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Abstract

This thesis presents a complete system for eye tracking avoiding restrictions
on head movements. A learning-based deformable model - Active Appear-
ance Model(AAM) - is utilized for detection and tracking of the face. Several
methods are proposed, described and tested for eye tracking, leading to de-
termination of gaze.

The AAM is used for a segmentation of the eye region, as well as providing
an estimate of the pose of the head.

Among several, we propose a deformable template based eye tracker,
combining high speed and accuracy, independently of the resolution. We
compare with a state of the art active contour approach, showing that our
method is more accurate.

We conclude, that eye tracking using standard consumer cameras is fea-
sible providing an accuracy within the measurable range.

Keywords:
Face Detection, Face Tracking, Eye Tracking, Gaze Estimation, Active Ap-
pearance Models, Deformable Template, Active Contours, Particle Filtering.
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Resumé

Denne afhandling prænsenterer et komplet eye tracking system, som undgår
restriktioner med hensyn til hovedbevægelser. En datadrevet statistisk model
- Active Appearance Model(AAM) - benyttes til detektion og tracking af
ansigtet. En række forskellige eye tracking metoder foreslås, beskrives og
testes. Dette fører til bestemmelse af blikretning.

Regionen omkring øjet udtrækkes vha. af AAM'en. Ligeledes fås et
estimat af hovedets retning.

Blandt �ere metoder foreslås en eye tracker baseret på deformable tem-
plates, som kombinerer høj hastighed og præcision uafhængigt af opløsning.
Vi sammenligner med en state of the art aktiv kontur metode. Vores metode
er mest præcis.

Vi konkluderer at standard kameraer er fuldt tilstrækkelige til formålet
eye tracking. Præcisionen er indenfor usikkerheden af det målbare område.

Nøgleord:
Ansigt Detektion, Ansigt Tracking, Eye Tracking, Blikretning, Active Ap-
pearance Modeller, Deformable Template, Aktive konturer, Partikel Filtrering.
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Chapter 1

Introduction to Eye Tracking

Figure 1.1: "The authors", Photo: Bo Jarner.

Every day of life, most people use their eyes intensively for perceiving,
learning, reading, watching, navigating etc. Despite the seeming ease with
which we perceive the world around us, visual perception is actually a com-
plex process that occurs at a level below conscious awareness. The light
structure seen by the eye is continuously sampled, causing the eyes to move
in order to make the next important light structure sample. The brain at-
tempts to make sense of the information obtained. In this way, we perceive
the scene.

The task at hand is creating a technique used to determine where a person
is looking - Gaze direction. The dictionary[14] de�nes gaze as;
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"To view with attention."

The concepts underlying eye tracking are to track the movements of the eyes
and determine the gaze direction. This is, however, di�cult to achieve and
sophisticated data analysis and interpretation are required.

Figure 1.2: The structure of the eye. An excellent website containing abundance of eye
related information can be found at National Eye Institute[41].

Eye movements during reading and image identi�cation provide useful
information about the processes by which people understand visual input
and integrate it with knowledge and memory. Eye tracking is exploited for
adult or child psychology studies, human-machine interfaces, driver aware-
ness monitoring to improve tra�c safety etc.

Eye trackers enables to determine the direction of gaze, but unfortunately
not whether users actually "see" something - e.g. if daydreaming.

"You can't depend on your eyes when your imagination is out of
focus."

- Mark Twain

A vast amount of research has been put into eye tracking leading to a
variety of methods and di�erent applications. In the following, examples of
applications are given - and even more can be imagined. Subsequently, a
more technical description is given in chapter 2.
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Figure 1.3: Which shampoo do you look at �rst?[5]

Marketing

Which objects attract the attention of customers, is of great interest for mar-
ket researchers; what shelves and which products are catching the shoppers'
attention in supermarkets, and what images or written words are viewed
while �ipping through a magazine.

Web page designers are interested in what a viewer read, how long they
stay on a particular page, and which page they view next. An experiment is
shown in �gure 1.4.

Figure 1.4: During an experiment a number of persons were asked to view the image
and then report what information they could expect to �nd on this website. Analysis of
eye-tracking data suggests users �rst �xate on graphics and large text even when looking
for speci�c information[51].
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A great deal of research is in the �eld of TV advertisers - which images
grab the viewers' attention, and which are ignored. Maybe, even more focus
should be put into this �eld?

Disabled people

The quality of life of a disabled person can be enhanced by broadening his
communication, entertainment, learning and productive capacities. By look-
ing at control keys displayed on a computer monitor screen, e.g. as seen in
�gure 1.5, the user can perform a broad variety of functions including typing,
playing games, and running most Windows-compatible software.

Figure 1.5: Example of human computer interaction[89].

Simulator

The attention of e.g. airplane pilots can be investigated utilizing eye tracking.
Experienced pilots develop e�cient scan patterns, where they routinely look
at critical instruments and out of the cockpit. An eye tracker can assist
instructors to determine whether the student pilots are developing good scan
patterns, and whether their attention is at the right places during landing or
in emergency situations.

Similar systems are useful for determining driver awareness as illustrated
in �gure 1.7.
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Figure 1.6: (Left) The attention of airplane pilots can be investigated utilizing eye
tracking[42]. (Right) Eye tracking can be utilized to aid pilots in their weapons control
while �ying[33].

Defence

Eye tracking can be exploited in various applications in the defence industry.
One of the main purposes is to aid pilots in their weapons control. Thus
allow the pilots to observe and select targets with their eyes while �ying the
plane and �ring the weapons with their hands.

Figure 1.7: Driver awareness[43]. (Left) The driver's gaze is mapped into (right) an
external scene
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Robot-Human Interaction
The gaps in communication between robot and human can be bridged. Does
the human actually communicate with the robot or someone else? What is
holding their attention? What does the human want the robot to interact
with?

Video Games
Eye tracking will add a new dimension onto video games in the future. Iden-
tify the threat, acquire the target, move the scene right or left, etc.
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Chapter 2

Eye Tracking Systems

A vast amount of research has been put into eye tracking, leading to a variety
of methods. The problem is de�nitely not a trivial task, and the methods
used depend highly on the individual purpose.

Recording from skin electrodes[44] is among the simplest eye tracking
technologies. This method is useful for diagnosing neurological problems. A
very accurate, but uncomfortable, method utilizing a physical attachment to
the front of the eye - a contact lens.

Figure 2.1: Head mounted eye tracker[53].

One of the main di�culties is to compensate for head movements. As
a consequence, a headrest or a head mounted eye tracker[76], as seen in
�gure 2.1, can be exploited. The disadvantages are a restriction in movement
and the bulky equipment. For laboratory experiments, the method may be
feasible, but for long term use by, for instance disabled people, a less intrusive
method is preferable.

To reduce the level of intrusion on the user, a remote camera setup can
be used. However, this reduce the resolution of the eyes. Camera-based eye
tracking can be classi�ed on whether infrared (IR) light is used or not. IR and
Non-IR eye tracking systems from the literature, are are described in section
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2.1 and 2.2, respectively. Finally, we present an overview of commercial
systems in section 2.3.

2.1 IR Eye Trackers
Infrared illumination along the optical axis, at a certain wavelength, results
in an easily detectable bright iris. The pupil re�ects almost all received IR
light back to the camera, producing the bright pupil e�ect as seen in �gure
2.2(left). This is analogous to the red eye e�ect in photography[45].

Ohno et al. presents a remote gaze tracking system using a single camera
and on-axis IR light emitters[62]. The gaze position is computed given the
two estimated pupil centers utilizing an eyeball model.

Figure 2.2: IR illuminated eyes [58]. (1) Bright pupil image generated by IR illumination
along the optical axis. (2) Dark pupil image generated by IR illumination o� the axis.

Illumination from an o�-axis source generates a dark pupil image as seen
in �gure 2.2(right). The combination of on-axis and o�-axis illumination
is utilized by Ji and Yang[45], Morimoto et al.[58], Zhu et al.[101]. In the
detection step, the images are subtracted to obtain a di�erence image, which
is thresholded and connected components are applied to �lter out noise. Zhu
et al.[101] uses a combination of Kalman �ltering and mean shift tracking.

The gaze precision is dependent on the eye resolution, which can be im-
proved by a close up image of the eye. Perez et al. presents a remote gaze
tracking system combining a wide �eld of view face camera and a narrow
�eld of view eye camera illuminated by four infrared light sources[67]. In
this way, the resolution of the eye is kept high, while ensuring robustness
regarding head movements.

Multiple cameras are applied frequently in the literature to estimate the
3D pose of the head, improving the precision of gaze. Ohno et al. propose
a remote gaze tracker, combining a stereo camera set for eye detection and
an IR camera for gaze tracking[61]. The two systems run independently,
controlled by two connected PC's. Eye position data is sent to the gaze
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tracking unit on request. Talmi and Liu use three cameras[86] - two static
face cameras for stereo matching of the eyes, and one camera focusing on one
of the viewer's eyes. In order to �nd both eyes of the two head cameras, the
principal component analysis technique is applied - analogous to eigenfaces
in the litterature[23]. Head movements are compensated by utilizing the
3D pose obtained from stereo matching. Ruddarraju et al. [68] propose a
vision-based eye tracking system from multiple IR cameras. The eye tracking
is utilized by a Kalman �lter, while Fisher's Linear discriminant is used to
construct appearance models for the eyes. The 3D pose is estimated by a
combination of stereo triangulation, interpolation and a camera switching
method to use the best representations.

2.2 IR Free Eye Trackers

A remote eye tracker using a neural network to estimate the gaze is presented
by Stiefelhagen et al.[81]. Smith et al. presents a system for analyzing driver
visual attention[75]. In [43] Ishikawa et al. describes a system for driver gaze
tracking using a single camera setup. The entire face region is modeled with
an Active Appearance Model, which is used to track the face from frame to
frame. Gaze is determined by a geometric model.

Detection of the human eye is a di�cult task due to a weak contrast be-
tween the eye and the surrounding skin. As a consequence, many existing
approaches uses close-up cameras to obtain high-resolution images. Hansen
and Pece[36] presents an active contour model combining local edges along
the contour of the iris. However, this imposes restrictions on head move-
ments. Analogous to IR based trackers, multiple cameras are applied in
many existing approaches improving the precision of gaze estimate. Wang
and Sung uses two cameras[92]. One camera is a global camera covering
of the entire head used to determine the pose of the subjects head. The
head pose controls a second camera, which focuses on one eye of the person.
They claim higher accuracy as a result of this setup. Xie et al. presents a
method utilizing two Kalman �lters[97]; one with purpose to track the eyes
and one which compensates for head movements. Matsumoto and Zelinsky
propose a tracker based on template and stereo matching[56]. Facial features
are detected by using templates, and are subsequently used for 3D stereo
matching. The performance of the gaze direction measurement are reported
to be excellent. However, each user initially has to register face and feature
points.
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2.3 Commercial systems
A mouse replacement device allowing the user to move the mouse pointer
anywhere on the screen, by looking at some location, is developed by Eyetech
Digital Systems[84]. "Clicking" can be done with an eye blink, a hardware
switch, or by staring (dwell). The eyes are illuminated from two o�-axis IR
light sources resulting in an easily detectable dark pupil.

Tobii Technology[89] exploits IR and a wide-�eld-of-view high resolution
camera. This is integrated into a TFT monitor as shown in �gure 1.5. Similar
methods are developed by Eye Response Technologies[87] and LC Technolo-
gies [88]. A performance evaluation comparison of Tobii and LC technologies
eye trackers can be found in [17].

Smart Eye AB[74] has designed a system capable of utilizing IR with
multiple cameras - up to four. The method is able to continue tracking
even though one camera is fully occluded. While the face is being tracked,
gaze direction and eyelid positions are determined by combining image edge
information with 3D models of the eye and eyelids.

SensoMotoric Instruments specializes in the development of ergonomic
chin rest, head mounted and remote systems[42]. Applied Science Laborato-
ries has also a wide range of products[50].

Seeing Machines is engaged in the research, development and production
of advanced computer vision systems for research in human performance
measurement, advanced driver assistance systems, transportation, biometric
acquisition, situational awareness, robotics and medical applications[71].
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Chapter 3

Motivation and Objectives

"What if eye trackers could be downloaded and used immediately
with standard cameras connected to a computer, without the need
for an expert to setup the system?"

- D.W. Hansen et al.[37].

If the above would ever become true, then everyone could be in possession of
eye tracking systems. However, more work need to be done. Many methods
has been developed, as mentioned above, nevertheless su�ering from subjects
as restrictions on freedom of movement, poor image resolution, discomfort
using multiple cameras, expensive IR equipment etc.

Thus, the main objectives set forth was to:

Develop a fast and accurate eye tracking system enabling the user
to move the head naturally in a simple and cheap setup.

3.1 Thesis Overview
The interpretation of the main objective, naturally divides the problem of eye
tracking into three components - Face detection and tracking, eye tracking,
and gaze determination. Additionally, to achieve a simple and cheap setup,
we restrict ourselves to use a standard digital video camcorder.

The thesis is structured into four parts, where each part requires knowl-
edge from the preceding parts.
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Part I: Face Detection and Tracking Presents a statistical method to
overcome the problem of tracking a naturally moving head.

Part II: Eye Tracking Presents several tracking methods - segmentation-
based and bayesian - applied on the eye image obtained from part I.
Combining information from the statistical method and pupil location,
enables for gaze determination.

Part III: Experimental Results Evaluation of performance and problems
of the system.

Part IV: Discussion and Future Work Finally, possible extensions are
discussed and the thesis work is concluded.

Some of the techniques and preliminary results are found in abbreviated form
in papers prepared during the thesis period[52]. The two papers are attached
as appendix C and D.

3.2 Nomenclature

To ease understanding the mathematics, variables without an explicit deno-
tation conform to the nomenclature below.
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I An image.
T An image template.
λ Length of the axes de�ning an ellipse.
cx Center of ellipse, x-coordinate.
cy Center of ellipse, y-coordinate.
φ Orientation of ellipse or gaze direction.
θ Orientation of head pose.
E Cost function regarding deformable template model.
M Measurement line along the contour.
ν Coordinates on the measurement line.
µ Position of the boundary regarding a speci�c contour.
ε Deformation of the contour.
g A vector of image intensities.
g0 Intensity vector of the mean texture.
s A vector of vertex coordinates.
s0 The coordinate vector for the mean shape.
Φs Matrix of shape eigenvectors.
ϕsi

The i'th shape eigenvector.
Φg Matrix of texture eigenvectors.
ϕsi

The i'th texture eigenvector.
bs A vector of shape parameters.
bsi

The i'th shape parameter.
bg A vector of texture parameters.
bgi

The i'th shape parameter.
x A state vector or the coordinate xi, yi of the i'th pixel

inside a convex hull.
W(x;bs) A warp of the pixel at x, de�ned by the relationship between

a shape s and the mean shape s, given by bs.
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Chapter 4

Introduction

A number of eye trackers available today, assumes very limited movement of
the head. This may be tolerable for short periods of time, but for extended
use, not being allowed to move the head is very uncomfortable. If the eye
tracking system is to be a part of a driver awareness system, head movements
should not only be allowed, they should be encouraged.

Allowing the user to move his/her head, requires that the system is able
to track its movement and pose. This is the topic of this part of the thesis.

4.1 Recent Work
In recent years, several techniques have been proposed for head tracking and
3D pose recovery.

An approach is to use distinct image features. In [18] Choi et al. estimate
the facial pose by �tting a template to 2D feature locations. The parameters
of the �t are estimated using the EM algorithm. Shih et al.[73] presents a
face extraction method based on double threshold and edge detection using
Gabor �lters. They work well when the features are reliably tracked over the
image sequence.

When good feature correspondence are not available, utilizing the tex-
ture of the entire head is more reliable. A remote eye tracker using a neural
network to estimate the gaze is presented by Stiefelhagen et al.[81]. The face
is tracked by use of a statistical color-model consisting of a two-dimensional
Gaussian distribution of normalized skin colors. Zhu et al.[100] combines ap-
pearance using principal component analysis with 3D head motion estimation
using optical �ow. In [49] Cascia et al. proposes a fast 3D head tracker based
on, models of the head as a texture mapped cylinder. Tracking is formulated
as an image registration problem. Ba et al.[7] views the head tracking and
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pose estimation as a coupled problem. They claim reduce sensitivity of the
pose estimation on the tracking accuracy, which leads to more accurate pose
estimates.

Face detection has received quite a bit of attention in recent years. Es-
pecially in the �eld of face recognition. A very successful class of methods
for face detection are the Active Appearance Models. An active appearance
model is a non-linear, generative, and parametric model of an object[57].
Several head tracking approaches uses an active appearance model. Notice-
ably is Dornaika et al.[24][26][25] uses a parameterized 3D active appearance
model for tracking the head and facial features. They combine it with a
Kalman �lter for prediction and report excellent results.

In [43] Ishikawa et al. presents an eye tracking system for driver awareness
detection. They utilize an Active Appearance Model, recently proposed by
Matthews and Baker[57], which is very fast and reliable. It has the added
feature of providing the head pose while tracking.

4.2 Overview
In this part the head tracking and pose estimator is presented. It is respon-
sible for �nding and extracting the region of the eyes, and provides the head
pose part of the gaze direction.

It utilizes an algorithm called and Active Appearance Model. It is used
to create a statistical model of faces, and can be used to �nd and track the
head.

Recently Matthews and Baker introduced a new more e�ective Active Ap-
pearance Model, and the bulk of this part is used to introduce and describe
this model. First statistical models of shape and texture are introduced.
Then a way to �t these models to images using general non-linear optimiza-
tion is described. Finally, extraction of pose parameters from the �tted model
is covered.
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Chapter 5

Modeling Shape

A shape is de�ned as;

"... that quality of a con�guration of points which is invariant
under some transformation."

- Tim Cootes[21]

In this framework of face detection and tracking, shape is de�ned as
n 2D points, landmarks, spanning a 2D mesh over the object in question.
The landmarks are either placed in the images automatically[12] or by hand.
Figure 5.1 shows an image of a face[80] with the annotated shape shown as
red dots. Mathematically the shape s is de�ned as the 2n-dimensional vector
of coordinates of the n landmarks making up the mesh,

s = [x1, x2, . . . , xn, y1, y2, . . . , yn]T . (5.1)

Given N annotated training examples, we have N such shape vectors si,
all subject to some transformation. In 2D the usual transformation consid-
ered is the Similarity Transformation(rotation, scaling and transformation).
We wish to obtain a model describing the inter-shape relations between the
examples, and thus we must remove the variation given by this transforma-
tion. This is done by aligning the shapes in a common coordinate frame as
described in the next section.

5.1 Aligning the Training Set
To remove the transformation, ie. the rotation, scaling and translation of the
annotated shapes, they are aligned using iterative Procrustes analysis[21].
Figure 5.2 show the steps of the iterative Procrustes analysis. The top �gure
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Figure 5.1: Image of a face annotated with 58 landmarks[60].

Figure 5.2: Procrustes analysis. The top �gure shows all landmark points plotted on
top of each other. The lower left �gure shows the shapes after translation of their centers
of mass, and normalization of the vector norm. The lower right �gure is the result of the
iterative Procrustes alignment algorithm.
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show all the landmarks of all the shapes plotted on top of each other. The
lower left �gure show the initialization of the shape by the translation of
their centers of mass and normalization of the norm of the shape vectors.
The lower right �gure is the result of the iterative Procrustes algorithm.

The normalization of the shapes and the following Procrustes alignment
results in the shapes lying on a unit hypersphere[21]. Thus the shape statis-
tics will have to be calculated on the surface of this sphere. To overcome this
problem, an approximation, that the shapes lie on the tangent plane to the
hypersphere, is made. Thus ordinary statistics can be used. The shape s can
be projected onto the tangent plane at the mean using,

s′ =
s

sT s0

, (5.2)

where s0 is the estimated mean shape given from the Procrustes alignment.
With the shapes aligned in a common coordinate frame it is now possible

to build a statistical model of the shape variation in the training set.

5.2 Modeling Shape Variation
The result of the Procrustes alignment is a set of 2n dimensional shape
vectors si forming a distribution in the space in which they live. In order to
generate shapes, a parameterized model of this distribution is needed. Such
a model is of the form s = M(b), where b is a vector of parameters of the
model. If the distribution of parameters p(b) can be modeled, constraints
can be put on them such that the generated shapes s are similar to that of
the training set. With a model it is also possible to calculate the probability
p(s) of a new shape.

5.2.1 Principal Component Analysis
To constitute a shape, neighboring landmark points must move together in
some fashion. Thus some of the landmark points are correlated and the
true dimensionality may be much less than 2n. Principal Component Analy-
sis(PCA) rotates the 2n dimensional data cloud that constitutes the training
shapes. It maximizes the variance and gives the main axis of the data cloud.

The PCA is performed as an eigenanalysis of the covariance matrix, Σs,
of the training data.

Σs =
1

N − 1
SST , (5.3)

where N is the number of training shapes, and S is the n × N matrix S =
[s1 − s0, s2 − s0 . . . sN − s0]. Σs is a n × n matrix. Eigenanalysis of the Σs
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matrix gives a diagonal matrix Λl of eigenvalues λi and a matrix Φl with
eigenvectors φi as columns. The eigenvalues are equal to the variance in the
eigenvector direction.

PCA can be used as a dimensionality reduction tool by projecting the
data onto a subspace which ful�lls certain requirements, for instance retain-
ing 0.95% of the total variance or similar. Then only the eigenvectors corre-
sponding to the t largest eigenvalues ful�lling the requirements are retained.
This enables us to approximate a training shape instance s as a deformation
of the mean shape by a linear combination of t shape eigenvectors,

s ≈ s0 + Φsbs (5.4)
where bs is a vector of t shape parameters given by

bs = ΦT
s (s− s0) , (5.5)

and Φs is the matrix with the t largest eigenvectors as columns.

5.2.2 Choosing the Number of Modes
The simplest way to �nd the number of modes, t, is to chose the number of
eigenvectors explaining a percentage of the total variance of the training set.
Since total variance is the sum of all eigenvalues λi, the largest t eigenvalues
can be chosen such that[21],

t∑
i=1

λi ≥ α

2n∑
i=1

λi (5.6)

A second way is to choose t from the study of how well the model approx-
imates the training examples. Models are built with an increasing number of
modes. This can be further re�ned by using a Leave-One-Out test scheme,
where one of the examples are retained and the model is trained on the rest.
The best approximation by the current model to the test shape, is then cal-
culated using (5.4) and (5.5). The quality of the approximation is calculated
as the mean Euclidean distance between the test shape and the approxima-
tion. This is repeated, retaining each shape as a test shape. The level for
which the total error is below a threshold, is the number of eigenvectors, t,
to be used.

5.2.3 Low Memory PCA
Consider the N ×N matrix Σs

Σs =
1

N − 1
STS. (5.7)
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Figure 5.3: Choosing the number of modes. Two ways of choosing the optimal number of
eigenvectors to be retained is depicted. In the left �gure, the choice is made by choosing
the lowest number of vectors explaining 95% of the total variance. The blue curve is
the accumulated sum of the variance explained by each vector. In this case, the level is
reached by using the 21 �rst eigenvectors. In the right �gure, the choice is made by a
requirement on the quality of the �t. It is done in a leave-one-out fashion. One shape is
retained as a test shape, while the model is built on the rest of the shapes. Equations
(5.4) and (5.5) are then used to calculate the best approximation to the test shape. The
mean Euclidean distance between the test shape and the approximation is the recorded.
This is repeated, retaining each shape as a test shape. The level for which the total error
is below a threshold is the number of eigenvectors to be used.

It can be shown[19] that the non-zero eigenvalues of the matrix are the same
as the eigenvalues of the covariance matrix (5.3),

Λl = Λs (5.8)

and the eigenvectors Φs corresponds as,

Φl = SΦs. (5.9)

If, as often is the case, the number of training samples N is smaller than the
number of landmarks n, a substantial reduction in the amount of memory
and time required to apply PCA is gained. This trick is absolutely crucial
when calculating PCA on the texture data as will be seen later.

5.3 Creating Synthetic Shapes
With the help from PCA we have obtained a model of the object, given by
the training shapes. With this model it is possible to create new instances
of the object similar to the training shapes.
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A synthetic shape s is created as deformation of the mean shape s0 by a
linear combination of the shape eigenvectors Φs,

s = s0 + Φsbs, (5.10)

where bs is the set of shape parameters. However, in order for the new
instance to be a 'legal' representation of the object, we must chose the pa-
rameters bs so that the instance is similar to those of the training set. If we
assume for a moment, that the parameters describing the training shapes are
independent and gaussian distributed, then a way to generate a new legal
instance would be to constrain the value bi to ±3λi.

Figure 5.4 shows three rows of shapes. The middle row is the mean shape.
The left and right rows are synthesized shapes generated by deformation of
the mean shape by two standard deviations given by ±2

√
λi.

However, using a gaussian distribution as an approximation of the shape
distribution might be an over-simpli�cation. It is assumed, that the shapes
generated by parameters within the limits on bs, is plausible shapes. This
is not necessary the case. For instance if an object can assume two di�er-
ent shapes, but not any in between, then the distribution has two separate
peaks[21]. In such cases non-linear models of the distribution might be the
answer. Cootes et al.[21] suggests using a mixture of gaussians to approxi-
mate the distribution. Nevertheless, using gaussian mixtures is outside the
scope of this thesis, and approximations using a single gaussian is used.

5.4 Summary
In this chapter, a mathematical framework for statistical models of shapes,
has been presented. The model is based on applying PCA to the training
shapes. Thus compact model describing the variability of the training shapes
is obtained.

The shape model is only one part of the complete active appearance
model, and in the next chapter the theory will be extended to include a
model of the object texture.
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Figure 5.4: Mean shape deformation using �rst, second and third principal mode. The
middle shape is the mean shape, the left column is minus two standard deviations corre-
sponding to bsi = −2λi, the right is plus two standard deviations given by bsi = 2λi. The
arrows overlain the mean shape indicates the direction and magnitude of the deformation
corresponding to the parameter values. The color of the arrows correspond to the instances
shown in the �rst and third column. Especially clear is the e�ect if the �rst eigenvector.
It describes the left-right rotation of the head.
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Chapter 6

Modeling Texture

This chapter describes the statistical model of texture. Together with the
shape model, this formulates the face appearance model. The texture model
tries to capture the variability of the human face in terms of its color, facial
hair etc.

6.1 Building the Model
The texture model is built from a set of annotated images of faces. An
annotated face is depicted in �gure 5.1. The mesh spanned by the annotated
landmarks is triangulated using Delaunay triangulation as seen in �gure 6.1.
Contrary to the normal computer vision de�nition of texture as a surface
property of an object, it is de�ned here as the intensities of the pixels inside
the mesh spanned by the landmarks[79].

The texture data of each training image is collected as the pixel intensities
of the pixels inside the mesh and stored as vectors,

g = [g1, g2, . . . , gm]T . (6.1)

Thus if Itrain denotes a training image, and x denotes the coordinates of the
set of pixels inside the mesh de�ned by the landmarks, g is formed by the
following equation

g = Itrain(x). (6.2)

The texture model describes the changes in texture across the training
set. To ensure, from image to image, that the pixel statistics stems from the
same place in the face, the training data must have the same shape. This
is done by warping all training images back into the mean shape s0, using
a�ne warps.
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Figure 6.1: An annotated face overlain the Delaunay triangulation of the mesh formed
by the landmarks.

6.2 Image Warping
Transforming the training images into a common coordinate frame involves
image warping. Basically, image warping is transforming an image with one
spatial con�guration into another. An image can be warped using a number
of di�erent transformations, but, as for the shapes, only similarity transfor-
mations are considered. Since an AAM can model a deformable object, a
single similarity warp is not enough to describe the often non-linear defor-
mation of the object. To overcome this, a collection of similarity warps is
used, in the form of a piecewise a�ne warp.

Warping is done by considering the shape as mesh of triangles, and then
using piecewise a�ne warping to warp each of the triangles. The triangu-
lation is done using Delaunay triangulation. The Delaunay triangulation
connects an irregular set of points by a mesh of triangles. All triangles sat-
isfy the Delaunay property which requires that no triangle has any vertices
inside its circumcircle[72]. Figure 6.2(left) depicts the Delaunay triangula-
tion of the mean shape. This triangulation is used on all other shapes in the
training set. The right side of �gure 6.2 shows the corresponding triangu-
lation of one of the training shapes. Thus each triangle in the triangulated
mean shape has a corresponding triangle in every training shape. Such a pair
of triangles de�ne an unique a�ne transformation. The collection of warps of
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Figure 6.2: Left: The mean shape triangulated using the Delaunay algorithm. Right: A
training shape with the triangulation applied.

Figure 6.3: Left: One of the training samples with shape overlain. Right: The training
sample warped into the mean shape reference frame.

all triangles in a shape denotes a piecewise a�ne warp from the mean shape
to the training shape.

Warping the texture from an annotated training example into the refer-
ence frame, is done as follows; for each pixel x inside the annotated mesh, 1)
�nd the triangle in which the pixel lies, 2) apply the warp given for this trian-
gle, and �nally 3) sample the training image at the resulting location. Figure
6.3 shows the image corresponding to the triangulation shown in �gure 6.2
and the face warped into the mean shape reference frame. See appendix A.1
for a more thorough explanation of piecewise a�ne warping.

6.3 Modeling Texture Variation
As for the shape variability, the texture variability is modeled using PCA.
The texture vectors (6.1) are stored as columns in a texture matrix G. PCA
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Figure 6.4: Three eigenvectors corresponding to the three largest eigenvalues of the
texture covariance matrix. The �rst eigenvector is left.

Figure 6.5: Two synthesized textures, left and right with the mean texture in the middle.

is applied using the low memory covariance matrix as seen in (5.7),

Σg =
1

N − 1
GTG. (6.3)

As with the shapes only a fraction of the eigenvectors is retained. The eigen-
vectors of the covariance matrix are also known as eigenfaces [23], see �gure
6.4 which show the eigenvector corresponding to the three largest eigenval-
ues. A new texture is synthesized, as with the shapes, by deforming the
mean texture g0 with a linear combination of the texture eigenvectors.

g = g0 + Φgbg, (6.4)

where bg is a vector of texture parameters. Figure 6.5 shows three textures.
The middle texture is the mean texture. The left and right textures are made
by deformation of the mean texture by ±2

√
λ1.
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6.4 Summary
In this chapter a statistical model of the texture of an object has been pre-
sented. As for the shape model, the model is based on applying PCA to
texture data.

Together with the shape model, the texture model creates a statistical
model of the human face. This is the topic of the upcoming chapter.
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Chapter 7

The Independent Model

This chapter presents the uni�cation of the statistical model of shape and
the statistical model of appearance described in the chapter above.

The 'usual' way to unify the two models, is to use the term literally. In
the original formulation by Cootes et al.[22] the models are combined using
a third PCA. Thus, a model instance consist of both shape and texture
created from one set of parameters. The advantage of the combined model
formulation is that it is more compact, requiring less parameters to represent
a given object, that with the independent formulation. However, restrictions
are made on the choice of �tting algorithm.

Recently, Matthews and Baker[57] proposed to unify the models, by not
unifying them so to speak. A model instance is made by creating a shape
instance and a texture instance independently, using two separate sets of
parameters. The uni�cation is done by warping the instantiated texture into
the created shape instance. Quite �ttingly, they have named the model The
Independent Model. With the independent formulation, the choice of �tting
algorithm is free.

7.1 De�ning the Independent Model
The independent model, models shape and texture independently as,

s = s0 + Φsbs, (7.1)

and
g = g0 + Φgbg, (7.2)

respectively. An instance of the AAM is thus created by �rst creating an
instance of the shape s by setting the shape parameters bs. Thus bs de�nes
the relationship between the shapes s and s0 which de�nes a piecewise a�ne
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Figure 7.1: Two synthesized faces. left and right with the mean texture in the middle.

warp W(x,bs) of the set of pixels with coordinates x inside the mesh spanned
by the mean shape s0. Thus the coordinates x′ of the set of pixels inside the
mesh spanned by s is given by,

x′ = W(x,bs). (7.3)

Secondly, an instance of the texture model is created by setting the tex-
ture parameters bg. This results in a vector of intensities g′ which can be
formed into an image by

Ts0(x) = g. (7.4)
This results in an image T which is de�ned by the following equation,

T (x′) = Ts0(x). (7.5)

7.2 Summary
This chapter contains a description of the Independent Model, introduced by
Matthews and Baker. With this, the statistical model of shape and texture
have been concluded. To make the model really useful, and method for
enabling it to do actual image segmentation by moving around an image, is
needed. This is the topic of the next chapters.
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Chapter 8

The Inverse Compositional
Algorithm

The previous two chapters have described a statistical model of faces. In or-
der to track moving faces, a method for deforming a model instance according
to the image evidence, must be formalized.

In previous work on the AAM's[22], it is assumed that there exists a
constant linear relationship between the error and the parameter updates.
This, however can lead to false representations of the shape[57].

In [57] Matthews and Baker introduces an analytical method for �nding
the optimal set of parameters.

8.1 Introduction
Suppose an image I depicts an object, e.g. a face, of which we have built a
statistical model as the one described in the previous chapters. The objective
is then to �nd the optimal set of parameters, bs and bg, such that the model
instance T (W(x,bs)) is as similar as possible, to the object in the image. An
obvious way to measure the success of the �t is to calculate the error between
the image and the model instance. An e�cient way to calculate this error is
to use the coordinate frame de�ned by the mean shape s0. Thus, a pixel with
coordinate x in s0 has a corresponding pixel in the image I with coordinate
W(x,bs). The error of the �t can then be calculated as the di�erence in
pixel values of the model instance and the image,

f(bs,bg) = (g0 + Φgbg)− I(W(x,bs)). (8.1)
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This is a function in the texture parameters bg and the shape parameters
bs. A cost function F can be de�ned as,

F (bs,bg) = ‖g0 + Φgbg − I(W(x,bs))‖2 . (8.2)

The optimal solution to (8.2) can be found as,

(b∗s,b
∗
g) = arg min

bs,bg

F. (8.3)

Solving this, is in general a non-linear least squares problem, but luckily there
exists well-proven algorithms[46] for doing so.

The next sections describes a new very fast method, introduced by Baker
and Matthews[10], for �tting a deformable template to an image. To see
the di�erence, a well proven method of template alignment is �rst described.
Then the new algorithm is introduced. Both algorithms utilizes the Gauss-
Newton non-linear optimization method.

8.2 The Gauss-Newton Algorithm
Amethod for solving non-linear least squares problems is the Gauss-Newton[46]
method. It is used to �nd a (local) minimizer p∗ of a cost-function,

F (p) =
1

2
f>f (8.4)

The algorithm is based on using a linear model of a function f(p) in the
neighborhood of p,

f(p + ∆p) ' `(∆p) ≡ f(p) + J(p)∆p, (8.5)

where J is the Jacobian of f . It assumes a known current estimate of p and
then iteratively solves for an additive update ∆p of the parameters..

Inserting (8.5) into (8.4),

F (x;p + ∆p) ' L(∆p) ≡ F (x;p) + ∆p>J>f +
1

2
∆p>J>J∆p, (8.6)

where f = f(p) and J = J(p). Finding the increment ∆p is done by mini-
mizing L(∆p). Su�cient conditions for a local minimizer of L(∆p) is that
the gradient of L

L′(∆p) = J>f + J>J∆p, (8.7)
is equal to zero and the Hessian,

L′′ = J>J, (8.8)



8.3. THE LUCAS-KANADE ALGORITHM 53

is positive de�nite[46]. Such a minimizer ∆p∗ can be found by,
(
J>J

)
∆p∗ = −J>f

∆p∗ = − (
J>J

)−1
J>f . (8.9)

The parameters are then updated,

p = p + ∆p∗. (8.10)

8.3 The Lucas-Kanade Algorithm
Assume for a moment that the model instance is rigid template with con-
stant texture. Then the �t boils down to a simple image alignment. One
of the most important and widely used algorithms is the Lucas-Kanade-
algorithm[54]. The best alignment is found by minimizing the di�erence
between the pixel values of the image and of the template,

f(p) = I(W(x;p))− T (x), (8.11)

for all pixels x in the template T. I(W(x;p)) denotes that the image I has
been warped into the templates coordinate system, see appendix A.1. The
locally best minimizer p∗ of the error function can be found be solving the
following least squares problem,

F (p) =
1

2

∑
x

[I(W(x;p))− T (x)]2 , (8.12)

where the sum is performed on all pixels in T .
The Lucas-Kanade algorithm utilizes the Gauss-Newton method for min-

imization. The following expression must be minimized,

F (p) =
1

2

∑
x

[I(W(x;p + ∆p))− T (x)]2 (8.13)

For the Lucas-Kanade algorithm the linear model from (8.5) becomes,

`(∆p) = I(W(x;p))− T (x) +∇I(W(x;p))
∂W(x;p)

∂p
∆p, (8.14)

where the Jacobian of f is,

J(p) = ∇I(W(x;p))
∂W(x;p)

∂p
. (8.15)
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Here ∇I = { ∂I
∂x

, ∂I
∂y
} is the gradient of the image at coordinate W(x;p). It is

computed in the coordinate frame of I and then warped into the coordinate
frame of T using W(x;p). ∂W

∂p
is the Jacobian of the warp W(x;p) =

(Wx(x;p),Wy(x;p))>,

∂W

∂p
=

(
∂Wx

∂p!

∂Wx

∂p2
. . . ∂Wx

∂pn
∂Wy

∂p1

∂Wy

∂p2
. . . ∂Wy

∂pn

)
(8.16)

Using (8.9) the minimizer for the Lucas-Kanade alignment algorithm be-
comes,

∆p∗ = −H−1
∑
x

[
∇I(W(x;p))

∂W(x;p)

∂p

]>
[I(W(x;p))− T (x)] , (8.17)

where H is the Gauss-Newton approximation to the Hessian,

H =
∑
x

[
∇I(W(x;p))

∂W(x;p)

∂p

]> [
∇I(W(x;p))

∂W(x;p)

∂p

]
. (8.18)

One iteration of the Lucas-Kanade algorithm proceeds as follows[11],
1. Warp I with W(x;p) to compute I(W(x;p))

2. Calculate f(p) using (8.11)

3. Calculate ∇I and warp with W(x;p)

4. Calculate Jacobian ∂W
∂p of the warp at p

5. Compute the Jacobian ∇I ∂w
∂p

6. Compute the Hessian matrix using (8.18)

7. Compute ∆p∗ using (8.17)

8. Update the parameters p = p + ∆p∗

Because the gradient ∇I is calculated at W(x;p) and the Jacobian of the
warp ∂W

∂p
at p, they both depend on p. Thus the Jacobian from (8.15), and

thus the Hessian H aswell, has to be recalculated at every iteration of the
algorithm. This makes the Lucas-Kanade a very computationally demanding
algorithm, and not plausible in a real time setting.
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8.4 The Inverse Compositional Algorithm
Recently Baker and Matthews[11] have introduced a new much faster �tting
algorithm, in which the Jacobian and the Hessian can be precomputed. As
the name implies the algorithm consists of two innovations. The composi-
tional part refers to the updating of the parameters and the inverse part
indicates that the image and the template switches roles. The function is
changed to,

f(∆p) = T (W(x; ∆p))− I(W(x;p)) (8.19)
While the Lucas-Kanade algorithm solves for an additive update ∆p of

the parameters p = p + ∆p, a compositional approach solves for an incre-
mental warp W(x; ∆p) which is composed with the current warp. For simple
warps composing means a multiplication of two matrices, however for more
complex warps, such as the piecewise a�ne warp, the meaning becomes more
complex.

The goal in a compositional algorithm is to solve for ∆p in,

F (p) =
1

2

∑
x

[I(W(W(x; ∆p);p))− T (x)]2 , (8.20)

which is the compositional version of (8.13). The update to the warp is,

W(x;p) = W(x;p) ◦W(x; ∆p), (8.21)

where ◦ denotes that the two warps are composed.
The inverse part of the name denotes that the template T and the image

I are changing roles, and (8.20) becomes

F (p) =
1

2

∑
x

[T (W(x; ∆p))− I(W(x;p))]2 . (8.22)

Thus, instead of composing the update onto the warping of the image, the
update is used to warp the template.

The inverse compositional algorithm also utilizes the Gauss-Newton method
to solve for ∆p∗. From (8.22) it can be seen that the incremental warp
W(x; ∆p) applies only to the template T . Thus the linear model from (8.5)
is built around 0 becoming `(∆p) = f(0) + J(0)∆p, which gives

`(∆p) = T (W(x;0))− I(W(x;p)) +∇T (x)
∂W(x;0)

∂p
∆p, (8.23)

and the Jacobian is,

J(x;0) = ∇T (x)
∂W(x;0)

∂p
. (8.24)
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Using (8.9), the local minimizer of (8.22) becomes

∆p∗ = −H−1
∑
x

[
∇T (x)

∂W(x;0)

∂p

]>
[T (W(x;0))− I(W(x;p))] , (8.25)

where H is the Gauss-Newton approximation to the Hessian,

H =
∑
x

[
∇T (x)

∂W(x;0)

∂p

]> [
∇T (x)

∂W(x;0)

∂p

]
. (8.26)

As can be seen from (8.23) both the image gradient ∇T (x) and the warp
Jacobian ∂W(x;0)

∂p
is independent of p. Thus, the Jacobian of f is independent

of p and constant from iteration to iteration. This means the Jacobian, and
the Hessian, can be precomputed making the algorithm very e�ective.

In [11] Baker and Matthews proves that the update ∆p calculated using
the inverse compositional algorithm is equivalent, to a �rst order approxima-
tion, to the update calculated using the Lucas-Kanade algorithm.

8.5 Including Appearance Variation
The Inverse Compositional algorithm introduced in the last section, assumes
that the template has constant texture. So in order to make the algorithm
work with AAM's, something has to be done. Now there is two parameters
which controls the shape and appearance of the template, and thus the warp
is now denoted W(x;bs) to indicate the connection with the AAM. The
appearance of the template is governed by the parameter bg.

A template with appearance variation can be formulated as,

g(x) = g0(x) +
m∑

i=1

bgigi(x)), (8.27)

where m is the number of texture components.
Inserting the new template (8.27) into (8.12) and rewriting it becomes,

F (p) =
1

2

∥∥∥∥∥I(W(x;bs))−
(

g0(x) +
m∑

i=1

bgigi(x)

)∥∥∥∥∥

2

. (8.28)

This expression must be minimized with respect to both the shape param-
eters bs and the texture parameters bg simultaneously. Denote the linear
subspace spanned by a collection of vectors gi by span(gi) and by span(gi)

⊥
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its orthogonal complement. The Euclidean norm can then be split into
components[11],

∥∥∥∥∥I(W(x;bs))− g0(x) +
∑m

i=1 bgigi(x))

∥∥∥∥∥

2

span(gi)

+

∥∥∥∥∥I(W(x;bs))− g0(x) +
∑m

i=1 bgigi(x))

∥∥∥∥∥

2

span(gi)⊥

(8.29)

where the �rst expression is the norm of the vector projected into the sub-
space spanned by the gi vector. The second expression is the norm the
vectors projected into the orthogonal complement, and thus it can be simpli-
�ed. Since the norm is calculated in a subspace orthogonal to span(gi) the
term

∑m
i=1 bgigi(x) has no in�uence. Thus (8.29) can be simpli�ed to

∥∥∥∥∥I(W(x;bs))− g0(x) +
m∑

i=1

bgigi(x))

∥∥∥∥∥

2

span(gi)

+

∥∥∥∥∥I(W(x;bs))− g0(x)

∥∥∥∥∥

2

span(gi)⊥

.(8.30)

As seen the second term does not depend on bg and for any bs the value of
the �rst term is always zero[11]. Thus the optimal set of parameters can be
found in two steps: 1) Minimize the second term,

Fpo(bs) =

∥∥∥∥∥I(W(x;bs))− g0(x)

∥∥∥∥∥

2

span(gi)⊥

(8.31)

using the inverse compositional algorithm from section 8.4, to obtain the
optimal bs. 2) Minimize the �rst term with respect to bg which can be
found as the closed form solution[9] to,

bgi =
∑
x

gi(x) [I(W(x;bs))− g0(x)] , (8.32)

using the obtained bs.
Minimizing (8.31) has to be done in the linear subspace span(gi)

⊥. This
can be achieved by altering the Jacobian in the inverse algorithm (8.24),

J⊥(x;0) = ∇g0(x)
∂W(x;0)

∂bs

−
m∑

i=1

[∑
x

gi(x) · ∇g0(x)
∂W(x;0)

∂bs

]
gi(x),

(8.33)
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corresponding to subtracting the components in the direction of the vector gi

for i = 1, . . . , m one at a time, see [9] for details. The Hessian corresponding
to (8.26) is then computed with the modi�ed Jacobian

H⊥ =
∑

x

[
J⊥(x;0)>J⊥(x;0)

]
. (8.34)

Finally the parameter update is obtained by,

∆b∗s = −H−1
⊥

∑
x

[J⊥(x;0)]> [g0 − I(W(x;bs))] , (8.35)

The inverse compositional algorithm the proceeds as follows[11]. First
precompute,

• Calculate Jacobian ∂W
∂p of the warp W(x;0).

• Calculate the gradients of the template ∇T0.
• Calculate the warp Jacobian using (8.33)
• Compute the modi�ed Hessian matrix using the modi�ed Jacobian by (8.34).

then iterate until convergence
1. Warp I with W(x;bs) to compute I(W(x;bs))

2. Calculate f(bs) (8.19)
3. Compute ∆b∗s using (8.35) with the modi�ed Jacobian and Hessian.
4. Update the warp W(x;bs) = W(x;bs) ◦W(x;∆bs)

Comparing with the Lucas-Kanade algorithm from section 8.3 is seen that
the computationally demanding operations of computing the Jacobian and
the Hessian have been moved to a precomputation step. The algorithm is
very fast and suitable for a realtime application.

8.6 Summary
In this chapter a very fast image general alignment algorithm has been de-
scribed. It uses a compositional approach for updating the parameters, and
avoid recalculation of the Jacobian and Hessian by reversing the roles of the
template and the image.

Now the inverse compositional algorithm can be used to align deformable
templates with appearance variation, such as an Active Appearance Model
instance.
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Chapter 9

Fitting the Active Appearance
Model

In order to utilize the inverse compositional algorithm to optimize an AAM
search, four things must be de�ned: 1) The warp W(x;bs) must be speci-
�ed. 2) The warp Jacobian ∂W(x;0)

∂bs
must be derived and combined with the

gradient ∇g0(x). 3) The inverse of the warp, W(x;bs)
−1, must be de�ned.

4) Finally the composition of the two warps W(x;bs) ◦W(x; ∆bs) must be
derived.

9.1 Computing the Warp Jacobian
As described in section 5.3 a shape s is de�ned as a deformation of the mean
shape s0 by shape eigenvectors, as in (5.10) which is rewritten here,

s = s0 + Φsbs = s0 +
m∑

i=1

bsi
ϕsi

, (9.1)

where ϕsi
is the i'th shape eigenvector from Φs, and bsi

is the i'th shape
parameter.

The spatial relationship between s and s0 obtained by bs de�nes a piece-
wise a�ne warp W(x;bs) through the parameters bs as described in 6.2 and
A.1. Thus the chain rule can be applied to W(x;bs) yielding[57],

∂W

∂bs

=
n∑

i=1

[
∂W

∂xi

∂xi

∂bs

+
∂W

∂yi

∂yi

∂bs

]
(9.2)
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∂W
∂xi

∂W
∂yi

x

y

Figure 9.1: The Jacobians ∂W
∂xi

and ∂W
∂xi

with respect to the vertices of s for a vertex i.
The Jacobians denote the rate of change of the warp with respect to the vertex i. The
top row depicts the x component of the Jacobian and the bottom row the y component,
colored with warm colors as high values. The Jacobians are only nonzero in the triangles
which have i as a vertex. It has the maximum value of one at the vertex and decays away
according to equation (9.4).

9.1.1 The Shape Jacobians
∂W
∂xi

and ∂W
∂yi

is seen to be the Jacobian of the warp with respect to the vertices
of a shape s. Each vertex in the shape is part of one ore more triangles, and
thus de�nes one or more warps. Rewriting (A.2), a warp is de�ned as

W(x;bs) = α(xi, yi)
> + β(xj, yj)

> + γ(xk, yk)
>, (9.3)

and the Jacobians becomes,

∂W

∂xi

= (α, 0)> = (1− β − γ, 0)>

∂W

∂yi

= (0, α)> = (0, 1− β − γ)>, (9.4)

for the triangles which have (xi, yi) as a vertex. In the inverse compositional
algorithm the Jacobians can be precomputed as ∂W(x;0)

∂xi
and ∂W(x;0)

∂yi
, which

are derivatives with respect to the vertices of s0. The result is shown in �gure
9.1, which depicts the x and y component of ∂W(x;0)

∂xi
and ∂W(x;0)

∂yi
for a single
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vertex i reordered as an image and with the shape s0 superimposed. Notice
that the Jacobians is only nonzero in the triangles which have i as a vertex.
It has the maximum value of one at the vertex and decays away according
to equation (9.4).

9.1.2 The Parameter Jacobians
Expressing (5.10) for a single vertex i yields,

(xi, yi)
> = (x0

i , y
0
i )
> +

m∑
j=1

bjx
sj

i , (9.5)

where bj is the jth parameter in bs, (x0
i , y

0
i ) is the ith vertex of the mean

shape s0 and x
sj

i is the ith vertex of the jth eigenshape. Then di�erentiating
(9.5) with respect to the parameters gives the second components of the warp
Jacobian, ∂xi

∂bs
and ∂yi

∂bs
gives,

∂xi

∂bs

= (xs1
i , xs2

i , . . . , xsm
i )

∂yi

∂bs

= (ys1
i , ys2

i , . . . , ysm
i ) ,

which again are computed for the vertices of the mean shape s0.

9.1.3 Assembling the Warp Jacobian
Calculating (9.2) by using (9.6) and (9.4) results in the warp Jacobian. This
can also be reordered as images, as depicted in �gure 9.2. The �gure shows
the Jacobian corresponding to the three �rst shape eigenvectors. The �rst
row depicts the e�ects of the three eigenvectors, where most noticeable is the
left-right rotation of the head induced by ϕsi

. The second and third row are
the x and y components of the warp Jacobian, denoting the rate of change
in the warp with respect to the shape eigenvectors. It can be seen that the
rate of change corresponds to the movement depicted in the �rst row. Again
most noticeably is the left-right head turn of the �rst column.

9.1.4 Steepest Descent Images
To calculate the modi�ed Jacobian of the error function from (8.33) it is seen
that the warp Jacobian must be multiplied with the gradient of the template
∇g0. �gure 9.3 depicts the x and y component of the gradient.

Baker and Matthews[11] denotes the Jacobian of (8.33) as steepest descent
images which follows from the fact that they provide the steepest descent
direction, as per equation (8.9). Figure 9.4 depicts two steepest descent
images, corresponding to the �rst parameters of bs.
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ϕs1 ϕs2 ϕs3

x

y

Figure 9.2: Top row: The mean shape s0 with the shape eigenvectors ϕs1 , ϕs1 , s3 and
ϕs1 overlain. Middle row: The x component of the warp Jacobian ∂W

∂bs
. Bottom row: The

y component of the warp Jacobian ∂W
∂bs

. The Jacobians denote the rate of change in the
warp with respect to the parameters bs. The �rst parameter corresponds approximately to
a left-right rotation of the head, which is also visible in the magnitude of the x component
of the Jacobian. b2 corresponds to an up-down motion� and b3 controls the magnitude of
the smile. See also �gure 5.4.

∂g0

∂x
∂g0

∂y

Figure 9.3: Gradient of the mean texture g0.
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bs1 bs2

Figure 9.4: Steepest descent images.

9.1.5 The Parameter Update
Now all the parts of equation (8.35) are available and the parameter update
∆b∗s can be calculated. The bracketed part of the equation,

[J⊥(x;0)]> [g0 − I(W(x;bs))] (9.6)

is a dot product of a steepest descent image and the error between the tem-
plate and the the area of the image covered by the warped shape. Figure
9.5 depicts and image with the shape mesh superimposed, and it the corre-
sponding error image. The result of the all dot products yield the direction of
steepest ascent. Together with the negative inverse Hessian the result is a m
dimensional displacement vector ∆b∗sin the direction of the steepest descent.

9.2 Warp Inversion
Since this is the inverse compositional algorithm the warp W(x; ∆bs) must
inverted to compute W(x; ∆bs)

−1. Inverting the warp is not as straightfor-
ward as it might seem. The set of piecewise a�ne warps does not form a
group[57] and thus the inverse is not de�ned. The approach is to use a �rst
order approximation to the inverse. Taylor expansion yields,

W(x; ∆bs) = W(x;0) +
∂W(x;0)

∂bs

∆bs

= x +
∂W(x;0)

∂bs

∆bs, (9.7)
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Figure 9.5: Top: An AAM instance overlain the target image. Bottom: The error image,
corresponding to the pixels under the instance warped into the mean shape and subtracted
from the mean texture.
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since x = W(x;0). From this follows

W(x; ∆bs) ◦W(x;−∆bs) = x −∂W(x;0)

∂bs

∆bs

+ x +
∂W(x;0)

∂bs

∆bs

= x. (9.8)

Thus to a �rst order in ∆bs the inverse warp is,

W(x; ∆bs)
−1 = W(x;−∆bs) (9.9)

9.3 Warp Composing
The remaining step is to compose the warp W(x;−∆bs) with the current
warp W(x;bs). Since the piecewise warp does not form a group a �rst order
approximation must be made here also[57].

Denote the destination of the mean shape s0 under the warp W(x; ∆bs)
−1

by s0 + ∆s0. Since W(x; ∆bs)
−1 = W(x;−∆bs) and from (9.1) we get,

∆s0 = −
m∑

i=1

∆bsi
ϕsi

. (9.10)

Computing ∆s from ∆s0 requires calculating the changes to the current
shape s. This can be done by warping s0 + ∆s0 with the current warp.
However since a vertex of s0 can belong to multiple triangle, it is not clear
which warp to choose. Two di�erent triangles produces two di�erent results.
Baker and Matthews[57] solves this using a heuristic approach. For each
vertex i they warp (xi, yi)+(∆xi, ∆yi) with every warp corresponding to the
triangles connected to the vertex. The �nal destination is then the mean of
all destinations, and ∆s can be found.

This enables us to �nd the parameters b′si
of W(x;bs) ◦W(x;−∆bs),

b′si
= s>i (s + ∆s− s0). (9.11)

9.4 Including a Global Shape Transform
The AAM described above is capable of �tting the shape locally to an object.
What needs to be described is how to move shape around the image globally.
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This can be done by augmenting the AAM described above with a similarity
transformation as show below,

N(x;q) =

(
(1 + a) −b

b (1 + a)

)(
x
y

)
+

(
tx
ty

)
, (9.12)

where the parameters q = (a, b, tx, ty) are a = k cos θ − 1, b = k sin θ and
(tx, ty are the translations in the x and y direction. When q = 0 then N is
the identity transformation x = N(x;q).

The above can be reparameterized for incorporation into the AAM frame-
work. Four vectors are de�ned as,

ϕN1 =
(
x0

1, x
0
2, . . . , x

0
n, y

0
1, y

0
2, . . . , y

0
n

)> (9.13)
ϕN2 =

(−y0
1,−y0

2, . . . ,−y0
n, x

0
1, x

0
2, . . . , x

0
n

)> (9.14)
ϕN3 = (1, 1, . . . , 1, 0, 0, . . . , 0)> (9.15)
ϕN4 = (0, 0, . . . , 0, 1, 1 . . . , 1)> . (9.16)

The similarity transformation can now be expressed as,

N(x;q) = s0 +
4∑

i=1

qiϕNi
, (9.17)

where (q1, q2, q3, q4) = (a, b, tx, ty). This representation enables us to augment
the AAM described very easily.

The �tting of the augmented AAM is achieved by minimization of an
altered form of (8.31)

Fpo(q,bs) =

∥∥∥∥∥I(N(W(x;bs));q)− g0(x)

∥∥∥∥∥

2

span(gi)⊥

, (9.18)

with respect to both q bs simultaneously.
Fitting both the similarity transformation and the AAM deformation

parameters is done in almost the way as described in the previous sections.

9.4.1 Warping
The warp with both the global transformation and the piecewise a�ne warp
is denoted as,

N ◦W(x;q,bs) = N(W(x;bs);q). (9.19)
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The warp is computed as follows: First the shape is deformed by,

s = s0 +
m∑

i=1

bsi
ϕsi

. (9.20)

The next step is to warp every vertex with N(x;q). This can be done by
�rst computing the destination of a single triangle of s0 under,

s′0 = s0 +
4∑

i=1

qiϕNi
. (9.21)

Using the equations from appendix A.1 the a�ne warp for this triangle is
computed, and subsequently applied to every vertex of s. Thus the destina-
tion of s0 under the warp composed warp N ◦W(x;q,bs) is found.

9.4.2 Computing the Jacobian
Also needed is the Jacobian of N ◦ W(x;q,bs) . It consist of two parts(

∂N◦W
∂q

, ∂N◦W
∂bs

)
. However it the computation is straightforward. Since,

W(x;0) = N(x;0) = 0,

∂N ◦W(x;0,0)

∂q
=

∂N(x;0)

∂q
(9.22)

∂N ◦W(x;0,0)

∂q
=

∂W(x;0)

∂bs

(9.23)

(9.24)

Thus each Jacobian can be compute separately. The computation of ∂N◦W
∂q

is exactly as described for ∂N◦W
∂bs

in 9.1 only with ϕNi
instead of ϕsi

. The
combined warp Jacobian is just the concatenation of the two warp Jacobian.

9.4.3 Warp Inversion
The inverse of the warp N ◦W(x;q,bs) is computed as in section 9.2. Re-
placing W with N ◦W yields,

N ◦W(x;q,bs)
−1 = N ◦W(x;−∆q,−∆bs), (9.25)

to a �rst order approximation in ∆bs and ∆q.
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9.4.4 Warp Composition
Composing the warp N ◦W(x;−∆q,−∆bs) with N ◦W(x;−∆q,−∆bs) is
done in the same manner as in section 9.3. Each warp W and N is treated
separately, and the procedure of section 9.3 is followed, only for N there is no
need to take the mean of several warps since it is the same for all triangles.

9.4.5 Appearance Variation
As for the the warp W the combined Jacobian must be multiplied with
the gradient of the template ∇g0 resulting in steepest descent images as
described above. To include appearance variation these must be projected
into the subspace span(gi)⊥. As described in section 8.5 this is done by
subtracting the components in the direction of the vector gi, as in

SDj(x) = ∇g0(x)
∂N(x;0)

∂qj

−
m∑

i=1

[∑
x

gi(x) · ∇g0(x)
∂N(x;0)

∂qj

]
gi(x)

SDj+4(x) = ∇g0(x)
∂N(x;0)

∂qj

−
m∑

i=1

[∑
x

gi(x) · ∇g0(x)
∂N(x;0)

∂qj

]
gi(x)

(9.26)

9.5 The AAM Search
Now the framework for �tting an AAM to an image has been formulated.
The actual AAM search proceeds as follows.

An initial model instance is created by use of the mean shape and the
mean texture. The topic of choosing an initial position of the AAM, is a
research �eld in itself, and it is not covered in this thesis. A much used
method is to divide the image into subregions, and subsequently starting the
AAM �t in each location. A measure of the quality of the �t would be to
subtract the segmented image region from the texture instance of the model.
But, here it is assumed that the initial location of the model instance is
known.

From the starting position, the AAM iteratively move around in the im-
age, until a stopping criteria is reached; either convergence to the object in
the image or a maximum number of iterations has passed.

An example of an AAM search can be seen in �gure 9.6.
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Figure 9.6: An example of an AAM search.
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9.6 Summary
This chapter has described the adaptation of the inverse compositional al-
gorithm to the AAM. A global shape transformation has been appended,
enabling the model instance to translate, rotate and change scale during the
course of the search. What is left is extracting the 3D pose of the head from
the �t of the AAM. This is the topic of the next chapter.
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Chapter 10

Extracting Head Pose

Extraction of 3D information from a 2D image is a very active �eld of re-
search. With a single camera, the discipline is called Structure from Motion.
The goal is from a sequence of images of an object, to estimate the 3D
structure of the object, and the 3D motion of the camera/object. In this
chapter a method for extraction 3D information from the �t of a 2D AAM
is formulated.

Recovering the structure and motion from for rigid objects, the dominant
algorithm is called factorization[2]. In the case of non-rigid objects, such as
faces, the factorization algorithm must be adapted. Recently Xiao et al.[96]
introduced a new approach to the solution. However, the method is quite
involved and success is not always guaranteed. In [95] Xiao et al. introduces
a method for utilizing the structure from motion algorithms with an AAM
to obtain a 3D representation, based on the �t of a 2D AAM. This chapter
is a brief overview of the algorithm. For details consult [95].

10.1 Computing 3D Shape from an AAM
If we have a training sequence of images of an object with corresponding
shape annotations, a 3D version of the object can be recovered. Stacking all
shape vectors in a matrix,

S =




x0
1 x0

2 . . . y0
n

x1
1 x1

2 . . . y1
n... ... ... ...

xN
1 xN

2 . . . yN
n


 , (10.1)

where x0
1 indicates vertex 1 frame 0.
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The shape s̄ of a non-rigid 3D object can be modeled as a linear combi-
nation of a set of K basis shapes,

s̄ = s̄0 +
K∑

i=1

b3Di
s̄i. (10.2)

where s̄0 corresponds to the perfectly rigid shape. Assuming a weak perspec-
tive camera model, the coordinates of the 2D image points observed at each
frame f are related to the 3D coordinates by,

sf =

(
xf

1 . . . xf
n

yf
1 . . . yf

n

)
= Rf

(
s̄0 +

K∑
i=1

b3Di
s̄i

)
+ Tf , (10.3)

where Rf is a 2×3 matrix containing the �rst two rows of the camera rotation
matrix, and Tf is a 2× 1 translation vector. Translation of each shape so its
center of gravity is located at origo, eliminates Tf from the equations.

The matrix S can be represented as

S =




R0 b0
3D1

R0 . . . b0
3DK

R0

... ... ... ...
RN bN

3D1
RN . . . b0

3DK
RN







s̄0

. . .
s̄K


 . (10.4)

Using singular value decomposition on S it can be factored into,
S = MB. (10.5)

This factorization is not unique and is only determined up to a linear trans-
formation. Any invertible matrix G can be inserted,

S = MIB = M̃GG−1B̃. (10.6)
Determining G can be solved by a number of di�erent algorithms, we use one
proposed by Brand[15]. Once G has been determined the corrected versions
of M = M̃G and B = GG̃ can be recovered.

The 3D model of the object is contained in the matrix B. It is a model
of the same object as the 2D AAM models. Thus, from (10.3) it is seen
that the 2D shape is just a 3D shape multiplied with a camera matrix R. A
minimization problem can then be formalized, to obtain R,

min
R,b̄3D

∥∥∥∥∥

(
s0 +

m∑
i=1

bsi
ϕsi

)
−R

(
s̄0 +

m∑
i=1

b3Di
si

)∥∥∥∥∥

2

= 0. (10.7)

The �rst parenthesis is just the �tted 2D AAM instance obtained using the
method described in the previous chapter. From R the head pose can be
extracted.
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10.2 Summary
In this chapter, a method for recovering the 3D pose of the head has been
formulated.
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Chapter 11

Discussion

In this chapter, the previous chapters in this part are summarized. The main
forces and drawbacks of the method are discussed.

11.1 Forces
The AAM is a generative model, capable of capturing and synthesizing ob-
jects learnt from a training set. Thus the AAM is applicable in a wide variety
of problems ranging from segmentation of medical images, face recognition,
and of course face tracking. It can model any object with distinct shape and
texture.

After a suitable initialization, the algorithm converges in a matter of a
few iterations.

The AAM is truly data-drivin, no parameters has to be selected prior to
a new segmentation problem.

11.2 Drawbacks
The successful application of an AAM is strongly dependent on an annotated
training set. A training set may consist of hundreds of images and annotation
may be cumbersome.

Using the PCA and the assumption of gaussian distributed parameters
may lead to illegal shapes.
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Chapter 12

Introduction

A fundamental part of eye tracking in full-face videos, is the detection and
tracking of the face. This topic is solved by the Active Appearance Model
described in last part.

In this part various methods of eye trackers are presented. These can be
divided into two parts - Segmentation-based and Bayesian tracking. We end
up by determining the direction of gaze.

The eye images are extracted from the video frames based on input from
AAM. The resulting �t of one frame is shown in �gure 12.1. Each eye region
is spanned by a number of vertices. A bounding box containing the eye is
extracted on which the eye tracking methods are applied.

12.1 Recent Work
Detection of the human eye is a di�cult task due to a weak contrast be-
tween the eye and the surrounding skin. As a consequence, many existing
approaches uses close-up cameras to obtain high-resolution images[36][93].
However, this imposes restrictions on head movements. The problem can
be overcome by use of a two camera setup[92][97]. One camera covering the
head and controlling a second camera, which focuses on one eye of the person.
Matsumoto and Zelinsky[56] utilizes template and stereo matching.

In many existing approaches the shape of iris is modeled as a circle
[47][48][56][97]. Since the shape and texture of the object is known, a tem-
plate model can be used with advantage[43][81]. J. Gracht et al.[91] utilizes
an iris template generated by a series of wavelet �ltering.

Wang et al.[92] detects the iris using thresholding, morphology and ver-
tical edge operators. An ellipse is �tted to the resulting binary image.

Bagci et al.[8] propose a Hidden Markov Model discretizing the position
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Figure 12.1: The resulting AAM �t of one frame. The eye images are extracted from
the video frames based on input from AAM. Each eye region is spanned by a number
of vertices. A bounding box containing the eye is extracted on which the eye tracking
methods are applied.

of an eye into �ve states - looking up, down, left, right and forward. The
model uses color and geometrical features.

Most algorithms tend to fail when the eyes blink. This can be handled by
an eyelid detector. Tian et al. presents a dual-state parametric eye model[90],
which is used to detect the di�erent eye states - open or closed. An open eye
is parameterized by a circle and two parabolic arcs describing the eyelids.
The closed eye is described by a straight line. The inner eye corners are
tracked by a modi�ed version of Lucas-Kanade tracking algorithm.

A probabilistic formulation of eye trackers has the attraction that uncer-
tainty is handled in a systematic fashion. Xie et al.[97] utilizes a Kalman
�lter with purpose to track the eyes. The eye region is detected by thresh-
olding and the center of an eye is used for motion compensation. The center
of this iris is chosen as tracking parameter, while the gray level of the circle
modeled eye is chosen as measurement[98]. Hansen and Pece propose an
active contour model combining local edges along the contour of the iris[36].
The contour model is utilized by a particle �lter.

A generative model explaining the variance of the appearance of the eye
is developed by Moriyama et al.[59]. The system de�nes the structures and
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motions of the eye. The structure represents information regarding size and
color of iris, width and boldness of eyelid etc. The motion is represented by
the position of upper and lower eyelids and 2D position of the iris. Witzner
et al. utilizes an AAM[35] .

Based on the center of iris estimate, the gaze direction can be computed
utilizing various methods. Stiefelhagen et al.[81] utilizes a neural network
with the eye image as input. Witzner et al.[35] uses a Gaussian process
interpolation method for inferring the mapping from image coordinates to
screen coordinates. Ishikawa et al. [43] exploits a geometric head model,
which translates from 2D image coordinates to a direction in space relative
to the initial frame.

12.2 Overview
An overview of di�erent eye trackers are presented in the following; from
fast heuristic to advanced probabilistic methods. The appearance of the eye
can be utilized similarly to the method proposed for face detection in part I.
However, to ensure robustness verses changing light conditions, the methods
modeling the appearance are kept relatively simple. In chapter 13 template
matching, a deformable template model, and a fast heuristic method are
presented. In chapter 14 the shape of iris is handled by an active contour
method in a Bayesian framework.

The purpose of the eye trackers is to estimate the center of pupil accu-
rately. Based on the pupil location, pose and scale of face, the gaze direction
can be determined. Chapter 15 describes the geometric model for gaze de-
termination.
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Chapter 13

Segmentation-Based Tracking

One of the most basic, but important, aspects of object tracking is how to
�nd the object under consideration in the scene. Partitioning of an image
into object and background is called segmentation. Segmentation of an image
is in practice the classi�cation of each image pixel to one of the image parts,
which are visually distinct and uniform with respect to some property, such
as gray level, gradient information, texture or color.

In this case the object is the eye; or more precisely the center of iris. In
many existing approaches the shape of iris is modeled as a circle[47][48][56][97].

This assumption holds when the camera lies on the optical axis of the eye.
When the gaze is turned o� this axis, the circle is rotated in 3D space, and
can then be interpreted as an ellipse in the image plane. Thus, the shape of
the contour changes as a function of the gaze direction and the camera pose.

In this chapter various methods for segmentation-based eye tracking are
presented. Thresholding is a simple, but widely used, approach for image
segmentation. However, choosing the optimal threshold value can be di�cult.
As a consequence, a double threshold method is utilized in section 13.1.

A template model can be used with advantage, since the shape and tex-
ture of the object is known. A template using gray level intensities is de-
scribed in section 13.2, while a color scheme is found in section 13.3. The
appearance of the eye changes together with the gaze direction, face and
camera pose. This is utilized in section 13.4, where a template matching
model is relaxed to be deformable.

13.1 Thresholding
Thresholding is a traditionally low-level method for segmentation. The value
of the threshold decides whether a pixel belongs to object or background[16].
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Thus, any pixel with intensity value above the threshold is labeled as object,
while values below are labeled as background. This is of great advantage
when separating two classes which have intensity levels grouped into two well-
separated modes. This kind of simple global thresholding can be expected
to be successful when the illumination and other environments are static or
at least highly controlled.

Conversely, if the environments changes over time, the intensity values
of object and background will also change over time, which will in�uence on
the performance. In that case, no �xed threshold can be chosen as in simple
global thresholding. Moreover, only the intensities are considered, thus any
relationships between the pixels are not considered. Therefore, this kind of
segmentation is very sensitive to noise. Several improved methods exists such
as preprocessing by di�erent �lters (log, average etc.)[30] with purpose to
suppress noise and smooth out the intensities, histogram equalization which
spreads out the intensity values in order to increase the dynamic range and
thereby enhance the image contrast.

Furthermore, statistical methods like Otsu's method[63] exist, which seeks
to minimize the error of classifying a background pixel as object or vice versa.
In that sense, we seek to minimize the area under the given image intensity
histogram for a region that lies on the other region's side of the threshold.
The threshold is chosen to minimize the intraclass variance of the black and
white pixels.

13.1.1 Double Threshold
We propose to use adaptive double thresholding to estimate the center of the
pupil[77]. The object we seek is more or less completely black and assumed
to be darker than the background. Consequently, the description above in
section 13.1 is inverted; thus any pixel below the threshold is labeled as
object. Since the environments changes with time, we choose two threshold
values T1 and T2 where T1 < T2. Thus T2 should at least capture the object,
but unfortunately some of the background too. The low threshold T1 is
purposed to capture at least a part of the object. If T1 is too low, the value
is increased adaptively until a given stop criteria, which is set to avoid over-
�tting. Survivors of both thresholds are accepted as object. In this way, the
low threshold T1 is used to accept objects accepted by the higher threshold
T2, where it is assumed that the entire object captured. A 1D example is
shown in �gure 13.1.

Double adaptive threshold is applied on an eye image in �gure 13.2. The
center of pupil is estimated by calculating the center of mass [16] of the object.

One of the main di�culties when segmenting an eye image, is how to
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x∈ {0;2π}

y(
x)

y(x)
Higher threshold
Lower Threshold
Accepted by Lower
Accepted by higher

Figure 13.1: The 1D function y(x) is seen to have multiple local maxima. Searching
for the object which contain the global maximum, it is seen that neither the high nor low
threshold (red or green) seems to be suitable. However, by combining these in a way such
that only survivors of both thresholds are accepted as object, the resulting object will be
appropriate. The high threshold can be interpreted as a �lter regarding the low threshold.

handle the high-intensity corneal re�ections seen as white blobs. This phe-
nomenon is explained intuitively by approximating the eye with a convex
mirror, which re�ects the illumination in one direction. As a consequence,
the estimate may be biased dependent on the light conditions. Using knowl-
edge about the iris shape, the estimate can be further improved by weighting
the center of gravity estimate or by incorporation of white blobs inside the
iris.

13.2 Template Matching
Template matching is a technique for comparing data, in this an case image,
with a stored reference template and subsequently assigning a score based
on the level of similarity. In its simplest form it is equivalent with cross
correlation, which is de�ned in the spatial domain as,

C(s, t) =
∑

x

∑
y

I(x, y)T (x− s, y − t), (13.1)
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Figure 13.2: The pupil is approximately black and assumed to be darker than the
background.(Top left) Input image. (Top right) The high threshold (green) captures the
object but unfortunately some of the background too, while the low threshold captures
a small part of the object (blue). (bottom) Survivors of both thresholds are accepted as
object. The center of pupil is estimated by calculating the center of mass of the object.
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where IM×N is an image, T is a template, (x, y) the pixels corresponding
to the template, s = 0, 1, . . . , M − 1 and t = 0, 1, . . . , N − 1. It is usually
assumed that the object of interest do not change appearance very much.
The template may be an intensity/binary image or a parameterization.

The method is very popular due to the relative simple implementation
and �ne results in applications such as pattern recognition, tracking etc.
However, the sensitivity to typical problems as noise, partial occlusions and
varying illumination may be a huge drawback. Furthermore, the computation
time may be slow dependent on the size of the template. There are several
fast optimized algorithms that can be used to speed up the matching process
[70][99].

13.2.1 Iris Tracking
The iris detector proposed by T. Ishikawa et al. [43] consists of two parts.
Initially, two di�erent templates are applied to approximately locate the iris.
The �rst template is a black disk template which is matched against the
intensity image. The second is a ring template which is matched against
the vertical edge image. The radius of both templates can be determined
manually or by more sophisticated methods such as from the �t of an AAM.
The template matching con�dence is then determined by summing the two
sets of matching scores. The position with maximum con�dence is chosen as
the initial estimate of the center of the iris.

This estimate is then re�ned using an ellipse �tting algorithm[86] to detect
the pupil contour. Initially, the edges are detected by scanning radially from
the center and outward as seen in �gure 13.3. The maximum gradient on
each line is de�ned as an edge. The estimate is improved by �tting an ellipse
to the detected edges. The general form of an ellipse is de�ned as,

a1x
2 + a2xy + a3y

2 + a4x + a5y = 1, (13.2)
where the parameters a1, . . . , a5 are �t using least squares. The center, shape
and orientation of the ellipse are obtained by converting the general equation
to standard form[69]. The standard form, with major axis parallel to the x-
axis, is formulated as the coordinates (x, y) satisfying the following equation,

(x− cx)
2

λ2
1

+
(y − cy)

2

λ2
2

= 1, (13.3)

where (cx, cy) is the center, λ1 and λ2 are the length of major and minor axes.
The angle between major and vertical axis θ is applied by the rotation,

(
x
y

)
=

(
cos(θ) sin(θ)

− sin(θ) cos(θ)

)(
x
y

)
. (13.4)
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Figure 13.3: The initial estimate of the center of the iris is re�ned by �tting an ellipse
to the radial edges of the pupil, which is found by scanning radially from the center and
outward towards the k points on a circle. The position with maximum gradient is chosen
as edge. The yellow line shows one of the k lines, while the green line is the relative
intensity level and the red line the relative gradient on this line.

The re�nement procedure is repeated until convergence, which should in
general be no more than 2-3 iterations[43]. The template matching con�dence
for a given image and the improved estimate of the center of iris is depicted
in �gure 13.4.

13.2.2 Outlier Detection
Improving the iris location by radial edge detection is unfortunately not
trivial. This is caused by the relative weak edges in the image and high-
intensity corneal re�ections.

Ishikawa et al. [43] propose to increase the robustness by �ltering out
edges, which are long away from the initial estimate. Nevertheless, this
seems to be a poor solution.

If the estimate of the center of iris is acceptable, the Euclidian distance
should be approximately equal. Therefore, we propose to constrain on the
common distances. The algorithm is shown below, where c2×1

xy is the esti-
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Figure 13.4: Note that warm colors should be interpreted as high values. (Top left)
Black disk template matched against the intensity image. (Top right) Ring (annulus)
template matched against the vertical edge image. (Bottom left) The template matching
con�dence is determined by summing the two sets of matching scores (top left) and (top
right). (Bottom right) The position with best con�dence is chosen as the initial estimate
of the center of the iris, which is re�ned using an ellipse �tting algorithm. Note that the
algorithm is applied on graytone intensity images.
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mated center of iris, X2×k the estimated edge points on the lines L spanned
by c2×1

xy and the points P2×k on the circle with a given radius. k represents
the dimension and is typed as upper case, while lower case indexes represents
one speci�c line.

Initially, the domain of lines are ranging from the center to the points
lying on a circle (13.5). The Euclidian distance between center and the
estimated edges X2×k are calculated (13.6). The di�erence gk−1 between the
distances are obtained by di�erentiating (13.7). If the di�erence is greater
(13.8) or less (13.9) than some tolerance, the domain of L is adjusted and
the edge estimate is recalculated. The algorithms runs until convergence or
a given stopping criteria is reached. The outlier detection step is depicted in
�gure 13.5.

L ∈ [
c2×1
xy ;P2×k

]
; (13.5)

while (not Converged)

dk = dist(cxy,X
2×k); (13.6)

gk−1 = diff(dk); (13.7)
for i = 1 : k − 1

if (gi > tol) (Too far away...) (13.8)
Li ∈ [cxy;Xi] ;

Xi = edge(Li);

elseif (gi < tol) (Too near centroid...) (13.9)
Li ∈ [Xi;Pi] ;

Xi = edge(Li);

end

if Xi = ∅ (If no edge, discard point)
Xi = [ ] ;

end

end

end

13.3 Color-Based Template Matching
Template matching using gray level intensities on eye images, su�ers from
the poor contrast between the skin surrounding the eye and iris. The RGB
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Figure 13.5: The outlier detection in the re�nement step constrains the common dis-
tances from the center. If the di�erence between neighbor distances di�ers from a tolerance
level, the domain of a given line is reduced to force the algorithm to choose a more likely
position. The lines L in yellow is spanned by c2×1

xy and the points P2×k on the circle. Green
points have been rejected, the red is accepted and the �nal estimate of pupil contour is
depicted in blue.

(Red, Green and Blue) colors of the eye region di�ers signi�cantly from the
surrounding skin. As a consequence, the template matching from section
13.2 is modi�ed to color images.

The black disk template is now matched against each of the RGB channels
and converted to a con�dence for each location in the image by the norm of
each pixel.

Now, instead of limiting ourselves to use vertical edges, the Canny's direc-
tion of gradient[78] is applied. A color image can be considered as a mapping
from a position R2(x, y) to a color R3(r, g, b). The Jacobian of this mapping
is de�ned as,

J =




dr/dx dr/dy
dg/dx dg/dy
db/dx db/dy


 . (13.10)

The largest eigenvalue λ and the corresponding eigenvector v of the covari-
ance C = JTJ, is the direction of maximum change at a given point. The
eigenvalue is the square of the change in magnitude in the direction of v.
Hence, the expression (

√
λ) · v is equivalent to Canny's direction of gradient.

The �nal edge estimate is found by thresholding the values computed by
Canny, which is further improved by mathematical morphology - thining [16].
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Figure 13.6: (Top left) Canny's direction of gradient applied on a eye color image. (Top
right) The edge detected image is computed by thresholding and subsequently applying the
mathematical morphology operator thining on the gradient. (Bottom left) The template
matching con�dence is determined by summing the two sets of matching scores - Black
disk template matching on the input image and ring (annulus) template matching against
the edge detected image in (top right). (Bottom right) The �nal estimate of the center of
iris is shown as the green dot, while the red arrows depicts Canny's direction of gradient.

Finally, the ring template is matched against the edge image. The match-
ing scores of the two templates are normalized to prevent the features of one
�lter to dominate the other and �nally summed to get the resulting con�-
dence. The position with maximum con�dence is chosen as the estimate of
the center of iris.

13.4 Deformable Template Matching
The gray level intensity template matching method is relaxed to be de-
formable in this section. The objective is, modi�ed, to �t an ellipse to the
pupil contour, which is characterized by a darker color compared to the iris.
The standard ellipse form, de�ned in (13.3) and (13.4), is parameterized by,

x = (cx, cy, λ1, λ2, θ) . (13.11)
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B
P

Figure 13.7: Region P is the inner circle, and region B is the ring around it. The
regions have the same area. When region I contain the entire object, B must be outside
the object, and thus the di�erence in average pixel intensity is maximal.

The pupil region P is the part of the image I spanned by the ellipse
parameterized by x. The background region B is de�ned as the pixels inside
an ellipse, surrounding but not included in P , as seen in �gure 13.7. When
region P contains the entire object, B must be outside the object, and thus
the di�erence in average pixel intensity is maximal. To ensure equal weighting
of the two regions, they must have the same area. The area of the inner ellipse
P is AP = πλ1λ2. The shape parameters of B should satisfy the constraint
on the area AB/P − AP = AP . As a consequence, the parameters is de�ned
as xB =

(
cx, cy,

√
2λ1,

√
2λ2, θ

)
, while xP is de�ned as (13.11).

The estimate of the pupil contour can now be estimated by minimizing
the expression,

E = Av(P )− Av(B), (13.12)

where Av(B) and Av(P ) are the average pixel intensity of the background -
in this case the pupil - and iris region respectively.

The contrast between the iris and sclera is large. Intuitively, the inner
ellipse should surround the iris because of the large contrast in proportion to
the white sclera. However, the iris is surrounded by white sclera and a com-
paratively dark skincolor. This combination results in a weak average value.
As a result, each region should contain relative monotone intensities. By
letting the inner ellipse �t to the pupil, we ensure a consistent cost function.

The pupil tracker is initialized by previous state estimate, xk = xk−1,
as we assume the changes from frame to frame are relatively small. The
deformable template model is then optimized given the starting point. An
example of the optimization of the deformable model is seen left in �gure 13.9.
However, rapid eye movements may cause the tracking algorithm to break
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Figure 13.8: (Left) Although the contrast between the iris and sclera is large, the cost
function is non-descriptive with this choice of P and B. (Right) By letting the inner ellipse
�t to the pupil, we ensure relative monotone intensities of each region leading to a more
consistent cost function.

down, since the starting point is too far from the true state as depicted right
in �gure 13.9. These movements occurs below the conscious level in order to
improve the visual perception[66] and are among the fastest movements the
body can make - A rotation speed at over 500deg

sec
[34]. The problem of rapid

eye movements can be omitted by applying the Double Threshold method,
described in section 13.1.1, as initial guess on the pose.

Figure 13.9: (Left) The blue ellipse indicates the starting point of the pupil contour.
The template is iteratively deformed by an optimizer; one of the iterations are depicted in
green. The red ellipse indicates the resulting estimate of the contour. (Right) Rapid eye
movements may cause the tracker to break down. This can be omitted by applying the
Double Threshold method, described in section 13.1.1, as initial guess on the pose.

13.4.1 Optimization
The minimization of the cost function de�ned in (13.12) can be formulated as
a nonlinear optimization problem. The solution can be obtained by various
optimization algorithms; among these is Newton's method[46]. The func-
tion is denoted f(x), and the truncated Taylor expansion of this function is
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approximated by a quadratic model q,

q(h) = f(x) + hT f ′(x) +
1

2
hT f ′′(x)h. (13.13)

When x is su�ciently near the minimizer x∗ and f ′′(x∗) is positive de�nite,
then q has a unique minimizer at a point where the gradient of q equals zero,

f ′(x) + f ′′(x)h = 0. (13.14)

However, the standard Newton method has some disadvantages; for instance
the required analytical second order derivatives of f . This can be overcome
by use of the more clever BFGS updating formulas[28]. Analytical derivatives
are avoided by use of approximations, which are adjusted dynamically. In
the end of search, the approximation converges toward f ′′(x∗). Although
convergence towards a stationary point has not been proved yet, BFGS with
soft line search is known as a method that never fails[28].

The choice of a suitable initial step size for the optimizer is of great
importance when estimating the gradient. An appropriate starting point x,
consisting of the �ve parameters de�ning an ellipse, is initialized around the
pupil. One parameter is varied while the others are kept �xed. The partial
derivative with respect to one of the parameters is de�ned,

f(cx + h, cy, λ1, λ2, θ)− f(cx, cy, λ1, λ2, θ)

h
' ∂f

∂cx

+O(h) +
error

h
. (13.15)

It is seen from (13.15) that if h is chosen too small, the error will be large.
Comparing with �gure 13.10, it is seen that a step size around h = 1 is
suitable in order to make the optimizer more �exible in the beginning and
avoiding local minimums. As we get closer to the solution, the step size is
decreased by the algorithm. The step size is, however, dependent on the
image and the resolution.

13.4.2 Constraining the Deformation
Although a deformable template model is capable of catching changes in
the pupil shape, there are also some major drawbacks. Corneal re�ections,
caused by illumination, may confuse the algorithm and cause it to deform
unnaturally. In the worst case, the shape may grow or shrink until the
algorithm collapses.

We propose to constrain the deformation of the model in the optimization
step by adding a regularization term. Assume the parameters de�ning an
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Figure 13.10: (top) A point is initialized near the iris. Alternately, one parameter is
varied while the four other parameters are kept �xed. The cost function is evaluated. (Bot-
tom left) Variation of center coordinates and shape parameters. (Bottom right) Variation
of the orientation.
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ellipse is normally distributed with mean µ and covariance Σ. The prior
distribution of these parameters are then de�ned,

p(x) = N (µ,Σ) ∝ exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
, (13.16)

where the normalization factor has been omitted. The mean and covari-
ance are estimated in a training sequence. At last the optimization of the
deformable template matching method is constrained by adding a regular-
ization term,

E = Av(P )− Av(B) +K (1− p(x)) , (13.17)
where K is the gain of the regularization term.

The relevance of constraining the deformation is visualized in �gure 13.11.
A suitable starting point x is chosen. The pose and orientation are kept �xed,
while the shape parameters are varied. In this case the true shape parameters
λ1 and λ2 are approximately eight. The image con�dence as a function of
the shape parameters is depicted to the left, while the prior distribution is
seen in the middle of �gure 13.11. Combining the image con�dence with a
prior according to (13.17) yields the constrained estimate, which is depicted
to the right in �gure 13.11.

By use of the shape constraints, we incorporate prior knowledge to the
solution. The robustness is increased considerably and the parameters are
constrained to avoid the algorithm to break down due to in�nite increase or
decrease of parameters.

The deformable template matching method is seen applied with and with-
out constraints in �gure 13.12. The constrained estimate is seen to be less
sensitive to noise due to re�ections.

13.5 Summary
A mixture of segmentation-based eye trackers have been presented. Starting
by the simple - yet e�cient - double thresholding, where two threshold val-
ues are chosen to �nd the dark pixels corresponding to the pupil. The low
threshold can be interpreted as a �lter regarding the high threshold.

Prior knowledge about the shape and appearance is utilized by the tem-
plate matching models. A model concerning gray level intensities and a
model regarding RGB color images have be described.

A common characteristic of the above mentioned trackers is that they
do not incorporate knowledge from last frame. They are based on explicit
feature detection using global information.
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Figure 13.11: Given an appropriate starting point x. The pose and orientation are
kept �xed, while the shape parameters are varied. Note that the surface plots are not -
as expected - smooth. This is due to rounding in the interpolation when evaluating the
image evidence of the deformable template. (Left) The image con�dence given the state -
warmer colors means more likely. (Middle) The prior probability is a normal distribution
with a given mean value µ and covariance Σ. (Right) Combining the image evidence and
prior according to (13.17) yields the constrained estimate.

The appearance of the eye changes together with the gaze direction, face
and camera pose. This is exploited by a deformable template matching
model. The starting point of current frame can be chosen as the estimate
from previous frame. However, rapid eye movements may confuse the tracker
since the starting point is too far from the true state. This can be omitted
by applying the Double Threshold method.
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Figure 13.12: The deformable template matching method applied without constraints
is seen in green, while the red ellipse depicts the constrained version. The constrained
estimate is seen to be less sensitive to noise due to re�ections.
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Chapter 14

Bayesian Eye Tracking

The segmentation based trackers from chapter 13 are based on explicit fea-
ture detection using global information. The iris is circular and characterized
by a large contrast to the sclera. Therefore, it seems obvious to use a con-
tour based tracker. The chosen active contour method does not use features
explicitly but maximizes feature values underlying the contour in a Bayes
sense. Bayesian methods provide a general framework for dynamic state es-
timation problems. The Bayesian approach is to construct the probability
density function of the state based on all the available information. For that
reason the method is relative robust to environmental changes.

Moreover, the changes in iris position are very fast. As a consequence, the
iris position cannot be assumed to follow a smooth and completely predictable
model. Particle �ltering is therefore suitable.

14.1 Active Contours
Witzner et al.[36] describes an algorithm for tracking using active contours
and particle �ltering. A generative model is formulated which combines a
dynamic model of state propagation and an observation model relating the
contours with the image data. The current state is then found recursively by
taking the sample mean of the estimated posterior probability.

The proposed method in this chapter is based on [36], but extended with
constraints and robust statistics.

14.2 Assumptions
The active contour method has some basic assumptions; Gray-level values of
neighboring pixels are correlated, except when two pixels are known to lie
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on each side of an object boundary as depicted in �gure 14.2. In addition
to this, the shape of the contour is subject to random Gaussian deformation
at each sample point on the contours. This can be utilized by marginalizing
over the deformation.

14.3 Dynamic Model
The dynamic model describes how the iris moves from frame to frame. As
mentioned in chapter 13, the shape of iris can be modeled as a circle. How-
ever, when the gaze is turned o� the optical axis, the circle is rotated in
3D space, which can be interpreted as an ellipse in the image plane. As a
consequence, the iris is modeled as an ellipse and the state vector x consist
of the �ve parameters de�ning an ellipse,

x = (cx, cy, λ1, λ2, θ) , (14.1)
where (cx, cy) is the center, λ1 and λ2 are the length of major and minor
axes, and θ is the angle between major and vertical axis.

To de�ne the problem of tracking, consider the evolution of the state
sequence xt+1 = ft+1{xt, t ∈ N} of a target, given by

xt+1 = ft+1(xt,vt), (14.2)
where ft+1 is a possibly non-linear function of the state xt and {vt, t ∈ N} is
an independent identically distributed process noise sequence. The objective
of tracking is to recursively estimate xt+1 from the measurements,

Mt+1 = ht+1(xt+1,nt+1), (14.3)
where ht+1 is a possibly non-linear function and {nt+1, t ∈ N} is an i.i.d mea-
surement noise sequence. Appendix B.1 contains a more detailed description
of Bayesian state estimation.

The pupil movements can be very rapid and is therefore modeled as Brow-
nian motions(AR(1)). Thus the evolution of the state sequence (14.2) is
modeled,

xt+1 = xt + vt, vt ∼ N (0,Σt), (14.4)
where Σt is the time dependent covariance matrix of the noise. The time
dependency compensates for scale changes, which a�ects the amount of move-
ment. Larger movements is expected when the ellipse appears large, since
the position of the eye is nearer to the camera. Contrary, when the eye is
farther from the camera, smaller movements are expected. Hence, the �rst
two diagonal elements of Σt corresponding to cx and cy are assumed to be
linear dependent on previous sample mean.
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14.4 Observation Model
The observation model consists of two parts; a geometric component de�ning
a probability density function over image locations of contours and a texture
component de�ning a pdf over pixel gray level di�erences given a contour
location. The geometric component models the deformations of the iris by
assuming Gaussian distribution of all sample points along the contour. The
gray level information is gathered by sampling a discrete set of points along
the normals of all contour sampling points. Both components are joined and
marginalized to produce a test of the hypothesis that there is a true contour
present.

Figure 14.1: Marginalized contour de�nitions[38]. Given the position of the true bound-
ary µ, the distance from µ to the estimated boundary ν is ε = µ− ν. Since the geometric
object model cannot be assumed to be ideal even though the true position is known, it is
assumed that the model is subject to random Gaussian deformation at each sample point
on the contours.

We de�ne a measurement line M as a normal to a given point on the
contour as seen in �gure 14.1. ν is a coordinate on the measurement line, and
η(ν) is a binary indicator with value 1 if the boundary of the target is in the
interval [ν −∆ν/2, ν + ∆ν/2], otherwise 0. Given the position of boundary
µ, the distance from µ to ν is ε = µ− ν.

14.4.1 Statistics of Gray-Level Di�erences
Gray-level values of neighboring pixels are correlated, except when two pixels
are known to lie on each side of an object boundary as depicted in �gure 14.2.
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Figure 14.2: Figure from [39]. Gray-level values of neighboring pixels are correlated,
except when two pixels are known to lie on each side of an object boundary.

Research on the statistics of natural images has in fact revealed that the pdf
of gray-level di�erences between neighboring pixels is well approximated by
a generalized Laplacian[65][40],

pL (∆M) =
1

ZL

exp

(
−

∣∣∣∣
∆M

L

∣∣∣∣
β
)

, (14.5)

where ∆M is the gray level di�erence, L depends on the distance between
two sampled image locations, β is a parameter approximately equal to 0.5
and ZL is a normalization constant. For β = 0.5 it can be shown that
ZL = 4L[65].

14.4.2 Distributions on Measurement Lines
Given no known edge (object boundary) between two image locations on the
measurement line, the pdf of gray levels is by (14.5),

p [∆M(ν)|η(ν) = 0] = pL [∆M(ν)] (14.6)

Assuming independence between gray level di�erences, the pdf of the
observation M in the absence of an edge is given by

pa(M) ≡
∏

i

pL [∆M(i∆ν)] . (14.7)
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Contrary, two points observed on opposite sides of an edge are statistically
independent. For simplicity, the conditional pdf of gray level di�erences,
separated by an edge, is assumed to be uniform,

p [∆M(ν)|η(ν) = 1] ≈ 1

m
, (14.8)

where m is the number of gray levels. If there is a known object boundary
at location j∆ν, then only one point will correspond to gray level di�erences
across the boundary, the rest will be gray level di�erences of either object or
background. Hence, the pdf of the observation is given by combining (14.7)
and (14.8),

pc (M|j∆ν) =
1

m

∏

i6=j

pL [∆M(i∆ν)]

=
1

m

pa(M)

pL (∆M(j∆ν))
. (14.9)

14.4.3 Marginalizing over Deformations
The geometric object model (14.1) cannot be assumed to be ideal, since
the idealized contour will never correspond exactly to the object boundary
even though the true position is known. Therefore, it is assumed that the
model is subject to random Gaussian deformation at each sample point on
the contours as seen in �gure 14.3.

The prior pdf of deformations is de�ned

pD(ε) =
1

ZD

exp

(−ε2

2σ2

)
, (14.10)

where ZD =
√

2πσ is a normalization factor.
The likelihood of the observationM given the contour location µ and the

deformation ε is
p(M|µ, ε) = pc(M|µ + ε). (14.11)

The joint likelihood of the observation and deformation given the contour, is
computed by use of the product rule[55],

p(M, ε|µ) = pc(M|µ + ε)pD(ε). (14.12)

Marginalizing over possible deformations, the likelihood is given by,

pM(M|µ) =

∫
pc(M|µ + ε)pD(ε)dε, (14.13)
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Figure 14.3: The geometric object model cannot be assumed to be ideal. As a conse-
quence, a Gaussian distribution of geometric deformation is assumed. The shape variabil-
ity on the measurement line is expressed by σ, which should be large enough to reach all
the sample points ∆ν on the measurement line.

which by combining equation (14.9) and (14.10) yields,

pM(M|µ) =
1

m
pa(M)

∫
pD(ε)

pL(∆M(ν))
dε. (14.14)

The ratio between the likelihoods, regarding the hypothesis that there is
a contour at location µ and that there is no contour, can be used for testing
the hypothesis of the presence of a contour. The ratio is given by,

R(M|µ) =
pM

pa

=
1

m

∫
pD(ε)

pL(∆M(ν))
dε. (14.15)

It is suitable to take the logarithm to obtain the log-likelihood ratio,

h(M|µ) ≡ log R(M|µ)

= − log(m) + log

∫
pD(ε)

pL(∆M(ν))
dε. (14.16)

The integral can be approximated as a �nite sum over discrete set of possible
deformations εj = j∆ν − µ,

h(M|µ) = − log(m) + log
∑

j

pD(εj)

pL(∆M(j∆ν))
∆ν. (14.17)

Using the de�nitions of the generalized Laplacian pL (14.5), density of defor-
mations pD (14.10) and choosing the parameter β = 0.5, the point evaluation
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function above becomes,

h(M|µ) = − log(m) + log
∑

j

1
ZD

exp
(−ε2j

2σ2

)

1
ZL

exp

(
−

√
|∆M(j∆ν)|

L

)∆ν

= h0 + log
∑

j

exp

[√
|∆M(j∆ν)|

L
− ε2

j

2σ2

]
, (14.18)

where h0 = log ZL/m − log ZD/∆ν. The full derivation of (14.18) is found
in appendix B.2. For a given observation M, the point evaluation increases
when a contour is placed at a location that maximizes the function of the
absolute values |∆M| under a Gaussian window centered at µ. Thus, the
contour of the iris is chosen to maximize the point evaluation function.

14.5 Probabilistic Contour Tracking
The probabilistic formulation has the attraction that uncertainty is handled
in a systematic fashion - Increased uncertainty results the particles to be
drawn from a wider distribution, while increased con�dence results the par-
ticles to be drawn from a narrower distribution.

The prediction stage involves using the system model (14.2) to obtain the
prior pdf of the state at time t + 1,

p(xt+1|Mt) =

∫
p(xt+1|xt)p(xt|Mt)dxt (14.19)

The observation Mt is independent of the previous state xt−1 and pre-
vious observation Mt−1 given the current state xt. At time step t + 1 a
measurement Mt+1 becomes available. This is used to update the prior via
Bayes' rule,

p(xt+1|Mt+1) ∝ p(Mt+1|xt)p(xt+1|Mt). (14.20)
With this in mind, the tracking problem is stated as a Bayesian inference

problem by use of (14.19) and (14.20).
Particle �ltering is used with the purpose to estimate the �ltering distri-

bution p(xt|Mt) recursively. This is done through a random weighted sample
set SN

t = {(xn
t , πn

t )}, where n is the nth sample of a state at time t weighted
by πn

t . The samples are drawn from the prediction prior p(xt+1|Mt), while
the sample weights are proportional to the observation likelihood p(Mt|xt)
given by the sum of contour hypotheses

∑n
k=1 h(Mk|µ). The sample set
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Figure 14.4: The relative normalized weighting of the hypotheses regarding one particle
are colored in a temperature scale - Blue indicates low, while red high scores. (Left) Corneal
re�ections cause very distinct edges. Thus some hypotheses are weighted unreasonable
high, which may confuse the algorithm. (Right) By use of robust statistics outliers are
rejected. This results in a better and more robust estimate of the hypotheses regarding
the contour.

propagates into a new sample set SN
t+1, which represents the posterior pdf

p(xt+1|Mt+1) at time t + 1. A more detailed explanation of particle �ltering
is found in appendix B.1.1.

14.6 Constraining the Hypotheses
Despite the fact that a large amount of particles wastes computation time, the
proposed active contour method may fail due to di�erent non-ideal conditions
in the image.

Corneal re�ections, caused by illumination, may confuse the algorithm
to weigh some of the hypotheses unreasonably high compared to others.
This issue is illustrated left in �gure 14.4, where the relative normalized
weighting is colored in a temperature scale - Blue indicates low, while red high
scores. By using robust statistics, these hypotheses are treated as outliers
and therefore rejected.

The contour algorithm may �t to the sclera rather than the iris. This
is due to the general formulation of absolute gray level di�erences ∆M[16],
which seeks to detect contours in a general sense. An example is depicted in
�gure 14.5, where the image evidence of the contour surrounding the sclera
is greater than the one around the iris. It turns out that for a large number
of particles, the maximum likelihood estimate prefers the contour around the
white sclera when the gaze is turned towards the sides.

As a consequence, we propose to constrain the hypotheses. Intuitively,
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Figure 14.5: This image is depicted as a gray level intensity image, to demonstrate the
problem of low gray level di�erence between iris and the eyelids. Signi�cant hypotheses
are shown as blue lines. Due to the general formulation of absolute gray level di�erences
∆M, the right contour has a greater likelihood, and the algorithm may thus �t to the
sclera.

the average intensity value of the inner ellipse could be compared to some
de�ned outer region as seen in expression (13.12). Nevertheless, this is a
weak constraint as discussed in section 13.4 and depicted in �gure 13.8. The
robustness of the active contour algorithm is increased by weighing the belief
of hypotheses and utilizing robust statistics to reject outliers.

We propose to weigh the hypotheses through a sigmoid function, applied
on the measurement line M, de�ned as,

W =

(
1 + exp

(
µi − µo

σw

))−1

(14.21)

where σw adjust the slope of weighting function, µi and µo are the mean
values of the inner and outer sides of the contour respectively. The function
is exempli�ed in �gure 14.6. This has the e�ect of decreasing the evidence
when the inner part of the ellipse is brighter than the surroundings. In
addition, this relaxes the importance of the hypotheses along the contour
around the eyelids, which improves the �t.
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Figure 14.6: (Left) The two lines depicts the gray level intensity of two measurement
lines - The blue one where the inner part of the ellipse is dark, and the red in the reverse
case. (Middle) The shifted hyperbolic tangents is utilized as weighting function. Note,
the limit values are in range [−255; 255]. (Right) The cyan bars indicates the hypothesis
value before weighting, while the pink is after. Measurement 1 - The blue line - is nearly
unchanged, while 2 - the red line - is suppressed.

14.7 Maximum a Posteriori Formulation
The dynamic model may, in certain outlier cases, grow or shrink the contour
to a degree, from where the algorithm gets lost. As a consequence, we propose
to constrain on the shape of the ellipse in analogy to section 13.4.2. The
parameters de�ning an ellipse is assumed normal distributed with mean µ and
covariance Σ. The prior distribution of these parameters are then de�ned,

p(x) = N (µ,Σ) ∝ exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
, (14.22)

where the normalization factor has been omitted. The mean and covariance
are estimated in a training sequence.

Combining the priors - presented in this section - with the likelihood,
results in the Maximum a Posteriori formulation (MAP), where the goal is
to maximize,

p(x|M) ∝ p(M|x)p(x). (14.23)
By incorporation of prior knowledge about the shape, with the prediction

prior and observation likelihood (14.20), the robustness increases consider-
ably and the parameters are constrained to avoid the algorithm to break
down due to in�nite increase or decrease of parameters.

14.8 Optimization by EM
Increasing the number of particles leads to better performance, but increases
the number of computations as well. The chosen number should therefore be
a trade-o� between accuracy and computation time.
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The number of particles can be reduced by applying the expectation-
maximization algorithm to a subset of samples. Since the log-likelihood is
obtained by marginalization, optimization by the EM method leads to more
robust convergence.

14.8.1 Motivation
Suppose that the true location ν∗ of boundary were known, then the image
evidence should be ignored since it would give no additional information.
The likelihood of the contour algorithm could be simpli�ed to the likelihood
of the deformation (14.10),

p(ν∗|µ) = pD(ν∗ − µ). (14.24)

However, the true locations are unfortunately not known and must there-
fore be estimated. This is obtained by applying the EM algorithm, which is
described in appendix B.3.

14.8.2 Applying EM
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Figure 14.7: The true location of iris is estimated in the E-step by use of center of mass
of the observations. pj is the probability that the contour on the respective measurement
line is in the interval [

(
j − 1

2

)
∆ν,

(
j + 1

2

)
∆ν]. The new estimate ν̂, depicted in (right), is

seen in (left) to be better than the original µ.

The unobserved true contour location ν∗ is not known. It can be esti-
mated by use of center of mass of the observation ν̂, which is also referred
as the Bayes least squares estimate of the deformation[65] (see �gure 14.7),

ν̂ ≡
∑

j

pjj∆ν, (14.25)
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where pj is the probability that the contour on the respective measurement
line is in the interval [

(
j − 1

2

)
∆ν,

(
j + 1

2

)
∆ν]. This is obtained by normal-

ization to unity of the sum over all locations on the given measurement line
and is de�ned,

pj ≡ p(εj|I, µ)∆ν =
p(I, εj|µ)∑
i p(I, εi|µ)

. (14.26)

By use of (14.12) consisting of (14.9) and (14.10), the above expression is
rewritten,

pj =
pD(εj)

1
m

pa(M)/pL [∆M(j∆ν)]∑
i pD(εi)

1
m

pa(M)/pL [∆M(i∆ν)]

=
pD(εj)p

−1
L [∆M(j∆ν)]∑

i pD(εi)p
−1
L [∆M(i∆ν)]

. (14.27)

The improved estimate of the contour location can now be computed, and
the log-likehood of the deformation is given by,

log p(ν̂|µ) = log pD(ν̂ − µ)

= − log ZD − g(ν̂ − µ), (14.28)

where
g(ν̂ − µ) =

(ν̂ − µ)2

2σ2
. (14.29)

Estimating the contour location by center of mass (14.25), incorporates
the current estimate through (14.27). As a consequence, an estimate of µ is
required to obtain ν̂, and an estimate of ν̂ is required in order to optimize µ.
Thus, the iterative scheme from section B.3 can be interpreted as,

EM Optimization step

E step: Estimate the true contour location as the center of mass of the ob-
servation ν̂, using the image evidence ∆M and last estimate of location
µk−1 from xk−1.

M step: Optimize the state parameters x by minimizing the squared defor-
mation g(ν̂ − µ) to obtain the re-estimated contour location µk.

The presented active contour algorithm optimized by EM, is depicted in
�gure 14.8.
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Figure 14.8: The current state is found by taking the sample mean of the posterior
probability, which is estimated recursively; in this case only 50 particles are drawn from
xk = fk(xk−1,vk−1). (Top left) The estimated state xk at iteration k is depicted as the
green curve, while the red is the optimized EM contour. (Top right) The green curves
illustrates 50 drawn particles at iteration k, the red curve represents the EM contour.
(Bottom left) The particles are drawn from a narrower distribution, since the location
of iris has been nearly static for some frames. (Bottom right) Even though the eye is
closed, the algorithm still makes a suitable estimate. The uncertainty increases, resulting
in particles to be drawn from a wider distribution.
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14.9 Optimization by Deformable Template
Matching

Similar to the expectation-maximization algorithm, the deformable template
matching model from section 13.4 may be used to re�ne the state estimate.
The precision of the location of pupil center is equivalent to - or even better
than - the iris center. Hence, given the state x that maximizes the posterior
distribution (14.20), an appropriate starting point regarding the deformable
template matching method can be chosen to,

x = (cx, cy, αλ1, βλ2, θ) , (14.30)

where α and β are scaling parameters. An example of the optimization of
the deformable model is seen left in �gure 13.9.

14.10 Parameters of the Method
In order to apply the active contour algorithm, a number of parameters
regarding the observation and dynamic model must be set.

The observation model expressed through the point evaluation function
(14.18) has 3 parameters; the scale parameter L of the pdf of gray level
di�erences, the standard deviation σ of shape deformations and the sampling
interval ∆ν on the measurement lines.

The parameter L is estimated from the average square root of gray level
di�erences measured over a representative subset of images E

[√
∆M

]
. By

use of the convenient value β = 0.5, the maximum-likelihood estimate of
L is obtained explicit by di�erentiating (14.5) and �nding the root; LML

=E
[√

∆M
]2

/4. The parameters of the generalized Laplacian distribution
L and β are directly related to the variance and kurtosis[40]. The latter
measures the peakedness or tail prominence of the distribution in proportion
to the Gaussian distribution in which β = 0.0[16].

The standard deviation parameter σ expresses the shape variability on
the measurement line. Thus, σ is de�ned to reach all coordinates on this line
within ±3σ drawn from a Gaussian distribution as seen in �gure 14.3.

The sampling interval ∆ν should be scale dependent. A convenient value
is given by ∆ν = max(1, σ/4).

The parameters of the dynamical model are constrained to a reasonable
physical range of the object being tracked. The evolution of the state se-
quence is given by xk = fk(xk−1,vk−1). The initial state x0 can be set either
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manually or by one of the segmentation based methods from chapter 13. The
state evolution is then estimated from the samples controlled by the system
variance vk−1.

In the optimization step, each frame is run until some stop criterion.

14.11 Summary
The active contour model under consideration does not use features explic-
itly but maximizes feature values underlying the contour in a Bayes sense.
Two basic assumptions are made; there are no correlation between gray-level
values on each side of an object boundary, and marginalization over shape
variations.

A hypothesis regarding the presence of a contour is formulated as the
ratio between the contour existence and non-existence likelihoods. The cur-
rent state is then found recursively by maximizing the estimated posterior
probability.

The model is utilized by particle �ltering for iris tracking since the changes
in iris position are very fast. Furthermore, the estimate of the state is opti-
mized by the EM algorithm.

Extensions to the original active contour method are proposed to improve
robustness and accuracy:

• Weighing of the hypotheses to relax their importance along the contour
around the eyelids. Moreover, it penalizes contours surrounding bright
objects.

• Robust statistics to remove outlying hypotheses stemming from corneal
re�ections.

• Constraining the deformation of the contour regarding the magnitude
of the axes de�ning the ellipse.

• Re�nement of the �t by a deformable template model of the pupil.

The pseudo code of the EM Active Contour method is presented in ap-
pendix B.4. The active contours with the deformable template re�nement
method is similar - The optimization step is simply replaced.
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Chapter 15

Gaze Determination

Gaze is very important for human communication and also plays an increas-
ing role for human computer interaction. Gaze can play a role, e.g., in under-
standing the emotional state for humans[3][4], understanding the perception
of infants[27], synthesizing emotions[32], and for estimation of attentional
state[82]. Speci�c applications include devices for the disabled, e.g., using
gaze as a replacement for a computer mouse and driver awareness monitoring
to improve tra�c safety[43].

We use a geometric head model for gaze determination[43]. There is
nothing novel about this model. It is simply a translation from 2D image
coordinates to a direction in space relative to the �rst frame. Thus, suppose
the anatomical constants are measured somehow, and the pose and scale of
face, eye corners, and pupil location are known, then the exact gaze direction
can be computed.

However, this is not the case. The method for gaze estimation is described
below.

15.1 The Geometric Model
Some basic assumptions are made; the eyeball is spherical and the eye corners
have been estimated. The latter is not a trivial task. In fact it is more di�cult
to detect eye corners than the iris or pupil. This task can be solved by use
of AAM.

We begin by de�ning some anatomical constants of the eye as depicted
in �gure 15.1b.

Anatomical Constants
R0: Radius of the eyeball when the scale of the eye is one.
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(Tx, Ty): The o�set in the image between the mid-point of the two eye corners
and the center of eyeball, when the face is frontal and the scale is one.

L: The depth of the center of the eyeball relative to the plane containing the
eye corners.

The anatomical constants are pre-computed on a training sequence by use of
the least squares solution[43].

Figure 15.1: Geometric model for gaze estimation[43].

In order to estimate the gaze, we need to compute the center and radius
of the eyeball.

The mid-point (mx,my) between the inner corner (e1x, e1y) and the outer
corner (e2x, e2y) are estimated by,

(
mx

my

)
=

(
e1x+e2x

2
e1y+e2y

2

)
. (15.1)
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The scale of the face is estimated by the AAM. A more simple approach,
is to compute the distance between the eye relative to the head pose angle
φx,

S =

√
(e1x − e2x)2 + (e1y − e2y)2

cos φx

. (15.2)

The disadvantage is, however, that numerical errors are introduced when two
points subtracted are very close.

The center of the eyeball is determined as the mid-point corrected by
two terms; Even though the face is frontal, the midpoint cannot be assumed
equivalent to the eye center - which cannot be assumed to lie in the plane of
the eye corners (see �gure 15.1c),

(
ox

oy

)
=

(
mx

my

)
+ S

(
Tx cos φx

Ty cos φy

)
+ SL

(
sin φx

sin φy

)
. (15.3)

The radius of the eyeball is estimated from the scale and anatomical
constant, R = SR0.

At last, the gaze direction (φx, φy) can be computed as,

(
sin θx

sin θy

)
=




px−ox√
R2−(py−oy)2

py−oy√
R2−(px−ox)2


 . (15.4)

An example where the face is frontal is depicted in �gure 15.2.
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Figure 15.2: The gaze direction (θx, θy) is computed based on (15.4). The eye corners
is obtained from the AAM and depicted in green. The estimate of the center of pupil is
obtained from one of the methods described in this part.
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Chapter 16

Discussion

Several approaches for eye tracking has been presented in chapter 13 and
14. The main di�erence is the propagation model - That is, how the sys-
tem dynamics are propagated given previous state estimates. While the
segmentation based tracking uses the last estimate as starting point for a
segmentation method, or even no knowledge of old states at all, the bayesian
tracker predicts the state distribution given previous state.

16.1 Segmentation-Based Tracking
The di�erent segmentation-based eye trackers proposed, all have their streng-
thes and weaknesses. The double threshold method is very fast, even though
it does not use knowledge from previous estimates. Since corneal re�ections
may overlap the pupil to some extent, the estimate is expected to be biased.
On the other hand, the method may be used to get a rough estimate very
fast. This can be applied with advantage as starting point for better, but
computational more expensive, tracking algorithms.

The template matching utilizes the knowledge of the appearance of iris.
No memory regarding previous states is used. As a consequence, the method
is computational expensive in proportion to double threshold, but more pre-
cise. However, in the lack of sharp edges, the robustness decreases. Moreover,
the method tends to fail during blinking. The template cannot handle defor-
mations.

This leads to the deformable template matching method, which in con-
trast to the above methods, avoids using explicit features nor �xed templates.
Instead it maximizes the di�erence between an inner and outer template.
Thus, the only requirement is a suitable starting point and that the pupil
is darker than iris. Combining the method with priors regarding the shape,
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and robust statistics in cases where the illumination causes dominant corneal
re�ections, results in an excellent template model. However, rapid eye move-
ments may confuse the tracker since the starting point is too far from the
true state. For that reason, we propose to use double threshold in order to
choose an appropriate starting point. If several starting points are found,
the state corresponding to the optimal image con�dence is preferred.

16.2 Bayesian Eye Tracking
The active contour model is utilized by particle �ltering for iris tracking since
the changes in iris position are very fast. The method is based on two basic
assumptions; there are no correlation between gray-level values on each side
of an object boundary, and marginalization over shape variations.

Furthermore, the estimate of iris location is optimized by the EM algo-
rithm and the deformable template model. The disadvantage of EM is the
slow convergence of the optimization since the contour parameters are not
gradient-based. Furthermore, the number of calculations to obtain one single
observation is huge, leading to demanding computational time. In contrast,
the deformable model is optimized independent of the measurements lines,
but utilizes the image evidence in a Newton optimization.

The power of bayesian tracking is the capability to handle typical image
processing problems such as moderately variations of scale, occlusions and
changes in illumination. Variations of scale may occur due to the relative
movement between camera and eye. In the case of partial occlusions, the
object pose is well estimated depending on the geometry of the observable
lines. Changes in illumination is handled by re-estimation of λ from the
average square root of gray level di�erences measured in the current image.

The contour model under consideration avoids explicit feature detec-
tion by maximizing feature values underlying the contour in a Bayes sense.
This makes the method fairly robust to noise. Moreover, the likelihood is
smoothed by marginalization over possible shape variations.

In general, highly textured regions may limit the performance of the con-
tour algorithm. This is, however, not the case with the available data.

16.3 Comparison
The main di�erence between the trackers described in this part is how the
system dynamics are propagated given previous state estimates. Previous
estimate may be used as starting point for segmentation-based trackers with
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the exception of rapid eye movements. In this case, the algorithm gets stuck
and it may take several frames to �nd the way back; in worst case the algo-
rithm may break down.

The strength of particle �ltering is that increased uncertainty results in
particles to be drawn from a wider distribution. On the other hand, increas-
ing the belief results in particles to be drawn from a narrower distribution.
For that reason the active contour method is quite robust. The cost is,
however, a computational demanding algorithm compared to the deformable
model.

Since the deformable model seeks to locate the pupil contour, instead of
iris, fewer irregularities are expected as long as the eyes are open. Applying
priors regarding the shape ensures the algorithm not to break down when
the eyes are closing. By use of double threshold as starting point ensures the
method to be capable of handling rapid movements.

Combining the active contour utilized by particle �ltering and the de-
formable model to re�ne the estimate, results in a precise and robust tracker.
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Chapter 17

Experimental Design

In this part we evaluate the proposed methods of the eye tracking system.
The system presented is run on a 2.4GHz Pentium 4. We have imple-

mented all methods described in the parts above in Matlab 7.0. Computa-
tionally demanding subroutines are implemented in C++.

17.1 System Overview
The system design is broken down into �ve components; The digital video
camcorder, a computer interface, face detection and tracking, eye tracking,
and gaze determination. Each component is described brie�y below.

Figure 17.1: Video recording setup. (Left) The person recorded is indirectly illuminated.
(Right) The gaze direction is turned at a collection of markers placed at some controlled
points in 3D space. The DV-Cam is positioned in front of the person.
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Figure 17.2: (Left) The frames extracted from videos are interlaced. Every two con-
secutive images are intermixed with the purpose to minimize �ickering. (Right) The
corresponding deinterlaced image.

17.1.1 Camera
The DV-Cam records video sequences of the face. All variations, in the yaw,
pitch and roll angles are within ±30 degrees relative to frontal images. The
setup is shown in �gure 17.1.

17.1.2 Computer Interface
This component contains a framegrabber, which extracts frames from video
sequences, and a deinterlacer. A DV-Cam does not, as intuitively expected,
record 25 frames per second (fps) when recording a movie. Instead it records
50 pictures per second, intermixing every two consecutive images, with half
the height, into one frame[1]. The purpose of interlacing is to minimize �icker
inherent in lower-bandwidth images. An example of a interlaced and the
corresponding deinterlaced is depicted in �gure 17.2. This responsibility of
this component is fully handled by an the Open Source software framegrabber
VirtualDub.

17.1.3 Face Detection and Tracking
The active appearance model is utilized for face detection and tracking given
the video frame sequence. This module outputs the location of the eye region
and provides the pose of the head.
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Figure 17.3: The eye images are extracted from the input video frames based on the
�t of AAM. Each eye is modeled by six vertices. A bounding box containing the eye is
extracted by choosing a region slightly larger than the modeled eye.

17.1.4 Eye Tracking
The eye images are extracted from the video frames based on input from
AAM. The resulting �t of one frame is shown in �gure 17.3. Each eye region
is spanned by six vertices. A bounding box containing the eye is extracted
on which the eye tracking methods are applied.

17.1.5 Gaze Determination
The gaze direction can be determined by combining the anatomical constants
with the pose and scale of face, eye corners, and pupil location.

17.2 System
Each module functions as an independent unit. Thus, the eye tracking algo-
rithm can be exchanged with no consequence for the face tracker, and vice
versa. As a consequence, the face tracking and eye tracking modules are
tested independently.
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17.3 Data
The algorithms are tested on various datasets designed to illuminate di�erent
problems regarding eye tracking. The datasets are presented in the following
chapters.

17.4 Algorithm Evaluation
To assess performance of the developed algorithms, the error is recorded as
the di�erence between an annotated ground truth and the output of the algo-
rithms. Speci�cally, we use the point to point error de�ned as the Euclidian
distance between corresponding landmarks regarding the AAM, or between
the pupil location and ground truth regarding eye tracking,

Dpt.pt.(xgt,x) =
1

n

n∑
i=1

√
(xi − xgt,i)2 + (yi − ygt,i)2. (17.1)

17.5 Overview
A variety of experiments are presented in the following. The results are found
in chapter 18 and 19 for the AAM and eye trackers respectively.
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Chapter 18

Face Detection and Tracking

In this chapter the ability of the active appearance model to detect and track
faces in sequences of images is tested. As stated in 17.1, the tasks of the AAM
in the eye tracking system are; to provide the pose of the face, and to �nd
the region of the eyes. A bounding box given by the eye corners is extracted
and passed on to the eye tracking algorithms presented in part II together
with the estimated pose. All this, requires the AAM to accurately �nd and
track the face.

18.1 Constructing the AAMs
Before proceeding, a set of active appearance models must be created. Models
of three di�erent datasets have be made:

Dataset 1 : A person speci�c AAM constructed from a image sequence of
5000 frames of a talking man[20]. Every tenth frame of the �rst 1000
frames have been used for training.

Dataset 2 : A person speci�c AAM constructed from a sequence of 340
frames of one of the authors.

Dataset 3 : A multi-person AAM constructed from 240 images of 40 di�erent
human faces[60].

Figure 18.1 depicts examples of all three training set with training set 1 to
the top left, 2 to the top right, and 3 at the bottom of the �gure.

The number of shape eigenvectors to use is chosen by thresholding on the
total variance as described in section 5.2.2. The number of modes explaining
95% of the total variance are retaining for each model. For Dataset 1, this
yields 5 component, Dataset 2 consist of 2 modes, and the multi-person
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Figure 18.1: Examples of training images. Training set 1 to the top left, 2 to the top
right, and 3 at the bottom.
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Dataset 3 uses 21 eigenvectors. It is seen that the number of modes for the
multi-person dataset is signi�cantly bigger than for the two single-person
datasets. Since Dataset 3 must model head rotation and a lot of inter-person
di�erences in size and shape of the head, a large number of components is
needed.

In the following sections the capability of the AAM as an image segmen-
tation and feature extraction method is investigated.

18.2 Convergence
To measure the convergence of the AAM, model instances are placed in
various images. The vertices of the instances should hopefully converge to
the ground-truth points corresponding to the image.

Since the AAM �tting algorithm is based on a local optimization method,
it has the risk of getting stuck in a non-optimal local minima. Therefore, the
quality of the �t is very dependent on the starting point of the search. To
get a 'fair' measurement, a number of searches are conducted from di�erent
starting points. The starting points are distributed as circles with expanding
radius. The circles center lies in the center of gravity of the ground truth
points. Figure 18.3 depicts the starting points. The points are distributed
with radii [1, 5, 10, . . . , 35]. Each circle consists of 25 starting points. An
experiment is conducted for each starting point, and the point-to-point error,
see (17.1), is recorded at each iteration of the AAM search algorithm.

To illuminate any di�erences between single person and multi person
AAMs, the experiment is made on �ve images from the single-person AAM,
Dataset 2, and �ve from the multi-person Dataset 3, not used in the model
training. A test image from each of the test sets is depicted in �gure 18.2.

The searches are performed by translation of the mean shape of the model
to the starting point, and commencing the search.

Figure 18.4 depicts the iterations of an AAM search, starting at the top
left image. Notice that the top three images mostly consist of translation
of the mean shape, corresponding to optimization of the global shape trans-
formation described in 9.4. In the bottom three images, the optimization is
mostly in the deformation of the mean shape.

18.2.1 The Average Frequency of Convergence
To investigate the �tting performance of the AAM, a measure is introduced;
the average frequency of convergence. We count the number of times for each
circle the algorithm converges. Figure 18.5 depicts the average frequency of
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Figure 18.2: Two of the test images used in the convergence test. The left image
corresponds to Dataset 2, the right to Dataset 3.

Figure 18.3: Convergence Test starting points. The red dots indicate the starting
location of the AAM instance
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Figure 18.4: Iterations of an AAM search The start of the search, depicted in the top
three images, mostly consist of translation of the mean shape, corresponding to optimiza-
tion of the global shape transformation. In the bottom images the shape is deformed to
�ne tune the �t of the face. mean shape.

convergence for the single-person AAM of Dataset 2 and the multi-person
AAM of Dataset 3.

The blue curve represents the single-person AAM, and as seen all searches
up until a circle radius of 20 pixels converge to the ground truth. Then it
slowly decays to roughly 50% convergence at a radius of 35 pixels.

The multi-person AAM, represented by the red curve, is seen to perform
very poorly. The frequency of convergence decays very fast with the radii of
the circles and at a radius of 30 pixel it does not converge at all.

One source for the poor performance might be traced to the fact, that the
inverse compositional AAM algorithm minimizes an error function, based on
the error between the mean texture and the image. See (8.31). If this mean
texture is calculated in a single-person AAM, the mean texture is a good
approximation to the face of the person. However, in multi-person AAMs,
the mean texture might be far from the face in the image. Figures 18.7 and
18.8 shows four surface plots of the error surface. The surfaces are made by
varying the parameters corresponding to the two �rst shape eigenvectors, bs1

and bs2 , while zeroing the rest. The mean shape is translated to the center
of gravity of the ground truth, and placed in the corresponding test images.
Then the mean shape is warped according to the values of bs1 and bs2 , see
�gure 18.6 for an example. The error function value, (8.31), is calculated
and used as 'z'-value in the surface plot.

The plots depicts the value of the error function as a function of the
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Figure 18.5: Convergence test. The fraction of converged AAM searches. The blue
curve indicate the single-person dataset, and the red curve the multi-person.

Figure 18.6: A shape corresponding bs1 and bs2 equal to −3 standard deviations used
in the calculation of the error surfaces.
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Figure 18.7: Error surfaces for (8.31) depicting the value of the error function as a
function of two parameters. They are made by varying the parameters corresponding to
the two �rst shape eigenvectors, bs1 and bs2 , while zeroing the rest. The mean shape is
translated to the center of gravity of the ground truth corresponding to the test image..
The parameters are varied between ±3 standard deviations of the parameters. The left
surface correspond to the AAM built from Dataset 2, and the right correspond to Dataset
3.

parameters. The surfaces of �gure 18.7, corresponds to variations of the pa-
rameters between ±3 standard deviations. It is seen that the error function is
very well suited for gradient descent optimization. Both contain no obvious
local minima that might confuse the optimizer. The surface plots of �g-
ure 18.8, corresponds to variations of the parameters between ±7 standard
deviations. It is seen that the error surfaces corresponding to the multi-
person dataset is more challenging with local minima in abundance. Since
the multi-person dataset lives in a 21-dimensional space, claiming that a local
minimum in the surface of �gure 18.8, is truly a local minimum, is not pos-
sible. However, the surface gives an indication that a local minimum might
be there.

Since the inverse compositional AAM uses unconstrained non-linear op-
timization, there is nothing to hinder it obtaining values of the parameters
outside the values of ±3 standard deviations. Thus in the course of the op-
timization the model instances might be illegal shapes. If the optimization
were to be constrained to ±3 standard deviations, the error surfaces, given
by the parameters bs1 and bs2 at least, are smooth and the steepest descent
direction points towards the correct minimum.
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Figure 18.8: Error surfaces for (8.31) corresponding to the test images depicting the
value of the error function as a function of two parameters; bs1 and bs1 . The parameters
are varied between ±7 standard deviations of the parameter. The left surface correspond
to the AAM built from Dataset 2, and the right correspond to Dataset 3.

18.3 Tracking
The model made from Dataset 1 is used to test the tracking capabilities.
The dataset consist of a vast amount of annotated video frame. The person
in the video is a man engaged in conversation, laughing and gesturing, but
primarily focusing his gaze towards the camera. This dataset could resemble
a human-computer interaction session, where the users head is non-stationary
but still maintaining his primary gaze direction towards the screen.

Figure 18.9 depicts the AAM �t of six frames of the test set. For each
frame the mean Euclidian distance to the ground truth points are calculated.

Figure 18.10 illustrates the error as a function of frame number shown in
the blue curve. From frame number 25 to 40 a peak in the error is visible.
In �gure 18.11 the related frames can be seen. The error is caused by the
person pursing his lips. The AAM model trained has trouble modeling this,
and thus the �t of the mouth is very bad. This can be seen in �gure 18.12
which highlights the error in a close up view. However, this is an eye tracking
application and not a lip reader so how about calculating the error in the �t
of the eye corners. This error is plotted in the red curve in �gure 18.10, and
it is seen that the lip pursing does in�uence the eye �t. This is a problem
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Figure 18.9: Six frames from the tracking test. The ground truth point are depicted
as cyan dots. Notice how the AAM �ts the face through the image sequence, although
especially along the cheek the point-to-point correspondence is not exact.
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Figure 18.10: The mean Euclidean distance between the ground truth and the vertices
of the AAM instance. The red curve indicates the error between the ground truth eye
corners and the corresponding AAM instance vertices. The blue curve indicates the mean
error for all vertices and corresponding ground truth points. Notice the peak in error
between frame number 25 and 40. This corresponding images can be seen in �gure 18.11.
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Frame : 25 Frame : 30

Frame : 35 Frame : 40

Figure 18.11: The frames related to the peak in the mean Euclidean error shown in
�gure 18.10.

inherent in the AAM. It uses PCA to describe the space of the training
examples. Thus there might be a coupling between lip and eye movements,
and so an error in one place of the face can propagate into another region.
This is visible in �gure 18.12 which depicts a close up of one of the eyes,
and the region around the mouth. Notice the contour along the cheek has
moved into the face region as a consequence of the poor �t. However, the
error induced is not larger than a successful extraction of the eye region can
be made.

18.4 Discussion
The responsibilities of the AAM in the eye tracking system, are to provide
coordinates of the corners of the eyes, and to estimate the pose of the face by
�nding feature points in the face. In this chapter the capability of the AAM
to overcome these tasks have been investigated.

18.4.1 Convergence
First the ability to �nd feature points in the face has been tested. This is
done by testing the frequency of convergence of the AAM search algorithm.
A comparison between an AAM built on a dataset of a single person, and
an AAM built on a multi-person data set. Figure 18.5 shows the frequency
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Frame : 35
Frame : 35

Figure 18.12: Close up frames related to the peak in the mean Euclidean error shown
in �gure 18.10. The AAM search seems caught in a local minimum along the cheek as
depicted in the left image. Also note the inverted triangles around the mouth. This is
another of the problems, using a general unconstrained optimizer. The error of the vertices
along the cheek propagate to the eye as well, as seen in the right image.

of convergence. The AAM, using the inverse compositional algorithm, �ts
very good with single-person models but very poorly with multiple-person
models. As discussed previously this may be caused by the surface of the
error function contains more local minima for the multi-person AAM than
for single person AAM. Also the minimization takes place in a 2-dimensional
space for Dataset 2 versus a minimization in a 21-dimensional space for the
multi-person AAM.

Several steps can be made for avoiding these local minima. A multireso-
lution approach has been described in [21] and used with success in an AAM
framework. The surface plots of �gures 18.7 and 18.8 indicate that the sur-
face is more smooth and the local is very distinct when the area de�ned by ±3
standard deviations. A second way to overcome the local minima would be to
constrain the parameters to the range from −3 to 3 standard deviations. In
[10] Baker and Matthews presents an extension of the inverse compositional
algorithm which optimizes with constraints on the parameters.

A second reason for the poor performance can be that the distribution
of training shape is far from Gaussian. Figure 18.13 shows a plot of the
training shapes of Dataset 3 projected onto the space spanned by the �rst
two eigenvectors. The black ellipse indicate ±3 standard deviations. As
seen a gaussian distribution is not a very good model of the distribution of
the training examples. It seems that the training data is parted in to three
distinct groups. Thus, any instance draw from a position between the groups
could constitute an illegal shape. The magenta rings in �gure 18.13 are the
projections of a model instance during the �ve iterations of an AAM search.
The result is depicted in �gure 18.14 and it is clearly seen that the model
instance is an illegal shape, even when the parameters are in the range of
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Figure 18.13: The training shapes from Dataset 3 projected into the �rst and second
eigenvector. The blue dots indicate training examples, and the red star is the mean. The
magenta rings indicate the projection of a model instance at each iteration of an AAM
search. Figure 18.14 shows the resulting shape overlain the test image.

±3 standard deviations. To overcome this problem, other distributions, for
instance a mixture of gaussians, could be used.

18.4.2 Tracking
Tracking using the AAM is just an application of the AAM search on a
sequence of images. The starting point in one frame is the convergence of
the last frame. In this test, the ability to keep the convergence on a moving
face, is tested. As seen from the test in section 18.3 the AAM is perfectly
capable of tracking a face in situations of normal human behavior. However,
the variations in the mimic of a human face are endless, and the AAM is only
trained on a �nite dataset, so outliers may occur. As seen in �gure 18.10,
the AAM is capable of recovering the tight �t.

18.5 Improvements
Using gaussian pyramids can solve some of the problems of the AAM relating
to local minima of the surface of the error function. A set of downsampled
versions of the image is used in a hierarchial scheme for �tting the AAM.
The AAM is applied to the image with lowest resolution �rst continuing on
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Figure 18.14: An AAM search gone wild. The AAM was initialized at the center of
gravity of the ground truth data.

to the original image. The �t from the lower resolution image is propagated
as initializer at the next level.

A further improvement would be to include priors on the shape parame-
ters constraining them to be within certain boundaries.

Using gaussian mixture models[21] to model the distribution of the pa-
rameters better can also hinder illegal shapes occurring.

Matthews and Baker proposes using more sophisticated non-linear opti-
mization methods, such as the Levenberg-Marquardt algorithm.

18.5.1 Summary
In this chapter, the ability of the AAM to function as a feature detector and
tracker of facial features has been tested. From the tests it has been shown
that the AAM is a suitable tool in the overall eye tracking system presented
in this thesis.
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Chapter 19

Eye Tracking

Detection of the human eye is a di�cult task due to a weak contrast be-
tween the eye and the surrounding skin. As a consequence, many existing
approaches use close-up cameras to obtain high-resolution images[36]. How-
ever, this imposes restrictions on head movements. The problem can be
overcome utilizing a multiple camera setup[56][92].

The eye trackers from chapter 13 and 14 are evaluated below. In partic-
ular we propose a robust algorithm for swift eye tracking in low-resolution
video images. We compare this algorithm with a proven method EM active
contour algorithm [36] and relate the pixel-wise error to the precision of the
gaze determination.

The importance of image resolution is investigated by comparison of two
image frame setups with di�erent resolution. One containing close up images
- denoted as high-resolution images, although the resolution is [351x222]
pixels; or 0.078 megapix. Another one containing a down-sampled version
hereof ensuring identical conditions such as illumination, re�ections, and eye
movements. The low-resolution images corresponds to the full-face image
setup, utilizing a standard digital camcorder of [720x576] pixels, seen in �gure
17.3.

A couple of examples from the 378 frame video sequence is seen in �gure
19.1. When the camera lies on the optical axis of the eye, the contour can be
modeled as a circle. However, when the gaze is turned o� the optical axis,
the circle is rotated in 3D space, which can be interpreted as an ellipse in
the image plane. Thus, the shape of the contour changes as a function of the
gaze direction, which is seen �gure 19.1.
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Figure 19.1: Examples from the dataset. (Top �gures:) High-resolution data [351x222]
pixels; (Top left:) The iris and pupil have a diameter of 33 and 83 pixels respectively.
They can both be approximated by circles when the gaze is straightforward. (Top right:)
When the gaze is turned o� the optical axis, the circle is rotated in 3D space, which can
be interpreted as an ellipse in the image plane. Thus, the resolution is (57, 80) and (26, 40)
in the x- and y-direction respectively. (Bottom �gures:) The downsampled version of the
upper �gures; The resolution is decreased to [88x53] pixels.
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Notation

A number of �gures, where the names are shortened, are presented in the
following. To ease understanding, the shortened names are listed below:
AC Active contours.
Cons Constraining the shape of contours.
EM Expectation-maximization optimization of contours.
DT Deformable Template Matching optimization of contours.
Thres Double Thresholding.
TM Template Matching.
TMref Template Matching re�ned by the ellipse �tting algorithm.
TMrgb Color-Based Template Matching.
Deform Deformable Template Matching initialized by double thresholding.

19.1 Performance of Segmentation-Based Eye
Trackers

Recall the eye trackers presented in chapter 13: The heuristic double thre-
holding, template matching, and deformable template matching. These meth-
ods estimate the center of the pupil. For each frame the error is recorded
as the di�erence between a hand annotated ground truth and the output of
the algorithms. This may lead to a biased result due to annotation error.
However, this bias applies to all algorithms and a fair comparison can still
be made. The mean error is shown in �gure 19.2.

The re�ned version of template matching actually improves the precision
as intended. The cost is, however, longer computation time and a worsening
in robustness due to the lack of shape constraints.

The color-based template matching method exploits the fact that colors
of the eye region di�ers signi�cantly from the surrounding skin. Neverthe-
less, the method may be confused due to the heavy edges found e.g. in the
eyebrows. This can be overcome, but the robustness of the method is not
satisfactory in general.

Double tresholding is clearly the fastest method with a framerate close to
70 frames per second for low-resolution images. This is more than needed in
realtime videos (25fps). The relationship between pixels are not considered
by thresholding, instead each pixel are classi�ed independently of its neigh-
bors and is therefore sensitive to noise. The accuracy is, unfortunately, not
good enough to utilize the method as a "stand-alone" eye tracker. Instead,
it can be used to initialize other methods such as the deformable template
matching method. This combination results in a fast, accurate eye tracker
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Figure 19.2: Performance of the segmentation-based trackers. (Top �gures:) Mean
error; The lowest error is obtained by use of deformable template matching, while the
color-based template matching has the highest. (Bottom �gures:) The framerates of the
methods are evaluated as the number of frames processed pr. second. Double Thresholding
is the fastest method.
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as depicted in �gure 19.2.
The precision of the template matching - basic and re�ned - and the de-

formable template matching is accurate almost independent of resolution and
they are very fast for low resolution images. The precision of the heuristic
double thresholding worsens when decreasing resolution. The edges con-
fusing the color-based template method is smoothed out to some extent,
consequently the performance is improved. Interpreting the results, the de-
formable template matching method should be chosen if one focus on high
accuracy. On the other hand, if one require as less computation time as
possible, the basic template matching should be utilized.

19.2 Performance of Bayesian Eye Trackers
A Bayesian approach for eye tracking is presented in chapter 14. The eye
is tracked from a video sequence utilizing the active contour method [36][64]
and particle �ltering, but extended with constraints, robust statistics, and a
novel re�nement method - Deformable template matching.

A few examples of the tracker is depicted in the theory part in �gure
14.8. Tracking the eyes during blinking is a challenging task. An example
of this phenomena is illustrated in �gure 19.3. The extension of the contour
method, increases the robustness to outliers and relaxes the importance of
the hypotheses along the contour around the eyelids. The resulting estimate
of the iris center is seen, in bottom right �gure 19.3, to be �ne.

The performance of the active contour methods are evaluated by averag-
ing over 10 runs of the video frame sequences. Figure 19.4 depicts the error
as a function of the number of particles used, for low resolution and high
resolution images respectively. The errors of the three di�erent active con-
tour algorithms are shown; basic, with EM re�nement, and with deformable
template re�nement. In addition, the constraints regarding the mentioned
methods are evaluated.

The proposed constraints on the active contour generally improves the
accuracy of the �t. However, utilizing the constraints with more than 50 par-
ticles in high-resolution images, worsens the precision. This is caused by the
fact that the contour shape changes with the gaze direction; in the extreme
directions of gaze, the contour is deformed to an extent which is penalized
by the constraints. Thus, there is no need to constraint the deformation,
when the number of particles is su�ciently large on high-resolution images.
The constraints should therefore be utilized on low-resolution images, and
to avoid a break down of the algorithm due to poor data. In contrast, the
constraints on the deformable template never worsens the accuracy. The two
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Figure 19.3: The active contour algorithm utilizes particle �ltering. (Top left:) A
frame challenging the eye trackers; eye blinking. (Top right:) A set of particles is drawn
from a prediction prior. (Bottom left:) By evaluation of the hypotheses regarding the
particles, a new re-sampled set of particles is obtained. This is the estimated posterior
state distribution. (Bottom right:) The current state is then found by taking the sample
mean of the estimated posterior probability. Notice that the algorithm is capable to
estimate the center of iris, despite the fact that a major part of the iris is occluded by the
eyelid.
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Figure 19.4: Performance of the active contour averaged across 10 runs of each method.
(Top �gures:) The error of the active contour algorithms as a function of the number of
particles and resolution. Constraining the shape deformation clearly improves the accuracy
of the contour method in low-resolution and high-resolution images with few particles.
Utilizing the constraints with more than 50 particles in high-resolution images, worsens
the precision. In general, the deformable template re�nement has the best precision.
(Bottom �gures:) The framerate of the methods are evaluated as the number of frames
processed pr. second. The framerate is highly dependent on the number of particles, and
the basic contour is considerably faster than the re�ned versions. On the other hand, the
number of particles needed is reduced signi�cantly by use of re�nement.



152 CHAPTER 19. EYE TRACKING

error curves converges to the same value when the number of particles is
increased. Contrary to the iris, the pupil is not partly occluded except when
blinking. Therefore, the method is more accurate although the number of
particles is lower.

The re�nement by the deformable template outperforms the EM method
- Even when comparing low-resolution image to EM re�nement on high-
resolution images. The cost is an increased number of computations, which is
resolution dependent. The basic, or even EM re�ned, active contour is faster
than the deformable re�nement utilizing few particles in high-resolution data.
Conversely, increasing the number of particles or by use of low-resolution
images, this re�nement is not signi�cant slower.

In general the methods perform better in high-resolution images com-
pared to low-resolution images, where the dependency on the number of
particles is increased. The cost of increasing the number of particles is an
increased number of computations - leading to a lower framerate. The de-
formable template is, however, only dependent on the resolution. Hence, the
framerate is increased when the number of pixels is decreased.

Corneal re�ections caused naturally by illumination challenges the eye
tracking methods. Typically, this phenomenon in�uences on the accuracy
- The estimate is biased to some extent. A frame sequence exemplifying
handling of corneal re�ections is shown in �gure 19.5. The light conditions
result in strong re�ections in bottom left �gure. By weighing the hypotheses
as proposed in section 14.6 and utilizing robust statistics regarding the de-
formable template, increases the robustness and accuracy of the estimate of
the iris center. An illustrative example is found in �gure 14.4.

19.2.1 Ability to Handle Eye Movements
The particles are drawn from a narrower distribution in frame sequences
where the center location of iris is nearly static. In this case, sudden eye
movements may confuse the contour method. The re-sampling of particles,
broadens the state distribution and thus recovering the �t in a few frames.

The performance of the contour method under dynamic and static states
is shown in �gure 19.6. The performance is certainly a�ected by eye move-
ments, when utilizing few particles. The error of the dynamic frames is in
general a bit larger, but vanishes when the number of particles is increased.
The deformable template has, surprisingly, a lower error in these frames. This
is caused by the fact, that the error is in average larger in the extremes of
the gaze direction; the eye is typically static in these states. Hence, the error
function is biased to some extent. The in�uence on the low-resolution data
is less compared to the high-resolution. This is due to the relative smaller
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Figure 19.5: The resulting �t on four frames from a sequence - the red contour indicates
the basic active contour, green indicates the EM re�nement and the cyan indicates the
deformable template initialized by the heuristic method. The images illustrates the bene�t
of �tting to the pupil rather than the iris. Using robust statistic the in�uences from corneal
re�ections on the deformable template �t are ignored as depicted in the left bottom image.
In addition, weighting the hypotheses improves the �t when a part of the iris is covered
or during blinking.

motion in pixels, but the error is obviously greater on average.

19.3 Comparison of Segmentation-Based and
Bayesian Eye Trackers

The bayesian and segmentation-based trackers have both pros and cons re-
garding accuracy, robustness and speed. The mean error of the center of
iris is computed and the results of the presented methods are shown in ta-
ble 19.1. Additionally, the in�uence on the gaze and framerate is presented.
The active contour uses 200 particles ensuring optimal accuracy, but decreas-
ing the framerate. The number of particles is a trade-o� between accuracy
and computation time as depicted in �gure 19.4. The deformable template
model initialized by the heuristic method - Double thresholding - is the most
accurate tracker. Additionally, initializing by active contours leads to high
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Figure 19.6: Investigation of performance of the active contour tracker, when the state
propagation is dynamic (D) or static (S) respectively. The performance is certainly af-
fected by eye movements, when utilizing few particles. The error of the dynamic frames
is in general a bit larger, but vanishes when the number of particles is increased. The
deformable template has, surprisingly, a lower error in these frames. This is caused by the
fact, that the error is in average larger in the extremes of the gaze direction; the eye is
typically static in these states. Hence, the error function is biased to some extent. The
in�uence on the low-resolution data is less compared to the high-resolution. This is due
to the relative smaller motion in pixels, but the error is obviously greater on average.

precision. The highest framerate is obtained using double thresholding and
basic template matching.

The color-based template matching is not evaluated further due to poor
performance. Neither is the heuristic threshold method, since the method is
utilized to initialize the deformable template method.

19.3.1 In�uence of Gaze Direction

Intuitively, the error is highly dependent on the gaze direction. When the
gaze direction is inward or outward, a part of the iris is covered by the
eyelid, hence, fewer points are available for contour estimation - challenging
the algorithms. This fact is investigated and depicted in �gure 19.7 and 19.8.

Notice, that the number of particles needed for the active contour method,
is considerably lower for deformable template re�nement. The pupil is, in
contrast to the iris, not covered with the only exception when blinking.
Therefore, the method is more accurate although the number of particles
is lower.
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Figure 19.7: Investigation of performance of the active contour tracker, when the gaze
direction is inward (towards the nose), neutral, and outward (away from the nose). (Left
Column:) High-resolution data. (Right Column:) Low-resolution data. The error is in
general highly dependent on the gaze direction. When the gaze direction is inward or
outward, a part of the iris is covered by the eyelid, hence, fewer points are available for
contour estimation - challenging the algorithms. Notice, that the number of particles
needed, is considerably lower for deformable template re�nement. Contrary to the iris,
the pupil is not partly occluded except when blinking. Therefore, the method is more
accurate although the number of particles is lower.
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Hi-res Data Lo-res Data
Method E(x, y)[mm] E(θ) [frame/s] E(x, y)[mm] E(θ) [frame/s]
AC w/Cons. 1.2 5.2 0.54 1.2 5.5 0.57
AC 0.95 4.1 0.54 1.5 7.3 0.57
AC w/EM Cons. 1.1 5.1 0.49 1.2 5.2 0.55
AC w/EM 0.85 3.7 0.49 1.5 6.9 0.55
AC w/DT Cons. 0.53 2.4 0.38 0.60 2.8 0.49
AC w/DT 0.55 2.5 0.38 0.81 3.7 0.49
Thres. 0.95 4.4 13. 1.7 8.0 67.
TM 1.2 5.5 0.80 1.2 5.5 17.
TMref 0.79 3.7 0.23 1.1 4.9 2.4
TMrgb 4.5 21. 0.13 2.0 9.5 2.0
DT 0.30 1.4 2.2 0.49 2.3 8.4

Table 19.1: Speed and precision comparison of the algorithms - red indicates remarkably
�ne results, while blue poor results. The active contour uses 200 particles ensuring optimal
accuracy, but decreasing the framerate. The number of particles is a trade-o� between
accuracy and computation time as depicted in �gure 19.4. The deformable template model
initialized by the heuristic method - Double thresholding - is the most accurate tracker.
Additionally, initializing by active contours leads to high precision. Double thresholding
and basic template matching have the highest framerate.
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Figure 19.8: Investigation of performance of the best segmentation-based trackers, when
the gaze direction is inward (towards the nose), neutral, and outward (away from the nose).
(1 ) High-resolution data. (2 ) Low-resolution data. The error is highly dependent on the
gaze direction. A part of the iris is covered by the eyelid, when the gaze direction is
inward or outward. As a consequence, fewer points are available for contour estimation.
The pupil is, in contrast to the iris, not covered with the only exception when blinking.
Therefore, the method is more accurate although the number of particles is lower.
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Figure 19.9: Utilizing eye tracking in human computer interaction, limits the needed
freedom of gaze. A person sitting in front of (60cm from) a 19" monitor is able to reach
every point by gaze within 17 degrees. Illustrated is the performance of the eye trackers
applied to a limited dataset with gaze directions within 20 degrees. The error is of same
magnitude as for neutral gaze illustrated in �gure 19.7 and 19.8. The precision is found
in table 19.2

.

19.3.2 Human Computer Interaction
Above is demonstrated that the error is highly dependent on the gaze di-
rection. When the gaze direction reaches the extremes in the horizontal
direction, the �eld of view is approximately within ±50 degrees. This is
far beyond what is needed in many applications, e.g. human computer in-
teraction. Utilizing eye tracking in human computer interaction, limits the
needed freedom of gaze. Suppose a person sitting in front of (60cm from)
a 19" monitor. Every point can be reached with a �eld of view within 17
degrees.

The dataset is now limited to gaze directions within 20 degrees. The error
is of approximately same magnitude as for neutral gaze illustrated in �gure
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Hi-res Data Lo-res Data
Method E(x, y)[mm] E(θ) E(poi)[cm] E(x, y)[mm] E(θ) E(poi)[cm]
AC 0.76 3.5 4.1 0.98 4.5 5.2
AC w/EM 0.65 3.0 3.5 0.88 4.1 4.8
AC w/DT Cons. 0.30 1.4 1.6 0.50 2.3 2.6
TM 1.1 5.0 5.9 0.80 3.7 4.3
TMref 0.64 3.0 3.5 1.1 4.9 5.7
DT 0.28 1.3 1.5 0.40 1.8 2.1

Table 19.2: The error on the center of iris, gaze and inaccuracy on the screen (poi
- point of interest) is compared on a limited dataset for human computer interaction -
red indicates remarkable �ne results, while blue poor results. The active contour uses 200
particles as previous (see table 19.1). High-resolution data is in general more accurate than
low-resolution. Nevertheless, the deformable template model initialized by the heuristic
method - Double thresholding - is not as dependent on the resolution as the other methods.
In addition, the deformable template model initialized by active contours is an accurate
eye tracker. Surprisingly, the basic template matching method performs better for low
resolution - than high resolution.

19.7 and 19.8. The performance of the limited data is depicted in �gure 19.9,
and the error on the center of iris, gaze and inaccuracy on the screen is found
in table 19.2.

High-resolution data is in general more accurate than low-resolution.
Nevertheless, the deformable template model initialized by the heuristic
method - Double thresholding - is not as dependent on the resolution as
the other methods. In addition, the deformable template model initialized
by active contours is an accurate eye tracker. Surprisingly, the basic template
matching method performs better for low - than high resolution. The ring
template �lter, described in section 13.2 applied on low-resolution, performs
better due to the relative broader �lter. Increasing the width of the ring tem-
plate, regarding high-resolution data proportionally to the low-resolution,
decreases the performance. The increased amount of gradients confuses a
broad �lter.

19.4 Gaze Estimation
A dataset is collected under relatively controlled conditions as seen in �gure
17.1. The gaze direction is turned at a collection of markers placed at some
controlled points in 3D space. By recording multiple sequences of di�erent
head and eye positions, the anatomical constants can be computed, which
is used for gaze determination. All variation is in the yaw, pitch and roll
direction within ±30 degrees relative to frontal images.

In spite of the relative controlled conditions while recording data, the gaze
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Figure 19.10: Examples of gaze determination. (Top) The eye corners detected by AAM
(green) and pupil location (red) is utilized for gaze determination. (Bottom) The corre-
sponding directions - The blue arrow corresponds to θx, while the red arrow corresponds
to θy.

direction cannot be evaluated fairly against the ground truth. This is partly
caused by the overall uncertainty, and partly due to the physical di�cult sep-
aration of face pose and pupil location for a person; e.g. how to separate the
horizontal head and eye direction (φx, θx) = (20, 0) with (φx, θx) = (17, 3).
Information concerning position and yaw can be obtained by use of a gyro-
scope and an accelerometer[85]. However, utilizing eye tracking in human
computer interaction, the mapping from the pose of eye to point on screen -
calibration - is computed similarly to the one described.

The gaze error found in the above tables are theoretic, but are still usable
for evaluation of the methods.

19.5 Discussion
Several eye tracking methods has been presented and evaluated through a set
of experiments. The methods have both pros and cons regarding accuracy,
robustness and speed.

The chosen number of particles utilized by active contours is a trade-o�
between accuracy and computation time. The number of particles can be
reduced by applying the EM algorithm to re�ne the posterior state. Addi-
tionally, re�ning by deformable template improves the �t.
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The proposed constraints on the hypotheses result in a better and more
robust estimate of the contour. Ignoring these may confuse the algorithm to
shrink and �t to the corneal re�ections in outlier frame sequences. When the
size of the contour is decreased, it cannot grow to the size of iris again.

Constraints regarding the shape of the contour increases the robustness,
but utilizing the constraints with more than 50 particles in high-resolution
images, worsens the precision. Consequently, there is no need to constrain
the deformation, when the number of particles is su�ciently large on high-
resolution images. The constraints should therefore be utilized on low-
resolution images, and to avoid a break down of the algorithm due to poor
data. In contrast, the constraints on the deformable template never worsens
the accuracy.

Among the segmentation-based trackers, the deformable template match-
ing method should be chosen if one focus on high accuracy. On the other
hand, if one require as low computation time as possible and the images are
of low-resolution, the basic template matching should be utilized.

In general, the highest framerate is obtained using double thresholding
and basic template matching. The most accurate tracker is the deformable
template model initialized by the heuristic method - double thresholding.
It is shown that the deformable template model is accurate independent of
resolution and it is very fast for low resolution images. This makes it useful
for head pose independent eye tracking. Additionally, initializing by active
contours leads to high precision. The improved performance is caused by
the object being tracked - the pupil. In contrast to the iris, the pupil is not
occluded by the eyelids with the only exception during blinking. Intuitively,
the active contour method should be modi�ed to estimate the contour of the
pupil. However, the contour between pupil and iris is weak resulting in an
unstable tracker. Test has shown that if the variance of the state propagation
is broad enough, the contour algorithm, sooner or later, expands the contour
to �t to the iris.

19.5.1 Interpretation of Performance
The accuracy of the gaze determination is satisfactorily compared to other
proven methods. Ishikawa et al.[43] reports an average error of 3.2 degrees.
Moreover, their proposed method - combining an AAM with a re�ned tem-
plate matching method for iris detection - is evaluated in a car. A frame
is exempli�ed in �gure 19.11, where the yellow circle corresponds to a 5.0
degree gaze radius.

Tobii Technology AB reports an average error of 0.5 degrees in front of a
17" monitor[89]. This is a commercial system using infrared illumination.
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Figure 19.11: Image from [43]. A driver follows a person walking outside by gaze. The
yellow circle corresponds to a 5.0 degree gaze radius.

But, how accurate do we expect the eye tracker to be? In fact, the gaze
is not a stringent line in space. The human eye perceives the immediate
surrounding of its point of gaze through its peripheral vision, thus an error
of 1 degree obtained from the tracker is lost in the noise of how the human
eye works anyway[83].

Example
While staring at this word, other words are clearly seen. Without moving
the eyes, a couple of words in front of, behind of, and on the line below
can probably be read too. It is, however, harder to make out speci�c words
that are a couple paragraphs away. Hence, with a margin of error of plus or
minus 1 degree of visual angle, this error falls within the margin of error of
the natural function of the human eye.

"... it is completely natural for people to focus just above or just
below the line of text that they are actually reading."

- C. Johnson et al.[83].
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Chapter 20

Summary of Main Contributions

The main objectives set forth was to:

Develop a fast and accurate eye tracking system enabling the user
to move the head naturally in a simple and cheap setup.

The objective was divided into three components - Face detection and
tracking, eye tracking and gaze determination. The gaze precision, however,
is totally dependent on the quality of the face and eye tracking components.
Thus, improving gaze precision, has to be done at the two lower levels.

In this thesis, a fully functional eye tracking system has been developed.
It complies to the objectives set for the thesis:

• A face tracker based on a new, fast, and accurate Active Appearance
Model of the face. It segments the eye region, and provides the pose of
the head.

• Several eye tracking algorithms - segmentation-based and bayesian - has
been proposed and tested. They provide fast and accurate estimate of
the pupil location.

• Determination of gaze direction is obtained by exploiting a geometric
model. With this, the true objective of the eye tracking system is
accomplished.

20.1 Face Detection and Tracking
Regarding face detection and tracking, a complete functional system has been
implemented. The theory and application of the Active Appearance Model
have been described, with the main points:
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• The building of an Active Appearance Model of faces.

• The model �tting algorithm which uses a new, faster, analytical gradi-
ent descent based optimization rather than the usual ad-hoc methods.

• A 3D model of the face is used to extract head pose from the �t of the
AAM.

20.2 Eye Tracking
Several eye tracking algorithms has been proposed, described and tested. The
main di�erence is the propagation model - that is, how the system dynamics
are propagated given the previous state estimates. While the segmentation
based tracking uses the last estimate as starting point for a segmentation
method, or even no knowledge of old states at all, the bayesian tracker pre-
dicts the state distribution given previous state. The main contributions
are:

Segmentation-Based Tracking
• A fast adaptive double thresholding method. The high threshold can

be interpreted as a �lter regarding the low threshold.

• Template matching of two templates are merged.

• Template matching including a re�ning step and extended with outlier
detection.

• Color-based template matching utilizing information from color gradi-
ents.

• Deformable template matching capable of handling corneal re�ections
by utilizing robust statistics. Additionally, we constrain the deforma-
tion. The method is based on a well-proven optimization algorithm -
Newton with BFGS updating.

Bayesian Eye Tracking
The proven active contour algorithm[36] is extended to improve robustness
and accuracy:

• Weighing of the hypotheses to relax their importance along the contour
around the eyelids. Moreover, it penalizes contours surrounding bright
objects.
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• Robust statistics to remove outlying hypotheses stemming from corneal
re�ections.

• Constraining the deformation of the contour regarding the magnitude
of the axes de�ning the ellipse.

• Re�nement of the �t by a deformable template model of the pupil.
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Chapter 21

Propositions for Further Work

In this chapter naturally extensions to the algorithms, developed during this
master thesis work, are proposed.

• The Levenberg-Marquardt non-linear optimization algorithm would nat-
urally extend the existing AAM algorithm using the Gauss-Newton al-
gorithm. This would enable faster convergence, stemming from larger
initial steps in the optimization.

• Utilizing prior knowledge of the shape of a face, could be incorporated
in the algorithm in the form of priors on the parameters.

• Implementing an optimization scheme using gaussian pyramids would
be a fast way to improve the �tting.

• A new shape model could be tested. One which utilizes global knowl-
edge of the face, such as inter-relationship between the the face and
the mouth, the location of eyebrows etc., to improve the accuracy and
speed of the �t.

• Extending the iris contour model to a full shape model of the eye,
may provide additional accuracy to iris detection. Hence, hypotheses
occluded by the eyelids can be rejected.

• Optimization of the speed regarding the eye tracking can be obtained
through a variable number of utilized particles. Thus, increasing the
number of particles due to increased uncertainty.

• The constraints on the deformation can be extended, exploiting the
estimation of eye corners obtained from the AAM. Consequently, the
method should constrain the contour to be circular when the gaze di-
rection is neutral, but ellipsoid elsewhere.
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Chapter 22

Conclusion

As computers has become faster, the way we apply them become increasingly
complex. This opens a wide range of possibilities, for using computers as a
tool for enhancing the quality of life, learning human behavior, and increasing
the general safety. Today eye tracking is a technology in the making, and
we are just opening Pandoras box. Ensuring the success of eye tracking
applications, wide accessibility is required. This proposes a dilemma; low
cost equals low performance. To overcome this problem, sophisticated data
analysis and interpretation are required.

In this thesis, we have proposed an eye tracking system, suitable for use
with low cost consumer electronics. A system capable of tracking the eyes,
while putting no restraint on the movement of the head. Novel algorithms,
along with extensions of existing ones, have been introduced, implemented
and compared to a proven, state of the art, eye tracking algorithm.

An innovative approach, based on a deformable template initialized by
a simple heuristic, leads to the best performance. The algorithm is stable
towards rapid eye movements, closing of the eye lids, and extreme gaze di-
rections. The improved accuracy is due to tracking of the pupil rather than
the iris. This is particularly the case when a part of the iris is occluded.
Additionally, it is shown that the deformable template model is accurate, in-
dependent of the resolution of the image, and it is very fast for low resolution
images. This makes it useful for head pose independent eye tracking. The
precision of the estimated gaze direction is satisfactory, bearing in mind how
the human eye works.

In preparation of this thesis, countless lines of code has been written,
an endless amount of �gures has been printed, and thorough investigations
has been conducted leading up to the algorithms presented. However, many
stones has been left unturned; a few mentioned in chapter 21.

After six months . . . we have just opened our eyes. . .



172 CHAPTER 22. CONCLUSION



173

Appendix A

Face Detection and Tracking

A.1 Piecewise A�ne Warps
In this framework, a warp is de�ned by the relationship between two trian-
gulated shapes, as seen in �gure A.1. The left mesh is a triangulation Each
triangle in the left mesh has a corresponding triangle in the right mesh, and
this relationship de�nes an a�ne transformation.

Figure A.2 depicts two triangles, where the right triangle is a warped
version of the left. Denote this warp W(x;bs). If x1, x2 and x3 denotes the
vertices of the left triangle, the coordinate of a pixel x is written as,

x = x1 + β(x2 − x1) + γ(x3 − x1)

= αx1 + βx2 + γx3, (A.1)

where α = 1 − (β − γ), α + β + γ = 1 and 0 < α, β, γ < 1. Warping a
pixel x = (x, y)> is now given by transferring the relative position within the

Figure A.1: Left: The mean shape triangulated using the Delaunay algorithm. Right:
A training shape triangulated.
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Figure A.2: Piecewise a�ne warping[57]. A pixel x = (x, y)> inside a triangle in the
base mesh can be decomposed into x1 + β(x2 − x1) + γ(x3 − x1). The destination of x
under the warp W(x;bs) is x′1 + β(x′2 − x′1) + γ(x′3 − x′1).

triangle spanned by [x1 x2 x3] determined by α,β and γ, onto the triangle
spanned by [x′1 x′2 x′3],

x′ = W(x;bs) = αx′1 + βx′2 + γx′3. (A.2)

Determining α,β and γ for a given x = (x, y)> is done by solving (A.1)[79],

α = 1− (β − γ)

β =
yx3 − x1y − x3y1 − y3x + x1y3 + xy1

−x2y3 + x2y1 + x1y3 + x3y2 − x3y1 − x1y2

γ =
xy2 − xy1 − x1y2 − x2y + x2y1 + x1y

−x2y3 + x2y1 + x1y3 + x3y2 − x3y1 − x1y2

. (A.3)

The warp W(x;bs) can be parameterized as,

W(x;bs) =

(
a1 + a2 · x + a3 · y
a4 + a5 · x + a6 · y

)
. (A.4)

The parameters (a1, a2, a3, a4, a5, a6) can be found from the relationship of
two triangles, T1 and T2, with vertices denoted as (i, j, k) and (1, 2, 3) respec-
tively. Combining (A.1), (A.3) and (A.4) yields the values of the parameters,
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a1 =
xi + ((−x1y3 + x3y1 + x1y2 − x2y1)xi + (x1y3 − x3. ∗ y1)xj + (−x1y2 + x2y1)xk)

−x2y3 + x2y1 + x1y3 + x3y2 − x3y1 − x1y2

a2 =
((y3 − y2)xi + (y1 − y3)xj + (y2 − y1)xk)

−x2y3 + x2y1 + x1y3 + x3y2 − x3y1 − x1y2

a3 =
((−x3 + x2)xi + (x3 − x1)xj + (−x2 + x1)xk)

−x2y3 + x2y1 + x1y3 + x3y2 − x3y1 − x1y2

a4 =
yi + (yi(−x1y3 + x3y1 + x1y2 − x2y1) + (x1y3 − x3y1)yj + yk(−x1y2 + x2y1))

−x2y3 + x2y1 + x1y3 + x3y2 − x3y1 − x1y2

a5 =
(yi(y3 − y2) + (y1 − y3)yj + yk(y2 − y1))

−x2y3 + x2y1 + x1y3 + x3y2 − x3y1 − x1y2

a6 =
(yi(−x3 + x2) + (x3 − x1)yj + yk(−x2 + x1))

−x2y3 + x2y1 + x1y3 + x3y2 − x3y1 − x1y2

. (A.5)
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Appendix B

Bayesian Eye Tracking

B.1 Bayesian State Estimation
Bayesian methods provide a general framework for dynamic state estimation
problems. The Bayesian approach is to construct the probability density
function of the state based on all the available information.

Kalman �ltering[94] �nds the optimal solution given a linear problem
with Gaussian distributed noise.

For nonlinear problems there are no analytic expression for the required
pdf. The extended Kalman �lter[6] linearizes about the predicted state.
However, a more sophisticated approach is Particle �ltering[6][31], which is
a sequential Monte Carlo method. This is a generalization of the traditional
Kalman �ltering methods. A brief description is found in the following sec-
tion B.1.1.

B.1.1 Particle Filtering
Let {xi

0:k, w
i
k}Ns

i=1 denote a random measure characterizing the posterior pdf
p(x0:k|z1:k), where {xi

0:k, i = 0, . . . , Ns} is a set of support points with asso-
ciated weights {wi

k, i = 1, . . . , Ns} and x0:k = {xj, j = 0, . . . , k} is the set of
all states up to k. The weights are normalized so they sum to one. The true
posterior density can then be approximated as a set of weighted samples,

p(x0:k|z1:k) ≈
Ns∑
i=1

wi
kδ(x0:k − xi

0:k). (B.1)

The weights wi
k are chosen using the principle of importance sampling.

wi ∝ p(xi
0:k|z1:k)

q(xi
0:k|z1:k)

. (B.2)
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q(x0:k|z1:k) = q(xk|x0:k−1, z1:k)q(x0:k−1|z1:k−1) (B.3)
Using Bayes theorem the posterior distribution can be written as,

p(x0:k|z1:k) =
p(zk|x0:k, z1:k−1)p(x0:k|z1:k−1)

p(zk|z1:k−1)
. (B.4)

Using the sum rule,

p(x0:k|z1:k−1) =
∑

p(x0:k|x0:k−1, z1:k−1)p(x0:k−1|z1:k−1) (B.5)

Inserting (B.5) in (B.4) yields,
p(x0:k|z1:k)

=
p(zk|x0:k, z1:k−1)

∑
p(x0:k|x0:k−1, z1:k−1)p(x0:k−1|z1:k−1)

p(zk|z1:k−1)

=

∑
p(zk|x0:k, z1:k−1)p(x0:k|x0:k−1, z1:k−1)

p(zk|z1:k−1)
p(x0:k−1|z1:k−1)

=
p(zk|x0:k, z1:k−1)p(x0:k|x0:k−1, z1:k−1)

p(zk|z1:k−1)
× p(x0:k−1|z1:k−1)

=
p(zk|xk)p(xk|xk−1)

p(zk|z1:k−1)
p(x0:k−1|z1:k−1)

∝ p(zk|xk)p(xk|xk−1)p(x0:k−1|z1:k−1). (B.6)
Inserting (B.3) and (B.6) into (B.2) the weight update equation follows,

wi
k ∝ p(zk|xi

k)p(xi
k|xi

k−1)p(xi
0:k−1|z1:k−1)

q(xi
k|xi

0:k−1, z1:k)q(xi
0:k−1|z1:k−1)

= wi
k−1

p(zk|xi
k)p(xi

k|xi
k−1)

q(xi
k|xi

0:k−1, z1:k)
(B.7)

If the Markov property holds for q, q(xk|x0:k−1, z1:k) = q(xk|xk−1, zk),
then

wi
k ∝ wi

k−1

p(zk|xi
k)p(xi

k|xi
k−1)

q(xi
k|xi

k−1, zk)
(B.8)

B.2 Derivation of the Point Evaluation Func-
tion

The point evaluation function presented in section 14.4.3 is used for testing
the hypothesis of the presence of a contour. This function is de�ned (14.17),

h(M|µ) = − log(m) + log
∑

j

pD(εj)

pL(∆M(j∆ν))
∆ν. (B.9)
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Using the de�nitions of the generalized Laplacian pL (14.5), density of defor-
mations pD (14.10) and choosing the parameter β = 0.5, the point evaluation
function above becomes,

h(M|µ) = − log(m) + log
∑

j

1
ZD

exp
(−ε2j

2σ2

)

1
ZL

exp

(
−

√
|∆M(j∆ν)|

L

)∆ν

= − log(m)+log

(
ZL∆ν

ZD

)
+log

∑
j

exp
(−ε2j

2σ2

)

exp

(
−

√
|∆M(j∆ν)|

L

)

= log

(
ZL

m

)
+log

(
∆ν

ZD

)
+log

∑
j

exp
(−ε2j

2σ2

)

exp

(
−

√
|∆M(j∆ν)|

L

)

= log

(
ZL

m

)
−log

(
ZD

∆ν

)
+log

∑
j

exp

(√
|∆M(j∆ν)|

L

)
exp

(−ε2
j

2σ2

)

= h0 + log
∑

j

exp

[√
|∆M(j∆ν)|

L
− ε2

j

2σ2

]
, (B.10)

where h0 = log ZL/m− log ZD/∆ν.

B.3 The EM Algorithm
The expectation-maximization algorithm is an iterative optimization method
with purpose to �nd the model parameters x describing a set of observed data
M and unobserved data ν∗. We wish to optimize the log likelihood of the
parameters,

L(x) = log p(M|x) (B.11)

= log

∫
p(M, ν∗|x)dν∗ (B.12)

= log

∫
q(ν∗)

p(M, ν∗|x)

q(ν∗)
dν∗. (B.13)

By use of Jensen's inequality[13][29] for any distribution of hidden states
q(ν∗), we have

L(x) ≥ F(q,x), (B.14)
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where F(q,x) is a lower bound on the log likelihood.

F(q,x) =

∫
q(ν∗) log

p(M, ν∗|x)

q(ν∗)
dν∗ (B.15)

=

∫
q(ν∗) log

p(ν∗|M,x)p(M|x)

q(ν∗)
dν∗ (B.16)

=

∫
q(ν∗) log

p(ν∗|M,x)

q(ν∗)
dν∗ + log p(M|x). (B.17)

The �rst term of (B.17) is always negative. Therefore, by comparing (B.17)
and (B.11), it is easily seen that the expression L(x) ≥ F(q,x) indeed holds.

The lower bound is equal to L(x) for q(ν∗) = p(ν∗|M,x). This is proven
by inserting into (B.16),

F(q̂,x)q̂=p(ν∗|M,x) =

∫
p(ν∗|M,x) log

p(ν∗|M,x)p(M|x)

p(ν∗|M,x)
dν∗(B.18)

=

∫
p(ν∗|M,x) log p(M|x)dν∗ (B.19)

= log p(M|x) (B.20)
= L(x). (B.21)

However, the distribution of hidden states cannot be obtained explicit. Con-
sequently, local lower bounds F(q,x) are optimized alternately with respect
to q and x while keeping the other �xed. This leads naturally to the iterative
scheme for maximum-likelihood parameter estimation,

E step: Optimize F(q,x) with respect to the distribution over hidden data
given the �xed parameters,

qk(ν∗) = argmax F(q(ν∗),xk−1)

M step: Optimize F(q,x) with respect to the parameters given the �xed
hidden distribution,

xk = argmax F(qk(ν∗),x) = argmax
∫

qk(ν∗) log p(M, ν∗|x)dν∗,

which is equivalent to optimizing the complete expected data likelihood
p(M, ν∗|x), since q does not depend on x.

This scheme is iterated until F(q,x) attains equality with L(x) or at least to
some stop criteria is satis�ed. At no iteration the likelihood can decrease.
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B.4 EM Active Contour algorithm
The pseudo code of the presented EM active contour algorithm is presented
below.

Initialization

• Load initial image

• Set initial particle x0 and state noise v0

• Choose number of particles Ns

• Draw initial particles distributed by N (x0,v0)

Particle �ltering Estimate the posterior density p(xk|M1:k)

• for i = 1 : Ns

� Propagate particles through xi
k = fk(xk−1,vk−1)

� Evaluate importance weights wi
k = p(Mk|xi

k)

∗ Measure gray level di�erences (GLD) along the normal to each
point on the contour µ

∗ Evaluate hypothesis h(M|µ) for each measurement line
∗ Evaluate likelihood of each particle as the sum of hypothesis
∗ The likelihood is coupled with priors regarding the probability

of a present shape and intensity.
∗ Assign the particle a weight wi

k.

• end

• Normalization of weights,
∑Ns

i=1 wi
k = 1

• Calculate e�ective particle set size N̂eff

• if N̂eff < NT

� Resample particles

• end

• xk =
∑Ns

i=1 wi
kx

i
k

Optimization by EM
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• while norm(µj
k − µj−1

k ) < tol

� E-step: Estimate the true contour location ν̂ according to (14.25)
given the image evidence and last estimate µj−1

k

� M-step: Minimize the squared deformation (14.29) in a least squares
sense to obtain the re-estimated contour location µj

k

� j = j+1

• end



183

Appendix C

Heuristics for Speeding Up Gaze
Estimation

During the six months master thesis period, a paper was prepared and ac-
cepted at the Swedish Symposium on Image Analysis, Malmö, 10-11 march
2005 (SSBA 2005). As documentation of the workload herein, the paper is
presented below. The paper recapitulates much of the work documented in
the thesis.
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Appendix D

Towards Emotion Modeling

Besides the presented paper in the previous chapter, an additional paper was
submitted and accepted at the HCI International 2005, Las Vegas, 22-27
July 2005 (HCII2005). As documentation of the workload herein, the paper
is presented below. The paper recapitulates much of the work documented
in the thesis.
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Towards emotion modeling based on gaze dynamics in generic interfaces 
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Vester-Christensen@cogain.org, Denis.Leimberg@cogain.org, 
Bjarne.Ersboell@cogain.org, Lars.Kai.Hansen@cogain.org  

 
 
Abstract 
 
Gaze detection can be a useful ingredient in generic human computer interfaces if current technical barriers are 
overcome. We discuss the feasibility of concurrent posture and eye-tracking in the context of single (low cost) 
camera imagery. The ingredients in the approach are posture and eye region extraction based on active appearance 
modeling and eye tracking using a new fast and robust heuristic. The eye tracker is shown to perform well for low 
resolution image segments, hence, making it feasible to estimate gaze using a single generic camera. 
 

1 Introduction 
 
We are interested in understanding human gaze dynamics and the possible applications of gaze dynamics models in 
human computer interfaces. We focus on gaze detection in the context of wide audience generic interfaces such as 
camera equipped multimedia PCs. 
 
Gaze can play a role, e.g., in understanding the emotional state  for humans (Adams & Kleck, 2003; Adams, 
Gordon, Baird, Ambady & Kleck, 2003), synthesizing emotions (Gratch & Marsella, 2001), and for estimation of 
attentional state (Stiefelhagen, Yang & Waibel, 2001). Gaze detection based interfaces may also be used for the 
disabled as a tool for generating emotional statements. The emotional state is a strong determinant for human 
behavior, hence, efficient estimators of emotion state are useful for many aspects of computing with humans. 
Emotion detection can be used to control adaptive interfaces and synthesized emotions may be used to transmit 
emotional context in an interface. 
 
It has been noted that the high cost of state of the art gaze detection devices is a major road block for broader 
application of gaze technology, hence, there is a strong motivation for creating systems that are simple, inexpensive, 
and robust (Hansen & Pece, 2003). Relative low cost may be obtained using  electro-oculography (EOG) (Kaufman, 
Bandopadhay & Shaviv, 1993), however, in many generic interfaces electrode based measures are infeasible, hence 
we will here focus on `non-invasive' measures obtained from visual data as in Figure 1.  
 
Gaze detection consists of two related algorithmic steps, posture estimation and eye tracking. The posture is used to 
nail the head degrees of freedom and to locate the eye regions. In combination with eye tracking posture can be used 
 to infer the gaze direction. 
 
Detection of the human eye is a relatively complex  task due to a weak contrast between the eye and the surrounding 
skin. As a consequence, many existing approaches use close-up cameras to obtain high-resolution images (Hansen & 
Pece, 2003). However, this imposes restrictions on head movements. Wang & Sung (2002) use a two camera setup 
to overcome the problem.  We here focus on some of the image processing issues. In particular we discuss the 
posture estimation within the framework of active appearance models (AAM) and we discuss a recently proposed 
robust and swift eye tracking scheme for low-resolution video images (Leimberg, Vester-Christensen, Ersbøll & 
Hansen, 2005). We compare this algorithm with an existing method (Hansen & Pece, 2003) and relate the pixel-wise 
error to the precision of the gaze determination. 
 
The authors all participate in the Network of Excellence: “Communication by Gaze Interaction” (COGAIN 
http://www.cogain.org) supported by the EU IST 6th framework program. Currently 20 partners participate in the 
network of excellence; who’s objective is to improve the quality of life for those impaired by motor-control 
disorders. The users should be able to use applications that help them to be in control of the environment, or achieve  
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Figure 1: We are interested in understanding gaze dynamics in the context of imagery from a single generic camera. 
The eye regions are obtained within a head tracking algorithm (Ishikawa, Baker, Matthews & Kanade, 2004) based 
on an active appearance model. Subimages are extracted and subsequently processed by eye tracking algorithms. 

 
 

Figure 2: Face image of a face annotated with 58 landmarks for active appearance modeling. 
 
a completely new level of convenience and speed in gaze-based communication. The goal is to have a solution based 
on standard PC technology. This will facilitate universal access and e-inclusion. 
 
2 Head modeling using Active Appearance Modeling 
 
Active appearance models combine information about shape and texture. In (Cootes, 2004) shape is defined as “... 
that quality of a configuration of points which is invariant under some transformation.” Here a face shape consists of 
n  2D points, landmarks, spanning a 2D mesh over the object in question. The landmarks are either placed in the 
images automatically (Baker, Matthews & Schneider, 2004) or by hand. Figure 2 shows an image of a face 
(Stegmann, Ersbøll & Larsen, 2003) with the annotated shape shown as a red dots. Mathematically the shape s  is 
defined as the n2 -dimensional vector of coordinates of the n  landmarks making up the mesh, 

[ ]T
nn yyyxxx ,,,,,,, 2121

��=s . (1) 

Given N  annotated training examples, we have N  such shapevectors s , all subject to some transformation. In 2D 
the transformations considered are the similarity transformations (rotation, scaling and translation). We wish to 
obtain a model describing the inter-shape relations between the examples, and thus we must remove the variation  
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Figure 3: Procrustes analysis. The left  figure shows all landmark points plotted on top of each other. The center  
figure shows the shapes after translation of their centers of mass, and normalization of the vector norm. The right 
figure is the result of the iterative Procrustes alignment algorithm. 
 
given by this transformation. This is done by aligning the shapes in a common coordinate frame as described in the 
next section. 
 
To remove the transformation, ie. the rotation, scaling and translation of the annotated shapes, they are aligned using 
iterative Procrustes analysis (Cootes, 2004). Figure 3 shows the steps of the iterative Procrustes analysis. The top 
figure shows all the landmarks of all the shapes plotted on top of each other. The lower left figure shows the 
initialization of the shape by the translation of their centers of mass and normalization of the norm of the shape 
vectors. The lower right figure is the result of the iterative Procrustes algorithm. 
 
The normalization of the shapes and the following Procrustes alignment results in the shapes lying on a unit 
hypersphere. Thus the shape statistics will have to be calculated on the surface of this sphere. To overcome this 
problem the approximation that the shapes lie on the tangent plane to the hypersphere is made, and ordinary 
statistics can be used. The shape s  can be projected onto the tangent plane using: 

0

'
ss
s

s
T

= , (2) 

where s  is the estimated mean shape given from the Procrustes alignment. 
 
With the shapes aligned in a common coordinate frame it is now possible to build a statistical model of the shape 
variation in the training set. 
 

The result of the Procrustes alignment is a set of n2  dimensional shape vectors is  forming a distribution in the 

space in which they live. In order to generate shapes, a parameterized model of this distribution is needed. Such a 
model is of the form )(bs M= , where b  is a vector of parameters of the model. If the distribution of parameters 

)(bp  can be modeled, constraints can be put on them such that the generated shapes s  are similar to that of the 

training set. With a model it is also possible to calculate the probability )(sp  of a new shape. 
 
To constitute a shape, neighboring landmark points must move together in some fashion. Thus some of the landmark 
points are correlated and the true dimensionality may be much less than n2 . Principal Component Analysis(PCA) 
rotates the n2  dimensional data cloud that constitutes the training shapes. It maximizes the variance and gives the 
main axis of the data cloud. 
 
The PCA is performed as an eigenanalysis of the covariance matrix, Σ , of the training data. 

T

N
SS

1

1

−
=Σ , (3) 

 



193

 

                     

                     
 

Figure 4: Mean shape deformation using first, second and third principal mode. The middle shape is the mean 

shape, the left column is minus two standard deviations corresponding to λ2−=
isb , the right is plus two standard 

deviations given by λ2=
isb . The arrows overlain the mean shape indicates the direction and magnitude of the 

deformation corresponding to the parameter values. 
  

where N  is the number of training shapes, and S  is the Nn×  matrix [ ]00201 ,,, ssssssD −−−= N
� . Σ  is 

an nn ×  matrix. Eigenanalysis of the Σ  matrix gives a diagonal matrix lΛ  of eigenvalues iλ  and a matrix lΦ  

with eigenvectors iφ  as columns. The eigenvalues are equal to the variance in the eigenvector direction. 

 
PCA can be used as a dimensionality reduction tool by projecting the data onto a subspace which fulfills certain 
requirements, for instance retaining 95% of the total variance or similar. Then only the eigenvectors corresponding 
to the t  largest eigenvalues fulfilling the requirements are retained. This enables us to approximate a training shape 
instance s  as a deformation of the mean shape by a linear combination of t  shape eigenvectors, 

ssbss Φ+≈ 0 , (4) 

where sb  is a vector of t shape parameters given by 

)( 0ssbs −Φ= T
s , (5) 

and sΦ  is the matrix with the t  largest eigenvectors as columns. 

 

A synthetic shape s  is created as deformation of the mean shape 0s  by a linear combination of the shape 

eigenvectors sΦ , 
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ssbss Φ+= 0 , (6) 

where sb  is the set of shape parameters. Specific facial expression may be learnt from examples in the AAM 

representation and re-synthesized by AAM simulation. Figure 4 shows three rows of shapes indicating the flexibility 
of the representation. The middle row is the mean shape. The left and right rows are synthesized shapes generated by 

deformation of the mean shape by iλ2± . 

 
In order to track moving faces, the AAM must be re-estimated for each frame. The objective is then to find the 

optimal set of parameters sb  and gb  such that the model instance )),(( sT bxW  is as similar as possible to the 

object in the image. An obvious way to measure the success of the fit is to calculate the error between the image and 
the model instance. An efficient way to calculate this error is to use the coordinate frame defined by the mean shape 

0s . Thus a pixel with coordinate x  in 0s  has a corresponding pixel in the image I  with coordinate ),( sbxW  as 

described previously. The error of the fit can then be calculated as the difference in pixel values of the model 
instance and the image: 

)),(()(),( 0 sgg bxWIbgbbf gs −Φ+= , (7) 

This is a function in the texture parameters gb  and the shape parameters sb . A cost function can be defined as, 

2

0 )),((),( sgg bxWIbgbbF gs −Φ+= . (8) 

The optimal solution to (8) can be found as, 

Fbb
gs bb

 min arg),(
,

** =gs . (9) 

Solving this, is in general a non-linear least squares problem, but fortunately there exist well-proven algorithms 
(Tingleff, Madsen & Nielsen 2004) for this step. The optimal shape can then be used for posture estimation and for 
locating the eye region, see Figure 5. 
 
 
   

3 Eye tracking based on deformable template matching 
 
In many existing approaches the shape of the iris is modeled as a circle. This assumption is well-motivated when the 
camera pose coincides with the optical axis of the eye. When the gaze is off the optical axis, the circular iris is 
rotated in 3D space, and appears as an ellipse in the image plane. Thus, the shape of the contour changes as a 
function of the gaze direction and the camera pose. The objective is then to fit an ellipse to the pupil contour, which 
is characterized by a darker color compared to the iris. The ellipse is parameterized, 

),,,,( 21 θλλyx cc=x , (10) 

where ),( yx cc  is the ellipse centroid, 1λ  and 2λ  are the lengths of the major and minor axis respectively. θ  is the 

orientation of the ellipse. 
 
The pupil region P  is the part of the image I  spanned by the ellipse parameterized by x . The background region 
B  is defined as the pixels inside an ellipse, surrounding but not included in P , as seen in Figure 6. When region 
P  contains the entire object, B  must be outside the object, and thus the difference in average pixel intensity is 
maximal. To ensure equal weighting of the two regions, they have the same area. 
 
The pupil contour can now be estimated by minimizing the cost function, 

)Av()Av( BP −=ξ , (11) 

where )Av(B  and )Av(P  are the average pixel intensities of the background - in this case the iris - and pupil 
region respectively. 
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Figure 5: The eye images are easily extracted from the input video frames based on the fit of AAM. Each eye is 
modeled by six vertices. A bounding box containing the eye is easily extracted, by choosing a region slightly larger 
than the modeled eye. 
 
The model is deformed by Newton optimization given an appropriate starting point. Due to rapid eye movements 
(Pelz et al., 2000}, the algorithm may break down if one uses the previous state as initial guess of the current state, 
since the starting point may be too far from the true state. As a consequence, we use a simple adaptive `double 
threshold' estimate (Sonka, M., Hlavac and Boyle, R., 1998) of the pupil region as starting point. 
        
An example of the optimization of the deformable model is seen in Figure 7. 
 
Although a deformable template model is capable of tracking changes in the pupil shape, there are also some major 
drawbacks. Corneal reflections, caused by illumination, may confuse the algorithm and cause it to deform 
unnaturally. In the worst case the shape may grow or shrink until the algorithm collapses. We propose to constrain 
the deformation of the model in the optimization step by adding a regularization term. 
 
The iris is circular and is characterized by a large contrast to the sclera. Therefore, it seems obvious to use a contour 
based tracker. Hansen & Pece (2003) describe an algorithm for tracking using active contours and particle filtering. 
A generative model is formulated which combines a dynamic model of state propagation and an observation model 
relating the contours to the image data. The current state is then found recursively by taking the sample mean of the 
estimated posterior probability. The proposed method in this paper is based on Hansen & Pece (2003), but extended 
with constraints and robust statistics. 
 
A dynamical model describes how the iris moves from frame to frame. Since the pupil movements are quite rapid at 
this time scale, the dynamics are modeled as Brownian motion (AR(1)), 

),(N~,1 Σ+=+ 0vvxx tttt , (12) 

where x  is the state from (10) and Σ  is covariance matrix of the noise tv . 

 
The observation model consists of two parts. A geometric component modeling the deformations of the iris by 
assuming a Gaussian distribution of all sample points along the contour. Secondly a texture component defining a 
pdf over pixel gray level differences given a contour location. Both components are joined and marginalized to 
produce a test of the hypothesis that there is a true contour present. The contour maximizing the combined 
hypotheses is chosen. 
 
The tracking problem can be stated as a Bayesian inference problem by use of the recursive relation, 

)()()( 111 tttttt MpMpMp +++ ∝ xxx , (13) 

 �
++ = ttttttt MppMp xxxxx d)()()( 11 , (14) 

where tM   is the observations. Particle filtering is used to estimate the optimal state in a new frame. 
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Figure 6: The deformable template model. Region P  is the inner ’pupil’ area, and region B  is the outer 
‘background’ area. These regions are deformed iteratively to maximize contrast between the regions. 
 

 
 

Figure 7: The blue ellipse indicates the starting point of the pupil contour. The template is iteratively deformed by 
an optimizer; one of the iterations is depicted in green. The red ellipse indicates the resulting estimate of the contour. 
  
We propose to weigh the hypotheses through a sigmoid function. This has the effect of decreasing the evidence 
when the inner part of the ellipse is brighter than the surroundings. An example is depicted in Figure 8. In addition, 
this relaxes the importance of the hypotheses along the contour around the eyelids, which improves the fit. 
 
By using robust statistics, hypotheses which obtain unreasonably high values compared to the others, are treated as 
outliers and therefore rejected, as seen in Figure 9. 
 
3.1 Eye tracking results 
 
A number of experiments have been performed with the proposed methods. We wish to investigate the importance 
of image resolution. Therefore the algorithms are evaluated on two datasets. One containing close up images, and 
one containing a down-sampled version hereof. 
 
The algorithms estimate the center of the pupil. For each frame the error is recorded as the difference between a 
hand annotated ground truth and the output of the algorithms. This may lead to a biased result due to annotation 
error. However, this bias applies to all algorithms and a fair comparison can still be made. 
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Figure 8: This figure illustrates the importance of the gray level constraint. Due to the general formulation of 
absolute gray level differences, the right contour has a greater likelihood, and the algorithm may thus fit to the 
sclera. Note the low contrast between iris and skin. 
 

 
 

Figure 9: The relative normalized weighting of the hypotheses - Blue indicates low, while red indicates high scores. 
(1) Corneal reflections cause very distinct edges. Thus some hypotheses are weighted unreasonably high, which may 
confuse the algorithm. (2) This is solved by using robust statistics to remove outlying hypotheses. 
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Figure 10: The error of the algorithms as a function of the number of particles for the high (left) and  low (right) 
resolution data. The errors for three different active contour(AC) algorithms are shown; basic, with EM refinement, 
and with deformable template(DT) refinement of the mean; and for the the deformable template(DT) algorithm, 
initialized by double threshold. 
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Figure 11: The resulting fit on two frames from a sequence - the red contour indicates the basic active contour, 
green indicates the EM refinement and the cyan indicates the deformable template initialized by the heuristic 
method. The left image illustrates the benefit fitting to the pupil rather than the iris. Using robust statistic the 
influences from corneal reflections on the deformable template fit are ignored as depicted in the right image. 
 
Figure 10 depicts the error as a function of the number of particles used, for low resolution and high resolution 
images respectively. The errors for three different active contour (AC) algorithms are shown; basic, with EM 
refinement, and with deformable template (DT) refinement; and for the the deformable template (DT) algorithm, 
initialized by double threshold.It can be seen that the proposed constraints on the active contour generally improves 
the accuracy of the fit. The refinement by the deformable template performs better than the EM method. The cost is 
an increased number of computations, which is resolution dependent. However, the deformable template method, 
initialized by double thresholding, is seen to outperform all active contour algorithms.Table 1 lists the mean error in 
accuracy in centimetres and degrees. Also listed is the computation time in frames per section of a Matlab 
implementation run on a 2.4Ghz PC. In general, the accuracy improves with high resolution as seen in Table 1. 
However, the methods utilizing deformable template matching are less sensitive. The computation time for the basic 
active contour and EM refinement methods are independent of resolution. A significant increase in speed is noticed 
for the deformable template methods. Suppose, a geometric model of the eye is available (Ishikawa, Baker, 
Matthews, and Kanade , 2004), the gaze direction can be computed as a simple transformation of the 2D pupil center 
coordinates, to a 3D  direction in space. 
 

4 Conclusion 
 
In this paper we have presented heuristics for improvement of the active contour method proposed by Hansen & 
Pece (2003). We have shown increased performance by using the prior knowledge that the iris is darker than its 
surroundings. This prevents the algorithm from fitting to the sclera as seen in Figure 8. Also presented is a novel 
approach to eye tracking based on a deformable template initialized by a simple heuristic. This enables the algorithm 
to overcome rapid eye movements. The active contour method handles these by broadening the state distribution and 
thus recovering the fit in a few frames. Furthermore, the accuracy is increased by fitting to the pupil rather than iris. 
This is particularly the case when a part of the iris is occluded as seen in Figure 11. It was shown that the 
deformable template model is accurate independent of resolution and it is very fast for low resolution images. In 
conclusion we have demonstrated that it is feasible to estimate gaze from a single generic camera. This opens for a 
multitude of new applications in human computer interfaces. By estimation of gaze dynamics we may detect 
emotional state. Emotion synthesis is feasible through the appearance model which can simulate faces with 
emotional expressions and given gaze. 
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Hi-res ),( yxE [mm] )(θE  [frame/s] Lo-res ),( yxE [mm] )(θE  [frame/s] 

AC 0.9 4.1 0.54 AC 1.5 7.3 0.57 
AC w/EM 0.8 3.7 0.49 AC w/EM 1.5 6.9 0.55 
AC w/DT 0.5 2.3 0.25 AC w/DT 0.8 3.7 0.49 
DT 0.3 1.4 2.2 DT 0.5 2.3 8.4 

 
Table 1: Speed and precision comparison of the algorithms. The active contour uses 200 particles. The errors for 
listed for three different active contour (AC) algorithms (basic, with EM refinement, and with deformable template 
(DT) refinement and for the the deformable template (DT) algorithm, initialized by double threshold.  
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