges neighboring segments smaller than Arealimit with
% their largest neighbor.

% Input: A labelled image with all classes somehow connected through each other.
% Output: The merged image and its statistics.

% Author: Sgren Erbou (SGE)
% Last Revision: June 12, 2004
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function [ImMerged,stat,NoOfSegments] = MergeRegions(ImLabel,AreaLimit)

% Arrange color segmented regions by size
ImMerged=ImLabel;

LabInd=find (ImMerged>0) ;
Label=ImMerged(LabInd);

Num=max (ImMerged(:));

Bins=1:Num;

Area=histc(Label,Bins);
[AreaSort,Arealnd]=sort(Area);
AreaSort=AreaSort(end:-1:1);
AreaInd=AreaInd(end:-1:1);

run=1;

SumMerged=0;

ChangeIndex=[];
LargeInd=find(AreaSort>min([1,Arealimit]));
runlist=AreaInd(LargeInd);

% while there are regions smaller than threshold
while (sum(AreaSort<AreaLimit)>0)&(length(Area)>1)&(run<=length(runlist))

% Merge smallest region with its largest neighbor,
if length(Area)==2
ImMerged=uint8(ImMerged>0);
else
ImTemp=uint8(zeros(size(ImMerged)));
runInd=find(Label==runlist(run));
ImTemp(LabInd(runInd))=1;
bwp = bwpack(ImTemp) ;
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bwp_dilated = imdilate(bwp,ones(3,3),’ispacked’);
ImTempDil = bwunpack(bwp_dilated, size(ImTemp,1));
ImTempDil = double (ImTempDil>0).*0.5;
ImTemp2=zeros (size (ImMerged));
ImTemp2(LabInd)=Label;
ImTemp2(LabInd(runInd))=0;
ImNeighbor=ImTempDil+double (ImTemp2) ;
Bins=1:0.5:Num+0.5;
Hist=histc(ImNeighbor(:),Bins);
NeighborInd=double (Hist(2:2:end)>0);
SmallerInd=find(((Area.*NeighborInd)<Arealimit)&((Area.*NeighborInd)>0)>0);
ChangeList=find (ismember(Label, [SmallerInd]));
Label(ChangeList)=runlist(run);

end

% Update List

SumMerged=SumMerged+length(Changelist);

if length(ChangeList)>0
ChangeIndex=[ChangeIndex,runlist(run)];

end

if run==length(runlist)
if SumMerged>0
run=0;
Bins=1:Num;
runlist=ChangelIndex;
ChangeIndex=[];
end
SumMerged=0;
end
run=run+l;
end

ImMerged (LabInd)=Label;

stat=regionprops (ImMerged, ’Area’, ’PixelldxList’);
Area=[stat.Area];
[AreaSort,IndSortArea]=sort(Area);
AreaSort=AreaSort(end:-1:1);
IndSortArea=IndSortArea(end:-1:1);
for j=1:length(Area>0)
ImMerged(stat(IndSortArea(j)).PixelldxList)=j;
end
stat=regionprops (ImMerged, ’Area’, ’PixelldxList’);

NoOfSegments=length([stat.Areal);

E.11 Finlayson Ill Inv.m
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% Filename: "Finlayson_Ill_Inv.m"

% Description: Function that applies Finlayson’s illiumination invariant

% image for detection of shadow edges in the gradient image, and use these
% to suppress shadow gradient prior to reconstruction the "shadow-free"

% image.

% Input: Bitmap images of frame to analyze, mask of foreground detected
% object without noise, bounding box of object.

% Output: Mask of detected shadow gradients and reconstructed image.
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%

% Author: Sgren Erbou (SGE)

% Last Revision: September 13, 2004
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function Finlayson_Ill_Inv(pic_in_org,BBoxAll,fg_mask)

Pad=4;
ImOrg=pic_in_org;
[Y,X,Z]=size(Im0rg);
Y_Cropped=BBoxAll(4)+1;
X_Cropped=BBoxAll(3)+1;

% Compute illumination invariant
ImGray=rgb2gray (Im0rg) ;

Im=double (ImOrg)+1;

ImL=1log(Im);

ImLpad=zeros (Y+2*Pad,X+2+Pad,Z) ;
ImLpad(Pad+1:end-Pad,Pad+l:end-Pad,:)=ImL;
[YPad,XPad,Z]=size(ImLpad);

ImLm=reshape([ImLpad(:,:,1)-ImLpad(:,:,2),ImLpad(:,:,3)-ImLpad(:,:,2)],YPad,XPad,2);
gsImFull=reshape (ImLm,YPad*XPad,2) *a;

gsImFull=reshape(gsImFull,YPad,XPad);

gsIm=imcrop(gsImFull (Pad+1:end-Pad,Pad+1l:end-Pad) ,BBoxAll);

% Detect shadow edges

EdgeMask=edge (gsIm, ’canny’, [0.05 0.31);
EdgeMaskDil=imdilate (EdgeMask,ones(11));
ImEdgeNorm=zeros (Y_Cropped,X_Cropped) ;
ST=zeros(Y_Cropped,X_Cropped) ;
mask_pad=zeros(Y_Cropped,X_Cropped) ;
ST_All=zeros(Y_Cropped,X_Cropped) ;

S=1};

mask_pad=fg_mask;
ST_mask=imdilate(mask_pad,ones(5))-imerode (mask_pad,ones(9));

% loop over color bands
for n=1:3
[S{n}(:,:,1),8{n}(:,:,2)]=gradient (ImLpad(:,:,n));

ImL_Crop=imcrop(ImL,BBoxAll);
ImEdgeNorm(:,:,n)=edge (ImL_Crop(:,:,n),’canny’,[0.01 0.1]);

ST_A11=ST_Al1l|ImEdgeNorm(:,:,n);
end

ImNew="EdgeMaskDil&ST_A1ll;

ImNew_dark_mask=ImNew&dark_mask;
FinalMask=imdilate(ImNew_dark_mask,strel(’disk’,4));
FinalMaskEdge=imdilate((FinalMask&ST_mask),strel(’disk’,2));

ManualMasking=0;
if ManualMasking
filename_manualmask=[DestFolder,TestFolder, ’ _ManualMaskReconstruction_’,...
num2str(ImNo),’_’ ,num2str(0bjectlNo),’.bmp’];
imwrite(FinalMaskEdge,filename_manualmask) ;
FinalMaskEdge=ST_mask;
end
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FinalMaskFullPad=zeros(YPad,XPad);

FinalMaskFullPad (Pad+fix(BBoxA11(2)) :Pad+fix(BBoxA11(2)+BBoxA11(4)),...
Pad+fix(BBoxA11(1)) :Pad+fix(BBoxAl11(1)+BBoxAl1(3)))=FinalMaskEdge;

% Reconstruct full color "shadow-free" image

for n=1:3
S{n}=S{n}.*repmat ("FinalMaskFullPad, [1,1,2]);
Temp=SolvePoisson(S{n});
Image(:,:,n)=exp(Temp(Pad+1:end-Pad,Pad+1:end-Pad,:));

Max(n)=max(max(Image(:,:,n)));

fraction=0.02;

TopPercentile=[];

tic

while (size(TopPercentile,1)/(X*Y))<0.05
TopPercentile=find(Image(:,:,n)>(1-fraction)*Max(n));
fraction=fraction+0.005;

end

toc

Temp=reshape(Image(:,:,n),XxY,1);

MapImage(n, :)=[0,mean(Temp(TopPercentile))];

MapImOrg(n, : )=double ([min(min(Im0rg(:,:,n))) ,max (max(Im0rg(:,:,n)))]1);

Image(:,:,n)=uint8((Image(:,:,n)-MapImage(n,1))/(MapImage(n,2)-MapImage(n,1))*...

(MapImOrg(n,2)-MapImOrg(n,1))+MapImOrg(n,1));
end

T=uint8(Image) ;
if ManualMasking

filename_manualrec=[DestFolder,TestFolder,’_ManualReconstruction_’,...
num2str (ImNo),’_’ ,num2str(0bjectNo),’.bmp’];

if exist(filename_manualrec)~=2
imwrite(T,filename_manualrec);
end
end
T=imcrop(T,BBoxAll);

gsIm=gsIm(Pad+2:end-Pad-1,Pad+2:end-Pad-1);
EdgeMask=EdgeMask(Pad+2:end-Pad-1,Pad+2:end-Pad-1);
ImEdgeNorm=ImEdgeNorm(Pad+2:end-Pad-1,Pad+2:end-Pad-1,:);
STall=STall(Pad+2:end-Pad-1,Pad+2:end-Pad-1)>0;
[Y2,X2]=find (ST==1);

UpperTemp=[uint8(255*(gsIm+0.5)),uint8(255*double ("EdgeMask)) ,uint8(255*double ("EdgeMaskDil) )] ;

Upper=[pic_in,repmat (UpperTemp, [1,1,3]1)];
Lower=["ST_A1l, “FinalMask, “ST_mask, “FinalMaskEdge] ;

F3=figure(3)
subplot 211
imshow(Upper, [0 255])

xlabel([’ (a) Original image T,
’ (b) Ill.-invariant of a ...
’ (c) Edges of b ..
’ (d) Dilation of ¢ ’],’FontSize’,8);

title([TestFolder,’ - Frame No. ’,num2str(ImNo),’ - Object No. ’,num2str(ObjectNo)]);

subplot 212

imshow(Lower, [1)

xlabel([’ (e) Edges of a AR
’ (£) Dil. of ((e-d)*fg. mask) L
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’ (g) Dil. edge of fg. mask Y.
’ (h) Dil. of (fx*g) ’],’FontSize’,8);

saveas(F3, [DestFolder,TestFolder,’_FinlaysonEdge_’,num2str(ImNo),’_?,...
num2str(ObjectNo),’.png’],’png?’);
close(F3);

E.12 Finlayson FGmask.m
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% Filename: "Finlayson_FGmask.m"

% Description: Function that use the edges of the foreground mask to suppress
% shadow gradients prior to reconstruction the "semi-shadow-free"
% image.

% Input: Bitmap images of frame to analyze, mask of foreground detected
% object without noise, bounding box of object.

% Output: Mask of detected shadow gradients and reconstructed image.

% Author: Sgren Erbou (SGE)
% Last Revision: September 13, 2004
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function Finlayson_FGmask(pic_in_org,BBoxAll,fg_mask)
disp(’Finlayson using foreground mask...’)

global DestFolder
global TestFolder
global ImNo
global ObjectNo

filename_edge_rec=[DestFolder,TestFolder,’_EdgeReconstruction_’,...
num2str(ImNo),’_’ ,num2str(0bjectNo),’ .bmp’];
filename_edge_mask=[DestFolder,TestFolder,’_EdgeMask_’,num2str(ImNo),...
’_? ,num2str(0bjectNo),’ .bmp’];

if (exist(filename_edge_rec)~=2)|(exist(filename_edge_mask)~=2)
Pad=4;
[Y,X,Z]=size(pic_in_org);
Y_Cropped=BBoxAl1(4)+1;
X_Cropped=BBoxAl11(3)+1;

ImGray=rgb2gray(pic_in_org);
Im=double(pic_in_org)+1;

ImL=log(Im);

ImLpad=zeros (Y+2*Pad,X+2*Pad,Z) ;
ImLpad(Pad+1:end-Pad,Pad+1:end-Pad, :)=ImL;
[YPad,XPad,Z]=size(ImLpad);

mask_pad=fg_mask;

if exist(filename_edge_mask)~=2
FinalMaskEdge=imdilate(mask_pad,ones(5))-imerode (mask_pad,ones(9));
imwrite(FinalMaskEdge,filename_edge_mask) ;

else
FinalMaskEdge=(imread(filename_edge_mask))>0;

end

% loop over color bands
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else
disp(’Edge mask and reconstructed image already exist...?’)
end

5={};
for n=1:3

[S{n}(:,:,1),5{n}(:,:,2)]=gradient (ImLpad(:,:,n));

FinalMaskFullPad=zeros (YPad,XPad);
FinalMaskFullPad(Pad+fix(BBoxA11(2)) :Pad+fix(BBoxA11(2)+BBoxAl1(4)),...

Pad+fix(BBoxAl1(1)):Pad+fix(BBoxAl1(1)+BBoxA11(3)))=FinalMaskEdge;

% Reconstruct full color "semi-shadow-free" image
for n=1:3

S{n}=S{n}.*repmat (“FinalMaskFullPad, [1,1,2]);
Temp=SolvePoisson(S{n});
Image(:,:,n)=exp(Temp(Pad+1:end-Pad,Pad+1l:end-Pad,:));

Max (n)=max (max(Image(:,:,n)));

fraction=0.02;

TopPercentile=[];

while (size(TopPercentile,1)/(X*Y))<0.05
TopPercentile=find(Image(:,:,n)>(1-fraction)*Max(n));
fraction=fraction+0.005;

end

Temp=reshape(Image(:,:,n),X*Y,1);

MapImage(n, :)=[0,mean(Temp(TopPercentile))];

MapImOrg(n, :)=double([min(min(pic_in_org(:,:,n))) ,max(max(pic_in_org(:,:,n)))]1);

Image(:,:,n)=uint8((Image(:,:,n)-MapImage(n,1))/(MapImage(n,2)-MapImage(n,1))*...
(MapImOrg(n,2)-MapImOrg(n,1))+MapImOrg(n,1));

T=nuint8(Image) ;
imwrite(T,filename_edge_rec);

disp(’Finlayson done...?”)

E.13 SolvePoisson.m
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%

Filename: "SolvePoisson.m"

Description: Solves Poisson equation with Neumann boundary conditions
using the discrete cosine transform .

Input: GradImage = Gradient image Fx=(:,:,1), Fy=(:,:,2) of a grayscale image.
Before taking the gradient, the image should be zeropadded with N>=4
along the boundaries.

OQutput: Image = Image retrieved by solving the Poisson equation with
GradImage=0 on the boundary.

Author: Sgren Erbou (SGE)
Last Revision: April 16, 2004
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function [Image] = SolvePoisson(GradImage)

% Laplacian
[GradXX,GradXY]=gradient(GradImage(:,:,1));
[GradY¥X,GradYY]=gradient(GradImage(:,:,2));
LapImage=GradXX+GradYY;
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[J,L]=size(LapImage);

% DCT

LapImageF=dct2(LapImage) ;
mPart=repmat (cos (pi*(0:J-1)°/(J)),1,L);
nPart=repmat (cos (pi*(0:L-1)/(L)),J,1);

% Apply factor
Factor=(2*(mPart+nPart-2));
Factor(l)=-1e8;
ImageF=(LapImageF./Factor);

% Inverse DCT
Image=idct2((ImageF));
Image=real(Image) ;

E.14 EnhancedSegmentation.m
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% Filename: "EnhancedSegmentation.m"

% Description: Function that applies the enhanced segmentation of

% foreground regions.

% Input: Bitmap images of frame to analyze, several parameters, files an

% bitmap images of merged regions and correlation vectors

% Output: Bitmap images of the classfied regions, to be used by "Performance.m"

% Author: Sgren Erbou (SGE)
% Last Revision: September 13, 2004
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function EnhancedSegmentation(pic_in,bg_in,BBoxAll,UseJavedImproved,Parameters,...
ParametersImproved,CorrThreshold,RBThreshold,RFThreshold)

global DestFolder
global TestFolder
global ImNo
global ObjectNo

if UseJavedImproved

filename_JavedMerged=[DestFolder,TestFolder,’_JavedImprovedMerged_’,num2str(ImNo),...
’_?,num2str(0ObjectNo) ,ParametersImproved,Parameters(l:end-8),”.mat’];

filename_JavedCorr=[DestFolder,TestFolder,’_JavedImprovedCorr_’,num2str(ImNo),’_’,...

num2str(ObjectNo) ,ParametersImproved,Parameters(l:end-8),’.mat’];

else

filename_JavedMerged=[DestFolder,TestFolder,’_JavedMerged_’ ,num2str(ImNo),’_’,...
num2str(0bjectNo) ,Parameters(l:end-8),’ .mat’];
filename_JavedCorr=[DestFolder,TestFolder,’_JavedCorr_’,num2str(ImNo),’_’,...
num2str(ObjectNo) ,Parameters(l:end-8),’ .mat’];

end

filename_edge_rec=[DestFolder,TestFolder,’_EdgeReconstruction_’,numZStr(ImNo),’_’,...

num2str(0bjectNo),’.bmp’];

filename_edge_mask=[DestFolder,TestFolder,’_EdgeMask_’,num2str(ImNo),’_’,num2str(O0bjectNo),’.bmp’];

ParametersEnhanced=[’_RB’,sprintf(’%.1f’,RBThreshold),’_’]

>

if (exist(filename_edge_rec)==2)&(exist(filename_edge_mask)==2)

if exist(filename_JavedMerged)==
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if exist(filename_JavedCorr)==
load(filename_JavedMerged) ;
load(filename_JavedCorr);
pic_rec_org=imread(filename_edge_rec);
pic_rec=imcrop(pic_rec_org,BBoxAll);
EdgeMask=double(imread(filename_edge_mask));
pic_fg_class_merged_masked=pic_fg_class_merged.* EdgeMask;

NoOfRegions=max(pic_fg_class_merged(:));
[Y,X,Z]=size(pic_rec);
castshadowEnhanced=[];
object_classEnhanced=[];
pic_fg_class_Enhanced=uint8(zeros(Y,X));
VarRecMaskFG=zeros (NoOfRegions,1);
VarRecMaskBG=zeros (NoOfRegions,1);
temp=-1%ones(NoOfRegions,1);
VarCross=255;
VarFG=12;
for gq=1:NoOfRegions
ind_class{q}=find(pic_fg_class_merged==q);
ind_class_no_edge{q}=find(pic_fg_class_merged_masked==q);
ImTempFG=[];
ImTempRec=[];
ImTempBG=[];
for w=1:2Z
ImTemp=reshape(double(pic_in(:,:,w)),¥*X,1);
ImTempFG=[ImTempFG; ImTemp(ind_class_no_edge{q})];
ImTemp=reshape(double(pic_rec(:,:,w)),¥*X,1);
ImTempRec=[ImTempRec; ImTemp(ind_class_no_edge{q})];
ImTemp=reshape(double(bg_in(:,:,w)),¥*X,1);
ImTempBG=[ImTempBG; ImTemp(ind_class_no_edge{q})];
end
if length(ind_class_no_edge{q})>10
VarRecMaskFG(q)=var (ImTempRec-ImTempFG) ./VarFG;
VarRecMaskBG(q)=var(ImTempRec-ImTempBG) ./VarCross;
end

if (VarRecMaskBG(q)==0)|(Corr(q)>CorrThreshold) | (Corr(q)<(0.5*CorrThreshold))

if (Corr(q)>0.75%CorrThreshold)
castshadowEnhanced(end+1,1)=q;
temp(q)=0;
pic_fg_class_Enhanced(ind_class{q})=uint8(128);

else
object_classEnhanced(end+1,1)=q;
temp(q)=1;
pic_fg_class_Enhanced(ind_class{q})=uint8(255);

end

else

if (VarRecMaskBG(q)<RBThreshold)

castshadowEnhanced(end+1,1)=q;

temp(q)=-2;

pic_fg_class_Enhanced(ind_class{q})=uint8(128);
else

object_classEnhanced(end+1,1)=q;

temp(q)=2;

pic_fg_class_Enhanced(ind_class{q})=uint8(255);
end
end
end
if UseJavedImproved

imwrite(pic_fg_class_Enhanced,[DestFolder,TestFolder,’_EnhancedImprovedLabel_’,...
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num2str(ImNo),’_’ ,num2str(0bjectNo) ,ParametersImproved,Parameters,...

ParametersEnhanced,’.bmp’]);

else

imwrite(pic_fg_class_Enhanced, [DestFolder,TestFolder,’_EnhancedLabel_’,...
num2str(ImNo),’_’ ,num2str(0bjectNo) ,Parameters,ParametersEnhanced,’.bmp’]);

end

if UseJavedImproved

disp(’Improved classification reconstructed image and javed improved done...’)

else

disp(’Improved classification reconstructed image done...’)

end
else

disp({’Improved classification using reconstructed image not done...’;...

filename_JavedCorr;’...does not exist’})

end
else

disp({’Improved classification using reconstructed image not dome...’;...

filename_JavedMerged;’...does not exist’})

end
else

disp({’Improved classification using reconstructed image not done...’;...

filename_edge_rec,’ and/or ’,filename_edge_mask;’...does not exist’})

end

E.15 DetectVariance.m
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% Filename: "DetectVariance.m"

% Description: Script that computes the variance normalization factor of
% the enhanced similarity feature, (CS), using sequence Test77.

% Input: Images of sequence Test77
% Output: Variance

% Author: Sgren Erbou (SGE)
% Last Revision: September 13, 2004

Tl totototot o oo toto o totoTodo T o oo o o o Jo oo to T To o o o o o o o o oo o oo o oo o o oo o o oo T o o o o o oo oo o o Fo o o o o

clear all;
close all;
clc;

TestNo=77;
ImNo=49;

TestFolder=[’Test’ ,num2str(TestNo)];

addpath([’E:\SGE\Video\’,TestFolder]);
addpath([’E:\SGE\Video\’,TestFolder,’_0Object’]);
DestFolder=[’SGE\Video\TrainingSet’];
Drive = ’E:\’;
if exist([Drive,DestFolder],’dir’)~=7
Dir=pwd;
cd(Dir);
mkdir(DestFolder);
cd(Dir);
end
DestFolder=[Drive,DestFolder,’\’];
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addpath(DestFolder);

filename=[TestFolder,’_’ ,num2str(ImNo),’.bmp’];
bg_filename=[TestFolder,’_middel_’,num2str(ImNo),’_bg_rgb_SGE.bmp’];
Backl = imread(bg_filename);

Back2 = imread(filename);

filename_manualrec_bg=[DestFolder,TestFolder, ’_ReconstructionNoMask_bg’ ,num2str(ImNo),’.bmp’];
if exist(filename_manualrec_bg)==2

Recl=double(imread(filename_manualrec_bg));
else

Rec1=Finlay(Backl, ’bg’,DestFolder,TestFolder, ImNo);
end
filename_manualrec_new=[DestFolder,TestFolder,’_ReconstructionNoMask_new’,num2str(ImNo),’.bmp’];
if exist(filename_manualrec_new)==2

Rec2=double(imread(filename_manualrec_new));
else

Rec2=Finlay(Back2, new’,DestFolder,TestFolder, ImNo);
end

Dist=b;
Backl=Backl(Dist+1:end-Dist,Dist+1:end-Dist,:);
Back2=Back2(Dist+1:end-Dist,Dist+1:end-Dist,:);
Recl=Rec1(Dist+1:end-Dist,Dist+1:end-Dist,:);
Rec2=Rec2(Dist+1:end-Dist,Dist+1:end-Dist,:);

[Y,X,Z]=size(Backl);
MeanRecMaskOrg=zeros (X*xY*Z,1);
MeanRecMaskBack=zeros (X*Y*Z,1);
VarRecMaskOrg=zeros (X*Y*Z,1);
VarRecMaskBack=zeros (X*Y*Z,1);

ImTempBackl=[];

ImTempBack2=[];

ImTempRec1=[];

ImTempRec2=[];

for w=1:Z
ImTemp=reshape(double(Backl(:,:,w)),Y*X,1);
ImTempBackl=[ImTempBackl; ImTemp] ;
ImTemp=reshape(double(Back2(:,:,w)),Y*X,1);
ImTempBack2=[ImTempBack2; ImTemp] ;
ImTemp=reshape(double(Recl(:,:,w)),Y*X,1);
ImTempRecl=[ImTempRecl; ImTemp] ;
ImTemp=reshape(double(Rec2(:,:,w)),Y*X,1);
ImTempRec2=[ImTempRec2; ImTemp] ;

end

Var(1)=sum((ImTempBackl-ImTempRec2)."2)/(X*Y-1);
Var(2)=sum((ImTempBackl-ImTempBack2).~2)/(X*Y-1);
Var(3)=sum((ImTempRec1-ImTempRec2) .~2)/(X*Y-1);

function Output=Finlay(pic_in_org,Text,DestFolder,TestFolder,ImNo)
Pad=4;

ImOrg=pic_in_org;
[Y,X,Z]=size(ImOrg);

ImGray=rgb2gray(ImOrg) ;
Im=double (ImOrg)+1;
ImL=log(Im);
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ImLpad=zeros(Y+2+Pad,X+2*Pad,Z);
ImLpad(Pad+1:end-Pad,Pad+1l:end-Pad, :)=ImL;
[YPad,XPad,Z]=size(ImLpad) ;
for n=1:3
[S{n}(:,:,1),8{n}(:,:,2)]=gradient (ImLpad(:,:,n));
Temp=SolvePoisson(S{n});
Image(:,:,n)=exp(Temp(Pad+1:end-Pad,Pad+1:end-Pad,:));

Max(n)=max(max(Image(:,:,n)));

fraction=0.02;

TopPercentile=[];

while (size(TopPercentile,1)/(X*Y))<0.05
TopPercentile=find(Image(:,:,n)>(1-fraction)*Max(n));
fraction=fraction+0.005;

end

Temp=reshape(Image(:,:,n),X*Y,1);

MapImage(n,:)=[0,mean(Temp(TopPercentile))];

MapImOrg(n, :)=double([min(min(Im0rg(:,:,n))) ,max(max(Im0rg(:,:,n)))1);

Image(:,:,n)=uint8((Image(:,:,n)-MapImage(n,1))/(MapImage(n,2)-MapImage(n,1))*...
(MapImOrg(n,2)-MapImOrg(n,1))+MapImOrg(n,1));
end

Output=uint8(Image) ;

filename_manualrec=[DestFolder,TestFolder,’_ReconstructionNoMask_’,Text,num2str(ImNo),’.bmp’];
if exist(filename_manualrec)~=2

imwrite(Output,filename_manualrec);
end

E.16 Performance.m
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% Filename: "Performance.m"

%

% Description: Script that computes the performance of different methods

% for shadow removal.

% Input: Manually labelled images and images classified by the method
% chosen.

% Output: "png"-figures of performance

% Author: Sgren Erbou (SGE)
% Last Revision: September 13, 2004
Tl It oo T oot o T T ot o o o T ot o o o T To T o o o T T T o o o o T T o o o o T T T o o o T T o o o o Ve T o o o Yo T o o o o T s oo

filename_label=[DestFolder,TestFolder,’_Truelabel_’,num2str(ImNo),’_?,num2str(0bjectNo),’.bmp’];
if UseJavedImproved
filename_Javed=[DestFolder,TestFolder,’_JavedImprovedLabel_’,num2str(ImNo),’_?,...
num2str(ObjectNo) ,ParametersImproved,Parameters,’.bmp’];
filename_Enhanced=[DestFolder,TestFolder,’_EnhancedImprovedLabel_’,num2str(ImNo),’_>,...
num2str(ObjectNo) ,ParametersImproved,Parameters,ParametersEnhanced, ’.bmp’];
else
filename_Javed=[DestFolder,TestFolder,’_JavedLabel_’,num2str(ImNo),’_’,...
num2str(ObjectNo) ,Parameters,’.bmp’];
filename_Enhanced=[DestFolder,TestFolder,’_EnhancedLabel_’,num2str(ImNo),’_’,...
num2str(ObjectNo) ,Parameters,ParametersEnhanced,’.bmp’];
end
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if exist(filename_label)==2
ImTrue=imread(filename_label);
[Y,X,Z]=size(ImTrue);
if Z==3
ImTrue=dark_mask.*double(rgb2gray(ImTrue));
else
ImTrue=dark_mask.*double(ImTrue) ;
end
AllDarkPixelIdxList=find(ImTrue>0);
Hist=histc(ImTrue(:),[1:max(ImTrue(:))]);
Vals=find(Hist>0);
Max=max (ImTrue(:));

if Vals(1)<150
TrueShadow=(ImTrue(AllDarkPixelIdxList)==Vals(1));
else
TrueShadow=zeros(size(AllDarkPixelIdxList));
end
if length(Vals)>1
if (Vals(2)>150)&(Vals(2)<225)
TrueSelfShadow=(ImTrue (AllDarkPixelIdxList)==Vals(2));
else
TrueSelfShadow=zeros(size (Al1lDarkPixelIdxList));
end
else
TrueSelfShadow=zeros(size(AllDarkPixelIdxList));
end
if length(Vals)>2
if Vals(3)>225
TrueDark0Obj=(ImTrue (Al1DarkPixelIdxList)==Vals(3));
else
TrueDarkObj=zeros(size(Al1lDarkPixelIdxList));
end
else
TrueDarkObj=zeros(size(Al1DarkPixelIdxList));
end

TrueObj=(TrueSelfShadow|TrueDark0Obj);
ImTrue(AllDarkPixelIdxList (find(TrueShadow)))=0.3;
ImTrue(AllDarkPixelIdxList(find(TrueSelfShadow)))=0.6;
ImTrue(AllDarkPixelIdxList (find(TrueDark0Obj)))=1;
imwrite (ImTrue,filename_label);

NoOfPixels=sum(TrueObj)+sum(TrueShadow) ;

SelfShadowSize=sum(TrueSelfShadow) ;

disp([’ ?;? °1);

disp([TestFolder,’ - Frame ’,num2str(ImNo),’ - Object ’,...
num2str(0bjectNo),” manually labelled...’]);

disp([num2str(sum(TrueObj)),’ = ’,num2str(100*sum(Truelbj)/No0fPixels,3),...
% True object pixels +’]);

disp([num2str(sum(TrueShadow)),’ = ?,num2str(100*sum(TrueShadow)/No0fPixels,3),...
*% True cast shadow pixels =’]);

disp([num2str(NoOfPixels),’ Pixels classified’]);

disp(? ?);

disp([num2str(SelfShadowSize),’ of ?,num2str(sum(Truelbj)),’ = *,...
num2str(100*SelfShadowSize/sum(True0bj),3),’% Self shadow pixels in object’]);

switch DoPerformance
case 3
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Im=[pic_in,dark_fg_white,255%repmat(ImTrue, [1,1,3]),265%0ones(size(pic_in))];
Fs=figure(5);
imshow(Im, [0 255]);
Textl={[TestFolder,’ - Frame no. ’,num2str(ImNo),’ - Object no. ’,num2str(ObjectNo)]};
Text2={[’No. of pixels to classify:’];[num2str(No0fPixels),’ = ?,...
num2str (100%No0fPixels/sum(fg_mask(:)),3),’% of all foreground pixels’];...
[’No. of true object pixels:’];[num2str(sum(Truelbj)),’ = 7,...
num2str (100*sum(TrueObj) /No0fPixels,3),%%°]1;. ..
[’No. of true cast shadow pixels:’]; [num2str(sum(TrueShadow)),...
> = 7 num2str (100*sum(TrueShadow) /No0fPixels,3),’%’];. ..
[’No. of object pixels in self shadow:’];[num2str(SelfShadowSize),...
’ = 7 ,num2str(100*SelfShadowSize/sum(Truelbj),3),°%°1};

Ti=text(3.05%X,0, [Textl;Text2],’VerticalAlignment’, ’top’, ’FontSize’,7);
CropPNG(F5, [DestFolder,TestFolder,’_ImageStat_’,num2str(ImNo),’_7,...
num2str(0bjectNo),’.png’],’_Cropped’);
case 4
Im=[pic_in,dark_fg_white];
if count==
F6=figure(6);
else
figure(F6);
end
if count<4
subplot(3,3,count);
else
subplot(3,2,count-1);
end
imshow(Im, [0 255]);
xlabel([TestFolder,’ - Frame ’,num2str(ImNo),’ - Object ’,num2str(ObjectNo)],...
’VerticalAlignment’,’bottom’, ’Fontsize’,8);
if count==
saveas(F6, [DestFolder, ’TrainingImages.png’], ’png’);
end

case 1
if exist(filename_Javed)==2
ImJaved=imread (filename_Javed) ;
ImJaved=dark_mask.*double(ImJaved) ;
Max=max(ImJaved(:));
PredObj=(ImJaved(AllDarkPixelIdxList)==Max) ;
PredShadow=(ImJaved(Al1lDarkPixelIdxList)<Max);

TNJavedPixels=TrueShadow&PredShadow;
FPJavedPixels=TrueShadow&PredQObj;
FNJavedPixels=TrueObj&PredShadow;
TPJavedPixels=TrueObj&Pred0bj;

ConfMatrixJaved=[sum(TNJavedPixels), sum(FPJavedPixels);...
sum(FNJavedPixels), sum(TPJavedPixels)];

% row=true, col=predicted, l=shadow, 2=object => [a,b;c,d]

%a/(a+b) = True Negatives

%b/(a+b) = False Positives
%he/(c+d) = False Negatives
%d/(c+d) = True Positives

%(a+d)/(atb+c+d) = Accuracy

TNJaved=round (ConfMatrixJaved(1l,1)/sum(ConfMatrixJaved(1l,:))*1000)/10;
FPJaved=round (ConfMatrixJaved(1,2)/sum(ConfMatrixJaved(1,:))*1000)/10;
FNJaved=round(ConfMatrixJaved(2,1)/sum(ConfMatrixJaved(2,:))*1000)/10;
TPJaved=round(ConfMatrixJaved(2,2)/sum(ConfMatrixJaved(2,:))*1000)/10;
ACJaved=round((ConfMatrixJaved(1l,1)+ConfMatrixJaved(2,2))/...
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sum(ConfMatrixJaved(:))*1000)/10;
ConfMatrixJavedPerc=[TNJaved,FPJaved;FNJaved,TPJaved] ;
if UseJavedImproved
save([DestFolder,TestFolder, ’_JavedImprovedClass_’ ,num2str(ImNo),’_’,...
num2str(0ObjectNo) ,ParametersImproved,Parameters,’.mat’],...
’TrueObj’, ’TrueShadow’, >TrueSelfShadow’, ’Pred0bj’, ’PredShadow’, ...
>TNJavedPixels’, ’FNJavedPixels’,’FPJavedPixels?’,’TPJavedPixels?, ...
’ConfMatrixJaved’,’ConfMatrixJavedPerc?’,’ACJaved’);
disp(’ ?);
disp(’Javed Improved Performance...’);
else
save([DestFolder,TestFolder,’_JavedClass_’,num2str(ImNo),’_’,...
num2str(0bjectNo) ,Parameters,’.mat’],...
’Truelbj’, ’TrueShadow’, >TrueSelfShadow’, ’Pred0bj’, ’PredShadow’, ...
>TNJavedPixels’, ’FNJavedPixels’,’FPJavedPixels’,’TPJavedPixels?, ...
’ConfMatrixJaved’,’ConfMatrixJavedPerc’,’ACJaved’);
disp(’ ?);
disp(’Javed Performance...’);
end

disp(’Confusion Matrix:’);

disp(ConfMatrixJaved);

disp(’Confusion Matrix [%]:°);

disp(ConfMatrixJavedPerc) ;

disp([’Accuracy ( (a+d)/(a+b+c+d) ) = ’,num2str(ACJaved,3),’ %°1);
disp(? ?);

ClassPlotInd={};
for j=1:4
ImTemp=uint8(zeros(Y,X));
switch j
case 1
ImTemp(AllDarkPixelIdxList(find(TNJavedPixels)))=1;
case 2
ImTemp(AllDarkPixelIldxList(find(FPJavedPixels)))=1;
case 3
ImTemp (AllDarkPixelIdxList (find(FNJavedPixels)))=1;
case 4
ImTemp(AllDarkPixelIdxList(find(TPJavedPixels)))=1;
end
[ClassPlotInd.R{j},ClassPlotInd.C{j}]=find(ImTemp) ;
end
F7=figure(7);
set(F7, ’name’, [TestFolder,’ - Frame No. ’,num2str(ImNo),’ - Object No. ’,...
num2str(0bjectNo)1);
subplot 131
imshow(pic_in, [0 255]);
title([TestFolder,’ - Frame No. ’,num2str(ImNo),’ - Object No. ’,num2str(ObjectNo)]);
subplot 132
imshow(dark_fg_white, [0 255]);
subplot 133
imshow(dark_fg_white, [0 255]);
hold on
Colors=[{’b.?},{’y.?},{’r.?},{’g.’},{’m.}];
hClass=-1*ones(4,1);
for j=1:4
if length(ClassPlotInd.C{j})>0
hClass(j)=plot(ClassPlotInd.C{j},ClassPlotInd.R{j},Colors{j});
end
end
LegendText={[’True Shadow (TN) = ’,num2str(TNJaved),’%’],[’False Object (FP) = 7,...
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num2str(FPJaved),’%’],[’False Shadow (FN) = ’,num2str(FNJaved),’%’],...
[’True Object (TP) = ’,num2str(TPJaved),’%’]1};
ValidLegends=find(hClass>0);
hL=legend(hClass(ValidLegends),LegendText(ValidLegends));
set(hL, ’Position’,[0.69 0.03 0.2 0.1]);
hold off
if UseJavedImproved
title([’Perf. using Javeds Improved method: ’,num2str(ACJaved),’} acc.’]);
saveas(F7, [DestFolder,TestFolder,’_JavedImprovedPerformance_’ ,num2str (ImNo),...
’_? ,num2str(0bjectNo),’.png’], ’png’);
saveas (F7, [DestFolder, >Performance\’,TestFolder,’_JavedImprovedPerformance_’,...
num2str (ImNo),’_’ ,num2str(0bjectNo) ,ParametersImproved,Parameters,’.png’], *png’);
else
title([’Performance using Javeds method: ’,num2str(ACJaved),’’ acc.’]);
saveas (F7, [DestFolder,TestFolder,’_JavedPerformance_’,num2str(ImNo),’_’,...
num2str(0bjectNo),’.png’], ’png’);
saveas (F7, [DestFolder, ’Performance\’,TestFolder,’_JavedPerformance_’,...
num2str(ImNo),’_’ ,num2str(0bjectNo) ,Parameters,’.png’], ’png’);
end
else
if UseJavedImproved
disp([TestFolder,’ - Frame °’,num2str(ImNo),’ - Object ’,num2str(0ObjectNo),...

> Javed Improved not done...’]);
else
disp([TestFolder,’ - Frame °’,num2str(ImNo),’ - Object ’,num2str(0ObjectNo),...
> Javed not done...’]);
end
end
case 2

if exist(filename_Enhanced)==2
ImEnhanced=imread(filename_Enhanced) ;
ImEnhanced=dark_mask.*double(ImEnhanced) ;
Max=max (ImEnhanced(:));
PredObj=(ImEnhanced(Al1DarkPixelIdxList)==Max) ;
PredShadow=(ImEnhanced (Al1DarkPixelIdxList)<Max);

TNEnhancedPixels=TrueShadow&PredShadow;
FPEnhancedPixels=TrueShadow&Pred0bj;
FllEnhancedPixels=TrueObj&PredShadow;
TPEnhancedPixels=TrueObj&Pred0bj;

ConfMatrixEnhanced=[sum(TNEnhancedPixels), sum(FPEnhancedPixels);...
sum(FNEnhancedPixels), sum(TPEnhancedPixels)];

% row=true, col=predicted, l=shadow, 2=object => [a,b;c,d]

%a/(a+b) = True Negatives

%b/(at+b) = False Positives
%c/(c+d) = False Negatives
%d/(c+d) = True Positives

%(a+d)/(atb+c+d) = Accuracy
TNEnhanced=round(ConfMatrixEnhanced(1,1)/sum(ConfMatrixEnhanced(1,:))*1000)/10;
FPEnhanced=round(ConfMatrixEnhanced(1,2)/sum(ConfMatrixEnhanced(1,:))*1000)/10;
FNEnhanced=round(ConfMatrixEnhanced(2,1)/sum(ConfMatrixEnhanced(2,:))*1000)/10;
TPEnhanced=round(ConfMatrixEnhanced(2,2)/sum(ConfMatrixEnhanced(2,:))*1000)/10;
ACEnhanced=round ((ConfMatrixEnhanced(1,1)+ConfMatrixEnhanced(2,2))/...
sum(ConfMatrixEnhanced(:))*1000)/10;
ConfMatrixEnhancedPerc=[TNEnhanced,FPEnhanced ;FNEnhanced, TPEnhanced] ;
if UseJavedImproved
save([DestFolder,TestFolder,’_EnhancedImprovedClass_’,num2str(ImNo),’_?,...
num2str(0bjectNo) ,ParametersImproved,Parameters,ParametersEnhanced,...
>.mat’], ’TrueObj’,’TrueShadow’, ’TrueSelfShadow’, ’Pred0bj’, ’PredShadow’, ...
>TNEnhancedPixels’, ’FNEnhancedPixels’, ’FPEnhancedPixels?, ...
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>TPEnhancedPixels’, ’ConfMatrixEnhanced’,’ConfMatrixEnhancedPerc?,...
>ACEnhanced’);
disp(’ ?);
disp(’Enhanced Improved Performance...’);
else
save([DestFolder,TestFolder, ’_EnhancedClass_’,num2str(ImNo),’_?,...
num2str(0bjectNo) ,Parameters,ParametersEnhanced, ’.mat’], ...
’TrueObj’, >TrueShadow?’, ’TrueSelfShadow’, ’Pred0bj’, ’PredShadow’, ...
>TNEnhancedPixels’, ’FNEnhancedPixels’, ’FPEnhancedPixels’, ...
>TPEnhancedPixels’, ’ConfMatrixEnhanced’, ’ConfMatrixEnhancedPerc?, ...
’ACEnhanced’);
disp(’ ?);
disp(’Enhanced Performance...’);
end

disp(’Confusion Matrix:’);
disp(ConfMatrixEnhanced);
disp(’Confusion Matrix [%]:°);
disp(ConfMatrixEnhancedPerc);
disp([’Accuracy ( (at+d)/(atb+c+d) )
disp([’Precision ( d/(b+d) )

disp(’ ?);

’ ,num2str (ACEnhanced,3),’ %°1);
’ ,num2str (PEnhanced,3),’ %’1);

ClassPlotInd={};
for j=1:4
ImTemp=uint8(zeros(Y,X));
switch j
case 1
ImTemp(AllDarkPixelIdxList(find (TNEnhancedPixels)))=1;
case 2
ImTemp(AllDarkPixelIdxList(find (FPEnhancedPixels)))=1;
case 3
ImTemp(AllDarkPixelIdxList (find (FNEnhancedPixels)))=1;
case 4
ImTemp(AllDarkPixelIdxList (find (TPEnhancedPixels)))=1;
end
[ClassPlotInd.R{j},ClassPlotInd.C{j}]=find (ImTemp) ;
end
F8=figure(8);
set(F8, ’name’, [TestFolder,’ - Frame No. ’,num2str(ImNo),’ - Object No. ’,...
num2str(0bjectNo)]);
subplot 131
imshow(pic_in, [0 255]);
title([TestFolder,’ - Frame No. ’,num2str(ImNo),’ - Object No. ’,num2str(ObjectNo)]);
subplot 132
imshow(dark_fg_white, [0 255]);
subplot 133
imshow(dark_fg_white, [0 2556]);
hold on
Colors=[{’b.’},{’y.?},{’r.?},{’g.?},{’n.’}];
hClass=-1%ones(4,1);
for j=1:4
if length(ClassPlotInd.C{j})>0
hClass(j)=plot(ClassPlotInd.C{j},ClassPlotInd.R{j},Colors{j});
end
end
LegendText={[’True Shadow (TN) = ’,num2str(TNEnhanced),’%’],...
[’False Object (FP) = ’,num2str(FPEnhanced),’%’],...
[’False Shadow (FN) = ’,num2str(FNEnhanced),’%’],...
[’True Object (TP) = ’,num2str(TPEnhanced),’%’1};
ValidLegends=find (hClass>0);
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hL=legend(hClass(ValidLegends),LegendText(ValidLegends));
set(hL, ’Position’,[0.69 0.03 0.2 0.1]);
hold off
if UseJavedImproved
title([’Perf. - Enhanced Improved method: ’,num2str(ACEnhanced),’}, acc.’]);
saveas (F8, [DestFolder,TestFolder, ’ _EnhancedImprovedPerformance_’,num2str(ImNo),...
’_? ,num2str(0bjectNo),’.png’], ’png’);
saveas(F8, [DestFolder, ’Performance\’,TestFolder,’_EnhancedImprovedPerformance_’,
num2str(ImNo),’_’,num2str(0bjectNo) ,ParametersImproved,Parameters,...
ParametersEnhanced,’.png’], ’png’);
else
title([’Perf. - Enhanced. method: ’,num2str(ACEnhanced),’% acc.’]);
saveas (F8, [DestFolder,TestFolder,’_EnhancedPerformance_’ ,num2str(ImNo),’_?,...
num2str(ObjectNo), ’.png’],’png’);
saveas (F8, [DestFolder, ’Performance\’,TestFolder,’_EnhancedPerformance_’, ...
num2str (ImNo),’_’ ,num2str(0bjectNo) ,Parameters,ParametersEnhanced, ...
>.png’l,’png’);
end
else
if UseJavedImproved
disp([TestFolder,’ - Frame ’,num2str(ImNo),’ - Object ’,num2str(ObjectNo),...
> Enhanced Improved not done...’]);
else
disp([TestFolder,’ - Frame ’,num2str(ImNo),’ - Object ’,num2str(ObjectNo),...
’ Enhanced not done...’]);
end
end
end
else

disp([TestFolder,’ - Frame ’,num2str(ImNo),’ - Object ’,num2str(ObjectNo),’ not labelled...’]);

end

E.17 Compare.m
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% Filename: "Compare.m"

% Description: Script that collects performance results from different

% methods in a single file for comparison.

% Input: "mat"-files containing results for each method

% Output: A single "mat"-file containing all results

% Author: Sgren Erbou (SGE)
% Last Revision: September 13, 2004
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global DestFolder
global TestFolder
global ImNo
global ObjectNo
global Perf;

Var=81;

MergingSizeLimit=[100,101; %[100,10]
CorrThreshold=[0.05,0.1]; %[0.05,0.1]
VarOffset=4;

RBThreshold=3; %3

Parametersl=[’_Var’,num2str(Var),’_Mer’,num2str(MergingSizeLimit(1)),’_Corr’,...
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sprintf(°%.2f’,CorrThreshold(1))];
Parameters2=[’_Var’,num2str(Var),’_Mer’,num2str(MergingSizeLimit(2)),’_Corr?,...

sprintf(’%.2f?,CorrThreshold(1))];
Parameters3=[’_Var’,num2str(Var),’_Mer’,num2str(MergingSizeLimit(2)),’_Corr?,...

sprintf(’}%.1£?,CorrThreshold(2)),’_’];
ParametersImproved=[’_VarOffset’ ,num2str(VarOffset)];
ParametersEnhanced=[’_RB’,sprintf(’%.1f’ ,RBThreshold),’_’];

load([DestFolder,TestFolder,’_JavedClass_’,num2str(ImNo),’_’,num2str(0bjectNo) ,Parametersl,’.mat’]);
Perf.ac(count,1)=ACJaved;

Perf.tp(count,1)=ConfMatrixJavedPerc(2,2);

Perf.fp(count,1)=ConfMatrixJavedPerc(1,2);

Perf.tn(count,1)=ConfMatrixJavedPerc(1,1);

Perf.fn(count,1)=ConfMatrixJavedPerc(2,1);

Perf.NoOfPixels(count,1)=sum(ConfMatrixJaved(:));

Perf.TrueObj(count,1)=sum(Truelbj) ;

Perf.TrueShadow(count,1)=sum(TrueShadow) ;

Perf.TrueSelfShadow(count,1)=sum(TrueSelfShadow);

load([DestFolder,TestFolder,’_JavedImprovedClass_’,num2str(ImNo),’_’,num2str(0ObjectNo),...
ParametersImproved,Parameters2,’.mat’]);
Perf.ac(count,2)=ACJaved;
Perf.tp(count,2)=ConfMatrixJavedPerc(2,2);
Perf.fp(count,2)=ConfMatrixJavedPerc(1,2);
Perf.tn(count,2)=ConfMatrixJavedPerc(1,1);
Perf.fn(count,2)=ConfMatrixJavedPerc(2,1);
Perf.NoOfPixels(count,2)=sum(ConfMatrixJaved(:));
Perf.TrueObj(count,2)=sum(Truelbj);
Perf.TrueShadow(count,2)=sum(TrueShadow) ;
Perf.TrueSelfShadow(count,2)=sum(TrueSelfShadow) ;

load([DestFolder,TestFolder,’_EnhancedClass_’,num2str(ImNo),’_’,num2str(ObjectlNo),...
Parametersl,ParametersEnhanced,’.mat’]);
Perf.ac(count,3)=ACEnhanced;
Perf.tp(count,3)=ConfMatrixEnhancedPerc(2,2);
Perf.fp(count,3)=ConfMatrixEnhancedPerc(1,2);
Perf.tn(count,3)=ConfMatrixEnhancedPerc(1,1);
Perf.fn(count,3)=ConfMatrixEnhancedPerc(2,1);
Perf.NoOfPixels(count,3)=sum(ConfMatrixEnhanced(:));
Perf.TrueObj(count, 3)=sum(Truelbj);
Perf.TrueShadow(count,3)=sum(TrueShadow) ;
Perf.TrueSelfShadow(count,3)=sum(TrueSelfShadow);

load([DestFolder,TestFolder,’_EnhancedImprovedClass_’,num2str(ImNo),’_’,num2str(0bjectNo),...
ParametersImproved,Parameters3,ParametersEnhanced,’.mat’]);
Perf.ac(count,4)=ACEnhanced;
Perf.tp(count,4)=ConfMatrixEnhancedPerc(2,2);
Perf.fp(count,4)=ConfMatrixEnhancedPerc(1,2);
Perf.tn(count,4)=ConfMatrixEnhancedPerc(1,1);
Perf.fn(count,4)=ConfMatrixEnhancedPerc(2,1);
Perf.NoOfPixels(count,4)=sum(ConfMatrixEnhanced(:));
Perf.True0bj (count,4)=sum(Truelbj) ;
Perf.TrueShadow(count,4)=sum(TrueShadow) ;
Perf.TrueSelfShadow(count,4)=sum(TrueSelfShadow) ;

save([DestFolder, Performance\ComparisonTestSet’],’Perf’, ’DATASET’);

E.18 PlotComparison.m
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% Filename: "PlotComparison"
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% Description: Script used for analyzing the results from the test set.
% Input: File containg collected results.
% Output: Figures showing performance.

% Remarks: Applies paired t-tests to show significant differences in mean
% values of performance methods.

% Author: Sgren Erbou (SGE)
% Last Revision: September 13, 2004
Dttt ot b ottt o e e ot o o T T to o o o Tl o o o o T T o o o o o T To o o o o T T T o o o o e T o o o o T To o o o o To 2o o o oo

close all;
clear all;
clc;

DestFolder=[’SGE\Video\FilesTestSet’];

Drive = ’E:\’;

DestFolder=[Drive,DestFolder,’\’];

load([DestFolder, ’Performance\ComparisonTestSet_RB3.0_.mat’]);
DATASET=DataSets(1);

% Mean and Std. of performance measures
Means=round( [Mean(Perf.ac,1) ;Mean(Perf.tp,1);...
Mean(Perf.fp,1) ;Mean(Perf.tn,1);Mean(Perf.fn,1)]’*10)/10;
Stds=round([std(Perf.ac,1);std(Perf.tp,1);std(Perf.fp,1);...
std(Perf.tn,1);std(Perf.fn,1)]°*10)/10

% Binomial comparison
Comp.ac=[Perf.ac(:,2)>Perf.ac(:,1),Perf.ac(:,4)>Perf.ac(:,2),Perf.ac(:,4)>Perf.ac(:,1)];
Binom(:,1)=sum(Comp.ac)’;
Comp.tp=[Perf.tp(:,2)>Perf.tp(:,1),Perf.tp(:,4)>Perf.tp(:,2),Perf.tp(:,4)>Perf.tp(:,1)];
Binom(:,2)=sum(Comp.tp)’;

Comp.tn=[Perf.tn(:,2)>Perf.tn(:,1) ,Perf.tn(:,4)>Perf.tn(:,2),Perf.tn(:,4)>Perf.tn(:,1)];
Binom(:,3)=sum(Comp.tn)’;

% Testing for differences in absolute measures

J=[Perf.ac(:,[1]),Perf.tp(:,[1]),Perf.fp(:,[1]),Perf.tn(:,[1]),Perf.fn(:,[1])];
I=[Perf.ac(:,[2]),Perf.tp(:,[2]),Perf.fp(:,[2]),Perf.tn(:,[2]),Perf.fn(:,[2]1)];
E=[Perf.ac(:,[4]),Perf.tp(:,[4]),Perf.fp(:,[4]),Perf.tn(:,[4]),Perf.fn(:,[4]1)];

JI=I-J;
IE=E-I;
JE=E-J;

h=[];
p=[1;

ci=[];

=-1%ones(3,3);

=-1%ones(3,3);

for j=[1,2,4]
[h(1,3),p(1,3),duml(1,1:2),stats(1,3)]
[h(2,3),p(2,7),dum1(2,1:2),stats(2,])]
[h(3,j),p(3,j),dum1(3,1:2),stats(3,j)]
ci(:,j)=duml(:,1);
[H(1,j),P(1,j)] = jbtest(JI(:,j),0.05);
[H(2,7),P(2,5)] = jbtest(IE(:,}),0.05);
[H(3,7),P(3,5)] = jbtest(JE(:,}),0.05);

ttest(I(:,3),J(:,3),0.05,°right?);
ttest(E(:,3),I(:,3),0.05,’right?);
ttest(E(:,3),J(:,3),0.05,°right?);

]



E.18 PLOTCOMPARISON.M

169

end
% Testing for differences in relative measures

NotZeroIndJ{1}=find(J(:,1)>0);
NotZeroIndJ{2}=£find(J(:,2)>0);
NotZeroIndJ{3}=find (J(:,3)>0);
NotZeroIndJ{4}=find (J(:,4)>0);
NotZeroIndJ{5}=find(J(:,5)>0);

Jlog=log([Perf.ac(:,[1]),Perf.tp(:,[1]),Perf.£fp(:,[1]),Perf.tn(:,[1]),Perf.fn(:,[1])]1);
Ilog=log([Perf.ac(:,[2]),Perf.tp(:,[2]),Perf.fp(:,[2]),Perf.tn(:,[2]),Perf.fn(:,[2]1)1);
Elog=log([Perf.ac(:,[4]),Perf.tp(:,[4]),Perf.£fp(:,[4]),Perf.tn(:, [4]),Perf.fn(:,[41)]);

JIlog=Ilog-Jlog;
IElog=Elog-Ilog;
JElog=Elog-Jlog;

hlog=[];
plog=[1;
cilog=[1;

Hlog=-1%ones(3,3);
Plog=-1%ones(3,3);
for j=[1,2,4]
[hlog(1,j),plog(l,j),duml(1,1:2),statslog(Ll,j)]=...
ttest(Ilog(NotZeroIndJ{4},j),Jlog(NotZeroIndJ{4},j),0.05, ’right’);
[hlog(2,j),plog(2,j),dum1(2,1:2),statslog(2,j)]=...
ttest(Elog(:,j),Ilog(:,j),0.05,’right?);
[hlog(3,j),plog(3,j),dum1(3,1:2),statslog(3,j)]=...
ttest(Elog(NotZeroIndJ{4}, j),Jlog(NotZeroIndJ{4},j),0.05, right’);
cilog(:,j)=dumi(:,1);
[Hlog(1,j),Plog(1,j)]
[Hlog(2,j),Plog(2,j)]
[Hlog(3,j),Plog(3,j)]

jbtest(JIlog(NotZeroIndJ{4},j),0.05);
jbtest (IElog(:,j),0.05);
jbtest (JElog(NotZeroIndJ{4},j),0.05);

end

JIRel=I./J;
IERel=E./I;
JERel=E./J;

ObjPart=Perf.TrueObj(:,1)./(Perf.TrueShadow(:,1)+Perf.TrueObj(:,1));

% Plot figures

F3=figure(3);

subplot 231

plot(I(:,1),J(:,1),°g.%);

hold on

1=1ine ([0 100],[0 100]1);

p=plot(Means(2,1) ,Means(1,1),’kx’, ’linewidth’,1, ’markersize’,6);
set(1l,’color?’,’k?);

leg(1)=legend(p, ’Mean value’,2);

axis([0 100 0 1001);

hold off

grid on

xlabel({’AC [%] of I’;’(a)’},’FontSize’,8);
ylabel(’AC [%] of J’,’FontSize’,8);

subplot 232
plot(E(:,1),J(:,1),°r.”);
hold on
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1=1ine([0 100],[0 100]1);
p=plot(Means(4,1),Means(1,1),’kx?, ’linewidth’,1, markersize’,6);
set(1,’color’,’k?);

leg(2)=legend(p, ’Mean value’,2);

axis([0 100 0 1001)

hold off

grid on

xlabel({?AC [%] of E’;?(b)’},’FontSize’,8);

ylabel(?AC [%] of J’,’FontSize’,8);

subplot 233
ph(1)=plot(Means(1,3),Means(1,2),’bx’,’linewidth’,1, *markersize?,6);
hold on
ph(2)=plot(Means(2,3),Means(2,2),’gx’, ’linewidth’,1, 'markersize’,6);
ph(3)=plot(Means(4,3),Means(4,2),’rx’, linewidth’,1, markersize’,6);
ph(4)=plot(28,80,’bo’,’linewidth’,1, *markersize?’,6);
ph(5)=plot(21,72,’go’,’linewidth’,1, *markersize’,6);
ph(6)=plot(26,83,’ro’, ’linewidth’,1, *markersize’,6);
axis([20 50 60 90]);
leg(3)=legend(ph,’(J) Test?’,...

’(I) Test’,...

(E) Test’,...

’(J) Train.?,...

’(I) Train.?’,...

*(E) Train.’,1);

xlabel({’FP [%]?;°(c)’},’FontSize?’,8);
ylabel(®TP [%]’,’FontSize’,8);

hold off

grid on

Edges=0:5:100;
HistJ=histc(J(:,1),Edges);
HistE=histc(E(:,1),Edges);

resolution=100;

NormalJ(:,1)=[Means(1,1)+4*Stds(1,1)*(-1+1/(2*resolution):2/resolution:1-1/(2*resolution))]’;
NormalJ(:,2)=[1./(Stds(1,1)*sqrt(2*pi))*exp(-(NormalJ(:,1)’-Means(1,1)).72/(2*Stds(1,1)"2))]’;
NormalE(:,1)=[Means(4,1)+4*Stds(1,1)*(-1+1/(2*resolution) :2/resolution:1-1/(2*resolution))]’;
NormalE(:,2)=[1./(Stds(4,1)*sqrt(2*pi))*exp(-(NormalE(:,1)’-Means(4,1)).72/(2*%Stds(4,1)°2))]’;

subplot 212

bh(1)=bar(Edges+2.5,HistJ,0.8,°b?);

set(gca, ’YTickLabel’, [1);

hold on

bh(2)=bar(Edges+2.5,HistE,0.5,°r?);
bh(3)=plot(NormalJ(:,1),72*5*NormalJ(:,2),’k-’,’linewidth’,2);
bh(4)=plot(NormalE(:,1),72%5*NormalE(:,2),°k-.",’linewidth’,2);
hold off

axis([0 100 0 1.1*max([HistJ;HistE])]1);

xlabel({’AC [%]’;°(d)’},’FontSize’,8)
ylabel(’Occurrence/probability’, ’FontSize’,8)

leg(4)=legend(bh, ’Histogram of J’,’Histogram of E’,’Gaussian fitted to J’,’Gaussian fitted to E’,2);

set(leg, ’fontsize’,6);
Children=get (F3, children’);

set(Children, ’FontSize?’,7);

saveas(F3, [DestFolder, ’Performance\CompareTestSet.png’], *png’);
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E.19 PlotPerformance.m

TR bl IRl b bbbt Tt T b o o oo oo to T T T o o o o o o o o T T T T T e o o o o o o o T T o T o o o o o ot T T o oo

% Filename: "PlotPerformance.m"
% Description: Script used for plotting the results from the test set.

% Input: Files containg results from color segmentation of classification
% using different methods.

% Output: Figure showing performance for each example.
% Remarks: Corresponds to the figures appendix D in the report.

% Author: Sgren Erbou (SGE)

% Last Revision: September 13, 2004

Tttt to el o toto o o o T To oo o o To To o 1o o T T T o 1o o o To T o 0o o T T To o o o o T Tt o o o o T o 0 0o o T o o s o oo T o o o o T T o o o o o
%

close all;

clear all;

clc;

CHOOSE_DATASET=1; %0=Traing set, 1= Test Set
if CHOOSE_DATASET
DestFolder=[’SGE\Video\FilesTestSet’];
else
DestFolder=[’SGE\Video\FilesTrainingSet’];
end
Drive = ’E:\?;
DestFolder=[Drive,DestFolder,’\’];
addpath(DestFolder) ;

Var=81;

MergingSizeLimit=[100,10]; %[100,10]
CorrThreshold=[0.05,0.1]; %[0.05,0.1]
VarOffset=4;

RBThreshold=3; %3

Parametersi=[’_Var’,num2str(Var),’_Mer’,num2str(MergingSizeLimit(1)),’_Corr?,...
sprintf(’%.2f?,CorrThreshold(1))];
Parameters2=[’_Var’,num2str(Var),’_Mer’,num2str(MergingSizeLimit(2)),’_Corr?,...
sprintf(’%.2f?,CorrThreshold(1))];
Parameters3=[’_Var’,num2str(Var),’_Mer’,num2str(MergingSizeLimit(2)),’_Corr?,...
sprintf (’%.1£’,CorrThreshold(2)),’_’];
ParametersImproved=[’_VarOffset’,num2str(Var0ffset)];
ParametersEnhanced=[’_RB’,sprintf(’%.1£’,RBThreshold),’_’];

DATASET=DataSets (CHOOSE_DATASET); % O=Training Set (18 examples), 1=Test Set (72 examples)

for j=[1:size(DATASET,1)]
TestNo=DATASET(j,1);
ImNo=DATASET(j,2);
ObjectNo=DATASET(j,3);
TestFolder=[’Test’ ,num2str(TestNo)];
disp([’Processing ’,TestFolder,’ - Frame no. ’,num2str(ImNo),’ - Object No. ’,...
num2str(0bjectNo),’...%]1);
addpath([’E:\SGE\Video\’,TestFolder,’_0Object’]);
addpath([’E:\SGE\Video\Temp’]);

fg_clean_filename=[TestFolder,’_binart_’,num2str(ImNo),’_SGE_Clean_’,num2str(0bjectNo),’.bmp’];
fg_mask_full = double(imread(fg_clean_filename));
Stat_All = regionprops(fg_mask_full, ’Area’,’BoundingBox’);
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Border= 10;

if length(Stat_All)
[YOrg,X0rg,Z]=size(fg_mask_full);
Stat_All = regionprops(fg_mask_full, ’Area’,’BoundingBox’);
BBoxAll=Stat_All.BoundingBox;
BBoxAl1=[BBoxA11(1)-Border,BBoxAl11(2)-Border,BBoxAll(3)+2*Border,BBoxA11(4)+2*Border];
if BBoxAl1l(1)<1
BBoxA11(3)=BBoxA11(3)-(0.5-BBoxAl1(1));
BBoxA11(1)=0.5;
end
if BBoxAl1l(1)+BBoxAl1l(3)>X0rg+1
BBoxAl1(3)=X0rg-BBoxA11(1)-0.5;
end
if BBoxAl1l(2)<1
BBoxA11(4)=BBoxA11(4)-(0.5-BBoxAl1(2));
BBoxA11(2)=0.5;
end
if BBoxAl11(2)+BBoxAl1l(4)>Y0rg+1
BBoxAl11(4)=Y0rg-BBoxA11l(2)-0.5;
end
end

filename_Merged{1}=[DestFolder,TestFolder,’_JavedMerged_’ ,num2str(ImNo),’_’,...
num2str(0bjectNo) ,Parametersi(1l:end-8),’.mat’];
filename_Merged{2}=[DestFolder,TestFolder,’_JavedImprovedMerged_’,num2str(ImNo),’_?,...
num2str(ObjectNo) ,ParametersImproved,Parameters2(l:end-8),’.mat’];
filename_edge_rec=[DestFolder,TestFolder, ’_EdgeReconstruction_’,num2str(ImNo),’_*,...
num2str (0bjectNo),?.bmp’];
file_perf{1}=[DestFolder,TestFolder,’_JavedClass_’,num2str(ImNo),’_’,num2str(0bjectNo),...
Parametersi,’.mat’];
file_perf{2}=[DestFolder,TestFolder,’_JavedImprovedClass_’,num2str(ImNo),’_?,...
num2str(0bjectNo) ,ParametersImproved,Parameters2,’.mat’];
file_perf{3}=[DestFolder,TestFolder,’_EnhancedImprovedClass_’,num2str(ImNo),’_?,...
num2str(0bjectNo) ,ParametersImproved,Parameters3,ParametersEnhanced,’.mat’];
filename_label=[DestFolder,TestFolder,’_Truelabel_’,num2str(ImNo),’_’,num2str(0ObjectNo),’.bmp’];

% load manually labelled image
ImTrue=imread(filename_label);
AllDarkPixelIdxList=find(ImTrue>0);

% load region merged images

for n=1:2
load(filename_Merged{n});
NoOfRegions(n)=max(pic_fg_class_merged(:));
MergedRGB{n}=1label2rgb(pic_fg_class_merged);

end

% load reconstructed image

Rec_full=imread(filename_edge_rec);

Rec=imcrop(Rec_full,BBoxAll);

[Y,X,Z]=size(Rec);

ImPerf{1}=uint8(255%ones (Y*X,Z));

ImPerf{2}=uint8(255*%ones (Y*X,Z));

ImPerf{3}=uint8(255*%ones (Y*X,Z));
Colors=[0,0,255;255,255,0;255,0,0;0,255,0]; % [blue;yellow;red;green]

% load peformance file and construct performance figures
for g=1:2

load(file_perf{q});
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for m=1:4
ImTemp=uint8(zeros(Y,X));
switch m
case 1
ImPerf{q}(AllDarkPixelldxList(find(TNJavedPixels)),1)=Colors(m,1);
ImPerf{q}(AllDarkPixelIdxList (find(TNJavedPixels)),2)=Colors(m,2);
ImPerf{q}(AllDarkPixelldxList(find (TNJavedPixels)),3)=Colors(m,3);
case 2
ImPerf{q}(AllDarkPixelIdxList (find(FPJavedPixels)),1)=Colors(m,1);
ImPerf{q}(AllDarkPixelldxList(find (FPJavedPixels)),2)=Colors(m,2);
ImPerf{q}(AllDarkPixelIdxList (find(FPJavedPixels)),3)=Colors(m,3);
case 3
ImPerf{q}(AllDarkPixelIdxList(find (FNJavedPixels)),1)=Colors(m,1);
ImPerf{q}(AllDarkPixelIdxList (find(FNJavedPixels)),2)=Colors(m,2);
ImPerf{q}(AllDarkPixelldxList(find (FNJavedPixels)),3)=Colors(m,3);
case 4
ImPerf{q}(AllDarkPixelIdxList (find(TPJavedPixels)),1)=Colors(m,1);
ImPerf{q}(AllDarkPixelldxList (find(TPJavedPixels)),2)=Colors(m,2);
ImPerf{q}(AllDarkPixelIdxList (find(TPJavedPixels)),3)=Colors(m,3);
end
end
ImPerf{q}=reshape(ImPerf{q},Y,X,Z);
Perf{q}=[ACJaved;ConfMatrixJavedPerc(2,2);ConfMatrixJavedPerc(1,2);...
ConfMatrixJavedPerc(2,1) ;ConfMatrixJavedPerc(1,1)]; %[AC,TP,FP,FN,TN]
for m=1:5
PerfText{q}{m}=sprintf(’%.1£’,Perf{q}(m));
if length(PerfText{q}{m})==3
PerfText{q}{m}=[> ’,PerfText{q}{m}];
else
if length(PerfText{q}{m})==
PerfText{q}{m}=[’ ’,PerfText{q}{m}];
end
end
end
end

load(file_perf{3});
for m=1:4
ImTemp=uint8(zeros(Y,X));
switch m
case 1
ImPerf{3}(Al1DarkPixelIdxList(find (TNEnhancedPixels)),1)=Colors(m,1);
ImPerf{3}(AllDarkPixelIdxList(find (TNEnhancedPixels)),2)=Colors(m,2);
ImPerf{3}(Al1DarkPixelIdxList(find(TNEnhancedPixels)),3)=Colors(m,3);
case 2
ImPerf{3}(AllDarkPixelIdxList(find (FPEnhancedPixels)),1)=Colors(m,1);
ImPerf{3}(Al1DarkPixelIdxList (find (FPEnhancedPixels)),2)=Colors(m,2);
ImPerf{3}(AllDarkPixelIdxList(find (FPEnhancedPixels)),3)=Colors(m,3);
case 3
ImPerf{3}(Al1DarkPixelIdxList (find (FNEnhancedPixels)),1)=Colors(m,1);
ImPerf{3}(AllDarkPixelIdxList(find (FNEnhancedPixels)),2)=Colors(m,2);
ImPerf{3}(Al1lDarkPixelIdxList (find (FNEnhancedPixels)),3)=Colors(m,3);
case 4
ImPerf{3}(AllDarkPixelIdxList(find (TPEnhancedPixels)),1)=Colors(m,1);
ImPerf{3}(Al1DarkPixelIdxList (find (TPEnhancedPixels)),2)=Colors(m,2);
ImPerf{3}(AllDarkPixelIdxList(find (TPEnhancedPixels)),3)=Colors(m,3);
end
end
ImPerf{3}=reshape(ImPerf{3},Y,X,2);
%[AC,TP,FP,FN,TN]
Perf{3}=[ACEnhanced;ConfMatrixEnhancedPerc(2,2);ConfMatrixEnhancedPerc(1,2);...
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ConfMatrixEnhancedPerc(2,1) ;ConfMatrixEnhancedPerc(1,1)];
for m=1:5
PerfText{3}{m}=sprintf(’%.1£f?,Perf{3}(m));
if length(PerfText{3}{m})==3
PerfText{3}{m}=[’ ’,PerfText{3}{m}];
else
if length(PerfText{3}{m})==
PerfText{3}{m}=[’ ’,PerfText{3}{m}];
end
end
end

% Final figure of performance, containing the color segmentation using

% methods J and I, the reconstructed "semi-shadow-free" image, and the

% performance results of methods J,I and E.

Image=[MergedRGB{1},MergedRGB{2},Rec,uint8(255%ones(Y,X,Z)) ; ImPerf{1}, ImPerf{2},...

ImPerf{3},uint8(255*ones(Y,X,Z))];

Textl={[TestFolder,’ - Frame no. ’,num2str(ImNo)];[’0Object no. ’,num2str(ObjectNo)];...
[’ Javed: ’ ,num2str(NoOfRegions(1)),’ merged reg.’];...
[’Improved: ’,num2str(NoOfRegions(2)),’ merged reg.’]};

Text2={’Absolute Performance:’};

Text3={[’ ’,’ J ’,’ I ”’ E ’]};

TextAC={[’AC: ’,PerfText{1}{1},PerfText{2}{1},PerfText{3}{1}1};

TextTN={[’TN: ’,PerfText{1}{5},PerfText{2}{5},PerfText{3}{5}1};

TextFP={[’FP: ’,PerfText{1}{3},PerfText{2}{3},PerfText{3}{3}]1};

TextFN={[’FN: ’,PerfText{1}{4},PerfText{2}{4},PerfText{3}{4}1};

TextTP={[’TP: ’,PerfText{1}{2},PerfText{2}{2},PerfText{3}{2}17};

F40=figure(40);

imshow(Image, [1);

hold on

Ti=text(X*3.05,-Y*0.05,Textl, ’VerticalAlignment’, ’top’, ’FontName’,’courier’);

T2=text(X*3.05,Y-1.5%xY/5,Text2,’VerticalAlignment’, top’, *FontName’, ’>courier’);

T3=text(X*3.05,Y-0.5%Y/5,Text3,’VerticalAlignment’, top’, ’FontName’, ’courier’);

T4=text (X*3.05,Y+0.5%Y/5,TextAC, VerticalAlignment’,’top?’, ’FontName’, ’>courier’);

To=text (X*3.05,Y+1.5%xY/5,TextTN, *VerticalAlignment’, >top’, ’FontName’, >courier’, ...
’BackgroundColor’,’b’,’color’,[0.9,0.9,0.91);

Té=text (X*3.05,Y+2.5%xY/5,TextFP, *VerticalAlignment’, *top’, ’FontName’, ’courier?, ...
’BackgroundColor?,’y’);

T7=text (X*3.05,Y+3.5%xY/5,TextFN, *VerticalAlignment’, ’top’, ’FontName’, ’courier’,...
’BackgroundColor’,’r?);

T8=text (X*3.05,Y+4.5%xY/5,TextTP, *VerticalAlignment’, ’top’, ’FontName’, >courier’,...
’BackgroundColor’,’g?’);

hold off

drawnow;

CropPNG(F40, [DestFolder,TestFolder,’_FinalPerformance_’,num2str(ImNo),’_?,...

num2str(0bjectNo),”.png’],’_Cropped’);
end

E.20 Calibration.m
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% Filename: "Calibration.m"

% Description: Script that performs color calibration of a camera using
% images of the Macbeth color chart.

% Input: Images of color chart

% Output: Figure of calibration, files of annotation for each image
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% Author: Sgren Erbou (SGE)
% Last Revision: July 10, 2004
Il oot o e e To T o o o T T To o o o T T T To o o o T T T o o o T To T o o T T T o o o T T T T o o o T T o o o o T T o o o o T s o o Jo T o o oo

close all;

clear all;

clc;

MaskingDone=1; % 0=Define/controle colorpatch for every image. l=color patches exist
Set=200; % sequence no.

Format="bmp’;

NoOfColors=24;
Patches=[1:19,20:24]; ¥ Which patches to plot: l=upper left corner, 6=upper right corner
% 18=lower left corner, 24=lower right corner

x1im=[0.5 1024.5];

ylim=[0.5 768.5];
SourceFolder=[’E:\SGE\Video\CalSeq\Calibration’,num2str(Set),’\’];
Drive = ’E:\?;

Files=dir([SourceFolder,’*.’,Format]);

MaskInd={};

Mean=zeros (No0fColors,3,length(Files));

Std=zeros(NoOfColors,3,length(Files));

GetMask=0;

0ldMaskExist=0;

for n=1:length(Files)
filename=Files(n) .name;
ImNo=str2double(filename (find(filename==’t’)+1:find(filename==’_’)-1));
pic_in = imread([SourceFolder,filename]);
[Y,X,Z]=size(pic_in);
pic_in2=reshape(pic_in,Y*X,Z);

if exist([SourceFolder,’Test’,num2str(ImNo),’_MaskIndex_’,num2str(NoQfColors),...
’_Colors.mat?’])==
load([SourceFolder,’Test’ ,num2str (ImNo),’_MaskIndex_’,num2str(NoOfColors),...
> _Colors.mat’]);
if "MaskingDone
F3=figure(3);
imshow(pic_in, [1)
hI3=get(F3,’Children’);
set (hI3,’X1lim’,x1lim, ’Y1lim’,ylim);
t=title([filename(1:end-4),’> - Mask’]);
set(t,’Interpreter’,’none’);
hold on
for k=1:NoOfColors
[IndY,IndX]=ind2sub([Y,X] ,MaskInd{k});
plot(IndX,IndY,’.b’);
end
Ans=questdlg(’Use this mask?’,’7’);
if strcmp(Ans,’No’);
GetMask=1;
else
GetMask=0;
end
close(F3);
end
0ldMaskExist=1;
else
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if “"MaskingDone
if 0ldMaskExist
F3=figure(3);
imshow(pic_in, [1)
hI3=get(F3,’Children’);
set(hI3,’X1im’,x1lim,’Y1lim?’,ylim);
t=title([filename(1l:end-4),’ - Previous Mask’]);
set(t,’Interpreter’, ’none’);
hold on
for k=1:NoOfColors
[IndY,IndX]=ind2sub([Y,X] ,MaskInd{k});
plot(IndX,IndY,’.b’);
end
Ans=questdlg(’Use previous mask?’,’7’);
if strcmp(Ans,’No’);
GetMask=1;
else
GetMask=0;
end
close(F3);
else
GetMask=1;
end

end
end

F4=figure(’Visible’,’0ff’);

imshow(pic_in, [1);

hI4=get(F4,’Children’);

set(hI4,’X1lim’,x1im,’Y1lim’,ylim);

for k=1:No0fColors
if GetMask

set(F4,’Visible’,’on?)
MaskInd{k}=find(roipoly);

end
Mean(k,1,n)=mean(double(pic_in2(MaskInd{k},1)));
Mean(k,2,n)=mean(double(pic_in2(MaskInd{k},2)));
Mean(k,3,n)=mean(double(pic_in2(MaskInd{k},3)));
Std(k,1,n)=std(double(pic_in2(MaskInd{k},1)));
Std(k,2,n)=std(double(pic_in2(MaskInd{k},2)));
Std(k,3,n)=std(double(pic_in2(MaskInd{k},3)));

end

if GetMask
save([SourceFolder, *Test’ ,num2str (ImNo),’_MaskIndex_’,...

num2str (No0fColors),’_Colors’],’MaskInd’);

0ldMaskExist=1;

end

end

MeanRG=reshape(log([(1+Mean(:,1,:))./(1+Mean(:,2,:))]),No0fColors,length(Files));
MeanBG=reshape(log([(1+Mean(:,3,:))./(1+Mean(:,2,:))]),No0fColors,length(Files));

Markers6=[{’b*’},{’g*’},{’r*°},{?y*’}, {’'mx’}, {?cx?}];

Markers24=[{’b*>},{?g*’}, {’rx>},{2y*°}, {’mx>} ,{?c*’}, ...
{’bo’},{’go’},{’r0’},{’y0’},{’mo’},{’co’}, ...
Lo}, g}, O}, Ly}, Pmx°}F, {?cx’}, ...
o2}, {°g.°}, {2}, Oy 23, 0Pm. 23, {°c.°3];

lambda=[613 540 462]*1e-9; Y% Center of spectral response[R,G,B]=[613 540 462]*1le-9
q=[0.98 1 0.86]; % Sensitivity
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c1=3.74183e-16;

c2=1.4388e-2;

e=-c2./lambda;
a_m=[1;-(e(1)-e(2))/(e(3)-e(2))];
a=a_m/norm(a_m);

a=[a(2),-a(1)];

p=01;

pl=[];

1=[1;
DirChange=[];

LengthFactor=0.5;

Fit=zeros(NoOfColors,2);
MeanColor=[mean(MeanRG,2) ,mean(MeanBG,2)];
Fb=figure;

for j=1:length(Patches)
p(end+1)=plot(MeanRG(Patches(j),1:end)’,MeanBG(Patches(j),1:end)’,Markers24{Patches(j)});
hold on
Fit(Patches(j),:) = polyfit(MeanRG(Patches(j),:)’,MeanBG(Patches(j),:)?,1);
FitXY(Patches(j),:)=[1,Fit(Patches(j),1)]/norm([1,Fit(Patches(j),1)]);
1(end+1)=1line([-0.5*LengthFactor*FitXY(Patches(j),1),0.5*LengthFactor*FitXY(Patches(j),1)],...
[-0.5*LengthFactor*FitXY(Patches(j),2),0.5*%LengthFactor*FitXY(Patches(j),2)],...
’Color’,get(p(j),’Color’));
end

if NoOfColors==
legend(p, ’Cyan’,’Violet’, ’Magenta’, ’Red’, ’Yellow’, ’Green’)
else
if NoOfColors==24
Text24={’1-Dark Skin’,’2-Light Skin’,’3-Blue sky’,’4-Foilage Green’,’5-Blue Flower’,...
’6-Bluish Green’,’7-Orange’,’8-Purplish Blue’,’9-Moderate Red’,’10-Purple’,...
’11-Yellow Green’,’12-Orange Yellow’,’13-Blue’,’14-Green’,’15-Red’,...
’16-Yellow’,’17-Magenta’,’18-Cyan’,’19-White’, ’20-Light Gray’,...
’21-Medium Gray 1°,°22-Medium Gray 2’,’23-Dark Gray’,’24-Black’};
1=legend(p,Text24(Patches));
set(l,’FontSize’,8);
end
end
ylabel(’Ln(B/G)’);
xlabel(’Ln(R/G)’);
AllAngles=180/pi*atan2(FitXY(Patches,2) ,FitXY(Patches,1));
MeanFitXY=mean(FitXY(Patches,:));
StdAngle=round(std(AllAngles)*10)/10;
MeanAngle=mean(AllAngles);

Trueline=line([-a(1) a(1)],[-a(2) a(2)],’LineWidth’,2,’LineStyle’,’--’);
MeanFith=1line([-MeanFitXY(1) MeanFitXY(1)],[-MeanFitXY(2) MeanFitXY(2)],’LineWidth’,2,...
’LineStyle’,’-’,Color?,’r’);
MeanFith=1line(MeanFitXY(1)+[-3*MeanFitXY(2) 3*MeanFitXY(2)],...
MeanFitXY(2)+[3*MeanFitXY(1),-3*MeanFitXY(1)], ’LineWidth’,2, ’LineStyle’,’-’, Color’,’k’);

Angles=round(10%180/pi*[atan2(a(2),a(1)),atan2(MeanFitXY(2) ,MeanFitXY(1))1)/10;

set(gca, ’DatadspectRatio’,[1 1 1]);

axis([-1.5 2.5 -2 1 1);

Ti=text(-0.3,0.75,{[’Invariant direction derived from:’];[];...
[’Spectral sensitivity (blue line) = ’,num2str(Angles(1)),’ deg.’];...
[’Calibration of ’,num2str(length(Files)),’ images (red line) = ’,...
num2str(Angles(2)),’+/-’ ,num2str(StdAngle),’ deg.’]}, ’FontSize’,8);
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title({[’Chromaticities of ’,num2str(length(Patches)),’ Color Patches from ’,...
num2str(length(Files)),’ Test Images - Set No. ’,num2str(Set)];...
[’Angle from spectral sensors = ’,num2str(Angles(1)),...
> deg. - Angle from calibration = ’,num2str(Angles(2)),’ deg.’1});

title(??)

saveas(F5, [SourceFolder, ’CalibrationSet’ ,num2str(Set),’.png’], ’png’);

E.21 CropPNG.m

Tl bkt tototolalo oo toto oo toTodo T oo o o o Jo oo to T To o o o o o o o o oo o oo o T o o o oo o o oo T o o o o o oo oo o o o T o o o o
% Filename: "CropPNG.m"

% Description: Function that crops a "png"-image to its bounding box, to
% avoid thick white borders

% Input: Figurehandle, filename and extension of filename to cropped
% figure.

% Output: "png"-file of cropped figure.

% Author: Sgren Erbou (SGE)
% Last Revision: September 14, 2004
Tttt to ot toleto ot tolotototo oo to o oo T oo toTo o oo toFo o o oo o o oo o oo oo o T o oo do o o oo do oo o oo oo o oo oo o oo o o o oo

function CropPNG(FigureHandle,Filename,Extension)

saveas(FigureHandle,Filename, ’png’);
close(FigureHandle);

Im2=imread(Filename) ;

Im4=uint8(imcomplement (Im2(:,:,1)>264));
Im4Stat=regionprops(Im4, boundingbox’);
Im4Stat.BoundingBox(2)=fix(Im4Stat.BoundingBox(2)*0.98);
Im4Stat.BoundingBox(3)=fix(Im4Stat.BoundingBox(3)*1.01);
Im4Stat.BoundingBox(4)=fix(Im4Stat.BoundingBox(4)*1.04);
ImS=imcrop(Im2, Im4Stat.BoundingBox) ;

imwrite(Im5, [Filename(1:end-4) ,Extension,’.png’], ’png’);

E.22 OptimizeJaved.m

Tt Tl to o to T o to ot T oo ot oo o to oo o oo o oo o oo oo o oo o o oo T oo oo o o oo o T o oo do T o o oo o o o oo oo o oo o o o oo
% Filename: "OptimizeJaved.m"

%

% Description: Script that collects the performance of the parameter values

% for the training set, for determining optimal performance for Javed’s method.

% Input: Files with performance results of training set.
% Output: Figures showing performance.

% Author: Sgren Erbou (SGE)
% Last Revision: September 13, 2004
Dbttt o o ta toto oo T ot o o o T To T o o o T T o o o o o T o o o o o T To o o o o T T o 0 o o To o o o o o To 2 s o o o To o o o o oo

close all;
clear all;
clc;

addpath([’E:\SGE\Video\FilesTrainingSet’]);
DestFolder=[’SGE\Video\FilesTrainingSet\Analysis’];
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Drive = ’E:\?;
if exist([Drive,DestFolder],’dir’)~=7
Dir=pwd;
cd(Dir);
mkdir(DestFolder);
cd(Dir);
end
DestFolder=[Drive,DestFolder,’\’];
addpath(DestFolder);

Whhsh Javed Uh%%hh

% K-Means

VAR=[25 36 49 64 81 100];

% Merging

MERGINGSIZE=[10 30 50 70 100 150];

% Correlation

CORRTHRES=[0.0 0.05 0.1 0.15 0.2 0.3];
WA bRt bRk hhhhhHB5

DATASET=DataSets(0) % 0=Training Set (18 examples), 1=Test Set (72 examples)

filename_OptimizeJaved=[DestFolder,’OptimizeJaved.mat’];
if exist(filename_OptimizeJaved) =2
for j=[1:size(DATASET,1)]
TestNo=DATASET(j,1);
ImNo=DATASET(j,2);
ObjectNo=DATASET(j,3);
TestFolder=[’Test? ,num2str(TestNo)];
Acc{j,0bjectNo}=zeros(length(VAR),length(MERGINGSIZE),length(CORRTHRES)) ;
for VarCount=1:1length(VAR)
for MerCount=1:length(MERGINGSIZE)
for CorrCount=1:length(CORRTHRES)
Var=VAR(VarCount) ;
MergingSizeLimit=MERGINGSIZE (MerCount) ;
CorrThreshold=CORRTHRES (CorrCount) ;
if mod(CorrThreshold,0.1)==0
Parameters=[’_Var’,num2str(Var),’_Mer’ ,num2str(MergingSizeLimit),...
’_Corr’?,sprintf(’%.1f’,CorrThreshold),’_’];
else
Parameters=[’_Var’,num2str(Var),’_Mer’,num2str(MergingSizelLimit),...
’_Corr?,sprintf(’%.2f°,CorrThreshold)];
end
load([TestFolder,’_JavedClass_’,num2str(ImNo),’_’,num2str(ObjectNo), ...
Parameters,’.mat’]);
Acc{j,0bjectNo}(VarCount ,MerCount,CorrCount)=ACJaved;
tp{j,0bjectNo}(VarCount ,MerCount,CorrCount)=ConfMatrixJavedPerc(2,2);
fp{j,0bjectNo}(VarCount ,MerCount,CorrCount)=ConfMatrixJavedPerc(1,2);
tn{j,0bjectNo}(VarCount,MerCount,CorrCount)=ConfMatrixJavedPerc(1,1);
fn{j,0bjectNo}(VarCount,MerCount,CorrCount)=ConfMatrixJavedPerc(2,1);
NoOfPixels(j,0bjectNo)=sum(ConfMatrixJaved(:));
end
end
end
end
save([filename_OptimizeJaved],’Acc?,’tp’,’fp’,’tn’,’fn’, ’No0fPixels?);
else
load([filename_OptimizeJaved]);
end

for w=1:6
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for gq=1:size(DATASET,1)

ACC{w}(:,:,q)=Acc{q}(:,:,w);

TP{w}(:,:,q)=tp{q}(:,:,w);

FP{w}(:,:,q)=fp{q}(:,:,w);

TN{w}(:,:,q9)=tn{q}(:,:,w);

FN{w}(:,:,q)=fn{q}(:,:,w);
end

Mean(:,:,w)=mean(ACC{w},3);

Std(:,:,w)=std(ACC{w},0,3);

MeanFP(:,:,w)=mean(FP{w},3);
StdFP(:,:,w)=std(FP{w},0,3);
MeanTP(:,:,w)=mean(TP{w},3);
StdTP(:,:,w)=std(TP{w},0,3);
MeanFN(:,:,w)=mean(FN{w},3);
StdFN(:,:,w)=std(FN{w},0,3);
MeanTN(:,:,w)=mean(TN{w},3);
StdTN(:,:,w)=std(TN{w},0,3);

end

[Max,a]=max(Mean(:));

[a,b,c]=ind2sub([length(VAR),length(MERGINGSIZE) ,length(CORRTHRES)] ,a);

a=b;
b=5;
c=2;

F30=figure(30)

for w=1:6
subplot(2,3,w)
H(w)=mesh(MERGINGSIZE,VAR,Mean(:,:,w));
axis([10 150 20 100 50 90]1);
ylabel(’\sigma~2’, FontSize’,8);
xlabel({’> Merging size
zlabel(’Accuracy (AC) [%]’,’FontSize’,8);
title([’Correlation threshold = ’,num2str (CORRTHRES(w)

end

set(get(F30, children’), ’FontSize’,8);

subplot(2,3,c)

hold on

plot3(MERGINGSIZE(b) ,VAR(a),Max, k*’, ’Markersize’,8);

hold off

saveas(F30, [DestFolder, ’JavedOptimizationAC.png’], ’png’);

F31=figure(31);
H31(1)=plot(MeanFP(:,b,c),MeanTP(:,b,c),’b-x’, ’linewidth’,
hold on
H31(2)=plot(MeanFP(a,:,c),MeanTP(a,:,c),’r-x’, linewidth’,

’;’threshold [pixels]’},’FontSize’,8);

)1,’FontSize?,8);

2, ’markersize’,8);

2,’markersize’,8);

H31(3)=plot(reshape([MeanFP(a,b,:)],length(CORRTHRES),1) ,reshape([MeanTP(a,b,:)],...

length(CORRTHRES),1),’g-x’,’linewidth’

axis([20 50 65 95]);
xlabel(’False positives (FP) [%]’,’FontSize’,12);
ylabel(’True positives (TP) [%]’,’FontSize’,12);
title(’ROC-curve’,’FontSize’,12);
grid on
set(get(F31, ’children’), ’FontSize’,12);
hold on
H31(4)=plot(MeanFP(a,b,c),MeanTP(a,b,c),’k*’, ’Markersize’,
hold off
l=legend(H31, ’Fixed variance \sigma~2’,’Merging threshold’

’Optimimum performance’,4);
set(1l,’FontSize’,10);
saveas(F31, [DestFolder, >JavedOptimizationROC.png’], png’);

,2,’markersize’,8);

10);

,2Correlation threshold’,...
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F32=figure(32)
for w=1:6

subplot(2,3,w)

H(w)=mesh(MERGINGSIZE,VAR,MeanFP(:,:,w));

axis([10 150 20 100 10 901);

ylabel(’\sigma~2’, ’FontSize’,8);

xlabel({’> Merging size
zlabel(’False objects (FP) [%]’,’FontSize’,8);

title([’Correlation threshold = ’,num2str(CORRTHRES(w))],’FontSize’,8);

end
set(get(F32, ’children’), ’FontSize’,8);
subplot(2,3,c)
hold on

plot3(MERGINGSIZE(b) ,VAR(a) ,MeanFP(a,b,c)+1,’k*’, ’Markersize’,8);
hold off
saveas(F32, [DestFolder, ’JavedOptimizationFP.png’], ’png’);

F33=figure(33);
Markers={’b.’,’r.’,’g.”,%c.?,’m.?,’y.’};
for w=1:6

H33(w)=plot(reshape(MeanFP(:,:,w),36,1),reshape(MeanTP(:,:,w),36,1),...

Markers{w}, >markersize’,12);

hold on

end
xlabel(’False positives (FP) [%]’,’FontSize’,12);
ylabel(’True positives (TP) [%]’,’FontSize’,12);

title(’ROC-curve’,’FontSize?’,12);

’;’threshold [pixels]’},’FontSize’,8);

grid on

set(get(F33, children’), ’FontSize’,12);

hold on

H33(7)=plot(MeanFP(a,b,c),MeanTP(a,b,c), k*’, ’Markersize’,10);

hold off

l=legend(H33, [’Corr. threshold = ’,sprintf(’%.2f’,CORRTHRES(1))],...
[’Corr. threshold = ’,sprintf(’%.2f”,CORRTHRES(2))],...
[’Corr. threshold >, sprintf(’Y%.2f>,CORRTHRES(3))],. ..
[’Corr. threshold = ’,sprintf(’%.2f’,CORRTHRES(4))],...
[’Corr. threshold = ’,sprintf(°%.2f”,CORRTHRES(5))],...
[’Corr. threshold >, sprintf(’%.2f> ,CORRTHRES(6))],. ..

set(l,’FontSize’,10);

’Optimimum performance’,4);

saveas(F33, [DestFolder, ’JavedOptimizationROCAll.png’], ’png’);

round([Mean(a,b,c),Std(a,b,c) ;MeanTP(a,b,c),StdTP(a,b,c) ;MeanFP(a,b,c),...
StdFP(a,b,c) ;MeanTN(a,b,c),StdTN(a,b,c) ;MeanFN(a,b,c),StdFN(a,b,c)])

E.23 OptimizeJavedImproved.m

TRl bbbt tototola oo o tototototoTodo o o oo o o o do o oot o To o o o oo oo oo o oo o o o o o oo o o o Fo T o o o o oo o oo o o o Fo o o o oo

%

TRl bbbt tototola oo o tototototoTodo o o oo oo o tototototo o oo o o oo oo oo o oo o o o o o oo oo o Fo oo o o o o o o oo o o o o o o o oo

Filename: "OptimizeJavedImproved.m"

Description: Script that collects the performance of the parameter values
for the training set, for determining optimal performance for the improved

color segmentation method.

Input: Files with performance results of training set.

Qutput: Figures showing performance.

Author: Sgren Erbou (SGE)
Last Revision: September 13, 2004
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close all;
clear all;
clc;

addpath([’E:\SGE\Video\FilesTrainingSet’]);
DestFolder=[’SGE\Video\FilesTrainingSet\Analysis’];

Drive = ’E:\’;
if exist([Drive,DestFolder],’dir’)~=7
Dir=pwd;
cd(Dir);
mkdir(DestFolder);
cd(Dir);
end

DestFolder=[Drive,DestFolder,’\’];

addpath(DestFolder);
Y%hh% Javed UUAL%
% K-Means

VAR=[25 36 49 64 81 100];

% Merging

MERGINGSIZE=[10 30 50 70 100 150];

% Correlation
CORRTHRES=[0.0 0.05 0.1
VAN SN N AN YY AN YA
VAROFFSET=[4];

0.15 0.2 0.3];

DATASET=DataSets(0); % O=Training Set (18 examples), 1=Test Set (72 examples)
filename_OptimizeJavedImproved=[DestFolder, ’OptimizeJavedImproved.mat’];

if exist(filename_QOptimizeJavedImproved) =2
for j=[1:size(DATASET,1)]
TestNo=DATASET(j,1);
ImNo=DATASET(j,2);
ObjectNo=DATASET(J,3);
TestFolder=[’Test’ ,num2str(TestNo)];

Acc{j,0bjectNo}=

zeros(length(VAR) ,length(MERGINGSIZE),length(CORRTHRES)) ;

for VarCount=1:length(VAR)
for MerCount=1:length(MERGINGSIZE)
for CorrCount=1:length(CORRTHRES)

for

end

VarOffsetCount=1:1length(VAROFFSET)
Var0ffset=VAROFFSET (VarOffsetCount) ;
Var=VAR(VarCount) ;
MergingSizeLimit=MERGINGSIZE (MerCount) ;
CorrThreshold=CORRTHRES (CorrCount) ;

if mod(CorrThreshold,0.1)==0

Parameters=[’_Var’,num2str(Var),’_Mer’ ,num2str(MergingSizeLimit),...

’_Corr’?,sprintf(’%.1f°,CorrThreshold),’_’];
else

Parameters=[’_Var’,num2str(Var),’_Mer’,num2str(MergingSizelLimit),...

’_Corr’,sprintf(’%.2f°,CorrThreshold)];
end
ParametersImproved=[’_VarOffset’ ,num2str(VarOffset)];

load([TestFolder,’_JavedImprovedClass_’ ,num2str(ImNo),’_’,...
num2str(0bjectNo) ,ParametersImproved,Parameters,’.mat’]);
Acc{j,0bjectNo}(VarCount ,MerCount,CorrCount)=ACJaved;
tp{j,0bjectNo} (VarCount,MerCount,CorrCount)=ConfMatrixJavedPerc(2,2);
fp{j,0bjectNo}(VarCount,MerCount,CorrCount)=ConfMatrixJavedPerc(1,2);
tn{j,0bjectNo} (VarCount ,MerCount,CorrCount)=ConfMatrixJavedPerc(1,1);
fn{j,0bjectNo}(VarCount,MerCount,CorrCount)=ConfMatrixJavedPerc(2,1);
NoOfPixels(j,0bjectNo)=sum(ConfMatrixJaved(:));
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end
end
end
end

save([filename_OptimizeJavedImproved],’Acc’,’tp’,’fp’,’tn’, ’fn’, ’No0fPixels’);

else
load([filename_OptimizeJavedImproved]);

end
for w=1:6
for q=1:size(DATASET,1)
AcC{w}(:,:,q)=Acc{q}(:,:,w);
TP{w}(:,:,9)=tp{q}(:,:,w);
FP{w}(:,:,Q=fp{q}(:,:,w);
TN{w}(:,:,@)=tn{q}(:,:,w);
FN{w}(:,:,Q)=fn{q}(:,:,w);
end
Mean(:,:,w)=mean(ACC{w},3);
Std(:,:,w)=std(ACC{w},0,3);
MeanFP(:,:,w)=mean(FP{w},3);
StdFP(:, :,w)=std(FP{w},0,3);
MeanTP(:,:,w)=mean(TP{w},3);
StdTP(:, :,w)=std(TP{w},0,3);
MeanFN(:,:,w)=mean(FN{w},3);
StdFN(:,:,w)=std(FN{w},0,3);
MeanTN(:,:,w)=mean(TN{w},3);
StdTN(:,:,w)=std(TN{w},0,3);
end

[Max,al=max(Mean(:));
[a,b,c]=ind2sub([length(VAR) ,length(MERGINGSIZE) ,length(CORRTHRES)],a);
a=5;
b=1;
c=2;
F30=figure(30)
for w=1:6
subplot(2,3,w)
H(w)=mesh(MERGINGSIZE,VAR,Mean(:,:,w));
axis([10 150 20 100 50 951);
ylabel(’\sigma~2’, ’FontSize’,8);
xlabel({’ Merging size ’;’threshold [pixels]’},’FontSize?,8);
zlabel(’Accuracy (AC) [%]’,’FontSize’,8);
title([’Correlation threshold = ’,num2str (CORRTHRES(w))],’FontSize’,8);
end
set(get(F30, children’), ’FontSize’,8);
subplot(2,3,c)
hold on
plot3(MERGINGSIZE(b),VAR(a),Max+1, *k*’, ’Markersize?’,8);
hold off
saveas(F30, [DestFolder, *JavedImprovedOptimizationAC.png’], ’png’);

F31=figure(31);
H31(1)=plot(MeanFP(:,b,c),MeanTP(:,b,c),’b-x’,’linewidth’,2, *markersize’,8);
hold on
H31(2)=plot(MeanFP(a,:,c),MeanTP(a,:,c),’r-x’,’linewidth’,2, ’markersize’,8);

H31(3)=plot(reshape([MeanFP(a,b,:)],length(CORRTHRES),1) ,reshape([MeanTP(a,b,:)],...

length(CORRTHRES),1),’g-x’,’linewidth’,2, *markersize?’,8);
xlabel(’False positives (FP) [%]’,’FontSize’,12);
ylabel(’True positives (TP) [%]’,’FontSize’,12);
title(’ROC-curve’,’FontSize’,12);
grid on
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set(get(F31, ’children’), ’FontSize’,12);

hold on

H31(4)=plot(MeanFP(a,b,c),MeanTP(a,b,c), k*’, Markersize’,10);

hold off

l=legend(H31, ’Fixed variance \sigma~2’,’Merging threshold’,’Correlation threshold’,...
’Optimimum performance’,4);

set(1l,’FontSize’,10);

saveas(F31, [DestFolder, > JavedImprovedOptimizationROC.png’], *png?’);

F32=figure(32)
for w=1:6
subplot(2,3,w)
H(w)=mesh(MERGINGSIZE,VAR,MeanFP(:,:,w));
axis([10 150 20 100 10 90]1);
ylabel(’\sigma~2’, ’FontSize’,8);
xlabel({’ Merging size ’;’threshold [pixels]’},’FontSize’,8);
zlabel(’False objects (FP) [%]’,’FontSize’,8);
title([’Correlation threshold = ’,num2str(CORRTHRES(w))], ’FontSize’,8);
end
set(get(F32, ’children’),’FontSize’,8);
subplot(2,3,c)
hold on
plot3(MERGINGSIZE(b) ,VAR(a),MeanFP(a,b,c)+1, k*’, ’Markersize?’,8);
hold off
saveas(F32, [DestFolder, ’JavedImprovedOptimizationFP.png’], *png’);

F33=figure(33);

Markers={’b.’,’r.’,’g.’,%c.?,’m.?,’y.’};

for w=1:6

H33(w)=plot(reshape(MeanFP(:,:,w),36,1),reshape(MeanTP(:,:,w),36,1),...
Markers{w}, ’markersize’,12);
hold on

end

xlabel(’False positives (FP) []’,’FontSize’,12);

ylabel(’True positives (TP) []’,’FontSize’,12);

title(’ROC-curve’,’FontSize’,12);

grid on

set(get(F33, children’), ’FontSize’,12);

hold on

H33(7)=plot(MeanFP(a,b,c),MeanTP(a,b,c),’k*’, ’Markersize’,10);

hold off

l=legend(H33, [’Corr. threshold = ’,sprintf(’.2f’,CORRTHRES(1))],...
[’Corr. threshold = ’,sprintf(’.2f’,CORRTHRES(2))],...
[’Corr. threshold = ’,sprintf(’.2f’,CORRTHRES(3))],...
[’Corr. threshold = ’,sprintf(’.2f’,CORRTHRES(4))],...
[’Corr. threshold = ’,sprintf(’.2f’,CORRTHRES(5))],...
[’Corr. threshold = ’,sprintf(’%.2f’,CORRTHRES(6))],...
’Optimimum performance’,4);

set(l,’FontSize?’,10);

saveas(F33, [DestFolder, > JavedImprovedOptimizationROCALl.png’], *png’);

round([Mean(a,b,c),Std(a,b,c) ;MeanTP(a,b,c),StdTP(a,b,c) ;MeanFP(a,b,c),...

StdFP(a,b,c);MeanTN(a,b,c),StdTN(a,b,c) ;MeanFN(a,b,c),StdFN(a,b,c)])

E.24 OptimizeEnhanced.m

Tl m Rt il bt T b toto T o oo to T oo Tota oo o Tt o ot To o o o T T o ot T oo o 2o To oo 2o T T oo o Tt oo o ot o oo 2 T o o
% Filename: "OptimizeEnhanced.m"

%

% Description: Script that collects the performance of the parameter values

% for the training set, for determining optimal performance for the enhanced
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% method using improved color segmentation.
% Input: Files with performance results of training set.
% Output: Figures showing performance.

% Author: Sgren Erbou (SGE)
% Last Revision: September 13, 2004
Tttt ot to el Toto oo o T T To oo o o To T o 1o o T To T o 2o o T To T o 0o o T T To o o o o T To o o o o T To o 0 0o o T T o 0 0 o oo T o s o o T T o o o o o

close all;
clear all;
clc;

addpath([’E:\SGE\Video\FilesTrainingSet’]);
DestFolder=[’SGE\Video\FilesTrainingSet\Analysis’];
Drive = ’E:\?;
if exist([Drive,DestFolder],’dir’)~=7
Dir=pwd;
cd(Dir);
mkdir(DestFolder);
cd(Dir);
end
DestFolder=[Drive,DestFolder,’\’];
addpath(DestFolder);
%hih Javed %hh%hh
% K-Means
VAR=[25, 49, 81];
% Merging
MERGINGSIZE=[10, 50, 70, 100];
% Correlation
CORRTHRES=[0.1, 0.15, 0.2];
Wbl tototo e s % /55
VARQFFSET=[4];
%%%% Enhanced %%%hh%%
RBTHRES=[3,5,7];
VYNNI YA YAA

DATASET=DataSets(0); % O=Training Set (18 examples), 1=Test Set (72 examples)
filename_OptimizeEnhanced=[DestFolder, ’OptimizeEnhanced.mat’];
if exist(filename_OptimizeEnhanced)"~=2
for j=[1:size(DATASET,1)]
TestNo=DATASET(j,1);
ImNo=DATASET(j,2);
ObjectNo=DATASET(j,3);
TestFolder=[’Test’ ,num2str(TestNo)];
Acc{j,0bjectNo}=zeros(length(VAR),length (MERGINGSIZE),length(CORRTHRES) ,length(RBTHRES));
for VarCount=1:1length(VAR)
for MerCount=1:length(MERGINGSIZE)
for CorrCount=1:length(CORRTHRES)
for VarOffsetCount=1:length(VAROFFSET)
for RBCount=1:length(RBTHRES)
RBThreshold=RBTHRES (RBCount) ;
Var0ffset=VAROFFSET (VarOffsetCount) ;
Var=VAR(VarCount) ;
MergingSizeLimit=MERGINGSIZE(MerCount);
CorrThreshold=CORRTHRES (CorrCount) ;
if mod(CorrThreshold,0.1)==0

Parameters=[’_Var’,num2str(Var),’_Mer’ ,num2str(MergingSizelLimit),...

’_Corr’,sprintf (’%.1f’,CorrThreshold),’_’];
else
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Parameters=[’_Var’,num2str(Var),’_Mer’ ,num2str(MergingSizeLimit),...
’_Corr?,sprintf(’%.2f’,CorrThreshold)];
end
ParametersImproved=[’_VarOffset’,num2str(VarOffset)];
ParametersEnhanced=[’_RB’,sprintf(’}%.1f’ ,RBThreshold),’_’];

load([TestFolder,’_EnhancedImprovedClass_’,num2str(ImNo),’_7,...
num2str(ObjectNo) ,ParametersImproved,Parameters,...
ParametersEnhanced,’.mat’]);
switch RBThreshold
case 3
Acc3{j,0bjectNo}(VarCount,MerCount,CorrCount)=ACEnhanced;
tp3{j,0bjectNo}(VarCount,MerCount,CorrCount)=. ..
ConfMatrixEnhancedPerc(2,2);
fp3{j,0bjectNo}(VarCount,MerCount,CorrCount)=. ..
ConfMatrixEnhancedPerc(1,2);
tn3{j,0bjectNo}(VarCount,MerCount,CorrCount)=...
ConfMatrixEnhancedPerc(1,1);
fn3{j,0bjectNo}(VarCount,MerCount,CorrCount)=...
ConfMatrixEnhancedPerc(2,1);
case 5
Acc5{j,0bjectNo}(VarCount ,MerCount,CorrCount)=ACEnhanced;
tp5{j,0bjectNo}(VarCount,MerCount,CorrCount)=. ..
ConfMatrixEnhancedPerc(2,2);
fp5{j,0bjectNo}(VarCount,MerCount,CorrCount)=...
ConfMatrixEnhancedPerc(1,2);
tnb{j,0bjectNo}(VarCount,MerCount,CorrCount)=...
ConfMatrixEnhancedPerc(1,1);
fn5{j,0bjectNo}(VarCount,MerCount,CorrCount)=. ..
ConfMatrixEnhancedPerc(2,1);
case 7
Acc7{j,0bjectNo} (VarCount,MerCount,CorrCount)=ACEnhanced;
tp7{j,0bjectNo}(VarCount,MerCount,CorrCount)=...
ConfMatrixEnhancedPerc(2,2);
fp7{j,0bjectNo}(VarCount,MerCount,CorrCount)=...
ConfMatrixEnhancedPerc(1,2);
tn7{j,0bjectNo}(VarCount,MerCount,CorrCount)=. ..
ConfMatrixEnhancedPerc(1,1);
fn7{j,0bjectNo}(VarCount,MerCount,CorrCount)=. ..
ConfMatrixEnhancedPerc(2,1);
end
end
end
end
end
end
NoOfPixels(j,0bjectNo)=sum(ConfMatrixEnhanced(:));
end
save([filename_OptimizeEnhanced], ’Acc3’,’tp3’,°fp3?,°tn3’,’fn3?,%Acchb?,’tp5’, £p5?,°tnb’, ...
’fnb?, ?Acc7?,’tp7?, fp7?,%tn7?,fn7’, *NoOfPixels?’);
else
load([filename_OptimizeEnhanced]);
end

for w=1:size(CORRTHRES,2)
for gq=1:size(DATASET,1)
ACC3{w}(:,:,9)=Acc3{q}(:,:,w);
TP3{w}(:,:,q9)=tp3{q}(:,:,w);
FP3{w}(:,:,q)=fp3{q}(:,:,w);
TN3{w}(:,:,9)=tn3{q}(:,:,w);
FN3{w}(:,:,9)=fn3{q}(:,:,w);
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end

AcCCs{w}(:,:,9)=Acch{q}(:,:,w);

TP5{w}(:,:,q)=tp5{q}(:,:,w);
FP5{w}(:,:,q)=fp5{q}(:,:,w);
TNS{w}(:,:,q)=tnb{q}(:,:,w);
FN5{w}(:,:,q)=fnb{q}(:,:,w);

ACCT{w}(:,:,9)=Acc7{q}(:,:,w);

TP7{w}(:,:,q)=tp7{q}(:,:,w);
FP7{w}(:,:,qQ)=fp7{q}(:,:,w);
TN7{w}(:,:,q@)=tn7{q}(:,:,w);
FN7{w}(:,:,q)=fn7{q}(:,:,w);
end
Mean3(:,:,w)=mean(ACC3{w},3);
Std3(:,:,w)=std(ACC3{w},0,3);
MeanFP3(:,:,w)=mean(FP3{w},3);
StdFP3(:,:,w)=std(FP3{w},0,3);
MeanTP3(:, :,w)=mean(TP3{w},3);
StdTP3(:,:,w)=std(TP3{w},0,3);
MeanFN3(:, :,w)=mean(FN3{w},3);
StdFN3(:,:,w)=std(FN3{w},0,3);
MeanTN3(:,:,w)=mean(TN3{w},3);
StdTN3(:,:,w)=std(TN3{w},0,3);
Mean5(:, :,w)=mean(ACC5{w},3);
Std5(:,:,w)=std(ACC5{w},0,3);
MeanFP5(:, : ,w)=mean(FP5{w},3);
StdFP5(:,:,w)=std(FP5{w},0,3);
MeanTP5(:, :,w)=mean(TP5{w},3);
StdTP5(:, :,w)=std(TP5{w},0,3);
MeanFN5(:,:,w)=mean(FN5{w},3);
StdFN5(:,:,w)=std(FN5{w},0,3);
MeanTN5(:,:,w)=mean(TN5{w},3);
StdTN5(:, :,w)=std(TN6{w},0,3);
Mean7(:,:,w)=mean(ACC7{w},3);
Std7(:,:,w)=std(ACC7{w},0,3);
MeanFP7(:,:,w)=mean(FP7{w},3);
StdFP7(:,:,w)=std(FP7{w},0,3);
MeanTP7(:,:,w)=mean(TP7{w},3);
StdTP7(:,:,w)=std(TP7{w},0,3);
MeanFN7(:,:,w)=mean(FN7{w},3);
StdFN7(:,:,w)=std(FN7{w},0,3);
MeanTN7(:,:,w)=mean(TN7{w},3);
StdTN7(:,:,w)=std(TN7{w},0,3);

[Max,a]=max(Mean(:));

[a,b,c]=ind2sub([length(VAR),length (MERGINGSIZE) ,length (CORRTHRES)],a);

a=b;
b=1;
c=2;

F30=

for

end

set(get(F30, children’),’FontSize’,8);

figure(30)
w=1:6
subplot(2,3,w)

H(w)=mesh(MERGINGSIZE,VAR,Mean(:,:,w));

axis([10 150 20 100 50 951);
ylabel(’\sigma~2’, ’FontSize’,8);

xlabel({? Merging size ’;’threshold [pixels]’},’FontSize’,8);
zlabel(’Accuracy (AC) [%]’,’FontSize’,8);
title([’Correlation threshold = ?,num2str (CORRTHRES(w))],’FontSize’,8);

subplot(2,3,¢)
hold on
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plot3(MERGINGSIZE(b) ,VAR(a),Max+1, *k*’,’Markersize’,8);
hold off
saveas(F30, [DestFolder, >EnhancedOptimizationAC.png’], ’png’);

F31=figure(31);

H31(1)=plot(MeanFP(:,b,c),MeanTP(:,b,c),’b-x’,’linewidth’,2, *markersize’,8);

hold on

H31(2)=plot(MeanFP(a,:,c),MeanTP(a,:,c),’r-x’,’linewidth’,2, 'markersize’,8);

H31(3)=plot(reshape([MeanFP(a,b,:)],length(CORRTHRES),1) ,reshape([MeanTP(a,b,:)],...

length (CORRTHRES),1), ’g-x’,’linewidth’,2, ’markersize’,8);

xlabel(’False positives (FP) [%]’,’FontSize’,12);

ylabel(’True positives (TP) [%]’,’FontSize’,12);

title(’ROC-curve’,’FontSize’,12);

grid on

set(get(F31, ’children’), ’FontSize’,12);

hold on

H31(4)=plot(MeanFP(a,b,c) ,MeanTP(a,b,c),’k*’, ’Markersize’,10);

hold off

l=legend(H31,’Fixed variance \sigma~2’,’Merging threshold’,’Correlation threshold’,...
’Optimimum performance’,4);

set(1l,’FontSize?’,10);

saveas(F31, [DestFolder, ’EnhancedOptimizationR0OC.png’], *png’);

F32=figure(32)
for w=1:6
subplot(2,3,w)
H(w)=mesh(MERGINGSIZE,VAR,MeanFP(:,:,w));
axis([10 150 20 100 10 90]);
ylabel(’\sigma~2’, FontSize’,8);
xlabel({’ Merging size ’;’threshold [pixels]’},’FontSize’,8);
zlabel(’False objects (FP) [%4]’,’FontSize’,8);
title([’Correlation threshold = ’,num2str (CORRTHRES(w))],’FontSize’,8);
end
set(get(F32, children’), ’FontSize’,8);
subplot(2,3,c)
hold on
plot3(MERGINGSIZE(b) ,VAR(a),MeanFP(a,b,c)+1,  k*’, ’Markersize’,8);
hold off
saveas(F32, [DestFolder, ’Enhanced0ptimizationFP.png’], *png’);
a=[1,3];
b=[2,2];
c=[1,2];
F33=figure(33);
Markersi={’b.?,’r.?,%g.’};
Markers2={’bx’,’rx’,’gx’};
Markers3={’bo’,’ro?,’go’};
H33=zeros(size (CORRTHRES,2),3);
for w=1:size(CORRTHRES,2)
H33(w,1)=plot(reshape(MeanFP3(:,:,w),12,1) ,reshape(MeanTP3(:,:,w),12,1),...
Markersi{w}, ’markersize’,12);
hold on
H33(w,2)=plot(reshape(MeanFP5(:,:,w),12,1) ,reshape(MeanTP5(:,:,w),12,1),...
Markers2{w}, ’markersize’,6);
H33(w,3)=plot(reshape(MeanFP7(:,:,w),12,1) ,reshape (MeanTP7(:,:,w),12,1),...
Markers3{w}, >markersize’,6);
end
H33=H33(:);
xlabel(’False positives (FP) []’,’FontSize’,12);
ylabel(’True positives (TP) []’,’FontSize’,12);
grid on
set(get(F33, children’), ’FontSize’,12);
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hold on

H33(end+1)=plot(MeanFP3(a(1),b(1),c(1)),MeanTP3(a(1),b(1),c(1)),k*’, Markersize’,10);

hold off

l=legend(H33(:),[’( ?,sprintf(’.2f”,CORRTHRES(1)),’ , ’,sprintf(’J%1.£’,RBTHRES(1)),’ )°’],...

[’ »,sprint£(’.2f> ,CORRTHRES(2)),” , ’,sprintf(’%1.f£’,RBTHRES(1)),’
[>C ?,sprintf(’.2f°,CORRTHRES(3)),’> , ’,sprintf(’%1.£f’,RBTHRES(1)),’
[’ »,sprintf(’.2f’ ,CORRTHRES(1)),” , ’,sprintf(’%1.f’,RBTHRES(2)),’
[>C ?,sprintf(’.2f’,CORRTHRES(2)),’ , ’,sprintf(’j%1.£’,RBTHRES(2)),’
[>C ?,sprintf(’.2f°,CORRTHRES(3)),’ , ’,sprintf(’%1.£f’,RBTHRES(2)),’
[>C ?,sprintf(’.2f’,CORRTHRES(1)),’ , ’,sprintf(’%1.£’,RBTHRES(3)),’
[>C ?,sprintf(’.2f’,CORRTHRES(2)),’ , ’,sprintf(’%1.£f’,RBTHRES(3)),’
[>C ?,sprintf(’.2f’,CORRTHRES(3)),’ , ’,sprintf(’%1.£’,RBTHRES(3)),’
’Opt. perf.’”,4);

set(l,’FontSize’,10);

saveas(F33, [DestFolder, ’EnhancedOptimizationR0OCAll.png’], png’);

round([Mean3(a(1),b(1),c(1)),Std3(a(1),b(1),c(1));MeanTP3(a(1),b(1),c(1)),StdTP3(a(1),b(1),...

)1,
>, ..

)], ..
)], ...
)1, ...
)], ...
)°1,...
)1, ...

¢(1)) ;MeanFP3(a(1),b(1),c(1)),StdFP3(a(1),b(1),c(1));MeanTN3(a(1) ,b(1),c(1)),...
StdTN3(a(1),b(1),c(1));MeanFN3(a(1),b(1),c(1)),StdFN3(a(1),b(1),c(1))])
round([Mean7 (a(2),b(2),c(2)),Std7(a(2),b(2),c(2)) ;MeanTP7(a(2),b(2),c(2)),...

StdTP7(a(2),b(2),c(2));MeanFP7(a(2),b(2),c(2)),S5tdFP7(a(2),b(2),c(2)) ;MeanTN7(a(l),...

b(1),c(1)),8tdTN7(a(1),b(1),c(1)) ;MeanFN7 (a(1),b(1),c(1)),StdFN7(a(1),b(1),c(1))]1)
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Appendix F

Flowcharts
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Figure F.1: The system architecture of W* [19] with additional shadow removal. Step 3 (red)
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indicates when the shadow removal should be performed. Similar to figure[2.1]

Javed’s Original Shadow Removal (3)
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Figure F.2: Flowchart of shadow removal as suggested by Javed.

Similar to figure [2.2
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Corresponds to step 3 in figure

: Pixels
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Finlayson's Suggested Shadow Removal (3)
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Figure F.3: Flowchart of shadow removal as suggested by Finlayson. Corresponds to step 3 in
figure[F 1l Similar to figure [2.4)
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Figure F.4: Flowchart of enhanced shadow removal as suggested in this thesis. Corresponds to
step 3 in figure[F.1l Subscripts denote from where the original idea came: J=Javed, F=Finlayson
and E=FEnhanced steps suggested by the author (red). Similar to ﬁgure
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Figure F.5: Flowchart illustrating the enhanced similarity feature (CS). (Upper): Variance
between background image and new frame without any foreground objects is estimated once.
(Lower): In a new frame, including detected foreground objects, the enhanced similarity feature
(CS) is computed for every region and is a part of step 3Eg of figure . Similar to figure .
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Figure F.6: Flowchart illustrating the enhanced classification of color regions (step 3Fg in figure
. The enhanced similarity feature, (CS), classifies all regions that the correlation feature
assign to a reject class (0.5-Corr. threshold < Correlation < Corr. threshold = reject class).
Similar to figure[5.15
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