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ABSTRACT

This paper describes maximum autocorrelation factor (MAF) analysis, maximum autocorrelation fac-
torial kriging, and its application to irregularly sampled stream sediment geochemical data from South
Greenland. Kriged MAF images are compared with kriged images of varimax rotated factors from an or-
dinary non-spatial factor analysis, and they are interpreted in a geological context. It is demonstrated that
MAF analysis contrary to ordinary non-spatial factor analysis gives an objective discrimination of large-
scale as well as small-scale geological features which are related to crustal structure and the occurrence
of specific rock types.

INTRODUCTION

A spatial extension to principal components and factor analysis termed maximum autocorrelation factor
(MAF) analysis is described in the literature for multivariate data sampled on a regular grid, [16, 5, 10].
Other references deal with spatial factor analysis based on parameterisations of observed correlations
of irregularly sampled data, [6, 7]. In this paper the MAF analysis is extended to irregularly sampled
data, see also [11, 12, 14], and maximum autocorrelation factorial kriging is introduced. The technique
is applied to stream sediment geochemical data from South Greenland, and results from maximum auto-
correlation factorial kriging are compared with kriged varimax rotated principal factors.

DATA

In 1979-80 the GGU, the Geological Survey of Greenland (now GEUS, the Geological Survey of Den-
mark and Greenland), collected stream sediment samples from a 10,000 km2 area in South Greenland.
Sample sites were small active streams with catchment areas of 1-10 km2. Samples were sieved at 100
mesh and the undersize was analysed. The present study is based on a dataset with 41 variables and
2,097 samples. Two analytical techniques have been used. The concentrations of Ca, Cu, Fe, Ga, K,
Mn, Nb, Ni, Pb, Rb, Sr, Ti, Y, Zn and Zr have been determined by energy-dispersive isotope excited
x-ray fluorescence and the concentrations of Au, Ag, As, Ba, Br, Co, Cr, Cs, Hf, Mo, Na, Sb, Sc, Se, Ta,
Th, U, W, La, Ce, Nd, Sm, Eu, Tb, Yb and Lu have been determined by instrumental neutron activation
analysis. These analyses of the samples are not identical to the ones used in the case reported in [11, 12].
Statistical analysis is done on natural logarithms of the element concentrations with values below the
detection limit simulated from a triangular distribution from zero to the detection limit.

GEOLOGICAL SETTING

The study area is underlain by a Palaeoproterozoic orogen, the Ketilidian orogen, which consists of
three major tectono-stratigraphic units: (1) a northern Border zone of tectonically reworked Archaean
gneissic basement overlain by Palaeoproterozoic metasediments and metavolcanics in the north-east, (2)
a central zone occupied by a calc-alkaline granitic batholith, and (3) a southern migmatite complex of
predominantly Palaeoproterozoic metasediments and metavolcanics intruded by post-tectonic rapakivi
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Figure 1: Simplified geological map of South Greenland

type granites, see Figure 1 and [1]. The plate-tectonic setting of the orogen has recently been interpreted
in [3]. In Mesoproterozoic times the boundary region between the border and the granite zones was
subjected to rifting and intrusions of numerous dykes of basaltic to trachytic compositions as well as of
felsic alkaline complexes including carbonatites. The region affected by the alkaline magmas is termed
the Gardar province, [18].

STATISTICAL TECHNIQUES

Orthogonal transformations

The popular principal component (PC) analysis transforms a multivariate variable into new variables
that are mutually orthogonal. The first PC, PC 1, is the linear combination of the (zero mean) original
variables that explains maximal variance in all the original variables. Higher order PCs explain maximal
variance subject to the orthogonality. Factor analysis is a common name for a family of multivariate
techniques. One of the simpler forms is principal factor analysis. Mathematically, principal factors can
be thought of as scaled PCs. The factors can be rotated for instance to obtain easy interpretability. The
so-called varimax rotation criterion aims at obtaining correlations between original variables and factors
that are close to –1, 0 or 1. Most good textbooks on multivariate statistics give descriptions of PC and
factor analysis, see for instance [2].

As opposed to PC and factor analysis the maximum autocorrelation factor (MAF) transformation allows
for the spatial nature of image data. The first MAF, MAF 1, is the linear combination of the original
variables that contains maximum autocorrelation between neighbouring observations. A higher order
MAF is the linear combination of the original variables that contains maximum autocorrelation subject to
the constraint that it is orthogonal to lower order MAFs. MAF analysis thus constitutes a (conceptually)



more satisfactory way of orthogonalising spatial data than PC and factor analysis. An important property
of the MAF procedure is its invariance to linear transformations, a property not shared by ordinary
PC analysis. This means that it doesn’t matter whether the data have been scaled for example to unit
variance—as in factor analysis—before the analysis is performed.

Let us consider the multivariate random variableZT = [Z1(x); : : : ; Zm(x)]with expectation EfZ(x)g =
0 and dispersion or covariance matrix DfZ(x)g = �. We denote a spatial shift by�T = [�x;�y].
The spatial covariance function is defined by

CovfZ(x);Z(x+�)g = �(�):

We are interested in the correlations between projections of the variables and the shifted variables. There-
fore we find for the autocovariance
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If we maximise the Rayleigh coefficient
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we minimise the autocorrelation. Let�1 � � � � � �m be the eigenvalues anda1; : : : ;am the correspond-
ing conjugate eigenvectors of�� with respect to�. ThenY i(x) = a

T
i Zi(x) is theith MAF.

Maximum autocorrelation factor analysis was suggested by Switzer and Green in [16]. Other references
to MAF, related transformations and applications are [4, 5, 10, 11, 13].

Maximum autocorrelation factorial kriging

For regularly spaced data the differencing to obtain�� can be performed by combining horizontal and
vertical shifts. For irregularly spaced data the differencing can be done by using the nearest neighbour
only irrespective of distance and direction. This is done below. More elaborate noise models such as
residuals from local mean or median filters, or residuals from fits to local surfaces can be obtained by
means of the Voronoi tessellation and its dual concept the Delaunay triangulation, [15]. To each point
in the plane we associate a Voronoi polygon which is the part of the plane that is nearer to that point
than to any other point. From the Voronoi tessellation we can construct the Delaunay triangulation by
joining points with common Voronoi polygon edges. Figure 2 shows a Delaunay triangulation and the
dual Voronoi tessellation of the same point set. The definition of MAFs for irregularly sampled data
can be modified to allow for other neighbourhoods for instance confined by distance and/or direction
constraints.



Figure 2: Voronoi tessellation (left), Delaunay triangulation (right)

Varimax rotated factors (VRFs) and MAFs are linear combinations of the (zero mean) original variables,
in this case natural logarithms of element concentrations. To facilitate interpretation Figure 3 shows
correlations between the original variables and the first three VRFs (all 41 factors retained) with amounts
of variance explained and the first three MAFs with associated autocorrelations.

The signal MAFs by design have high autocorrelation. In general the semivariograms of the MAFs
exhibit decreasing range of influence and increasing nugget effect with increasing order. This is clearly
seen in Figures 4 to 6 which show 21�21 5 km lag 2-D semivariograms of the (standardised) original
variables, the VRFs (all 41 factors retained) and the MAFs, all ordered row-wise, and 1 km lag 1-D
isotropic semivariograms of the (first 40) MAFs. The elements in Figure 4 top-right are ordered row-
wise as in Figure 3: Au, Ag, As, Ba, Br, Ca, Co, Cr, Cs, Cu, Fe, Ga, Hf, K, Mn, Mo, Na, Nb, Ni, Pb,
Rb, Sb, Sc, Se, Sr, Ta, Th, Ti, U, W, Y, Zn, Zr, La, Ce, Nd, Sm, Eu, Tb, Yb and Lu. Figure 4 top-left
shows autocorrelations associated with the MAFs. The ordering of the 2-D semivariograms shows that
the VRFs do not exhibit the desired semivariogram characteristics of the MAFs.

Because of their 1-D and 2-D semivariogram characteristics the signal MAFs are well suited for inter-
polation. This ability inspires us to perform maximum autocorrelation factorial kriging which is kriging
(minimum estimation variance prediction, see for example [9, 8, 11]) of the (hopefully few) signal MAFs.
To obtain kriged versions of all the original variables the inverse MAF transformation applies. Figures 7
and 8 show RGB images of kriged VRFs 1-3 and MAFs 1-3.

GEOLOGICAL INTERPRETATION

In stream sediment geochemical mapping it is generally observed that element distribution patterns are
very stable despite the fact that the chemical compositions of individual samples are much influenced
by local conditions. It is also observed that the chemistry of a stream sediment reflects that of the
surrounding rocks. For South Greenland this is demonstrated in single element maps in [17], where
certain element distributions are seen to display known lithological units well. Thus the Gardar province
is mapped by high Nb, the Archaean by high Cu, Mg and Ni, the batholith by low Sc, the migmatite
complex by high As, and the rapakivi granites by high Hf and Zr.

While single element maps depict local lithological units, the multivariate maps shown in Figure 7 and
especially in Figure 8 enable the recognition of large-scale geochemical provinces. This is shown par-
ticularly well by the low order MAF images which are less influenced by short range variations than the
corresponding VRF images. VRF images, on the other hand, may be used to highlight local multielement
anomalies which may be of interest in localising mineral occurrences.
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Figure 3: Correlations between original variables and the first three MAFs (left) and VRFs (right)

Table 1: Scores of MAFs 1-3 in main lithotectonic units

Archean Batholith Migmatite Gardar
MAF 1 Medium Medium Low High
MAF 2 Low Medium High Medium
MAF 3 High Low Medium High

The main features of the MAF images in relation to the main lithotectonic units are listed in Table 1.

The most prominent geochemical feature of South Greenland is the Gardar province, and this is well
displayed by white areas in the map of MAF 1. Figure 3 shows that the province is geochemically
anomalous in a long range of elements and most notably in Nb and Ta. MAF 2, governed by high Hf, K,
Rb, Th, Y and Zr, highlights the province of rapakivi granites in the migmatite complex and emphasises
the difference between these granites and those of the batholith. MAF 3 is governed by much the same
element association as MAF 1, though high Cu, Fe, Ga and Zn are more dominant in MAF 3 with
the result that the mafic rocks of the Archaean and Palaeoproterozoic parts of the Border zone and of
the migmatite complex show up in light shades, and individual alkaline complexes within the Gardar
province are enhanced.

When maps of MAFs 1, 2 and 3 are combined in a colour ternary image (not shown) the major provinces
of South Greenland are particularly well discriminated. This demonstrates the ability of the MAF analy-
sis to identify the most important geochemical boundaries in a region. Such boundaries are often difficult
or impossible to discern in single element maps because the distribution patterns for different elements
have slightly different boundaries.
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Figure 4: Autocorrelations for MAFs (top-left), 2-D semivariograms of standardised original data (top-
right), varimax rotated factors (bottom-left), and maximum autocorrelation factors (bottom-right)

Many maps of higher order MAFs display short range features some of which may be related to certain
lithological units, while others are difficult to relate to the known lithology. However, there are cases
where high order MAFs reveal geochemical features which may be interpreted to reflect other geological
phenomena like hydrothermal mineralisation or alteration.

The MAF analysis offers a range of possibilities which have only been tested to a limited degree. For
instance, analysis can be performed on any element or spatial subset of the data. In the South Greenland
case analyses could be carried out, for example, on rock forming elements and mineralisation related
elements separately.
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Figure 7: Kriged varimax rotated principal factors 1, 2 and 3 as RGB

Figure 8: Kriged maximum autocorrelation factors 1, 2 and 3 as RGB

CONCLUSIONS

Maximum autocorrelation factor (MAF) analysis performs a decomposition of the original variables into
new orthogonal variables which by design exhibit characteristics ranging from large-scale, low-frequency
features to small-scale, high-frequency features with increasing order of the MAFs. In the South Green-
land case with analysis of stream sediment data we obtain an efficient and un-biased segmentation into
geochemical provinces and identification of significant boundaries within the region. Such information
is valuable to the understanding of the crustal stucture of an area and may be particularly useful in plate-
tectonic reconstructions. MAF analysis is superior to ordinary non-spatial factor analysis in displaying
large-scale features. The multivariate approach reveals data relations which cannot be recognised by
studying single element maps.

Producing maps of kriged MAFs is a good way of condensing large amounts of geochemical data for
presentation. The combination of such maps as ternary images has proved to be particularly useful in
presenting the essential geological features of the region.
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