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Abstract

The task of segmenting the lung fields, the heart, and the clavicles

in standard posterior-anterior chest radiographs is considered. Three su-

pervised segmentation methods are compared: active shape models, ac-

tive appearance models, both first proposed by Cootes et al. [1] and a

multi-resolution pixel classification method that employs a multi-scale fil-

ter bank of Gaussian derivatives and a k-nearest-neighbors classifier. The

methods have been tested on a publicly available database of 247 chest

radiographs, in which all objects have been manually segmented by two

human observers.

A parameter optimization for active shape models is presented, and it

is shown that this optimization improves performance significantly. It is

demonstrated that the standard active appearance model scheme performs

poorly, but large improvements can be obtained by including areas outside

the objects into the model.

For lung field segmentation, all methods perform well, with pixel clas-

sification giving the best results: a paired t-test showed no significant

performance difference between pixel classification and an independent

human observer. For heart segmentation, all methods perform compara-

bly, but significantly worse than a human observer. Clavicle segmentation

is a hard problem for all methods; best results are obtained with active

shape models, but human performance is substantially better.

In addition, several hybrid systems are investigated. For heart segmentation,

where the separate systems perform comparably, significantly better performance

can be obtained by combining the results with majority voting.

As an application, the cardio-thoracic ratio is computed automatically

from the segmentation results. Bland and Altman plots indicate that all

methods perform well when compared to the gold standard, with confi-

dence intervals from pixel classification and active appearance modelling

very close to those of a human observer.

All results, including the manual segmentations, have been made pub-

licly available to facilitate future comparative studies.

Index terms — Chest radiographs, Segmentation, Lung field segmentation,

Heart segmentation, Clavicle segmentation, Active shape models, Active ap-

pearance models, Pixel classification.

Running title: Segmentation of anatomical structures in chest radiographs
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1 Introduction

A large amount of literature in the medical image analysis research community

is devoted to the topic of segmentation. Many methods have been developed

and tested on a wide range of applications. Despite these efforts, or perhaps

because of the large number of algorithms that have been proposed, it remains

very difficult for a system designer to decide which approach is best suited for a

particular segmentation task. Fortunately, there is a growing awareness in the

medical image research community that evaluation and performance character-

ization of segmentation methods is a critical issue [2, 3]. Such evaluations are

greatly facilitated by the availability of public image databases with manual an-

notations on which researchers can test and compare different algorithms. For

this study, we have annotated a public database, and have made the manual

segmentations available [4].

We compare three methods for segmenting five important anatomical struc-

tures in the single most acquired medical image: the standard posterior-anterior

(PA) chest radiograph. To this end, these structures –the lung fields, the heart,

and the clavicles– have been segmented manually by two observers indepen-

dently in 247 radiographs from the publicly available JSRT (Japanese Society of

Thoracic Radiology) database [5]. The fact that each object has been manually

segmented twice allows one to use one manual segmentation as gold standard

and compare the performance of automatic methods with that of an indepen-

dent human observer. The web site of the annotated JSRT database [4] allows

other researchers to upload the results of other segmentation algorithms applied

to the database and we invite the medical image analysis research community

to do so.

Accurate segmentation of anatomical structures in chest radiographs is es-

sential for many analysis tasks considered in computer-aided diagnosis. These

include various size measurements, the determination of the presence of pul-

monary nodules or signs of interstitial lung disease. Knowledge about the lo-

cation of the clavicles can be used to reduce false positive findings or to detect

lesions hiding ‘behind a clavicle’ more reliably.

The methods considered here are active shape models (ASM) [6, 1], active

appearance models (AAM) [7] and pixel classification (PC). ASM is a popular

segmentation method, with many internal parameters. We consider how to tune
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these parameters. AAM has recently found widespread application in medical

image segmentation. In this work we use an implementation available in the

public domain [8] and compare the standard AAM scheme with an extension

in which the surroundings of objects are modelled as well. PC is a classical

segmentation method, but the basic concept is so general that it can be imple-

mented in many different ways. We propose an implementation in which both

position and local image derivatives are used as input features and show how a

multi-resolution implementation and an approximate k-nearest neighbor classi-

fier lead to a relatively fast scheme that yields accurate segmentations. Finally,

we also consider three hybrid approaches. The first one fuses the results of the

best performing ASM, AAM and PC scheme by majority voting. The other

hybrid schemes uses a “tissue map” produced from the probability output of

the PC scheme as input for the ASM and AAM method, respectively.

Each of the methods examined here is supervised. This means that example

images with the desired output need to be supplied for training. This makes the

methods versatile; by supplying different training images and annotations, each

method can be applied to many different segmentation tasks, including the ones

investigated here. This is in contrast to rule-based schemes that are specifically

designed to handle one segmentation task.

The article is organized as follows. Section 2 briefly reviews previous work

on segmentation of lung fields, heart and clavicles in chest radiographs. Section

3 describes the data. The segmentation methods are presented in Section 4.

Section 6 presents the results, followed by a discussion in Section 6. Section 7

concludes.

2 Previous work

Segmentation of lung fields in PA chest radiographs has received considerable

attention in the literature. Rule-based schemes have been proposed by Li et

al. [9], Armato et al. [10], Xu et al. [11, 12], Duryea and Boone [13], Pietka

[14], and Brown et al. [15]. Lung segmentation by pixel classification using

neural networks has been investigated by McNitt-Gray et al. [16], and Tsujii

et al. [17]. Vittitoe et al. [18] developed a pixel classifier for the identification

of lung regions using Markov random field modeling. An iterative pixel-based
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classification method related to Markov random fields was presented in [19].Van

Ginneken and Ter Haar Romeny proposed a hybrid method that combines a

rule-based scheme with a pixel classifier [20]. ASM has been used for lung field

segmentation in [21, 22].

Segmentation of the outline of the heart has been studied by several re-

searchers, usually with the aim of detecting cardiomegaly (enlarged heart size).

For this purpose, only parts of the heart border need to be known. Published

methods typically use rule-based schemes, using edge detection and a geomet-

rical model of the heart shape [23, 24, 25, 26, 27].

The segmentation of clavicles in chest radiographs has, to the best of our

knowledge, not been studied before.

3 Materials

3.1 Image data

The chest radiographs are taken from the JSRT database [5]. This is a publicly

available database with 247 PA chest radiographs collected from 13 institutions

in Japan and one in the United States. The images were scanned from films to

a size of 2048 × 2048 pixels, a spatial resolution of .175 mm/pixel and 12 bit

gray levels. 154 images contain exactly one pulmonary lung nodule each; the

other 93 images contain no lung nodules.

3.2 Object delineation

Each object has been delineated by clicking points along its boundary using a

mouse pointer device. These points are connected by straight line segments. For

the ASM and AAM segmentation methods, these contours need to be converted

to a fixed number of corresponding points. To this end several additional, dis-

tinguishable points on the contour are clicked by the user, indicating anatomical

or other characteristic landmarks. These characteristic points are assumed to

correspond. After the complete boundary has been defined, all but the corre-

sponding points are discarded and subsequent points are obtained by equidis-

tantly sampling a certain fixed number of points along the contour between the

aforementioned indicated points. This is illustrated in Fig. 1.
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Two observers segmented 5 objects in each image. Observers were allowed

to zoom and adjust brightness and image contrast, and could take unlimited

time for segmentation. The first observer was a medical student, the second ob-

server a computer science student specializing in medical image analysis. While

neither of the observers were radiologists, both are familiar with medical images

and medical image analysis and have a good background in human anatomy.

Before the segmentations were made, both observers were instructed by an expe-

rienced radiologist until he was convinced that the segmentations produced by

the observers were reliable. After segmenting all objects, each observer reviewed

the results, and adjusted them to correct occasional errors and avoid bias due

to learning effects. When in doubt, they reviewed cases with the radiologist and

the radiologist provided the segmentation he believed to be correct. Review was

necessary in about 10% of all cases. Both observers segmented the images and

reviewed the results independently, but they did consult the same radiologist.

The segmentations of the first observer are taken as gold standard in this

study, to which the segmentations of a computer algorithm and the second

observer can be compared. The availability of a second observer allows for

comparisons between ‘human’ and ‘computer’ results.

3.3 Anatomical structures

In this work we consider the right and left lung, the outline of the heart and

the right and left clavicles1. It is important to carefully define what is meant

by the outline of an anatomical structure in a projection image.

The intensity in each pixel is determined by the attenuation of the radiation

by a column of body tissue. One could define the lung fields as the set of

pixels for which the radiation has passed through the lung fields. However, this

outline is impossible to determine from a frontal chest radiograph. Therefore we

adopt the following definition for the lung fields: any pixel for which radiation

passed through the lung, but not through the mediastinum, the heart, structures

below the diaphragm, and the aorta. The vena cava superior, when visible, is

not considered to be part of the mediastinum.

The heart is defined as those pixels for which radiation passes through the
1Note that, by convention, a chest radiograph is displayed as if one is facing the patient.

This means that the right lung and clavicle are on the left in the image.
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heart. From anatomical knowledge the heart border at the central top and

bottom part can be drawn. The great hilar vessels can be assumed to lie on top

of the heart.

For the clavicles, only those parts superimposed on the lungs and the rib

cage have been indicated. The reason for this is that the peripheral parts of the

clavicles are not always visible on a chest radiograph.

Fig. 1 shows one image and the annotated objects.

Figure 1: Left: the points indicated by the first observer on the first image of

the JSRT database to delineate lung fields, the heart, and the clavicles. The

anatomical or distinctive points are circled. The right lung contains 3 of these

points, the left lung 5, the heart 4 and each clavicle 6. Right: the landmarks

interpolated between the anatomical landmarks along the contours indicated on

the left for use in the ASM and AAM segmentation method. The total number

of landmarks is 166, with 44, 50, 26, 23 and 23 points in right lung, left lung,

heart, right clavicle, and left clavicle, respectively.

4 Methods

4.1 Active Shape Model segmentation

The following is a brief description of the ASM segmentation algorithm. The

purpose is mainly to point out the free parameters in the scheme; the specific
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values for these parameters are listed in Table 1. Cootes et al. first introduced

the term active shape model in [28] and [6]. However, [6] does not include the

gray level appearance model and [28, 6] do not include the multi-resolution ASM

scheme. Both of these components are essential to obtain good segmentation

results with ASM in practice. Our implementation follows the description of

the ASM method given in [1] to which the reader is referred for details.

The ASM scheme consists of three elements: a global shape model, a local,

multi-resolution appearance model, and a multi-resolution search algorithm.

A set of objects in a training image is described by n corresponding points.

These points are stored in a shape vector x = (x1, y1, . . . , xn, yn)T . A set

of these vectors can be aligned by translating, rotating and scaling them so

as to minimize the sum of squared distances between the points (Procrustes

alignment, [29, 1]). Alignment can also be omitted, which will include the

variation in size and pose into the point distribution model which is subsequently

constructed. Let x denote the mean shape. The t principal components (modes

of variation in the shape model) of the covariance matrix of the shape vectors

are computed. The value of t is determined by fv, the amount of variation in

the training shapes one wants to explain. Shapes can now be written as

x = x + Φxbx, (1)

where Φx contains the modes of variation of the shape model and bx holds the

shape parameters. During the ASM search it is required to fit the shape model

to a set of landmarks. This is done by projecting the shape on the eigenvectors

in Φx and truncating each projection in bx to m times the standard deviation

in that direction.

A local appearance model is constructed for each landmark. On either side of

the contour at which the landmark is located, k pixels are sampled using a fixed

step size of 1 pixel, which gives profiles of length 2k + 1. Cootes et al. propose

to use the normalized first derivatives of these profiles [1]. The derivatives

are computed using finite differences; the normalization is such that the sum

of absolute values equals 1. Note that this requires a notion of connectivity

between the landmark points from which the direction perpendicular to the

contour can be computed.

As a measure for the goodness of fit of a pixel profile encountered during
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search, the Mahalanobis distance to the set of profiles sampled from the training

set is computed. These profile models are constructed for Lmax resolutions. A

standard image pyramid [30] is used.

The search algorithm is a simple iterative scheme initialized by the mean

shape. Each landmark is moved along the direction perpendicular to the contour

to ns positions on either side, evaluating a total of 2ns + 1 positions. The

landmark is put at the position with the lowest Mahalanobis distance. After

moving all landmarks, the shape model is fitted to the displaced points, yielding

an updated segmentation. When a proportion pclose of points ends up within

ns/2 of its previous position, or when Nmax iterations have been made, the

search moves to the next resolution level, or ends. The highest resolution level

in our experiments was 256 × 256 pixels. The use of higher resolutions did not

improve performance.

In [1] suitable values are suggested for all parameters in the ASM scheme.

They are listed in Table 1 and they have been used in the experiments, referred

to as ‘ASM default’. In order to investigate the effect of different settings,

we performed pilot experiments on a small test set (to keep computation time

within bounds) and varied all settings within a sensible range, also given in

Table 1. The overall best setting was kept (last column in Table 1) and also

used in the experiments, referred to as ‘ASM tuned’.

4.2 Active Appearance Models

The active appearance model (AAM)segmentation and image interpretation

method [7] has recently received a considerable amount of attention in the image

analysis community [8]. AAM uses the same input as ASM, a set of training

images in which a set of corresponding points has been indicated.

The major difference to ASM is that an AAM considers all objects pixels,

compared to the border representation from ASM, in a combined model of

shape and appearance. The search algorithm is also different. This section

will summarize the traditional AAM framework, list the parameter settings and

describe alterations we applied for this segmentation task. Our implementation

was based on the freely available C++ AAM implementation described in [8].

An AAM is a generative model, which is capable of synthesising images of a

given object class. By estimating a compact and specific basis from a training
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set, model parameters can be adjusted to fit unseen images and hence perform

both image interpretation and segmentation. The modelled object properties

are shape — using the shape vectors x — and pixel intensities (called texture),

denoted by t. As in ASM, variability is modelled by means of principal com-

ponent analyses (PCA). Prior to PCA modelling, shapes are Procrustes aligned

and textures are warped into a shape-free reference frame and sampled. Usu-

ally only the convex hull of the shape is included into the texture model. It is

also possible to model the inside of every closed contour. New instances for the

shape can be generated by Eq. 1, and, similarly, we have for the texture

t = t + Φtbt (2)

where t denotes the mean texture, Φt are eigenvectors of the texture disper-

sions (both estimated from the training set) and bt holds the texture model

parameters. To recover any correlation between shape and texture and obtain a

combined parameterization, c, the values of bx and bt are combined in a third

PCA,

 WxΦT
x (x− x)

ΦT
t (t− t)

 =

 Wxbx

bt

 =

 Φc,x

Φc,t

 c = Φcc. (3)

Here, Wx is a diagonal matrix weighting pixel distances against intensities.

Synthetic examples, parameterized by c, are generated by

x = x + ΦxW−1
x Φc,xc

and

t = t + ΦtΦc,tc

and rendered into an image by warping the pixel intensities of t into the geom-

etry of the shape x.

Using an iterative updating scheme the model parameters in c can be fitted

rapidly to unseen images using the L2-norm as a cost function. See [1, 7] for

further details. As in ASM, a multi-resolution pyramid is used.
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4.2.1 Parameter settings

This section lists the settings that were used in the AAM experiments. To

determine these settings, pilot experiments were performed. Our experience

suggests that the results are not sensitive to slight changes in these settings.

Segmentation experiments were carried out in a two-level image pyramid

(128 × 128 and 256 × 256 pixels). The use of coarser start resolutions was

investigated but did not improve performance.

The model was automatically initialized on the top level, by a sparse sam-

pling in the observed distribution of training set pose. This sparseness is ob-

tained by considering the convergence radius of each model parameter (inspired

by [1]), thus avoiding any unnecessary sampling. Since rotation variation was

completely covered by the convergence radius, no sampling was performed in

this parameter. From the training data, it was estimated that the model should

converge if initialized in a 2 by 2 grid around the mean position. Further, due to

the variation in size over the training set, each of these four searches was started

at 90%, 100%, and 110% of the mean size, respectively. Thus, 12 AAM searches

were executed in each image and the search producing the best model-to-image

fit was selected.

Both shape, texture and combined models were truncated at fv = .98, thus

including 98% of the variance. Bounds m on the combined eigenvalues were

three standard deviations. Model searches had a limit of 30 iterations at each

pyramid level. AAM parameter update matrices for pose and model parame-

ter were calculated using Jacobian matrices. These were estimated using every

15th training case. Parameter displacements were as follows: model parame-

ters: ±0.5σi, ±0.25σi (σi denotes the standard deviation of ith parameter), x-y

position: ±2%, ±5% (of width and height, respectively), scale: ±2%, ±5%,

rotation: ±2%, ±5% degrees. Displacements were carried on sequentially; i.e.

one experiment for each displacement setting. The details of this process can

be found in [7], and are further expanded in [8].

4.2.2 AAM with whiskers

In this particular application of segmenting chest radiographs, the objects in

question are best characterized by their borders. They do not have much distinct

and consistent interior features; the lungs show a pattern of ribs and vasculature
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but the location of these structures relative to the points that make up the shape

is not fixed, the heart is dense, but opaque, and no distinct structures can be

observed. This behavior is common to many medical image analysis problems

and poses a problem to the original AAM formulation where only the object’s

interior is included into the texture model. This means that the cost function

can have minimum when the model is completely inside the actual object. To

avoid this, information about the contour edges needs to be included into the

texture model. We use the straightforward approach from ASMs; namely to add

contour normals pointing outwards on each object. These normals are in this

context denoted whiskers and are added implicitly during texture sampling with

a scale relative to the current shape size. Texture samples obtained by sampling

along whiskers are now concatenated to the texture vector, t, with a uniform

weight relating these to the conventional AAM texture samples obtained inside

every closed contour. This provides a simple weighted method for modelling

object proximity in an AAM. Unfortunately, this also introduces two additional

free parameters, the length of the whiskers and the weighting of whisker samples.

The following parameters were chosen: whisker length was equal to distance

between landmark 1 and 2 on the mean shape (sized to mean size) and texture

samples from whiskers influenced the texture model with the same weight as the

normal, interior texture samples. Pilot studies showed that moderate changes

from the parameter set chosen above had no significant impact on the accuracy.

4.2.3 Refinement of AAM Search Results

AAMs provide a very fast search regime for matching the model to an unseen

image using prior knowledge derived from the training set. However, due to

the approximate nature this process will not always converge to the minimum

of the cost function. A pragmatic solution to this problem is to refine the

model fit by using a general-purpose optimization method. Assuming that the

AAM search brings the model close to the actual minimum, this approach is

feasible wrt. computation, despite the typical high-dimensional parameter space

of AAMs. We have used a gradient-based method for this application. The cost

function remained unchanged; the L2-norm between model and image texture.

It was optimized by a quasi-Newton method using the BFGS (Broyden, Fletcher,

Goldfarb and Shanno) update of the Hessian, see e.g. [31]. Alternatively, to
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avoid spurious minima, a random-sampling method such as Simulated Annealing

can be employed. Refinement of AAMs has previously been employed to improve

the model fit in cardiac and brain MRI by Stegmann et al. [32].

4.3 Pixel classification

Pixel classification (PC) is an established technique for image segmentation.

It enjoys popularity in many areas of computer vision, .e.g. remote sensing

[33]. Within medical imaging, it has been used extensively in multi spectral

MR segmentation [34]. A recent example of an application to 3D MR brain

segmentation can be found in [35]. In chest radiograph segmentation it has been

used before in [16, 20] and, in the context of Markov random field segmentation

in [18].

Sect. 4.3.1 and 4.3.2 describe a general multi-resolution implementation of

PC that we developed. Components and parameters used for this particular

segmentation problem are given in Sect. 4.3.3–4.3.5.

4.3.1 General algorithm

In PC, a training and a test stage can be distinguished. The train stage consists

of

1. Choose a working resolution. Obtain a copy of each training image at this

working resolution.

2. Choose a number of samples (positions) in each training image.

3. Compute a set of features (the input) for each sample. Possible features

are the gray level value at that position or in the surroundings, filter

outputs, and position values. Associate an output with each sample. This

output lists to which classes this position belongs. Note that in our case

pixels can belong to multiple classes simultaneously (e.g. left clavicle and

left lung field).

4. (Optional) Compute a suitable transformation for the feature vectors. Ex-

amples of transformations are normalization, feature selection, feature ex-

traction by PCA or whitening, or non-linear transformation to create new,

extra features.
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5. Train a classifier with the input feature vectors and the output; this clas-

sifier can map new input to output. In this work we require that the

classifier can compute the posterior probability (the probability, given the

input features) that a pixel belongs to each object class.

The test stage consists of

1. Obtain a copy of the test image at the working resolution.

2. Compute the features for each pixel in the image.

3. (Optional) Apply the transformation to each feature vector.

4. Obtain the posterior probabilities that the pixel belongs to each class,

using the transformed feature vectors and the trained classifier.

5. A binary segmentation for each object is obtained by thresholding the

output at .5. Optionally, postprocessing operations can be applied before

and after binarization.

4.3.2 Multi-resolution PC

In the multi-resolution PC method, training is performed for a range of work-

ing resolutions. The test stage begins at the coarsest resolution and stores

the posterior probabilities pi for each class i and also stores pmin = mini(p∗i )

where p∗i = max(pi, 1− pi), the chance that the pixel belongs to class i, or not,

whichever is more likely. If pmin is close to 1, the classifier is confident about

all the class labels of that pixel. If it is close to .5, the classifier is unsure about

at least one of the labellings. The test stage continues at the next resolution

level. In this level, the number of pixels is larger. The pmin values are linearly

interpolated from the previous level, and only if pmin < T , a pixel is reclassified.

Otherwise, the interpolated posterior labels of the coarser level are taken. This

process continues until the finest resolution has been processed.

The rationale behind this strategy is that classification (step 4 in the test

algorithm given above) is usually the computationally most expensive operation.

As low resolution images contain less pixels, and in many applications a large

area of the image are often easy to classify (pmin close to 1), using the multi-

resolution scheme can speed up the PC process considerably. Estimating all pi

at a next level if any p∗i is below T may seem superfluous. For the classifier of
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our choice, however, this is as expensive as only estimating those pi for which

p∗i < T .

Lower resolution images were created with the Gaussian pyramid [30], as

is done in ASM. In the experiments just two resolution levels were considered,

where the images were reduced to 128 by 128 and 256 by 256 pixels. The thresh-

old T was conservatively set to .99. Higher resolutions increased computation

time but did not improve performance; more lower resolution levels slightly

decreased performance at hardly any computational gain.

4.3.3 Samples & Features

A rectangular grid of 64 by 64 pixels was placed over each training image to

extract 4096 samples per image.

Spatial features, the (x, y) coordinates in the image, are used, because the

structures we aim to segment have a characteristic location within a chest ra-

diograph. Additionally, the output of Gaussian derivative filters of up to second

order (L, Lx, Ly, Lxx, Lyy, Lxy) at five scales (σ = 1, 2, 4, 8, 16 pixels at the cur-

rent resolution) are used to characterize local image structure. Finally, the gray

value in the original images was taken as a feature.

This set of features was computed at each resolution level. As the pixel size

of images is different at each level, the scale of the filters is different as well, to

the effect that large apertures are used for a first coarse segmentation and finer

apertures subsequently segment the finer details at higher resolution levels.

4.3.4 Classifier and feature transformations

The effect of feature transformations is closely related to the choice of classifier.

A kNN classifier was used, with k = 15. The kNN classifier has the attractive

property that, under certain statistical assumptions and in the case of infinite

training data, the conditional error is (1 + 1/k)R∗, where R∗ is the minimally

achievable Bayes error [36]. Mount and Arya’s tree-based kNN implementation

[37], was employed which allows for a considerable speed up of the classification

by calculating an approximate solution. The approximation is controlled by

a variable ε, which means that the approximate nearest neighbors which the

algorithm finds, are no more than (1 + ε) the distance away from the query

point than the actual nearest neighbors are [37]). ε was set to 2. This did not
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lead to a decrease in accuracy as compared to exact kNN with ε = 0.

In pilot experiments, various feature selection and feature extraction meth-

ods were tested, but they did not yield a significant performance increase. Even-

tually, we only applied normalization, which means that a scaling factors per

feature are determined so that each feature has unit variance in the training set.

An additional advantage of the kNN classifier, already hinted at above, is

that the posterior probability for each object class can be determined using only

one neighbor search. Note that the combination of k = 15 and T = .99 means

that pixels are only not reclassified at a finer resolution level if all k neighbors

have the same class label configuration (as 14/15 < .99).

4.3.5 Post-processing

The obvious way to turn the soft classification pi into binary masks is thresh-

olding at a posterior probability of .5. However, this does not ensure connected

objects; segmentations will often contain clouds of isolated pixels near the ob-

ject’s boundary. To ensure that the segmentation for each structure yields

a single connected object, a simple post-processing procedure was developed.

This procedure is the same for each object considered.

First the soft output is blurred with σ = 0.7 mm. This reduces the grainy

appearance at object boundaries and can be interpreted as pooling of local

evidence. Subsequently the largest connected object is selected, and holes in

this object are filled.

4.4 Hybrid approaches

Different methods for segmentation are considered in this work. These methods

may provide complementary information and if it is possible to combine this

information effectively, a hybrid segmentation scheme with higher performance

can be constructed. Three possible approaches to such a combination are

envisaged.

First, one can consider the output of different methods only. All methods

can output hard classification labels for each pixel, so it is a logical choice to

work with this information. The hybrid voting scheme takes the classification

labels of the best performing ASM, AAM and PC scheme and assigns pixels to

objects according to majority voting. This is the most commonly used voting
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rule for hard classifications. For more background and voting strategies that

have been researched in the context of classifier fusion see [38].

A second approach is to take the output of one method as input for another

scheme. An obvious approach is to use the posterior probabilities for each pixel

as obtained from the PC method and convert these into an image where different

objects have different gray value. To construct such an image, the posterior

probabilities for a pixel to be right lung, left lung, heart, right or left clavicle

were added, and in addition the probabilities for lung were multiplied by two (the

latter operation is necessary to obtain contrast between heart/lung boundaries).

This ‘probability image’ is used as input for the ASM segmentation method

(this is referred to as the hybrid ASM/PC method) and the AAM segmentation

method (the hybrid AAM/PC method). Clearly other output/input chains are

conceivable. For example, output of ASM or AAM can be used as a feature for

PC, or ASM and AAM may be combined.

A third option is to design a method which is comprised of a combination

of elements from different schemes. Several systems proposed in the literature

may be interpreted as such combinations [39] [40] [22]. In this work we don’t

consider these approaches.

5 Experiments and results

5.1 Point distribution model

The analysis of the shape vectors x gives insight in the typical variations in

shape of lungs, heart and clavicles that occur in chest radiographs, and their

correlation. This is an interesting result in its own right, and therefore the first

few modes of variation are displayed in Fig. 2. In Fig. 3 the spread of each

model point after Procrustes alignment is displayed. This is another way of

visualizing which parts of the objects exhibit most shape variation.

5.2 Folds

The 247 cases in the JSRT database were split in two folds. One fold contained

all 124 odd numbered images in the JSRT database. The other fold contained

the 123 even numbered images. This division ensured that both folds contained

an equal amount of normal cases and cases with a lung nodule. Images in one
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fold were segmented with the images in the other fold as training set, and vice

versa.

5.3 Performance measure

To measure the performance of a segmentation algorithm, a ‘goodness’ index is

required. For a two class segmentation problem, one can distinguish true posi-

tive (TP) area (correctly classified as object), false positive (FP) area (classified

as object, but in fact background), false negative (FN) area (classified as back-

ground, but in fact object), and true negative (TN) area (correctly classified as

background). From these values, measures such as accuracy, sensitivity, speci-

ficity, kappa and overlap can be computed. In this work we use the intersection

divided by union as an overlap measure, given by

Ω =
TP

TP + FP + FN
. (4)

This is a well accepted measure, but one should be aware that objects that

are small or have a complex shape usually achieve a lower Ω than larger objects

[41].

In addition, the mean absolute contour distance is computed. For each

point on contour A, the closest point on contour B is computed; these values

are averaged over all points; this is repeated with contours A and B interchanged

to make the measure symmetric [41]. The distances are given in millimeters;

one pixel on the 256 by 256 resolution images on which all experiments were

performed corresponds to 1.4 mm.

For comparisons between methods, paired t-tests were used. Differences are

considered significant if p < 0.05.

5.4 Evaluated methods

The five objects in each of the 247 images were segmented with 15 methods in

total:

• First of all, the segmentations of the second human observer were used to

compare computerized methods with human performance.

• As a reference method, we computed the performance when the mean

shape of each object is taken as segmentation, independent of the actual
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image contents. Clearly any method should outperform this ‘a priori’

segmentation.

• Two ASM systems were employed; ASM with the ‘default’ settings and

the ‘tuned’ settings given in Table 1.

• For AAM, three systems were evaluated: the ‘standard’ system (Sect.

4.2.1); the version with whiskers added (Sect. 4.2.2) and finally, the system

with whiskers refined by BFGS (Sect. 4.2.3).

• The results for pixel classification are given both with and without post-

processing (Sect. 4.3.5).

• Three hybrid methods are employed: voting, and using the output of the

post-processed PC system as input for the tuned ASM system and for the

AAM method with whiskers refined by BFGS.

• To obtain upper bounds for the performance of ASM and AAM systems,

the tuned ASM method was run, initialized from the gold standard; the

ASM shape model was fitted directly to the gold standard and the AAM

method with whiskers was method was run, initialized from the gold stan-

dard. Note that these results are supplied only for reference, obviously

these system cannot be used in practice as they require the gold standard

to be known.

To reduce the amount of figures and tables, the results are pooled (by

averaging performance measures) for both lungs and both clavicles.

5.5 Segmentation results

Results of all 12 systems are listed in Table 2 and 3. In Fig. 4 and 5 the quantiles

are shown graphically in box plots. In both these figures and tables, systems

are sorted according to performance, and it is indicated when the difference

between a system and the system next in rank is significant. For results of the

three ASM/AAM systems that were started from the ground truth see Table 4

and 5.

In general, the best results per system were obtained by the tuned ASM sys-

tem, the AAM system with whiskers and BFGS refinement added and the PC
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system with postprocessing. However, for clavicle segmentation, post-processing

did not significantly improve PC segmentation and use of the AAM BFGS re-

finement did not improve upon AAM with whiskers only. The voting system

was clearly the best hybrid system considered.

For lung field segmentation, PC clearly outperforms ASM and AAM. There

is no significant difference between PC and the human observer for both error

measures investigated. Voting improves the mean boundary distance for lung

field segmentation.

For heart segmentation, performance of the human observer is lowest among

all objects, but significantly better than any computer method. AAM, PC and

ASM are all close. Interestingly, the combination of these three through voting

yields a system that is significantly better than any of its parts.

Clavicle segmentation proves to be a hard problem for any of the methods.

The human observer greatly outperforms any computer method. Best results

are obtained with ASM. The results of ASM are so much better than those of

AAM and PC that the hybrid methods do not improve upon ASM.

Fig. 6 shows the results of the best performing ASM, AAM, PC and hybrid

method for four cases. These images were selected in the following way. For each

image, the overlap of each object when segmented with the ASM, AAM and PC

system was averaged. All images were sorted on this ‘overall overlap average’.

The images ranking #1, #82, #165 and #247 are displayed, corresponding to

an easy, relatively easy, relatively hard and a hard case, respectively.

5.6 Computation of the cardiothoracic ratio

A segmentation as such is hardly ever the final outcome of a computer analysis

in medical imaging. The ultimate ‘goodness’ index for a segmentation is its use-

fulness for subsequent processing. One important diagnostic measure that can

be directly calculated from a segmentation of lungs and heart in a chest radio-

graph is the cardiothoracic ratio (CTR), defined as the ratio of the transverse

diameter of the heart to the transverse diameter of the thorax. A ratio above 0.5

is generally considered a sign of cardiomegaly, and this test is used frequently

in clinical practice and clinical research (e.g. [42]). Automatic computation of

the CTR has been investigated before [25, 26]. We computed the CTR from the

gold standard, and compared the results with the second observer and the best
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ASM, AAM and PC systems. Bland and Altman plots [43] are given in Fig.

7 together with the mean absolute difference and the 95% confidence intervals.

Note that the confidence interval is tighter for the PC system than for the sec-

ond observer. This is due to an outlier, though. If that outlier is removed, the

confidence interval for the second observer shrinks to (-0.033,0.030). The confi-

dence interval of PC is tighter than that of AAM, which is tighter than ASM.

From the Bland and Altman plots it can be appreciated that there is more often

substantial disagreement between the gold standard and computerized measures

for cases with a large CTR.

5.7 Computation times

The ASM and PC segmentation were performed on a 2.8 GHz Intel PC with

2 GB RAM. The AAM experiments were carried out on a 1.1Ghz Athlon PC

equipped with 768 MB RAM. All implementations were in C++, and in all cases

there is room for optimizations. Computation time required for segmenting a

single image was around 1 s for ASM, 30 s for PC, and 3 s for AAM.

6 Discussion

Some of the presented results obtained by computer algorithms are very close

to human performance. Therefore we start this discussion by considering the

limitations of manual segmentations which were used to determine the gold

standard, and discuss the representativity of the data. Then the results for lung

segmentation, heart segmentation, clavicle segmentation and the automatic de-

termination of the CTR are discussed. After pointing out the fundamental

differences between pixel classification, active shape and appearance models, we

briefly consider some possibilities for improvements in each of the three methods.

Accuracy of the gold standard, representativeness of the data

Supervised segmentation methods require training data for which the ‘truth’

is available, and their performance will therefore depend on the quality of this

‘truth’. In this work, manual segmentations from a single observer are taken as

gold standard. It may be preferable to construct a gold standard from multiple
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observers [44] [45]. For a large database as considered here however, obtaining

multiple expert segmentations is impractical. There are two types of inaccu-

racies in the gold standard. Occasionally, the observer may misinterprete the

superimposed shadows and follow the wrong edge or line in the image. Such

interpretation errors occur mainly along the mediastinum and heart border and

in some cases when edges of clavicles and ribs create a confusing pattern. In-

terpretation errors can lead to relatively large distances between boundaries

drawn by human observers. The outlier for the second observer versus the gold

standard in Fig. 7 is an example of an interpretation error (of the second ob-

server, as was judged retrospectively). Interpretation errors are more likely to

occur when the image contains pathology or unusual anatomy, and they can

sometimes be attributed to the fact that the observers are not radiologists. The

review process, however, eliminated most interpretation errors due to observer

inexperience. Some errors of computer algorithms could be considered interpre-

tation errors as well such as allotting areas of the stomach or bowels to the left

lung, which happens when there is a lot of air in the stomach and the diaphragm

below the left lung has a line-like instead of an edge-like appearance. Another

example is following the wrong edge for the border between heart and left lung,

of which some examples can be seen in Fig. 6.

The second type of inaccuracy could be described as measurement error.

Clicking points along the boundary of hundreds of objects is a straining task for

human operators; inevitably small errors are made. It is possible that supervised

computerized methods such as the ones considered here can ‘average away’ such

errors when building their statistical models. On close inspection, certain parts

of the boundary of the lung fields found by PC are in fact judged to be more

accurate than the gold standard. This may partly explain the fact that the

best PC system (and the voting system) achieve better performance for right

lung field segmentation than the second observer. Another reason for this fact

may be that there are systematic differences between both observers - and the

computer algorithms are trained and evaluated with segmentations from the

same observer.

There are at least two reasons why the fact that there is no significant

difference between a computer method and a human observer for lung field seg-

mentation does not mean that this segmentation task can be considered ‘solved’.
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First, depending on the usage of the segmentation, the overlap measure Ω and

the mean distance to contour may not be good measures of segmentation perfor-

mance. Although the overall overlap is excellent, there are certain parts of the

lung field which pose more problems for a computer than for a human observer.

Second, the JSRT database contained only images of good technical quality,

and very few images with gross abnormalities. Such images are much harder to

segment for the considered computer methods than for humans, because grossly

abnormal cases are usually individually unique and thus not represented in the

training set.

Keeping these limitations in mind, let us consider the performance of the

different methods for each of the segmentation tasks examined.

Lung segmentation

Of all objects, the overlap values obtained for the lungs are highest, for both

the human observer and all automatic methods. PC and voting obtain better

results than the human observer, although the difference is only significant for

the voting system using the overlap as criterion. It is interesting to note how

well the shapes produced by PC approximate lung shapes even though no shape

information is encoded explicitly in the method. The left lung is more difficult

to segment than the right lung because of the presence of the stomach below the

diaphragm which may contain air, and the heart border which can be difficult to

discern. There is no indication that any of the methods for lung segmentation

proposed in the literature (Sect. 2) achieves segmentation accuracy comparable

to human performance.

In most cases, ASM and AAM produce satisfactory results as well, but

occasionally left lung segmentation proves problematic. Consider the difficult

case on the right in Fig. 6, where the border of the enlarged heart is very close

to the outer border of the left lung field. Moreover, the heart border is fuzzy,

and therefore difficult lo locate precisely. ASM followed a different edge and

included the heart in the lung field; this can be considered an interpretation

error. AAM put the heart border somewhere halfway between the true border

and the border followed by ASM, and pushed the border of the lung field outside

the rib cage, probably as a result of shape modeling which does not allow the
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heart border and the lower left lung border to be so close. PC, not hampered

by a shape model that cannot deal with this uncommon shape, produces a very

satisfying result. Note how the segmentation of the second observer deviates

from the gold standard. The second observer probably made an interpretation

error in this case. Note also that the Ω values for lungs and heart are similar

for this case, although the CTR is very different.

The hybrid systems that use PC output for ASM and AAM outperform

direct usage of ASM and AAM. This can be explained by the fact that PC

works very well for lung segmentation and thus provides reliable input to ASM

and AAM.

Heart segmentation

For the heart segmentation, the difference between the second observer and the

automatic methods is much larger than for lung segmentation. The agreement

between both human observers is much lower as well, the lowest for all objects.

The reason for this is that the upper and lower heart border cannot be seen

directly on the radiograph. The observers have to infer the location of the heart

from the left and right border and anatomical knowledge. The upper heart

border is known to be located just below the hilum where the pulmonary ar-

teries enter the lungs. ASM, AAM and PC perform comparably. Their ranking

depends on the evaluation criterion used. Apparently, there is complementary

information in the three methods: the hybrid voting method is significantly

better than any other method and comes quite close to human performance.

Clavicle segmentation

Contrary to the other objects, the clavicles are small. There is no clear dif-

ference in performance of any method between left and right clavicle. Clavicle

segmentation is a difficult task for various reasons. The bone density can be

low, so that the clavicles are hardly visible; there are other, similar edges from

ribs in close proximity, and the orientation and position of the clavicles varies

enormously. This can be seen from the shape model and the spread of the

individual points in Fig. 2 and 3. As a result, segmentation of clavicles is a
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challenging task. The difference between the computerized methods and the

second observer is large.

ASM is the best method for clavicle segmentation, but occasionally there is

hardly any overlap between the detected and actual clavicle, as can be seen in

the box plots of Fig. 4 and the most difficult case in Fig. 6. Running a separate

ASM to detect clavicles did not show a clear performance improvement. We

believe that the problem of confusing edges and the large variation of clavicle

position and orientation are the main reasons for failures with ASM.

AAM performs substantially poorer than ASM for clavicle segmentation,

contrary to heart and lung segmentation where the results between the two

methods were comparable. This behavior was anticipated for several reasons.

We hypothesize that the dominating factor is the differences in weighting of

the clavicles compared to the lung and heart regions. ASM uses independent,

equally weighted texture models around each landmark. Thus, the relative ‘im-

portance’ – wrt. the model-to-image cost function – of each subobject in an

ASM is solely determined by its number of landmarks. In this application,

each clavicle had approximately half the number of landmarks present in the

corresponding lung contour (see Fig. 1). On the contrary, AAM optimizes a

global model-to-image fit, accounting for all pixel samples on the object sur-

faces. This means that no equalization between areas or objects is performed.

Consequently, small objects are easily sacrificed for a better fit of large objects.

Further, objects with subtle intensity variations – and weakly defined borders

– are sacrificed for objects with large intensity variation. Both issues pertain to

segmentation of clavicles. In this application the non-global ASMs behavior has

proved desirable for clavicle segmentation, but in other cases such strong pri-

ors may lead to problems, typically due to amplification of noise-contaminated

signal parts. Using two landmark-based benchmarks, ASM was also shown to

outperform AAM on face and brain data in work by Cootes et al. [46].

Secondly, since AAM requires mappings between examples to be homeomor-

phisms (continuous and invertible), layered objects moving independently will

inherently cause problems. In the projection images analyzed here, the clavi-

cle position with respect to the lung border is inconsistent. In two examples

clavicles were actually above the lungs. Further, the medial endpoints of the

clavicles can be inside or outside the lung fields. To obtain a perfect registra-

25



tion between such images an AAM would need to introduce folds, i.e. degenerate

piecewise affine warps with inverted mesh normals. Replacing these with thin-

plate splines [47] will inevitably also lead to folds. To solve this, objects need

to be modeled as independent layers in the texture model. Rogers [48] has

previously acknowledged this problem when modeling capillary images.

To assess the practical impact of this on the overlap measure, we have built

an AAM for the lung and heart contours only. Warp degeneracy had no notice-

able impact on the accuracy of lung and heart localization.

PC undersegments the clavicles, but hardly has any false positives. This

can be explained by poor features, which make classification into the class with

higher prior probability more likely. A lower threshold for the hard classifi-

cation could prove helpful, but this has not been investigated in detail. The

post-processing of the PC method is counterproductive when the clavicle seg-

mentation produces two or more segments of similar size since only the largest

segment is retained. This occurs in the two most difficult cases shown in Fig. 6.

As ASM is clearly the best performing method for this task, the hybrid

approaches do not improve upon ASM.

Determination of the CTR

There is a variety of measures that can be computed directly from a segmen-

tation of anatomical structures in a chest radiograph. Such measures can be

of great clinical importance and their automatic computation may help in ex-

tracting more information from a routine chest examination. In this work, we

considered the cardiothoracic ratio. Other possibilities are the area of heart and

lungs, the total lung capacity (for which an additional lateral chest film is re-

quired) [49], the diaphragm length [50], and the vascular pedicle width (VPW)

[51]. Measurement of the diaphragm length and the VPW requires knowledge

about the location of certain landmarks in the image, which is known from the

point positions obtained by ASM and AAM segmentation.

An automatic system to estimate the CTR was described by Nakamori et

al. in [26], in which points along the heart boundary were detected by fitting

a Fourier shape to image profiles. This system was used to compute the CTR

in 400 radiographs in another study [27] where radiologists had to correct the
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computer result in 20% of all cases. Automatic determination by the methods

presented here is probably substantially more accurate.

Pixel classification versus active shape and appearance models

There are some fundamental differences between PC, ASM and AAM. PC does

not have a shape model. Therefore it can produce unplausible shapes, and is

likely to do so when the evidence obtained from image features is not conclusive.

This can be observed from the heart borders and the clavicles in Fig. 6. PC does

not require landmarks, only labels per pixel. In that sense it is more general, it

can also be applied to tasks where it is difficult or impossible to set corresponding

points. PC can also produce a soft classification, which cannot be obtained

directly from ASM and AAM. On the other hand, ASM and AAM provide more

information than just a binary segmentation; correspondences along contours

are established between the search result and any training example. Thus, a

registration is obtained and any anatomical landmarks defined by a position on

a contour can be inferred on new examples using ASM or AAM.

Another important difference between PC and ASM/AAM is that the latter

are based on linear appearance models whereas the PC system uses non-linear

features and a non-linear classifier to map appearance and position character-

istics to class labels. Had the PC system been restricted to features similar to

those used in AAM and ASM (pixel values in the object and along profiles) and

a linear classifier, the results would have been much worse.

PC does not employ an iterative optimization scheme. This avoids the prob-

lems typically associated with such schemes, such as ending up in local minima.

Although PC is conceptually more simple, and easier to implement, it is compu-

tationally more demanding than ASM and AAM. The multi-resolution scheme

proposed here, and the approximate kNN classifier make the method usable

on these 2D data. With increasing computational power and dedicated opti-

mizations for processing speed, segmentation of 3D data sets with complex PC

systems will become routinely feasible as well.

Contrary to both ASM and PC, an AAM also establish a dense planar cor-

respondence. This dense registration enables that every interior point on the

model can be localized on an unseen image after AAM search. This combined
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with a per-pixel statistical model, provides a starting point for e.g. detection of

abnormalities in the lung field.

All in all, the choice for a particular segmentation algorithm can be moti-

vated by more than the expected segmentation accuracy, such as computational

demands, implementation complexities and the requirements for further analy-

sis.

Improving ASM, AAM and PC

Changes or extensions to the ASM algorithm can address the shape model, the

appearance model or the optimization algorithm. Tables 4 and 5 show that

when the shape model is fitted to the gold standard, the mean overlap remains

below the results of PC for the right lung and around the accuracy of the human

observer for both lungs. For the clavicles, fitting the shape model leads to an

overlap well below that of the human observer. Thus the shape model is not

able to capture all shape variations in the test set. It is possible that more

examples are needed, or that better results can be obtained with more flexible

models. To test if the results of ASM and AAM could be improved by simply

using more examples, we ran the tuned ASM algorithm using both folds for

training (which will positively bias results because training and test data are

not separated). It turned out that segmentation performance did not improve.

For AAM, leave-one-out experiments were performed but again, this led to only

very minor differences. For both systems the mean Ω improved by around

0.01. When ASM is started from the gold standard position, the results for all

objects are surprisingly close to the actual results of the tuned ASM system.

This indicates that the multi-resolution optimization procedure initialized with

the mean shape performs adequately. Still, by comparing the shape model fit

to the gold standard and the result of ASM initialized with the gold standard,

it can be seen that the solution drifts away from the perfect initialization. The

appearance model is thus not perfect. Non-linear appearance models might lead

to better performance [52, 53, 22].

Contrary to ASM, changes to the internal parameters of AAM had little

influence on the final result. Therefore there is no default and tuned setting

presented for AAM. The extension with whiskers, however, was essential to
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obtain good performance with AAM. Instead of BFGS, a refinement method

based on random sampling should partially avoid the problem of falling into

a local minimum. However, this is anticipated to be computationally more

demanding due to the high dimensionality of the optimization space. Tables

4 and 5 also show that the lung accuracy obtained using AAM with BFGS

refinement is very close to the upper bound. This suggests that the cost function

hyper surface is indeed very flat and improvements in overlap for the heart and

clavicles in Tables 4 and 5 is apparently obtained by starting the AAM search

closer to the global minimum in this region.

The results of ASM and AAM segmentation also depend on the choice of

landmarking scheme as this affects the quality of the shape model. Recently,

methods for automatically obtaining corresponding landmarks from binary segmentations

have been proposed, that optimize an information criterion [54]. Such landmarking

strategies may be superior to the landmarking extraction procedure employed

here.

The good performance for PC depends heavily on the features and the clas-

sifier. Clearly, there are many more feature sets and classifiers that could be

evaluated, and feature extraction and selection techniques could be employed.

This is an advantage of PC: it formulates segmentation in terms of a standard

pattern recognition task. The full vocabulary of techniques from this field can

be used.

The postprocessing stage of PC is simple and ad hoc. It ensures a single

object, without holes and with a somewhat smooth border (due to blurring the

posterior probabilities) but the settings of the procedure have not been trained

and the optimal settings are unlikely to be the same for all objects. There

are many more advanced possibilities to express the spatial correlation between

nieghboring pixel labels than just Gaussian smoothing. Examples are iterative

relabelling [19], relaxation labelling [55] or Markov random field models [56].

Such approaches will likely improve performance and ensure more satisfactory

object shapes, at the expense of more computation time.

Spatial position is an important feature for PC. Without it, the left and right

lung fields, for example, would virtually indistinguishable. The heart segmen-

tation suffers from little image information, and position is a very important

feature. The position feature are ‘raw’ positions, however. After the lung fields
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have been segmented - which can be done very accurately, as has been demon-

strated, the spatial position relative to the lung fields could be used instead

of the raw (x, y) values. This may improve heart segmentation accuracy. For

clavicle segmentation, it may not be too useful, as the position of the clavicles

relative to the lung fields varies a lot (Fig. 7).

This shows that one must pay careful attention to parameter settings and

variations on the basic algorithms that have been proposed in the literature

when applying ASM or AAM in practice.

7 Conclusions

A large experimental study has been presented in which several versions of three

fully automated supervised segmentation algorithms have been compared.

The methods were active shape models (ASM), active appearance models

(AAM) and pixel classification (PC). The task was to segment lung fields, heart,

and clavicles from standard chest radiographs. Results were evaluated quantita-

tively, and compared with the performance of an independent human observer.

The images, manual annotations and results are available for the research com-

munity to facilitate further studies, and so is the AAM implementation [8].

The main conclusions are the following:

1. All methods produce results ranging from excellent to at least fairly ac-

curate for all five segmentation tasks considered, using the same settings

for all objects. This demonstrates the versatility and flexibility of general

supervised image segmentation methods.

2. The cardiothoracic ratio can be determined automatically with high ac-

curacy. Automatic CTR determination could be provided in a clinical

workstation.

3. The best method for lung field segmentation is PC, or a combination of

PC, ASM and AAM through voting - depending on the evaluation cri-

terion used; for heart segmentation voting among PC, AAM and ASM

outperforms other methods and the individual methods perform compa-

rably; for clavicle segmentation ASM produces the best results.
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4. A combination of ASM, AAM and PC through majority voting is in all

cases superior to the use of PC output as input for ASM or AAM.

5. For segmentation of both right and left lung, PC and voting perform better

than manual segmentation by an independent human observer although

the differences are not always significant. In all other cases, the human

observer performed significantly better than the best computer system.

For clavicles, the differences between computerized methods and a human

observer were largest. This indicates that accurate computerized segmen-

tation of clavicles and heart in chest radiographs is still an open problem.

6. Significant performance improvements for all five segmentation tasks were

obtained by tuning the parameters of ASM and by including information

from outside the object in the AAM. Refining the AAM result with a gen-

eral purpose optimization method improved performance for all objects

except clavicles. This shows that one must pay careful attention to pa-

rameter settings and variations on the basic algorithms that have been

proposed in the literature when applying ASM or AAM in practice.

7. The output of pixel classification can lead to ragged borders. A simple

post-processing stage decreases the error significantly for lung fields and

heart segmentation. The presented PC method obtains excellent results

in these tasks, despite its lack of a shape model.
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standard tested tuned

Shape model

align use Procrustes shape alignment true false - true false

fv variance to be explained .98 .95 - .999 .995

by the shape model

m bounds on eigenvalues 3.0 2.0 - 3.0 2.5

Appearance model

k points in profile on 3 1 - 9 5

either side of the point

Lmax resolution levels 4 1 - 6 5

Search algorithm

ns positions to evaluate on 2 1 - 9 2

either side of point

Nmax max. iterations per level 5 5 - 20 20

pclose convergence criterion .9 .9 - 1.1 1.1

Table 1: Parameters for ASM. The standard settings are the default values

suggested in [1]. The test range was used in pilot experiments to determine

optimally tuned settings. The tuned settings are in the last column. Note that

pclose > 1 means that Nmax iterations are always made.
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Figure 6: Mean shape deformation using 1st, 2nd and 3rd principal mode. bi = −3
√

λi, bi = 0, bi = 3
√

λi.
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Figure 7: Shape (left) and texture (right) eigenvalues in descending order.

Figure 2: Mean shape deformation obtained by varying the first three modes of

the shape model between -3 and +3 standard deviations.
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4

Figure 5: Independent principal component analysis of each model point.

Figure 3: Independent principal component analysis for each model point after

Procrustes alignment.
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Lungs µ± σ min Q1 median Q3 max
Hybrid voting∗ 0.949 ± 0.020 0.818 0.945 0.953 0.961 0.978
PC post-processed 0.945 ± 0.022 0.823 0.939 0.951 0.958 0.972
Human observer∗ 0.946 ± 0.018 0.822 0.939 0.949 0.958 0.972
PC∗ 0.938 ± 0.027 0.823 0.931 0.946 0.955 0.968
Hybrid ASM/PC 0.934 ± 0.037 0.706 0.931 0.945 0.952 0.968
Hybrid AAM/PC∗ 0.933 ± 0.026 0.762 0.926 0.939 0.950 0.966
ASM tuned∗ 0.927 ± 0.032 0.745 0.917 0.936 0.946 0.964
AAM whiskers BFGS∗ 0.922 ± 0.029 0.718 0.914 0.931 0.940 0.961
ASM default∗ 0.903 ± 0.057 0.601 0.887 0.924 0.937 0.960
AAM whiskers∗ 0.913 ± 0.032 0.754 0.902 0.921 0.935 0.958
AAM default∗ 0.847 ± 0.095 0.017 0.812 0.874 0.906 0.956
Mean shape 0.713 ± 0.075 0.460 0.664 0.713 0.768 0.891

Heart µ± σ min Q1 median Q3 max
Human observer∗ 0.878 ± 0.054 0.571 0.843 0.888 0.916 0.965
Hybrid voting∗ 0.860 ± 0.056 0.651 0.833 0.870 0.900 0.959
Hybrid ASM/PC 0.836 ± 0.082 0.430 0.804 0.855 0.889 0.948
Hybrid AAM/PC 0.827 ± 0.084 0.499 0.791 0.846 0.888 0.957
AAM whiskers BFGS 0.834 ± 0.070 0.510 0.791 0.845 0.882 0.967
PC post-processed∗ 0.824 ± 0.077 0.500 0.783 0.844 0.877 0.932
PC 0.811 ± 0.077 0.497 0.769 0.832 0.862 0.914
ASM tuned∗ 0.814 ± 0.076 0.520 0.770 0.827 0.873 0.938
ASM default∗ 0.793 ± 0.119 0.220 0.755 0.824 0.872 0.954
AAM whiskers∗ 0.813 ± 0.080 0.489 0.770 0.823 0.874 0.938
AAM default∗ 0.775 ± 0.135 0.026 0.733 0.806 0.860 0.947
Mean shape 0.643 ± 0.147 0.221 0.550 0.665 0.754 0.921

Clavicles µ± σ min Q1 median Q3 max
Human observer∗ 0.896 ± 0.037 0.707 0.880 0.905 0.922 0.952
ASM tuned 0.734 ± 0.137 0.093 0.705 0.776 0.822 0.912
Hybrid voting∗ 0.736 ± 0.106 0.091 0.701 0.762 0.801 0.904
ASM default∗ 0.690 ± 0.143 0.000 0.647 0.731 0.781 0.862
Hybrid ASM/PC 0.663 ± 0.157 0.033 0.595 0.712 0.773 0.891
AAM whiskers BFGS∗ 0.642 ± 0.171 0.003 0.588 0.689 0.761 0.861
Hybrid AAM/PC 0.613 ± 0.206 0.000 0.558 0.676 0.755 0.850
AAM whiskers 0.625 ± 0.171 0.000 0.578 0.674 0.728 0.870
PC post-processed 0.615 ± 0.123 0.223 0.554 0.639 0.706 0.837
PC∗ 0.618 ± 0.100 0.232 0.567 0.630 0.689 0.808
AAM default∗ 0.505 ± 0.234 0.000 0.393 0.575 0.679 0.834
Mean shape 0.303 ± 0.214 0.000 0.098 0.300 0.481 0.715

Table 2: Segmentation results for lungs, heart and clavicles, for each system
considered. All results are in terms of the overlap Ω, as defined in Eq. (4).
The systems are ranked according to the median Ω. A paired t-test has been
applied to each system and the system below it in this ranking. If the difference
is significant (p < 0.05), this is indicated with an asterix.
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Lungs µ± σ min Q1 median Q3 max
PC post-processed 1.61 ± 0.80 0.83 1.17 1.41 1.73 8.34
Hybrid voting 1.62 ± 0.66 0.85 1.27 1.45 1.78 7.72
Human observer∗ 1.64 ± 0.69 0.83 1.29 1.53 1.83 9.11
Hybrid ASM/PC 2.08 ± 1.40 0.91 1.41 1.68 2.09 11.57
Hybrid AAM/PC∗ 2.06 ± 0.84 0.99 1.56 1.85 2.25 7.31
ASM tuned 2.30 ± 1.03 1.07 1.62 1.95 2.62 7.67
AAM whiskers BFGS∗ 2.39 ± 1.07 1.15 1.78 2.13 2.61 12.09
PC∗ 3.25 ± 2.65 0.93 1.64 2.25 3.72 15.59
AAM whiskers∗ 2.70 ± 1.10 1.16 1.98 2.43 3.04 8.74
ASM default∗ 3.23 ± 2.21 1.17 1.92 2.52 3.78 16.57
AAM default∗ 5.10 ± 4.44 1.21 2.97 4.14 6.21 57.30
Mean shape 10.06 ± 3.18 3.50 7.68 10.00 12.05 23.77

Heart µ± σ min Q1 median Q3 max
Human observer∗ 3.78 ± 1.82 0.96 2.50 3.40 4.87 16.26
Hybrid voting∗ 4.24 ± 1.87 1.18 2.88 3.90 5.07 12.83
PC post-processed 5.20 ± 2.59 1.88 3.37 4.52 6.33 18.72
Hybrid ASM/PC 5.24 ± 3.10 1.47 3.37 4.58 5.86 24.94
AAM whiskers BFGS 5.30 ± 2.58 0.94 3.57 4.82 6.76 19.79
Hybrid AAM/PC 5.57 ± 3.06 1.27 3.36 4.93 6.86 19.84
ASM tuned 5.96 ± 2.73 1.91 3.86 5.47 7.36 16.55
AAM whiskers 6.01 ± 2.88 1.73 3.93 5.58 7.60 19.38
PC 6.38 ± 2.94 2.41 4.31 5.67 7.58 21.64
ASM default∗ 6.81 ± 4.65 1.30 3.82 5.68 7.92 34.32
AAM default∗ 7.72 ± 6.79 1.54 4.24 6.15 8.73 71.70
Mean shape 13.00 ± 6.55 1.84 8.18 11.93 17.13 35.39

Clavicles µ± σ min Q1 median Q3 max
Human observer∗ 0.68 ± 0.26 0.31 0.50 0.62 0.79 2.02
ASM tuned∗ 2.04 ± 1.36 0.55 1.26 1.58 2.24 9.13
Hybrid voting∗ 1.88 ± 0.93 0.66 1.32 1.61 2.19 7.92
ASM default 2.49 ± 2.02 0.92 1.51 1.95 2.74 24.52
Hybrid ASM/PC 2.78 ± 1.89 0.84 1.59 2.12 3.23 12.31
AAM whiskers BFGS∗ 3.02 ± 2.23 0.87 1.69 2.32 3.34 15.99
Hybrid AAM/PC∗ 3.49 ± 3.26 0.99 1.80 2.37 3.68 25.41
PC 2.83 ± 1.68 1.15 2.06 2.46 3.05 16.00
PC post-processed 2.90 ± 1.54 1.03 1.96 2.49 3.31 12.55
AAM whiskers∗ 3.38 ± 3.71 0.73 1.96 2.52 3.35 41.27
AAM default 6.30 ± 8.97 0.94 2.35 3.44 5.77 66.37
Mean shape 7.25 ± 4.24 1.87 4.60 6.39 8.82 33.67

Table 3: Segmentation results for lungs, heart and clavicles, for each system
considered. All results are in terms of the mean absolute contour distance,
given in millimeter. The systems are ranked according to the median mean
absolute contour distance. A paired t-test has been applied to each system and
the system below it in this ranking. If the difference is significant (p < 0.05),
this is indicated with an asterix.
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Lungs µ± σ min Q1 median Q3 max
ASM GS 0.93 ± 0.03 0.72 0.92 0.94 0.94 0.96
shape model fit 0.95 ± 0.02 0.76 0.94 0.95 0.96 0.97
AAM GS 0.93 ± 0.02 0.84 0.93 0.94 0.94 0.96

Heart µ± σ min Q1 median Q3 max
ASM GS 0.82 ± 0.08 0.50 0.77 0.82 0.88 0.95
shape model fit 0.94 ± 0.04 0.44 0.94 0.95 0.96 0.98
AAM GS 0.88 ± 0.05 0.66 0.86 0.89 0.92 0.96

Clavicles µ± σ min Q1 median Q3 max
ASM GS 0.74 ± 0.13 0.19 0.71 0.78 0.81 0.90
shape model fit 0.82 ± 0.06 0.35 0.80 0.83 0.85 0.90
AAM GS 0.72 ± 0.08 0.26 0.68 0.74 0.78 0.88

Table 4: Segmentation results for lung, heart and clavicles, using the tuned
ASM system initialized with the gold standard, fitting the shape model from
the ASM system directly to the gold standard, and the AAM whiskers system
initialized with the gold standard. These results provide upper bounds for ASM
and AAM systems. All results are in terms of the overlap Ω, as defined in Eq.
(4).

Lungs µ± σ min Q1 median Q3 max
ASM GS 2.18 ± 0.89 1.10 1.66 1.93 2.40 7.70
shape model fit 1.56 ± 0.59 0.95 1.27 1.45 1.66 6.73
AAM GS 1.93 ± 0.47 1.08 1.61 1.85 2.16 4.48

Heart µ± σ min Q1 median Q3 max
ASM GS 5.87 ± 2.93 1.40 3.77 5.61 7.47 17.00
shape model fit 1.67 ± 1.27 0.57 1.16 1.42 1.83 17.93
AAM GS 3.61 ± 1.53 1.11 2.50 3.38 4.51 10.98

Clavicles µ± σ min Q1 median Q3 max
ASM GS 1.99 ± 1.22 0.69 1.28 1.64 2.12 7.41
shape model fit 1.28 ± 0.53 0.64 1.00 1.19 1.40 5.25
AAM GS 2.05 ± 0.73 0.84 1.57 1.92 2.35 6.66

Table 5: Segmentation results for lung, heart and clavicles, using the tuned ASM
system initialized with the gold standard, fitting the shape model from the ASM
system directly to the gold standard, and the AAM whiskers system initialized
with the gold standard. These results provide upper bounds for ASM and AAM
systems. All results are in terms of the mean absolute contour distance, given
in millimeter.
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Figure 4: Box plots of the overlap Ω for lungs, heart and clavicles for all methods
considered. The corresponding numerical values are listed in Table 2.
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Figure 5: Box plots of the mean contour distance for lungs, heart and clavicles
for all methods considered. The corresponding numerical values are listed in
Table 3.
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#1 #82 #165 #247
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(.90,.94,.93,.92,.92) (.94,.94,.90,.90,.94) (.97,.95,.80,.70,.80) (.88,.86,.84,.72,.72)

A
SM

(.95,.97,.88,.85,.86) (.91,.95,.80,.66,.74) (.93,.94,.90,.66,.68) (.91,.58,.52,.13,.06)

A
A

M

(.95,.93,.77,.79,.86) (.94,.95,.89,.60,.74) (.96,.95,.84,.59,.61) (.93,.73,.76,.01,.20)

P
C

(.95,.97,.78,.85,.83) (.97,.96,.88,.75,.67) (.97,.96,.88,.42,.51) (.90,.85,.83,.38,.14)

V
ot

in
g

(.96,.96,.87,.87,.91) (.95,.95,.92,.69,.75) (.97,.97,.90,.67,.73) (.91,.91,.74,.13,.05)

Figure 6: Segmentation results for the gold standard, the second observer, the
best ASM, AAM, and PC systems, and the voting system which combines the
three latter systems, respectively. Four cases are shown ranging from easy
(left) to difficult (right). See the text for details on how this ranking has been
computed. Below each image the overlap Ω is listed for the right lung, left lung,
heart, right clavicle and left clavicle, respectively.
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Figure 7: Bland and Altman plots of the cardio-thoracic ratio computed from

the gold standard versus the second observer, ASM, AAM and PC. In the graphs

and below them the mean difference and the 95% confidence intervals (d̄−2σ, d̄+

2σ) are given.
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