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Abstract

In this thesis the multi-way array model Parallel Factors (PARAFAC) also known as
Canonical Decomposition (CANDECOMP) was applied to the event related potential
(ERP) of electroencephalographic (EEG) recordings. Previous work done analyzing the
ERP by PARAFAC had encountered great problems of degeneracy in the factors.
However, in this thesis it is shown that the problem of degeneracy can be effectively
circumvented by imposing non-negativity. Furthermore, the PARAFAC analysis was, to
my knowledge, for the first time used to analyze the wavelet transformed data of the
ERP. Through this analysis, it was shown that PARAFAC is able to access the correct
components of the data. Finally, a novel PARAFAC algorithm based on independent
component analysis on data having the concept of Combined Independence was
proposed. This algorithm proved both fast and efficient in accessing the correct
components of simulated as well as real data. In dealing with noise, the algorithm
performed even better than the popular PARAFAC algorithm based on alternating least
squares.

Keywords: PARAFAC, CANDECOMP, ERP, EEG, coherence, ITPC, multi-way arrays,
tensors, Independent Component Analysis, gamma activity, wavelet analysis, Combined
Independence, HOSVD, TUCKER, Core Consistency Diagnostic.



Abstrakt

I denne athandling blev multi-way array modellen Parallel Factors (PARAFAC) ogsa
kendt som Canonical Decomposition (CANDECOMP) brugt til at analysere event
relaterede potentialer (ERP) fra elektroencefalografiske optagelser (EEG). Tidligere
forsgg pa at analysere ERP’et ved hjelp af PARAFAC havde stgdt pa problemer med
degeneration i faktorerne. I denne athandling blev det vist, at dette problem kan lgses ved
at indfgre ikke-negativitets begrensninger. Derudover blev PARAFAGC, sa vidt jeg ved,
for fgrste gang brugt til at analysere wavelet-transformeret ERP-data. Det viste sig, at
PARAFAC ogsa her var i stand til at finde de rigtige komponenter i data. Endelig blev en
ny PARAFAC algoritme baseret pa independent component analysis foreslaet til brug pa
data havende begrebet Combined Independence. Denne algoritme viste sig bade hurtig og
effektiv til at finde de korrekte komponenter i simuleret savel som rigtig data. Algoritmen
var endda bedre til at handtere stgj end den populere PARAFAC algoritme baseret pa
alternating least squares.

Nogleord: PARAFAC, CANDECOMP, ERP, EEG, coherence, ITPC, multi-way arrays,
tensors, Independent Component Analysis, Gamma activity, wavelet analysis, Combined
Independence, HOSVD, TUCKER, Core Consistency Diagnostic.
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Notation
x, X

X
X

X; X

vec(X)

diag()
I

A®B

Al®B

aob

XIJXK

XIXJK

oy X
Ly 7 Vil dy

Vector

Matrix

Multi-way array in the literature also referred to as tensors, higher-
order tensors or multidimensional matrices

Denotes the element at the subscribed indices for the corresponding
vector, matrix and multi-way array.

Same as a=b

nr refers to the index of an explanation given below the equation.
The MATLAB notation in this case for the vector consisting of the
i"™ column of X.

Vector containing the i"" column of X, i.e. =X ;)

Denotes a vector, but where size X not necessarily equals x ()
The pseudo inverse of X
Xl

X
The vectorization of X given by: vecX =| "’

XN
On a matrix: Sets off diagonal elements of a matrix to zero.

On a vector: Creates the diagonal matrix where the vector elements
are along the diagonal.

The Frobenius-norm, see Definition 3, page 111
a,B - a,B

m

The tensor or Kronecker product, i.e. A®B = :
aB -+ a B

nl mm

The Khatri-Rao product:

Al®B=[a, ®b, ... a, ®b,]

Requires that A and B have same number of columns.

The outer product, i.e. C=acb s cij = aibj

Unfolding X by the j™-way onto the i" way, i.e. for a 3-way array
X(:,l,:)

XIJXK —
X (70

Unfolding X by the K™-way onto the I way, i.e. for a 3-way
array



X

Ax B
(A.B)

rank(A)

A(s, 10,I)
dim(X)

V,V?2

e, E. FE

IxIK _
X - [X(:,:,l) o X(:,:,K)]
The n-mode-matricizing of the multi-way array X € ® "***/* to

xIy..1, 1,

the matrix X(n) € 9{1’1 +1dy , the inverse operation is

denoted X ()
The n-mode Multiplication, see also Definition 1, page 111.

The scalar product of two tensors, see also

Definition 2, page 111.

The rank of the multi-way array A, see also Definition 4, page 111.
The k-rank of the matrix A, see also Definition 6, page 112.

The vector s, is normal distributed with mean 0 and covariancel .

The number of dimensions of X ,i.e. if X € R "™ *'* then
dim(X)=N

The expected value of x, i.e. <x> = I xp(x)dx

The sum of the diagonal elements of a matrix

The covariance of x and y.
The Hadamard product (element wise product of two matrices)

The determinant of the matrix A.

v=-|2 9 9
ox dy 0z

e
x dy oz

s oA

V -f - the divergence of f: —+—
ox dy 0z

VT xf - the curl of f where x is the cross product.
2 2 2

0 ]2‘+ 0 ]2‘+ 0 ]2‘

ox~ dy° oz

Denotes there exists, i.e. 3i ;||X l|| = 1 means that there is at least one

V? f - the Laplacian of f:

column of X having the norm 1.
Denotes for all variable, i.e. ||x,|| = 1Vi means that the norm of each
column of X is 1.

Infinitesimal small value
The model error
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Introduction

Electroencephalography (EEG) refers to electrical activity measured at the scalp that
arises from neural activity in the brain. EEG signals generated in response to sensory
stimuli events are also referred to as event related potentials (ERP). Traditionally the
EEG/ERP has been analyzed by looking at trial averages and spectrums. As much of the
focus in the interpretation of the EEG/ERP is based on frequency changes in the data,
wavelet analysis has become a popular tool. However, wavelet analysis increases the
dimensionality as it adds a frequency dimension to the data giving a multi-way array of
channel X time X frequency . Consequently, to be able to effectively interpret the wavelet

analyzed data there is a need to decompose these multi-modal EEG/ERP data into easily
interpretable components.

In this thesis multi-way array analysis of ERP will be explored. The thesis is
inspired by the work of Miwakeichi and Martinez-Montes et al. [24], [25] who applied the
multi-way decomposition method Parallel Factor (PARAFAC) to analyze the space-time-
frequency components of the EEG. The PARAFAC model used by Miwakeichi and
Martinez-Montes et al. will be compared to other PARAFAC models taken from the
framework of higher order singular value decomposition (HOSVD) [19] and a more
statistical framework using the expectation maximization algorithm (EM) and variational
Bayesian expectation maximization (VBEM) described by Beal [3]. Finally, a PARAFAC
model based on Independent Component Analysis will be proposed.

The PARAFAC algorithms will be evaluated on real as well as simulated ERP
data. The real data was collected by Sidse Arnfred at Cognitive Research Unit,
Department of Psychiatry, Hvidovre Hospital. The data reproduces a well known
experiment described by Herrmann et al. [15] in which evoked gamma oscillations are
found in the posterior regions of the brain. The PARAFAC model will be used both on
the ERP as previously done by Field et al.[10], but also for the first time, to my
knowledge, to analyze the wavelet transformed ERP-data in terms of the Inter Trial Phase
Coherence (ITPC).



1 “If the only tool you have is a hammer,

PARAFAC e . Mo

Before addressing the Parallel Factor (PARAFAC) model and algorithms an introduction
to wavelet analysis, Bayesian learning and multi-way array algebra will first be given.

1.1 Wavelet Analysis

A wavelet analysis transforms an EEG signal of channel Xtime into a multi-way array of
channel X time X frequency .

The spectrum of a signal x(r) is given by its Fourier transform:

X(F)= jx(t)e_ithdt eq. 1.1

—o0

However, the Fourier transform can’t reveal frequency changes through the signal. This
has lead to the development of the Short-Time Fourier Analysis (STFA). In STFA the
signal is Fourier transformed within a finite time-window — giving a temporal resolution
of the frequency components of the signal. Unfortunately, the time-window is fixed
disabling good temporal resolution for high frequencies. The wavelet transform resolves
this problem.

C(scale, shift) = j‘x(t)(p* (scale, shift,t)dt eq. 1.2

—00

A wavelet is a waveform of effectively limited duration that has an average value of zero.
Scaling a wavelet simply means stretching or compressing it, and shifting a wavelet
delaying or hastening its onset. The wavelet analysis has grown to become a huge
discipline in the analysis of EEG from noise reduction to feature extraction.

Wavelets are separated into continuous and discrete wavelets based on the characteristic
of the wavelet rather than the signal’s characteristic as is the case for the Fourier
transform. A wavelet is called continuous if it can be scaled and shifted to any value. An
example of a continuous wavelet is the popular complex Morlet wavelet used in [14],[15],
[24]:

10



~ 1 r?
t)= expli27F,t Jexp| —— .13
)=l o - «

F,is the center frequency and F), is a bandwidth parameter. The scaling factor a and shift
factor p changes @ by:

_ L fGe=-p)_ 1
¢(a’p’t)_\/g¢( a ] ,—ﬂ'Fba

@ is also called the mother wavelet as it is ¢ without scaling and shifting. The effect of
scaling is illustrated in Figure 1.1.

2
exp(iZﬂ'Fc (t — p) j CXP[— M] eq. 1.4
a

azFb

Real part Imagenary part

" ﬂ

Figure 1.1: The effect of scaling the complex Morlet function. As seen scaling results in a temporal

compression of the functions, black has twice the scaling factor of blue.

From the scale of the wavelet transform the frequency of the signal can be estimated as
[32] :

F=-—< eq. 1.5

There is an inherent tradeoff for wavelets between good frequency resolution and good
time resolution. This is explained by the Heisenberg-Gabor inequality [17]. As seen from
eq. 1.3 arelatively large bandwidth of the wavelet gives a good frequency resolution but
the length of the wavelet makes the time point less accurate. Furthermore, there is no
simple relation between center frequency and bandwidth as frequency changes with scale

according to eq. 1.5 but the bandwidth changes according to eq. 1.4 by azFb.

. : i . 1
Consequently, in some literature the bandwidth is denoted O'b2 =a’F, » making o, o< 7

11



Although the wavelet’s estimate of the frequency at a given time isn’t exact and the
whole analysis is slightly influenced by the choice of wavelet, the wavelet analysis is
considered a very powerful tool in the analysis of the temporal development of the
frequency of the EEG. In the following analysis the complex Morlet wavelet having a
bandwidth parameter Fj, =2 and a center frequency of F,. =1 will be used, as it has

been well accepted in the literature, see also [14],[15].

1.2 Bayesian Learning
Reverend Thomas Bayes (1702-1761) was the first recorded to notice [4]:

pla,b)= p(a|b)p(b) p(a|b)p(b)
p(x,y)= pldy)p(n = ) (lﬂ,a) _ el = plbla)= T eq. 1.6

Bayes'Theorem

This theorem has become the cornerstone in a probabilistic modeling approach named
Bayesian learning.

Given the data D, the model m, and the model parameters @ the posterior probability
distribution of the parameters can be expressed using Bayes’ theorem as:

p(D}6,m)p(8m)
D,m)= .1
Where p(9|m)is the prior probability of the parameters given the model. p(D 0, m) is the

likelihood of the parameters also called the likelihood function. As I p(G|D, m)éB =1,

p(D|m) 1s a normalization constant also denoted the marginal likelihood, given by:

p(D|m)= Ip(Dﬂ,m)p(9|m)6B eq. 1.8

In probabilistic modeling the goal is to develop models that explain the given data but
also generalize well on new data. In Bayesian learning this becomes the two main goals
[3]:
1. Approximating the marginal Likelihood of the observed data p(D |m)
2. Approximating the posterior distribution over the parameters of a model
p(01D,m)

Consequently, in probabilistic modeling two main problems must be addressed; finding
the right model and the optimal parameters. The solution will be based on the
Expectation Maximization algorithm (EM) and the Variational Bayesian Expectation
Maximization algorithm (VBEM) based on the analysis given by Beal [3].

12



The problem of finding the optimal parameters will first be addressed. In maximum
likelihood learning equal priors of the parameters given the model is assumed. The
maximum likelihood parameter is given as the parameter that is the most probable given
the model and the data:

m)T arg znax M =arg znax p(D|9, m)p(9|m)

0, =arg gnax p( (D] m
)

eq. 1.9

0, Sare gnax p(

1) Follows by eq. 1.7.
2)  Result as the denominator is a constant independent of 0 .

3) Equality holds as maximum likelihood assumes equal priors of O given the model. If equal priors
can’t be assumed, the maximum a posteriori (MAP) estimate is found instead.

Whereas the EM algorithm is based on the maximum likelihood parameter estimate®,,, , the
VBEM algorithm is based on the maximum aposteriori estimate0,,,, .

1.2.1 The Expectation Maximization (EM) Algorithm

We consider a model having the hidden variables S and the observed data D. The
parameters describing the (potentially) stochastic dependencies between the hidden and
observed variables are given by @ . We assume further that the data D ={d,,...,d }
consist of n independent and identically distributed (i.i.d.) items, generated using a set of
hidden variables S ={s,,...,s,} such that the likelihood can be written as a function of 0
in the following way [3]:

pop) =] p) =] [ (4, eq. 110

The logarithm of the likelihood £(0) is defined as:

£(8)=1n p(Dl6)= Zln pld,

eq. 1.11

): izzl:lnj-p(siadi

By introducing an auxiliary distribution of the hidden variables given by ¢, (s) we can
find a lower bound of £(0):

13



di[0)

:ilnj’ (5;,d;(0)s; —Zlnqu ﬁ"—‘rdn
ZJ-CIS " ‘9) Si =

-‘IV

eq. 1.12
s, (s1)
Iqs lnp |0)ds J-qs p Ss_l|d_l ; ds; =
1 1°

f(qsl (1), (5,).0)

1) Result of Jensens inequality, see Theorem 1.

It’s worth noticing:

g5, (5;)
[a, mdsi = KLgq, ()| p(s; 1d;,0]>0 eq. 1.13

Is the Kullbach-Leibler (KL) divergence - a measure of distance between two
distributions.

The Expectation-Maximization (EM) algorithm alternates between an E step, which
infers posterior distributions over hidden variables given a current parameter setting, and
an M step, which maximizes £(8) with respect to 0 given the statistics gathered from the

E step [3]:

Estep: ¢," (s,) « argmaxf( . (si),ﬂ’),Vie {1,....n}

q Si

Mstep: 0™ <—argmax?( s i),ﬂ)

14



The E step

To find the optimal distribution g (si )we differentiate ¥ (qsi

(s, ),9’) with respect to

qs, (si ) subject to the constraint I g, (s;)d, =1 implemented by the Lagrange

n

multipliers {4}, we find:

[[[f(qsi (Si )’G[ )'szlﬂi[[qsi (si)dsi _1]j
d4

= [y, (s)ds, —1=0& [ g, (5,)ds, =1

d [T (qsi (s:).0' )+ i A [[ gs; (8;)ds, —l]j
dl=l( ) :lnP(Si,di‘Bt)—lnqs. (Si)"'ﬂi ~1=0
qsi Si i

g
") =expds ~Dpls; o'

[ 45, (s)dy, =1= [exp@4 ~Dplsi i’ i, =1
0
1

expd; —1) =
l Jp(si’di o' psi

exp(t, ~Dpls;,dglor) 114
I

p(si9di‘9t)

J.P(Si’di‘et &si

I
P(Si d;, 6’ )

The optimal choice of the distribution qs’i+1 (s, )is the posterior distribution of s; given by the

data and model parameters p(si|d .0 ) This choice of ¢, (s

1.13 that the KL-divergence is zero.

15
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The M step

To find the optimal parameters we make use of the result from the E step, i.e.
¢."(s,)= pls;[d,.0).

=

T(CI;H (Sl)’ ,qs’“ S, , Zj-qs qss,l,dl\ﬂ)ds _

i=l1

N N
P = > [ pls.|d;.0)n pla, =>"In p(a,
’ i i=1

eq. 1.15

0)=,(0)

™M=
S s
|~
wn w
= |
[="H-"
=
==} <>
N | N
T

The M step defined by 0" « arg max F ( ’”( i),ﬂ) therefore becomes a matter of

maximizing the likelihood £(0).

new lesg Tikalihood i .
f I".f'[.‘r'||5'"r'“':l
KL [af™) Il p0x |y, 8150)

E step makes the new lower |hovmd

lermer bound nght I— _'f[.,:;:,cr'“.'.ﬂ':”':']
lez likoelihoad
s — |11 iy | B{£) p(y 800 aedeod ooy

T T J”.“ S""'| ___________

KL [ | plx |y, 86

KL o) | px |y, 80)]

I"'-' or I'h'|||I'I ey .
—— _.rl:.J:.':l £ E'.r ) ] re———f————

L step M step

Figure 1.2: The EM algorithm for maximum likelihood learning. In the E step the hidden variable
posterior is set to the exact model posterior, making the KL-divergence zero. In the M step, the lower
bound of the likelihood of the parameters 7( ‘“( ). ,q;“( D 9) is maximized. (Taken from [3]).
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Bayesian Information Criterion (BIC)

Finding the right model for the EM algorithm, i.e. choosing the number of source signals
amounts to finding the optimal model M that according to the Bayesian Information
Criterion satisfies:

M, =argmax p(M |D) eq. 1.16

Where p(M | D) is given by Bayes’ theorem:

_p(DIM)pM)
p(M D)= (D) eq. 1.17
Where:
p(D) = %: p(DIM)p(M) eq. 1.18

p(M) is the prior of the model and assumed to be uniform. For a particular choice of

model, the probability of finding the observed data D is given by the integral over all
model parameters:

p(DIM)= jp(D,e | M)do = jp(D | M,0)p(0|M)do

eq. 1.19
_ J‘elogp<D|M,e)+1ogp(elM)d9 _ J’eff(e)de

Where

f(0)=—log p(DI M,8)—1log p(6 | M) eq. 1.20

As equal priors are assumed in maximum likelihood learning the optimum of f(8) is
given by 0,, . Making a second order Taylor expansion around the optimum given by
0,, yields:

f(®)=f(0,,)+%2(0-0,,) HO-0,,) eq. 1.21
Which gives:
p(DIM)= J‘e_f(e)dﬂ ~ ¢~ Oum) J‘e_l/z(e_eML)TH(e_eML)dO eq. 1.22

As the integral has a Gaussian form it can be written by:
D

Y 1A . 1.
p(DIM) = p(D10,, ,M)p®,, | M)2x)?2|H| ed- 1.23

17



D
Where D is the number of free parameters. Neither the prior p(0 mL | M )nor (27)2
depends on the number of samples N. The Hessian H holds a D x D product over samples

that can be factored out as |H | =N?” ‘ﬁ ‘ . Neglecting ‘ﬁ ‘ gives:

D
2 eq. 1.24

p(DIM)=pDI10,, ,M)N

ML>

The probability of the observed data given the model is therefore the probability of the
observed data given the optimal parameters of the model weighted by a function of the
number of observations N and free parameters D.

1.2.2 Variational Bayesian EM (VBEM) algorithm

Once more we consider a model having the hidden variables S and the observed data D.
The parameters describing the (potentially) stochastic dependencies between the hidden
and observed variables are given by @ . We again assume that the data D ={d,,...,d }
consist of n independent and identically distributed (i.1.d.) items, generated using a set of
hidden variables S ={s,,...,s,} such that the likelihood can be written as a function of S
and 0 in the following way [3]:

mki0dS = 1n [ 4(0.5) »(D,S.6)m)

q(6.9)

D,S.0 125
PDSOm) o 4
q0(8)gs (S)

£(0,S)=1n p(Djm)=1n [ p(D,S,0

j q(e,s)lnp(:%’sﬂ)m)dedsj j 70 (0)gs (S)In

=(qs(8).49(0))

1. Result of Jensens inequality, see Theorem 1.

dOdS%

2. Comes from the assumption that @ and S are mutually independent.
We now have:
tn p(D 1 m)- (qs (S). g9 (8)) = t p(D 1 m)— [ g (0)gs (S)In

S, 0D, DI
pl m)p(D | m) 284S —
q9(0)gs(S) eq. 1.26

q9(0)qs(S)
p\S,0D,m

o0 (53102205 s — kg0 0 )50

p(D.S,0m)

q0(0)gs (S)

dedS =

In p(D 1)~ [ 44 (0)gs (S)In

In p(D | )~ [ 4 (0)gs (S)In p(D1m) — g4 (0)gs (S)In dodS =

D,m))
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The E and M step

From eq. 1.26 it is seen that improving the likelihood corresponds to setting the hidden
variables as well as 0 equal their posteriors, as this minimizes the Kullbach-Leibler

divergence KL(gq (O)qs (S)” p(S, 0D, m)) .

log manginal likelthaed
_ Inply | m) _ lnpis | ) In gl | )

13 (1]

KL [ gl [ pie, 8] )

KL (o™ oG Il plx, 81 3)

KL [y 11 p(x,8 ] ¥
m"m'r|-r.'- or I"IIIII-I -|'| |.| ||'||.|
— Filagw =gy 18]

new lower bound

— -'r['n';:-cl‘ H :I':": N 'n';: ) (83} RS S ]

levaer beound

VBE step YVBM step

Figure 1.3: The VBEM algorithm. In the VBE step the variational posterior over hidden variable is
no longer set to the exact model posterior. However, each VBE and VBM step is assured to improve
the lower bound of the likelihood (Figure taken from [3]).

As the marginal likelihood doesn’t change, choosing the right model amounts to finding
the model having the largest lower bound of the marginal likelihood. Furthermore, hyper
parameters can be used to model the various parameters of the model. The hyper
parameters can then indicate how many factors to include by how certain the underlying
parameter is zero. Estimating the number of factors to include in the model by hyper
parameters is called Automatic Relevance Determination (ARD).
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1.3 Multi-way arrays

Multi-way arrays in the literature also referred to as tensors, higher-order tensors or
multidimensional matrices [19] are simply any set of data for which the elements can be
arranged as [5]:

Xy =1L j=1..J,k=1.. K, ...i.e. Xeg """

Notice that vectors and matrices are two special cases of multi-way arrays; a 1-way array
and a 2-way array. In the following the various ways of a multi-way array will also be
referred to as modalities. For a description of the different aspects of multi-way arrays
see Appendix B: Multi-way array algebra.

1.3.1 Unfolding

The unfolding operation folds one of the ways of the multi-way data onto another.
Consider for example the three-way array X defined by X » 1=1.1 j=1...J, k=1...K.
Unfolding the third way of X onto the second way gives:

IXIXK unfolding IXJK
XRS5 X

While unfolding the second way of X onto the third way gives:

Ixaxk Ueling ok
X - X

For a three-way array there are 6 different options of unfolding X into a matrix as
revealed in Figure 1.4. The unfolding can be performed consecutively turning for
instance a four-way array into a vector by three unfolding operations:

I IxKxL unfolding sk unfolding IIxIK unfolding LK
XJIXKX XJX X
X - X - X - X

Unfolding multi-way data enables manipulation of the data using normal vector and
matrix calculation.

20



XIK><J

- I
I I_»
JK
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V(J

\ XIXKJ

Figure 1.4: The six ways of unfolding the three-way array X into a matrix.

The n-mode-matricizing X, of the tensor X & ® """ is defined as the dim(X)-2
unfolding giving [19] ,[23]:

X(n) e KIHXII"'In—IIn+1"'IN

The inverse operation is denoted:

X(n),l — Xe K11x12x~~><IN .

For MATLAB implementation of the described multi-way array manipulation as well as
the algebra given in Appendix B: Multi-way array algebra, confer Appendix C:
MATLAB implementation of multi-way array manipulations.



1.4 Models

The two most used forms of decomposition of multi-way arrays are the PARAFAC and
the TUCKER model [23]. Where the PARAFAC decomposition gives easily
interpretable components, the TUCKER model is a convincing multilinear generalization
of the SVD concept to higher order [19] . Furthermore, the TUCKER model enables
evaluation of the PARAFAC model using the so-called Core Consistency Diagnostic, see
also paragraph 1.5.1.

1.4.1 Parallel Factor Analysis (PARAFAC)
The PARAFAC model is intrinsically related to the principle of parallel proportional
profiles [5]. Suppose that the matrix X" can be adequately modeled as AST where the

number of columns of A andS§ is the same.

x1) =As” :alslT +azs§ +_,_+an£ :alslel(ll) +azs§d§12) +...+an;a,'1($l)r =AD!S” eq.

where D =1 127
Suppose another matrix X2 can be described by the same matrices A and S only in
different proportions:
2 T (2 T ,(2 T (2 2)QT
x) = as dl(l) +a252d§2) +...+anFd1(,12 = AD%s eq. 128

where D@is a diagonal matrix

The two models consist of the same (parallel) profiles only in different proportions.
Cattell was the first to prove that the presence of parallel proportional profiles would lead
to an unambiguous decomposition [5].

The Parallel Factor, PARAFAC, model was independently proposed by Harshman [13]

and by Carrol and Chang [5] in 1970. The latter naming it Canonical Decomposition,
CANDECOMP. The model can be expressed in several ways:

F
Xijg = zal‘/’lbjﬂSk/l +e;; , where F is the number of factors. eq. 1.29
A=1

Due to the symmetry of the components in eq. 1.29 the index order of the components
doesn’t matter. Another formulation of the model is given by:

X(l)
XD =ADYS+EY ,where X=| ! |andD"isadiagonal matrix eq. 1.30
X(M)
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From the formulation of the model in eq. 1.30 the relation of PARAFAC to parallel
proportional profiles is evident. Finally, the model can be expressed more compact by the
Khatri-Rao product.

X" = A(S|@[B)' eq. 131

Where the i row of B corresponds to the diagonal of D The Khatri-Rao product is
given by [5]:

A:la .- a J
A‘QB:[al@)bl af@bf],whereB:[bll b;]
aB ... qa,B eq. 1.32
A®B=| : . :
a,B a,,B

nl o nm

and the Kronecker product

The PARAFAC model is easily generalized to higher orders. The higher order
equivalents are given by:

F
Z ) () +e; , where F is the number of factors. eq. 1.33

Kijiy...iy iA 12/1 zN/l hip. iy
ﬂ:

Expressing the PARAFAC for arrays of more than three dimensions in terms of eq. 1.29
and eq. 1.30 yields:

X(11X12i3--~iN) — AD(i3)D(i4) D(iN)S +E(11X12i3"~iN)
() eq. 1.34
where D'’ are diagonal matrices

X=AB""eB"?¢|..|eB") +E eq. 1.35

From eq. 1.29 and eq. 1.33 it is seen that PARAFAC decomposes the multi-way array
into a sum of effects pertaining to each dimension. Each factor consists of one vector
from each dimension. Consequently, each factor’s relation to each dimension can easily
be read from the factor vector corresponding to the dimension, see also Figure 1.5.
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F

Sa
A=1

Figure 1.5: Graphical representation of the PARAFAC model as formulated in eq. 1.29. The model
decomposes the multi-way array into a sum over factor effects pertaining to each dimension.

The PARAFAC model is however very restricted as the number of free parameters, D, is
given by:

N N
D= FZ [; << Hlj as F' in general is less than max(/;Vi) eq. 1.36
j=1 j=1

Uniqueness

From the formulation of the PARAFAC model given in eq. 1.30 PARAFAC doesn’t hold
the rotational freedom other factor models such as independent component analysis, ICA
and principal component analysis, PCA have.

x() = Apl)s = APP'D(QQ's = (aP)P~'D)QQ"'s)
U eq. 1.37
(P_ID(i)Q) mustbe a diagonal matrix

According to eq. 1.37 the rotational freedom of PARAFAC requires that the product
(P’IDL.Q) must be a diagonal matrix. In practice, this means that P and Q can only be

scaling and permutation matrices. Consequently, the only indeterminacies are the order of
the components and the magnitudes of the loading vectors [5].

The PARAFAC model seems a logic extension of the factor analysis as the generalization
to any dimension given in eq. 1.33 yields the well known factor analysis model in the 2-
F
way array case: x; = Z“i b, - Itis, however, much more restricted than the normal
A=l
factor analysis, as a matrix of Ny X N, - N5 in a factor analysis with no restrictions would

give F-(N |+ N, - N3) free parameters while the PARAFAC model of the corresponding
N| X N, x N3 multi-way array only yields F (N |+ N, + N3) free parameters.
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Sidiropoulos and Bro have extended J. B. Kruskal’s result of uniqueness from 1977 to
higher orders, for the proof see [31]. The result makes use of the k-rank which is given by
the least amount of columns of a matrix that are linearly independent, see also Definition
6 page 112. Let the PARAFAC model be defined as in eq. 1.33. The model is insured to
be unique apart from permutations and scaling if:

N
ZkA(f) >2F +(N-1) Eq. 1.38
i=1

1.4.2 TUCKER and Higher Order Singular Value Decomposition

The generalization of singular value decomposition to multidimensional data has not yet
come to one “ideal” form. For a discussion on what might define the “ideal” HOSVD see
[23]. However, higher order singular value decomposition, HOSVD, of the multi-way
array X will follow the definition of Lathauwer, Moor and Vandewalle [19] .

The TUCKER model is defined by:

Ji Jy Iy
N o =D s 0,0 W) eq. 1.39
ijiy...iy i L™ Lt VT2 IN T iy iNJN 42
VP JN

In the 3-Way case the Tucker model can be formulated the following way using the
Kronecker product:

XK — AGB®S)" eq. 1.40

eq. 1.39 can equivalently be expressed by

X =8x,U"x, u?...x, gV eq. 1.41

Where S is denoted the core multi-way array, and X, is the n-mode multiplication see

also Definition 1 page 111.
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Figure 1.6: Graphical representation of the TUCKER model of a 3-way array. The model
decomposes the multi-way array into matrices (dark grey) pertaining to each modality, while the
core array relates each modality.

Although the TUCKER model doesn’t impose any constraints, to obtain the HOSVD
U has to be an orthonormal (1 X1, )matrix, and 8 a multi-way array of same size

as X subject to:

<5,”=a,5,”= ﬁ> =0ifa#p (all- orthogonalty)

. eq. 1.42
Hs,nzl ‘ > HS,”=2 ” >...2> HS,’F, ” >0 (ordering)

eq. 1.39 and eq. 1.41 can be equivalently expressed in matrix notation as:

X, =U0""8, (v eu?e...0eu"MeueUu?® . -@U"") eq. 143

Where X, is the n-mode-matricizing of X and S, the n-mode-matricizing of S. The

resemblance of HOSVD to SVD becomes evident as the singular value decomposition of
a matrix F can be expressed by [19] :

I3 I Iy Iz

-

E = I\\ .lr':-
I I fll ) | wT

F o =]

F=U"YsSu® =sx, u"x, u?
%/_J
eq. 1.43 eq. 1.41

eq. 1.44

HereS € ® "2 is an ordered pseudo-diagonal matrix, i.e.
S = dlag(dl ,O, .. 'O-min(ll,lz))

0,202...20 (4,120
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Evidently, HOSVD becomes SVD for the 2-way array.

The number of free parameters for the HOSVD is given by:

N ;-1 I;-1
D IDN +Z il - L
i=1 i=1 j=1 J=1 norm=1
All orthogonal Orthogonality
eq. 1.45
S U(i)
N N 72 N 2 N
1.2 —1. N A §
i=1 i=l1 i=1 i=1
S U(i)
Lonln+1
1. Follows as Z (2 )

i=1

As can be seen from eq. 1.45 the free parameters of HOSVD exactly match the number of
parameters of the multi-way array. Consequently, the HOSVD as a decomposition will
reconstruct the multi-way array exact.

Calculating the HOSVD
According to eq. 1.43:

X, =U".s,,-(U"eUu"?e. .eu"eu’eUu?®...@Uu""f

n

Defining the following set of matrices [19] :

vi =§, (U eu"?e-.euMou"oUu? ®-..e U
_ 0§

Sty =E"S

x0) = diag([o,,0,...0,)

Where £ is selected so that §(n) is a normalized version of S ) with the rows scaled to

unit length. This gives:

=U".s, - (Ueur?e..euM eueou? ®.. U =
yWymy @)

X,

eq. 1.46

From eq. 1.46 it is seen that U™ can be calculated by the normal singular value
decomposition (SVD) of X,
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From eq. 1.41 we had:
X =8xUYx, u?...x, u
This gives:

X=8xUVx, U?..x, UV o

1

T _
X x, v =8X, yV X, ll(z)-an_1 gy @1
eq. 1.47

X xy UM 5 o™ ' = Se

— mr @7 T
S=XxU" x,U% ...x, U
1. Follows as U" is an orthonormal (I X1 i) matrix.
2. Result of the end of Definition 1 page 111.

S can equivalently be calculated by the Kronecker product:
S,y =U""X,[U"eUu"e..0u"eu"@U? @ -eU"")  eq.148

From eq. 1.42 8 had to fulfill HS/le > HS,”=2H 2.2 HS,’F,” H > 0 this ordering is ensured by
the fact that U"Vn is ordered. <S,”:a,3,”:ﬁ> =0if o # B can be proven by:

S =U"" XU eu™ e Ul @.. @ U

S(n)s(n)T — U(")Tx(n)(U("H) ® U(N) ®U(1) ®-- ®U("*1)XU("+1) ®U(N) ®U(1) ®-- ®U("*1))TX(”)TU(’1)T

T T T T T T T

U(") U(")z(")v(")v(") Z(") U(") U(") 22(’1)V(")V(") Z(") 22(")2(")

1. Follows as
UeuMeule...euru U™ Ul ®--®U"") =T and
X( )= umxmy @)

n

As 2V isa diagonal matrix the assumption of <S S, . ﬂ> =0if o # f holds.

[”:a’
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W) SVD(X(N))

5= Xx UV x, UGS UW‘

Figure 1.7: The calculation of HOSVD

As shown in Figure 1.7, HOSVD as for SVD doesn’t require any iterative operations to
be estimated. Furthermore, for SVD U™ is the eigenvectors of XX’ = X(I)X(I)T and U®

is the eigenvectors of X' X =X )X (2)T . Clearly, HOSVD keeps this characteristic, as

U™ is the eigenvectors of X(n)X(n)T . Consequently, HOSVD seems like a parsimonious

multi-dimensional generalization of SVD.

The uniqueness of HOSVD
As U" can be calculated by the normal singular value decomposition (SVD) of X it

follows that U" share the uniqueness properties of SVD:

)

If the singular values found in eq. 1.46 all are different then uf." is unique up to sign.

Furthermore, the vectors corresponding to the same n-mode singular value can be
replaced by multiplication with an orthogonal matrix.

If U™ isn’t unique there exist an orthogonal matrix Q so: v = U(")Q is also a solution
of eq. 1.46. This gives a new core given by S= S, Q'. As Sineq. 1.48 is found by
the knowledge of U"Vn and X (nit follows that 8 due to the fact that uf.") only

maximally is unique up to sign can’t be unique. As revealed in eq. 1.48 the change of
sign gives a new value of § . This gives as many different values as there are sign-

combinations of the vectors of U"Vn.
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1.4.3 Model Relations
According to Definition 7 page 112 a multi-way array is called diagonalizable if the core
multi-way array 8 of the HOSVD fulfillsS,, , =Ounless i, =i, =... =i, .

With this definition the TUCKER, HOSVD and PARAFAC models can be related as
shown in Figure 1.8.

TUCKER PARAFAC
Ji o Iy
X = z y s =)=> S diagonal :
12:--IN JiJ2---JN l]j] 1212 thN . . .
V) jN Siiy.iy = =Qunlessi; =iy =...= iy
HOSVD

U(i)orthogonal , S the size of X
(8i,-0-Si,-p) = Oif =
Siva|2[Si=|2 - 2|81, |2 0

Figure 1.8: The relation between the TUCKER, HOSVD and PARAFAC model.

From Figure 1.8 it follows that if a multi-way array is diagonalizable it can be perfectly
represented by the PARAFAC model. Furthermore, if the HOSVD was based on a
PARAFAC model this would require the core S to be diagonal. However, this is too
strong a condition greatly reducing the number of free parameters (compare eq. 1.36 to
eq. 1.45) disabling the HOSVD to perfectly model the data. As the core & has same size
as X the results of HOSVD contrary to the PARAFAC model is very hard to interpret.

The PARAFAC model is also related to the rank of a multi-way array. An N-way array A

has rank-1 when it equals the outer product of N vectors, i.e. A= ulou@o . ocu™.
PARAFAC of a multi-way array is the decomposition of the multi-way array into a
minimal sum of rank-1 components [21]. Furthermore, by the definition of the rank of
multi-way arrays, see the notice in Definition 4 page 111, the PARAFAC decomposition
approximately describes the rank of the multi-way array. Consequently, a PARAFAC
model based on finding the best sum of rank-1 components as described in [20],[33] will
also be implemented in the following section.
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1.5 PARAFAC Algorithms

Algorithms are based on an initialization and an iterative optimization. Before addressing
the three iterative optimization approaches; Alternating Least Squares, EM-algorithm and
VBEM-algorithm, the problem of initialization will first be addressed. This will be
followed by a brief description of the handling of non-negativity and a way of evaluating
the PARAFAC model by the so called Core Consistency Diagnostic.

Initialization

The choice of initialization can have significant impact on the time it takes an algorithm
to converge, but more serious problems arises in situations where the function to optimize
has local extremes. In this situation, the algorithm might also converge to different values
depending on where it is initialized, see Figure 1.9.

48
F 3 ‘l

g

Figure 1.9: A one dimensional optimization situation where convergence depends on initialization.
Here, initializing with a low value of 8 makes the algorithm converge to a local extreme.

From Figure 1.8 it was seen that if the HOSVD had a diagonal core it could be
considered a PARAFAC model. Furthermore, HOSVD has the advantage that UYis

ordered making the first F eigenvectors of U describe the most of the variation of the
data. Let k be the vector containing the diagonal of & . From the HOSVD an initial guess
of the PARAFAC model parameters can be found by taking the F first eigenvectors of

UYvi:

F

Xijiy. iy Z z/luzz/l Z_

A=1

1
U gwherev 9 =k u(/% eq. 1.49

N/—\
An_/

However, to insure no local optimum is found from the algorithms using different
initialization points is recommended.

Non negativity

In the problems at hand, the PARAFAC models are required to yield non-negative
results. In the case of the VBEM-algorithm, insuring non-negativity could be achieved by
using non-negative distributions such as gamma distributions as priors of the factors,
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however only the hidden variables in the EM-algorithm can in this way be assured non
negativity. Bro derives in his thesis two simple methods of assuring non-negativity.

One way of assuring non-negativity is simply to find the optimal unconstrained solution
and to set all negative elements in every column of the factors to zero, see also Theorem
10 page 109. This method is denoted “Column-wise Non-Negativity” [5].

A more flexible method is to insure the non-negativity constraint using the following
algorithm which manipulates iteratively each row of the constrained factors. The
algorithm uses the feature that each element in the row of a factor is only affected by the
other elements of the same row, consequently the name “Row-wise Non-Negativity” [5].

_{1,2:,...,M}
=0, w =ZT(XT —ZaT)

While R0 A| max(w A )> tolerance}

A neR
m =arg max(wn )
neR

P={P,m},R=R\m
st = ((ZP )TZPJ_I (ZP)T x,s8 =0

While min(s? )< 0

Figure 1.10: Algorithm for “Row-wise Non-Negativity”. x corresponds to a row of X, where X and Z
is defined as in Figure 1.11.

The algorithm is optimal in a least square sense as it optimizes the parameters according
2

to which variable contributes the most to the squared error, i.e. HXT - ZaTH . The “Row-

wise” and “Column-wise” implementation of non-negativity is only valid for algorithms

based on Least Square optimization, i.e. minimizing the sum of square error.

Even though the data to model aren’t non-negative it can be an advantage to impose non-
negativity by adding a constant and fitting the model under the non-negativity constraint.
This insures no factor can counteract the effect of any other factor by having opposite
sign eliminating the risk of degeneracy in the factors.
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1.5.1 Core Consistency Diagnostic

The Core Consistency Diagnostic, CCD, can be applied to any model that can be
considered a restricted 3-way TUCKER model [5]. Consider the PARAFAC model given

ineq. 1.31.i.e. X" = A(S|®|B)T . According to Figure 1.8 this can be considered a

restricted 3-way TUCKER model as given in eq. 1.40, i.e. X"™/* = AG(S|®|B)T where the

core G is zero apart from along the superdiagonal which has ones. This core is denoted T.
G of the TUCKER model is now found by inserting A, B and S obtained from the
PARAFAC model, i.e [5]:

min| X" ~ AG(S|@[B)' Hz = min|vecX — (B ®S/@|A JvecG|’ eq. 1.50

If the PARAFAC model is valid G should resemble T. A measure of resemblance is the
core consistencyl:

(t def = 8 def )2

M=
M=

>

d=le

i
~
I

Core Consistency =100-| 1 — eq. 1.51

2
8 def

M=
M=
M=

x[U

~
Il

=le=1 f=1

From eq. 1.51 it’s seen that if the PARAFAC model is perfect, the nominator becomes
zero giving a 100% consistency. If the PARAFAC model isn’t correct the percentage of
G not consistent with T reduces the Core Consistency. A core consistency well below 70-
90% indicates that either too many components are used or the model otherwise is mis-

specified [1].

Although the Core Consistency is an effective measure of how many factors to include,
Bro emphasizes that other measures such as sum of squared residuals versus number of
factors, inspection of the parameters and cross validation also should be taken into
consideration.

" Bro has unclearly defined the Core Consistency in his thesis [5] and several other papers, he defines:

F F F 5
=23 Y ltaer - 8as)
d=le=l f=1
F F F
2

2.2 2. Luey

d=le=1 f=1
However, in his implementation he uses the definition given in eq. 1.51.

Core Consistency =100-
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The core consistency generalized to higher orders yields:

F F F )
ZZ Z(tiliQ...iN 'giliQ...iN)

il =1 i2 =1 iN =1

F F F )
Z Z Zgiligu.iN

il =1 i2 =1 iN =1

Core Consistency =100-| 1— eq. 1.52

1.5.2 PARAFAC by Alternating Least Squares

Rasmus Bro and Claus Andersson have created a multi-way toolbox for Matlab [1]. Their
implementation of PARAFAC is based on the technique of alternating least squares
(ALS).

The principle of ALS is quite simple; initialize all model parameters for example
randomly. Update each parameter by minimizing a cost-function with respect to the
parameter while holding all other parameters fixed.

Consider the PARAFAC model as defined in eq. 1.31. Giving the cost function
min|X"* — A(s|®[B)
defined by [5]:

2
, the Alternating Least Squares algorithm for PARAFAC is then

=0, ASSE>¢, SSE=0
hile iter<Criterion & ASSE>¢€

A
iter=iter+1

Z=(S|®B)

A = XxK)z(z7 )"

Z = (S/®|A)
B = XVxKiz(z7z)*
Z = (B/®|A)

s = x KxU)z(zT z)*

SSE Hx -A(B|®|S)"
ASSE = | SSE ,, — SSE
| .

Figure 1.11: The ALSPARAFAC algorithm.
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Notice how the algorithm makes use of the interchangeability of the model parameters as

revealed in eq. 1.29 changing the order of the parameters by changing the unfolding
of X .

1.5.3 PARAFAC by multi-way rank one decomposition

As the PARAFAC model can be formulated as a sum of rank one components a
PARAFAC algorithm can be defined in the framework of the HOSVD as explained in
[19], [20]. The algorithm finds the best rank one decomposition by an alternating least
square approach where each dimensions factor can be directly found from the n-mode
multiplication. Each consecutive factor explains the most of the remaining variation in
the multi-way array.

1S the number of rank-1 decompositions)

ze u" by taking the first
nvectors of the HOSVD of Sy

hile juf) -uf)| > ¢
A

o _ (2) (3) (N)
Ul = Spxqupyxguy Xy g

,t
(1)

0 _ Yk

Y1 =70
o
k,t+1

(2 _ (1) 3) (V)
Upiel = S x U1 X3 Wy Xy Uy

(2)
@) _ Y+
W41

(~N) _ (1) () (v
U =S XU X W e Xy g

(N) _ g ie

L Wy = (N)
u

k,t+1

i (1) (2) (V)
A=8 % Wy er1 X2 U re S

St =S~ Al ou) o--

Figure 1.12: PARAFAC based on a sum of multi-way rank one decompositions, SRIPARAFAC.
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1.5.4 PARAFAC by EM and VBEM

Frederik Brink Nielsen seems to be the first to derive the PARAFAC model in a
statistical framework using the EM and VBEM algorithms [27]. His derivation is based on
the assumption of normal distributed factors. Although non-negativity could be insured
for example by insuring gamma priors it turns out to be unnecessary in the case of the
EM algorithm as the row wise non negativity constraint can be implemented on all but
the hidden variable S. This practically always insures S to be positive. Gamma priors
could have been used in the VBEM algorithm to ensure the non-negativity. In order to
implement the gamma priors each element of the k™ factor would depend on the other
elements of its row. The algorithm would have to iterate over each dimensions own
factors slowing down the already very slow algorithm. Consequently, the factors are
assumed normal distributed as given by [27]. However, if the VBEM algorithm finds the
true factors, non-negativity becomes just a matter of choosing the correct sign of each
factor.

PARAFAC by EM

The expectation maximization of PARAFAC will be based on the following assumptions:

Due to assumption 1 the following is valid:

P} afom il =T r)

1 eq. 1.53
o3[ ]

m=
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E Step
As derived in Theorem 2 page 95 the following holds:

M _ _
p(Sl-|A,{X£‘m),])(m),‘l’(m)}m:1)°< exp( TD(m)AT‘Y( ) 1 5;11)7%53'(I+ Aé[ D(m)AT‘I‘(m) lAD(m))si) eq. 1.54

m=1

This yields the update rule below, as derived in Theorem 3 page 96 :

M -1
Tg = [I ¥ ZD(’")AT‘P(’")_IAD(’")]

m=1

M ]
<S>:ZS[ZD(’")AT‘P(’") lxm]
m=1

(s87) = Nxs +(S)(S)"

M Step

In the M Step the likelihood £(0) is maximized. From eq. 1.15 and eq. 1.53 the following
is derived as revealed in Theorem 4 page 98:

£(0)=
g Z “I’ ‘ - 7% %XTTT('")_IXE'") + tr(D(”’)AT‘I‘(’”)_IAD(”’)<ssi>)— 2x§m)T‘l‘(m)_lAD(m)<si> ot X 153

This yields the update rule derived in Theorem 5 page 99:

M B M B -1
a, :[Z\P(m) lx(m)<s>TD(m)] [Z(\P(m) ljkk D(m)<SST>TD(m)J
k

m=1

d, = (<SST e (AT‘I’(”’)_IAD_I vec{diag[AT‘I’(m)_IX(’")<S>T ﬂ

plm) %diag{X(m)X(m)T +ADI"(ssT)D("AT - 2AD(’")<S>X(’")T}
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Consequently the EMPARAFAC algorithm can be stated as shown in Figure 1.13:

ARAFAC

A P 1
1+ DA w0 lAD(’”)J

m=1

-

S)= ):S(Z D("’)AT‘I’('”)_IXmJ

M M
e [
m=1 x \m=1 kk

-1
dm — (<SST> ° (AT\II(m)_lA)) vec|:diag |:AT\P(m)—1X
‘I’(m) = %diag{x(m)x(m)T + AD(m)<SST>D(m)
Calculatell( 0 ier, AL(0)=12(0 )jter-

Figure 1.13: The EMPARAFAC algorithm.

PARAFAC by VBEM

For the VBEM algorithm the following assumptions are made:

38



For the derivation of the VBEM algorithm consult Theorem 9 page 104. The derivation
yields the algorithm shown in Figure 1.14:

Figure 1.14: The VBPARAFAC algorithm.
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1.5.5 PARAFAC combined with ICA

Many factor analysis models exist for the two-way array analysis of matrices. Among
these models Independent Component Analysis has gotten much attention as, in many
situations, it has proven efficient in finding the relevant components in the data [18].

Here I show how any two-dimensional factor analysis can be applied to create a
PARAFAC decomposition using features from the two dimensional factor analyses. The
method will focus on the independent component analysis as revealed in the
ICAPARAFAC algorithm. Furthermore, I show that for three-way arrays and some four-
way arrays the decomposition can become non-iterative.

ICAPARAFAC

First I'll define what I call Combined Independence, CI. Consider the multi-way array

X e R That X is combined independent in the modalities n, n+1..., N, i.e

Ly, X1, 1

CI, .41,y means that the matricizing of X into X e ® n1-IN can be

described by the model X = AS where the rows of S are mutually independent, but this is
not possible including less modalities in the CI. Notice, the CI applies to any combination
of modalities as the order of the multi-way array modalities is only a matter of
permutation. In the two-way array case, CI, correspond to the normal ICA model.

In ICAPARAFAC the combined independence is first identified. A and S is then found
using an ICA algorithm from matricizing the multi-way array so that the columns of X
constitutes the modalities of combined independence. Consequently,

Ae g Mo DnF g g FXInlnvi-In Tg find the A factors corresponding to each of the

1,, unmatricize the ™ row of S, i.e. S W e R It XIn Each
dimensions A™ factors can now be found by the best rank-one decomposition of

S (4 )using for example the SRIPARAFAC algorithm with one factor. To find the factors
of each dimension in A corresponding to the n-1 first modalities, two approaches can be
used. The first approach is similar to finding the factors underlying S; unmatricize the A"

column of A to give A(i) c R11><12><...><I

dimensions 7 1

n-n+l "t

»~1 . Again find each dimensions A" factor by the

best rank-one decomposition of A(/l ). The second approach is to find the remaining
modalities factors using ALSPARAFAC on X while holding the factors found
underlying S, i.e. the n,n+1,...,N modalities fixed. Where the first approach gives the
decomposition that the best describe A found by the ICA, the second approach gives a
better approximation to X . The method is described in Figure 1.15.
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ICAPARAFAC

- 1)) W)
c mOdel xiliZ“'iN = ﬂzuil/lulé//{ "'uiN//l
=1

Identify the CI
Matricize X so the columns of X correspond to the modalities of the CL
Solve X=AS using ICA

(i)

Find each u’’for the CI dimensions by finding the best rank one

decomposition of the unmatricized multi-way array corresponding to the A
row of S.

Find u ; for the dimensions not in the CI, by either finding the best r

decomposition of the unmatricized multi-way array correspondin

by ALSPARAFAC on X where U of each of the CI di
fixed.

Figure 1.15: A PARAFAC model based on ICA.

The algorithm becomes very simple when the multi-way array X is of few modalities. If
A or S only holds one modality the factor of this modality is given directly by A or S.
Furthermore, if A or S holds two modalities, the factors of each of these two modalities
can be found from the first eigenvectors corresponding to the SVD solution as this is the
same as the rank one decomposition. Finally, if X is a three-way array and the number
of modalities of CI is one, the two approaches to find A yields the same results, see also
Theorem 11 page 110.

Non-iterative methods for ICA such as the Molgedey-Schuster algorithm exists [18].
Consequently, decomposing any three-way arrays and four-way arrays where the number
of modalities of the CI equals 2 can be done completely non-iterative when combined
with the SVD method. As a result, the calculations needed to estimate the
ICAPARAFAC parameters can be considerably reduced making the algorithm much
faster than the ALSPARAFAC algorithm. Especially in multi-way analysis speed is an
important issue as the amount of data tend to be tremendous. Therefore, the
ICAPARAFAC algorithm just described seems very promising as long as combined
independence can be assumed present in the data.
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1.5.6 Algorithm relations

The rank one algorithm, SRIPARAFAC, corresponds to successively running an
ALSPARAFAC algorithm with one factor, subtracting the found factors from the data,
and finding the next factor from this subtracted dataset. The ALSPARAFAC algorithm
corresponds to an EMPARAFAC model where the prior on the hidden variable S is a
delta function, making the E step resemble the M step of the algorithm. The weight ® in
the EM-PARAFAC model could also have been implemented by weighted regression in
the ALSPARAFAC model. Finally, the EMPARAFAC algorithm is the special case of
the VBPARAFAC algorithm where the parameters priors are assumed delta functions,
see also Figure 1.16.

Whereas the ALSPARAFAC algorithm seeks to find an optimal solution in terms of
explaining the most variance, i.e. reducing the sum of square error, the SRIPARAFAC
algorithm seeks to consecutively find factors explaining the most of the variation. The
EM method and VBEM method, however, seeks to optimize the likelihood of the
observed data. This does not necessarily optimize the sum of square error as the priors
affect the solution. However, the EM and VBEM method is expected to generalize well
by not over fit the model to the data due to the priors restricting the variables. Although
the main interest in this thesis will be a PARAFAC model that well explains the observed
data in favor of the ALSPARAFAC, SRIPARAFAC and ICAPARAFAC rather than
finding a model that generalizes well on new data in favor of the EM and VBEM
algorithm, the latter models have only been included for completeness of PARAFAC
methods. Furthermore, the statistical framework enables the evaluations of questions
concerning the number of factors to include in the models by the ARD and Bayesian
Information Criterion, rather than just relying on the Core Consistency Diagnostic. The
Bayesian Information Criterion, BIC, has been derived for the EM-algorithm in Theorem
6 page 101, while BIC has been derived for any least square optimization algorithm in
Theorem 7 page 102.

Finally, the ICAPARAFAC algorithm has been developed here to handle data that can be

considered CI. Whereas the ALSPARAFAC isn’t optimized to yield solutions insuring
CI, this 1s achieved by the ICAPARAFAC algorithm.

ARAFAC = EMPARAFAC =PALSPARAFAC=>» SRIPARAFAC
iors on all variables, Priors only on hidden  Priors on hidden Model fitted one

use of hyper parameters. variables, other variables also assumed  factor at a time on
Noise assumed Gaussian. variable priors delta functions. Noise remaining
assumed delta given covariance ol. unexplained data.
functions.
. 4
. o
ICAPARAFAC % .

X is CI. ICA splits problem. Factors of each dimension is
from ICA solution found either directly or by SVD,
SR1PARAFAC and/or ALSPARAFAC.

Figure 1.16: The relationship between the developed PARAFAC algorithms of this thesis.
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As quoted in the beginning of this chapter, Abraham H. Maslow said: “If the only tool
you have is a hammer, you tend to see every problem as a nail“. Hopefully, the tools
described above will be adequate to the problems at hand.
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“The human brain is the last, and
greatest, scientific frontier. It is truly an
EEG internal cosmos that lies contained within
our skulls. The more than 100 billion
nerve cells and trillion supporting cells
that make up your brain and mine
constitute the most elaborate structure in
the known universe.”
Joel Davis

The term electroencephalography (EEG), as we commonly use it refers to electrical
activity measured at the scalp that arises from neurons in the brain. This includes
activities that arise spontaneously or in response to sensory stimuli although the latter are
more commonly known as ‘evoked response potentials’ (EP) [29]. Finally, the EEG of
sensory stimuli timed to an event is referred to as event related potentials (ERP).

As it hasn’t been possible to experimentally identify the sources of the EEG signals for
certain, many theories as to what constitutes the signal has arisen spanning from
membrane quantum dynamical effects to K" fluctuations within the extracellular space.
However, in this thesis only the theory which is given the most recognition in the
literature will be described. This theory is primarily based on the theoretical framework
explained by Paul Nunez [28], [29].

2.1 Dipoles
The electric force between two charges is defined by the well known coulombs law:

1
= ——q1q2 eq. 2.1

4ze, R

From coulombs law the electric field at a point r; due to a point charge q located at r; can
be derived:

q (rl_rz): 1 Q(r1_r2)
47[80 ”r—ri”2 ||I'—I'i|| 47[80

E(,.r,)= eq. 2.2

3
e =]

44



Consequently, if there are n charges q; located at various positions r; they produce an
electric field at r given by:

I CI(r —I; )
o, & el

E(r)=} E(rr,)= eq. 23

The cornerstone of the understanding of electric field behavior comes from Maxwells
equations [12]:

Maxwells equations

V-E:%O (1)

VxE=-0B 2
Xﬁ Af ) eq. 2.4
V-B=0 3)
VxB = ‘zlf +iza—E (4)
c’gy c* ot

B is the magnetic field, P, is the total charge density and j is the current density.

From Maxwell’s equation 2 and 4 it is seen that a change in the magnetic field results in a
change in the electric field and vice versa. However, when field frequencies in the brain
are less than in the order of MHz the effect of the interaction between magnetic and
electric field becomes negligible [28] and the electrical potential ® can solely be
determined by the electric field:

E=-V® =

1 & ; eq. 2.5
<I)(r) = Z q

~aze, Slr-r)

The potential of a monopole, dipole and quadrupole is shown in Figure 2.1. In general the
potential due to all charges or current sources can be expressed as the following series of
terms called a multipole expansion [28]:

D= (monopole:ontributi)n, ! )+ (dipolecontributbn, r? )+
(quadrupole:ontributi)n, r )+ . = Z(Zi —polecontributon, pi+l) ) eq. 2.6

i=0
Where ris thedistanceto thecenterof thepolesource
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In Figure 2.1 the potential for a monopole, dipole and quadrupole is drawn.
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Figure 2.1: The potential for a monopole, dipole and quadrupole (units Volt 0 )

Combining Maxwell’s equation 1 and 4 yield;

V-j+a—p=0 eq. 2.7
ot

1.e. charge is neither created nor destroyed — charge is conserved. As the net charge is
conserved during brain activity the monopole contribution vanishes. As all other
contributions than the dipole quickly drops to zero with distance to the sources, the only
contribution believed to significantly contribute to the EEG is that of the dipole. The
potential of a dipole can be approximated to be, see also the derivation in Theorem 8
page 103:

1 gq|d|cosé
Do (r’d): 4re, ” |||1.||2

eq. 2.8
Where d is the vector going from the negative charge to the positive of the dipole and 0 is
the angle between the vectors r and d.

As seen from the potential lines of the dipole on Figure 2.1 no or little potential is found
oblique to the dipole, this is confirmed by eq. 2.8 as cos(90°) = 0. Consequently, the EEG
can only pick up signals from dipoles radial to the electrodes, as seen on Figure 2.2.
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Figure 2.2: EEG can only pick up potentials from radial dipoles, whereas MEG pick up potentials
from oblique dipoles (induced magnetic field is angular to current flow) (taken from [36]).

Two effects are seen with the generation of potential; capacitive current and resistive
current. Nunez gives a proof that if a media is linear in both the dielectric and conductive
sense i.e. the capacitor (polarization) and current is proportional to the electric field the
following approximation is in general valid [28]:

Capacitive current

=0.02 eq. 2.9
Resistive current 4

Consequently, the capacitive current is in the following considered negligible. As
capacitive current is ignored eq. 2.7 reduces to:

—

V-J=0 eq. 2.10

Imagine two regions where all current sources are located in the first region. Expressing
the current density at the boundary between the two regions as the sum of an Ohmic
current (i.e. Ohms law states that current is linear to potential also makes current linear

with electric field strength) and a source current J ., yields:

J=oE+]
s eq. 2.11
Where o is the conductivity
Using first part of eq. 2.5, eq. 2.9 and eq. 2.10 this gives:
V.oV =V-J =7,
eq. 2.12

Where J has the dimension amperes pr. m3
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Using first part of eq. 2.5, and Maxwell’s first equation we also find:
V-O’V@Z]S@V-V(D:V-E:J%_ eq. 2.13

As J_1is the source density, using last part of eq. 2.5 with Maxwell’s first equation gives:

eq. 2.14

47[0' Z ||r I, ||

Where I, (¢) is the i™ current source at time ¢ at position r;. eq. 2.14 is very important as
it translates current sources into EEG measurable potentials. eq. 2.13 can also be written:

V2P = J/ eq. 2.15
o

From eq. 2.15 it is seen that the current source densities can be estimated by taking the
Laplacian of the measured EEG potential. Consequently, taking the Laplacian of the
potential is believed to improve the spatial resolution of the EEG signal as it estimates the
current sources and sinks. In practice, calculating the surface Laplacian of the EEG
requires some form of interpolation of the EEG to estimate the signals between the
electrodes. Often splines in the form of Legendre polynomials are used for these
interpolations.

2.2 EEG and coherence

Coherence is a measure of the synchrony between sources. Let the i"™ source signal at
time / be defined as Ej;. Furthermore, let the spectral density functiong;, ( f ), also called

the power spectrum, and cross spectral density function g;; (f), also called the cross
power spectrum, for two sources be given by their Fast Fourier Transform (FFT). The

coherence function between the sources i and j, 75 (f), is then defined by:

q;(f)= Zﬁt[ZE ; expl— i27dfAt ZE ; eXp zZﬂifAt)]
=0 =0
eq. 2.16

%?(f): ‘C]ij(fxz

|51ii(f)| "Cljj(f)(

If the sources are coherent at the frequency f then ¥, (f)=1, the sources are considered

incoherent if 7, (f)=0. Notice how the coherence is defined as the squared cross
spectral correlation between the two sources.
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Let M be the amount of coherent sources, N the amount of incoherent sources. The
relative contribution of coherent to incoherent sources in the EEG is estimated to be

M /N [28].

Figure 2.3: The percentage of measured signal picked up from the EEG of coherent sources m versus
active sources N. Clearly, the coherent sources dominates the recorded EEG-signal even when only
few of the active sources are coherent. (Notice figure not valid for M>N).

As seen on Figure 2.3 the coherent sources dramatically dominate the recorded EEG
signal even though the coherent neurons are far less numerous than the incoherent
neurons. The EEG signal is therefore believed to originate from the synchronous firing of
parallel oriented neurons. 65-75% of the cortical neurons are oriented perpendicular to
the cortical surface. These pyramidal cells have large amounts of interconnections, so it
seems as if a relatively high degree of synchrony can be obtained from these neurons.
Furthermore, the pyramidal neurons of the neocortex are the neurons closest to the scalp
surface. According to eq. 2.6 the distance to the scalp causes pyramidal neurons to be
the least reduced. Therefore, the EEG is believed to mostly originate from pyramidal
cells in the neocortex [29]. Amplitude changes in the EEG with physiological state
becomes, in this framework, a result of changes in the number of synchronously active
neurons [28]. This is supported by current/source density studies that indicate that the
pyramidal cells of layer III and V are the principal source of the EEG [35] .
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Figure 2.4: Model of the layers of neocortex and findings using Golgi, Nissl and Weigert stains. From
the stains the parallel orientation of the pyramidal cell perpendicular to the cortex surface becomes
evident. The pyramidal neurons constitute 70% of the neurons of cortex and posses 10’ to 10°
synaptic contacts. Nunez believes that each electrode pick up signal from around 30 to 40 macro-
columns where each macro-column contains 10°-10° neurons [29]. (Taken from [16],[37]).

The possible roles of cortical coherence are believed to be
1. Blocking
Focus on a particular modality
2. Matching
Transfer of data from one group of neurons to the next
3. Binding
Synchronous activity between neuron groups
4. Plasticity
Transfer of function from one neuron group to another

When analyzing the ERP the following measures are very useful [8]:

n
ERSP(f,t) = % Z| ( f t)| 2 Event — relatedspectral perturbation
k=1
ITPC 13 El0) intertrial ph h
(f,t)= ;kZ::| ( ’ ] intertrial phase coherence eq. 2.17

FA (RS (f.1)
" 1\Fk (r.0F" (1.1)

ERPCOH®" (f,)== Eventrelaed cross coherence

Where n is the number of trials. Notice that the square of the ERPCOH corresponds to
the coherence measure as defined in eq. 2.16.
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Although coherence may appear to be an ideal measure of brain function, interpretations
of experimental EEG coherence are often confounded by technical limitations. Scalp
coherence between electrode sites closer than about 8 to 10 cm is typically large or
moderate due only to passive current spread, volume conduction and reference electrode
effects, even when the underlying cortical sources are uncorrelated [29]. This problem can
to some degree be circumvented by taking the surface Laplacian as described in eq. 2.15.

2.3 Synaptic potentials and action potentials

eq. 2.8 can also be expressed in terms of current sources and sinks. Let the dipole consist
of a current source at time ¢, I(r) and a current sink — (¢). Let d be the vector from the
sink to the source and r the vector to the center of the dipole, then:

I\r)d 2]
D iore (r.d.r)= : (t)” ”COS eq. 2.18

T

Potential differences recorded in the EEG are therefore believed to derive from coherent
dipoles constituting current sources and sinks. These are thought to originate from two
different processes [28]; synaptic potentials and action potentials, the latter also referred
to as sodium-potassium spikes.

2.3.1 Synaptic potentials

An action potential in the presynaptic axon activates a chemical agent (transmitter) which
diffuses across the synaptic cleft into the subsynaptic membrane. If the synapse is
excitatory, the effect of the chemical transmitter is to increase (excitatory post synaptic
potential, EPSP) or decrease (inhibitory post synaptic potential, IPSP) the permeability of
the subsynaptic membrane to positive/negative ions which flow through the local surface
of the membrane. The current flows across the membrane, through the intracellular fluid,
back across the membrane at more distant locations, and finally back to the synapse to
complete a closed loop, see Figure 2.5. This loop acts as a current source-sink dipole [28].
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Figure 2.5: The current flow of a synaptic potential. Positive/negative ions flow through the local
surface of the membrane. The current flows across the membrane, through the intracellular fluid,
back across the membrane at more distant locations, and finally back to the synapse to complete a
closed loop. (taken from [28]).

2.3.2 Action potentials

The action potential arises when a stimulus opens a few sodium channels. As a result, a
net influx of sodium starts due to the concentration gradient of sodium and accelerates as
the depolarization makes more sodium channels open. Eventually the increasing
depolarization causes potassium channels to open while the sodium channels at this point
closes. An outflow of potassium is caused by potassium’s concentration gradient
repolarizing the cell. Eventually the potassium channel closes and the resting potential is
restored due to the sodium-potassium-pump, see also Figure 2.6.
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Figure 2.6: The generation of an action potential (adapted from [39])

From Figure 2.6 it is seen that the sodium currents are followed by opposite delayed
potassium currents. Nonetheless, this potassium current is unable to counteract the
potential generated from the sodium current as o v <O g both interior and exterior the

cell as revealed on Figure 2.7.

Na* O

®) O

Figure 2.7: The smaller an ion is the more highly localized is its charge and the stronger its effective
electric field. As a result, smaller ions attract water more strongly. Consequently, because of its
larger water shell, Na* behaves as if it is larger than K™ making it less mobile, i.e. giving Na* lower
conductivity than K*[16]. (Figure adapted from [16]).
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2.3.3 Synaptic Potentials versus Action Potentials
From eq. 2.18 it is seen that the dipole potential is linear to the distance between the
current source and sink”d” . As myelination of neurons dramatically increases the

distance between the current sources and sinks, most EEG signals from action potentials
is believed to originate from pyramidal cells of heavy myelinated axons [28]. However, as
the propagation of current is much slower in unmyelinated neurons coherence is more
easily achieved in the unmyelinated regions in favor of the signal originating mostly from
the synaptic potentials from the dendritic parts of the pyramidal cell [11]. On the other
hand, the dendrites in general aren’t as well aligned as the axon’s - compare in Figure 2.4
the Golgi stain emphasizing dendritic trees with the weigert stain emphasizing
myelinated axonal fibers. However, the synaptic potential has duration between 5 ms. —
20 min. whereas the action potential only has duration of 1-10 ms. Consequently,
coherence is more easily achieved for the synaptic potential. As a result the greatest
contribution to the EEG is believed to be that of the synaptic potential [9],[16],[28].

Table 1: Processes of potential generation favoring/ disfavoring coherence.

Measured EEG | Action Potential Synaptic Potential

Advantage Myelinated axons —Large Long duration (5 ms-20 min)— Coherence easy
distance between current
sources Both excitatory and inhibitory effects.

Disadvantage Short duration (1-10 ms.)— | Dendrites not so well aligned— Coherence difficult
Coherence difficult
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2.4 Features of the EEG and ERP

The EEG has been decomposed into a series of fixed broad spectral bands based,
unfortunately, on history and discovery more than on a theoretical framework [24]. These
bands are described in Figure 2.8. In general, the frequency of brain oscillations is
negatively correlated with their amplitude [28],[30].

0.t 4 8 13 30 Hz
@ Delta 3 Thetz j Alpha j Beta j Gamma
Delta rthythms The Beta rhythm appears during periods of ~ Origin:
Appears during sleep, mental activity The basis of gamma oscillations is interneuronal
normal in awake infants feedback with quarter-cycle phase lags between
Origin: neurons situated close to each other in local areas
Origin: the neuronal oscillators which generate the  of the cortex.
The theta rhythm origina'es as a result beta rhythm presumably are located inside
of interactions between cortical and the cortex.

hippocampal neuronal groups

The Alpha rhythm is Considered the main EEG rhythm. This

rhythm is typical of the resting condition and disappears when

the subject perceives a sensory signal or when he/she makes mental efforts.
Origin:

Alpha rhythm is generated by reverberating propagation of nerve

impulses between cortical neuronal groups and some thalamic nuclei,
interconnected by a system of excitatory and inhibitory connections

and resulting in rhythmic discharges of large populations of cortical
neurons. In the visual cortex, however, alpha rhythms can be generated by
intracortical networks involving layer V pyramidal neurons

Figure 2.8: EEG rhythms and their believed origins (summary of [9],[16], [28], [34])

2.4.1 Event Related Potentials, ERP

Event Related Potentials (ERP) is the measured EEG signal timed to sensory stimuli. The
EEG signal can be split into induced activity, evoked activity and noise. The induced and
evoked activities are both believed to be generated from thalamic relay cells. An
internally or externally paced event results not only in the ‘evoked’ generation of an
evoked response potential (EP) but also in an ‘induced’ change in the ongoing EEG/MEG
in form of an event-related desynchronization (ERD) or event-related synchronization
(ERS) [30]. The EP represent the responses of cortical neurons due to changes in afferent
activity, while ERD/ERS reflect changes in the activity of local interactions between
main neurons and interneurons that control the frequency components of the ongoing
EEG [30].

55



“Induced” activity "Evoked” activity

Ascancing Bresiny saeem Parerding Beoain sherm
affenanis affeents oftescnis affeserts

Figure 2.9: Schema for the generation of the highly frequency specific induced (ERD/ERS) and the
evoked (EP) activity. TCR: thalamic relay cells, RE: reticular thalamic nucleus [30]. Where evoked
activity is mainly controlled by the ascending afferents the induced is controlled by the reticular
thalamic nucleus.

As revealed in Figure 2.9 of principal concern is the reticular activating system, a
complex and diffuse system projecting from the brainstem to the cortex, which provides
both inhibitory and excitatory inputs. This subsystem is itself under control from the
cortex, as well as from collaterals of sensory pathways. The activating system is most
crucially concerned with maintenance of the waking state, desynchronization of the EEG,
direction of attention and governance of motivation [35] . Although EEG is believed
primarily to stem from dipoles of synaptic potentials firing in synchrony mostly due to
the reticular activation system, where and what exactly generates the signals remains
unclear.

Evoked oscillations exhibit a strict phase-locking to the experimental event (e.g. stimulus
presentation) across trials. Hence, they can be extracted from the averaged ERP, e.g. by
filtering or by the ITPC of a wavelet analysis. On the other hand induced oscillations are
(by definition) not at all phase-coupled to a stimulus, and show a certain degree of phase-
jittering. Therefore, by averaging across trials these oscillations will cancel out
completely and hence are only detectable by appropriate ways of analysis, e.g. by a single
trial based wavelet analysis with subsequent averaging [6], such as the ERSP.

The components of the ERP are labeled by latency and polarity. A positive component at
100 ms is called ‘P100’ and a negative deflection at 200 ms is a ‘N200’, see Figure 2.10.
Furthermore, the event related potentials that are determined by physical aspects of the
stimulus are labeled, ‘exogenous’ whereas higher order processing are labeled
‘cognitive’.
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uv

N400

P300

Figure 2.10: Typical significant components of the ERP

(notice: negativity is due to historically reasons directed upwards so that current flowing out of the scalp is up)

Many ERP experiments are based on the oddball paradigm: Two stimuli are presented,
one of which is an infrequent target. When the target is discriminated from the other
stimuli with attention, the P300 is of greater amplitude [9]. This has made especially the
P300 a very interesting component of the ERP. The various most common ERP
components are described in Table 2. The table is only a guideline. Experts do not agree
on how to interpret all components and the components are difficult to generalize over
different experimental paradigms.
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Table 2: Features of ERP components

Spike

Description

Exogenous process

P100

N100

Generation

Appear to be generated in the primary receiving areas of the brain.

Identification

Both have been found to occur 100 ms after presentation of a visual stimulus. Found in
the receiving areas of the brain.

N200

Generation

Increases in amplitude to task deviant stimuli.
Identification

Located Posterior

P200

Generation
Increases to novel stimuli

Cognitive process

P300b

Generation

Attention dependent. Monotonous inverse relationship between amplitude and
stimulus probability. Negatively correlated with speed of information processing as
indexed by reaction times — the faster speed of processing the earlier latency. The
latency increases with the time the subject needs to distinguish the rare stimulus. The
amplitude increases with rarity of the stimulus and to some extent with stimulus
intensity. The amplitude of the P300 has been shown to be inversely proportional to
stimulus presentation probability and directly to task complexity. P300 amplitude has
been shown to be inversely related to a prior probability and is influenced by the
sequence of immediately preceding events, i.e., sequential event structure. Unrelated
to the specific sensory areas but probably related to the parietotemporal association
cortex and subcortical structures such as hippocampus and thalamus. Occurs to
infrequent non-target stimuli

Identification:

In normal young adults a positive wave over the Centro-parietal scalp is seen. Can
occur at any point between 280-800 ms. Posterior scalp distribution with maximum at
Pz, P300 latency is age dependent, being longer in children, progressively decreasing
until 18 before increasing by 1.25 ms per year In adult. Aging increases the latency,
decrease the amplitude and cause forward shift in the distribution of P300

P300a

Generation

Mostly concerned with novel stimuli. The more the stimulus is known the more P300a
approaches P300b. Its features are Similar to P300b.

Identification

Shorter latency (=250 ms) than P300b. Situated more frontal-central than P300b and
habituates rapidly. In different modalities it has also been reported as Centro-parietal.

N400

Generation

Found in numerous studies that have employed a task in which items were presented
sequentially and subjects were asked to respond if the stimulus was unmatched
(incongruent) or matched (congruent) with the preceding items. It has been proposed
that it represent the associated activation of neural networks basic to stimulus
integration.

Identification

Located in frontal area, and is larger in non-matched items than matched items.
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2.4.2 Noise

EEG potentials are measured as the difference between two points, one on the scalp
where EEG effects are strong and one (the reference electrode) hopefully isolated from
these effects. Some commonly used reference sites are Cz, earlobes, mastoids (bone right
behind ear), tip of nose and average reference ("reference free"). Earlobes or mastoids
are generally linked either physically or mathematically in order to maintain symmetry.
The average reference uses the constraint that the sum of the potentials over a spherical
surface is zero and requires fairly high density recording (~128 channels). It can be
improved by estimating potentials for the inferior spherical area. Spherical spline
interpolation is sometimes used for these estimates. The 10-20 international system is a
standardized system to place the electrodes. It relies on taking measurements between
certain fixed points on the head. The name 10-20 refers to the fact that the electrodes
used to be placed at points 10% or 20% of these distances [40]. Today other fractions are
used, but the name 10-20 has been kept. How the recorded signal is referred can have
crucial impact on the noise in the EEG as a very noise full reference can mess up the
signal of all recorded channels.

Many sources of noise disturb the EEG/ERP signal. Of primary concern is muscular
action due to eye movement, hearth beat etc. Furthermore, noise from electronic devices
can have a great impact especially in the 50 Hz range where most electronic devices, at
least in Europe, operate. Finally, volume conductance is another huge problem when
dealing with the EEG/ERP signal. Both heartbeat and eye movement can be reduced by
correcting the signals from recording sites by the eye (EOG) and heart (ECG). Instead of
specific recordings from these sights, recordings of the influence of eye and cardiac
activity can also be identified prior to the ERP experiment. As previously mentioned,
volume conductance can be reduced by taking the surface Laplacian.
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2.4.3 EEG/ERP and PARAFAC

Extracting the correct features of the EEG is of crucial importance. Well used methods of
analyzing EEG data are; Wavelet Analysis, Neural Networks Analysis, Blind
Deconvolution and Source Separation Methods such as Principal Component Analysis
(PCA) and Independent Component Analysis (ICA).

In this thesis, an approach described by Martinez-Montes et al. [24] and Miwakeichi et al.
[25] where sources are separated using parallel factor analysis, PARAFAC, will be used.
Although Harshmann in his original paper in 1970 [13] suggested the use of the
PARAFAC model on EEG the use has been very limited. In 1988 Mocks [26] and in 1991
Field [10] used the model on the ERP to decompose the space-time-subject. In 1985 Cole
et al.[7] used it on the ongoing EEG in a way similar to that of Miwakeichi et al.

Martinez-Montes and Miwakeichi et al. used the PARAFAC model to extract features of
the ongoing EEG. They proved that PARAFAC was capable of successfully identifying
the theta and alpha atoms of a cognitive task and showed furthermore the algorithms
ability to identify eye blinks. In this thesis the PARAFAC decomposition will instead be
applied to the ERP. The PARAFAC model seems plausible as the EEG/ERP-signals in
several ways can be considered multi-way arrays as seen on Figure 2.11.

epoch

>, epoch frequency channel
g s channel channel
T = time
)
&: s ime ime
H B XIX.]XK XIXJXK

Frequency X [XIXKAL
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Figure 2.11: Different forms of multi-way arrays arising from the EEG.

More modalities could easily be added to Figure 2.11 denoting for example the analyzed
subjects or the various conditions under which the data has been recorded. The
PARAFAC analysis of the epoch averaged ERP-potential given by

channel X time X subject and the ITPC is in the following of great interest.

F
From eq. 1.29 we had x;; = Zal‘/’lblekl , in terms of the ITPC; a denotes the
A=1
component pertaining to the topography, i.e. channels, b the frequency component and
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s the component describing the temporal development. The model seems plausible as the
ERP is believed to be a non-stationary process requiring a change in time of the factor
proportions, which by the model is insured bys. eq. 1.29 can be restated as
F

Xy = Zaucu , where ¢;; = bﬂsk}L and L =J - K . This corresponds to the normal two-

A=l
dimensional factor analysis model. Performing ICA on this model makes the assumption
that the combined frequency-time components d ;;s;,; are mutually independent, i.e.
ClI, 3. The goal in the analysis of the ITPC is both to separate the multi-way array into
factors that relate to different time-frequency components favoring the ICAPARAFAC

algorithm but also to do data exploration favoring ALSPARAFAC as it keeps the most of
the variation.
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"Absence of evidence is not evidence of
absence!"

3 DATA Analysis -unknown

3.1 Simulated data

To evaluate the ability of the PARAFAC algorithms to find the components of real data,
the developed methods were tested on simulated data. A 32 channel EEG sampled at 500
Hz was generated and added 50 Hz oscillations of amplitude 0.8 on all channels
mimicking electronic noise. Two burst of 35 Hz sinusoidal oscillations with an amplitude
of 1.0 were placed in channel 30,31 and 32 at the posterior areas resembling occipital
gamma activity while one burst of 25 Hz oscillation with amplitude 1.5 were generated
simultaneously at each ear at channel 11 and 15. Finally, normal distributed random noise
of power 1.0 was added to all channels. The data was transformed using a complex
Morlet wavelet with bandwidth parameter 2 and center frequency 1, and the power of this
wavelet transformed signal analyzed. The three PARAFAC factors shown in Figure 3.3
were expected to be found from the data. On Figure 3.1 the simulated EEG data is
revealed and the corresponding power of the wavelet transform is seen on Figure 3.2.
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Figure 3.1: The simulated EEG-data.
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Figure 3.2: The power of the complex Morlet wavelet transform on each of the 32 channels of the

simulated data.
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Figure 3.3: The true factors of the simulated data.
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The raw simulated data was first analyzed using Independent Component analysis by the
‘runica’ standard method in EEGLAB [8]. As revealed in Figure 3.4 none of the
independent components solely captures any of the underlying three factors. Especially
the same 50 Hz oscillation present in all channels was split into individual components.
Consequently, the independent component analysis did not seem efficient in accessing
the various factors present in the data. Furthermore, no clear indication of the time points
at which the factors were present was given by the ICA-decomposition as it is
irresolvable from the EEG of the components. Thus, without any frequency information
the ICA algorithm was unable to identify the factors.
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Figure 3.4: Top panel; the component map and time series of all 32 independent components. Lower
panel; the maps of the three independent components contributing the most at 50 Hz, 25 Hz and 35
Hz to the specter of the EEG along with the summed map of the three components. Clearly, the ICA
decomposition hasn’t been able to identify the true components of the data.

The developed PARAFAC models were then tested in their ability to access the
components. In the ICAPARAFAC model CI, 3 was assumed, i.e. a combination of the
time and frequency dimensions were thought independent. As non-negative solutions
were desired, a non-negative matrix factorization (NMF) was compared to a
decomposition based on SVD for the rank one decomposition. The NMF was optimized
in a least square sense as described in [22]. Although, non-negative ICA algorithms would
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be more correct to use due to the non-negative nature of the data, an ICA algorithm based
on maximum likelihood described in [18] was used as it gave approximately non-negative
results. For the derivation of the Bayesian Information Criterions used consult Theorem 6
and Theorem 7 page 101-102. The number of observation in the BIC measures was
defined as the number of time points in the data. Furthermore, BIC was normalized by
the number of observations. Although only the ALSPARAFAC corresponded to a least-
square optimization the SRIPARAFAC and ICAPARAFAC algorithms also used the
BIC given for a least square solution. This was done since the factors found of
SRI1PARAFAC and ICAPARAFAC were believed to be close to a pure least square
solution.

ALSPARAFAC

Core Consistency Diagposiic ALSPARAFAC ALSPARAFACBIC
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Figure 3.5: To the left; the determination of the number of factors present using ALSPARAFAC,
given by the Core Consistency Diagnostic, CCD and BIC. Both the CCD and BIC clearly indicate a
three component model. To the right; the factors found when fitting a three component model.
Obviously, ALSPARAFAC has positively identified all three factors.
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Figure 3.6: To the left; the determination of the number of factors present using the SRIPARAFAC,
given by CCD and BIC. The CCD uncertainly indicates one to three components present whereas
BIC give strong indication of a one component model. To the right; the factors found when fitting a
three component model. The SRIPARAFAC only correctly identifies two of the three factors.
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Figure 3.7: To the left; the determination of the number of factors present using EMPARAFAC,
given by CCD and BIC. The CCD indicate a model having two factors whereas BIC gives sign of only
one factor. To the right; the factors found when fitting a three component model. The EMPARAFAC
only identify as indicated by BIC one component - the 50 Hz noise present in all channels.
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Figure 3.8: To the left; the determination of the number of factors present using VBPARAFAC,
given by the CCD and ARD. The CCD is very unclear but indicate that up to four factors are
present. The ARD however only reveal that one or two factors are present. To the right; the factors
found when fitting a three component model. The VBPARAFAC correctly identifies as indicated by
the ARD two components - the 50 Hz noise present in all channels and the 25 Hz ear activity. It is
however unable to find the occipital activity®.

> The VBPARAFAC ran for 10,000 iterations as suggested by [27], priors were set to be non-informative.
However, for both VBPARAFAC and EMPARAFAC it was difficult to determine whether the algorithms
had converged.
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ICAPARAFAC
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Figure 3.9: To the left; the determination of the number of factors present using ICAPARAFAC,
given by CCD and BIC for an ICAPARAFAC algorithm using SVD and one implemented with
NMF. The CCD and BIC of both algorithms clearly indicate a three factor model. Both methods are
also able to correctly identify the three factors. The frequencies and temporal signatures are however
slightly different from each other.

As seen on Figure 3.5 the Core Consistency Diagnostic clearly indicates that three factors
are present in the ALSPARAFAC, this is confirmed by the Bayesian Information
Criterion. The method is also able to correctly identify all three factors. A much weaker
indication of a three component model is given by the CCD for the SRIPARAFAC, see
Figure 3.6. The BIC for SRIPARAFAC indicate however that only one factor is present.
The SRIPARAFAC is able to correctly identify two components, the 50 Hz activity in all
channels and the 25 Hz ear activity, but the 35 Hz occipital activity is lost. The
EMPARAFAC algorithm as seen on Figure 3.7 is only able to identify the 50 Hz activity
in all channels, from BIC it is also seen that only one factor is indicated to be present in
the data. From the automatic relevance determination (ARD) of the VBPARAFAC on
Figure 3.8, it is seen that one to two factors are found to be present in the data whereas
the CCD is very unclear but indicate that up to four factors are present. The
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VBPARAFAC method correctly finds the 50 Hz and 25 Hz activity. Finally, the
ICAPARAFAC based on SVD and NMF both clearly indicate from the CCD and BIC as
seen on Figure 3.9 that three factors are present in the data. Both methods also correctly
identify all three factors. From the results of the ICAPARAFAC algorithm using SVD or
NMF didn’t change the CCD or BIC. However, the temporal signatures as well as the

frequency signatures were slightly altered. Notice how the SVD solution is very close to
the ALSPARAFAC solution.

From the simulated data only the ALSPARAFAC algorithm and ICAPARAFAC
algorithm successfully identified all the factors. For these two methods the CCD and BIC
both worked well, as they strongly indicated three factors were present. The two
algorithms were then compared in their ability at different noise level to identify the 25
Hz activity at the ears and 35 Hz activity at the occipital region. For each level of noise
fifty ALSPARAFAC and ICAPARAFAC models were fitted to the data. The
ICAPARAFAC was based on the Non-negative Matrix Factorization. Both algorithms
were evaluated by how much their found factors correlated with the true underlying
factors. The correlation was calculated as the average correlation taken over each of the
three factor-components, i.e. as the average correlation of the topographic, frequency and
temporal signatures between the real and found factors.
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Figure 3.10: The correlation between the true and estimated factors for different signal to noise
ratios (SNR). Blue corresponds to ALSPARAFAC, red to ICAPARAFAC. Dashed lines correspond
to one standard deviation from the solid lines. Clearly, the ICAPARAFAC is better at finding the
true components and more stable than the ALSPARAFAC method as the SNR drops.

From Figure 3.10 it is seen that the ICAPARAFAC algorithm is better at estimating both
the 25 Hz ear and 35 Hz occipital activity as the signal to noise ratio drops. Both methods
have more problems finding the ear activity than the occipital activity when the signal to
noise ratio decreases. Whereas both methods correctly identified the occipital activity
down to a SNR=10""=0.32, already around a SNR=10""'=1.26 the ALSPARAFAC
methods have problems finding the ear activity. This stems from the fact that the occipital
activity is present longer and in more channels than the ear activity making it easier to
detect. Furthermore, ICAPARAFAC is more stable than ALSPARAFAC as the standard
deviation of ICAPARAFAC is smaller than that of ALSPARAFAC and ALSPARAFAC
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begins to be unstable earlier around a SNR=10""=3.16 for the ear activity and at
SNR=10=1 for the occipital activity.

Finally, the ICAPARAFAC method was compared to the ALSPARAFAC on the
chemometric data set “Claus” described in [41]. The analysis is shown in Appendix D:
ICA- and ALSPARAFAC on Chemometric Data. Also on this dataset [CAPARAFAC
performed well.

3.2 Real data

The real data is generated from an experiment by Herrmann et al. [15] regarding gamma
oscillations in the visual system. Gamma oscillations have been shown to correlate with
perceptual binding, attention, arousal, object recognition and language perception. A
mechanism which underlies many of the above mentioned cognitive functions is the
match of sensory information with memory contents. Herrmann and colleagues argue that
the so-called ‘early’ gamma-band activity, occurring in EEG before 150 ms after stimulus
presentation, reflects a match with memory. In addition, they argue that ‘late’ gamma
activity, which typically emerges with a latency of more than 200 ms, is a temporal
signature of utilization processes such as response selection or context updating [14].
This has lead to the Match and Utilization Model, MUM, explained in Figure 3.11.
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Figure 3.11: Black connections represents memory connection, gray the lack of memory connection.
According to Herrmann et al. a stored memory representation will result in an enhanced gamma oscillations
and synchrony as the features are matched with the memory content. Furthermore, as revealed in b the
expectation of a known visual stimuli can result in enhanced gamma oscillations and synchrony as the neurons
expecting the visual feature are closer to threshold. As revealed in ¢, when no memory representation is present,
no enhancement takes place. This concept has been expanded to the Match and Utilization model, MUM, (lower
right figure): Sensory coding is integrated into features, and these features are matched with memory contents
around 100 ms. At around 300 ms a process denoted utilization takes place. Here updating of memory contents,
selection of different behavioural responses and the reallocation of attention is believed to take place. Whereas
the match at 100 ms is evoked the utilization at 300 ms is believed to be induced. Figures adapted from [14].
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Herrmann et al. find that under visual stimulation a strong increase in evoked oscillations
near 40 Hz over posterior areas with a latency of approximately 100 ms and a later
increase in induced activity with a latency around 300 ms can be observed [6],[15]. As
evoked activity is phase locked to the stimuli, the ITPC will be analyzed. Coherence in

the posterior regions is expected to be found. In the following, coherence is defined as the
ITPC.

Eleven healthy subjects with mean age 25.7+1.7 years participated in the experiment. All
subjects had normal or corrected to normal vision. The experiment was done by Sidse
Arnfred at Cognitive Research Unit, Department of Psychiatry, Hvidovre Hospital. The
subjects were asked to classify objects as round or edgy by right or left clicking a
computer mouse. Some of the objects had a long term memory representation (object)
whereas other objects consisted of the same atoms but randomly placed not to make sense
(non-objects), see also Figure 3.12. To insure the subjects were naive to the experiment
the task of classifying the objects as edgy or round was given even though no such clear
interpretation of the objects was always present.

Cihjects with Chbjects without
LTM representation LTM representation

o e | ES

Figure 3.12: Example of stimuli with long term memory representation (object) and without (non-
object) , taken from [15].

Edgy
ahiects

The subjects were recorded using a BIOSEMI 64 channel active electrode system, see
also http://www.biosemi.com/active electrode.htm. The EEG was referenced to the
average of two channels placed at each ear, i.e. channel 65 and 66. Data was sampled at
512 Hz. The epochs were extracted from the data taking -250 to 1000 ms. from stimuli
onset. Baseline activity from -250 to -100 ms. was subtracted each epoch. A total of
between 102 and 105 epochs were present in both the object and non-object condition for
each subject. A complex Morlet wavelet with center frequency 1 and bandwidth
parameter 2 was used. Although Herrmann et al. suggest removing epochs having
standard deviations more than 50 LV [15], we compared this rejection criterion with an
extensive rejection analysis of the epochs in EEGLAB using independent component
analysis as suggested by Makeig et al. [8]. However, we realized that since we were
analyzing the ITPC, the number of epochs used was more important than the quality of

70



each epoch. Although some epochs were very noisy they still had the correct phase. Since
more epochs reduced the noise as averages could be taken over more trials, see also
Figure 3.13, we ended up accepting all epochs in the data.
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Figure 3.13: Left panel; example of a two component ALSPARAFAC analysis of the ITPC
performed on all epochs of a subject and where 50% of the epochs having largest standard deviation
within a 200 ms timeframe were removed. Activity at the posterior region is evident from the
topographic image with all epochs whereas the removal of 50% of the epochs dramatically removes
the coherence in the left occipital region. Right panel; the ITPC found in the object (40) and non-
object (80) condition. Clearly the ITPC is less noise full when using all epochs; see top images,
compared to removing 50 % ; bottom images (color scale given to the right).
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Finally, the wavelet chosen also to some extent impacted the coherence found as revealed
on Figure 3.14.

ITPC-40 channel 64 ITFC-40 channel G4

200 & = 200

ITPC-80 channel 64 ITFC-80 channel 64

-200 -100 0 100 200 300 400 -200 -100 o 100 200 300 400

Figure 3.14: Taking the wavelet transform of the data using a complex Morlet wavelet having center
frequency 1 and bandwidth parameter 2 (left figure) and bandwidth parameter 4 (right figure). The
two wavelet transforms yield slightly different results (x-axis in ms, y-axis in Hz).

Prior to analyzing the data using PARAFAC, the data was analyzed similar to the way
Herrmann et al. analyzed their data [15].

Analysis by Herrmann and colleagues

In their analysis, Herrmann and colleagues find the time and frequency corresponding to
the coherence peak at channel 64 (equivalent to O2, placed at the center of the right
hemispheres occipital lobe). However, as the whole occipital region is affected, we also
analyzed the mean of the occipital region corresponding to channel 20-31 and 57-64.

ITPC-40 eharnel 64 A ITPC-40 occipite region

3

20 -0 0 10 2m m

AN ITPC-30 occipte region

200 -0 0 10 am 3m

Figure 3.15: Left panel; an example of a subjects ITPC of channel 64 for the object condition top
image and non-object condition bottom image. Right panel; same figure, but the average of the whole
occipital region. Both panels clearly reveal gamma activity around 100 ms (x-axis in ms, y-axis in
Hz).

As revealed on Figure 3.15 there is a strong coherence at around 37 Hz and 100 ms.
Furthermore, the coherence seems stronger in the object situation than the non-object.
Herrmann et al. find the time and frequency corresponding to each subject’s peak in the
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object situation and compares this coherence value with the corresponding value at same
time-frequency for the non-object condition.
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Figure 3.16: The coherence values for object and non object where object peaks and the coherence
values for object and non-object where each condition has its peaks. No significant difference is in the
two situations found between the conditions (target=object, non-target=non-object).

As seen on Figure 3.16 although the object condition results in higher coherence values
in most situations when comparing the coherence at the peak of the object condition, it is
not significant as Herrmann et al. find it to be. As using the peak of the object condition
favors object we also compared the coherence at the peak of object with that of the non-
object condition. Here a difference in degree of coherence seemed very random.
Consequently, the finding of Herrmann et al. that the object condition is more coherent
than the non-object condition seems very questionable. The same analysis performed on
the whole occipital region yielded similar results.

o
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Figure 3.17: The ERP of the grand average of all subjects taken over the whole occipital region, i.e.
channel 20 to 31 and 57 to 64, blue is object, red is non-object. 20% of the epoch having largest
standard deviation within a 200 ms time-frame was removed. Clearly there is a difference in the ERP
of object and non-object from 200-500 ms (Notice; negative is up).
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From Figure 3.17 the ERP of the grand average in the occipital region reveals a P100
followed by an N100 after which a P200, N200 and a late P300 appear (around 400 ms).
While no difference is present in the ERP from 0-200 ms there seems to be a difference
between the ERP of object and non-object from 200-500 ms, this difference hasn’t been
explained by Herrmann et al. As seen on Figure 3.17 the difference between object and
non-object mainly stems from the P200 and N200. In Table 2 page 54 it was explained
that the P200 is known to increase with novel stimuli. As non-objects contrary to objects
represent a novel stimuli every time this might explain the larger P200 for non-object.
Furthermore, N200 is known to increase to task deviant stimuli. As the task was only
present to keep the subjects naive to the experiment, it is difficult to evaluate task effects
as they ideally shouldn’t be correlated with the condition type. However, as non-objects
are probably easier to classify as edgy or round than objects (i.e. the pipe of Figure 3.12
is both edgy and round) this could explain the larger N200 for object.
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Figure 3.18: Grand average of the ITPC, object and non-object for channel 64 and the average of the
whole occipital region; object in top images, non-object in bottom images. Clearly there is a strong
coherence between 20-40 Hz around 100 ms. (x-axis in ms, y-axis in Hz).
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Figure 3.18 shows the grand average of the ITPC for all 11 subjects at channel 64 and in
the whole occipital region. It seems as if slightly more coherence is present in the object
situation. Within the gamma band, the grand average at channel 64 peaks at 37 Hz and
107 ms.

Non-object

Figure 3.19: The mean coherence in all channels of the 11 subjects at 37 Hz, 107 ms for the object
and non object condition (color scale is the same), and the ANOVA of the analysis of difference
between object and non-object at this time-frequency point. From the ANOVA no difference
between object and non-object is found in the occipital region.
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From Figure 3.19 it is seen that the average coherence is more or less the same for object
and non-object at the peak of the grand average for object. A test of difference between
object and non-object also reveal that no significant difference is present. The largest
difference is found to the frontal right where no difference is theoretically justified.

Summary of the analysis by Herrmann and colleagues

From the analysis corresponding to Herrmann and colleagues no significant difference
between the object and non-object condition was found. However, coherence was clearly
present in the gamma band around 50-150 ms as explained by Herrmann et al.
Furthermore, a difference in the ERP between the object and non-object condition
seemed to be present from 200-500 ms.

Analysis by PARAFAC

In the following, the analysis, if not otherwise stated, is performed by the
ALSPARAFAC algorithm with ‘row-wise’ non-negativity constraints on all modes. As
PARAFAC is a data exploratory tool the analysis was performed without any prior
assumptions of what to expect to see from the data. First, an overall 4 way analysis was
performed defined by channel X frequency X time X subject from 0-200 ms from stimuli
onset. A Core Consistency Diagnostic was only possible to access when analyzing three-
way arrays as the diagnostic was too memory consuming for MATLAB, even for a
computer having 2 GB of RAM. The factors were ordered in accordance to the amount of
variation they explained. Each analysis was run several times to assure stable solutions.
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Figure 3.20: An eight component PARAFAC model fitted to the data, blue bars corresponds to
object, red to non-object. Factor 2, 5, 6, 7 and 8 all indicate occipital activity. Especially factor 8
pertains to the Gamma activity around 100 ms as described by Herrmann and colleagues.

As seen on Figure 3.20 the first factor models some average activity. The second, fifth
and sixth factor correspond to low frequent occipital activity relating to the ERP. For all
these factors no significant difference is found between the two conditions. The eighth
factor however, reveals a gamma activity in the occipital region around 100 ms
corresponding to Herrmann et al.’s findings. The subjects’ activities during the two
conditions reveal that the last 5 subjects have more gamma activity in this factor during
object than the non-object condition. Also, subject three and four seems to almost
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completely lack this activity. Furthermore, factor seven reveals some beta activity around
130 ms.

An ANOVA was performed to look for differences between the two conditions for the
eleven subjects. This gave an F-test value multi-way array given by
channel X frequency X time as revealed in Figure 3.21.

Figure 3.21: ANOVA test of difference between object and non-object in the 11 subjects, shown in a
16x4 array where each array represent a channels F-test value to given frequency-time point. From

the F-values in the array it is difficult to grasp where the differences between the two conditions are
present.
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Figure 3.22: A PARAFAC model based on ALSPARAFAC and ICAPARAFAC fitted to the F-test
multi-way array. Where first factor models some background activity, the second factor of both
methods indicates a difference around 100 ms in the Gamma band in accordance with Herrmann
and colleagues findings.

Figure 3.22 shows an ALSPARAFAC and ICAPARAFAC model fitted to the F-test
multi-way array. The first factor of both algorithms models some background activity.
The second factor shows that the difference between object and non-object primarily is in
the occipital region in the gamma band of 30-80 Hz. It is difficult to explain what the last
factor of ALSPARAFAC pertains to, but the third factor of the ICAPARAFAC model
reveals a 2 Hz difference in the occipital region between the two groups corresponding to
a difference in the ERP. As a result, the ANOVA clearly indicate that the difference
between the two groups is as Herrmann et al. found in the Gamma band around 100 ms.
As a result; the PARAFAC model is capable without any prior knowledge to identify the
interesting features of the data.
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Analyzing the Gamma band (30-80 Hz) by PARAFAC

To analyze the Gamma range a PARAFAC model was fitted to the data in the frequency
range 30-80 Hz. Where the first and second factor of Figure 3.23 models some
background activity the third factor shows the occipital gamma activity and the fourth
factor reveals a central gamma activity. No systematic difference is found in the factors

between the two conditions.
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Figure 3.23: A four component PARAFAC model fitted to the data at the frequency range 30-80 Hz.
Where first two factors model some average background activity, the third factor clearly reveal an
occipital Gamma activity around 36 Hz at 104 ms. Finally, the last factor is more central, delayed

and lower frequent.



The condition was also taken into the PARAFAC model yielding the 5-way model given
in Figure 3.24. The first factor of this analysis clearly reveals some occipital gamma

activity slightly more present in the object (1) than non-object (2) condition. The second
factor pertains only to the non-object condition. It models a slightly more frontal, higher
frequency activity around 100 ms.
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Figure 3.24: A PARAFAC model fitted to the data where condition was taken as an extra modality, 1
is object, 2 is non-object. As only two components could be found due to the limitation of only two
conditions baseline activity was subtracted before fitting the PARAFAC. The first factor clearly
represents the occipital gamma activity around 100 ms. This factor is mostly present in the object
condition but weak in subject 3, 4 and 5. The second factor is higher frequent, slightly more central
and pertains only to the non-object condition. The two factors indicate that the object condition is
lower frequent whereas the non-object is slightly higher frequent and more central.
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Furthermore, a PARAFAC model was fitted to each condition.
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Figure 3.25: Top panel; a PARAFAC model fitted to the object condition. Bottom panel; a
PARAFAC model fitted to the non-object condition. Baseline activity subtracted. Again it is revealed
that both conditions have clear gamma activity around 100 ms. However, subject 3 and 4 seem to
lack the activity in both conditions. Comparing the object with the non-object condition it is seen that
the non-object is slightly higher frequent and delayed.

As seen on Figure 3.25 both object and non-object have clear gamma activity around 100
ms in the occipital region. However, the object condition peaks at 32 Hz, 105 ms whereas
the non-object peaks at 35 Hz 107 ms. In both conditions subject 3 and 4 have practically
no gamma activity in the occipital region.

In addition, a PARAFAC model was fitted to the ANOVA of the gamma band.
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Figure 3.26: Left figure; a PARAFAC based on the F-test value of the gamma band. Top, right figure; a
PARAFAC model fitted to regions where non-object is more coherent than object. Bottom, right; a PARAFAC
model fitted to regions where object is more coherent than non-object. As seen from the first factor of the
ANOVA this factor pertains to the situation where non-target on average is more coherent than target whereas
the second factor of the ANOVA corresponds to a situation where object on average is more coherent than non-
object. Consequently, object is more coherent early and at lower frequencies whereas non-object is more
coherent later and at higher frequencies (baseline activity removed from the data).
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From the ANOVA of Figure 3.26 the second factor corresponds to the second factor
found in Figure 3.22. Furthermore, the third factor found in the ANOVA of Figure 3.26
also reveals the presence of an earlier and less high frequent difference between the two
groups. Analyzing when object is larger than non-object and when non-object is larger
than the object condition, it is seen that the first factor of the ANOVA corresponds to the
factor where non-object is more coherent than the object condition, whereas the second
factor of the ANOV A matches the situation where object is more coherent than the non-
object condition. Consequently, the difference between the object and non-object
condition is mainly due to the fact that object is coherent earlier and at lower frequencies
than non-object.
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Figure 3.27: The coherence value at the peak of the ANOVA of factor 1 denoted peak 80 and of
factor 2 denoted peak 40 found in Figure 3.26. As seen on Figure 3.26 the first factor of the ANOVA
corresponds to a situation where non-object is more coherent than object (target) whereas the second
factor of the ANOVA pertains to a situation where object is more coherent than non-object.

In Figure 3.27 the same pattern reveals itself. The first factor of the ANOVA in Figure
3.26 corresponds to the situation where non-object is more coherent than object whereas
the second factor corresponds to the situation where object is more coherent than the non-
object condition.
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The PARAFAC model was also fitted to the ITPC of each subject given by the multi-way
array channel X frequency X time .
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Figure 3.28:Top panel; the ITPC multi-way array given by channelxfrequencyxtime of a subject
shown in a 16x4 array of channels where x-axis corresponds to time from -250-300 ms and y-axis
frequency from 20-80 Hz. Bottom panel; a PARAFAC model fitted to this ITPC. Where the first
factor shows some background activity the second factor clearly reveals the occipital Gamma activity
around 100 ms.

For each subject, the gamma peak in the occipital region at 50-150 ms was identified in
time and frequency by the factor corresponding to the second factor in the PARAFAC
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decomposition revealed on Figure 3.28. Notice that the first factor corresponds to some
baseline activity.

Having identified the peak of each subject, the coherence at each subject’s frequency-
time point was found for all channels. Finally, the mean of these topographic maps were
calculated as revealed on Figure 3.29.

Object Non-object

Figure 3.29: The mean coherence for all subjects at their gamma-peak for object and non-object.
Coherence seems to be present in a larger region for the object condition than the non-object
condition.

Figure 3.29 indicate that the coherence at the peak is high at a much larger region for
object than for non-object. As channel 64 which was the basis of Herrmann et al.’s
analysis lies right at the peak of both object and the non-object in Figure 3.29 this might
be why the findings of difference between the two conditions in Herrmann and
colleagues’ analysis was poor. Had Herrmann and colleagues’ analysis been based on a
channel in the left hemisphere, the difference in coherence between object and non-object
might have been stronger.

Finally, the PARAFAC model was used to analyze the ERP. This has been done
previously by Field et al [10]. Field and colleagues found that a problem of degeneracy
arose when fitting the PARAFAC model to the ERP. As a solution they proposed
introducing an orthogonality constraint on the dimension representing the temporal
development of the ERP. The orthogonality constraint will here be compared to imposing
non-negativity as we suggest. The non-negativity can simply be assured by adding a
positive constant to the ERP. Prior to analyzing the ERP, 20 % of the epochs having
largest standard deviation within a 200 ms time window were removed to get rid of eye
and muscle artifacts.
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Figure 3.30: Top left panel; analyzing the ERP unconstrained. Top right panel; imposing an
orthogonality constraint on the ERP. Bottom panel; imposing non-negativity by addition of a

constant. Blue bars correspond to the object condition, red bars to non-object, notice; positive is here
upward on the ERP. Neither the unconstrained nor the orthogonality constrained PARAFAC models
are able to find the true ERP. This is however found for the non-negativity constrained model where

the ERP correctly is split into a frontal and an occipital part.

As seen on Figure 3.30 the unconstrained solution yields highly degenerate factors. The
ERP of the second factor is almost identical to the ERP of the first but with opposite sign
as revealed in the topographic maps. Imposing the orthogonality constraint insures no
degeneracy in the ERP. However, a few subjects have negative coefficients and the
justification for the two ERP’s to be orthogonal in reality is very questionable. Imposing
non-negativity however yields excellent results. The non-negative PARAFAC algorithm
has split the ERP into two easy interpretable components. The first component models a
mostly frontal ERP whereas the second component beautifully models the ERP of the
occipital region. This occipital ERP seems to be more present in the non-object than the
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object condition. This corresponds to the findings of Figure 3.17 where the P200 was
stronger for the non-object condition.

A PARAFAC model was then fitted to the ERP of each condition.
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Figure 3.31: The ERP for object, left figure, and non-object, right figure. Where the occipital ERP is
very similar in the two conditions the frontal ERP has a stronger P200 in the non-object condition
than the object condition.

From the first factor of Figure 3.31 it is seen that the P200 of non-object is much stronger
than for object frontally as also found to be the case in the occipital region as revealed in
Figure 3.17. Again, this is due to the fact that the non-object represented novel stimuli.

Summary of the PARAFAC analysis

From the PARAFAC analysis of the 11 subjects it was seen that the main activity was in
the occipital region corresponding to an experiment having to do with visual stimuli.
Furthermore, the difference between the two conditions was mostly present in the gamma
band around 100 ms. In addition, this difference was primarily due to a delayed coherent
signal at higher frequencies for non-object than the object condition. At the peak of each
of the two conditions it seemed as if coherence was present in a larger region in the
object situation than the non-object situation. Finally, imposing non-negativity to the
ERP by addition of a constant made the PARAFAC model able to correctly split the ERP
into an occipital and a frontal factor. This was not possible for an unconstrained model
while imposing orthogonality as previously done didn’t yield results that were as
satisfying. From the ERP’s it was found that non-object also had a stronger P200 frontal.
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“It is a good morning exercise for a
research scientist to discard a pet
hypothesis every day before breakfast. It

4 Discussion keeps him young.”

Konrad Lorenz

PARAFAC and simulated data

The test of the PARAFAC algorithms on simulated EEG/ERP data revealed that both
ALSPARAFAC and the ICAPARAFAC effectively found the right factors in the data.
This was however not possible from the simple 2-D analysis using an ICA-algorithm on
the raw data. Consequently, PARAFAC seemed effective in the analysis of the frequency
changes in the EEG/ERP when using these two algorithms.

The Core Consistency Diagnostic and Bayesian Information Criterion both proved
effective in accessing the correct number of factors in the data for the models that
performed the best, i.e. ICAPARAFAC and ALSPARAFAC.

ICAPARAFAC performed better than ALSPARAFAC at estimating the true factors as
the signal to noise ratio dropped. As the ICAPARAFAC algorithm also was faster than
the ALSPARAFAC algorithm it has great potentials. In Appendix D: ICA- and
ALSPARAFAC on Chemometric Data it was revealed that on chemometric data the
ICAPARAFAC algorithm also performs well. Therefore, the new ICAPARAFAC
algorithm seems promising in a wide range of fields where Combined Independence can
be assumed in the data.

Herrmann and colleagues analysis vs. the PARAFAC analysis

Unfortunately, only 11 subjects were analyzed giving quite an uncertain picture to base a
conclusive comparison of Herrmann et al.’s findings with the findings of PARAFAC.
Furthermore, 2 of the 11 subjects lacked completely clear coherent gamma activity in the
occipital region. However, the fact that Herrmann et al. by the basis of the peak of the
object condition conclude that object is more coherent than the non-object seems wrong
as it favors the object condition. Furthermore, they only examined channel 64 instead of
taking the whole occipital region into considerations which is questionable — it might be
that channel 64 was chosen for the only reason that it was the most significant. The
PARAFAC analysis indicates that the difference found is mostly due to the fact that the
non-object peak later and at higher frequencies than the object condition, rather than
having to do with non-object in general being less coherent. Furthermore, the analysis
based on the individually found peaks in the occipital region for object and non-object
revealed that object seemed coherent in a larger region than the non-object.

The PARAFAC analysis was capable of integrating the information present in all
channels into simple interpretable components. This made the analysis of Herrmann and
colleagues’ paradigm much more complete by PARAFAC than by their own proposed
analysis. In addition, it was seen that PARAFAC was able to work in several ways
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analyzing both the averaged ERP and the wavelet transformed data over several different
modalities taking into account subject and condition variability. Finally, when analyzing
the ERP it was revealed that imposing non-negativity worked much better than forcing
orthogonality.

The paradigm Herrmann et al. use isn’t strong. Although the examples shown from the
paradigm in Figure 3.12 are definitely recognizable as a pipe and chair whereas no such
interpretation is present in the non-object situation, the non-object almost looks like a
broken pipe. Furthermore, there are recognizable objects in the non-object condition such
as a square, a cylinder and a bowl which in itself might have long term memory
representations. This weakens the difference between object and non-object - weakening
the whole paradigm.
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“The important thing is not to stop
questioning. “

5 COHC]“Sion Albert Einstein

It was shown that PARAFAC is an effective data exploratory tool in the analysis of the
Inter Trial Phase Coherence of the ERP. Furthermore, it was revealed that imposing non-
negativity when decomposing the ERP by PARAFAC seemed to solve the problem of
degeneracy completely. Here PARAFAC was only used to analyze the ERP and ITPC.
However, there is no reason why PARAFAC shouldn’t also be an effective tool in the
analysis of the ERSP and ERPCOH. These measures were not analyzed as the main
interest was to access the Inter Trial Phase Coherence of the data. Furthermore, both
measures are very susceptible to noise requiring an extensive preprocessing of the data.
However, future work will focus on PARAFAC’s ability to analyze these measures.

In the analysis of Herrmann et al.’s gamma band coherence it was found that the non-
object was slightly more delayed and higher frequent than the object condition. New
experiments are presently conducted to confirm these findings. Future work will also be
done to use PARAFAC in analyzing ERP data from other experiments having multiple
conditions including different forms of sensory stimuli. As PARAFAC is capable of
analyzing complicated multi-modal data it might likely shed new light on these data.

The ICAPARAFAC algorithm also showed promising result, being a great alternative to
the popular ALSPARAFAC algorithm when combined independence can be assumed.
Work lies ahead in improving the underlying Independent Component Analysis algorithm
both to deal with non-negativity as well as being optimized to find the correct
components in the ERP.

The PARAFAC model analyzed the wavelet transformed data. As the wavelet transform
corresponds to a convolution in which random noise ideally becomes a constant factor at
all frequencies analyzing the data in the frequency domain is in itself an efficient way to
handle noise full data. Furthermore, the PARAFAC algorithms were able to separate
systematic oscillatory noise such as 50 Hz noise from electric devices into a designated
component. As it is possible to reconstruct the signal from the wavelet coefficients [32],
the EEG/ERP corresponding to each factor of the PARAFAC can also be reconstructed.
Thus, the PARAFAC analysis might also work well in reducing systematic noise.
Furthermore, knowing the signatures of the noise from a training set can be used to find
the noise-signature in one of the modalities from a test set by keeping the components of
all other modalities found from the training set fixed on the test set.

The PARAFAC analysis of the coherence relied on the wavelet analysis accessing the
correct temporal frequency information of the data. In this thesis the wavelet suggested
by Herrmann et al. [14],[15] was used. However, Figure 3.14 showed that the choice of
wavelet had an impact on the coherence found. Consequently, the influence of the
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wavelet’s form used in the analysis of the ERP should also in future work be explored.
Maybe even waveforms corresponding to more physiologic burst of neuronal activity
could be developed and analyzed.

Wavelet analyzed data is known to be overcomplete, i.e. having more data than
information present in the data. Methods such as various matching pursuit algorithms
have tried to resolve this problem, reducing the wavelet data to an information level
corresponding to the original signal [17]. Within this field, PARAFAC seems applicable
as it is an effective tool for data reduction as proven for multiple image compression [33].
Consequently, work analyzing PARAFAC’s ability to solve the overcomplete
representation in the wavelet analysis could also prove an important application of the
model.

Although the functional magnetic resonance imaging, fMRI, has taken much focus away
from the EEG and ERP, EEG/ERP still has great potentials. First of all the EEG is much
easier to use for experimentation as the subjects can stay in a natural environment rather
than having to be put inside a scanner. Furthermore, the EEG offers a much higher
temporal resolution below the micro second range whereas the fMRI still works in the ms
range and is most probably limited to this range. Consequently, ways of integrating EEG
and fMRI has lately gotten much attention. Hopefully, the PARAFAC analysis of the
EEG can help in this work decomposing the EEG signal into atoms that can be related to
the fMRI signal. This application of the PARAFAC model has already gotten some
attention [24]. As PARAFAC shows promising results in the field of EEG its application
to MEG will very likely also be good. Consequently, multi-way array analysis will
probably in the future become an important tool in the analysis of brain-recordings from a
variety of scanning techniques.

Although Harshman proposed the use of PARAFAC on EEG in1970, the use has been
very limited. Why this is so is hard to understand given its wide usability to explore the
EEG/ERP. However, the limited use might have been the consequence of the fact that
previous works didn’t resolve the problem of degeneracy by imposing non-negativity.
Furthermore, the PARAFAC analysis is very memory consuming and slow, putting great
demands on computer power. In this analysis 2 GB of RAM was required in order to
simultaneously analyze the ITPC of the 11 subjects in both conditions having 64 channels
of 200 ms data sampled at 512 Hz at 60 different frequencies. These computer
requirements might be the reason for the limited use of PARAFAC so far in the field of
EEG/ERP research. Hopefully, however, PARAFAC will turn out to be an important tool
that will be widely used in the future when analyzing brain-data.
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Appendix A: Theorems with proofs

Theorem 1 (Jensens Inequality)

Let f:R — R be a convex function, 4, >0Vi andz/li =1 then

M M
YA (2> 2,1 (x;)
j=1 j=1

Proof:
Let x; € [a;b] where a,be R and let 1€ [0;1]. As f is convex the following holds:
f(=t)a+b) 2 (1-1)f(a)+1f (b)

as x; € [a'b] it follows that x;, = (l—t,. )a+t,.b. This gives:
Z/Ix —Z/I I-t)a+tb)=ay A,(1-1)+b> At, =(—-Da+tbe[a;b] as t= At,

Proof now done by induction;
M=2:
Fx + 2pxy)= (=2 )y + Aaxy )2 (1= A ) £ () + A f (x0) = A f (o ) + A f ()

Assume f(% Ajx; J z 1. f( ) valid for M-1. We now have:

j=1

Ml A,
1=y )

M- M1}

(I_ZM)f{Z_:(l_/ZM)Xj]+/1Mf(XM) (1- /1M) ! f( )+ZMfXM ZZf( )

f{zﬁiﬂjijzf[ﬁiﬂjxj +/1MxMJ=f[(1 /IM)

Xt Ay |2

~.
I
—_
|
N
<
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Theorem 2
Given the following model and assumptions:
X" = ADYS +EV
Assumptions: A(e” 10,%") (1)
N(s v IO’I) (2)

The following holds:

M -1 M -1
p(si|A,{x£-m),D(m),w(’")}m_l)‘x exp(siTD(m)AT‘l’(m) X" —%SZT[H ZID(”’)AT‘P(”’) AD(m)jsij
- )

Proof:
Pl A B Dt we |

P(Xg.m)‘sl-,A,{D(m),‘l‘(m)}le)p(si|A,{D(\m),‘I‘(J’.") m=l)

s )

plsgls A Jorm P )l o s )

& (fr-ant, Yoo (sl o4 s -0) 1715 -0) =

, )T o)™ gp(m)_ (m) g (m) ™ pom) (AD(m)S : )T ()™ (m) }lsfrls ; )0<
4

i i i i 2%i

M M
exp(siT > DAY () —gsf(l + ZD(’")AT‘I’(’")_lAD('”)jsi]

m=l

1. Follows from Bayes theorem

2. Denominator is a normalization constant

3. Follows from assumption 1 and 2

4. Result of the fact that 0w gtk (st apom), | s 7myraon ) ang
Y ol

i

—1
‘I'(m) xgm)=Constam
m=1
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Theorem 3 (The E step of PARAFAC)

Given the model, assumptions and result of Theorem 2 the following holds:

-1
M
5 - {H zmm)Awm)—lAmm)]

m=1

M
(S)= ZS[ZD(’")AT‘I’(’")_IX,"]

<SST>:AZS +{

Proof:

s)(s)"

As the posterior distribution of S i.e. the distribution of S conditioned on the model

parameter is Gaussian distributed we have:

p(s|9) = ,ﬁl p[si ﬂj o ifvl exp

=1

1

N
1 Te-1. , Tel
TeXp[izl(_zsi Lg 8 *s, Ig <sz>]]

result 1

N
_ _1 . Ts-1 To—1/.\_
_exp[igl[ 55 ZS s, +s, ZS <Si>

1

S

i) 5

1. Follows as E<S>T Z; l<S> is a constant

As:

p(si|A,{K§m),D(m),w(m)}M IJ«exp(s,-T Y prylnl )

m=

It follows
N M
o= 1] p[SiA,{Xgme(m),T(m)} J
i=1 m=1

i=1

i=1

N M 1
x [ U )Tl Xgm>_%s;[l+ u

N _
exp(Z(siTD(m)AT‘I’(m) lxl(m) —%siT (I +

result2

When comparing result 1 with result 2, it is immediately seen that:
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M -1
X = (I + ZDmAT‘I’mIADm]

m=1

(S)= ES(iDMAT‘I’leMJ
The last par_t of the theorem follows by noting that:
Cov(X) = [ (X (X)X - (X)) p(X)dX =
[XX" p(X)aX — [ X(X)" p(X)aX - [(X)X" p(X)aX + [ (X)(X)" p(X)aX
(XX") = (x)(X)" - (x)(x > +H(X)(X)" = <XXT> (x)(x)’
As each s, has the covariance 2. it follows cov(S)= N X . Therefore:
<

Cov(8) =(SS" )~ (S)(S)" & (SS”) = Cov(8)+(S)(S)" NZ +HS)(s)"
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Theorem 4 : (The likelihood of EMPARAFAC)
Given the model with assumptions of Theorem 2 the following holds:

L(ﬁ) = —% % ln"{’(m)‘ - % % % X:nT‘l’(m)_lxgm) + tr(D(m)AT‘P(m)ilAD(’")<ssi>)— 2x£m)T‘l’(m)_1AD(m)<si> + const

m=1 i=1 m=1

Proof:

To prove the statement we make use the following result:
<siTWsi>:tr(Wcov(si,si))+<siT>W<si> *)

Writing out the likelihood we get:

L(O)T<lnljﬁ () W[ exp[(xgmLAD(m)si)T w<m>1(xgm>AD<m>si)]> -
—CZMTNln(Zﬁ)—% mﬁf_llln“l’(m)‘ 1 ﬁl nflz_l(x?“r("’“xf.m) +
<siTD('")AT‘I’('")1AD("’)si> —<2x§"’)T‘I’(’")1AD('”)si>)?
—dMTNln(Zﬁ)—% fln\\r("’)\ —4 2 Y oyl

= S

(m) T (m)_l

pm T lm) ™ [ (m) cov(s,-,s,-)+<siT>D('")ATW("1)_1AD('")<si>—2x§"’)TW("’)_1AD('")<si>)=

N Sl )] — 15 S (g o, )Tl o) () gl g )
—? ZIH“P ‘ —32 z X;n p Xim +tr[D MIAT M) ADVT <sisiT>J—2xim w\") A\ <Si> + const
m=1 i=1 m=1
Follows from assumption 1, the expectation is taken as the expectation of S, making the likelihood
only depend on 6.
2. Follow from assumption 3.

3. Follows from (*) and assumption 2.

1.
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Theorem 5 (The M step of PARAFAC)

Given the likelihood function:

L( )— = Zln“l’("’)‘ Z ZX Tyl _lxl(.m) + n(D‘ IAT(m) " g pn (ss; >) )_IAD(m)<si> + const

tlml

The following holds:

M _ M _ -1
2 {Z‘I’(’"’ 1x<m><s>TD(m>] (Z(‘P(’") 1) D(m)<SST>TD(m)J
m=1 & \m=1 kk
d, = (<SST>-(AT\P("1)‘1AD

plm) %diag[X(m)X(m)T +AD")(ss7)DMAT - 2AD('”)<S>X(’“)T}

-1
vec[diag[AT‘P(’")_lX(m)<S>T ﬂ

3

NU -1 -1 -1 T

> > AD (5,57 DM 4w A(D(m’<s,.s,.T>D('”’ — 29 ox D (s )

ul ”; -1 T

> > 2w AD" (5,5, D) - 29 X[ (s,) D =
m=1

N M r ] T
> > 29" AD " (5,5 )D") — 29 x5, ) D" =0

4

1
i\l'(’")“ ADY(sS7)D" = Z‘I’(m)_lx(m) (S)" D" =

1 m=1

i\yi';>“akn(m><ssT> (iw (s)’ D(’")j &

m=1 k

-1
a, :(i\ly(m)_lx(m)<s>T ij i‘l'(g)‘lD(’")<SST>D(m)j
m=1 k \m=1

1. follows as tr(ABC)=tr(BCA)=tr(CAB)
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M:BAC+BTACTand b Ac_

2. result of

oA
3. comos by (D(m)<sisl.T>D('”))T _ (D<m><sisir>D(m))

/s s 7 ™ oand S x™ (s ) = NXO(S)
4. consequence ofz<sis,. > = N<SS,. >and2xi <s,.> = NX <S>
i=1 i=1

N M g
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AT‘I’(”’)_IAD(’”)<SST> = ATy X (g)T =
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where D) = diag(d,,)

M N M _
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Theorem 6 (BIC for EMPARAFAC)
The Bayesian Information Criterion (BIC) for the EMPARAFAC model is given by:

1 N D
] exf 05 £ ¥ () antrl T () anoh, Y

i=lm=1

M

p(DIF )= H[(zz)‘%

m=1

F is the number of factors in the PARAFAC model, and D = F(P+ M ) is the number of

‘effectively’ free parameters, where P is the number of rows of x (),

Proof:
D

From eq. 1.24 we have p(DI F) = p(D10,,, F)N_E . Combining this with eq. 1.53 we

get:

pDI10y,,F)= jp({X(’")}Zzl IS, A, {D(m)’T(m)}Zzle(S)d =

Iﬁp({xgm)}fﬂ | Si,A’{D(m)"P(m)}Zzle(Si )ds; =
i=1

M

[1]en)*

m=l1

_\WV N M
o) of 05 8 - s

i=1 m=1

D

p(D 18y, ,M)N 2 =
1

N _D
‘I’(m)‘_Q] exp(—o.s.g b5 (Xl(-m)—AD(m)<Si>)T‘P(m)_l(Xz('m)_AD(m)<si>)jN 2

i=lm=l1

M

n[(zz)—dz

m=1
The true number of free parameters is D = F(P+ M )+ PM , however the free parameters

of W is not directly part of the factor model, and does consequently not help improving
the fit corresponding to having PM parameters. Therefore, the free parameters are only
considered to be D = F(P+M ). As N and D depends on which modalities M, N and P

pertains to, the BIC measure is greatly dependent on how each of the 3-way-array’s ways
are defined in terms of the model x) = AD(i)S .
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Theorem 7: (BIC for Least Square optimization of PARAFAC)
The Bayesian Information Criterion (BIC) for a least square optimization of PARAFAC

as defined in eq. 1.30 is when assuming X™) and S to be i.i.d., given by:
_D
log(p(D | F) = log(p(D 10, F)N 2 )= —%MN log(o) — %log N +const

F is the number of factors in the PARAFAC model, and D = F(P+ M + N)is the

number of free parameters, where P is the number of rows of X(m).

Proof:

p(D16,F)= p({x(”’)}le IS,A,0, {D(m)}lej -

[T{bL 50 )=

i=1

{ﬁ((zﬂ)_% o I|_% )N jexp{— 0 % % (Xgm) - AD(m)Si )T (c-1)" (Xz('m) - AD(m)Si )j =

m=1 i=1 m=1
_D
p(DIO,MIN 2 =
M WV D
[H(Qz)_%a 2) Jexp(—o.s-lg g (xgm)—AD(m)si)T(xgm)—AD(m)si)jNO ? =
=l Ti=1m=1 1
M W D
[H(Qz)_%o— 2) Jexp(—O.SNM)NO P o
m=1
_D
log(p(D 10, M)N 2):—%MNlog(O')—%logN + const
N M r
1. Consequence of 0 = L > (Xl(m) - AD(m)Si) (Xl(m) - AD(m)Sl-)
NM j=im=1

As N depends on which modality is considered observations, the BIC measure is greatly
dependent on how each of the 3-way-array’s ways are defined in terms of the model

X = Apls .
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Theorem 8: (Potential of a dipole field)

The potential in a distance r of the center of a dipole, where the charges (q and —q) are
separated by the distance d is given by:
1 gdcos@
dipole ( ’ )

“amE, |

where @ is the angle between r and the midpoint of the line connecting the two charges.

Proof:

2 2
7, :\/r2 +4° —2r4cosé =\/r2+% —rdcos@

r,= \/r2 +%2 —2r4cos(r—6) :\/r2 +%2 + rd cos(0)
r=|r

d =d|

T BN E———
4z \ r* +47 —rdcos@ r’+4" +rd cos(6)

q 2rd cos@ N
4re, (r2 +%2 —rd cos @ \r’ +%2 +rdcos(t9)) !
g (2rdcos@) ¢ [2dcosc9
4re, r 4re, re
—V®(r,d) = E(r,d) =

1 qgdcos@ 1 gqdcos@
dze, r’ dre, r’
1. Follows from the fact that r >> d

®d(r,d) =
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Theorem 9 (Derivation of the VBEM algorithm for PARAFAC)
For the PARAFAC model of eq. 1.30, the following assumptions are made:

N
pE™) =TTk, 10,diag(p,,))

i=1

N
p@®) =], 10.1)
i=1
F

p(Ala)= HN(a 0,51 j

~

((xla b“)zﬁg(af Iaf bf)
f=1
p(dm lum,%m)= N(dm lum,%l)

P((Pm |a%9b%)=ﬁg(¢mp |amp )

p=l
where d,, corresponds to the diagonal of D(m)
These yields the following update rules:

zs:[1+g<medm> S fon, >J
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Proof:

p(xi(m)’si ’D(m)’ P A ) = k1|¢m|% exp(— J A (Xi(m) - AD(m)Si )T O (Xi(m) - AD(m)Si )j :

p(di |si ’C(M)’q’m ’a)

kyexpl Y467 16s,))

Péi)
1
1 expl s~V (0K )
p(D,,)

p
Hﬁ oo™ expl- 0,08, )
p=1 "

F(arﬁp )%
(@)

F %

Hk4 aLI‘ exp(—%(af) “I(af ))

f=l

p(afla)

b
pla)
) W S 0 _apme Vo [« ) apm) T
1np(x,s,{D ,q)m}ln:l,A,(x):z Z%m\gym\—%(xi —AD s,.) (pm(x,. —AD s,.)—%(s,.) I(s;) |-
i=1| m=1 T
p(xi(m)lsi*Dmv¢m*a)
1/ 1|1 | T & ( 9 ) 9 1 ( P ) 9
Aln‘v—ml‘—é(dm—.p.m) va(dm—.p.m)+pZ::1—lnl"amp —a?, In i +(ag, 1@y, —@b?, +
(m)
rlo™) ()
VAT R 7 0 P98 0 1 St A7) RO P A “
= ' = 7
plagla) (@)
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CI(Si ) : (— % (Xi(m) - AD(m)Si )T Pm (Xi(m) - AD(m)Si )) - % (Si )TI(Si ) o<

M= 3 1=

(— (AD®s, ] g, (ADWs, ) x, 0" g, 7 AD s, ) —(s,)"1(s;) =

3
N

Mz

(‘sTD(m)TATq)mAD(m)s,- ¥ xi(’”)com‘lAD(m)Si)‘ (5,)"1(s) =

1

3

i TATq)mXi(m):>

m=l1

M M
—siT{I+ ZD(m)TAT(pmAD(’”)]si +3 s D

m=l1

g = [I+n%<])(m)TAT(pmAD(m)>J_I T[I+§1<dm'fdm>' ZP:<¢mp Ja,"a p>}1

p=l1
M M
llsi = z“S Z<D(m)TAT¢mXi(m)> = 2“S Z<D(m)T ><AT><¢m >Xz(m)
m=1 m=1

P
z
p=l

1. <D(m)TAT¢mAD("’)> = < () aquompapD('")> = <medm> . §1<¢’mp ><apTap>

106



i=l m=1 =
N M P . .
_ZZZ(ap (S TD( ) ¢mp ( ) i) —23 ¢mpxz(m) D(m)SlJ_Z(af )TC(I(af)
i=l m=1p=1 =
=
<(a’l+zlzlS q)mp ( ! 1J> =(<0!>I+ Zl<¢m><dmme>'Zl<SlSlT>J

N

—x! <§ f(pm,-x,.('")TD("')Sf>:Z$’ <%<¢’mj><D('")>z"i(m)T <Si>>

i=1 m=1 m=1 i=1

12(af )T (afl)(af )—lnl“(a?)— af ln{$j+ (aj'f —1)lnaf —a,bf =

ﬂaflaf) P(a’f)

S (.
!

q(uf):—%lna

! J (aff —l)lnaf —a by

glnaf —%af(af)T(af)—lnF(af) ay ln{
bf
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q((vmp) 5 (/zln(ﬂmj /(xij(m)_a:jD(m)si)T(ij(xij(m)_a:jD(m)si)j"'(aflj _l)ln¢mj = Py =

{Cl mp -1+ jln¢m] ¢m/ [b(p + Z ( l]( )_a:,jD(m)Si)T(xij(m) _a:,jB(m)Si)j

— 9
amp —amp +E

=
<
K3
.MZ
|

~
Il
—_

) _ aps, | g, x, —AD(’")si)j—%(dm —n, ) v, 14, - p,)=

M=
M~

-
1l

—_
=
1l

LN

(—%( M _q ]dms,)Tq)m]( —s;a. ]dm)j yz(dm—.pm)Tva(dm—,pm):

- > (Pm va+x ¢mp )i /d (v I+¢mp i S;a. Ta:,p)im

M=

T
%
I\

Lom = Lvml + i<(/’mp ><a:,pTai’P> * i<s”T5">]_
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Theorem 10: (Column-wise non-negativity constraints)
Consider the PARAFAC model as formulated by eq. 1.31, sought optimized in an unweighted least square
sense. Let T be defied as T = XK — (B _F |®|C_ F )AT 7 where M_ denotes that the F" column

has been removed from M . Then finding the F" column of A subject to the constraint that the F™ column
of A has to be non-negative corresponds to finding the optimal value of the unconstrained problem and
setting all negative values equal zero.

Proof (adapted from [3])

The optimal choice of A unconstrained is the value that minimizes:

) 2 T z
mlnHT - (bF |®|CF )371; H , let this value be denoted @0, i.e. @0 = T
ar VA /

, where Z = (bF|®|cF )

Furthermore, let E =T — za! Tt then follows that:

. T
mm

—za%llzzmin
mm(@ E)FZtrE Q(a aF)T)Hr[a aF)z z(a— aF)T:b:
rg}ipn(r[a—aFﬁTz(a—aF)T:bzzrgin é@pj —apY

1. Equality holds as E”E is a constant, furthermore,

7 2 T
E Q(a aF)T):(TT z )z(a aF)T—(TT TTZZTZ)(a—aF)T:

Z Z 7 7
(TTz-T')@-a; ) =0

2. Follows as ZTZ is a constant.

T 4/—1
: . , T @& 'z
Notice: Proof also holds for weighted regression as O = T and
z O 'z
T ® 2
E'®” Q(ﬂ aF)T):(T I 2 )@ '2(@-a;) =0
Ty
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Theorem 11: (Regarding ICAPARAFAC)

Consider the 3-way array X € R™/*K having the PARAFAC decomposition
F

Xijk = sz‘ € jaSka - Furthermore, let X be CI3. Finding the factors corresponding to the
A

first and second dimension by SVD is then the same as finding the factors by
ALSPARAFAC.
Proof:

As X i1s CI;1it can be written as X XK — AXEGEFXK where A and S is found by ICA.
Finding B and C using ALSPARAFAC becomes the problem of minimizing:

F 2 F F 2
Z(X ijk ~ ZSM”MCMJ = Z[Zskqamq B ZSM”MCM] =
ijk A=1 ijk \ g=1 A=1

F eq. 0.1
Z{ > sigsia 2 a1 —bigejq Ny —biac )]T””((A -M)¥(A-M)' )

k \ g,A=1 ij

1. Consequence of m(;); =b;zcip, ¥ = ss”.

As the rows of S are independent ¥ = SSTisa diagonal matrix. Consequently, there is no
interaction between the columns of (A-M). Therefore, the minimization problem can be

(4)

split into minimizing the squared error of each column of (A-M). Let ¢;;" = a(;); , i.e.

i)
Qe R™ is the unmatriziced version of the A™ column of A. The goal is now to find two
vectors b ;,¢;s0 HQ(}“) -b ¢ ’1THF is minimized. However, this minimization problem is
solved by the singular valued decompositions, as the first vectors of the SVD
decomposition explains the most of the variation of Q(’1 ), ie.

U, T,V |= svD@W) = b, =uy.c; =1,v,.
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Appendix B: Multi-way array algebra

This compilation of definitions and manipulations is if not otherwise stated taken from
the work of Lathauwer, Moor and Vandewalle [19] .

Definition 1: The n-mode Multiplication (XH )

The n-mode Multiplication of the multi-way array X € ® "*"**** by a matrix
Ue ', denoted by X x, U, isan (I, xI,x---x1I,_, xJ xI, x---xI,)-multi-way

array of which the entries are given by:

n—1

(X Xn U) = Z xiliZ"'in—lininJrl"'iN ujnin

W ly—1Jnln+1 "IN -
Iy

Notice: let Ve ® '~ then:
Xx, Ux V=Xx Vx U

Definition 2: The scalar product of two multi-way arrays

IixI,.. XIy

The scalar product <A,B> of two multi-way arrays A,Be R is defined as:

<A’ B> = Z z o ZbiliZ'“inailiZ'“in

Lo i Iy

Definition 3: The norm of a multi-way array (Frobenius-norm)

The norm of a multi-way array is given by:

[4]=(A.4)

Definition 4: The rank of multi-way arrays

An N-way array A has rank-1 when it equals the outer product of N vectors, i.e.
A=u"ou?o. . ou®

Furthermore, the rank of an arbitrary multi-way array A denoted by R = rank(A), is the
minimal number of rank-1 multi-way arrays that yield A in a linear combination.
Notice: The formulation for rank-1 can be restated as a,; , = uu® ™)

Ly i iy iy

Definition 5: The rank of a matrix

The normal rank of a matrix r, = rank(A) = r & A contains at least a collection of r
linearly independent columns, and this fails for r+1 columns. (Taken from [31])
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Definition 6: The k-rank of a matrix (defined by J.B. Kruskal 1977)

The k-rank k,=r < r columns of A are linearly independent, but this fails for at least
one set of r+1 columns (Taken from [31]). Mathematically this can be expressed as:

N
ky =argmin(Al3i;a; = ZCjaj) , where N denotes the amount of columns of A used to
N Jj#i
generate a;.

Definition 7: Diagonal multi-way arrays
A multi-way array is called diagonalizable if the core multi-way array 8§ of the HOSVD

fulfillss;, , =Ounlessi =i, =...=i.

.l
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Appendix C: MATLAB implementation of multi-way array
manipulations

In the literature, I didn’t find any fast implementations of the various multi-way array
manipulations except for the first matricizing function given here. Therefore, I have
suggested some very fast MATLAB implementations for these manipulations:

function X=natricizing(¥,n)

% Matricizes the multiway array ¥ around dimension n to give the matrix X
% Input:
=¥ Multiway array
n Dimension to use for matrizicing
% Output:
- Matrix of matricized multiway array

—_
L o e 2 o e
e

- N=ndimz(¥) :
x=reshape (permute(¥, [n l:n-1 n+l:N]),size(¥,n),prodi(size(¥))/zize (¥, n));

—
—
|

function ¥=unmatricizihg(X,n,D)

A

The inwverse operation of matricizing, i.e. recreates the multiway
array ¥ that was wmatricizes around n to give the matrix X.

— [
L o o e N e ot e I L0 ]
U

% input:
=D a wector containing the original dimensions of ¥
in the dimension along which the matricizing was originally performed
5 X a matrix corresponding to the matricizing of ¥ around n
% output:

11 5T milti-way array

12

13— if n==1

14| - perm=[1l:length(D)]:

15— else

16| = perm=[2:n 1 n+l:lengthi(Di]:

17— erd

14

19— T=permute (reshape (X, Di[n l:in-1 n+l:length(Dl)]) ), perm);

k-2
]
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Wl k) = = —a —n o —a oA —a - o
L et 2 o 1 e e s Ry o |

L e I e o el

P Bl B3 = —& - —n o —a —n o —a o
b — O 0 00 = 5 M Jm La R = OO O

w3 b
[

function A=twult(T,M,n)

B L - L L L

e

the n-wode multiplication or tensor multiplication:

Let T be an IlxIzZx...xIn-lx<ImxInd+lx...xIN multi-way array

and M be an JxIn then

Txn M gives an I1xIEx...xIn-1lxdxIntlx...xIN malti-way array

Input:

T Multi-way array of dimensions IlxIZx...xIn-lxInxIn+lx...xIN
Jul JxIn-matrix

n the dimension to do the multiplication:

Output:

I Multi-way array of dimensions IlxIZx...xIn-lxJdxIntl=...=xIN

Dt=zize(T):
Im=size (M) :

Tn=matricizing(T,ni:
Trew=M*Tn;
Doini=Dmil);

A=

unmatricizing(Thew,n, Dt

function T=outerprod(FACT)

L L

e

WAl N o

T=

The outer products:
T=sum_f£ (Ulf o U2f o T3f o ...o THE) where Tif is a wector correspondineg
to the £'th factor of the i'th dimension.

Input:

FACT Cell arravy containing the factor-wvectors corresponding to
each of the three dimensions, i.e. Ui=FACT{i}

Output:

T The multi-way array created from the outer product of each
dimensions wector.

0:

for i=l:size (FACT{1},2)

¥=1:

for j=1:length(FACT)
U=FACT{i1;
Y=tmulc(¥,U{:,1),]):

end

T=T+%¥:

end
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function [T, 3]=HO3VD (X

The Higher Order Singular Value Decomposition as defined by
Lathauwer, Liewen De., Moor, Bart De, Wandewalle, Joos

"h MOLTILINEAF SINGULAR VALUE DECOMPOSITION™

Y

A

% BIAM J. MATRIX AWAL. APPL. Wol. 21, No. 4, pp. 1253 1273:

%

% Model:

2 =3 w1l Ul %2 T2 ... %N TN, i.e. a TUCEEE model restricted =zo

% Ui orthonormal being the orderen eigenwectors of the matrix

% found by matricizing(¥,i). 3 the resulting core multi-way arrav.
%

% Input:

5 X Milti-way array

% Output:

=0 Cell of eigenwectors, i.e. i} corresponds to the eigenwectors of
% the matrix M=matricizing(x,i).

] Milti-way array of same size as X

3=

for k=l:ndins(X)
*E=matricizing(x,k):
[u,s3]=eig(*¥k*xk') %cheaper than the 5¥VD since we only want T
u=fliplr(u);
Tikl=u;
F=tmult(3,0{k}' k)
erd
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Appendix D: ICA- and ALSPARAFAC on Chemometric
Data

The field in which the PARAFAC model has been the most applied is probably analyzing
chemometric data. Here the dataset ‘Claus’ consisting of five samples containing
different amounts of tyrosine, tryptophane and phenylalanine measured by fluorescence
in the excitation spectra 240 to 300 nm and emission spectra 250 to 450 nm were
analyzed. For a description of the dataset see [41]. The data set has the

dimensions sample X emission X excitation . The ICAPARAFAC algorithm seems well
justified as the goal is from the samples to find factors that are independent when
emission and excitation is combined, i.e. Cly 3.

1
0.8
0.6
0.4

Real Comp.  ALS ICA 0.2 ;\\\

0 / . P
250 300 350nm400 450 240 260 ,m 280 300

Figure 0.1: Left most panel; the true mixing of the five samples, the mixing found by ALSPARAFAC
and mixing found by ICAPARAFAC. Center panel; the emission specters. Right panel; the excitation
specters. ALSPARAFAC (solid) ICAPARAFAC (dashed).

From Figure 0.1 it is seen that the ICAPARAFAC algorithm is slightly worse at
estimating the true mixing of the factors in the samples than the ALSPARAFAC
algorithm. The ICAPARAFAC model seems however better at estimating the emission
and excitation specters as they are slightly better defined. Consequently, the
ICAPARAFAC method seems effective in analyzing this chemometric dataset.
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