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Abstract
In this report research is done on using the UppAal framework with relation to ana-

lyzing energy consumption in sensor networks. A model of a sensor network is created,
tested and verified. Then the possibilities of formal reachability analysis examined.
This results in a scenario based worst-case analysis of both total energy consumption
and energy consumption patterns. A framework composed of tools for sensor network
model creation and automated analysis is also developed.

The thesis is a part of the Hogthrob project, which goal is to develop sensor network
technology adapted to the requirements of sow monitoring.

Preface
An interesting conversation between DTU professor Jan Madsen and the author lead to
the idea of combining formal verification with models of sensor networks. The UppAal
framework is known as a stable platform for development and verification of timed
automata and was chosen as the model basis. The aim of the thesis was not to be com-
prehensive but to discover which opportunities the new combination of the research
areas would yield.
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CHAPTER 1

Introduction

Sensor Networks are composed of small mobile nodes interconnected into a wireless
network. The nodes consist of sensors, a radio and a microcontroller managing the
activity of the node. The micro controller may be equipped with an operating system
such as TinyOS, an event-based operating system, developed for sensor nodes at the
University of California, Berkeley. Sensor networks are powered by small batteries.
Therefore, it is critical to optimize the nodes and the programs to minimize energy
consumption. The code size and execution time are also limited by the memory size
and the real-time constraints. The sensor node itself may be designed and implemented
as a heterogeneous multiprocessor system, i.e. a complicated System-on-Chip.

The Hogthrob project, which this thesis is a part of, deals with networked on-a-chip
nodes for sow monitoring. Node lifetime is aimed at six month or higher. The de-
partment of Computer Science at the University of Copenhagen (DIKU) has already
presented work in the area of modelling the energy consumption of the Hogthrob nodes.

In this project we wish to examine the possibilities of using formal analysis to ver-
ify properties of sensor networks. In particular, we are interested in reasoning about
the energy consumption of the system. This will extend the work at DIKU to support
analysis of the system corner cases. This will give a reliable estimate of sensor node
lifetime.

Formal analysis requires the use of models, trusted to behave like a real system.
It is therefore critical to find the correct abstraction layer for the models and to verify
the models. When reliable models exist, the formal analysis of the systems can be per-
formed; this will give the system designers a new way of analyzing their systems. The
UppAal framework will be used for model implementation and analysis.

The UppAal trace utility yield not only an estimate of node lifetime but also the
possibility to analyze the energy profile. If a sensor node for example is powered by
solar energy, the cells will deliver a certain amount of Joules in an entire day. But if
every Joule is necessary in a short time span, this is potentially fatal for the node.

This report is structured as follows. In Chapter 1 an introduction into the area of
sensor networks is given, the node structure and protocols are presented and related
work is commented. Chapter 2 deals with the first sensor network model named A.N.P.
The model is analyzed and important conclusions drawn which leads to the second

1
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model namedE.N.D presented in Chapter 3. In Chapter 4 a framework developed for
test and analysis of the second model is developed. Chapter 5 presents the tests and
results from using the framework described in Chapter four. Finally Chapter 6 is a
discussion of the achieved results with a larger perspective in mind, and the Chapter
ends with a conclusion.
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1.1 Sensor Networks

Sensor Networks is a field of research moving away from power outlets and powerful
antennas. Instead battery powered technology and large amount of nodes are the topics
of interest. Several limitations and possibilities immediately arise as a consequence
of this design choice. There are three fields of research trying to solve the challenges
posed:

• Node Construction
• Node Application behavior
• Network Topology and Protocol

1.1.1 Node Construction

Regarding Node construction it is clear that much effort has gone into constructing low
and ultra-low power consuming components [1]. In resent time research has been done
in multi-processor systems [2]. Also the choice between RF and optical transmission
technology is important as discussed in[3]. What is common between sensor network
nodes is that they consist of at least the following three possibly integrated parts, a
radio, a chip running an operating system and an instrument.

Radio

A typical radio for sensor networks will be able to go into sleep mode where it uses
extremely little energy, for instance the pico radio designed by the PicoRadio group at
the Berkeley Wireless Research Center [4].

Chip and Operating System

The choice between using an ASIC and a regular micro controller is easy from a design-
ers point of view. Unfortunately, ASICs are extremely expensive to produce and thus
are almost never used in a prototype or on a test platform. As a compromise a system
will often consist of a micro controller in combination with the powerful FPGA tech-
nology. In the Hogthrob project a ATMega128l 8-bit, RISC micro controller is interfaced
with a Spartan3 XC2S400 FPGA from Xilinx, which together constitutes the core of the
V0 platform. The opportunities held by such a system is similar to an ASIC, though
it will always consume more energy. Programs for the ATMega128l can be compiled
using the GNU GCC tool chain. This allows for easy porting the open source operat-
ing system TinyOS to this platform. TinyOS is an event-driven and slim architecture
which allows designers to aim at obeying time-critical deadlines. Unfortunately it can-
not guarantee deadlines to be met like a Real-Time Operating System, but the small and
fast nature makes it a frequent choice for sensor network nodes.
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Instrument

To serve a purpose nodes will (almost always) need an instrument to measure their
environment. The instrument may measure temperature, movement or other physical
data. The instrument will often be used in a certain cycle, for instance every five min-
utes. Whether data processing and analysis is performed on the node or raw data is
transferred, is a decision taken after evaluating the integrated computational power of
the node and the power required for the data processing compared to transmitting the
data.

1.1.2 Node Application Behavior

The Application behavior has been analyzed to have tremendous impact on energy
conservation. Application designers will always remember to set the radio in sleep
mode and not in idle mode after having read the article “Energy Aware Wireless Sensor
Networks” by Vijay et al.[5].

Researchers respect the consequence of sending a RF signal over long distances.
This has lead to protocols based on either one of the following:

• Single Hop
• Multi Hop

1.1.3 Single Hop

The case where the system transmits directly from the node to the base-station is called
single hop. This system has been proposed in several protocols such as[6] and is im-
plemented several places such as[3] (using optical technology for transmission) and
[7]. The clear advantage of single hop is simplicity and the possibility of direct node
communication. The basic protocol for sensor networks is the single hop based proto-
col. When using this protocol all nodes send their data directly to the base-station. An
example of this can be seen in figure 1.1.

Figure 1.1 Single Hop Protocol

Contention for the medium used for transmission (e.g. a radio channel), is the major
protocol problem that shall be solved.
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1.1.4 Multi Hop

Multi Hop is used when it is either impossible or requires a prohibitive amount of
power for the nodes to transmit directly to the base-station. The nodes therefore inter-
transmit the messages in an attempt to approach the base-station with all information
without using much power. One of the best examples of this is the ZebraNet project
[8], where nodes are scanning for nearby nodes. Once a node is in sending distance
of another node, all available data is transmitted between the nodes (zebras). Zebra
researchers then need only find a couple of zebras to get information from all zebras. A
simple multi hop network can be seen in figure 1.2.

Figure 1.2 Basic Multi-Hop Protocol

The problems faced with multi hop algorithms expands from medium contention
to also include message routing.

1.1.5 Problems faced with Sensor Network Protocols

Sensor network protocols must face and resolve several important problems, these
problems include:

• Contention for transmission medium
• Multi-Hop Routing

In the following subsections these problems are explored.

1.1.6 Contention for transmission medium

The Hidden Terminal Problem

An example of the hidden terminal problem is illustrated in figure 1.3. The scenario
is that node A and node C is trying to send a message to node B at the same time.
Node A and C will both determine the network to be free and start transmitting. The
problem is then that the node B will never receive any signal, since node A and node C
unknowingly will create a mutual block.
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Figure 1.3 The hidden Terminal Problem

Figure 1.4 Overhearing, lowest transmission strength

Overhearing

When a node uses Radio Frequency signals in ad hoc networks to communicate it does
not know where the receiving node is placed. The result is that the signal must be
equally strong in all directions, thus conforming to theory behind an isotropic antenna.
As a consequence, nodes might by accident overhear messages not destined for them.
The efforts taken to overcome this problem include varying the transmission strength
and introducing transmission schemes, inferring the need for synchronization. These
problems or challenges may exist for both single and multi-hop protocols.

Overhearing, lowest transmission strength

Using a very low transmission strength the network might be very fortunate and only
the receiving node be affected by the transmitted signal. An example of this can be seen
in figure1.4 where the signal exactly reached the antenna of the rightmost node.

Overhearing, medium transmission strength

Unfortunately it may occur that nodes are overhearing the transmission. An example
of this can be seen in figure1.5. When a node is using its radio to receive a signal not
destined for it, it can be consider throwing important joules out of the window.
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Figure 1.5 Overhearing, medium transmission strength

Overhearing, strong transmission strength

Figure 1.6 Overhearing, strong transmission strength

Using a forceful transmission strength have devastating consequences. This is il-
lustrated in figure 1.6. The transmission from node C is overheard by eight nodes, of
which many could otherwise have communicated themselves.

Synchronization

Synchronizing the nodes will be a great benefit for protocol simplification. Unfortu-
nately, this is rarely possible in ad hoc networks, and therefore many protocol designers
does not include this option in their protocol.
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1.1.7 Multi Hop Routing

Using a multi-hop protocol does not solve the problems faced by the single-hop pro-
tocols. It only solves the potential energy waste from transmitting signals over long
distances. On top of the single-hop protocol challenges new problems arise:

Defining a Route for each message

Figure 1.7 Routing

Defining a route from node to base-station is a major issue. It is extremely compli-
cated to find the optimal route; hence ad hoc solutions have been proposed.[9][10]. In
figure 1.7 an example of a routed network is shown.

Neighbor Discovery

Creating a routed network first requires that nodes know which neighbors are in listening-
and transmitting within distance.

Network Partitioning

When all nodes know which nodes they may communicate with, the network can be
partitioned.

Equality Path Problem

One of the sub-problems of creating a routing for node messages are the equality prob-
lem. All nodes are imagined placed with the same distance to the base-station. Several
solutions exist for the manner in which the messages should be passed to the base-
station. As is shown in figure 1.8(a) and 1.8(b). Which solution is best depends on the
message length, node composition (buffer size), timing etc.
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(a) Node Routing setup in Circle (b) This is in square

Figure 1.8 Determining the optimal route

1.1.8 Protocol types

Wireless sensor networks MAC protocols are divided into Contention based and Time
Division Multiple Access protocols.

Contention Based Protocols

Contention based protocols include: 802.11, PAMAS and MACAW [11][12]. When using
a contention based protocol, the problem of scheduling is not an issue. Unfortunately,
presented problems such as The Hidden Terminal becomes important, especially in dense
networks.

TDMA Based Protocols

Protocols based on TDMA includes the MIT Leach[9]. One of the advantages of TDMA
is energy conservation because of small duty cycles. These protocols require that a
scheme for scheduling is inferred. The scheduling in turn scales well when the number
of nodes increase, especially when using cleverly designed clusters.

1.1.9 Event Streams

When the problems of transmitting data correctly have been resolved by a protocol, the
result is a network with specific characteristics. Seen by the nodes these characteristics
can be modelled as incoming, outgoing and passing traffic. The traffic seen by the node
can thus be modelled as shown in figure1.9.

The problem of simulating the behavior of a node is then a matter of generating
event-streams.
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Figure 1.9 Node in with incoming types of Traffic

Events streams has successfully been used to model sophisticated systems in[13].
The novel approach is thus the manner of generating the event streams and research
done towards this end. Especially establishing the correct abstraction layer for the
models and verifying this is a long step forward towards holistic and correct formal
modelling. The event streams should correctly reflect changes in network behavior as
consequence of design decision. This will yield a model capable of finding the worst-
case behavior of a network topology operating under a specific protocol on a specific
platform. The necessary information to correctly model a Sensor Network thus include
information on the following subjects:

• Network Topology and Node position
• Communication Protocol
• Node Platform
Exploration on the use of event-streams is done in chapter 3 on the E.N.D model.
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1.2 Estimating Energy Dissipation

There are several ways to model the energy consumption in a node or sensor network.
To appreciate the pros and cons of formal analysis it is necessary to know the alterna-
tives, and thus a quick summary is now given.

1.2.1 Analyzing energy dissipation

Article [14] on Lifetime Analysis of a Sensor Network with Hybrid Automata Modelling is
closely related to what is proposed in this thesis. The authors used the HyTech auto-
matic tool for the analysis of embedded systems. HyTech is capable of computing the
condition under which a linear hybrid system satisfies a temporal requirement, very
much like UppAal. The important thing to notice is that they only use the model checker
for system verification, and then turn to the program language SHIFT, capable of de-
scribing dynamic networks of hybrid automata, for all purposes of analysis and thus
looses the power of formal analysis.

Article [15] introduces Simulating the Power Consumption of Large-Scale Sensor Net-
work Applications presenting PowerTOSSIM which is capable of simulating the energy
consumption of each node in a sensor network based on the TinyOS operating system.
It is based on assigning energy consumption to the different node actions.

In [16] on Power Estimation using the Hogthrob Prototype Platform, a VLSI design of a
node is analyzed. Martin Leopold does so in two ways. First using the Synpsis Power
Compiler and secondly using an abstract Power model for each component of the SoC
node is proposed and used p.56. In the master thesis M. Leopold recognize the neces-
sity of traces and put an effort into analyzing how traces of system behavior can be
obtained.

The SENS, Sensor, Environment and Network Simulator presented in[17] is a customiz-
able sensor network simulator for wireless sensor network application. It is possible
to exchange the system components, and the simulator facilitating a diagnostic facility
for power utilization analysis. The emphasis is on the environmental impact on sensor
network simulations and provides simulation in a fashion similar to TOSSIM. An API
allows easy integration with for example TinyOS programs, which can be compiled and
executed on a work-station.

For sensor network node behavior, article [18] presents accurate and scalable simu-
lation of entire tinyOS applications.

Finally in article [19] the authors have obtained their results though an application
they have developed themselves. This is a very precise way of modelling, but ineffec-
tive since they are “reinventing the wheel” and may easily fail or forget to implement
important design issues.
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Figure 1.10 Analysis and Verification of sensor networks

1.2.2 The formal approach to analyzing energy dissipation

One of the strength in formal analysis is in the exhaustive search for reachable states. If
the designer of a system uses a simple script simulating his environment, only a very
small part of the design space and analysis space will be covered. Using test environ-
ments that have already proven their worth such as PowerTOSSIM and ns-2 will allow
for a much larger space to be covered. What is left is the corner cases, which figure 1.10
demonstrates. Using regular methods of analysis it is almost impossible to reach the
corner cases. It can be extremely difficult to imagine the required system interactions to
reach the state and hence impossible to test. Formal analysis allows the designer to ask
questions such as: Will this ever happen? Whereas regular testing only allows for: What
happened? On the other hand, formal analysis cannot determine What will usually hap-
pen?. The strength and place of formal analysis should now be obvious. A negative side
of formal analysis is that the cases found may not reflect the natural system behavior,
but finding the Worst Case energy consumption in a scenario has at least two impor-
tant uses: In a resource limited and critical system worst case behavior must always be
covered. Also in the process of optimizing a design the Worst Case behavior may yield
which parts of a system should be redesigned. It is therefore concluded that corner case
analysis through formal modelling indeed have an important place in future analysis
and verification of sensor network systems.
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1.3 Simulation

New protocols, system topologies and node behavior must be modelled and verified on
a system scale before actual implementation can begin. Several testing environments
exist for this purpose including ns-2. For sensor networks it is paramount that the lim-
ited energy consumption is not depleted and therefore it is interesting to incorporate
the node energy consumption into the system test. Also specific to the sensor network
area is the limited focus on throughput. In this section the advantages of the ns-2 sim-
ulator is described and compared with the newcomer: the UppAal framework.

1.3.1 Network Simulator 2 (ns-2)

An excellent environment for testing network simulations is the Network Simulator
- ns2 [20]. Ns is a discrete event simulator which provides support for simulation of
TCP, routing, and multicast protocols over wired and wireless (local and satellite) net-
works. Several network building blocks have been developed ensuring that building
the network scenario is fast. These building blocks include:

• One-way TCP (Tahoe, Reno, Vegas, SACK) [21]
• Scheduling algorithms: SFQ (Stochastic Fair Queueing), FQ (Fair Queueing) and

DRR (Deficit Round Robin Scheduling).
• Lossy links
• Support for mobile hosts

The ns-2 simulator is thus an already proven and very efficient network simulator
widely used.

One problem with simulators, such as ns-2, is manual scheduling of events. The
designer will thus have to define not only the testing scenario but also the exact time
of each event. Example: ns at 8.1 “$wireless start” and ns at 8.7 “$wireless stop”. A
major part of the testing work is therefore to create realistic traces of the traffic which
the network will actually experience. This often dull and difficult process makes it a
favorite fast-forward point in many design processes. Therefore the corner cases of the
system is rarely found, and even more rare, proven to be found.
To explain the problem: A node designed to discover activity could be analyzed to work
for two years in a wide range of scenarios. Unfortunately the place, where the node is
situated in the network, has a lot of very unfortunate scheduled passing traffic and the
node dies after two months. In the ns-2 simulation this corner case of passing traffic,
with a specific unfortunate schedule, might have been almost impossible to discover.

1.3.2 UppAal

A first class tool for verifying timed system models is the UppAal framework [22]. The
framework builds upon the theory of timed automata but has been extended to support
features required by the real-time system and protocol verification community. The
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basic syntax for the TCTL formulas which are sought verified are introduced in figure
1.11 from the UppAal tutorial [22] which also includes more information.

Figure 1.11 The TCTL formula syntax

Using the TCTL syntax the framework will answer the formulas with the precision
of formal analysis. Hence protocol designers implement their model and ask questions
regarding safety properties such as Can the system ever deadlock?

A[]not deadlock (1.1)

and given the answer satisfied they do not have to ever fear that this will ever happen.
Similarly, liveness properties such as Will the system always try to send a message can be
asked and verified in the same manner:

E[]message.sent== 1 (1.2)

People dealing with timing problems in real-time systems can also use the UppAal
framework. They will seek different answers though, and ask questions such as:

E <> MessageReady&& SystemBusy (1.3)

or
E <> Train1.ChosenRail== Train2.ChosenRail (1.4)

performing an exhaustive search for the destructive state, which the system should
never reach. The UppAal framework is therefore an extremely versatile tool that has
already proven it’s worth for large corporate organizations, but still has much potential
left to explore.
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1.3.3 Wishful Thinking

The power of the ns-2 network simulator is weakened by the hard work required to
generate reliable event scheduling, and exhaustive search for the worst case scenario is
often impossible. Wouldn’t it be great if is was possible to relieve this exact problem?
Wouldn’t it be great if you could ask: “If I put the system in this scenario how much energy
will maximum be dissipated?”. In this thesis an attempt is made to implement a sensor
network model using the UppAal framework. The pros and cons of this attempt will be
mapped, and hopefully we will end up finding the X in the following questions:

E <> CLOCK < 1000 && Energy > X (true)
E <> CLOCK < 1000 && Energy > X +1 ( f alse) (1.5)

Which translates to: In the current scenario, does there ever exist a state where the clock has
not passed 1000 time units and the energy consumption can be X but not X+1.



16 Introduction

1.4 Related Work

This is a discussion of work related to this report. It positions this report among the
hectic ongoing research regarding sensor networks and formal verification of models.

Regarding simulation and modelling of sensor networks, effort has been put into
modelling energy consumption, and low power node construction is therefore well
understood.

1.4.1 Sensor Network Applications

Prototypes of large sensor networks have already been created. Amongst these are the
Zebra project[8] the Great Duck Island project[23], the Hogthrob project [24] and the
non-RF based project described in[3].

1.4.2 Simulation / Modelling

Other research has been dealing with the time required to simulate a large number of
nodes[25]. The limitations of these very detailed and thorough simulations is the ex-
traction of the needed information. To determine whether a system deadlock, exhibit
liveness or has extreme energy peaks in the energy consumption pattern can be ex-
tremely difficult in these environments. This is why formal verification is such a hot
subject.

In article [26] on "Timed Autometa: Semantics, Algorithms and Tools" and article
[27] about “Timed vs Time Triggered Automata” the semantic foundation and theoret-
ical background for the UppAal framework program is described.

An interesting SoC/NoC framework which yields good potential for formal analy-
sis is introduced in [2]. The real-time characteristics of a system is discussed in[28].

A project doing analysis on the correctness of a TinyOS model using HyTech instead
of the UppAal framework has been done in[14]. They use SHIFT[29] to estimate the
average lifetime of a sensor node, but HyTech is only used for protocol validation.

In[13] the idea of using a formal approach to Multiprocessor System on Chips (Mp-
SoC) performance verification is presented. The paper has several important points:
”System-Level performance verification is one of the top three codesign issues” and “Simulation-
based performance verification, however, has conceptual disadvantages that become disabling as
complexity increases” and “finding simulation patterns - or use cases - that lead to worst-case
situations is challenging”, “formal analysis guarantees full performance corner-case coverage
and bounds for critical performance parameters”. They perform “Process execution time anal-
ysis and Scheduling analysis”. The idea of event streams is introduced.

1.4.3 UppAal

Regarding verification of models, much effort has been put into construction of the
framework UppAal. The UppAal framework has already proven its unique qualities in
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the area of Real Time Constraints Validation as presented in article[30] by Hongyan
Sun. Sun validates several basic Real Time system scheduling policies such as can be
found in the book “Real-Time Systems”[31].

This report is not concerned with real-time constraints. Instead it estimates power
patterns. This is a new approach to the UppAal framework which has not been taken
before.

The UppAal framework uses an advanced model of computation[32] and the Up-
pAal crew has created an introduction to using the UppAal framework efficiently and
correct[22]. Models for computation is not limited to the methods of the UppAal frame-
work, and a introduction to this subject can be found in[33].

In[34] about “Compact Data Structures and State-Space Reduction for Model-Checking
Real-Time Systems”, the effort taken to reduce the state space in the UppAal framework
is described. The DBM Difference Bounded Matrix data structure, which offers a canon-
ical representation for constraint systems, is mentioned with the work extending this
data structure. They note that required space is a increasing as O2 with the number of
clocks and the algorithm speed is running O3 with the number of clocks. Thus, mini-
mizing the number of clocks is critical. [35]

1.4.4 Protocols

The most commonly used protocol for single channel communication in todays indus-
try is the ALOHA protocol presented in[36]. The aloha protocol was expanded to the
Time Slotted ALOHA protocol as described in[37].

The S-MAC protocol presented in[38] is the a mature choice for sensor network
communication supporting multi-hop. It identifies the major source of energy waste in
a sensor network communication as: collision, overhearing, control packet overhead and idle
listening. The authors use the power relation idle:receive:send ratio to compare protocols.
The authors introduce adaptive listening, taking the role of the idle state, enabling Over-
hearing Avoidance. The listen-interval is the duty-cycle percentage of the frame (with
10% duty cycle i.e. 115 ms, then the frame is 1.15 s). The authors conclude that peri-
odic sleeping provides excellent energy performance at light traffic load, but adaptive
listening is able to adjust to traffic and provide energy performance as good as no-sleep
at heavy load.

The S-MAC builds on research on wireless LANs which in 1994 resulted in the
MACAW protocol presented in[12]. The most important results are obtained by use of
CSMA technology, where the surrounding signal strength in the vicinity of the transmit-
ter is measured. This allows the protocol to defer transmission if the sending medium
is concluded occupied. The hidden terminal problem then arises, but in general less
contention for the transmission medium is gained.

In[6] a New Protocol for Low Power Sensor Networks is introduced. It is a single hop
MAC protocol, which use the idea of network processing and evaluation in combi-
nation with only having nodes initiating communication to obtain low overhead for
communication. The backside is the need for synchronization and the potential long
transmission distances for the nodes. The article authors are aware of and working on
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a solution to these issues.
The article on PAMAS[11] correctly identifies the problems in creating an efficient

protocol for wireless sensor networks. They create the PAMAS protocol by merging the
ideas in [12] and the idea of using a separate signalling channel as introduced in [39].
They obtain several results which I will try to verify using the E.N.D Model

Power-Saving Protocols for IEEE 802.11-Based Multi-Hop Ad Hoc Networks intro-
duced in[19] gives a strong insight into the area. The article list the solution strategies
as follows:

• Transmission Power Control
• Power-Aware Routing
• Low-Power Mode

Furthermore the challenges are listed as:
• Clock Synchronization
• Neighbor Discovery
• Network Partitioning

They introduce three protocols for WLAN multi-hop. For verification purposes they
measure three metrics:

• Power Consumption
• Power Efficiency
• Neighbor Discovery Time

They define the event distribution to describe the event-stream which is a very effective
way of simulating a complex environment.

The article[9] on Energy-Efficient Communication Protocol named LEACH for Wire-
less Microsensor Networks, is a part of the MIT µ-amps research project[1]. They intro-
duce a protocol for the typical Sensor Network scenario:

• The base station is fixed and located far from the sensors
• All nodes in the network are homogeneous and energy constrained

They introduce the following concepts in the LEACH protocol:
• Localized coordination and control for cluster set-up and operation
• Randomized rotation of the cluster “base stations” or “cluster-heads” and of the

corresponding clusters.
• Local compression to reduce global communication

The nodes take turn in being cluster heads and doing tough energy transmissions. The
authors compare their protocol with the single hop and a static clustering protocol.

In[40] “GPSR: greedy perimeter stateless routing for wireless networks a protocol using
Distance Vectors, Link States and Path Vector routing algorithm” is introduced. Informa-
tion on geography is also used in[10] “Geography-informed energy conservation for Ad Hoc
routing” and [41] “Span: An energy-efficient coordination algorithm for topology maintenance
in Ad Hoc wireless networks”.

1.4.5 Application Challenges

Frequently “Tiny OS” has been used for simulation[15].
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Amongst the best articles discussing real measure of energy consumption is[5] which
in detail describe “where the power goes”, so future research have been guided in the right
direction.

The paper[42] “Building Efficient Wireless Sensor Networks with Low-Level Naming”
deals with in network processing and data aggregation for network traffic reduction.
The idea is to give nodes names, reflecting properties, such as their geographic position
or abilities if using heterogeneous nodes. The authors verify their model on a testbed
with 14 PC/104 sensor nodes.

In article[43] on “Multi-dimensional range queries in sensor networks” they use the
GPSR[40] protocol to enable multi-dimensional range queries such as “List all events
whose temperature lies between 50◦ and 60◦”. A distributed data structure is intro-
duced called “DIM”. This data structure efficiently resolve multi-dimensional range
queries. Another work in this area is the “Networking support for query processing in
sensor networks” presented in [44], which deals with the benefits from two-way commu-
nication.

Other work in the area of sensor networks deals with signal safety and integrity [45]
and the feasibility of new ideas such as energy harvesting [46].
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1.5 Summary

The lifetime of sensor network nodes is recognized as vital information for almost all
sensor network application purposes. Lifetime information has been modelled and ap-
proximated through simulation using simulating environments such as PowerTOSSIM,
SENS and ns2. The best and worst corner cases have never been examined because they
are extremely hard to find and can never be proven correct using the mentioned simu-
lation environments. If a designer has a battery with a certain capacity it is important
to know if it can be promised to be enough for e.g. 6 month or two years. Formal mod-
elling can answer this question.
There are two approaches to formal modelling of a sensor network. The first approach
is to model the entire network as done with ns2. This way of modelling means, that an
ns2 model could be directly translated and thus create a unified framework for simula-
tion and verification purposes. A potential problem is the extremely large simulation
space, which cannot be verified on a regular workstation computer. This way of mod-
elling is examined in Chapter 2.
The other approach places a target node as the center of the test. The surroundings are
then modelled through event streams upon which the node will then react. This creates
a relatively slim simulation space and allows for the same analysis of node behavior as
the first approach. This way of modelling is examined in Chapter 3.



CHAPTER 2
The A.N.P Model

2.1 Introduction

In this chapter the properties of modelling an entire sensor network is examined. This
is similar to what is done with simulators such as ns2. The system uses a protocol
proposed by Mario Neugebauer and Klaud Kabitzsch in the spring of 2004 [6]. It is
called: "A new protocol for Low Power Sensor Networks" and will be referred to as the
A.N.P protocol.

The chapter is structured as follows. First the A.N.P protocol which will be modelled
is introduced. Then the report continues with an introduction to the UppAal model in
terms of partitioning and implementation. Then a basic, but formal, analysis of the
sensor network model is performed using the UppAal framework. This will lead to a
formalized comparison of the Time and Delta protocol, as was done in the original article
on the protocol. The report then moves to a discussion on what further possibilities
modelling in the UppAal framework has and shortcomings are also discussed. Finally,
a conclusion is given.

21
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2.2 A New Protocol for Low Power Sensor Networks

An interesting article by Mario Neugebauer and Klaud Kabitzsch was published in the
spring of 2004 [6]. It deals with the opportunity of creating a better protocol for Low
Power Sensor Network Communication by interconnecting and analyzing the layers in
the OSI model for this specific application. Some important observations were done by
the writers:

• If a sensor is monitoring an environment which sometimes is changing fast and
at other times are changing very slow, it is probably a good idea to only have
the sensors send information when the content of the message can be considered
“new” or “important” as opposed to sending at a regular interval. Sending being
much more power consuming, than measuring.

• When sending a message between node and base-station becomes a rare event,
more nodes may share the same channel with a low chance of mutual attenuation.

• All communication can then be initiated by the nodes
A MAC scheme, which enables this protocol is reported in the article. In short it can

be described as giving each channel a sub-part of each MAC cycle to do its communi-
cation.
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2.3 UppAal Model - Partitioning

The number of models running concurrently is the obvious basis for an exploding state-
space. It is therefore very important to keep the number of working models to an abso-
lute minimum, while still performing a correct modelling of a situation.

In this section the layout of the model will be described, and the reasons for the
choices done towards this end will be discussed.

The protocol described in Section 2.2 identify the issues with communication be-
tween the “nodes” and the “base-station”. In this report we model more than that. The
system mode is composed of several models running concurrently. The nodes will be
modelled through the Single Node (Delta/Time) and the base-station modelled through
the Basestation Model, but also the environment will be considered. The environment
have more to it than first expected, for example electromagnetic wave should be con-
sidered an environmental variable equal to other variables of nature. The possibility of
an electromagnetic waves succeeding in sending a signal from node to base-station is
determined in the Network Model. The environmental, which the sensor network mea-
sures, is introduced in the Environment Model. Finally, for analysis purposes the Monitor
Model is inferred. Each of these models are attached in Appendix C.1 through C.6.
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2.4 UppAal Model - Implementation

In this section the implementation of the models presented in subsection 2.3 is de-
scribed. Once the model is well understood, formal analysis is presented in the section
2.5.

2.4.1 Global Variables

The global variables are extremely important, since they describe the topology of the
sensor network. They are defined as follows for the normal system used in the analysis.
The normal system contains: two nodes, two protocol channels, one network model,
one environment model, and a single base-station.

Global Variables
1 gMaxChannels 2;
2 gIntervalBetweenMeasurements 10;
3 gMaxRetryAttempts 6;
4 gMACcycleLength 10;
5 gMaxNodes 2;
6 gTsub 2;
7 gMaxSentMessages 1;
8 const gEnvironmentChange 5;

Understanding the model will be much easier after an introduction to the use of
each global constant:

• The gMaxChannelsdefines how many channels the base-station has at its disposal -
besides the special channel used for initializing nodes.

• The gIntervalBetweenMeasurementsdefines how often the nodes will try to measure the
environment. This works both for the time and the delta protocol case.

• The gMaxRetryAttemptsdetermines how many times a node, in vain, will try to contact
the base-station.

• The gMACcycleLengthdefines the number of time-slots in a MAC cycle.
• The gMaxNodesis the number of nodes which the base-station will communicate

with.
• The gTsub is the number of time-slots it takes for the node or base-station to perform

a single setup and transmission of a message.
• The gMaxSentMessagesis used to create a bounded variable counting how many mes-

sages a node has sent.
• The gEnvironmentChangevariable defines how often the environment has changed more

that delta. This is necessary to model the delta protocol correct.

Now moving to consider the global variables. These are important because they, to-
gether with the committed state type, form the basis for safely sending variable between
models. Notice also that all variables in the entire model are bounded as hard as possi-
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ble. This is done because a variable with many possible values takes much longer time
to evaluate than a variable which may only assume few different values. The global
variables can be seen in the following code listing:

Global Variables
1 int[0,gMaxChannels] gChanNumber :=1, gTryingToUseChan;
2 int[0,1] gTakenChan[gMaxChannels+1];
3 int[0,gMaxNodes] gOweResponse[gMaxChannels+1];
4 int[0,1] gEnvironmentDataAvailable[gMaxNodes+1];
5 int[0,gMaxNodes] gTotalOweResponse;
6 int[1,gMaxNodes] gSendID,gSenderID;

• gChanNumberdefines which channel the base-station is currently using.
• gTryingToUseChandefines which channel a node is trying to use.
• gTakenChanis an array which defines if a channel is taken or available.
• gOweResponseis a boolean array which knows which nodes successfully has sent a

message to the base-station. The base-station will try to respond to each of these.
• gEnvironmentDataAvailableThis array has a slot for each node. If the environment model

has set the slot to 1, then the node will perceive the environment to have exceeded
delta. The node then resets the value to zero.

• gTotalOweResponseis the total number of responses the base-station has not yet an-
swered.

• gSendIDis a channel ID which is sent between the base-station and node model.
• gSenderIDis a node ID which is sent between the node and the base-station model.

Finally the UppAal framework model requires that we define the channels with
which the models communicates:

Channels
1 chan initiateNodeReq, useChannelSet, useNetwork,
2 channelAvailable, failed,BaseReceive, BaseSend,
3 gFreeNet,nodeMonitor,envMonitor, nodeInit,
4 measure,sendMessage,startup;

And the global clock which will be used for synchronization.
Global Clock

1 clock gClk;

With all the global data constructed, we can now consider the implementation of
the individual models.

2.4.2 Single Node Delta Protocol Model

Modelling an entity such as a Sensor Node is a complex and time consuming task. To
make the understanding of the idea behind the implementation easier, the Node model
has been divided into five different sub-partitions. This can be seen in Appendix C.1
by the dotted lines. The sub-partitioning is as follows:

1 Initializing.
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2 Measuring.
3 Sending to base-station.
4 Waiting for base-station response.
5 Fail/Abort current action.

Initialization Procedure

When the node is in its initialization state it has either never communicated with the
base-station, or has given up doing so on the currently assigned channel. It will now
attempt to connect to the base-station using channel zero and will expect to receive
the channel on which it should send its future messages. The other four states in this
sub-partitioning accomplish this. If this procedure fails, sub-partition Fail/Abort current
action is entered.

Measuring Environment

The node enters this mode “sleeping”, but wakes up to measure the environment ev-
ery gIntervalBetweenMeasurements. The Environment Model sets the values of the global array
gEnvironmentDataAvailable[nodeID] to ’1’, if the environment has changed. The nodes checks
this, and only tries to contact the base-station in this case. Upon perceiving the envi-
ronment as interesting, i.e. it has changed, the node synchronizes with the base-station
and tries to send its message, and thus entering the next sub-partitioning.

Sending to base-station

In this part of the model, the system repeatedly tries to contact the base-station. If it fails
to do so, more than gMaxRetryAttemptsthe nodes enters the Fail/Abort current action part of
the model.

Waiting for base-station response

The node now sleeps until it knows a message from the base-station should be sent.
If this message is received the cycle has ended and the nodes re-enters the Measuring
sub-partition. Then the node will enter the Fail/Abort current action sub-part if it does
not succeed.

Fail/Abort current action

This part of the model is used every time something unexpected happens. If this should
happen, this model part makes sure that the nodes enters the system again gracefully,
as described in the protocol, Section 2.3.

2.4.3 Single Node Time Protocol Model

The Node obeying the Time Protocol is very similar to the Delta Node. The difference is
in sub-partition 2 - Measuring. Instead of checking if the environment is interesting, the
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node measures the environment value and will then transmit every time an interval of
gIntervalBetweenMeasurementshas passed since the node entered sleep mode (well initialized).

2.4.4 Base-Station Model

As we saw in subsection 2.4.2 explaining large models becomes much easier upon sub-
partitioning it. Hence, this is what is done here as well. The sub-partitioning of the
base-station is as follows:

1 Initialize a Node
2 Receive a Message from a Node
3 Send Responses to Nodes
4 Reset Timer

Initialize a Node

This part of the model listen for nodes communicating on channel zero. It responds to
the node with the channel which the node should use for future communication as well
as a node ID for its messages.

Receive a Message from a Node

When a node tries to send a message to the base-station, the base-station will react
using this part of the model. The variables describing the number of messages not yet
replied is updated. Once this has been done, the model returns to the Initial state.

Send Responses to Nodes

This is a very interesting and moderately complex part of the model. It simply tries to
respond to every node that has previously left a message at the base-station. It keeps
the sub MAC cycle structure using the gSubTimeto switch between the channels.

Reset Timer

This part of the model simply control the global clock.
This concludes the functionality of the base-station model. Which only leaves three
small and easy models to be explained.

2.4.5 Environment Model

The Environment Model is controlling how often the environment is interesting for
each node using the gEnvironmentDataAvailable[] array. It is the heart of the Delta model.

2.4.6 Network Model

The Network Model determines whether a signal will reach the destination, or not. If
the channel is not already in use, the signal may reach the destination, but the chance
of random failure is still possible. If the channel is in use, the transmission will fail.
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2.4.7 Monitor Model

The Monitor is used to verify different time parameters. It is initialized every time a
node successfully has initialized, and can then for example measure the time from the
node starts its measuring cycle to when a message is sent.
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2.5 Uppaal Model - Analysis

In this section an analysis of the sufficient relations that must exist for the model to
work is given. This will validate the network protocol giving the basis for trust in
the results obtained in section 2.6. First we will define that the system should never
deadlock, but should exhibit the liveness property, and elaborate on the fairness property
of the protocol. Then we will give the sufficient relations regarding both the invariants
and the already introduced system constants.

It is obvious that the system must never deadlock and therefore the following invari-
ant must be satisfied:

A[]not deadlock(true) (2.1)

Liveness means that if the environment is interesting/or probed, the node will try
to send a message. Liveness not promise that the message will be delivered, and that
the protocol is fair, nor does it have any real-time constraints on delivery time. Liveness
merely states, that the node will try to send the message. The following two relations
prove that the system exhibitLiveness if true. The system will try to send a message:

(SNDelta1.Measuring&&

(gEnvironmentDataAvailable[SNDelta1.ID] == 1)&&

gClk < gMACcycleLength)−−>

SNDelta1.Wait2Send(true) (2.2)

and it may do so successfully:

E <> SNDelta1.Success f ullySent(true) (2.3)

Thus, the system therefore fulfills the liveness property.
Regarding fairness it should be noted, that the base-station and the environment

does not result in a fair protocol, as whether the signal being received by the base-
station is the only priority. For the protocol to exhibit fairness, then every node should
have a fixed time-slot to send its message, thus its signal wouldn’t be interfered by
nodes which happen to lie much closer to the base-station. This would make the proto-
col unconditionally fair - but kill the idea behind the delta “power saving” protocol.
Moving to consider what should be true about the system. Since the node might never
initialize because of poor transmission or other connection problems, the following
equation stating that, the node will always reach the state Sleeping, will be false:

A <> SNDelta1.Sleeping( f alse) (2.4)
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equally the node may never reach the SuccesfullySent state:

A <> SNDelta1.Sleeping( f alse) (2.5)

It should be noted though, that these equations won’t be true for any wireless net-
work, since QoS cannot be promised.
The next part of the analysis will work with interesting states, that indeed is reachable.
Firstly synchronization is tested. The state, in which the node is ready to transmit to
the server, is SNDelta1.DeltaTransended. At this point the clock should be exactly equal
to gMACcycleLength.

E <> SNDelta1.DeltaTranscended&&

gClk! = gMACcycleLength( f alse) (2.6)

It should of cause not be possible for two nodes to accept the same message, there-
fore the following relation must be false:

E <> SNDelta1.NodeReceivedResponse&&

SNDelta2.NodeReceivedResponse( f alse) (2.7)

But two nodes are welcome to wait for a message at the same time:

E <> SNDelta1.BaseSSN&&

SNDelta2.BaseSSN(true) (2.8)

If only one channel is enabled in the base-station, the following relation will be false.
But given that more than one channel is enabled, the base-station can have a message
for both nodes, and then it will be true.

E <> SNDelta1.BaseSSN&&

SNDelta2.BaseSSN&&

gTotalOweResponse> 1 (true) (2.9)

The following relation establish that when the base-station is responding, a node
will be listening. This is true, but that is not the same as promising that the signal is
sure to arrive.
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A[]BaseStation.Responding imply

(SNDelta1.BaseSSN||
SNDelta2.BaseSSN||

SNDelta1.NodeReceivedResponse||
SNDelta2.NodeReceivedResponse) (true) (2.10)

In this chapter the relations sufficient to conclude the well-behavior of our model
has been given. It is assured that:

• The System does not Deadlock
• The System exhibit Liveness
• The System does not exhibit Fairness
• The System follows the proposed protocol
• The System is synchronized
• The Nodes will not be in dis-consistent states
• The Possibility of nodes sharing a channel was analyzed.
• The Parameters have been analyzed and allowed relations have been given.
Therefore the listed relations must be sufficient to validate the model. All of the

above relations have been tested, and found to yield the expected. It should also be
noted that the above system was tested with two nodes. The result from using more
nodes was an exploding state space which meant, that only a few of the invariants listed
in this chapter could be proven. The available computational power was the SunFire
server at IMM, DTU with twenty four UltraSparc-III/750 MHz processors and fifty-
four gigabyte of available memory. Unfortunately UppAal was only capable of using a
single processor at a time and limited the memory consumption to four gigabytes. An
effort from the creators of UppAal to make use of distributed computation could yield
a major reduction in testing time.
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2.6 Delta vs. Time Protocol

In the article on “A new Protocol for Low Power Sensor Networks”, the Delta protocol
is compared to the Time based protocol. It is claimed that using the Delta protocol the
node potentially will have to transmit fewer times, while obtaining the same resolution.
This will now be proven true on a formal ground:

First we let the environment be interesting “allways”. If this is the case it is found,
that a maximum of 30 time units will pass from the environment is interesting and till
the node is trying to transmit - both for the Delta and Time protocol. Thus, using the
global variables listed in section 2.4.1, we find that the following relation is true for the
value 30 and false for the value 31:

E <> Monitor.sending&& Monitor.lClk > 31 f alse (2.11)

It is interesting to consider what happens to the relation a change from 5 to 200
happens in the global variable gEnvironmentChange. From what was proposed in the original
article, the Time node should send six times every time the Delta node sends a single
message. The Delta timing indeed has changed, which can be seen by the following
relation now evaluating as true:

E <> Monitor.sending&& Monitor.lClk > 180true (2.12)

Changing the gEnvironmentChangevariable must have no influence on the Time protocol
timing relation. This is proven by running equation 2.11 on the Time model again with
the new global constant and obtaining the same result as before.

Observing this result, the mission of this chapter, to formally verify the original
article propositions, is concluded successful.
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2.7 Future Opportunities and Challenges

The next step in evolving this model would be to implement real node energy con-
sumption values for the different node application actions. Also, measuring the time,
in which the node is idle and requiring some power for this should be possible. With
these feature implemented it would be possible to directly see the difference in energy
consumption in a number of interesting cases. For instance it would be possible to es-
tablish in exactly which cases the Delta protocol is a better choice than the Time protocol.

Synchronization is a challenge which has yet to be inferred in a realistic manner to
the model. This subject is not touched in the article, but after communicating with the
authors it is clear that certain possibilities exist, and has been explored by the authors of
the A.N.P protocol. In the future work with this model, it must be considered whether
the energy required for synchronization is enough to have influence on the protocol
performance.
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2.8 Conclusion

In this report it has been shown that formal analysis is a unique and powerful way of
evaluating and comparing models. It was shown that it is possible to model a complete
network including base-station, nodes and the surrounding environment. It was possi-
ble to verify proposed protocol properties from the original A.N.P article. Also the lim-
its of the network holistic simulation was met. With the available computational power
it was only possible to verify small scenarios. Implementing energy consumption into
the model will only make the simulation space larger and worsen this situation. As
a consequence, formal verification of network holistic models is determined inappro-
priate with the currently available computational resources. In Chapter 3, a different
approach to modelling is presented which yields better results in reducing the state
space.



CHAPTER 3
The E.N.D Model

3.1 Introduction to The E.N.D Model

Upon deployment of a sensor network it is often critical to Estimate the time to Node
Death (E.N.D).

Compared to the A.N.P model, presented in Chapter 2 the E.N.D model has focus
on a single target node instead of an entire network. The surrounding environment of
the node consisting of the neighbor nodes and the base station, is modelled through
event streams. The result is a slim state space which can be verified and analyzed on a
powerful workstation.

The protocols used in Wireless Sensor Networks do their best to limit overhear-
ing other messages, and if possible never send a message which will not be received.
Whether this is done using a clever scheme or using a separate communication chan-
nel, it is in this chapter shown, that the E.N.D model can help the designer analyze the
worst case situation in a given scenario.

This chapter is structured as follows. First an introduction to the model and im-
plementation details of the E.N.D model is given. Then an analysis of the model is per-
formed using the UppAal framework and the developed environment for Testing and
Analysis. The model is verified with the results obtained in several important articles
on sensor networks. Finally, before the conclusion, an introduction to the E.N.D model
generator is given.

35
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3.2 Model

3.2.1 Interactions

Figure 3.1 The Model

Node

The interaction between the node and the environment is modelled through events
which will happen in a way similar to interrupts in micro controllers. In figure 3.1 it
is demonstrated that the node should react to the Send, Idle and Instrument interrupt,
along with the Receive event. Each of these actions will cause the node to be busy for a
certain interval where after it returns to the idle state.

Nice Traffic Generator

Traffic which is meant to be received by the node is named as Nice Traffic. The nice
traffic generator is normally in state idle and then in regular intervals create a send
event which may be caught by the target node. The nice traffic generator model can be
seen as a subpart of figure 3.1.

Evil Traffic Generator

Traffic which occupy the network around the node is named Evil Traffic. The evil traffic
generators is normally in state idle but in regular intervals create a send event which
may be caught by the target node. The generator of evil traffic model can be seen as a
subpart of figure 3.1.
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Network

The model of the network basically determines whether the electromagnetic waves
around the target node are free or busy/occupied.

Base-station

In many protocols the base station does not initiate any transmission. A base-station
model is therefore not required. A signal sent by the target node is sent as a broadcast,
and therefore a receiving base-station is implicitly modelled. Should a base-station
contact a node, this role is equal to a nice traffic generator.

3.2.2 Energy

Figure 3.2 The Energy Accumulation Model

Energy is accumulated through actions. The details of the operating system, node
implementation and topology is abstracted into a set of events which will happen in a
certain time span or interval. For a given system it is necessary to measure the cost of
entire actions: "Completely Receiving a signal”, "Using the instrument” and "Completing
a Send transmission”. If using carrier sensing technology, the actions “Determine the
network as busy and postpone send action” and “Tried to receive signal but it was determined
addressed for other node ” must also be measured. The energy model is visualized in
figure 3.2. The meaning of the parameters are explained in the following listing:

• sucSend : The energy required for a send transmission
• sucResv : The energy required to receive a message
• csSfail : The energy required to check the network status before a send.
• csRfail : The energy required to check weather a message should be received or

not.
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• SleepConsumption : This is the energy usage when the system has been sleep-
ing/idle for idleEnergyAccTime time units.

• InstrumentCost : The energy required to use the instrument.

With these energy consuming actions determined formal modelling will control the
interplay and for example determine, how the worst set of interactions would occur.

3.2.3 Protocol

Figure 3.3 An example showing the model parameters and interplay

The E.N.D model aims at being generic in terms of protocol choice. This requires a
range of variables necessary to define the properties of the used protocol. In figure 3.3
the protocol parameters is introduced and the interplay described. To give a natural
feel for the parameters, figure 3.3 is now described with words:
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1. Because nothing happened in the start of the test idleEnergyAccTime is
passed threshold which describes the system energy consumption in
idle/sleep state.

2. After an offset of less than niceNeighSendCycle, the nice event genera-
tor generates a send event. Since the network was free and the node
idle, the node begins receiving the signal.

3. After an offset of less than evilNeighSendCycle the evil generator gen-
erates a send event. Since the node uses carrier sensing techonology,
the node is only occupied for cssSandRetry time and then returns to
idle state.

4. After sendingCycle time units, the target node itself will try to send
a message. At his point the network is occupied, so the target node
returns to idle state after cssSandRetry time units.

5. After intrumentCycle time units the node starts using it’s instrument.
6. The node is now busy using the instrument and does not see that the

Nice and Evil generator both generates a send event.
7. After using the instrument nothing happens for a while, so the node

is sleeping in the idle state. This also causes a small energy consump-
tion.

8. The Node “send” cycle has been reached and again it sends a mes-
sage. The transmission takes timeToSend time units to complete.

With this basic feel for the inter-event-play a thorough introduction to the intro-
duced parameters is now given.

• sendingCycle : This is the sending cycle of the target node.
• instrumentCycle : If the instrument is enabled, it is used with this interval.
• idleEnergyAccTime : Since the UppAal frame cannot do math on clocks (only as-

sign values), it is necessary to model the energy consumption, when sleeping, in
discrete steps. This value determines the minimum time the system should be
idle/sleeping to consume an amount of energy.

• csSandRetry : If the system tries to send a message but determines that another
node is using the available bandwidth, then the node waits this amount of time
before trying again. For synchronous systems this value is equal to int x sending-
Cycle. Some protocols such as the S-MAC will use a random back off period. This
should be implemented in a future version of E.N.D.

• cssRandRetry : If the system is receiving a message but determines that the band-
width is occupied, it will take this amount of time before the system has returned
to the idle state. In the next model version “retry” should be deleted from the
variable name.

• timeToSend : This determines the time to send a message.
• timeToResceive : The time to receive a message.
• timeEvilTransmit : The length of evil messages.
• timeToInstrument : The time required to use an instrument attached to the node

as explained in section 1.1.1.
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• niceNeighSendCycle : The send cycle of the nice neighbors.
• evilNeighSendCycle : The send cycle of the evil neighbors.
With the model defined, the next step is to create a timed automata from the current

automata. This will be explained in the next section on the UppAal implementation.
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3.3 Implementation

The global variables and process assignments define and shape the model. The goal
is that designers working with the E.N.D model should be able to model their system
from these variables alone. Therefore understanding each of these variables is vital.
More than half of the variables were presented in the chapter on the model, and the last
are now defined:

• niceNeighbors : Boolean value, determines if the nice neighbors are active.
• evilNeighbors : Boolean value, determines if the evil neighbors are active.
• Instrument : Boolean, determines if the instrument is used.
• cs : Boolean, determines if carrier sensing technology is used.
• pMax : The maximum energy constant. It has to be larger than the energy con-

sumption.
• maxM : The maximum messages constant. It has to be larger than the maximum

number of events such as send/receive/instrument use.
• testTime : The amount of time units for which the test is run.
• block : The maximum number of times which the system will block an event.
The process and system assignments are important when the designer wish to have

more than a single nice and evil neighbor node. Nice node neighbors are defined as
nodes which communicate with the target node. Evil nodes are defined as generators of
passing traffic, thus interfering with the network around the target node. The following
listing is an example of a system consisting of: the node for analysis (target node),
one nice neighbor, one evil neighbor, a network and finally a force entity necessary for
creating urgent edges in UppAal.

Process and System Assignments
1 <system> system node,nneigbor,eneighbor,network,force;</system>

The constants and process assignments which have been introduced, should make
the following description of the individual models straightforward.

3.3.1 The Node

The node is built around a single state in which time may pass and a set of actions
performed upon an interrupt or event. The node model state is therefore largely defined
through variables and clocks rather than places.

The main state is called idle. From this state events from clocks or concurrently
running model will trigger the node to do one of the following actions:

• Send a message
• Receive a message
• Use the instrument
• Accumulate idle energy
• Change the busy-flag
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Figure 3.4 The Node

As can be observed in figure 3.3.1 the model is complex and a close analysis is
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necessary. The graphics should be understood as follows:
• The places are displayed as circles. Time cannot pass in places marked with a C.

The starting place has an internal circle.
• Transitions are arrows. Each transition may hold one or more from the following

data set: Invariant, Synchronization, Variable assignments. In the model they are
continuously displayed in that exact order, next to the transition. The invariant
must be satisfied before the transition is enabled.

Send a message

Figure 3.5 Sending a Message

The action of sending a message can be seen in the model in figure 3.5. Analyzed
from the top and down the first transition does the following: If the node is trying to
send and it should do so as soon as the system is not busy, also at the same time the
idleClk is reset so the discrete sleep interval is disrupted. The next transition which will
start a transmission is when the clock nsendingClk is equal to the sendingCycle. When
this happens the nsendingClk and idleClk are both reset, and the variable tryingToSent is
set. Once the node is trying to send the next transmission will cause it to fail if the sys-
tem was busy upon the send event. If this happens the busyBlock variable is increased.
This will allow for analysis of how busy the node has been. If the node is not busy the
model will reach the Carrier Sensing State (CSS). If carrier sensing technology is enabled
and the network is occupied the node will pros pone the send action. Otherwise it will
perform the send. Upon either action the energy is accumulate as expected and also the
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variables mNoCsFail and mS used for analysis. An important set of variable assignments
is:

Setting the node in busy mode
1 sysBusy := 1, busyTime := csSandRetry, busyClk := 0

An important thing to notice is what will happen if the network is determined oc-
cupied and the signal then resent. In several articles such as S-MAC they use a random
back off time span and they tries again. In the current E.N.D model it will be tried to
send again after the fixed time csSandRetry. In a future E.N.D model random back off
can be implemented. This will have a major impact on the state space though.

Receive a message

Figure 3.6 Receiving a Message

The model subpart responsible for message is shown in figures 3.6. The model
leaves the idle state in the upper right corner upon synchronizing with over the sending
channel with a neighbor. The mode is then free to decide if the signal arrives at the
node or not. If the signal arrives it is checked if the system is currently busy or not. If
the system is busy the busyBlock variable is increased and the signal is not received. If
the system is not busy the CSR state is reached. In this state it is determined if the node
is capable of differentiating signal directed at the node or not. If so the nodes quickly
abandons the malicious signal, otherwise the signal is received and the appropriate
variables increased.
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Figure 3.7 Instrument Usage

Use the instrument

In figure 3.7 the part of the node model responsible for handling instrument usage is
shown. There are two ways the use of the instrument may be initiated, this is the two
top most transitions. The basic way is if the instrument cycle threshold has been passed
an the interrupt has been sent. If the system is busy at that exact time the topmost
transition will make sure the instrument is used as soon as the node is again idle. The
third transition from the top is taken when the system is occupied. With the pre-control
surpassed the instrument is used in the transition closest to the bottom, in this case
appropriate variables are increased and set.

Accumulate idle energy

Figure 3.8 Idle Energy Accumulation

The preferred way of modelling the energy dissipation due to the node sleeping
would be SleepingClock * IdleEnergy. Unfortunately the SleepingClock in UppAal is a
span of time rather than a counter, which prevents doing this kind of mathematic oper-
ation. Therefore the idle energy must be increased in fixed discrete steps. For example
the designer defines the smallest time in which 1 energy unit is dissipated when sleep-
ing. The measure will not be perfect, but the approximation will often be acceptable,
as is later shown in section 5.3 on model verification. This part of the node model can
be observed in figure 3.8. For this way of modelling it is required that all other actions
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resets the idleClk.

Radio Distance

The following five actions are determined to dissipate energy in a node: Idle, Send-
ing, Receiving and Instrument usage consumption. Finally the direct influence of the
transmit distance can be model. This is done as follows. The node is instantiated with
a distance parameter which is then used in the energy usage accumulation used when
receiving or sending a message. As explained in article [12], the signal power received
at a certain distance decreases with the distance d as follows:

Pr αPtd
β (3.1)

where beta is between two and five. The UppAal framework does not define a math-
ematical operator for raising a variable to a certain power, but assuming a beta value
of two (free space) means that the required transmitted power and thus also energy, is
proportional to distance*distance, which UppAal allows. With a stronger mathematical
model in UppAal a typical β value of 3.8 could be used. Many scenarios will model the
energy consumption better through directly using the send and receive variables, but the
distance feature allows for a direct simulation of transmission distance.

The Idle State

The invariant in the idle state is as follows:

(idleClk <= idleEnergyAccTime)&& (instrumentClk<= instrumentCycle)&&

(nsendingClk<= sendingCycle)&& (busyClk<= busyTime)&& (gClk <= testTime)(3.2)

The first four sub parts of the invariant makes sure to force the node to take certain
transitions at or after a certain time. This is a necessary and common design pattern
in UppAal models. A new and not intuitive invariant is the last part reading: gClk <=
testTime. In the world of protocol verification, invariants like this would never be seen.
For energy accumulation verification, it is a very nice invariant since it will stop all
actions happening after the gClk has passed the testTime threshold. When searching
for an answer to an equation like:

E <> Time< X && Energy> Y (3.3)

UppAal would continue to search for possibilities even after the Time clock had
passed Y, unaware that the clock would never be reset. Inferring this hard deadlock
makes sure no unnecessary state space is generated.
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Figure 3.9 Busy-Flag

Change the busy-flag

The system “busy” flag is controlled through the sub model in figure 3.9. The busy flag
and busy time is set every time an action is performed as elaborated in the section on
the send action. This part of the model ensures that the node will not perform anything
before the busy time expires and the model again can perform actions.

Summary

The node is modelled as a single non committed state connected with urgent transitions
and committed states. Thus time may only pass in the state idle. The system state is thus
defined through variables such as busy, busyTime, Energy, etc.

3.3.2 Nice Neighbors

Figure 3.10 Nice Neighbor
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The nice neighbors generate a stream of message events addressed for the node tar-
geted for analysis. It is a synchronous event stream, but the starting point may be varied
freely by the model between zero and the Nice Node send cycle. The node contains an
extra state: NoNiceNeighbors where it resides when the designer is creating a topology
without nice neighbors. Upon simulation startup without nice neighbors the transition
leading to this state will be enabled, and the urgent force synchronization will ensure
that the nice node will be locked for the remaining simulation run. When analyzing
the trace this yields a faster general view of the model state. The nice neighbor can
observed as figure 3.10. Beside the inter node functionality a send cycle also commu-
nicates with the network model. The design pattern used is the same as the BusyFlag in
the node model. When a neighbor transmit a message it stores the time it will set the
shared variable nOccTime and then synchronizes with the network. The network will
respond by being busy the next nOccTime time units.

3.3.3 Evil Neighbors

Figure 3.11 Evil Neighbor

The evil neighbors generate a stream of message events passing the node targeted
for analysis. The evil neighbor model is shown in figure 3.11. It is a synchronous
event stream, but the starting point may be varied freely by the model between zero
and the Evil Node send cycle. As the Nice Neighbor the Evil Neighbor features a dead
state “NoEvilNeighbors” used, if no evil neighbors are chosen active by the designer.
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The synchronization with the Network model is the same as the Nice neighbor.

3.3.4 Network

Figure 3.12 The Network

The Network model defines whether the network is busy or free for transmissions.
The network model is demonstrated in figure 3.12. This information is necessary when
dealing with carrier sensing technology. The network is initiated in the Network state.
The transition to the right is taken upon a synchronization with either a Nice or Evil
neighbor. After this synchronization the network will be occupied in an interval de-
termined by the synchronizing model. The transition below the Network state is taken
when the Network should no longer be occupied. As the Nice Neighbors and Evil Neigh-
bors, the node features a “dead” state. This is reached using the topmost transition and
only used if no nice or evil neighbors are chosen active by the designer.

3.3.5 Force

The Force model in figure 3.13 is necessary to create urgent transitions. Urgent tran-
sitions are used when a model should take a transition as soon as it becomes enabled
without time passing. The UppAal framework does not have a syntax for describing
this transition type, but instead it is common to use this design pattern to solve the
issue.
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Figure 3.13 The Force Model
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3.4 Analysis

In this section the results from exploring the safety, liveness and interesting properties
of the model are presented.

3.4.1 Safety

In this subsection the model response to normal safety invariants are examined. First it
is checked if the model will ever deadlock.

A[]not deadlock( f alse) (3.4)

From invariant 3.4 it is clear that the system will indeed deadlock. As already
explained in chapter 3.3 on the implementation this is implemented deliberately, in an
attempt to minimize the state space as much as possible. In fact, the system should
always deadlock after the testing time has expired. This is proven through invariant
3.5.

A[]gClk > testTimeimplydeadlock(true) (3.5)

As expected the system will be deadlocked as soon as the test time has passed.
The following invariant 3.6 proves that the network will always be occupied while
either an evil or nice node is transmitting.

A[] (nnb.Sending or enb.Sending) imply networkOccupied== 1 (true) (3.6)

Therefore the node targeted for analysis may securely use this information

3.4.2 Energy

There are two corner cases regarding energy consumption which can be checked through
this way of modelling: the lowest possible energy consumption and the highest possi-
ble energy consumption in an interval.

Lowest Possible Energy Consumption

Determining the lowest possible energy consumption can be done through finding the
value where the result of invariant 3.7 change from true to false

A[] gClk > 500 imply n.Energy> 15 (true)
A[] gClk > 500 imply n.Energy> 16 ( f alse) (3.7)

It can thus be determined that the lowest possible energy consumption for the an-
alyzed node is 15 energy units. This method of analysis yields some potential for dis-
covering new optimal ways of node behavior.
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Highest Possible Energy Consumption

Finding the highest possible energy consumption for a system has great potential.
Whether caused by nearby earthquakes, hungry animals or silly protocols it is igno-
rant to design a system without concern for the worst case scenarios.

E <> gClk < 1000 && n.Energy> 131 (true)
E <> gClk < 1000 && n.Energy> 132 ( f alse) (3.8)

Invariant 3.8 show that the maximum consumed energy in a time interval for the
specified scenario indeed can be found. Finding the values 131 and 132 is a matter
of performing a manual binary search. This is very time consuming and a tool for
performing this analysis automatically should be developed.

3.4.3 Interesting Properties

Several other interesting properties can be verified formally. The first scenario is about
using carrier sensing (CS) / adaptive sleeping technology. Invariant 3.9 will be false
when using CS while it will be true when not using CS technology.

E <> n.Sending&& networkOccupied== 1 ( f alse) (3.9)

The immediate result is that not using CS technology exposes the system to the a
where it is sending or receiving messages in vain because the messages are disrupted
by a busy network.

The next invariant 3.10 is an unfortunate consequence of a wireless system.

nnb.Sending−−> n.CSR( f alse) (3.10)

It is shown that the event of a nice neighbor sending a signal will not always cause
the main node to actually discover this. The signals may not arrive at the node, or the
node may be busy at that time.

A <> n.CSS(true)
A <> n.CSR( f alse) (3.11)

Finally it is shown through invariant 3.11 that the node targeted for analysis always
will try to send, which happens in state CSS while even though the neighbor nodes are
trying to send signals they may never actually arrive. The second part of the result is
thus a result of what was already found in 3.10.
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3.4.4 Summary

In this section a range of vital model properties was formally verified. It was also shown
that the E.N.D model can be used for finding the trace resulting in the highest energy
consumption. This is very valuable for designers wanting to take counter measures in
future designs.
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3.5 Conclusion

In this chapter the generic E.N.D model of a sensor network was implemented. The
E.N.D model distinguishes it self from the A.N.P model from chapter two because it
is centered around a target node and the surrounding network is insinuated through
event streams, which is much faster then simulating the complete network. After the
implementation of the model it was analyzed using formal verification. This yielded
the expected behavior and basis for trust in the model in future tests. It was also dis-
covered that the manual binary search necessary to determine ranges of variables were
extremely time consuming and that the designer/tester should be relieved from this
burden.

Because the E.N.D model is generic it is possible to simulate different protocols,
systems and scenarios. This will be examined in chapter 5 on Test and Results. Chang-
ing and/or testing the E.N.D model by hand is both time consuming and potentially
confusing. Therefore a Design and Analysis framework for the E.N.D model has been
developed and will be introduced in chapter 4.



CHAPTER 4

The E.N.D Design and Analysis
Framework

4.1 Introduction

The E.N.D framework is enables the following features for the user: A GUI for design
and creation of E.N.D models, Explore scripts which find the scenario worst case energy
consumption and an analysis script for automatic analysis of traces. Figure 1.10 demon-
strates the interactions between the E.N.D framework components and UppAal.

Figure 4.1 Analysis and Verification of sensor networks

Figure 1.10 is divided into two part using dotted boxes. The smallest dotted box
at the top is the normal UppAal GUI interacting with a manually edited E.N.D model.
The UppAal GUI allows for manual analysis of constraints with a satisfied or not satisfied
(y/n) answer. This type of analysis was performed in section 3.4.

55



56 The E.N.D Design and Analysis Framework

The E.N.D framework extends this basic analysis. Explained from left to right in
figure 1.10 the component purposes is the following:

• The E.N.D GUI is used to create E.N.D models and Explore scripts.
• The Explore script interfaces the UppAal tool verifyta used to verify timed automata

using a command line interface.
• The generated trace can be analyzed using the Analysis script.
In this chapter an introduction to each of these tools is given.
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4.2 E.N.D GUI

The E.N.D GUI enables the designer of sensor nodes new possibilities to systematically
test interesting scenarios using an attractive graphical interface. The program features
include:

• Load / Save / Print of model Data
• UppAal model Creation
• Explore Script Generation
• Integrated Test Environment (not finished)
The application was developed under Linux using the Eclipse IDE. The application

allows the designer to work with the model meta data and control it very efficiently.
The model properties are divided into intuitive groups which makes it easy to form a
general view of the current model state and scenario. To get a feel for the program two
screen shots of the program can be seen in figure 4.2 while a complete user guide is
attached in appendix A.

(a) Explore Script Configuration (b) Model and Script Generation

Figure 4.2 The E.N.D GUI

The E.N.D GUI application can be found on the thesis CD in the directory /END. It
can be initiated using the following command:

Initiating the E.N.D GUI
1 user@machine (CD/END) > java END
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4.3 Explore scripts

An important discovery from testing the A.N.P and E.N.D models was the need for
an automated test and analysis environment. The reason for this was the inefficient
manual binary search needed to find the worst case energy consumption in a certain
scenario. In this chapter it is explained why an automatic linear search is found to be
faster than a binary search because of state space reuse.

4.3.1 Exploring

The goal of the explore scripts is to find the trace which yields the highest consumed
energy within a certain time frame. This is done by asking a question such as:

E <> Clock< X && Energy> Y (4.1)

Which translates into “Will there ever exist a state where the clock is less than X and the
energy consumed is higher than Y”. The UppAal framework is able to answer this question
with Satisfied or not Satisfied. If the answer is satisfied, then a trace to the state is given.
The problem can then be divided into two.

Verification

If the designer have entered the exact values for his system and know the limit of his
battery in the chosen test time, he can read the answer as not Satisfied: Yes your system
will always have enough energy, or Satisfied: No, the system may consume more energy. This
basic case is sufficient for verification purposes, but insufficient for analysis purposes
since little information is available on the worst case energy consumption. It is only
known that it is less that Y in formula 4.1.

Analysis

Another approach to the system would be a wish to find what causes the worst-case
situation to happen and the worst case trace. In this case the problem is to find the
largest Y value in equation 4.1, for which the answer is satisfied. The trace file gener-
ated by UppAal can then tell the designer exactly how the worst case happened. This
approach with the current UppAal framework requires a manual binary search to be
performed, and thus can be very time consuming including frequent attention by the
tester. This is extremely time inefficient, so development of an automated test tool was
needed. In the following subsections two different automated test tools are presented.
The first uses a customizable binary search and the latter a linear search which reuses
the already generated state space. The latter is found often to be the fastest.
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Figure 4.3 Search Patterns

4.3.2 Binary Explore Script

The binary search is defined through three constants.
• Start position
• Forward Step
• Final Precision
An example of a binary search is illustrated in figure 4.3. The binary explore script

developed to care take this process and standardize the position of the resulting traces
can be found on the attached cd in the directory: /testScripts/binary/binaryTestScript.pl.
Using this test tool is a matter of editing the constants and then initiating the search
script with appropriate arguments which are explained if the script is executed without
arguments. The script can also be generated from within the E.N.D GUI
Compared with the Linear Explore Script the Binary Explore script has many advan-
tages. For example the test will stop as soon as the desired precision is obtained. Also
uses the lowest amount of queries to find the result. Furthermore the tester is able to
follow the progress of the search. The major disadvantage is that for every sub-result
the state space graph is rebuilt completely from scratch which is very time consuming.

4.3.3 Linear Explore Script

The linear search is defined through three constant:
• Start Position
• Forward Step
• Final Value
An example of a linear search is illustrated in figure 4.3. The clever thing about

the linear search is that it allows for state space reuse because the queries are known in
advance. The script to create the queries can be found on the attach CD in the directory:
/testScripts/linear/createQuery.pl. Executing this file will create a file called magicQuery.q
which can then be used directly with the UppAal VerifyTA tool like this:

Initiating a linear search
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1 user@machine (/uppaal-3.4.7/bin-Linux) > verifyta -d -S0 -T -f
2 traces/TRACE -t0 model.xml magicQuery.q

The major disadvantage is that the search continues until the queries has been an-
swered. It should be noted that the tester can manually check and stop (ctrl-c) this
process as soon as the answers are not satisfied. Since the executions happens within the
UppAal framework this issue has not been solved.

4.3.4 Comparing the Binary and Linear Explore Script

The pros and cons of binary and linear search have been explained in the two former
subsections. To summarize, the major advantage of the binary search is that it uses the
lowest amount of queries to find the result and tester is able to follow the progress of
the search. This should be compared to the potentially faster linear search because of
state space reuse. Both methods have disadvantages and thus the method of test is left
to the designers preference. The issue have been discussed with the designers of the
UppAal framework and allowing for state space reuse in a binary search will be a future
feature, while it is currently known as a part of my Enhancement Bug 120.
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4.4 The E.N.D Analyze Tool

The result of running either of the explore scripts is a trace file. This file can be loaded
into the UppAal GUI with the model and the full trace followed in the simulation envi-
ronment. An example of this can bee seen in figure 4.4. While this feature truly is very
nice, it becomes very inefficient for larger with test scenarios. The UppAal framework
accommodate this through the libutab parser library. The library allows developers to
write custom trace analysis tools or interface the tracer utility which prints the trace to
stdout. The latter solution was chosen because it complied fully to the E.N.D analysis
requirements.

Figure 4.4 Sequence Diagram Trace

The Analyze Script

The /analyzeScript/analyzeFile.pl script interfaces the tracer utility. It does so by having
the tracer utility output the trace to stdout and then redirecting this to a file. Through
regular expression the key variables in the final state is then fetched and appended in a
chosen file, in the results directory. It is thus possible to gather test results with a basic
relationship in a single file. An example of this can be seen in the following listing:

An example of a result file
1 -------------------------------------------------------
2 - Result: Topology: two evil, one nice, sendcycle 799 -
3 -------------------------------------------------------
4 n.Energy = 156
5 n.mS = 1
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6 n.mR = 4
7 n.mIdle = 6
8 n.mInst = 0
9 n.mNoRec = 1

10 n.mNoCsFail = 0
11 n.busyBlock = 0
12 TestTime = 29
13

14 -------------------------------------------------------
15 - Result: Topology: two evil, one nice, sendcycle 799 -
16 -------------------------------------------------------
17 n.Energy = 156
18 n.mS = 1
19 n.mR = 4
20 n.mIdle = 6
21 n.mInst = 0
22 n.mNoRec = 1
23 n.mNoCsFail = 0
24 n.busyBlock = 0
25 TestTime = 29

In the example above two tests have been run and stored in the same file. The
data can then be presented in the most relevant manner as is tried in chapter 5.3 on
Model Verification. In the user guide attach in appendix A an introduction to using the
Analysis Script can be found.
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4.5 Conclusion

In this chapter the E.N.D framework has been presented. The three major components
of the framework were presented as the following: E.N.D GUI, Explore scripts and Anal-
ysis script. It was shown that the E.N.D GUI is capable of generating E.N.D models and
Explore scripts. The use and features of the analysis script was also presented. The
E.N.D framework is thus a complete tool-set for analysis of sensor networks based on
the E.N.D model.





CHAPTER 5
Tests and Results

5.1 Introduction

In this chapter tests and results are presented. First the tests are covered. This deals
with creating a complex scenarios based on the E.N.D model. In each scenario one or
more parameters are then changed and the result analyzed using the E.N.D framework
presented in chapter 4. In the second part of this chapter the results achieved using the
E.N.D model are presented. A successful result is obtained when it is possible to verify
a known protocol property or proposed idea using the E.N.D model. In the section the
model successfully verifies properties from four important articles in the area of sensor
networks.
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5.2 Tests

In this chapter the test strategy is explained. Then the test details and how to read
the results are presented. Finally the tests are presented and the immediate results
discussed.

5.2.1 Test strategy

An important factor in finding the worst case energy consumption is the number of re-
ceptions required by each node. This is best exemplified through three different topolo-
gies yielding very different reception histories.

• Tree, Inner position
• Tree, Outer position
• Line

To minimize the node energy consumption researchers propose different protocols.
The main factors which they change in protocols are:

• Sending frequency
• Instrument usage frequency
• Carrier Sensing technology
• Message length

Hence these three cases are tested. Finally passing or “evil” traffic should be ana-
lyzed.

• Passing Traffic

5.2.2 Testing Explained

Each test will find the highest possible consumption of energy under the given circum-
stances.

The energy required to perform an action is given relatively to a similar test scenario
and not in Joule. In this test we use the energy relations found in article [19] because
the data are found to be the most precise data published. The values are:

1. Energy Consumption for Sending: 50
2. Energy Consumption for Reception: 20
3. Carrier Sense Send Fail: 10
4. Carrier Sense Receive Fail: 10
5. Instrument Energy Consumption: 5
6. Energy Consumption when Sleeping: 1
All tests are run for 1000 time units, while the event frequency and message length

is varied from test to test. Finally the precision in energy consumption is decided to be
maximum 1 energy units in the line graphs and 10 units in the bar graphs.
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5.2.3 Varying Nice Node Sending Frequency

The first test on the system is changing the sending cycle of a nice node placed in a
normal line topology. Surprisingly many facts about sensor network nodes establised
from this test. The sending cycle is changed from every 50 time units to every 900 time
unit. The evolution of the most interesting variables are shown in figure 5.1 while
development of all variable values is placed in appendix B.3. The first important ob-

Figure 5.1 Effect on received messages, energy, messages not received and test time, when
changing nice node cycle

servations is done when the send cycle changes from 50 to 100. At 50 time units, the
target node has reached the saturation and cannot receive more messages. The highest
energy consumption will thus happen if 11 messages are successfully received and 11
signals are simply not discovered. At 100 time units the node will experience the same
signals and use just as much energy, while the system behaves a lot differently trying to
send only half amount of messages. As fewer messages are received it is seen that the
energy consumptions is falling equally while stabilizing around 12 energy units, due
to the fixed target node send cycle. From this test we can thus conclude that saturation
can occur as expected and the worst case actually happens if many of the signals are
not received. This latter conclusion is not what would be perceived by intuition. The
situation is due to that fact that the system uses more energy to send a message then
to receive a message. Thus for the system to send all possible messages, many of the
signals from the neighbor node should not be received.
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5.2.4 Carrier Sensing Technology

The next test which will be presented is dealing with carrier (CS) sensing technology.
The obvious result is that when using carrier sensing technology then evil signals will
not arrive at the target node, and less energy will be dissipated. This is shown to be
true in the following tests. In the first test in figure 5.2(a) the target node is exposed
to a single evil neighbor while it is using CS technology. The result is that the node
sends a single message and prevents three signals from using much energy by using
CS technology. In the next test in 5.3(b) another evil node is inferred, which results
in a higher energy consumptions since CS technology is used more. In test 5.3(c) the
CS technology is disabled and the energy consumption from a single evil neighbor is
larger than two evil neighbor nodes with CS technology. This is further emphasized
in figure 5.3(a). It is thus clear that from an energy saving perspective carrier sensing
technology is a very good idea. Finally it is examined what happens if the target node
sends very often. The result is shown in figure 5.3(b) and 5.3(c). As expected, the node
starts sending all possible messages, since this requires the most energy, and the evil
signals arrive less frequent in this worst corner case.
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(a) Single Evil Node, target node using CSS technology

(b) Two Evil Nodes, target node using CSS tech-
nology

(c) Single Evil Node, target node Not using CSS
technology

Figure 5.2 Effect of changing the number of evil neighbors and CS technology 1/2
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(a) Two Evil Nodes, taget node NOT using CS technology

(b) Single Evil Node, with faster target node send
cycle, no CS

(c) Single Evil Node, with very fast target node
send cycle, no CS

Figure 5.3 Effect of changing the number of evil neighbors and CS technology 2/2
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5.2.5 Topology

Figure 5.4 Effect on test time and energy when changing the topology

The data presented in figure 5.4 is derived from the test results in appendix B.5. In
this test the number of neighbors is changed from zero to four and several important
lessons are learned. Firstly it is important to notice that the energy does not increase
exponentially or linearely as more nodes enter the topology, instead it increases steeply
from 1 to 2 nodes and then starts to saturate with three nodes. With five nodes in the
topology, (including the target node in the count), a state space explosion occurs and
reaches the limits of the available computational power. We can thus conclude that all
test must be done with 4 nodes or less in the surrounding node topology.
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5.2.6 Varying the Sending Frequency of All Nodes

Figure 5.5 Effect on sent and received messages when changing all send cycles in line Topol-
ogy

The data presented in figure 5.5 results from changing the send cycle in all nodes in
a line topology. The entire test evolution can be found in appendix B.1. In this test it
is worth noting that with the fastest send cycle not a single signal is received, since the
node spends it’s time sending and thus using the most energy. With a slower send cycle
(from 150-250) the energy consumption stabilizes and then begins to fall again. This is
a nice example where the formal energy analyzis would tell the designer to examine if
the throughput is sufficient with a send cycle around 200 time units. This will allow
communication to flow, and avoid high energy consumption.
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5.2.7 Instrument usage frequency

Figure 5.6 Effect on time and energy consumption when changing the instrument usage cycle

In this test the effect of increasing the instrument usage frequency is examined. The
primary result can be seen in figure 5.6, while the entire dataset is attached in Appendix
B.4. The effect on the energy consumption is accumulating with the number of times the
instrument is used as expected. This is due to the fact that the energy required to use the
instrument is set to 5 while sending and receiving is more expensive. Thus the worst
case senario is the basic send/receive scenario with the line topology, only varying
within the precision span. The instrument is then simply being used in between. In this
test scenario saturation is never reached, so the energy consumption is approximately
proportional with the instrument usage.
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5.2.8 Message length

Figure 5.7 Effect on sent and received messages when changing the message length

The data in figure 5.7 was taken from appendix B.2. In this test the time to send
a message is changed while the energy required for the action remains unchanged.
This allow for simulation of high transmission rates against a slow transmission. As
expected, a higher time interval required to send and receive a message will cause less
messages to be sent and received. It is also noted that the worst case again involves
several signals not being received because the surrounding nodes have tried to send
messages, which in the worst case was not caught by the node.
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5.2.9 Passing traffic

In this final test an evil node will try to spread malice and we examine the effect of
varying its send cycle. The evil node is inferred into a normal line topology including
a nice node. The result can be observed in figure 5.2.9. As expected the energy con-
sumption falls when the evil signal become less frequent. It could also be noted that the
effect is minor, since a 200% increase in evil signals only yields a 6% increase in energy
consumption.

Energy Consumption has two components, which must be tested. The first and
obvious is the total energy consumption. If no energy harvesting is possible, this is a
crucial factor in life-time calculation. The second component is the energy consump-
tion patterns. Finding the spikes in energy consumption allows the system designer to
evaluate this against the attached energy source and/or take counter steps to even the
distribution of the energy consumption. Using formal model reachability analysis it is
possible to find the worst-case behavior in the two cases.

Moving the node closer to the Base-station means that the farther away nodes will
transmit their message through the node. As a consequence, the node will have a higher
energy consumption, the closer it is, to the Base-station. This is described in figure 5.9.
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(a) Evil Node send cycle = 199

(b) Evil Node send cycle = 249 (c) Evil Node send cycle = 499

Figure 5.8 The effect in a line with an external node with varying send cycle
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5.2.10 Total Energy Consumption

The Total Energy Consumption in a sensor network using a protocol supporting multi-
hop messages and a single implicit modelled base-station is investigated in the analysis.
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In figure 5.10 the total energy consumption of the single node can be observed. By
close inspection, the reader will see a change in δenergyafter 200 time units has passed.
This is because the node is communicating either with another node or the base-station.
From the figure is clear that if the energy source supports 300 energy in 300 time, then
the system will live this long.
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5.2.11 Average Energy Consumption

The average energy consumption in small time intervals allows for the analysis of
spikes in energy consumption. In figure 5.11 the results obtained is presented. In the
figure it can be seen that the system never uses more than 23 energy in 40 time.
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Figure 5.11 Average Energy Consumption *(the figure should read ’energy’)

5.2.12 Summary

This section started with an introduction to the test strategy and a description of how
the tests were performed. Then the actual test were performed on the model. veri-
fying that it worked as expected. First test involved varying the nice neighbor node
sending frequency, and then it was tried to vary all nodes sending frequency. The re-
sults were presented and acknowledged as correct. Then testing was done on the use
of sensing technology and topology changes. Here comments on the time to test and
limits in neighbors were discussed. Thirdly the model was told to use its instrument,
the message length was changed and the effect of passing traffic examined. Finally en-
ergy dissipation over time was analyzed thus including the interesting subject of energy
patterns in the research.
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5.3 Verification

5.3.1 Introduction

Verification of the END model involves exposing it to a variety of topology and protocol
combinations. This was done in the first part of this chapter. In the next section the
result from extending these tests for comparison with what four different authors have
presented are discussed: “S-MAC” (Heidemann),”PAMAS” (Singh et al.), “IEEE 802.11
Multi Hop protocols” (Tseng et al) and “A new protocol” (Neugebauer et al).

5.3.2 S-MAC Protocol

In this section the effort taken to verify that the SMAC protocol can be correctly mod-
elled is described.

The S-MAC introduced in[38] is a choice to be considered for networks with multi-
hop routing. In the introducing article the authors explain and present the results from
their experiments with the protocol implemented on UCB MICA motes.
To design the protocol efficiently they identify the following major sources of energy
waste: collision, overhearing, control packet overhead and idle listening.
As a measure of how efficient a protocol is in term of idle listening the idle:receive:send
ratio for IEEE 802.11 is measured to be [1:1.05:1.4] while the specification reads [1:2:2.5].
Spending some time solving this problem should thus be well worth the effort. These
kind of ratios are directly translatable to the generic E.N.D model, and the effect of
varying these parameters can be examined.
The S-MAC article has a thorough analysis of the latency and throughput involved
when using the protocol. It would be obvious to implement and test the analysis re-
sults using the UppAal framework.
The S-MAC protocol infer these ideas in the protocol: Periodic listen and sleep, Colli-
sion avoidance, Coordinated sleeping. Using the E.N.D model the following subsub-
section will analyze the results from the article

Analyzing the S-MAC protocol with E.N.D

The topology is a two-hop network with two sources and two sinks.
Test 1 - Mean energy consumption on radios in each source node

The main result from this test is that adaptive sleep becomes a better idea the fewer
messages are sent. Figure 5.121 demonstrates the relationship between the SMAC pro-
tocol using adaptive sleep and the 802.11 protocol without sleep. The difference is
modelled as an increase in average sleep consumption. As expected we see the same
evolution in energy consumption as found in the article. When few packages arrive,
the advantage of using S-MAC is very clear while becoming less important as more

1based on the test data stored in /tests/smac/messageIntervalComp
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Figure 5.12 Comparing SMAC to 802.11 using E.N.D

messages arrive. The reason is that the node is capable of going into deep sleep when
messages are not arriving. At the other end of the scale, with 10 messages per test, the
node is almost fully occupied and the difference between the protocols become minor.

Summary

Modelling the S-MAC protocol with E.N.D was successful because the same results as
shown in the original article was obtained.

5.3.3 PAMAS Protocol

The PAMAS protocol combines the idea of a signalling channel with letting the node
sleep if it has nothing to do. It is expected that the energy savings are greatest in dense
networks since many neighbor nodes will sleep while normally awake. The weakness
of the protocol is when high contention for the signalling channel happens, such as in
very dense or high traffic - small message networks.

Analyzing the PAMAS protocol

Test 1, Power saved as function of traffic
The first test performed by the PAMAS authors deals with about the power saved when
the traffic is heavy and light. The result is that the energy savings is generally close to
around 50% for a network with 10 or 20 fully connected nodes. The computational
power required to simulate the E.N.D model with more than four neighbors is higher
than what is currently available at IMM, DTU. Similar results is obtained using only
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2-4 neighbors, though. This has already been shown in figure 5.2(b) and figure 5.2(c),
where the savings in using carrier sensing technology is 97

196∗100= 49%.
Test 2-4, Power saved as function of Topology - Line, Random, Fully Connected

In a line topology less power is saved, since there are fewer messages which will be
overheard. Thus this test is similar to what has already been tested in section 5.2.5 con-
cerning changes in energy consumption with different topology using carrier sensing
technology. To perform a test comparable with the result in the PAMAS article, a similar
test done without carrier sensing technology is needed. This can be seen in figure 5.13.
From the figure it is clear that there is no benefit between PAMAS and 802.11 style pro-
tocol when the node is alone. When more nodes join the topology the effect becomes
clear and is measured between 10% and 35% which complies perfectly with the results
in the original article. The data to create the graph is found in /tests/pamas/.

Figure 5.13 Comparing PAMAS to 802.11 style using E.N.D

Summary

In this section the PAMAS protocol was analyzed with the E.N.D model. The results
showed to be similar to what was attained in the original article by Suresh Singh and
C.S. Raghavendra.

5.3.4 Power-Saving Protocols for IEEE 802.11-Based Multi-Hop Ad Hoc Net-
works

In this section it is verified that the END model is capable of obtaining the same results
as found in article[19] on Power-Saving Protocols for IEEE 802.11-Based Multi-Hop Ad
Hoc Networks.
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The protocols are based on 802.11[47] but extends the way the Power Saving (PS)
mode is managed. The following notations are used throughout this chapter: BI: length
of a beacon interval, AW: length of an active window, BW: length of a beacon window,
MW: length of an MTIM window, SIFS: Shortest Interframe Spaces .

The protocols work with the beacon interval to sleep as much as possible while still
guaranteeing to discover new nodes.

The protocol works like S-MAC and PAMAS trying to weigh benefits against draw-
backs of having the node sleep with it’s radio turned off as much as possible. The
general power saving results analyzed in section 5.3.2 and 5.3.3 can thus be almost di-
rectly transferred. The difference between PAMAS and the 802.11 Multihop lies in the
lack of a communication channel - while it is very similar to S-MAC. Still the article on
802.11 Multihop does a very good job of weighing the pros and cons of different sleep-
ing intervals. In this section we will analyze how the worst case energy consumption
relates to this analysis.

Dominating-Awake-Interval

This protocol guarantees that a PS host beacon window will always overlap with any
neighboring PS host active window in every other interval if AW≥ BI/2+BW is satis-
fied. Thus the node will sleep less than half of the beacon interval frames in PS mode.

For the beacon the following parameters is used: BI: 100ms, AW: 60ms, BW: 5ms,
MW: 5ms.

Periodically-Fully-Awake-Interval

Two types of intervals are possible in PS mode. “Low Power Intervals” (LPI) and
“Fully-Awake-Intervals” (FAI). The fully awake intervals appear periodically every T
beacon. Thus, this protocol can be modelled as each PS beacon using the average en-
ergy:

LPI(T−1)+FAI
T

(5.1)

The protocol guarantees that every T beacon intervals, nodes in reaching distance will
become aware of one another. This protocol is better that the dominating-awake when
T is larger than 2. Unfortunately using a large value of T makes discovery of new nodes
slow. Thus this protocol is best for slow moving environments, where a large value of
T is acceptable.

Quorum-Based

Quorum is a minimum set of identities from which one has to obtain permission to
perform some action[19]. Quorum defines that the protocol need only be fully-awake
every O(1/n) beacon. The advantage is clear when transmission is expensive and nodes
enter the network infrequently.
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Analysis

Figure 5.14 Effect on number of messages and energy consumption

In this test Power consumption vs. Traffic load is tested. (80% of the traffic load is
good traffic). Unicast is used for transmission as opposed to Broadcast. Message size is
set to 2048 bytes. Beacon window size is 8 ms and MTIM window size is 16 ms. The
active window is MTIM+BW + SIFS. The result of the test is shown in figure 5.14. As
expected using the dominant protocol results in the highest energy use, but in return
most messages are transmitted.

Summary

In article [47] three different protocols for generating a multi hop network based on
802.11 is proposed. A number of tests are done in the article on power efficiency and
power consumption. In this section the general relation between the three protocols
proposals are successfully proven correct.

5.3.5 Comparing Protocol Level model with Abstract Model

In this section a comparison of the pros and cons it carried out with the data level A.N.P
model and the abstract E.N.D model.

Comparison

The basic idea of the A.N.P protocol is to only send data if data is available. It is not pos-
sible to model the details of this idea with the abstract E.N.D model. In many cases this
won’t be necessary though. The same function used to decide whether there is data to
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send in the A.N.P model, could be used to decide how often data is sent in the abstract
model. Using implicit modelling it is therefore easy to translate the data level model to
the abstract model. In this case it is a simple matter of decreasing the send cycle. Once
the idea has been transferred to the abstract model then the designer has the possibility
of defining test scenarios where the worst case corner case is covered fully.
On the other hand the data model yielded the possibility of asking for verification of
protocol properties such as not Deadlock and Liveness. Furthermore, details may be in-
ferred into the model on the designers wish.

Summary

Implementing a protocol correctly as a timed automata is a task requiring a measurable
amount of time, especially for designers new to the area. In this case modelling ideas
implicitly with the E.N.D takes little time and as is proven successful in this chapter.
The E.N.D model is also capable of analyzing more complex system using a trimmed
state space.

5.4 Conclusion

In this chapter the potential of the E.N.D model has been throughly mapped. Verifying
that the model behaved as expected followed a verification of ideas presented in four
papers well known to sensor network researchers.
The limitations of the E.N.D model was also discussed. The problems was due to huge
state space surpassing the available computational power. This happened when more
than 4 neighbors was inferred into the scenario topology.
Finally a comparison between the A.N.P data level model and the abstract E.N.D model
was given. The conclusion was that the data level model could be modelled implicitly
using E.N.D and the consequences discussed.
The major results are:

• It is possible to model a sensor network with all protocol details and simulated
data exchange in an abstract model.

• It is possible to verify proposed protocol properties and behavior.
• Since the model can correctly verify properties is will also predict the consequence

of design decisions correctly.
With the E.N.D model throughly analyzed and verified the next chapter will be a dis-
cussion and conclusion on the work presented in this thesis.





CHAPTER 6

Discussion and Conclusion

In this thesis the possibilities of formal verification of exact protocol behavior and holis-
tic system modelling has been explored. Several results and arguments for their validity
have been presented. In this chapter the achieved results will be put into perspective.

6.1 The A.N.P model

The process and results

The A.N.P model was the first step in exploring the possibilities in formal verification
of sensor networks. The model is true to the proposed protocol and thus implements
the necessary data exchange and evaluation procedures. The design process yielded
three important discoveries about using the UppAal framework and modelling:

• A range of design patterns, not explained by the UppAal framework tutorial at
that time, were learned.

• Creating a model which is 100% true to a certain protocol and scenario have sev-
eral disadvantages. Obviously it is not generic and also simulating more than a
single node was extremely time consuming since each node would impose the
same amount of possibilities and information.

• Manual analysis of variable spans using formal verification is extremely time con-
suming and requires frequent attention from the tester.

These conclusions formed the basic idea behind the E.N.D model. The next model
should be generic and fast, and automated analysis should be possible.

Evaluation

The design and verification process of the A.N.P model yielded several important re-
sults which have been presented to the authors who proposed the A.N.P protocol. It
verified that the proposed theory was indeed correct and exposed that the need for
node synchronization had not been solved or mentioned by the authors.

87
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The A.N.P model showed that this way of modelling could be used by designers exam-
ining the consequence of tiny changes in a specific protocol. Unfortunately, the state
space was extremely big even for small network topologies making formal verification
impossible with current computational resources.
The important thing is to notice, that the actual result was to reproduce an already
given result and thus verifying the potential in formal analysis outside its regular area.
The offspring from the A.N.P model is therefore extremely important, and as expected,
the grand thesis contributions to sensor network design space exploration are found
using the E.N.D model.

6.2 The E.N.D model framework

The conclusion drawn from the A.N.P model yielded high expectations for the E.N.D
model framework. A number of challenges were expected to be overcome, and the
results from actual usage of the model greatly anticipated.

The E.N.D Model

Designing the E.N.D model involved expanding and reusing numerous UppAal design
patterns. An important achievement was development of a simple but trustworthy OS
model using interrupts on the node and changing neighbor nodes with event streams.
These model features host the necessary generic nature to support modelling of a vari-
ety of systems.
Not all systems can be modelled though. Asynchronous systems are only partly sup-
ported and minor protocol details cannot be directly modelled. The node timing behav-
ior must be known a priori to modelling and be compatible with the E.N.D scheme. The
system successfully models a range of ideas but it must be acknowledged, that several
ideas will not easily be translated to the E.N.D scheme, and compatibility cannot be
promised.

E.N.D Usability

The E.N.D model successfully analyzed and verified properties from four important
papers. Through traces it was also established how the corner cases could happen and
system designers can use this information to drastically improve their systems through
counter measures.
It may be argued that the corner cases found in the analysis were not all equally likely
to happen. A case study will show how the information given by E.N.D can still be
used:
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Send Case
In a trace, the worst case energy consumption happened if none of the many
neighbor signals reached the target node. As a consequence the node fo-
cused on dissipating energy through local Send actions.

This scenario may be very unlikely - but possible. These surprising situations may
very likely have their important part to play in a system, especially in discovering of
energy dissipation sinners and with subsequent system re-design. For example the
designer of the Send Case system would probably have to take a closer look at the energy
cost of sending a signal. The designer might try a different protocol, a cluster scheme
yielding shorter distances to send or in a different way try to bring the cost of sending
a signal. When the new scenario is ready it can again be modelled using E.N.D and this
cycle continued until a satisfying result is reached. This test pattern is proposed for all
future sensor networks, especially when it is critical that the nodes survive a certain
amount of time.

The E.N.D framework

The E.N.D framework is a superset of the UppAal framework, featuring automated test
and analysis of E.N.D based models. The framework also include the GUI which give
sensor network designers a structured environment for creating E.N.D models and sce-
narios. The theory behind the framework is explained in chapter 3 while a tutorial can
be found in appendix A.

Evaluation

At present the E.N.D framework is mature and ready to deliver results. It has already
successfully verified several designs and protocols. It has yet to take part in an actual
design process such as the hogthrob project [24] currently under development. Being
used in the hogthrob project the E.N.D framework would surely play an important fac-
tor in system verification, but also the potential in exploring the possibly devastating
corner cases would certainly benefit the design process. Playing a part in an actual
design and design optimization process would be the natural next step for the model.

6.3 Contributions

6.3.1 Model of Sensor Network

A generic timed automata modelling the energy consumption in sensor network was
designed using the UppAal framework. The model was tested and verified to work as
expected.
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6.3.2 Design and Analysis Framework

A framework capable of the following was created:
• Creating sensor network models
• Discovering the maximum consumed energy trace through explore scripts
• Analyzing the trace

6.3.3 UppAal Future Development

Analysis of variable ranges was accepted as a future enhancement to the UppAal frame-
work by developer Gerd Behrmann. 1

6.4 Formal Analysis

6.4.1 UppAal

UppAal, HyTech or Open-Kronos

The UppAal framework was the choice for timed automata verifier throughout this the-
sis. An alternative would have been to use the hybrid technology tool HyTech as done
in [14]. Both frameworks can be compiled under both linux and Solaris which has been
vital for this project. Important to the choice was that the HyTech homepage has not
been updated since February 2003, the GUI which the UppAal group created for them is
from 1996, and the latest article on developing HyTech dates back to 1997 [48]. Equally
the latest Open-Kronos release is from September 2002 and also have limited ongo-
ing research. In contrast the UppAal group continue to develop new releases every 4
months and has flourishing ongoing research with both the industry and academic en-
vironment. The choice of UppAal as timed automata verifier therefore remains a good
choice.

Intelligent State Space Trimming

The challenge with formal modelling is to trim the state space as much as possible.
In the following question the UppAal framework will potentially have to do a massive
amount of unnecessary verification work.

E <> Clock < X && Energy> Y (6.1)

The problem will occur if the model does not deadlock as soon as the Clock hits X.
UppAal is not capable of analyzing that the clock will never be reset and that all states
where the Clock has passed X are useless. In the E.N.D model this is solved by making
the model deadlock after the clock has passed the threshold testTime. An even better so-
lution may exist. The ObsSlice Timed Automata Slicer introduced in [49] has a new per-
spective on verifying questions which are verified using observers rather than Timed

1http://bugsy.dominic.auc.dk/cgi-bin/bugzilla/show_bug.cgi?id=120
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Computation Tree Logic TCTL formula. According to their research the approach may
lead to significant time and space savings during verification. This is because it can
discover the set of modeling elements that can be safely ignored at each location of the
observer by synthesizing behavioral dependence information, which is exactly what is
needed for efficient verification of properties similar to what is done using formula 6.1.
This new tool is perfectly capable of interfacing UppAal which would still function as
the model checker.

6.5 Perspective on other Areas

The E.N.D model has demonstrated that a complex heterogeneous systems such as a
sensor network can be modelled, verified and analyzed using formal analysis. An area
of research with similar properties is Multi Processor System on Chips. Modelling al-
ready has a strong influence in the area and event streams have already been proven
very efficient by Kai Richter et. al. in [13] on “A Formal Approach to MpSoC Performance
Verification”. The “Network-Centric System-Level Model for Multiprocessor SOC Simula-
tion” developed by Jan Madsen et. al. in [2] can also be modelled similar to the E.N.D
model. For the MpSoC area to benefit from formal analysis focus will shift from Energy
to Throughput. The potential for MpSoC analysis would thus be to answer questions
such as: How good will this network perform in the best case? and In the worst case what
will happen? for example in terms of transferred packages. The design of a MpSoC
model would be very similar to the E.N.D model, with event streams implemented as
proposed in [13].

6.6 Domains

Formal Analysis has usually been used in the domain of Real-Time systems (RTS). In
RTS tasks must be performed within strict deadlines. These systems include Embed-
ded controllers, circuits and communication protocols which are all time-dependent
systems. The systems will often be a part of a safety-critical application in a complex
environment such as aircrafts. These systems have traditionally been extremely diffi-
cult to analyze but formal modelling has yielded great advantages in the area. Usually
formal analysis is used to determine that the systems will never deadlock and always
perform critical actions before their deadline. To analyze these safety-critical questions
extremely detailed models are needed. The abstract models and questions regarding
the range of variables developed in this thesis, are thus fundamentally different from
the usual work on formal analysis.
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6.7 Future Work

As Moore’s Law continue to prove itself, systems will get smaller, faster, cheaper and
richer in number. This will be of great benefit to the sensor network area. The biggest
short-term cost savings will be from the integration of RF and micro controllers as is
already being attempted by companies like ZigCom and Ember.2 As radios are also
equipped with integrated wireless ports the development of sensor networks will be
both cheap and easy. On the other hand the systems will get more complex and anal-
ysis equally more important. Moore’s law also indicate more computational power for
analysis purposes. The computational power available for this thesis yielded a maxi-
mum of three simulated neighbor nodes. The state space explosion would then cause
the system to run out of resources. The heavy ongoing research in the area of timed
automata will also relieve this problem as mentioned in [22].

6.8 Conclusion

In this thesis the pros and cons of using formal analysis for verification of sensor net-
works have been explored. The A.N.P and E.N.D model was created which both yielded
important results.

It was concluded that the protocol level A.N.P model had some advantages for de-
tailed analysis. It was also determined that the state space generated by a detailed
network model was prohibitively large and not feasible with the available computa-
tional resources. The A.N.P model was also determined to be important research since
it would have yielded a unified way of modelling between the network simulator ns-2
and UppAal.

The abstract and generic E.N.D model places the node as the center of the model
instead of the network. The environment such as network and neighbor nodes are
modelled using event streams instead of complete nodes and base-stations. The result
was a tremendous decrease in test time allowing the model to be analyzed on a strong
workstation computer. The E.N.D model was tested against a range of formal invariants
and scenario cases and finally concluded as a working sensor network model.

The E.N.D framework was developed to make modelling, verification and analy-
sis of E.N.D based sensor network models faster and automated. The framework is
composed of: The E.N.D Creator, Explore Scripts and Analyze Script.

Using the E.N.D framework the E.N.D model was further verified when it was pos-
sible to obtain the same results as important articles in the Sensor Network area.

It was concluded that the framework was ready to be used in a real design, re-design
process, such as the ongoing Hogthrob project.

2http://www.manufacturing.net/ctl/article/CA490998?spacedesc=industryUpdates
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The contribution from this thesis was both to use formal analysis for verification of
energy-critical sensor networks, and to create feedback for the UppAal group on future
improvements.
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APPENDIX A

E.N.D Tutorial

A.1 Introduction

In this tutorial a fast paced introduction is given to the UppAal and E.N.D framework.
An example model is created and it is shown how test and analysis is performed.

A.2 Tutorial

A.2.1 UppAal GUI

The UppAal framework can be downloaded from http://www.uppaal.com. The frame-
work is normally interfaced using a graphical user interface. In this chapter a short
introduction to this environment is presented which should give a basis for under-
standing the work in this thesis and how to use the E.N.D model. A complete tutorial
on using the UppAal framework can be found in [22]. The UppAal GUI can be divided
into three parts which will now be presented: design, simulation and verification.

Design

The design environment used to create UppAal models is demonstrated in figure A.1.
At the top of the screen several menus yield access to model load/saved/print etc. Also
a range of parameters can be configured through these menus. Below the menu a tool-
bar offers the tools necessary for modelling: Add Location and Add Transition. Below the
toolbar three panes offer the possibility to switch between the System Editor, Simulator
and Verifier. In figure A.1 the System Editor is chosen. To the left the created models
which will later be concurrently simulated can be switched between. In the figure the
nicenb is chosen, and to the right the model is displayed and can be edited.
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Figure A.1 UppAal Model Creation and Design

Figure A.2 UppAal Simulation Environment

Simulation

The UppAal simulation environment has the same menus and toolbar as the editor en-
vironment. The content of the pane has shifted to facilitate simulation of the system. In
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figure A.2 the pane is shown. At the top left of the pane the available transitions can
be chosen and below a trace is displayed. In the center of the figure the current value of
clocks and variables are shown. To the right a UML a sequence diagram gives a visual
impression of the trace. On top of this the current model transition is displayed.

Verification

Figure A.3 UppAal Verification Environment

The Verification pane allows for formal verification of the created system. In figure
A.3 a number of query examples can be seen, and they are tested by hitting the Model
Check button. If the question yields a trace, this can be followed by returning to the
simulation pane.
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A.2.2 The E.N.D Modeler

Figure A.4 EndModel Test Creation

Figure A.5 Framework
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Test Creation

The first pane in the E.N.D modeler allows the designer to customize the binary or
linear search script which will later be used. This pane is shown in figure A.4.

Framework

The variables in the Framework pane in figure A.5 is defined to do the following. The
maximum number of messages should be larger than highest amount of messages/-
transmission that will happen through the test time. Equally the Max Energy variable
should be the higher than the maximum accumulated energy in the test time. Bind-
ing these integer model values will allow the UppAal framework to make verification
faster. The last two values Using Instrument and use CS technology is specifying weather
the node make use of these features.

Figure A.6 Energy

Energy

Figure A.6 shows the variables which should be set to the amount of energy each of
the actions: Send, Receive, Sleep, Instrument. The amount of time required before sleep
consumption is used is set through the Idle Time variable.

Topology and Data

The pane where the topology and the UppAal path is specified is shown in figure A.7.
The nice neighbors are neighbors which are trying to send data to the node, while an
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Figure A.7 Topology and Data

evil neighbor is simply generating network traffic. The Test Time variable defines the
length of the test. The Model Question will rarely have to be changed, but it is necessary
to define the where the UppAal application Verifyta is situated on the system.

Protocol

The protocol pane shown in figure A.9 is where a system designer does the actual
translation from a specific protocol to the E.N.D energy accumulation protocol defined
in figure A.9 and explained in detail in chapter 3.

Time

The Time variables are set in the pane displayed in figure A.10. They define how much
time the system will be occupied upon performing a certain action.

Run

The final pane named Run is where the model and test scripts are created. This pane is
shown in figure A.11. The first button: Create Model will create an UppAal compatible
model defined through the specified variables. The button: Generate Binary Test Script
will ask for a name and then create a test script for performing a binary test to find the
maximum consumed energy in the test time interval. The final button: Generate Linear
Test Creation Script will generate the linear test creation script which is used to create
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Figure A.8 An example run of the model defining the necessary parameters

Figure A.9 Protocol
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Figure A.10 Time

Figure A.11 Run

the file magicQuery.q which can be used to start a linear search. This will be shown in
the subsection A.2.4.
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A.2.3 Binary Search

In this subsection it is shown how to find the maximum energy the model created with
the data specified in subsection A.2.2 can consume using the binary search script. The
model was saved in the file newmode.xml and the binary search script to the file binary-
Search.pl:

A binary search
1

2 user@server (~/endmodel/tests/) > perl binarySearch.pl newmode.xml
3 ***********************
4 Starting Search...
5 ************************
6

7 2005-02-23 22:30:49
8

9 touch tmp/result \&\& rm -f tmp/result \&\&
10 ~/inst/uppaal-3.4.7/bin-Linux/verifyta -T -f trace -t0 newmode.xml
11 query.q > tmp/resultUPPAAL version 3.4.7, Oct 2004 -- verifyta.
12

13 Copyright (c) 1995 - 2004, Uppsala University and Aalborg University.
14 All rights reserved.
15 Writing example trace to trace-1.xtr
16

17 2005-02-23 22:30:50
18

19 Query has run ...
20

21 ! Uses More Energy, Starting binary search pattern !
22

23 -1-> Updating MaxEnergy from 0 to 100 <-1--
24

25 2005-02-23 22:30:50
26

27 touch tmp/result \&\& rm -f tmp/result \&\&
28 ~/inst/uppaal-3.4.7/bin-Linux/verifyta -T -f trace -t0 newmode.xml
29 query.q > tmp/resultUPPAAL version 3.4.7, Oct 2004 -- verifyta.
30 Copyright (c) 1995 - 2004, Uppsala University and Aalborg University.
31 All rights reserved.
32 Writing example trace to trace-1.xtr88 states
33 2005-02-23 22:30:50
34

35 Query has run ...
36
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37 Uses More than 100
38

39 -1-> Updating MaxEnergy from 100 to 200 <-1--
40

41 [CUT]
42 ....
43 [CUT]
44

45 *****************************************************************
46 The system uses more than 322 and less than 323
47 *****************************************************************

The result from this search is a trace file which can be used in two ways. The trace
can be loaded in UppAal and followed as a sequence diagram. The obtained data can
also be extracted and saved using the AnalyzeFile.pl script as is shown in subsection
A.2.5.

A.2.4 Linear Search

In this subsection it is shown how the linear search pattern can also be used to find
maximum consumable energy in the test time interval. The first part is to create the
query file with all the questions in the linear search. The linear script was saves to the
file createLinear.pl in subsection A.2.2.

Creating Query for linear Search
1 user@machine (~/endmodel/tests) > perl createLinear.pl
2 10\% done
3 20\% done
4 30\% done
5 40\% done
6 50\% done
7 60\% done
8 70\% done
9 80\% done

10 90\% done
11 100\% done
12 Test Took: 00:00:03 (hr:min:sek)
13 Use the created query like this: uppaal-3.4.7/bin-SunOS/verifyta
14 -d-S0 -T -f traces/traceT -t0 model.xml magicQuery.q

When the file containing the queries magicQuery.q is ready, the test can be started.
This is done as follows:

A linear search
1

2 user@mache (~/endmodel/tests/) >
3 ~/inst/uppaal-3.4.7/bin-Linux/verifyta -d -S0 -T -f traces/traceT -t0
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4 newmode.xml magicQuery.q
5 UPPAAL version 3.4.7, Oct 2004 -- verifyta.
6 Copyright (c) 1995 - 2004, Uppsala University and Aalborg University.
7 All rights reserved.
8 Options for the verification:
9 Diagnostic trace is on

10 Search order is depth first
11 Using no space optimisation
12 Using reuse optimisation
13 Using cheap inclusion checker.
14 Passed list size is 65536
15 State space representation uses minimal constraint systems
16 Property 1 (line 1) is satisfied.
17 Writing example trace to traces/traceT-1.xtr
18 Property 2 (line 2) is satisfied.
19 Writing example trace to traces/traceT-2.xtr
20 Property 3 (line 3) is satisfied.
21 Writing example trace to traces/traceT-3.xtr
22 Property 4 (line 4) is satisfied.
23 Writing example trace to traces/traceT-4.xtr
24 Property 5 (line 5) is satisfied.
25 Writing example trace to traces/traceT-5.xtr
26 [CUT]
27 ...
28 [CUT]
29 Property 15 (line 15) is satisfied.
30 Writing example trace to traces/traceT-15.xtr
31 Property 16 (line 16) is satisfied.
32 Writing example trace to traces/traceT-16.xtr
33 Property 17 (line 17) is satisfied.
34 Writing example trace to traces/traceT-17.xtr
35 Property 18 (line 18) is NOT satisfied.
36 Property 19 (line 19) is NOT satisfied.
37 Property 20 (line 20) is NOT satisfied.
38 ...
39 [CUT]

In this example the final trace will be called traces/traceT-17.xtr. Which can be used
for analysis in the same way explained in the final part of subsection A.2.3.

A.2.5 Analysis

A detailed analysis of a trace file can be examined using the UppAal sequence diagram.
But is it desired to find the tendency when comparing different test scenarios only the
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number each specific action has been perform has to be stored. This can be done auto-
matically by calling the analyzeFile.pl script on a trace file. An example of this is now
shown:

Analysis
1 user@machine (~/endmodel/tests/) > perl analyzeFile.pl model.xml
2 traceT-17.xtr aResultFileName "Trace Caption" 11

This will append the following data to the file result/aResultFileName. The content
will then look as follows:

result/tracefileName content
1 -------------------------------------
2 Result: Trace Caption
3 -------------------------------------
4 n.Energy = 216
5 n.mS = 2
6 n.mR = 3
7 n.mIdle = 6
8 n.mInst = 3
9 n.mNoRec = 0

10 n.mNoCsFail = 0
11 n.busyBlock = 1
12 TestTime = 11

It can finally be concluded that the designed model, in the specified scenario, in the
specified test time interval, will use a maximum of 216 energy units. The case where this
happens involves the following actions: The node has sent two messages and received
three. The system has been idle 6 times and it has used the instrument three times. It has
never happened that a neighbor signal did not arrive at the node, and carrier sensing
technology never caused a fail. When one event happened the system was busy. The
system took 11 minutes to be verified.

A possible conclusion on this data could be that carrier sensing technology should
be inferred so that evil signals would not be fully received causing a waste of energy.
This issue could be resolved and the test run again and the results compared. This
concludes the design / -redesign cycle facilitated by the E.N.D framework.

A.3 Conclusion

In this tutorial it has been shown how to create a sensor network model using the E.N.D
modeler. It was then explained how test and analysis can be performed. Finally an
example of data interpretation and the design cycle of changing system parameters
and comparing the result was explained.
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(a) Send cycle = 99

(b) Send cycle = 149 (c) Send cycle = 199

(d) Send cycle = 249 (e) Send cycle = 299

Figure B.1 Effect of line topology with varying send cycle for both node and sending neighbor
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B.2 Changing message lenght in line topology
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(a) Message length = 100

(b) Message length = 150 (c) Message length = 200

(d) Message length = 250 (e) Message length = 300
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(f) Message length = 350 (g) Message length = 400

Figure B.2 Effect of changing the message length in line topology of all nodes
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B.3 Changing the neighbor send cycle
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(a) Nice neighbor send cycle = 50

(b) Nice neighbor send cycle = 100 (c) Nice neighbor send cycle = 120

(d) Nice neighbor send cycle = 150 (e) Nice neighbor send cycle = 180
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(f) Nice neighbor send cycle = 250 (g) Nice neighbor send cycle = 350

(h) Nice neighbor send cycle = 500 (i) Nice neighbor send cycle = 800

Figure B.3 Effect of changing the a Nice Neighbor Send Cycle in Line Topology
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B.4 Changing the Instrument usage cycle
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(a) Instrument Usage Cycle = 799

(b) Instrument Usage Cycle = 499 (c) Instrument Usage Cycle = 300
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(d) Instrument Usage Cycle = 149 (e) Instrument Usage Cycle = 79

Figure B.4 Effect of changing the instrument cycle
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B.5 Topology Test
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(a) Two evil neighbors, one nice neighbor

(b) One evil neighbor, Two nice neighbors (c) One evil neighbor, One nice neighbor

(d) Zero evil neighbors, One nice neighbors

Figure B.5 Effect of changing the topology
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Figure C.1 Single Node Delta Protocol Model
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Figure C.2 Single Node Time Protocol Model
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Figure C.3 Basestation Model
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Figure C.4 Environment Model
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Figure C.5 Network Model
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Figure C.6 Monitor Model
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