
Multi- and Hyperspectral Remote Sensing Change
Detection with Generalized Difference Images by

the IR-MAD Method
Allan A. Nielsen

Technical University of Denmark
Informatics and Mathematical Modelling

DK-2800 Lyngby, Denmark
Email: aa@imm.dtu.dk

Morton J. Canty
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Abstract— Change detection methods for multi- and hyper-
variate data aim at identifying differences in data acquired
over the same area at different points in time. In this con-
tribution an iterative extension to the multivariate alteration
detection (MAD) transformation for change detection is sketched
and applied. The MAD transformation is based on canonical
correlation analysis (CCA), which is an established technique
in multivariate statistics. The extension in an iterative scheme
seeks to establish an increasingly better background of no-change
against which to detect change. This is done by putting higher
weights on observations of no-change in the calculation of the
statistics for the CCA. The differences found may be due to
noise or differences in (atmospheric etc.) conditions at the two
acquisition time points. To prevent a change detection method
from detecting uninteresting change due to noise or arbitrary
spurious differences the application of regularization, also known
as penalization, and other types of robustification of the change
detection method may be important especially when applied to
hyperspectral data. Among other things results show that the
new iterated scheme does give a better no-change background
against which to detect change than the original, non-iterative
MAD method and that the IR-MAD method depicts the change
detected in less noisy components.

I. INTRODUCTION

This contribution focuses on construction of more gen-
eral difference images than simple differences in multivariate
change detection. This is done via an iterated version [1] of
the canonical correlation analysis (CCA) [2] based multivariate
alteration detection (MAD) method [3] that could, moreover,
be combined with an expectation-maximization (EM) based
method for determining thresholds for differentiating between
change and no-change in the difference images, and for
estimating the variance-covariance structure of the no-change
observations [4], [5]. The variances can be used to estab-
lish a single change/no-change image based on the general
multivariate difference image. The resulting imagery from
MAD based change detection is invariant to linear and affine
transformations of the input including, e.g., affine corrections
to normalize data between the two acquisition time points.
This is an enormous advantage over other multivariate change
detection methods. The resulting single change/no-change
image can be used to establish both change regions and to

extract observations with which a fully automated orthogonal
regression analysis based normalization of the multivariate
data between the two points in time can be developed [6].

Results (not shown here) from partly simulated multivariate
data indicate an improved performance of the iterated scheme
over the original MAD method [1]. Also, a few comparisons
with established methods for calculation of robust statistics
for the CCA indicate that the scheme suggested here performs
better, see also [7].

Regularization issues typically important in connection with
the analysis of hyperspectral data are dealt with in [8]–[10]
and briefly mentioned here.

II. THE MAD TRANSFORMATION

Band-wise simple differences for change detection make
sense only when the data are calibrated or at least when the
data at the two points in time are normalized to a common
zero and scale.

The so called MAD variates consist of differences (in
reverse order) between canonical variates from CCA. The
canonical variates can be found by solving this generalized
eigenvalue problem for geometrically co-registered p× 1 data
X from one point in time and q×1 data Y from another point
in time (p ≥ q)[
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Σ11 is the p × p variance-covariance matrix of X , Σ22 is the
q × q variance-covariance matrix of Y and Σ12 is the p × q
covariance matrix between the two, Σ21 = ΣT

12. The quantity
a is the eigenvector containing the weights with which to
multiply X from the one point in time and b is the eigenvector
containing the weights with which to multiply Y from the
other point in time. A more well-known formulation of the
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Fig. 1. Landsat TM bands 7, 4 and 5 at 29 March 1998 as RGB.

CCA problem is given by the coupled eigenvalue problems

Σ12Σ−1
22 Σ21 a = ρ2Σ11 a (3)

Σ21Σ−1
11 Σ12 b = ρ2Σ22 b. (4)

To do change detection we form the canonical variates Ui =
aT

i X and Vi = bT
i Y and the MAD change detector as the

difference Zi = Ui−Vi between them (Vi = 0 for i > q). The
MAD variates Zi are orthogonal and have variances 2(1−ρi),
hence the reverse ordering which maximizes variance in the
low order MAD variates which are the differences between
the high order canonical variates.

A. IR-MAD

Ideally, the sum of squared standardized MAD variates will
follow a χ2 distribution with p degrees of freedom, i.e., we
have approximately

p∑
i=1

(
Zi

σZi

)2

∈ χ2(p) (5)

where σZi
ideally is the standard deviation of the no-change

observations. These can be found by the methods proposed in
[4], [5].

In the iteratively reweighted (IR) MAD method [1] we put
increasing weight on observations that exhibit little change
over time. For the statistics calculations we weight observation
j in the next iteration by wj which is a measure of no change,
namely the probability of finding a greater value of the χ2

value in Equation 5

wj = P

{
>

p∑
i=1

(
Zi

σZi

)2
}

j

� P{> χ2(p)}j . (6)

Fig. 2. Landsat TM bands 7, 4 and 5 at 16 May 1998 as RGB.

This establishes a better background of no-change against
which to detect change. Iterations stop when ρ stops changing
(substantially).

Since the (IR-)MAD transformation is based on CCA the
(IR-)MAD variates, like the canonical variates, are invariant to
affine (and linear) transformations to the original data includ-
ing linear and affine radimetric normalization or calibration.
This makes them good generalized multivariate differences
between all variables at the two time points of acquisition.

B. Regularized CCA and (IR-)MAD

If we wish to apply regularization in CCA we could solve[
0 Σ12

Σ21 0

] [
a
b

]
(7)

= ρ

[
Σ11 + k1Ω 0

0 Σ22 + k2Ω

] [
a
b

]

where k1 and k2 determine the amount of regularization and
Ω is designed to minimize, e.g., size, slope or curvature in a
and b considered as functions of wavelength [8], [9].

Alternatively, regularization can be based on exploitation of
the affine transformation invariance of the MAD method. The
data at the two points in time can be orthogonally transformed
separately to reduce redundancy and dimensionality before
change detection by both the original and the iterated MAD
methods [1], [10]. Both types of regularization can be applied
to multispectral as well as hyperspectral data. In the latter case
regularization might be crucial due to problems with (near)
singular or ill-conditioned variance-covariance matrices.
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Fig. 3. Generalized differences: MAD variates 1 to 6, row wise.

III. CASE STUDY

Figures 1 and 2 show 600 × 600 30 m pixels Landsat
TM scenes from two points in time covering an area over
a semi-arid agricultural region in Hindustan, India, see also
[11] where the same data are subjected to this type of ana-
lysis followed by unsupervised classification into no-change
and several different change clusters. The scenes were co-
registered by applying an automatic contour matching algo-
rithm [12] using a first-order polynomial and nearest-neighbor
re-sampling. The RMS errors were less than or equal to 0.5
pixel. Because of the good atmospheric conditions and the
invariance of the MAD variates under affine transformations,
no radiometric corrections were applied to the two scenes. The
most evident changes that took place between the acquisitions
is some shallow flooding at the western end of the lake or
reservoir and the vegetation changes in some of the bright
rectangular (square) areas scattered over the northern part of
the scenes.

Figures 3 and 4 show the original MAD variates and the
IR-MAD variates after seven iterations, respectively. Note,

Fig. 4. Generalized differences: IR-MAD variates 1 to 6, row wise.

that since these change images are based on a solution to an
eigenproblem their signs are arbitrary. We see that the reservoir
formation is associated with most of the MAD variates and
particularly so for the high order MAD variates corresponding
to the low order also known as the leading canonical variates.
Vegetation changes are associated with MAD variates number
two and four, and with IR-MAD variates three and four (and
to some extent variate six).

The higher order IR-MAD variates clearly appear much less
noisy than the higher order MAD variates. For example, the
average autocorrelations in IR-MAD and MAD variates six in
the four main directions are 0.94 and 0.70, respectively. This
underlines the visually conspicuous better spatial togetherness
of both change and no-change observations for the IR-MAD
method.

Figure 5 shows the canonical correlations over the seven
iterations needed to stabilize the correlations to within 0.001.
We see that the first iteration is most important and that the
correlations increase steadily, corresponding to the gradual
exclusion of the change observations from the canonical
correlation analysis. Most of the changes in ρ take place within
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4-5 iterations.
Here the standardization to unit variance in Equation 5 is

done by means of the ideal no-change standard deviations
only and not by means of the standard deviations of all
observations. These no-change standard deviations were deter-
mined with the fuzzy maximum likelihood estimation (FMLE)
clustering scheme suggested in [4] which is a form of EM al-
gorithm. Two cluster means and variance-covariance matrices,
representing no-change and change observations, were fit to
all the IR-MAD variates after each iteration using the EM
algorithm. For comparison, the variance-covariance matrix of
the IR-MAD variates after the 7 iterations is given in Table
I, while Table II shows the variance-covariance matrix of the
no-change cluster only. The latter is seen to be approximately
diagonal with monotonically decreasing diagonal elements
(variances).

Figure 6 shows χ2 for the original MAD method (left)
and for the IR-MAD method (right). We see that since we
normalize by smaller variances for IR-MAD χ2 becomes
larger thus depicting change more conspicuously.

Figure 7 shows MAD variates 6, 5 and 4 as RGB. Figure 8
shows IR-MAD variates 6, 5 and 4 as RGB. We see a huge
difference in the ability to differentiate between change and
no-change observations (note, that Figure 7 is stretched lin-
early between ∓ five standard deviations whereas Figure 8 is
stretched linearly between ∓ ten standard deviations. Figure 9
shows maximum autocorrelation factors (MAF) [13] 1, 2 and
3 of the six IR-MAD variates. This transformation enhances
signal-to-noise in the resulting low order components by
maximizing spatial autocorrelation in the change observations.
In both Figures 8 and 9 we see a very clear depiction of the
change in the lake both to the west and more subtle change

TABLE I

VARIANCE-COVARIANCE AND CORRELATION MATRICES (ABOVE

DIAGONAL) OF IR-MAD VARIATES, ALL OBSERVATIONS.

2.5246 –0.1037 0.1803 –0.1372 –0.0343 –0.0626

–0.1805 1.1996 –0.1897 0.3168 0.1794 –0.0599

0.5784 –0.4193 4.0748 –0.7539 –0.0945 0.0020

–0.3658 0.5821 –2.5533 2.8153 0.2968 –0.2812

–0.0464 0.1671 –0.1622 0.4235 0.7232 –0.5836

–0.0851 –0.0561 0.0034 –0.4037 –0.4247 0.7322

TABLE II

VARIANCE-COVARIANCE AND CORRELATION MATRICES (ABOVE

DIAGONAL) OF IR-MAD VARIATES, NO-CHANGE OBSERVATIONS ONLY.

2.1617 –0.0093 0.0035 –0.0036 –0.0112 –0.0013

–0.0125 0.8329 –0.0070 0.0336 0.0167 –0.0246

0.0041 –0.0051 0.6414 –0.0917 0.0218 0.0536

–0.0034 0.0196 –0.0469 0.4077 0.0305 –0.0371

–0.0081 0.0075 0.0086 0.0096 0.2425 0.0569

–0.0003 –0.0036 0.0069 –0.0038 0.0045 0.0258
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Fig. 5. Canonical correlations over seven iterations.

Fig. 6. χ2 for the original MAD method (left) and for the IR-MAD method
(right) stretched linearly between 0 and 50.

along the shore line to the east, as well as vegetation changes
to the north of the lake.

IV. CONCLUSIONS

Simple differencing (provided it makes sense to do the
calculation at all) gives correlated difference images ordered
by wavelength. The MAD and IR-MAD methods provide gen-
eralized orthogonal difference images ordered by similarity as
measured by linear correlation. These generalized differences
are invariant to linear and affine transformations of the original
variables, a enormous advantage over the simple differences.

Compared to the MAD method the IR-MAD method pro-
vides a better background of no-change against which to detect
change resulting in a much greater difference between scores
for change observations and no-change obervations for the IR-
MAD method. Also, (especially the higher order) IR-MAD
variates are much less noisy than the MAD variates.

Regularization may be useful or even necessary if the
number of observations (pixels) is small relative to the number
of variables (spectral bands). This typically applies to hyper-
spectral data.

ACKNOWLEDGMENT

This work is done partly within the EU funded Network
of Excellence Global Monitoring for Security and Stability,
GMOSS, http://gmoss.jrc.cec.eu.int.

0-7803-9119-5/05/$20.00 (C) 2005 IEEE



Fig. 7. MAD variates 6, 5 and 4 as RGB stretched linearly between ∓ five
standard deviations for the no-change observations as calculated by the FMLE
clustering algorithm.

Fig. 8. IR-MAD variates 6, 5 and 4 as RGB stretched linearly between ∓
ten standard deviations for the no-change observations as calculated by the
FMLE clustering algorithm.
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