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Abstract  
In this thesis the multi-way array model Parallel Factors (PARAFAC) also known as 
Canonical Decomposition (CANDECOMP) was applied to the event related potential 
(ERP) of electroencephalographic (EEG) recordings. Previous work done analyzing the 
ERP by PARAFAC had encountered great problems of degeneracy in the factors. 
However, in this thesis it is shown that the problem of degeneracy can be effectively 
circumvented by imposing non-negativity. Furthermore, the PARAFAC analysis was, to 
my knowledge, for the first time used to analyze the wavelet transformed data of the 
ERP. Through this analysis, it was shown that PARAFAC is able to access the correct 
components of the data. Finally, a novel PARAFAC algorithm based on independent 
component analysis on data having the concept of Combined Independence was 
proposed. This algorithm proved both fast and efficient in accessing the correct 
components of simulated as well as real data. In dealing with noise, the algorithm 
performed even better than the popular PARAFAC algorithm based on alternating least 
squares. 
 
 
Keywords: PARAFAC, CANDECOMP, ERP, EEG, coherence, ITPC, multi-way arrays, 
tensors, Independent Component Analysis, gamma activity, wavelet analysis, Combined 
Independence, HOSVD, TUCKER, Core Consistency Diagnostic. 
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Abstrakt 
I denne afhandling blev multi-way array modellen Parallel Factors (PARAFAC) også 
kendt som Canonical Decomposition (CANDECOMP) brugt til at analysere event 
relaterede potentialer (ERP) fra elektroencefalografiske optagelser (EEG). Tidligere 
forsøg på at analysere ERP’et ved hjælp af PARAFAC havde stødt på problemer med 
degeneration i faktorerne. I denne afhandling blev det vist, at dette problem kan løses ved 
at indføre ikke-negativitets begrænsninger. Derudover blev PARAFAC, så vidt jeg ved, 
for første gang brugt til at analysere wavelet-transformeret ERP-data. Det viste sig, at 
PARAFAC også her var i stand til at finde de rigtige komponenter i data. Endelig blev en 
ny PARAFAC algoritme baseret på independent component analysis foreslået til brug på 
data havende begrebet Combined Independence. Denne algoritme viste sig både hurtig og 
effektiv til at finde de korrekte komponenter i simuleret såvel som rigtig data. Algoritmen 
var endda bedre til at håndtere støj end den populære PARAFAC algoritme baseret på 
alternating least squares. 
 
 
Nøgleord: PARAFAC, CANDECOMP, ERP, EEG, coherence, ITPC, multi-way arrays, 
tensors, Independent Component Analysis, Gamma activity, wavelet analysis, Combined 
Independence, HOSVD, TUCKER, Core Consistency Diagnostic.
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Notation 
Xx
�

,  Vector 
X  Matrix 

�� ��
 

Multi-way array in the literature also referred to as tensors, higher-
order tensors or multidimensional matrices 

Niiiiii xxx �21211
����������������  Denotes the element at the subscribed indices for the corresponding 

vector, matrix and multi-way array. 

b

a
||  Same as a=b 

nr
= ,

nr
⇔ ,

nr
�  nr refers to the index of an explanation given below the equation. 

( )i:,X  The MATLAB notation in this case for the vector consisting of the 
ith column of X. 

ix  Vector containing the ith column of X, i.e. xi= ( )i:,X  
( )iX  Denotes a vector, but where size ( )iX  not necessarily equals ( )jX  
+X  The pseudo inverse of X  

( )Xvec  The vectorization of X  given by: 

�
�
�
�

�

�

�
�
�
�

�

�

=

N

vec

x

x
x

X
�
2

1

 

( )⋅diag  
On a matrix: Sets off diagonal elements of a matrix to zero. 
On a vector: Creates the diagonal matrix where the vector elements 
are along the diagonal.  

⋅  The Frobenius-norm, see Definition 3, page 111  

BA ⊗  The tensor or Kronecker product, i.e. 
�
�
�

�

�

�
�
�

�

�

=⊗
BB

BB
BA

mmn

m

aa

aa

�

���

�

1

111

 

BA ⊗  
The Khatri-Rao product:  

[ ]ff babaBA ⊗⊗=⊗ �11   
Requires that A and B have same number of columns. 

ba �  The outer product, i.e. jiij bac =⇔= baC �  

KIJ×X  

Unfolding �� ��  by the jth-way onto the ith way, i.e. for a 3-way array 

�
�
�

�

�

�
�
�

�

�

=×

:),(:,

:),1(:,

J

KIJ

X

X
X �  

  
JKI×X  

Unfolding �� ��  by the Kth-way onto the Jth way, i.e. for a 3-way 
array 
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[ ]):,(:,)1:,(:, K
JKI XXX �=×  

( )nX  

The n-mode-matricizing of the multi-way array NI×××∈ �21 IIR���� to 

the matrix ( ) Nnn IIII
n

�� 111 +−×∈ nIRX , the inverse operation is 

denoted ( ) 1−n
X  

BA n×  The n-mode Multiplication, see also Definition 1, page 111.  

��������,  The scalar product of two tensors, see also  

Definition 2, page 111. 
( )����rank  The rank of the multi-way array �� �� , see also Definition 4, page 111. 

Ak  The k-rank of the matrix A, see also Definition 6, page 112. 
( )I0,s |iN  The vector is  is normal distributed with mean 0 and covariance I . 

( )����dim  
The number of dimensions of �� �� ,i.e. if NI×××∈ �21 IIR���� then 

( ) N=����dim  

⋅  The expected value of x, i.e. ( )	= dxxxpx  

( )⋅tr  The sum of the diagonal elements of a matrix 
( )yx,cov  The covariance of x and y. 
BA •  The Hadamard product (element wise product of two matrices) 

A  The determinant of the matrix A. 

2,∇∇  

 

 

f⋅∇ - the divergence of f : 
z
f

y
f

x
f

∂
∂+

∂
∂+

∂
∂

 

f×∇T - the curl of f where ×  is the cross product. 

f2∇ - the Laplacian of  f : 2

2

2

2

2

2

z
f

y
f

x
f

∂
∂+

∂
∂+

∂
∂

 

∃  
Denotes there exists, i.e. 1; =∃ ii x means that there is at least one 
column of X having the norm 1. 

∀  
Denotes for all variable, i.e. ii ∀= 1x  means that the norm of each 
column of X is 1. 

ε Infinitesimal small value 
e, E, E The model error 
 
 

z y x � 
� 

� 
� 
� 

� 
∂ 
∂ 

∂ 
∂ 

∂ 
∂ = ∇ 

z 
f

y 
f

x 
f 

f � 
� 

� 
� 
� 

� 
∂ 
∂ 

∂ 
∂ 

∂ 
∂ = ∇ 
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Abbreviations 
ALS Alternating Least Squares 
ARD Automatic Relevance Determination 
CANDECOMP CANonical DECOMPosition (same as PARAFAC) 
CCD Core Consistency Diagnostic 
CIm,n Combined Independent in the mth and nth dimension 
BIC Bayesian Information Criterion 
ECG Electro-Cardiogram 
EEG Electroencephalography 
EM Expectation Maximization 
EOG Electro-Oculogram 
EP Evoked Response Potential 
EPSP Excitatory Post Synaptic Potential 
ERD Evoked Response Desynchronization 
ERP Event Related Potentials 
ERPCOH Event Related Cross Coherence 
ERSP Event Related Spectral Perturbation 
FFT Fast Fourier Transform 
fMRI Functional Magnetic Resonance Imaging 
HOSVD Higher Order Singular Value Decomposition 
ICA Independent Component Analysis 
i.i.d. Independent and identically distributed 
IPSP Inhibitory Post Synaptic Potential 
ITPC Inter Trial Phase Coherence 
KL Kullbach-Leibler divergence 
LTM Long Term Memory 
MUM Match and Utilization Model 
NMF Non-negative Matrix Factorization 
PARAFAC 
-ALSPARAFAC 
-SR1PARAFAC 
-EMPARAFAC 
-VBPARAFAC 
-ICAPARAFAC 

Parallel Factor Analysis 
Based on: -ALS 
                 -Sum of Rank One Components 
                 -Expectation Maximization 
                 -Variational Bayesian Expectation Maximization 
                 - PARAFAC model based on ICA 

PCA Principal Component Analysis 
RE  Reticular thalamic nucleus  
SNR Signal to Noise Ratio 
STFA Short Time Fourier Analysis 
SVD Singular Value Decomposition 
TCR Thalamic Relay Cells  
VBEM Variational Bayesian Expectation Maximization 
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Introduction 
 
Electroencephalography (EEG) refers to electrical activity measured at the scalp that 
arises from neural activity in the brain. EEG signals generated in response to sensory 
stimuli events are also referred to as event related potentials (ERP). Traditionally the 
EEG/ERP has been analyzed by looking at trial averages and spectrums. As much of the 
focus in the interpretation of the EEG/ERP is based on frequency changes in the data, 
wavelet analysis has become a popular tool. However, wavelet analysis increases the 
dimensionality as it adds a frequency dimension to the data giving a multi-way array of 

frequencytimechannel ×× . Consequently, to be able to effectively interpret the wavelet 
analyzed data there is a need to decompose these multi-modal EEG/ERP data into easily 
interpretable components.  
 In this thesis multi-way array analysis of ERP will be explored. The thesis is 
inspired by the work of Miwakeichi and Martínez-Montes et al. [24], [25] who applied the 
multi-way decomposition method Parallel Factor (PARAFAC) to analyze the space-time-
frequency components of the EEG. The PARAFAC model used by Miwakeichi and 
Martínez-Montes et al. will be compared to other PARAFAC models taken from the 
framework of higher order singular value decomposition (HOSVD) [19]  and a more 
statistical framework using the expectation maximization algorithm (EM) and variational 
Bayesian expectation maximization (VBEM) described by Beal [3]. Finally, a PARAFAC 
model based on Independent Component Analysis will be proposed.  
 The PARAFAC algorithms will be evaluated on real as well as simulated ERP 
data. The real data was collected by Sidse Arnfred at Cognitive Research Unit, 
Department of Psychiatry, Hvidovre Hospital. The data reproduces a well known 
experiment described by Herrmann et al. [15] in which evoked gamma oscillations are 
found in the posterior regions of the brain. The PARAFAC model will be used both on 
the ERP as previously done by Field et al.[10], but also for the first time, to my 
knowledge, to analyze the wavelet transformed ERP-data in terms of the Inter Trial Phase 
Coherence (ITPC).  
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1   PARAFAC “If the only tool you have is a hammer, 
you tend to see every problem as a nail.“ 

Abraham H. Maslow 
1 PARAFAC 
 
 
 
Before addressing the Parallel Factor (PARAFAC) model and algorithms an introduction 
to wavelet analysis, Bayesian learning and multi-way array algebra will first be given.  

1.1 Wavelet Analysis 
A wavelet analysis transforms an EEG signal of timechannel ×  into a multi-way array of 

frequencytimechannel ×× . 
The spectrum of a signal ( )tx  is given by its Fourier transform: 
 

( ) ( ) dtetxFX Fti
	
∞

∞−

−= 2  eq. 1.1 

 
However, the Fourier transform can’t reveal frequency changes through the signal. This 
has lead to the development of the Short-Time Fourier Analysis (STFA). In STFA the 
signal is Fourier transformed within a finite time-window – giving a temporal resolution 
of the frequency components of the signal. Unfortunately, the time-window is fixed 
disabling good temporal resolution for high frequencies. The wavelet transform resolves 
this problem.  
 

( ) ( )dttshiftscaletxshiftscaleC 	
∞

∞−

= ,,),( *ϕ  eq. 1.2 

 
A wavelet is a waveform of effectively limited duration that has an average value of zero. 
Scaling a wavelet simply means stretching or compressing it, and shifting a wavelet 
delaying or hastening its onset. The wavelet analysis has grown to become a huge 
discipline in the analysis of EEG from noise reduction to feature extraction. 
 
Wavelets are separated into continuous and discrete wavelets based on the characteristic 
of the wavelet rather than the signal’s characteristic as is the case for the Fourier 
transform. A wavelet is called continuous if it can be scaled and shifted to any value. An 
example of a continuous wavelet is the popular complex Morlet wavelet used in [14],[15], 
[24]:  
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( ) ( )





�

�






�

�
−=

b
c

b F
t

tFi
F

t
2

exp2exp
1~ π

π
ϕ  eq. 1.3 

 
cF is the center frequency and bF is a bandwidth parameter. The scaling factor a and shift 

factor p changes ϕ~  by: 
 

( )





�

�






�

� −−

�

�


�

� −=

�

�


�

� −=
b

c
b Fa

pt
a

pt
Fi

aFa
pt

a
tpa

2

2)(
exp

)(
2exp

1)(~1
,, π

π
ϕϕ  eq. 1.4 

 
ϕ~  is also called the mother wavelet as it is ϕ  without scaling and shifting. The effect of 
scaling is illustrated in Figure 1.1. 
  

Real part Imagenary part

 
Figure 1.1: The effect of scaling the complex Morlet function.  As seen scaling results in a temporal 
compression of the functions, black has twice the scaling factor of blue.  

From the scale of the wavelet transform the frequency of the signal can be estimated as 
[32] : 
 

a
F

F c=  eq. 1.5 

 
There is an inherent tradeoff for wavelets between good frequency resolution and good 
time resolution. This is explained by the Heisenberg-Gabor inequality [17]. As seen from 
eq. 1.3 a relatively large bandwidth of the wavelet gives a good frequency resolution but 
the length of the wavelet makes the time point less accurate. Furthermore, there is no 
simple relation between center frequency and bandwidth as frequency changes with scale 
according to eq. 1.5 but the bandwidth changes according to eq. 1.4 by bFa2 . 

Consequently, in some literature the bandwidth is denoted bb Fa22 =σ making
Fb
1∝σ . 
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Although the wavelet’s estimate of the frequency at a given time isn’t exact and the 
whole analysis is slightly influenced by the choice of wavelet, the wavelet analysis is 
considered a very powerful tool in the analysis of the temporal development of the 
frequency of the EEG. In the following analysis the complex Morlet wavelet having a 
bandwidth parameter 2=bF  and a center frequency of 1=cF  will be used, as it has 
been well accepted in the literature, see also [14],[15].  
 

1.2 Bayesian Learning 
Reverend Thomas Bayes (1702-1761) was the first recorded to notice [4]:  
 

( ) ( )
( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( )
��� ���� 	


TheoremBayes

ap

bpbap
abp

apabpabp

bpbapbap
ypyxpyxp

'

||

,

,
)(, =�

��

�
�
�

=

=
�=  eq. 1.6 

 
This theorem has become the cornerstone in a probabilistic modeling approach named 
Bayesian learning. 
 
Given the data D, the model m, and the model parameters�  the posterior probability 
distribution of the parameters can be expressed using Bayes’ theorem as: 
 

( ) ( ) ( )
( )mp

mpmp
mp

D
��D

D�
,

, =  eq. 1.7 

 
Where ( )mp � is the prior probability of the parameters given the model. ( )mp ,�D  is the 

likelihood of the parameters also called the likelihood function. As ( ) 1, =	 �D� δmp , 

( )mp D  is a normalization constant also denoted the marginal likelihood, given by: 
 

( ) ( ) ( )	= ���DD δmpmpmp ,  eq. 1.8 

 
In probabilistic modeling the goal is to develop models that explain the given data but 
also generalize well on new data. In Bayesian learning this becomes the two main goals 
[3]: 

1. Approximating the marginal Likelihood of the observed data ( )mp |D  
2. Approximating the posterior distribution over the parameters of a model 

( )mp ,| D�  
 
Consequently, in probabilistic modeling two main problems must be addressed; finding 
the right model and the optimal parameters.  The solution will be based on the 
Expectation Maximization algorithm (EM) and the Variational Bayesian Expectation 
Maximization algorithm (VBEM) based on the analysis given by Beal [3]. 
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The problem of finding the optimal parameters will first be addressed. In maximum 
likelihood learning equal priors of the parameters given the model is assumed. The 
maximum likelihood parameter is given as the parameter that is the most probable given 
the model and the data:  
 

( ) ( ) ( )
( ) ( ) ( )

( )mp

mpmpmp

ML

mp

mpmp
MAP

,maxarg

,maxargmaxarg,maxarg

3

2

,

1

�D�

��DD��

�

�
D

��D

��

=

===
 eq. 1.9 

1) Follows by eq. 1.7. 
2) Result as the denominator is a constant independent of � . 
3) Equality holds as maximum likelihood assumes equal priors of � given the model. If equal priors 

can’t be assumed, the maximum a posteriori (MAP) estimate is found instead. 
 
Whereas the EM algorithm is based on the maximum likelihood parameter estimate ML� , the 
VBEM algorithm is based on the maximum aposteriori estimate MAP� . 
 

1.2.1 The Expectation Maximization (EM) Algorithm 
We consider a model having the hidden variables S and the observed data D. The 
parameters describing the (potentially) stochastic dependencies between the hidden and 
observed variables are given by� . We assume further that the data }d,...,{dD n1=  
consist of n independent and identically distributed (i.i.d.) items, generated using a set of 
hidden variables }s,...,{sS n1=  such that the likelihood can be written as a function of �  
in the following way [3]: 
 

iiii s�s,d�d�D δ∏ 	∏
==

==
n

i

n

i

ppp
11

)()()(  eq. 1.10 

 
The logarithm of the likelihood ( )�LLLL  is defined as: 
 

( ) ( ) ( ) ( )� � 	
= =

==≡
n

i

n

i

dppp
1 1

lnlnln iiii s�d,s�d�D�LLLL  eq. 1.11 

 
By introducing an auxiliary distribution of the hidden variables given by ( )ssq  we can 
find a lower bound of ( )�LLLL : 
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( ) ( ) ( ) ( )
( )

( ) ( )
( )

( ) ( ) ( ) ( )
( )

( ) ( )( )�ss

s
�ds

s
ss�ds

ss

sss�d,s�

ss

i
ii

is
isiiis

is
�d,s

is

is
�d,s

isiii

i
ii

iis

ii
i

iis

ii
i

,,,

,
lnln

ln

lnln

1

1

1

111

1 n

n

i

n

i
q

p

n

i
q

p
n

i

n
qq

d
p

q
qdpq

dq

dqdp

�F

� 		

�	

� 	� 	

=

=

==

≡−

=

≥==LLLL

 eq. 1.12 

1) Result of Jensens inequality, see Theorem 1. 
 
It’s worth noticing: 
 

( ) ( )
( ) [ ] 0,|()(

,
ln ≥≡	 �dsss

�ds

s
s si

ii

is
is

i
i iii pqKLd

p

q
q

i
 eq. 1.13 

 
Is the Kullbach-Leibler (KL) divergence - a measure of distance between two 
distributions.  
 
The Expectation-Maximization (EM) algorithm alternates between an E step, which 
infers posterior distributions over hidden variables given a current parameter setting, and 
an M step, which maximizes ( )�LLLL  with respect to � given the statistics gathered from the 
E step [3]: 
 

 ( ) ( )( ) { }

( )( )�s�:stepM

�ss:stepE

i

i
is

i

s
�

sis

,maxarg

,,1,,maxarg

11

1

i
tt

t
i

q

t

q

niqq

++

+

←

∈∀←

F

F �
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The E step 
To find the optimal distribution ( )is s

i
q we differentiate ( )( )t

iq �s
is ,F  with respect to 

( )is s
i

q  subject to the constraint 	 = 1)(
ii

dq i ss s  implemented by the Lagrange 

multipliers{ }n
ii 1=λ , we find: 

 

( )( ) [ ]

( )( ) [ ]
( )

( ) ( )

( ) ( )

( )

( )

( )

( )
( )

( )
( )t

ii

t

t

t
i

t

ti

t
ii

t
i

t

i
t

dq

dqq

iid

dqq

p

dp

p

p

q

dp

dpdq

pq

qp

dqdq

i

i

iii

i

n

i
iiii

t
i

iiiii

n

i
iiii

t
i

�ds

�d,s

�d,s

�d,s

s

�d,s

�d,ss

�d,ss

s�d,s

ss

sii

ii

ii

is

sii

siiss

iiis

isiis

s�s

ssss

s�s

i

i

i
is

ssis

ssis

,

)1exp(

1
)1exp(

1)1exp(1)(

)1exp(

01lnln

1)(01)(

||

||

||

1

1

1)(,

1)(,

1

1

	

	

		

		

−

�
�
�
�
�
�
�
�
�

�

��
�
�
�
�
�
�
�

�

�

=−

=−�=

−=

=−+−=

=⇔=−=

+
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�

�


�

�
� 	 −+



�

�


�

�
� 	 −+

=

=

λ

λ

λ

λ

λ
λ

λ

λ

�

�

Fd

Fd

 

eq. 1.14 

 
The optimal choice of the distribution ( )is s

i

1+tq is the posterior distribution of si given by the 

data and model parameters ( )t
iip �ds , . This choice of ( )is s

i

1+tq  fulfills according to eq. 
1.13 that the KL-divergence is zero. 
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The M step 
To find the optimal parameters we make use of the result from the E step, i.e. 

( ) ( )�dss isi
,1

ii
t pq =+ .  

 

( ) ( )( ) ( ) ( )
( )

( ) ( )
( ) ( ) ( ) ( ) ( )��ds�d�ds

ss�ss

iiiis
�idis

�id,is
�ds

s
�d,s

isss iis

ii

i

L

F

===

==

��	

�	

==

�
=
	

=

++

N

i

N

i
ii

N

i
d

p

p
iip

N

i
q

p
n

tt

pdpp

dqqq
n

11
1 ,

ln,

1

1
1

1

lnln,

ln,,,
1

�

 eq. 1.15 

 
The M step defined by ( )( )�s�

is
�

,maxarg 11
i

tt q ++ ← F  therefore becomes a matter of 

maximizing the likelihood ( )�L . 
 

 
Figure 1.2: The EM algorithm for maximum likelihood learning. In the E step the hidden variable 
posterior is set to the exact model posterior, making the KL-divergence zero. In the M step, the lower 
bound of the likelihood of the parameters ( ) ( )( )�ss ss ,,, 1

1
1

1 n
tt

n
qq ++ �F  is maximized. (Taken from [3]).  
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Bayesian Information Criterion (BIC) 
Finding the right model for the EM algorithm, i.e. choosing the number of source signals 
amounts to finding the optimal model M that according to the Bayesian Information 
Criterion satisfies: 
 

)|(maxarg DMpM
M

opt =  eq. 1.16 

 
Where ( )D|Mp  is given by Bayes’ theorem: 
 

)(
)()|(

)|(
D

DD
p

MpMp
Mp =  eq. 1.17 

 
Where: 

�=
M

MpMpp )()|()( DD  eq. 1.18 

 
)(Mp  is the prior of the model and assumed to be uniform. For a particular choice of 

model, the probability of finding the observed data D  is given by the integral over all 
model parameters: 
 

	 	

		
−+ ==

==

��

�|��,|D�|�D,D
��|�,|D dede

dMpMpdMpMp

fMpMp )()(log)(log

)()()()|(
 eq. 1.19 

Where 

 
eq. 1.20 

 
As equal priors are assumed in maximum likelihood learning the optimum of ( )�f  is 
given by ML� . Making a second order Taylor expansion around the optimum given by 

ML� yields: 
 

)()½()()( ML
T

MLMLff ��H���� −−+≈  eq. 1.21 

 
Which gives: 
 

��D ��H���� deedeMp ML
T

MLMLff
		

−−−−− ≈= )()½()()()|(  eq. 1.22 

 
As the integral has a Gaussian form it can be written by:  

   ½2)2)(|(),|()|( −≈ HMpMpMp
D

MLML π��DD  eq. 1.23 

) | ( log ) , | ( log ) ( M p M p f � � D � − − = 
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Where D is the number of free parameters. Neither the prior ( )Mp ML |� nor 2)2(
D

π  
depends on the number of samples N. The Hessian H holds a DD × product over samples 
that can be factored out as HNH D ~= . Neglecting H

~
gives: 

 

2),|()|(
D

ML NMpMp
−

≈ �DD  eq. 1.24 

 
The probability of the observed data given the model is therefore the probability of the 
observed data given the optimal parameters of the model weighted by a function of the 
number of observations N and free parameters D. 

1.2.2 Variational Bayesian EM (VBEM) algorithm 
Once more we consider a model having the hidden variables S and the observed data D. 
The parameters describing the (potentially) stochastic dependencies between the hidden 
and observed variables are given by� . We again assume that the data }d,...,{dD n1=  
consist of n independent and identically distributed (i.i.d.) items, generated using a set of 
hidden variables }s,...,{sS n1=  such that the likelihood can be written as a function of S 
and �  in the following way [3]: 

 

( ) ( ) ( ) ( ) ( )
( )

( ) ( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( )( )�S

S�
S�

�SD
S�S�

S�
�SD

S�

S�
S�
�SD

S�S��SDDS�

�S

S�
S�

qq

dd
qq

mp
qqdd

q

mp
q

dd
q

mp
qddmpmp

,

,,
ln

,

,,
ln,

,

,,
,ln,,lnln,

2

1

F=

==

≥==≡

		

		LLLL

 
eq. 1.25 

1. Result of Jensens inequality, see Theorem 1. 
2. Comes from the assumption that � and S are mutually independent. 

 
We now have: 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )),,(

,,
ln

,,
ln)|(lnln

)|(,,
lnln

,,
ln,

mpqqKLdd
mp

qq
qq

dd
mp

qq
qqmpqq

dd
qq

mpmp
qq

dd
qq

mp
qqqq

D�SS�S�
D�S

S�
S�

S�
D�S

S�
S�DS�D

S�
S�

DD�S
S�D

S�
S�

�SD
S�D�SD

S�
S�

S�

S�
S�S�

S�
S�

S�
S��S

=

=−−

=−

=−=

	

	

	

	

m|p

m|p

m|p lnF-m|p ln

 
eq. 1.26 
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The E and M step 
From eq. 1.26 it is seen that improving the likelihood corresponds to setting the hidden 
variables as well as � equal their posteriors, as this minimizes the Kullbach-Leibler 
divergence ( ) ( ) ( )),,( mpqqKL D�SS� S� .  

 

 
Figure 1.3: The VBEM algorithm. In the VBE step the variational posterior over hidden variable is 
no longer set to the exact model posterior. However, each VBE and VBM step is assured to improve 
the lower bound of the likelihood (Figure taken from [3]).  

As the marginal likelihood doesn’t change, choosing the right model amounts to finding 
the model having the largest lower bound of the marginal likelihood. Furthermore, hyper 
parameters can be used to model the various parameters of the model. The hyper 
parameters can then indicate how many factors to include by how certain the underlying 
parameter is zero. Estimating the number of factors to include in the model by hyper 
parameters is called Automatic Relevance Determination (ARD). 
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1.3 Multi-way arrays 
Multi-way arrays in the literature also referred to as tensors, higher-order tensors or 
multidimensional matrices [19] are simply any set of data for which the elements can be 
arranged as [5]: 
 

�ijkx i=1.I, j=1…J, k=1…K, ... i.e. nI×××∈ �21 IIR����  
 
Notice that vectors and matrices are two special cases of multi-way arrays; a 1-way array 
and a 2-way array. In the following the various ways of a multi-way array will also be 
referred to as modalities. For a description of the different aspects of multi-way arrays 
see Appendix B: Multi-way array algebra.  

1.3.1 Unfolding 
The unfolding operation folds one of the ways of the multi-way data onto another. 
Consider for example the three-way array �� ��  defined by ijkx , i=1.I, j=1…J, k=1…K. 
Unfolding the third way of �� ��  onto the second way gives: 
 

JKI
unfolding

KJI ××× → X����  
 
While unfolding the second way of �� ��  onto the third way gives: 
 

KJI
unfolding

KJI ××× → X����  
 
For a three-way array there are 6 different options of unfolding �� ��  into a matrix as 
revealed in Figure 1.4. The unfolding can be performed consecutively turning for 
instance a four-way array into a vector by three unfolding operations: 
 

ILJK
unfolding

JKIL
unfolding

KJIL
unfolding

LKJI xX →→→ ×××××× ��������  
 

Unfolding multi-way data enables manipulation of the data using normal vector and 
matrix calculation. 
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Figure 1.4: The six ways of unfolding the three-way array �� ��  into a matrix. 

 
The n-mode-matricizing ( )nX  of the tensor NI×××∈ �21 IIR���� is defined as the ( )����dim -2 
unfolding giving [19] ,[23]: 

( ) Nnn IIII
n

�� 111 +−×∈ nIRX  
 

The inverse operation is denoted: 
 

( )
NI

n

×××∈=−
�21 IIR����1X . 

 
For MATLAB implementation of the described multi-way array manipulation as well as 
the algebra given in Appendix B: Multi-way array algebra, confer Appendix C: 
MATLAB implementation of multi-way array manipulations.  
 

I K 

J 
KJI ××X  

I 

JK 
JKI×X  

IK 

J 
JIK×X  

I 
KJ 

KJI×X  

IJ 
K 

KIJ×X  
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JI 
KJI×X  

KI 

KIJ×X  
J 
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1.4 Models 
The two most used forms of decomposition of multi-way arrays are the PARAFAC and 
the TUCKER model [23]. Where the PARAFAC decomposition gives easily 
interpretable components, the TUCKER model is a convincing multilinear generalization 
of the SVD concept to higher order [19] . Furthermore, the TUCKER model enables 
evaluation of the PARAFAC model using the so-called Core Consistency Diagnostic, see 
also paragraph 1.5.1.  

1.4.1 Parallel Factor Analysis (PARAFAC) 
 
The PARAFAC model is intrinsically related to the principle of parallel proportional 
profiles [5]. Suppose that the matrix ( )1X  can be adequately modeled as TAS  where the 
number of columns of A andS  is the same. 
 

( ) ( ) ( ) ( ) ( ) T
FF

T
FF

TTT
FF

TTT ddd SADsasasasasasaASX 111
2222

1
11112211

1 =+++=+++== ��  

where ID =)1(  

eq. 
1.27 

 
Suppose another matrix ( )2X  can be described by the same matrices A and S only in 
different proportions: 
 

( ) ( ) ( ) ( ) ( ) T
FF

T
FF

TT ddd SADsasasaX 222
2222

2
1111

2 =+++= �  

where )2(D is a diagonal matrix 
eq. 1.28 

 
The two models consist of the same (parallel) profiles only in different proportions. 
Cattell was the first to prove that the presence of parallel proportional profiles would lead 
to an unambiguous decomposition [5]. 
 
The Parallel Factor, PARAFAC, model was independently proposed by Harshman [13] 
and by Carrol and Chang [5] in 1970. The latter naming it Canonical Decomposition, 
CANDECOMP. The model can be expressed in several ways: 
 

.factorsofnumbertheiswhere,
1
�

=
+=

F

ijkkjiijk Fesbax
λ

λλλ  eq. 1.29 

 
Due to the symmetry of the components in eq. 1.29 the index order of the components 
doesn’t matter. Another formulation of the model is given by: 
 

( ) ( ) ( )

( )

( )

( ) matrixdiagonalaisand,where,

1

i

M

iii D
X

X
XESADX

�
�
�

�

�

�
�
�

�

�

=+= �  eq. 1.30 
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From the formulation of the model in eq. 1.30 the relation of PARAFAC to parallel 
proportional profiles is evident. Finally, the model can be expressed more compact by the 
Khatri-Rao product.  
 

( )TJKI BSAX ⊗=×  eq. 1.31 

 
Where the ith row of B corresponds to the diagonal of ( )iD . The Khatri-Rao product is 
given by [5]: 
 

[ ]ff babaBA ⊗⊗=⊗ �11 , where 
[ ]
[ ]f

f

bbB
aaA

�

�

1

1

=
=

 

and the Kronecker product  

eq. 1.32 

 
The PARAFAC model is easily generalized to higher orders. The higher order 
equivalents are given by: 
 

( ) ( ) ( ) .factorsofnumbertheiswhere,
1

21
21221 �

=
+=

F

iii
N

iiiiii Feaaax
NNiN

λ
λλλ �� �  eq. 1.33 

 
Expressing the PARAFAC for arrays of more than three dimensions in terms of eq. 1.29 
and eq. 1.30 yields: 
 

( ) ( ) ( ) ( ) ( )NNN iiIIiiiiiII �� � 32143321 ×× += ESDDADX  
where ( )jD  are diagonal matrices 

eq. 1.34 

 
( ) ( ) ( )( ) EBBBAX +⊗⊗⊗= −− TNN 121 �  eq. 1.35 

 
From eq. 1.29 and eq. 1.33 it is seen that PARAFAC decomposes the multi-way array 
into a sum of effects pertaining to each dimension. Each factor consists of one vector 
from each dimension. Consequently, each factor’s relation to each dimension can easily 
be read from the factor vector corresponding to the dimension, see also Figure 1.5.  
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� 
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Figure 1.5: Graphical representation of the PARAFAC model as formulated in eq. 1.29. The model 
decomposes the multi-way array into a sum over factor effects pertaining to each dimension. 

 
The PARAFAC model is however very restricted as the number of free parameters, D, is 
given by:  
 

)max( than less is generalin   as
1 1

iIFIIFD i

N

j

N

j
jj ∀<<= � ∏

= =
 eq. 1.36 

 

Uniqueness 
From the formulation of the PARAFAC model given in eq. 1.30 PARAFAC doesn’t hold 
the rotational freedom other factor models such as independent component analysis, ICA 
and principal component analysis, PCA have.  
 

( ) ( ) ( ) ( ) ( )( )( )
( )( ) matrixdiagonalabemust1

1111

QDP

SQQDPAPSQQDAPPSADX

i

iiii

−

−−−−

�

===
 eq. 1.37 

 
According to eq. 1.37 the rotational freedom of PARAFAC requires that the product 
( )QDP i

1−  must be a diagonal matrix. In practice, this means that P and Q can only be 
scaling and permutation matrices. Consequently, the only indeterminacies are the order of 
the components and the magnitudes of the loading vectors [5]. 
 
The PARAFAC model seems a logic extension of the factor analysis as the generalization 
to any dimension given in eq. 1.33 yields the well known factor analysis model in the 2-

way array case: �
=

=
F

jiij bax
1λ

λλ . It is, however, much more restricted than the normal 

factor analysis, as a matrix of 321 NNN ⋅×  in a factor analysis with no restrictions would 
give ( )321 NNNF ⋅+⋅  free parameters while the PARAFAC model of the corresponding 

321 NNN ××  multi-way array only yields ( )321 NNNF ++  free parameters. 
 

=�
=

F

1λ λa  

λs  

λb  
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Sidiropoulos and Bro have extended J. B. Kruskal’s result of uniqueness from 1977 to 
higher orders, for the proof see [31]. The result makes use of the k-rank which is given by 
the least amount of columns of a matrix that are linearly independent, see also Definition 
6 page 112. Let the PARAFAC model be defined as in eq. 1.33. The model is insured to 
be unique apart from permutations and scaling if: 
 

( ) ( )12
1

−+≥�
=

NFk
N

i
iA  Eq. 1.38 

 

1.4.2 TUCKER and Higher Order Singular Value Decomposition 
The generalization of singular value decomposition to multidimensional data has not yet 
come to one “ideal” form. For a discussion on what might define the “ideal” HOSVD see 
[23]. However, higher order singular value decomposition, HOSVD, of the multi-way 
array �� �� will follow the definition of Lathauwer, Moor and Vandewalle [19] .  
 
The TUCKER model is defined by: 
 

( ) ( ) ( )N
jijijiU

J

j

J

j

J

j
jjjiii NN

N

N
NN

uusx �� ��
21

2211

1

1

2

2
2121 �� �=  eq. 1.39 

 
In the 3-Way case the Tucker model can be formulated the following way using the 
Kronecker product: 
 

( )TJKI SBAGX ⊗=×  eq. 1.40 

 
eq. 1.39 can equivalently be expressed by 
 

( ) ( ) ( )N
N UUU ×××= �2

2
1

1��������  eq. 1.41 

 
Where �� ��  is denoted the core multi-way array, and n× is the n-mode multiplication see 
also Definition 1 page 111. 
 



 

 26 

 
Figure 1.6: Graphical representation of the TUCKER model of a 3-way array. The model 
decomposes the multi-way array into matrices (dark grey) pertaining to each modality, while the 
core array relates each modality. 

 

Although the TUCKER model doesn’t impose any constraints, to obtain the HOSVD 
( )iU has to be an orthonormal ( )ii II × matrix, and �� ��  a multi-way array of same size 

as �� ��  subject to: 
 

( )
( )ordering0

ityorthogonal-allif0,

21 ≥≥≥≥
≠=

===

==

nI�� ���� ���� ��
�� ���� ��

		 				 				 		
		 				 		

������������
��������

�

βαβα  eq. 1.42 

 
eq. 1.39 and eq. 1.41 can be equivalently expressed in matrix notation as: 
 

( )
( )

( )
( ) ( ) ( ) ( ) ( ) ( )( )12121 −++ ⊗⊗⊗⊗⊗⊗⊗⋅⋅= nNnn

n
n

n UUUUUUSUX ��  eq. 1.43 

 
Where ( )nX  is the n-mode-matricizing of �� �� and ( )nS  the n-mode-matricizing of �� �� . The 
resemblance of HOSVD to SVD becomes evident as the singular value decomposition of 
a matrix F can be expressed by [19] : 

 
( ) ( ) ( ) ( )

�� ��� 	
���	

2

2
1

1
21 UUSSUUF ××==

 

eq. 1.43             eq. 1.41 
eq. 1.44 

 
Here 21 II ×∈RS is an ordered pseudo-diagonal matrix, i.e. 

( )( )
( ) 0

,

21

21

,min1

,min11

≥≥≥≥

=

II

IIdiag

σσσ
σσσ

�

�S
 

=
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Evidently, HOSVD becomes SVD for the 2-way array.  
 
The number of free parameters for the HOSVD is given by: 
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  eq. 1.45 

1. Follows as 
( )

�
=

+n

i

nn

1 2
1

 

 
As can be seen from eq. 1.45 the free parameters of HOSVD exactly match the number of 
parameters of the multi-way array. Consequently, the HOSVD as a decomposition will 
reconstruct the multi-way array exact. 

Calculating the HOSVD 
According to eq. 1.43:  
 

( )
( )

( )
( ) ( ) ( ) ( ) ( ) ( )( )TnNnn

n
n

n
12121 −++ ⊗⊗⊗⊗⊗⊗⊗⋅⋅= UUUUUUSUX ��  

 
Defining the following set of matrices [19] : 
 

( )
( )

( ) ( ) ( ) ( ) ( ) ( )( )
( )

( )
( )

( ) [ ]),(

~

~

11

12121

N
n

n
n

n

TnNnn
n

n

diag σσσ �

��

=

=

⊗⊗⊗⊗⊗⊗⊗= −++

�

S�S

UUUUUUSV

 
 
Where ( )n�  is selected so that ( )nS~  is a normalized version of ( )nS  with the rows scaled to 
unit length. This gives: 
  

( )
( )

( )
( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )nnn

TnNnn
n

n
n

V�U

UUUUUUSUX =⊗⊗⊗⊗⊗⊗⊗⋅⋅= −++ 12121 ��
 eq. 1.46 

 
From eq. 1.46 it is seen that ( )nU  can be calculated by the normal singular value 
decomposition (SVD) of ( )nX . 
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From eq. 1.41 we had: 
 

( ) ( ) ( )N
N UUU ×××= �2

2
1

1��������  
 
This gives: 
 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )TN
N

TT

TTN
N

TN
N

N
N

TN
N

N
N

UUU

UUU

UUUU

UUU

×××=

⇔=×××

⇔×××=×

⇔×××=

−
−

−
−

�

�

�

�

2
2

1
1

2

1
1

1
1

1

1
1

2
2

1
1

1

2
2

1
1

��������

��������

��������

��������

 eq. 1.47 

1. Follows as ( )iU  is an orthonormal ( )ii II ×  matrix. 
2. Result of the end of Definition 1 page 111. 

 �� ��
 can equivalently be calculated by the Kronecker product: 

 

( )
( )

( )
( ) ( ) ( ) ( ) ( ) ( )( )12121 −++ ⊗⊗⊗⊗⊗⊗⊗= nNnn

n

Tn
n UUUUUUXUS ��  eq. 1.48 

 
From eq. 1.42

�� ��
had to fulfill 021 ≥≥≥≥ === nI�� ���� ���� �� 

 



 



 

 ������������ � this ordering is ensured by 

the fact that ( ) nn ∀U  is ordered. βαβα ≠=== if0, �� ���� �� �� ���� �� ��������  can be proven by: 
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1. Follows as 
( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) IUUUUUUUU =⊗⊗⊗⊗⊗⊗⊗⊗ −+−+ TnNnnNn 111111 ��  and 

( )
( ) ( ) ( )nnn

n V�UX =   

 

As ( ) ( )Tnn ��  is a diagonal matrix the assumption of βαβα ≠=== if0, �� ���� �� �� ���� �� ��������  holds. 
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Figure 1.7: The calculation of HOSVD 

 
As shown in Figure 1.7, HOSVD as for SVD doesn’t require any iterative operations to 
be estimated. Furthermore, for SVD ( )1U  is the eigenvectors of ( ) ( )

TT
11 XXXX = and ( )2U  

is the eigenvectors of ( ) ( )
TT

22 XXXX = . Clearly, HOSVD keeps this characteristic, as 
( )nU  is the eigenvectors of ( ) ( )

T
nn XX . Consequently, HOSVD seems like a parsimonious 

multi-dimensional generalization of SVD. 
 

The uniqueness of HOSVD 
As ( )nU  can be calculated by the normal singular value decomposition (SVD) of ( )nX  it 

follows that ( )nU  share the uniqueness properties of SVD: 
If the singular values found in eq. 1.46 all are different then ( )n

iu is unique up to sign. 
Furthermore, the vectors corresponding to the same n-mode singular value can be 
replaced by multiplication with an orthogonal matrix. 
 
If ( )nU  isn’t unique there exist an orthogonal matrix Q so: ( ) ( )QUV nn = is also a solution 

of eq. 1.46.  This gives a new core given by ( )
1ˆ −×= Qn�������� .  As �� �� in eq. 1.48 is found by 

the knowledge of ( ) nn ∀U  and ( )nX it follows that �� ��  due to the fact that ( )n
iu only 

maximally is unique up to sign can’t be unique.  As revealed in eq. 1.48 the change of 
sign gives a new value of �� �� . This gives as many different values as there are sign-
combinations of the vectors of ( ) nn ∀U . 
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1.4.3 Model Relations 
According to Definition 7 page 112 a multi-way array is called diagonalizable if the core 
multi-way array �� ��  of the HOSVD fulfills Niii iii

N
==== �� 21unless0

21
����  . 

With this definition the TUCKER, HOSVD and PARAFAC models can be related as 
shown in Figure 1.8. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.8: The relation between the TUCKER, HOSVD and PARAFAC model. 

 
From Figure 1.8 it follows that if a multi-way array is diagonalizable it can be perfectly 
represented by the PARAFAC model. Furthermore, if the HOSVD was based on a 
PARAFAC model this would require the core �� �� to be diagonal. However, this is too 
strong a condition greatly reducing the number of free parameters (compare eq. 1.36 to 
eq. 1.45) disabling the HOSVD to perfectly model the data. As the core �� ��  has same size 
as �� ��  the results of HOSVD contrary to the PARAFAC model is very hard to interpret.  
 
The PARAFAC model is also related to the rank of a multi-way array. An N-way array �� ��  
has rank-1 when it equals the outer product of N vectors, i.e. ( ) ( ) ( )Nuuu ���� 21=���� . 
PARAFAC of a multi-way array is the decomposition of the multi-way array into a 
minimal sum of rank-1 components [21]. Furthermore, by the definition of the rank of 
multi-way arrays, see the notice in Definition 4 page 111, the PARAFAC decomposition 
approximately describes the rank of the multi-way array. Consequently, a PARAFAC 
model based on finding the best sum of rank-1 components as described in [20],[33] will 
also be implemented in the following section. 
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1.5 PARAFAC Algorithms 
Algorithms are based on an initialization and an iterative optimization. Before addressing 
the three iterative optimization approaches; Alternating Least Squares, EM-algorithm and 
VBEM-algorithm, the problem of initialization will first be addressed. This will be 
followed by a brief description of the handling of non-negativity and a way of evaluating 
the PARAFAC model by the so called Core Consistency Diagnostic. 

Initialization 
The choice of initialization can have significant impact on the time it takes an algorithm 
to converge, but more serious problems arises in situations where the function to optimize 
has local extremes. In this situation, the algorithm might also converge to different values 
depending on where it is initialized, see Figure 1.9.  

 
Figure 1.9: A one dimensional optimization situation where convergence depends on initialization. 
Here, initializing with a low value of θθθθ makes the algorithm converge to a local extreme. 

 
From Figure 1.8 it was seen that if the HOSVD had a diagonal core it could be 
considered a PARAFAC model. Furthermore, HOSVD has the advantage that ( )iU is 
ordered making the first F eigenvectors of ( )iU describe the most of the variation of the 
data. Let k be the vector containing the diagonal of �� �� . From the HOSVD an initial guess 
of the PARAFAC model parameters can be found by taking the F first eigenvectors of 

( ) ii ∀U : 
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However, to insure no local optimum is found from the algorithms using different 
initialization points is recommended. 

Non negativity 
In the problems at hand, the PARAFAC models are required to yield non-negative 
results. In the case of the VBEM-algorithm, insuring non-negativity could be achieved by 
using non-negative distributions such as gamma distributions as priors of the factors, 
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however only the hidden variables in the EM-algorithm can in this way be assured non 
negativity. Bro derives in his thesis two simple methods of assuring non-negativity.  
 
One way of assuring non-negativity is simply to find the optimal unconstrained solution 
and to set all negative elements in every column of the factors to zero, see also Theorem 
10 page 109. This method is denoted “Column-wise Non-Negativity” [5].    
 
A more flexible method is to insure the non-negativity constraint using the following 
algorithm which manipulates iteratively each row of the constrained factors. The 
algorithm uses the feature that each element in the row of a factor is only affected by the 
other elements of the same row, consequently the name “Row-wise Non-Negativity” [5]. 
 

 
Figure 1.10: Algorithm for “Row-wise Non-Negativity”.  x corresponds to a row of X, where X and Z 
is defined as in Figure 1.11.  
 
The algorithm is optimal in a least square sense as it optimizes the parameters according 

to which variable contributes the most to the squared error, i.e. 
2TT Zax − . The “Row-

wise” and “Column-wise” implementation of non-negativity is only valid for algorithms 
based on Least Square optimization, i.e. minimizing the sum of square error. 
 
Even though the data to model aren’t non-negative it can be an advantage to impose non-
negativity by adding a constant and fitting the model under the non-negativity constraint. 
This insures no factor can counteract the effect of any other factor by having opposite 
sign eliminating the risk of degeneracy in the factors. 
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1.5.1 Core Consistency Diagnostic 
The Core Consistency Diagnostic, CCD, can be applied to any model that can be 
considered a restricted 3-way TUCKER model [5]. Consider the PARAFAC model given 

in eq. 1.31. i.e. ( )TJKI BSAX ⊗=× . According to Figure 1.8 this can be considered a 

restricted 3-way TUCKER model as given in eq. 1.40, i.e. ( )TJKI BSAGX ⊗=× where the 
core G is zero apart from along the superdiagonal which has ones. This core is denoted T. 
G of the TUCKER model is now found by inserting A, B and S obtained from the 
PARAFAC model, i.e [5]:  
 

( ) ( ) 22

minmin GASBXBSAGX vecvec
TJKI ⊗⊗−=⊗−×

 
eq. 1.50 

 
If the PARAFAC model is valid G should resemble T. A measure of resemblance is the 
core consistency1: 
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From eq. 1.51 it’s seen that if the PARAFAC model is perfect, the nominator becomes 
zero giving a 100% consistency. If the PARAFAC model isn’t correct the percentage of 
G not consistent with T reduces the Core Consistency. A core consistency well below 70-
90% indicates that either too many components are used or the model otherwise is mis-
specified [1].  
 
Although the Core Consistency is an effective measure of how many factors to include, 
Bro emphasizes that other measures such as sum of squared residuals versus number of 
factors, inspection of the parameters and cross validation also should be taken into 
consideration.  
 

                                                 
1 Bro has unclearly defined the Core Consistency in his thesis [5] and several other papers, he defines: 
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However, in his implementation he uses the definition given in eq. 1.51. 
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The core consistency generalized to higher orders yields: 
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 eq. 1.52 

 

1.5.2 PARAFAC by Alternating Least Squares 
Rasmus Bro and Claus Andersson have created a multi-way toolbox for Matlab [1]. Their 
implementation of PARAFAC is based on the technique of alternating least squares 
(ALS). 
 
The principle of ALS is quite simple; initialize all model parameters for example 
randomly. Update each parameter by minimizing a cost-function with respect to the 
parameter while holding all other parameters fixed. 
 
Consider the PARAFAC model as defined in eq. 1.31. Giving the cost function  

( ) 2

min
TJKI BSAX ⊗−× , the Alternating Least Squares algorithm for PARAFAC is then 

defined by [5]: 
 

 
Figure 1.11: The ALSPARAFAC algorithm. 
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Notice how the algorithm makes use of the interchangeability of the model parameters as 
revealed in eq. 1.29 changing the order of the parameters by changing the unfolding 
of �� �� .  

1.5.3 PARAFAC by multi-way rank one decomposition 
As the PARAFAC model can be formulated as a sum of rank one components a 
PARAFAC algorithm can be defined in the framework of the HOSVD as explained in 
[19] , [20]. The algorithm finds the best rank one decomposition by an alternating least 
square approach where each dimensions factor can be directly found from the n-mode 
multiplication. Each consecutive factor explains the most of the remaining variation in 
the multi-way array.  
 

 

Figure 1.12: PARAFAC based on a sum of multi-way rank one decompositions, SR1PARAFAC. 
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1.5.4 PARAFAC by EM and VBEM 
Frederik Brink Nielsen seems to be the first to derive the PARAFAC model in a 
statistical framework using the EM and VBEM algorithms [27]. His derivation is based on 
the assumption of normal distributed factors. Although non-negativity could be insured 
for example by insuring gamma priors it turns out to be unnecessary in the case of the 
EM algorithm as the row wise non negativity constraint can be implemented on all but 
the hidden variable S. This practically always insures S to be positive. Gamma priors 
could have been used in the VBEM algorithm to ensure the non-negativity. In order to 
implement the gamma priors each element of the kth factor would depend on the other 
elements of its row. The algorithm would have to iterate over each dimensions own 
factors slowing down the already very slow algorithm. Consequently, the factors are 
assumed normal distributed as given by [27]. However, if the VBEM algorithm finds the 
true factors, non-negativity becomes just a matter of choosing the correct sign of each 
factor. 

PARAFAC by EM 
The expectation maximization of PARAFAC will be based on the following assumptions: 
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E Step  
As derived in Theorem 2 page 95 the following holds: 
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This yields the update rule below, as derived in Theorem 3 page 96 : 
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M Step 
In the M Step the likelihood ( )�L  is maximized. From eq. 1.15 and eq. 1.53 the following 
is derived as revealed in Theorem 4 page 98: 
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This yields the update rule derived in Theorem 5 page 99: 
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Consequently the EMPARAFAC algorithm can be stated as shown in Figure 1.13: 
 

  

Figure 1.13: The EMPARAFAC algorithm.

 
PARAFAC by VBEM 
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For the derivation of the VBEM algorithm consult Theorem 9 page 104. The derivation 
yields the algorithm shown in Figure 1.14: 
 

 
Figure 1.14: The VBPARAFAC algorithm. 
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iter=0, ∆F>ε, F0=0   
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1.5.5 PARAFAC combined with ICA 
Many factor analysis models exist for the two-way array analysis of matrices. Among 
these models Independent Component Analysis has gotten much attention as, in many 
situations, it has proven efficient in finding the relevant components in the data [18]. 
 
Here I show how any two-dimensional factor analysis can be applied to create a 
PARAFAC decomposition using features from the two dimensional factor analyses. The 
method will focus on the independent component analysis as revealed in the 
ICAPARAFAC algorithm. Furthermore, I show that for three-way arrays and some four-
way arrays the decomposition can become non-iterative. 

ICAPARAFAC 
First I’ll define what I call Combined Independence, CI. Consider the multi-way array   

NI×××∈ �21 IIR����  . That �� ��  is combined independent in the modalities n, n+1…, N, i.e 

NnnCI �,1, +  means that the matricizing of X into Nnnn IIIIII �� 1121 +− ×∈RX can be 

described by the model ASX = where the rows of S are mutually independent, but this is 
not possible including less modalities in the CI. Notice, the CI applies to any combination 
of modalities as the order of the multi-way array modalities is only a matter of 
permutation. In the two-way array case, CI2 correspond to the normal ICA model. 
 
In ICAPARAFAC the combined independence is first identified. A and S is then found 
using an ICA algorithm from matricizing the multi-way array so that the columns of X 
constitutes the modalities of combined independence. Consequently, 

Nnnn IIIFFIII �� 1121 , +− ×× ∈∈ RR SA . To find the λth factors corresponding to each of the 

dimensions Nnn III �1+  unmatricize the λth row of S, i.e. ( ) Nnn III ××× +∈ �1Rλ���� . Each 
dimensions λth factors can now be found by the best rank-one decomposition of 

( )λ���� using for example the SR1PARAFAC algorithm with one factor. To find the factors 
of each dimension in A corresponding to the n-1 first modalities, two approaches can be 
used. The first approach is similar to finding the factors underlying S; unmatricize the λth 
column of A to give ( ) 121 −×××∈ nIII �Rλ���� . Again find each dimensions λth factor by the 

best rank-one decomposition of ( )λ���� . The second approach is to find the remaining 
modalities factors using ALSPARAFAC on �� ��  while holding the factors found 
underlying S, i.e. the n,n+1,…,N modalities fixed. Where the first approach gives the 
decomposition that the best describe A found by the ICA, the second approach gives a 
better approximation to �� �� . The method is described in Figure 1.15. 
 
 



 

 41 

 
Figure 1.15: A PARAFAC model based on ICA. 

 
The algorithm becomes very simple when the multi-way array �� ��  is of few modalities. If 
A or S only holds one modality the factor of this modality is given directly by A or S. 
Furthermore, if A or S holds two modalities, the factors of each of these two modalities 
can be found from the first eigenvectors corresponding to the SVD solution as this is the 
same as the rank one decomposition. Finally, if �� ��  is a three-way array and the number 
of modalities of CI is one, the two approaches to find A yields the same results, see also 
Theorem 11 page 110. 
 
Non-iterative methods for ICA such as the Molgedey-Schuster algorithm exists [18]. 
Consequently, decomposing any three-way arrays and four-way arrays where the number 
of modalities of the CI equals 2 can be done completely non-iterative when combined 
with the SVD method. As a result, the calculations needed to estimate the 
ICAPARAFAC parameters can be considerably reduced making the algorithm much 
faster than the ALSPARAFAC algorithm. Especially in multi-way analysis speed is an 
important issue as the amount of data tend to be tremendous. Therefore, the 
ICAPARAFAC algorithm just described seems very promising as long as combined 
independence can be assumed present in the data. 
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Matricize �� ��  so the columns of X correspond to the modalities of the CI. 
 
Solve X=AS using ICA 
 
Find each ( )i

λu for the CI dimensions by finding the best rank one 

decomposition of the unmatricized multi-way array corresponding to the λth 
row of S. 
 
Find λu for the dimensions not in the CI, by either finding the best rank one 
decomposition of the unmatricized multi-way array corresponding to λa , or 

by ALSPARAFAC on �� ��  where ( )iU  of each of the CI dimensions are kept 
fixed. 
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1.5.6 Algorithm relations 
The rank one algorithm, SR1PARAFAC, corresponds to successively running an 
ALSPARAFAC algorithm with one factor, subtracting the found factors from the data, 
and finding the next factor from this subtracted dataset. The ALSPARAFAC algorithm 
corresponds to an EMPARAFAC model where the prior on the hidden variable S is a 
delta function, making the E step resemble the M step of the algorithm. The weight ΦΦΦΦ in 
the EM-PARAFAC model could also have been implemented by weighted regression in 
the ALSPARAFAC model. Finally, the EMPARAFAC algorithm is the special case of 
the VBPARAFAC algorithm where the parameters priors are assumed delta functions, 
see also Figure 1.16.  
 
Whereas the ALSPARAFAC algorithm seeks to find an optimal solution in terms of 
explaining the most variance, i.e. reducing the sum of square error, the SR1PARAFAC 
algorithm seeks to consecutively find factors explaining the most of the variation. The 
EM method and VBEM method, however, seeks to optimize the likelihood of the 
observed data. This does not necessarily optimize the sum of square error as the priors 
affect the solution. However, the EM and VBEM method is expected to generalize well 
by not over fit the model to the data due to the priors restricting the variables. Although 
the main interest in this thesis will be a PARAFAC model that well explains the observed 
data in favor of the ALSPARAFAC, SR1PARAFAC and ICAPARAFAC rather than 
finding a model that generalizes well on new data in favor of the EM and VBEM 
algorithm, the latter models have only been included for completeness of PARAFAC 
methods. Furthermore, the statistical framework enables the evaluations of questions 
concerning the number of factors to include in the models by the ARD and Bayesian 
Information Criterion, rather than just relying on the Core Consistency Diagnostic. The 
Bayesian Information Criterion, BIC, has been derived for the EM-algorithm in Theorem 
6 page 101, while BIC has been derived for any least square optimization algorithm in 
Theorem 7 page 102.  
 
Finally, the ICAPARAFAC algorithm has been developed here to handle data that can be 
considered CI. Whereas the ALSPARAFAC isn’t optimized to yield solutions insuring 
CI, this is achieved by the ICAPARAFAC algorithm. 
 

 
Figure 1.16: The relationship between the developed PARAFAC algorithms of this thesis. 

VBEMPARAFAC 
Priors on all variables, 
use of hyper parameters.  
Noise assumed Gaussian. 

EMPARAFAC 
Priors only on hidden 
variables, other 
variable priors  
assumed delta  
functions.  

ALSPARAFAC 
Priors on hidden 
variables also assumed 
delta functions. Noise 
given covariance σI. 

SR1PARAFAC 
Model fitted one 
factor at a time on 
remaining 
unexplained data. 

ICAPARAFAC 
X is CI. ICA splits problem. Factors of each dimension is 
from ICA solution found either directly or by SVD, 
SR1PARAFAC and/or ALSPARAFAC. 
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As quoted in the beginning of this chapter, Abraham H. Maslow said: “If the only tool 
you have is a hammer, you tend to see every problem as a nail“. Hopefully, the tools 
described above will be adequate to the problems at hand.  
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2  EEG 
“The human brain is the last, and 
greatest, scientific frontier. It is truly an 
internal cosmos that lies contained within 
our skulls. The more than 100 billion 
nerve cells and trillion supporting cells 
that make up your brain and mine 
constitute the most elaborate structure in 
the known universe.” 

Joel Davis 
 

2 Electroencephalography recording (EEG) 
 
 
 
 
The term electroencephalography (EEG), as we commonly use it refers to electrical 
activity measured at the scalp that arises from neurons in the brain. This includes 
activities that arise spontaneously or in response to sensory stimuli although the latter are 
more commonly known as ‘evoked response potentials’ (EP) [29]. Finally, the EEG of 
sensory stimuli timed to an event is referred to as event related potentials (ERP). 
 
As it hasn’t been possible to experimentally identify the sources of the EEG signals for 
certain, many theories as to what constitutes the signal has arisen spanning from 
membrane quantum dynamical effects to K+ fluctuations within the extracellular space. 
However, in this thesis only the theory which is given the most recognition in the 
literature will be described. This theory is primarily based on the theoretical framework 
explained by Paul Nunez [28], [29]. 
 

2.1 Dipoles 
The electric force between two charges is defined by the well known coulombs law: 
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From coulombs law the electric field at a point r1 due to a point charge q located at r2 can 
be derived: 
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Consequently, if there are n charges qi located at various positions ri they produce an 
electric field at r given by: 
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 eq. 2.3 

 
The cornerstone of the understanding of electric field behavior comes from Maxwells 
equations [12]:

 
Maxwells equations  
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is the magnetic field, tρ is the total charge density and J
�

 is the current density. 

eq. 2.4 

 
From Maxwell’s equation 2 and 4 it is seen that a change in the magnetic field results in a 
change in the electric field and vice versa. However, when field frequencies in the brain 
are less than in the order of MHz the effect of the interaction between magnetic and 
electric field becomes negligible [28] and the electrical potential� can solely be 
determined by the electric field: 
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The potential of a monopole, dipole and quadrupole is shown in Figure 2.1. In general the 
potential due to all charges or current sources can be expressed as the following series of 
terms called a multipole expansion [28]: 
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In Figure 2.1 the potential for a monopole, dipole and quadrupole is drawn. 
  

 

Figure 2.1: The potential for a monopole, dipole and quadrupole (units 1.0Volt ) 

 
Combining Maxwell’s equation 1 and 4 yield; 
 

0=
∂
∂+⋅∇

t
ρJ

�
 eq. 2.7 

 
i.e. charge is neither created nor destroyed – charge is conserved. As the net charge is 
conserved during brain activity the monopole contribution vanishes. As all other 
contributions than the dipole quickly drops to zero with distance to the sources, the only 
contribution believed to significantly contribute to the EEG is that of the dipole. The 
potential of a dipole can be approximated to be, see also the derivation in Theorem 8 
page 103: 
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dipole =  eq. 2.8 

 
Where d is the vector going from the negative charge to the positive of the dipole and θ is 
the angle between the vectors r and d. 
 
As seen from the potential lines of the dipole on Figure 2.1 no or little potential is found 
oblique to the dipole, this is confirmed by eq. 2.8 as 0)90cos( =° . Consequently, the EEG 
can only pick up signals from dipoles radial to the electrodes, as seen on Figure 2.2. 
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Figure 2.2: EEG can only pick up potentials from radial dipoles, whereas MEG pick up potentials 
from oblique dipoles (induced magnetic field is angular to current flow) (taken from [36]). 

 
Two effects are seen with the generation of potential; capacitive current and resistive 
current. Nunez gives a proof that if a media is linear in both the dielectric and conductive 
sense i.e. the capacitor (polarization) and current is proportional to the electric field the 
following approximation is in general valid [28]: 
 

02.0
currentResistive
currentCapacitive ≈  eq. 2.9 

 
Consequently, the capacitive current is in the following considered negligible. As 
capacitive current is ignored eq. 2.7 reduces to: 
 

0=⋅∇ J
�

 eq. 2.10 

 
Imagine two regions where all current sources are located in the first region. Expressing 
the current density at the boundary between the two regions as the sum of an Ohmic 
current (i.e. Ohms law states that current is linear to potential also makes current linear 
with electric field strength) and a source current sJ

�
, yields: 

 

sJEJ
���

+= σ  
Where σ is the conductivity 

eq. 2.11 

 
Using first part of eq. 2.5, eq. 2.9 and eq. 2.10 this gives: 
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 eq. 2.12 
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Using first part of eq. 2.5, and Maxwell’s first equation we also find: 
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 eq. 2.13 

 
As sJJJJ is the source density, using last part of eq. 2.5 with Maxwell’s first equation gives: 
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Where ( )tI i  is the ith current source at time t  at position ir . eq. 2.14 is very important as 
it translates current sources into EEG measurable potentials. eq. 2.13 can also be written: 
 

σ
sJJJJ=∇ �

2  eq. 2.15 

 
From eq. 2.15 it is seen that the current source densities can be estimated by taking the 
Laplacian of the measured EEG potential. Consequently, taking the Laplacian of the 
potential is believed to improve the spatial resolution of the EEG signal as it estimates the 
current sources and sinks. In practice, calculating the surface Laplacian of the EEG 
requires some form of interpolation of the EEG to estimate the signals between the 
electrodes. Often splines in the form of Legendre polynomials are used for these 
interpolations. 
 

2.2 EEG and coherence 
Coherence is a measure of the synchrony between sources. Let the ith source signal at 
time l be defined as Eil. Furthermore, let the spectral density function ( )fqii , also called 
the power spectrum, and cross spectral density function ( )fqij , also called the cross 
power spectrum, for two sources be given by their Fast Fourier Transform (FFT). The 
coherence function between the sources i and j, ( )fij

2γ , is then defined by:  
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If the sources are coherent at the frequency f then ( ) 12

12 =fγ , the sources are considered 
incoherent if ( ) 012 =fγ . Notice how the coherence is defined as the squared cross 
spectral correlation between the two sources. 
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Let M be the amount of coherent sources, N the amount of incoherent sources. The 
relative contribution of coherent to incoherent sources in the EEG is estimated to be 

NM / [28]. 
 

 
Figure 2.3: The percentage of measured signal picked up from the EEG of coherent sources m versus 
active sources N. Clearly, the coherent sources dominates the recorded EEG-signal even when only 
few of the active sources are coherent. (Notice figure not valid for M>N). 

 
As seen on Figure 2.3 the coherent sources dramatically dominate the recorded EEG 
signal even though the coherent neurons are far less numerous than the incoherent 
neurons. The EEG signal is therefore believed to originate from the synchronous firing of 
parallel oriented neurons. 65-75% of the cortical neurons are oriented perpendicular to 
the cortical surface. These pyramidal cells have large amounts of interconnections, so it 
seems as if a relatively high degree of synchrony can be obtained from these neurons. 
Furthermore, the pyramidal neurons of the neocortex are the neurons closest to the scalp 
surface.  According to eq. 2.6  the distance to the scalp causes pyramidal neurons to be 
the least reduced.  Therefore, the EEG is believed to mostly originate from pyramidal 
cells in the neocortex [29]. Amplitude changes in the EEG with physiological state 
becomes, in this framework, a result of changes in the number of synchronously active 
neurons [28]. This is supported by current/source density studies that indicate that the 
pyramidal cells of layer III and V are the principal source of the EEG [35] . 
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Figure 2.4: Model of the layers of neocortex and findings using Golgi, Nissl and Weigert stains. From 
the stains the parallel orientation of the pyramidal cell perpendicular to the cortex surface becomes 
evident. The pyramidal neurons constitute 70% of the neurons of cortex and posses 103 to 105 
synaptic contacts. Nunez believes that each electrode pick up signal from around 30 to 40 macro-
columns where each macro-column contains 105-106 neurons [29]. (Taken from [16],[37]). 
 
The possible roles of cortical coherence are believed to be 

1. Blocking 
Focus on a particular modality  

2. Matching 
Transfer of data from one group of neurons to the next 

3. Binding 
Synchronous activity between neuron groups 

4. Plasticity 
Transfer of function from one neuron group to another 

 
When analyzing the ERP the following measures are very useful [8]: 
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Where n is the number of trials. Notice that the square of the ERPCOH corresponds to 
the coherence measure as defined in eq. 2.16. 
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Although coherence may appear to be an ideal measure of brain function, interpretations 
of experimental EEG coherence are often confounded by technical limitations. Scalp 
coherence between electrode sites closer than about 8 to 10 cm is typically large or 
moderate due only to passive current spread, volume conduction and reference electrode 
effects, even when the underlying cortical sources are uncorrelated [29]. This problem can 
to some degree be circumvented by taking the surface Laplacian as described in eq. 2.15.  

 

2.3 Synaptic potentials and action potentials 
eq. 2.8 can also be expressed in terms of current sources and sinks. Let the dipole consist 
of a current source at time t , ( )tI  and a current sink ( )tI− . Let d be the vector from the 
sink to the source and r the vector to the center of the dipole, then: 
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Potential differences recorded in the EEG are therefore believed to derive from coherent 
dipoles constituting current sources and sinks. These are thought to originate from two 
different processes [28]; synaptic potentials and action potentials, the latter also referred 
to as sodium-potassium spikes.  
 

2.3.1 Synaptic potentials 
An action potential in the presynaptic axon activates a chemical agent (transmitter) which 
diffuses across the synaptic cleft into the subsynaptic membrane. If the synapse is 
excitatory, the effect of the chemical transmitter is to increase (excitatory post synaptic 
potential, EPSP) or decrease (inhibitory post synaptic potential, IPSP) the permeability of 
the subsynaptic membrane to positive/negative ions which flow through the local surface 
of the membrane. The current flows across the membrane, through the intracellular fluid, 
back across the membrane at more distant locations, and finally back to the synapse to 
complete a closed loop, see Figure 2.5. This loop acts as a current source-sink dipole [28]. 
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Figure 2.5: The current flow of a synaptic potential. Positive/negative ions flow through the local 
surface of the membrane. The current flows across the membrane, through the intracellular fluid, 
back across the membrane at more distant locations, and finally back to the synapse to complete a 
closed loop. (taken from [28]). 

 

2.3.2 Action potentials 
The action potential arises when a stimulus opens a few sodium channels. As a result, a 
net influx of sodium starts due to the concentration gradient of sodium and accelerates as 
the depolarization makes more sodium channels open. Eventually the increasing 
depolarization causes potassium channels to open while the sodium channels at this point 
closes. An outflow of potassium is caused by potassium’s concentration gradient 
repolarizing the cell. Eventually the potassium channel closes and the resting potential is 
restored due to the sodium-potassium-pump, see also Figure 2.6. 
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Figure 2.6: The generation of an action potential (adapted from [39]) 

 
From Figure 2.6 it is seen that the sodium currents are followed by opposite delayed 
potassium currents. Nonetheless, this potassium current is unable to counteract the 
potential generated from the sodium current as ++ <

KNa
σσ  both interior and exterior the 

cell as revealed on Figure 2.7. 
 
 

 
Figure 2.7: The smaller an ion is the more highly localized is its charge and the stronger its effective 
electric field. As a result, smaller ions attract water more strongly. Consequently, because of its 
larger water shell, Na+ behaves as if it is larger than K+ making it less mobile, i.e. giving Na+ lower 
conductivity than K+ [16]. (Figure adapted from  [16]). 
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2.3.3 Synaptic Potentials versus Action Potentials 
From eq. 2.18 it is seen that the dipole potential is linear to the distance between the 
current source and sink d . As myelination of neurons dramatically increases the 
distance between the current sources and sinks, most EEG signals from action potentials 
is believed to originate from pyramidal cells of heavy myelinated axons [28]. However, as 
the propagation of current is much slower in unmyelinated neurons coherence is more 
easily achieved in the unmyelinated regions in favor of the signal originating mostly from 
the synaptic potentials from the dendritic parts of the pyramidal cell [11]. On the other 
hand, the dendrites in general aren’t as well aligned as the axon’s - compare in Figure 2.4 
the Golgi stain emphasizing dendritic trees with the weigert stain emphasizing 
myelinated axonal fibers. However, the synaptic potential has duration between 5 ms. – 
20 min. whereas the action potential only has duration of 1-10 ms. Consequently, 
coherence is more easily achieved for the synaptic potential. As a result the greatest 
contribution to the EEG is believed to be that of the synaptic potential [9],[16],[28]. 
 

Table 1: Processes of potential generation favoring/ disfavoring coherence. 

Measured EEG Action Potential Synaptic Potential 
Advantage  Myelinated axons →Large 

distance between current 
sources 

Long duration (5 ms-20 min)→ Coherence easy 
 
Both excitatory and inhibitory effects. 

Disadvantage Short duration (1-10 ms.)→ 
Coherence difficult 

Dendrites not so well aligned→ Coherence difficult 
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2.4 Features of the EEG and ERP 
 
The EEG has been decomposed into a series of fixed broad spectral bands based, 
unfortunately, on history and discovery more than on a theoretical framework [24]. These 
bands are described in Figure 2.8. In general, the frequency of brain oscillations is 
negatively correlated with their amplitude [28],[30]. 
 
 

 

Figure 2.8: EEG rhythms and their believed origins (summary of [9],[16], [28], [34]) 

 

2.4.1 Event Related Potentials, ERP 
Event Related Potentials (ERP) is the measured EEG signal timed to sensory stimuli. The 
EEG signal can be split into induced activity, evoked activity and noise. The induced and 
evoked activities are both believed to be generated from thalamic relay cells. An 
internally or externally paced event results not only in the ‘evoked’ generation of an 
evoked response potential (EP) but also in an ‘induced’ change in the ongoing EEG/MEG 
in form of an event-related desynchronization (ERD) or event-related synchronization 
(ERS) [30]. The EP represent the responses of cortical neurons due to changes in afferent 
activity, while ERD/ERS reflect changes in the activity of local interactions between 
main neurons and interneurons that control the frequency components of the ongoing 
EEG [30]. 
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Figure 2.9: Schema for the generation of the highly frequency specific induced (ERD/ERS) and the 
evoked (EP) activity. TCR: thalamic relay cells, RE: reticular thalamic nucleus [30]. Where evoked 
activity is mainly controlled by the ascending afferents the induced is controlled by the reticular 
thalamic nucleus. 
 
As revealed in Figure 2.9 of principal concern is the reticular activating system, a 
complex and diffuse system projecting from the brainstem to the cortex, which provides 
both inhibitory and excitatory inputs. This subsystem is itself under control from the 
cortex, as well as from collaterals of sensory pathways. The activating system is most 
crucially concerned with maintenance of the waking state, desynchronization of the EEG, 
direction of attention and governance of motivation [35] . Although EEG is believed 
primarily to stem from dipoles of synaptic potentials firing in synchrony mostly due to 
the reticular activation system, where and what exactly generates the signals remains 
unclear.  
 
Evoked oscillations exhibit a strict phase-locking to the experimental event (e.g. stimulus 
presentation) across trials. Hence, they can be extracted from the averaged ERP, e.g. by 
filtering or by the ITPC of a wavelet analysis. On the other hand induced oscillations are 
(by definition) not at all phase-coupled to a stimulus, and show a certain degree of phase-
jittering. Therefore, by averaging across trials these oscillations will cancel out 
completely and hence are only detectable by appropriate ways of analysis, e.g. by a single 
trial based wavelet analysis with subsequent averaging [6], such as the ERSP. 
 
The components of the ERP are labeled by latency and polarity. A positive component at 
100 ms is called ‘P100’ and a negative deflection at 200 ms is a ‘N200’, see Figure 2.10. 
Furthermore, the event related potentials that are determined by physical aspects of the 
stimulus are labeled, ‘exogenous’ whereas higher order processing are labeled 
‘cognitive’. 
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Figure 2.10: Typical significant components of the ERP 

(notice: negativity is due to historically reasons directed upwards so that current flowing out of the scalp is up) 

 
Many ERP experiments are based on the oddball paradigm: Two stimuli are presented, 
one of which is an infrequent target. When the target is discriminated from the other 
stimuli with attention, the P300 is of greater amplitude [9]. This has made especially the 
P300 a very interesting component of the ERP. The various most common ERP 
components are described in Table 2. The table is only a guideline. Experts do not agree 
on how to interpret all components and the components are difficult to generalize over 
different experimental paradigms.

N100 
N200 

N400 

P100 

P200 

P300 

µV 

ms 250 

500 
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Table 2: Features of ERP components 

 Spike Description 
P100 
N100 

Generation 
Appear to be generated in the primary receiving areas of the brain. 
Identification 
Both have been found to occur 100 ms after presentation of a visual stimulus. Found in 
the receiving areas of the brain. 

N200  Generation 
Increases in amplitude to task deviant stimuli. 
Identification 
Located Posterior  E

xo
ge

no
us

  p
ro

ce
ss

 

P200 Generation 
Increases to novel stimuli 

P300b  Generation 
Attention dependent. Monotonous inverse relationship between amplitude and 
stimulus probability. Negatively correlated with speed of information processing as 
indexed by reaction times – the faster speed of processing the earlier latency. The 
latency increases with the time the subject needs to distinguish the rare stimulus. The 
amplitude increases with rarity of the stimulus and to some extent with stimulus 
intensity. The amplitude of the P300 has been shown to be inversely proportional to 
stimulus presentation probability and directly to task complexity. P300 amplitude has 
been shown to be inversely related to a prior probability and is influenced by the 
sequence of immediately preceding events, i.e., sequential event structure. Unrelated 
to the specific sensory areas but probably related to the parietotemporal association 
cortex and subcortical structures such as hippocampus and thalamus. Occurs to 
infrequent non-target stimuli 
Identification: 
In normal young adults a positive wave over the Centro-parietal scalp is seen. Can 
occur at any point between 280-800 ms. Posterior scalp distribution with maximum at 
Pz, P300 latency is age dependent, being longer in children, progressively decreasing 
until 18 before increasing by 1.25 ms per year In adult. Aging increases the latency, 
decrease the amplitude and cause forward shift in the distribution of P300 

P300a Generation 
Mostly concerned with novel stimuli. The more the stimulus is known the more P300a 
approaches P300b. Its features are Similar to P300b.  
Identification 
Shorter latency (≈250 ms) than P300b. Situated more frontal-central than P300b and 
habituates rapidly. In different modalities it has also been reported as Centro-parietal. 

C
og

ni
tiv

e 
pr

oc
es

s 

N400 Generation 
Found in numerous studies that have employed a task in which items were presented 
sequentially and subjects were asked to respond if the stimulus was unmatched 
(incongruent) or matched (congruent) with the preceding items. It has been proposed 
that it represent the associated activation of neural networks basic to stimulus 
integration.  
Identification 
Located in frontal area, and is larger in non-matched items than matched items. 
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2.4.2 Noise 
EEG potentials are measured as the difference between two points, one on the scalp 
where EEG effects are strong and one (the reference electrode) hopefully isolated from 
these effects.  Some commonly used reference sites are Cz, earlobes, mastoids (bone right 
behind ear), tip of nose and average reference ("reference free").  Earlobes or mastoids 
are generally linked either physically or mathematically in order to maintain symmetry.  
The average reference uses the constraint that the sum of the potentials over a spherical 
surface is zero and requires fairly high density recording (~128 channels). It can be 
improved by estimating potentials for the inferior spherical area. Spherical spline 
interpolation is sometimes used for these estimates. The 10-20 international system is a 
standardized system to place the electrodes. It relies on taking measurements between 
certain fixed points on the head. The name 10-20 refers to the fact that the electrodes 
used to be placed at points 10% or 20% of these distances [40]. Today other fractions are 
used, but the name 10-20 has been kept. How the recorded signal is referred can have 
crucial impact on the noise in the EEG as a very noise full reference can mess up the 
signal of all recorded channels. 
 
Many sources of noise disturb the EEG/ERP signal. Of primary concern is muscular 
action due to eye movement, hearth beat etc. Furthermore, noise from electronic devices 
can have a great impact especially in the 50 Hz range where most electronic devices, at 
least in Europe, operate. Finally, volume conductance is another huge problem when 
dealing with the EEG/ERP signal. Both heartbeat and eye movement can be reduced by 
correcting the signals from recording sites by the eye (EOG) and heart (ECG). Instead of 
specific recordings from these sights, recordings of the influence of eye and cardiac 
activity can also be identified prior to the ERP experiment. As previously mentioned, 
volume conductance can be reduced by taking the surface Laplacian. 
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2.4.3 EEG/ERP and PARAFAC 
Extracting the correct features of the EEG is of crucial importance. Well used methods of 
analyzing EEG data are; Wavelet Analysis, Neural Networks Analysis, Blind 
Deconvolution and Source Separation Methods such as Principal Component Analysis 
(PCA) and Independent Component Analysis (ICA).  
 
In this thesis, an approach described by Martinez-Montes et al. [24] and Miwakeichi et al. 
[25] where sources are separated using parallel factor analysis, PARAFAC, will be used. 
Although Harshmann in his original paper in 1970 [13] suggested the use of the 
PARAFAC model on EEG the use has been very limited. In 1988 Möcks [26] and in 1991 
Field [10] used the model on the ERP to decompose the space-time-subject. In 1985 Cole 
et al.[7] used it on the ongoing EEG in a way similar to that of Miwakeichi et al.  
 
Martinez-Montes and Miwakeichi et al. used the PARAFAC model to extract features of 
the ongoing EEG. They proved that PARAFAC was capable of successfully identifying 
the theta and alpha atoms of a cognitive task and showed furthermore the algorithms 
ability to identify eye blinks. In this thesis the PARAFAC decomposition will instead be 
applied to the ERP. The PARAFAC model seems plausible as the EEG/ERP-signals in 
several ways can be considered multi-way arrays as seen on Figure 2.11. 

 

Figure 2.11: Different forms of multi-way arrays arising from the EEG. 

 
More modalities could easily be added to Figure 2.11 denoting for example the analyzed 
subjects or the various conditions under which the data has been recorded. The 
PARAFAC analysis of the epoch averaged ERP-potential given by 

subjecttimechannel ×× and the ITPC is in the following of great interest. 
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s the component describing the temporal development. The model seems plausible as the 
ERP is believed to be a non-stationary process requiring a change in time of the factor 
proportions, which by the model is insured bys .  eq. 1.29  can be restated as 

�
=

=
F

liil cax
1λ

λλ , where λλλ kjl sbc =  and KJL ⋅= . This corresponds to the normal two-

dimensional factor analysis model. Performing ICA on this model makes the assumption 
that the combined frequency-time components λλ kj sd  are mutually independent, i.e. 
CI2,3. The goal in the analysis of the ITPC is both to separate the multi-way array into 
factors that relate to different time-frequency components favoring the ICAPARAFAC 
algorithm but also to do data exploration favoring ALSPARAFAC as it keeps the most of 
the variation.    
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3 DATA Analysis 
"Absence of evidence is not evidence of 
absence!" 

-unknown 

3 Data analysis 

3.1 Simulated data 
To evaluate the ability of the PARAFAC algorithms to find the components of real data, 
the developed methods were tested on simulated data. A 32 channel EEG sampled at 500 
Hz was generated and added 50 Hz oscillations of amplitude 0.8 on all channels 
mimicking electronic noise. Two burst of 35 Hz sinusoidal oscillations with an amplitude 
of 1.0 were placed in channel 30,31 and 32 at the posterior areas resembling occipital 
gamma activity while one burst of 25 Hz oscillation with amplitude 1.5 were generated 
simultaneously at each ear at channel 11 and 15. Finally, normal distributed random noise 
of power 1.0 was added to all channels. The data was transformed using a complex 
Morlet wavelet with bandwidth parameter 2 and center frequency 1, and the power of this 
wavelet transformed signal analyzed. The three PARAFAC factors shown in Figure 3.3 
were expected to be found from the data. On Figure 3.1 the simulated EEG data is 
revealed and the corresponding power of the wavelet transform is seen on Figure 3.2. 
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Figure 3.1: The simulated EEG-data. 
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Figure 3.2: The power of the complex Morlet wavelet transform on each of the 32 channels of the 
simulated data. 

 
Figure 3.3: The true factors of the simulated data. 
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The raw simulated data was first analyzed using Independent Component analysis by the 
‘runica’ standard method in EEGLAB [8]. As revealed in Figure 3.4 none of the 
independent components solely captures any of the underlying three factors. Especially 
the same 50 Hz oscillation present in all channels was split into individual components. 
Consequently, the independent component analysis did not seem efficient in accessing 
the various factors present in the data. Furthermore, no clear indication of the time points 
at which the factors were present was given by the ICA-decomposition as it is 
irresolvable from the EEG of the components. Thus, without any frequency information 
the ICA algorithm was unable to identify the factors. 
 

 

 
Figure 3.4: Top panel; the component map and time series of all 32 independent components. Lower 
panel; the maps of the three independent components contributing the most at 50 Hz, 25 Hz and 35 
Hz to the specter of the EEG along with the summed map of the three components. Clearly, the ICA 
decomposition hasn’t been able to identify the true components of the data. 
 
The developed PARAFAC models were then tested in their ability to access the 
components. In the ICAPARAFAC model CI2,3 was assumed, i.e. a combination of the 
time and frequency dimensions were thought independent. As non-negative solutions 
were desired, a non-negative matrix factorization (NMF) was compared to a 
decomposition based on SVD for the rank one decomposition. The NMF was optimized 
in a least square sense as described in [22]. Although, non-negative ICA algorithms would 
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be more correct to use due to the non-negative nature of the data, an ICA algorithm based 
on maximum likelihood described in [18] was used as it gave approximately non-negative 
results. For the derivation of the Bayesian Information Criterions used consult Theorem 6 
and Theorem 7 page 101-102. The number of observation in the BIC measures was 
defined as the number of time points in the data. Furthermore, BIC was normalized by 
the number of observations. Although only the ALSPARAFAC corresponded to a least-
square optimization the SR1PARAFAC and ICAPARAFAC algorithms also used the 
BIC given for a least square solution. This was done since the factors found of 
SR1PARAFAC and ICAPARAFAC were believed to be close to a pure least square 
solution.  
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Figure 3.5: To the left; the determination of the number of factors present using ALSPARAFAC, 
given by the Core Consistency Diagnostic, CCD and BIC. Both the CCD and BIC clearly indicate a 
three component model.  To the right; the factors found when fitting a three component model. 
Obviously, ALSPARAFAC has positively identified all three factors. 
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Figure 3.6: To the left; the determination of the number of factors present using the SR1PARAFAC, 
given by CCD and BIC. The CCD uncertainly indicates one to three components present whereas 
BIC give strong indication of a one component model.  To the right; the factors found when fitting a 
three component model. The SR1PARAFAC only correctly identifies two of the three factors. 
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EMPARAFAC 
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Figure 3.7: To the left; the determination of the number of factors present using EMPARAFAC, 
given by CCD and BIC. The CCD indicate a model having two factors whereas BIC gives sign of only 
one factor. To the right; the factors found when fitting a three component model. The EMPARAFAC 
only identify as indicated by BIC one component - the 50 Hz noise present in all channels. 

 
VBPARAFAC 

0

10

20

30

40

50

60

70

80

90

100
Core Consistency Diagnostic VBPARAFAC

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
α-1

 
CCD                                  ARD  

 

Figure 3.8: To the left; the determination of the number of factors present using VBPARAFAC, 
given by the CCD and ARD. The CCD is very unclear but indicate that up to four factors are 
present. The ARD however only reveal that one or two factors are present. To the right; the factors 
found when fitting a three component model. The VBPARAFAC correctly identifies as indicated by 
the ARD two components - the 50 Hz noise present in all channels and the 25 Hz ear activity. It is 
however unable to find the occipital activity2. 

 

                                                 
2 The VBPARAFAC ran for 10,000 iterations as suggested by [27], priors were set to be non-informative. 
However, for both VBPARAFAC and EMPARAFAC it was difficult to determine whether the algorithms 
had converged. 
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ICAPARAFAC 
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Figure 3.9: To the left; the determination of the number of factors present using ICAPARAFAC, 
given by CCD and BIC for an ICAPARAFAC algorithm using SVD and one implemented with 
NMF.  The CCD and BIC of both algorithms clearly indicate a three factor model. Both methods are 
also able to correctly identify the three factors. The frequencies and temporal signatures are however 
slightly different from each other.  

As seen on Figure 3.5 the Core Consistency Diagnostic clearly indicates that three factors 
are present in the ALSPARAFAC, this is confirmed by the Bayesian Information 
Criterion. The method is also able to correctly identify all three factors. A much weaker 
indication of a three component model is given by the CCD for the SR1PARAFAC, see 
Figure 3.6. The BIC for SR1PARAFAC indicate however that only one factor is present. 
The SR1PARAFAC is able to correctly identify two components, the 50 Hz activity in all 
channels and the 25 Hz ear activity, but the 35 Hz occipital activity is lost. The 
EMPARAFAC algorithm as seen on Figure 3.7 is only able to identify the 50 Hz activity 
in all channels, from BIC it is also seen that only one factor is indicated to be present in 
the data. From the automatic relevance determination (ARD) of the VBPARAFAC on 
Figure 3.8, it is seen that one to two factors are found to be present in the data whereas 
the CCD is very unclear but indicate that up to four factors are present. The 

Hz sec 
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VBPARAFAC method correctly finds the 50 Hz and 25 Hz activity. Finally, the 
ICAPARAFAC based on SVD and NMF both clearly indicate from the CCD and BIC as 
seen on Figure 3.9 that three factors are present in the data. Both methods also correctly 
identify all three factors. From the results of the ICAPARAFAC algorithm using SVD or 
NMF didn’t change the CCD or BIC. However, the temporal signatures as well as the 
frequency signatures were slightly altered. Notice how the SVD solution is very close to 
the ALSPARAFAC solution. 
 
From the simulated data only the ALSPARAFAC algorithm and ICAPARAFAC 
algorithm successfully identified all the factors. For these two methods the CCD and BIC 
both worked well, as they strongly indicated three factors were present. The two 
algorithms were then compared in their ability at different noise level to identify the 25 
Hz activity at the ears and 35 Hz activity at the occipital region. For each level of noise 
fifty ALSPARAFAC and ICAPARAFAC models were fitted to the data. The 
ICAPARAFAC was based on the Non-negative Matrix Factorization. Both algorithms 
were evaluated by how much their found factors correlated with the true underlying 
factors. The correlation was calculated as the average correlation taken over each of the 
three factor-components, i.e. as the average correlation of the topographic, frequency and 
temporal signatures between the real and found factors. 
 

 
Figure 3.10: The correlation between the true and estimated factors for different signal to noise 
ratios (SNR). Blue corresponds to ALSPARAFAC, red to ICAPARAFAC. Dashed lines correspond 
to one standard deviation from the solid lines. Clearly, the ICAPARAFAC is better at finding the 
true components and more stable than the ALSPARAFAC method as the SNR drops. 

From Figure 3.10 it is seen that the ICAPARAFAC algorithm is better at estimating both 
the 25 Hz ear and 35 Hz occipital activity as the signal to noise ratio drops. Both methods 
have more problems finding the ear activity than the occipital activity when the signal to 
noise ratio decreases. Whereas both methods correctly identified the occipital activity 
down to a SNR=10-0.5=0.32, already around a SNR=100.1=1.26 the ALSPARAFAC 
methods have problems finding the ear activity. This stems from the fact that the occipital 
activity is present longer and in more channels than the ear activity making it easier to 
detect.  Furthermore, ICAPARAFAC is more stable than ALSPARAFAC as the standard 
deviation of ICAPARAFAC is smaller than that of ALSPARAFAC and ALSPARAFAC 
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begins to be unstable earlier around a SNR=100.5=3.16 for the ear activity and at 
SNR=100=1 for the occipital activity.  
 
Finally, the ICAPARAFAC method was compared to the ALSPARAFAC on the 
chemometric data set “Claus” described in [41]. The analysis is shown in Appendix D: 
ICA- and ALSPARAFAC on Chemometric Data. Also on this dataset ICAPARAFAC 
performed well.  
 

3.2 Real data 
The real data is generated from an experiment by Herrmann et al. [15] regarding gamma 
oscillations in the visual system. Gamma oscillations have been shown to correlate with 
perceptual binding, attention, arousal, object recognition and language perception. A 
mechanism which underlies many of the above mentioned cognitive functions is the 
match of sensory information with memory contents. Herrmann and colleagues argue that 
the so-called ‘early’ gamma-band activity, occurring in EEG before 150 ms after stimulus 
presentation, reflects a match with memory. In addition, they argue that ‘late’ gamma 
activity, which typically emerges with a latency of more than 200 ms, is a temporal 
signature of utilization processes such as response selection or context updating [14]. 
This has lead to the Match and Utilization Model, MUM, explained in Figure 3.11. 

 
Figure 3.11: Black connections represents memory connection, gray the lack of memory connection. 
According to Herrmann et al. a stored memory representation will result in an enhanced gamma oscillations 
and synchrony as the features are matched with the memory content. Furthermore, as revealed in b the 
expectation of a known visual stimuli can result in enhanced gamma oscillations and synchrony as the neurons 
expecting the visual feature are closer to threshold. As revealed in c, when no memory representation is present, 
no enhancement takes place. This concept has been expanded to the Match and Utilization model, MUM, (lower 
right figure): Sensory coding is integrated into features, and these features are matched with memory contents 
around 100 ms.  At around 300 ms a process denoted utilization takes place. Here updating of memory contents, 
selection of different behavioural responses and the reallocation of attention is believed to take place. Whereas 
the match at 100 ms is evoked the utilization at 300 ms is believed to be induced. Figures adapted from [14].  
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Herrmann et al. find that under visual stimulation a strong increase in evoked oscillations 
near 40 Hz over posterior areas with a latency of approximately 100 ms and a later 
increase in induced activity with a latency around 300 ms can be observed [6],[15]. As 
evoked activity is phase locked to the stimuli, the ITPC will be analyzed. Coherence in 
the posterior regions is expected to be found. In the following, coherence is defined as the 
ITPC. 
 
Eleven healthy subjects with mean age 25.7±1.7 years participated in the experiment. All 
subjects had normal or corrected to normal vision. The experiment was done by Sidse 
Arnfred at Cognitive Research Unit, Department of Psychiatry, Hvidovre Hospital. The 
subjects were asked to classify objects as round or edgy by right or left clicking a 
computer mouse. Some of the objects had a long term memory representation (object) 
whereas other objects consisted of the same atoms but randomly placed not to make sense 
(non-objects), see also Figure 3.12. To insure the subjects were naïve to the experiment 
the task of classifying the objects as edgy or round was given even though no such clear 
interpretation of the objects was always present. 
 

 
Figure 3.12: Example of stimuli with long term memory representation (object) and without (non-
object) , taken from [15].  

 
The subjects were recorded using a BIOSEMI 64 channel active electrode system, see 
also http://www.biosemi.com/active_electrode.htm. The EEG was referenced to the 
average of two channels placed at each ear, i.e. channel 65 and 66. Data was sampled at 
512 Hz. The epochs were extracted from the data taking -250 to 1000 ms. from stimuli 
onset. Baseline activity from -250 to -100 ms. was subtracted each epoch. A total of 
between 102 and 105 epochs were present in both the object and non-object condition for 
each subject. A complex Morlet wavelet with center frequency 1 and bandwidth 
parameter 2 was used. Although Herrmann et al. suggest removing epochs having 
standard deviations more than 50 µV [15], we compared this rejection criterion with an 
extensive rejection analysis of the epochs in EEGLAB using independent component 
analysis as suggested by Makeig et al. [8]. However, we realized that since we were 
analyzing the ITPC, the number of epochs used was more important than the quality of 
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each epoch. Although some epochs were very noisy they still had the correct phase. Since 
more epochs reduced the noise as averages could be taken over more trials, see also 
Figure 3.13, we ended up accepting all epochs in the data.  
 

No epochs removed 

 
 

50% of epochs having largest standard deviation removed 

 

 
 
 
 
 
 
 
 
 

 

Figure 3.13: Left panel; example of a two component ALSPARAFAC analysis of the ITPC 
performed on all epochs of a subject and where 50% of the epochs having largest standard deviation 
within a 200 ms timeframe were removed. Activity at the posterior region is evident from the 
topographic image with all epochs whereas the removal of 50% of the epochs dramatically removes 
the coherence in the left occipital region. Right panel; the ITPC found in the object (40) and non-
object (80) condition.  Clearly the ITPC is less noise full when using all epochs; see top images, 
compared to removing 50%; bottom images (color scale given to the right). 
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Finally, the wavelet chosen also to some extent impacted the coherence found as revealed 
on Figure 3.14.  
 

  
Figure 3.14: Taking the wavelet transform of the data using a complex Morlet wavelet having center 
frequency 1 and bandwidth parameter 2 (left figure) and bandwidth parameter 4 (right figure). The 
two wavelet transforms yield slightly different results (x-axis in ms, y-axis in Hz). 

 
Prior to analyzing the data using PARAFAC, the data was analyzed similar to the way 
Herrmann et al. analyzed their data [15]. 
 

Analysis by Herrmann and colleagues 
In their analysis, Herrmann and colleagues find the time and frequency corresponding to 
the coherence peak at channel 64 (equivalent to O2, placed at the center of the right 
hemispheres occipital lobe). However, as the whole occipital region is affected, we also 
analyzed the mean of the occipital region corresponding to channel 20-31 and 57-64. 
 

 
Figure 3.15: Left panel; an example of a subjects ITPC of channel 64 for the object condition top 
image and non-object condition bottom image. Right panel; same figure, but the average of the whole 
occipital region.  Both panels clearly reveal gamma activity around 100 ms (x-axis in ms, y-axis in 
Hz).  

As revealed on Figure 3.15 there is a strong coherence at around 37 Hz and 100 ms. 
Furthermore, the coherence seems stronger in the object situation than the non-object. 
Herrmann et al. find the time and frequency corresponding to each subject’s peak in the 
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object situation and compares this coherence value with the corresponding value at same 
time-frequency for the non-object condition.  
 

 
Figure 3.16: The coherence values for object and non object where object peaks and the coherence 
values for object and non-object where each condition has its peaks. No significant difference is in the 
two situations found between the conditions (target=object,  non-target=non-object).  

 
As seen on Figure 3.16 although the object condition results in higher coherence values 
in most situations when comparing the coherence at the peak of the object condition, it is 
not significant as Herrmann et al. find it to be.  As using the peak of the object condition 
favors object we also compared the coherence at the peak of object with that of the non-
object condition. Here a difference in degree of coherence seemed very random. 
Consequently, the finding of Herrmann et al. that the object condition is more coherent 
than the non-object condition seems very questionable. The same analysis performed on 
the whole occipital region yielded similar results. 

 
Figure 3.17: The ERP of the grand average of all subjects taken over the whole occipital region, i.e. 
channel 20 to 31 and 57 to 64, blue is object, red is non-object.  20% of the epoch having largest 
standard deviation within a 200 ms time-frame was removed. Clearly there is a difference in the ERP 
of object and non-object from 200-500 ms (Notice; negative is up). 
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From Figure 3.17 the ERP of the grand average in the occipital region reveals a P100 
followed by an N100 after which a P200, N200 and a late P300 appear (around 400 ms). 
While no difference is present in the ERP from 0-200 ms there seems to be a difference 
between the ERP of object and non-object from 200-500 ms, this difference hasn’t been 
explained by Herrmann et al. As seen on Figure 3.17 the difference between object and 
non-object mainly stems from the P200 and N200. In Table 2 page 54 it was explained 
that the P200 is known to increase with novel stimuli. As non-objects contrary to objects 
represent a novel stimuli every time this might explain the larger P200 for non-object. 
Furthermore, N200 is known to increase to task deviant stimuli. As the task was only 
present to keep the subjects naïve to the experiment, it is difficult to evaluate task effects 
as they ideally shouldn’t be correlated with the condition type. However, as non-objects 
are probably easier to classify as edgy or round than objects (i.e. the pipe of Figure 3.12 
is both edgy and round) this could explain the larger N200 for object. 
 
 

 
Figure 3.18: Grand average of the ITPC, object and non-object for channel 64 and the average of the 
whole occipital region; object in top images, non-object in bottom images. Clearly there is a strong 
coherence between 20-40 Hz around 100 ms.  (x-axis in ms, y-axis in Hz). 

Figure 3.18 shows the grand average of the ITPC for all 11 subjects at channel 64 and in 
the whole occipital region. It seems as if slightly more coherence is present in the object 
situation. Within the gamma band, the grand average at channel 64 peaks at 37 Hz and 
107 ms.  
 

Object                          Non-object                       ANOVA 

 
Figure 3.19: The mean coherence in all channels of the 11 subjects at 37 Hz, 107 ms for the object 
and non object condition (color scale is the same), and the ANOVA of the analysis of difference 
between object and non-object at this time-frequency point.  From the ANOVA no difference 
between object and non-object is found in the occipital region.   
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From Figure 3.19 it is seen that the average coherence is more or less the same for object 
and non-object at the peak of the grand average for object. A test of difference between 
object and non-object also reveal that no significant difference is present. The largest 
difference is found to the frontal right where no difference is theoretically justified. 
 

Summary of the analysis by Herrmann and colleagues 
From the analysis corresponding to Herrmann and colleagues no significant difference 
between the object and non-object condition was found. However, coherence was clearly 
present in the gamma band around 50-150 ms as explained by Herrmann et al. 
Furthermore, a difference in the ERP between the object and non-object condition 
seemed to be present from 200-500 ms. 
 

Analysis by PARAFAC 
In the following, the analysis, if not otherwise stated, is performed by the 
ALSPARAFAC algorithm with ‘row-wise’ non-negativity constraints on all modes. As 
PARAFAC is a data exploratory tool the analysis was performed without any prior 
assumptions of what to expect to see from the data. First, an overall 4 way analysis was 
performed defined by subjecttimefrequencychannel ××× from 0-200 ms from stimuli 
onset. A Core Consistency Diagnostic was only possible to access when analyzing three-
way arrays as the diagnostic was too memory consuming for MATLAB, even for a 
computer having 2 GB of RAM. The factors were ordered in accordance to the amount of 
variation they explained. Each analysis was run several times to assure stable solutions. 
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Figure 3.20: An eight component PARAFAC model fitted to the data, blue bars corresponds to 
object, red to non-object.  Factor 2, 5, 6, 7 and 8 all indicate occipital activity. Especially factor 8 
pertains to the Gamma activity around 100 ms as described by Herrmann and colleagues. 

As seen on Figure 3.20 the first factor models some average activity. The second, fifth 
and sixth factor correspond to low frequent occipital activity relating to the ERP.  For all 
these factors no significant difference is found between the two conditions.  The eighth 
factor however, reveals a gamma activity in the occipital region around 100 ms 
corresponding to Herrmann et al.’s findings. The subjects’ activities during the two 
conditions reveal that the last 5 subjects have more gamma activity in this factor during 
object than the non-object condition. Also, subject three and four seems to almost 
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completely lack this activity. Furthermore, factor seven reveals some beta activity around 
130 ms. 
  
An ANOVA was performed to look for differences between the two conditions for the 
eleven subjects. This gave an F-test value multi-way array given by 

timefrequencychannel ×× as revealed in Figure 3.21. 

 
Figure 3.21: ANOVA test of difference between object and non-object in the 11 subjects, shown in a 

416×  array where each array represent a channels F-test value to given frequency-time point. From 
the F-values in the array it is difficult to grasp where the differences between the two conditions are 
present. 
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ALSPARAFAC                                                    ICAPARAFAC 

       
Figure 3.22: A PARAFAC model based on ALSPARAFAC and ICAPARAFAC fitted to the F-test 
multi-way array. Where first factor models some background activity, the second factor of both 
methods indicates a difference around 100 ms in the Gamma band in accordance with Herrmann 
and colleagues findings. 

Figure 3.22 shows an ALSPARAFAC and ICAPARAFAC model fitted to the F-test 
multi-way array. The first factor of both algorithms models some background activity. 
The second factor shows that the difference between object and non-object primarily is in 
the occipital region in the gamma band of 30-80 Hz. It is difficult to explain what the last 
factor of ALSPARAFAC pertains to, but the third factor of the ICAPARAFAC model 
reveals a 2 Hz difference in the occipital region between the two groups corresponding to 
a difference in the ERP. As a result, the ANOVA clearly indicate that the difference 
between the two groups is as Herrmann et al. found in the Gamma band around 100 ms. 
As a result; the PARAFAC model is capable without any prior knowledge to identify the 
interesting features of the data. 
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Analyzing the Gamma band (30-80 Hz) by PARAFAC 
To analyze the Gamma range a PARAFAC model was fitted to the data in the frequency 
range 30-80 Hz. Where the first and second factor of Figure 3.23 models some 
background activity the third factor shows the occipital gamma activity and the fourth 
factor reveals a central gamma activity. No systematic difference is found in the factors 
between the two conditions. 

 
Figure 3.23: A four component PARAFAC model fitted to the data at the frequency range 30-80 Hz. 
Where first two factors model some average background activity, the third factor clearly reveal an 
occipital Gamma activity around 36 Hz at 104 ms. Finally, the last factor is more central, delayed 
and lower frequent. 
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The condition was also taken into the PARAFAC model yielding the 5-way model given 
in Figure 3.24. The first factor of this analysis clearly reveals some occipital gamma 
activity slightly more present in the object (1) than non-object (2) condition. The second 
factor pertains only to the non-object condition. It models a slightly more frontal, higher 
frequency activity around 100 ms. 

 
Figure 3.24: A PARAFAC model fitted to the data where condition was taken as an extra modality, 1 
is object, 2 is non-object. As only two components could be found due to the limitation of only two 
conditions baseline activity was subtracted before fitting the PARAFAC. The first factor clearly 
represents the occipital gamma activity around 100 ms. This factor is mostly present in the object 
condition but weak in subject 3, 4 and 5. The second factor is higher frequent, slightly more central 
and pertains only to the non-object condition. The two factors indicate that the object condition is 
lower frequent whereas the non-object is slightly higher frequent and more central. 

Condition Subject 

Subject Condition 
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Furthermore, a PARAFAC model was fitted to each condition. 
Object                                                                   

 
 Non-object 

 
Figure 3.25: Top panel; a PARAFAC model fitted to the object condition. Bottom panel; a 
PARAFAC model fitted to the non-object condition. Baseline activity subtracted.  Again it is revealed 
that both conditions have clear gamma activity around 100 ms. However, subject 3 and 4 seem to 
lack the activity in both conditions. Comparing the object with the non-object condition it is seen that 
the non-object is slightly higher frequent and delayed.  

As seen on Figure 3.25 both object and non-object have clear gamma activity around 100 
ms in the occipital region. However, the object condition peaks at 32 Hz, 105 ms whereas 
the non-object peaks at 35 Hz 107 ms. In both conditions subject 3 and 4 have practically 
no gamma activity in the occipital region.  
 
In addition, a PARAFAC model was fitted to the ANOVA of the gamma band. 

 
 

 
ANOVA 

 
 

Non-object>Object 

Object>Non-object 

 
Figure 3.26: Left figure; a PARAFAC based on the F-test value of the gamma band. Top, right figure; a 
PARAFAC model fitted to regions where non-object is more coherent than object. Bottom, right; a PARAFAC 
model fitted to regions where object is more coherent than non-object. As seen from the first factor of the 
ANOVA this factor pertains to the situation where non-target on average is more coherent than target whereas 
the second factor of the ANOVA corresponds to a situation where object on average is more coherent than non-
object.  Consequently, object is more coherent early and at lower frequencies whereas non-object is more 
coherent later and at higher frequencies (baseline activity removed from the data). 
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From the ANOVA of Figure 3.26 the second factor corresponds to the second factor 
found in Figure 3.22. Furthermore, the third factor found in the ANOVA of Figure 3.26 
also reveals the presence of an earlier and less high frequent difference between the two 
groups. Analyzing when object is larger than non-object and when non-object is larger 
than the object condition, it is seen that the first factor of the ANOVA corresponds to the 
factor where non-object is more coherent than the object condition, whereas the second 
factor of the ANOVA matches the situation where object is more coherent than the non-
object condition. Consequently, the difference between the object and non-object 
condition is mainly due to the fact that object is coherent earlier and at lower frequencies 
than non-object.  
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Figure 3.27: The coherence value at the peak of the ANOVA of factor 1 denoted peak 80 and of 
factor 2 denoted peak 40 found in Figure 3.26.  As seen on Figure 3.26 the first factor of the ANOVA 
corresponds to a situation where non-object is more coherent than object (target) whereas the second 
factor of the ANOVA pertains to a situation where object is more coherent than non-object. 

In Figure 3.27 the same pattern reveals itself. The first factor of the ANOVA in Figure 
3.26 corresponds to the situation where non-object is more coherent than object whereas 
the second factor corresponds to the situation where object is more coherent than the non-
object condition. 
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The PARAFAC model was also fitted to the ITPC of each subject given by the multi-way 
array timefrequencychannel ×× .  

 
Figure 3.28:Top panel; the ITPC multi-way array given by channel××××frequency××××time of a subject 
shown in a 16××××4 array of channels where x-axis corresponds to time from -250-300 ms and y-axis 
frequency from 20-80 Hz. Bottom panel; a PARAFAC model fitted to this ITPC. Where the first 
factor shows some background activity the second factor clearly reveals the occipital Gamma activity 
around 100 ms. 

For each subject, the gamma peak in the occipital region at 50-150 ms was identified in 
time and frequency by the factor corresponding to the second factor in the PARAFAC 
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decomposition revealed on Figure 3.28. Notice that the first factor corresponds to some 
baseline activity. 
 
Having identified the peak of each subject, the coherence at each subject’s frequency-
time point was found for all channels. Finally, the mean of these topographic maps were 
calculated as revealed on Figure 3.29.  
 

Object                                               Non-object 

     
Figure 3.29: The mean coherence for all subjects at their gamma-peak for object and non-object. 
Coherence seems to be present in a larger region for the object condition than the non-object 
condition. 

Figure 3.29 indicate that the coherence at the peak is high at a much larger region for 
object than for non-object. As channel 64 which was the basis of Herrmann et al.’s 
analysis lies right at the peak of both object and the non-object in Figure 3.29 this might 
be why the findings of difference between the two conditions in Herrmann and 
colleagues’ analysis was poor. Had Herrmann and colleagues’ analysis been based on a 
channel in the left hemisphere, the difference in coherence between object and non-object 
might have been stronger. 
 
Finally, the PARAFAC model was used to analyze the ERP. This has been done 
previously by Field et al [10]. Field and colleagues found that a problem of degeneracy 
arose when fitting the PARAFAC model to the ERP. As a solution they proposed 
introducing an orthogonality constraint on the dimension representing the temporal 
development of the ERP. The orthogonality constraint will here be compared to imposing 
non-negativity as we suggest. The non-negativity can simply be assured by adding a 
positive constant to the ERP. Prior to analyzing the ERP, 20 % of the epochs having 
largest standard deviation within a 200 ms time window were removed to get rid of eye 
and muscle artifacts. 
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Figure 3.30: Top left panel; analyzing the ERP unconstrained. Top right panel; imposing an 
orthogonality constraint on the ERP.  Bottom panel; imposing non-negativity by addition of a 
constant. Blue bars correspond to the object condition, red bars to non-object, notice; positive is here 
upward on the ERP. Neither the unconstrained nor the orthogonality constrained PARAFAC models 
are able to find the true ERP. This is however found for the non-negativity constrained model where 
the ERP correctly is split into a frontal and an occipital part. 

As seen on Figure 3.30 the unconstrained solution yields highly degenerate factors. The 
ERP of the second factor is almost identical to the ERP of the first but with opposite sign 
as revealed in the topographic maps.  Imposing the orthogonality constraint insures no 
degeneracy in the ERP. However, a few subjects have negative coefficients and the 
justification for the two ERP’s to be orthogonal in reality is very questionable. Imposing 
non-negativity however yields excellent results. The non-negative PARAFAC algorithm 
has split the ERP into two easy interpretable components. The first component models a 
mostly frontal ERP whereas the second component beautifully models the ERP of the 
occipital region. This occipital ERP seems to be more present in the non-object than the 

Object Non-Object ms ms Object Non-Object 

Non-Object Object ms 
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object condition. This corresponds to the findings of Figure 3.17 where the P200 was 
stronger for the non-object condition. 
 
A PARAFAC model was then fitted to the ERP of each condition.  

Object                                                                       Non-object 

 
Figure 3.31: The ERP for object, left figure, and non-object, right figure. Where the occipital ERP is 
very similar in the two conditions the frontal ERP has a stronger P200 in the non-object condition 
than the object condition. 

From the first factor of Figure 3.31 it is seen that the P200 of non-object is much stronger 
than for object frontally as also found to be the case in the occipital region as revealed in 
Figure 3.17. Again, this is due to the fact that the non-object represented novel stimuli.   
 

Summary of the PARAFAC analysis 
From the PARAFAC analysis of the 11 subjects it was seen that the main activity was in 
the occipital region corresponding to an experiment having to do with visual stimuli. 
Furthermore, the difference between the two conditions was mostly present in the gamma 
band around 100 ms. In addition, this difference was primarily due to a delayed coherent 
signal at higher frequencies for non-object than the object condition. At the peak of each 
of the two conditions it seemed as if coherence was present in a larger region in the 
object situation than the non-object situation. Finally, imposing non-negativity to the 
ERP by addition of a constant made the PARAFAC model able to correctly split the ERP 
into an occipital and a frontal factor. This was not possible for an unconstrained model 
while imposing orthogonality as previously done didn’t yield results that were as 
satisfying. From the ERP’s it was found that non-object also had a stronger P200 frontal. 
 
  

Subject Subject ms ms 



 

 87 

 

4 Discussion 
“It is a good morning exercise for a 
research scientist to discard a pet 
hypothesis every day before breakfast. It 
keeps him young.” 

Konrad Lorenz 

PARAFAC and simulated data 
The test of the PARAFAC algorithms on simulated EEG/ERP data revealed that both 
ALSPARAFAC and the ICAPARAFAC effectively found the right factors in the data. 
This was however not possible from the simple 2-D analysis using an ICA-algorithm on 
the raw data. Consequently, PARAFAC seemed effective in the analysis of the frequency 
changes in the EEG/ERP when using these two algorithms.  
 
The Core Consistency Diagnostic and Bayesian Information Criterion both proved 
effective in accessing the correct number of factors in the data for the models that 
performed the best, i.e. ICAPARAFAC and ALSPARAFAC. 
 
ICAPARAFAC performed better than ALSPARAFAC at estimating the true factors as 
the signal to noise ratio dropped. As the ICAPARAFAC algorithm also was faster than 
the ALSPARAFAC algorithm it has great potentials. In Appendix D: ICA- and 
ALSPARAFAC on Chemometric Data it was revealed that on chemometric data the 
ICAPARAFAC algorithm also performs well. Therefore, the new ICAPARAFAC 
algorithm seems promising in a wide range of fields where Combined Independence can 
be assumed in the data.  
 

Herrmann and colleagues analysis vs. the PARAFAC analysis 
Unfortunately, only 11 subjects were analyzed giving quite an uncertain picture to base a 
conclusive comparison of Herrmann et al.’s findings with the findings of PARAFAC. 
Furthermore, 2 of the 11 subjects lacked completely clear coherent gamma activity in the 
occipital region.  However, the fact that Herrmann et al. by the basis of the peak of the 
object condition conclude that object is more coherent than the non-object seems wrong 
as it favors the object condition. Furthermore, they only examined channel 64 instead of 
taking the whole occipital region into considerations which is questionable – it might be 
that channel 64 was chosen for the only reason that it was the most significant. The 
PARAFAC analysis indicates that the difference found is mostly due to the fact that the 
non-object peak later and at higher frequencies than the object condition, rather than 
having to do with non-object in general being less coherent. Furthermore, the analysis 
based on the individually found peaks in the occipital region for object and non-object 
revealed that object seemed coherent in a larger region than the non-object.  
 
The PARAFAC analysis was capable of integrating the information present in all 
channels into simple interpretable components. This made the analysis of Herrmann and 
colleagues’ paradigm much more complete by PARAFAC than by their own proposed 
analysis. In addition, it was seen that PARAFAC was able to work in several ways 
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analyzing both the averaged ERP and the wavelet transformed data over several different 
modalities taking into account subject and condition variability. Finally, when analyzing 
the ERP it was revealed that imposing non-negativity worked much better than forcing 
orthogonality.  
 
The paradigm Herrmann et al. use isn’t strong. Although the examples shown from the 
paradigm in Figure 3.12 are definitely recognizable as a pipe and chair whereas no such 
interpretation is present in the non-object situation, the non-object almost looks like a 
broken pipe. Furthermore, there are recognizable objects in the non-object condition such 
as a square, a cylinder and a bowl which in itself might have long term memory 
representations. This weakens the difference between object and non-object - weakening 
the whole paradigm.  
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5 Conclusion “The important thing is not to stop 
questioning. “ 

Albert Einstein 

 
It was shown that PARAFAC is an effective data exploratory tool in the analysis of the 
Inter Trial Phase Coherence of the ERP. Furthermore, it was revealed that imposing non-
negativity when decomposing the ERP by PARAFAC seemed to solve the problem of 
degeneracy completely. Here PARAFAC was only used to analyze the ERP and ITPC. 
However, there is no reason why PARAFAC shouldn’t also be an effective tool in the 
analysis of the ERSP and ERPCOH. These measures were not analyzed as the main 
interest was to access the Inter Trial Phase Coherence of the data. Furthermore, both 
measures are very susceptible to noise requiring an extensive preprocessing of the data. 
However, future work will focus on PARAFAC’s ability to analyze these measures.  
 
In the analysis of Herrmann et al.’s gamma band coherence it was found that the non-
object was slightly more delayed and higher frequent than the object condition. New 
experiments are presently conducted to confirm these findings. Future work will also be 
done to use PARAFAC in analyzing ERP data from other experiments having multiple 
conditions including different forms of sensory stimuli. As PARAFAC is capable of 
analyzing complicated multi-modal data it might likely shed new light on these data. 
 
The ICAPARAFAC algorithm also showed promising result, being a great alternative to 
the popular ALSPARAFAC algorithm when combined independence can be assumed. 
Work lies ahead in improving the underlying Independent Component Analysis algorithm 
both to deal with non-negativity as well as being optimized to find the correct 
components in the ERP.  
 
The PARAFAC model analyzed the wavelet transformed data. As the wavelet transform 
corresponds to a convolution in which random noise ideally becomes a constant factor at 
all frequencies analyzing the data in the frequency domain is in itself an efficient way to 
handle noise full data. Furthermore, the PARAFAC algorithms were able to separate 
systematic oscillatory noise such as 50 Hz noise from electric devices into a designated 
component. As it is possible to reconstruct the signal from the wavelet coefficients [32] , 
the EEG/ERP corresponding to each factor of the PARAFAC can also be reconstructed. 
Thus, the PARAFAC analysis might also work well in reducing systematic noise. 
Furthermore, knowing the signatures of the noise from a training set can be used to find 
the noise-signature in one of the modalities from a test set by keeping the components of 
all other modalities found from the training set fixed on the test set. 
 
The PARAFAC analysis of the coherence relied on the wavelet analysis accessing the 
correct temporal frequency information of the data. In this thesis the wavelet suggested 
by Herrmann et al. [14],[15] was used. However, Figure 3.14 showed that the choice of 
wavelet had an impact on the coherence found. Consequently, the influence of the 
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wavelet’s form used in the analysis of the ERP should also in future work be explored. 
Maybe even waveforms corresponding to more physiologic burst of neuronal activity 
could be developed and analyzed. 
 
Wavelet analyzed data is known to be overcomplete, i.e. having more data than 
information present in the data. Methods such as various matching pursuit algorithms 
have tried to resolve this problem, reducing the wavelet data to an information level 
corresponding to the original signal [17]. Within this field, PARAFAC seems applicable 
as it is an effective tool for data reduction as proven for multiple image compression [33]. 
Consequently, work analyzing PARAFAC’s ability to solve the overcomplete 
representation in the wavelet analysis could also prove an important application of the 
model.  
 
Although the functional magnetic resonance imaging, fMRI, has taken much focus away 
from the EEG and ERP, EEG/ERP still has great potentials. First of all the EEG is much 
easier to use for experimentation as the subjects can stay in a natural environment rather 
than having to be put inside a scanner. Furthermore, the EEG offers a much higher 
temporal resolution below the micro second range whereas the fMRI still works in the ms 
range and is most probably limited to this range. Consequently, ways of integrating EEG 
and fMRI has lately gotten much attention. Hopefully, the PARAFAC analysis of the 
EEG can help in this work decomposing the EEG signal into atoms that can be related to 
the fMRI signal. This application of the PARAFAC model has already gotten some 
attention [24]. As PARAFAC shows promising results in the field of EEG its application 
to MEG will very likely also be good. Consequently, multi-way array analysis will 
probably in the future become an important tool in the analysis of brain-recordings from a 
variety of scanning techniques.  
 
Although Harshman proposed the use of PARAFAC on EEG in1970, the use has been 
very limited. Why this is so is hard to understand given its wide usability to explore the 
EEG/ERP. However, the limited use might have been the consequence of the fact that 
previous works didn’t resolve the problem of degeneracy by imposing non-negativity. 
Furthermore, the PARAFAC analysis is very memory consuming and slow, putting great 
demands on computer power. In this analysis 2 GB of RAM was required in order to 
simultaneously analyze the ITPC of the 11 subjects in both conditions having 64 channels 
of 200 ms data sampled at 512 Hz at 60 different frequencies. These computer 
requirements might be the reason for the limited use of PARAFAC so far in the field of 
EEG/ERP research. Hopefully, however, PARAFAC will turn out to be an important tool 
that will be widely used in the future when analyzing brain-data. 
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Appendix A: Theorems with proofs 
Theorem 1 (Jensens Inequality) 
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Proof now done by induction; 
M=2: 
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Theorem 2 

Given the following model and assumptions: 
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1. Follows from Bayes theorem 
2. Denominator is a normalization constant 
3. Follows from assumption 1 and 2 
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Theorem 3 (The E step of PARAFAC)  

Given the model, assumptions and result of Theorem 2 the following holds: 
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Proof: 
As the posterior distribution of S i.e. the distribution of S conditioned on the model 
parameter is Gaussian distributed we have: 
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When comparing result 1 with result 2, it is immediately seen that: 
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The last part of the theorem follows by noting that: 
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Theorem 4 : (The likelihood of EMPARAFAC) 

Given the model with assumptions of Theorem 2 the following holds: 
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To prove the statement we make use the following result: 
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1. Follows from assumption 1, the expectation is taken as the expectation of S, making the likelihood 
only depend on θθθθ. 

2. Follow from assumption 3. 
3.  Follows from (*) and assumption 2. 
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Theorem 5 (The M step of PARAFAC) 

Given the likelihood function: 
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Theorem 6 (BIC for EMPARAFAC) 

The Bayesian Information Criterion (BIC) for the EMPARAFAC model is given by: 

 
F is the number of factors in the PARAFAC model, and ( )MPFD += is the number of 

‘effectively’ free parameters, where P is the number of rows of ( )mX .  
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The true number of free parameters is ( ) PMMPFD ++= , however the free parameters 
of ΨΨΨΨ is not directly part of the factor model, and does consequently not help improving 
the fit corresponding to having PM parameters. Therefore, the free parameters are only 
considered to be ( )MPFD += . As N and D depends on which modalities M, N and P 
pertains to, the BIC measure is greatly dependent on how each of the 3-way-array’s ways 
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Theorem 7: (BIC for Least Square optimization of PARAFAC) 

The Bayesian Information Criterion (BIC) for a least square optimization of PARAFAC 
as defined in eq. 1.30 is when assuming ( )mX  and S to be i.i.d., given by:  
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F is the number of factors in the PARAFAC model, and ( )NMPFD ++= is the 

number of free parameters, where P is the number of rows of ( )mX . 
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As N depends on which  modality is considered observations, the BIC measure is greatly 
dependent on how each of the 3-way-array’s ways are defined in terms of the model 
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Theorem 8: (Potential of a dipole field) 

The potential in a distance r of the center of a dipole, where the charges (q and –q) are 
separated by the distance d is given by: 
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Theorem 9 (Derivation of the VBEM algorithm for PARAFAC) 

For the PARAFAC model of eq. 1.30, the following assumptions are made:  
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where md  corresponds to the diagonal of ( )mD  
These yields the following update rules: 
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Theorem 10: (Column-wise non-negativity constraints) 

Consider the PARAFAC model as formulated by eq. 1.31, sought optimized in an unweighted least square 

sense. Let T be defied as ( ) T
FFF

IJK
−−−

× ⊗−= ACBXT where F−M  denotes that the Fth column 

has been removed from M . Then finding the Fth column of A subject to the constraint that the Fth column 
of A has to be non-negative corresponds to finding the optimal value of the unconstrained problem and 
setting all negative values equal zero. 

Proof  (adapted from [3]) 

The optimal choice of A unconstrained is the value that minimizes: 

( ) 2
min T

FFF
F

acbT
a

⊗−  , let this value be denoted� , i.e. 
zz
zT

�
T

T
= , where  ( )FF cbz ⊗= . 

Furthermore, let Tz�TE −= . It then follows that:  

 

1. Equality holds as EET  is a constant, furthermore, 

 
2. Follows as zzT  is a constant. 

Notice: Proof also holds for weighted regression as 
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Theorem 11: (Regarding ICAPARAFAC) 

Consider the 3-way array KJIR ××∈����  having the PARAFAC decomposition 

�=
F

kjiijk scbx
λ

λλλ . Furthermore, let X be CI3. Finding the factors corresponding to the 

first and second dimension by SVD is then the same as finding the factors by 
ALSPARAFAC. 
Proof: 
As X is CI3 it can be written as KFFIJKIJ ××× = SAX  where A and S is found by ICA. 
Finding B and C using ALSPARAFAC becomes the problem of minimizing: 
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eq. 0.1 

1. Consequence of ( ) λλλ jiij cbm = , TSS� = .  

As the rows of S are independent TSS� = is a diagonal matrix. Consequently, there is no 
interaction between the columns of (A-M). Therefore, the minimization problem can be 
split into minimizing the squared error of each column of (A-M). Let ( )

( )λ
λ

ijij aq = , i.e. 
JIR ×∈Q  is the unmatriziced version of the λth column of A. The goal is now to find two 

vectors λλ cb , so ( )
F

T
λλ

λ cbQ − is minimized. However, this minimization problem is 

solved by the singular valued decompositions, as the first vectors of the SVD 
decomposition explains the most of the variation of ( )λQ , i.e.  

[ ] ( )
1111,)( vcubQVT,U, tSVDT ==�= λλ

λ .  
�  
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Appendix B: Multi-way array algebra 
This compilation of definitions and manipulations is if not otherwise stated taken from 
the work of Lathauwer, Moor and Vandewalle [19] . 
 

Definition 1: The n-mode Multiplication ( )n×  

The n-mode Multiplication of the multi-way array NI×××∈ �21 IIR���� by a matrix 
nn IJ ×∈RU , denoted by Un×���� , is an ( )Nnnn IIJIII ××××××× +− �� 1121 -multi-way 

array of which the entries are given by: 
 

( ) � +−+−
≡×

n

nnNnnnNnnn
i

ijiiiiiiiijiiin ux ���� 11211121
U����  

Notice: let mm IJ ×∈RV then: 
UVVU nmmn ××=×× ��������  

 
 

 

Definition 2: The scalar product of two multi-way arrays 

The scalar product ��������, of two multi-way arrays NIII ××∈ �21, R�������� is defined as: 

�� �≡
1 2

2121
,

i i i
iiiiii

n

nn
ab �����������  

 

Definition 3: The norm of a multi-way array (Frobenius-norm) 

The norm of a multi-way array is given by: 
������������ ,=  

 
 

Definition 4: The rank of multi-way arrays 

An N-way array �� ��  has rank-1 when it equals the outer product of N vectors, i.e.  
( ) ( ) ( )Nuuu ���� 21=����  

Furthermore, the rank of an arbitrary multi-way array �� ��  denoted by )rankR ����(= , is the 
minimal number of rank-1 multi-way arrays that yield �� ��  in a linear combination.  
Notice: The formulation for rank-1 can be restated as ( ) ( ) ( )N

iiiiii NN
uuua ��

21
2121

= .  
 

Definition 5: The rank of a matrix 

The normal rank of a matrix rrankr == )(: AA ⇔ A contains at least a collection of r 
linearly independent columns, and this fails for r+1 columns. (Taken from [31]) 
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Definition 6: The k-rank of a matrix (defined by J.B. Kruskal 1977) 

The k-rank Ak = r ⇔ r columns of A are linearly independent, but this fails for at least 
one set of r+1 columns (Taken from [31]). Mathematically this can be expressed as: 

);(minarg �
≠

=∃=
N

ij
jji

N
cik aa|AA , where N denotes the amount of columns of A used to 

generate ai. 
 

Definition 7: Diagonal multi-way arrays 

A multi-way array is called diagonalizable if the core multi-way array      of the HOSVD 
fulfills Niii iiis

N
==== �� 21unless0

21
. 
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Appendix C: MATLAB implementation of multi-way array 
manipulations 
In the literature, I didn’t find any fast implementations of the various multi-way array 
manipulations except for the first matricizing function given here. Therefore, I have 
suggested some very fast MATLAB implementations for these manipulations: 
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Appendix D: ICA- and ALSPARAFAC on Chemometric 
Data 
The field in which the PARAFAC model has been the most applied is probably analyzing 
chemometric data. Here the dataset ‘Claus’ consisting of five samples containing 
different amounts of tyrosine, tryptophane and phenylalanine measured by fluorescence 
in the excitation spectra 240 to 300 nm and emission spectra 250 to 450 nm were 
analyzed. For a description of the dataset see [41]. The data set has the 
dimensions excitationemissionsample ×× . The ICAPARAFAC algorithm seems well 
justified as the goal is from the samples to find factors that are independent when 
emission and excitation is combined, i.e. CI2,3.  

250 300 350 400 450
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1

240 260 280 300

0.2
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Figure 0.1: Left most panel; the true mixing of the five samples, the mixing found by ALSPARAFAC 
and mixing found by ICAPARAFAC. Center panel; the emission specters. Right panel; the excitation 
specters.  ALSPARAFAC (solid)  ICAPARAFAC (dashed). 
 
From Figure 0.1 it is seen that the ICAPARAFAC algorithm is slightly worse at 
estimating the true mixing of the factors in the samples than the ALSPARAFAC 
algorithm. The ICAPARAFAC model seems however better at estimating the emission 
and excitation specters as they are slightly better defined. Consequently, the 
ICAPARAFAC method seems effective in analyzing this chemometric dataset. 
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