
Master of Science Thesis

HTTP Application-level Intrusion Detection and Prevention
Fernando Álvarez Cabrera

Supervisor: Professor Robin Sharp

I would like to give special thanks to my parents Miguel A. Álvarez and Pilar Cabrera Adriano.
Thank-you for having supported me throughout all of these years.

I would also like to give special thanks to two dear friends of mine; David Delgado Gómez for
all his help and support during my stay in Denmark and to Paul Peter Schuster, “Just keep

swimming!”.

Abstract i

Abstract

Within computer security, intrusion detection is one of its key players. Intrusion detection is
commonly carried out at the lower levels of a network’s architecture. For example, the in-
spection of a TCP/IP packet’s properties. Intrusion detection systems have tried to analyze
content, for some time now, at an application layer of the network’s architecture. The results of
application-level analysis have not had much success. This document presents an application-
level intrusion detection system. The application-level protocol subject to analysis is HTTP.
The system is based on neural network technology for categorizing classes of known attacks.
The system is stateful enabled i.e. it is capable of correlating a sequence of suspicious HTTP
requests with their HTTP responses in order to detect temporal patterns of behavior. The system
also presents close to real-time analysis during the service of a client’s HTTP request, making
it a fast and robust preemptive analysis tool.

Acknowledgements iii

Acknowledgements

I would like to acknowledge my tutor, professor Robin Sharp. His patience and guidance helped
a great deal throughout the development of this project.

I would also like to acknowledge the open-source community. Most of the software tools,
if not all, used herein are within the Public domain. I sincerely hope that some day, I will be
qualified enough to provide the community with valuable software. For someone else, like me
now, to benefit from the availability and functionality of open-source software.

TABLE OF CONTENTS v

Table of Contents

1 Introduction 1

1.1 Overview . 1

1.2 Motivation . 1

1.3 Structure . 2

2 Domain Description 5

2.1 Intrusion Detection . 5

2.1.1 The CIDF Model . 5

2.1.2 IDS Analysis Techniques . 6

2.1.3 IDS Countermeasures . 7

2.1.4 IDS Localization . 7

2.1.5 IDS Fault Consequence Actions . 8

2.2 Application-level Communication . 8

2.3 HTTP Application Data . 9

2.3.1 Legal But Undesirable Activity . 10

2.3.2 Scripting Languages . 10

2.3.3 Illegal Resource Access . 11

3 System Analysis 13

3.1 Overview . 13

3.2 Existing Systems . 13

3.2.1 Titan . 13

3.2.2 SecureIIS . 15

3.2.3 Intelliwall . 15

3.2.4 WebSTAT . 16

3.3 Comparisons . 17

3.4 Neural Network Classification . 18

vi TABLE OF CONTENTS

3.4.1 Available Algorithms . 19

3.4.2 Selected Algorithm . 19

3.5 Requirements Elicitation . 20

3.5.1 System Requirements . 20

3.5.2 User Requirements . 23

4 System Design 27

4.1 Overview . 27

4.2 Logical Design . 27

4.2.1 Required Data-structures . 28

4.2.2 Required Functional Components . 28

4.3 System Architecture . 31

4.3.1 Kernel . 31

4.3.2 Data-structures . 32

4.3.3 Connection Manager . 38

4.3.4 CIDF Threads . 39

4.3.5 Logging Sub-system . 40

4.3.6 Manager Console . 40

4.4 Description Languages . 42

4.4.1 Feature Description Language . 42

4.4.2 Temporal Patterns Description Language 43

4.5 Behavioral Models . 44

4.5.1 System Start-up Activities . 45

4.5.2 System Training Activities . 45

4.5.3 System Testing Activities . 47

5 System Implementation 53

5.1 Overview . 53

5.2 Networking Environment Simulation . 54

5.3 System Class List . 55

5.3.1 IDS Kernel Class List . 55

5.4 System Class Documentation . 55

5.4.1 CIDFThread Class Reference . 55

5.4.2 CONNManager Class Reference . 61

5.4.3 DELAYEntities Class Reference . 64

5.4.4 FORBIDDENEntities Class Reference 67

5.4.5 IDSKernel Class Reference . 70

TABLE OF CONTENTS vii

5.4.6 IPIndex Class Reference . 74

5.4.7 NETIndex Class Reference . 75

5.4.8 SRCENTDat Class Reference . 76

5.4.9 SRCEntities Class Reference . 78

5.4.10 SYSData Class Reference . 81

5.5 Complications . 84

6 System Testing 85

6.1 Overview . 85

6.2 Testing Environment . 85

6.2.1 Equipment . 85

6.2.2 Auxiliary Applications . 85

6.3 Data Gathering . 86

6.3.1 Detection Efficiency . 88

6.4 System Timing . 88

6.4.1 Training Time . 89

6.4.2 Testing Time . 89

6.4.3 HTTP Request Service Time . 89

7 Further Developments 91

7.1 Overview . 91

7.2 Maximum Delay DoS Fix . 91

7.3 On-line Training . 92

7.4 Hand-off Scheme . 92

7.5 SSL HTTP Traffic . 93

7.6 Hash-table Over Vector . 93

7.6.1 First Case . 93

7.6.2 Second Case . 93

7.6.3 Conclusion . 94

8 Conclusion 95

8.1 System Efficiency . 95

8.2 Implementation techniques . 95

8.3 Closing Statement . 96

A Definitions and Abbreviations 97

A.1 Definitions . 97

viii TABLE OF CONTENTS

A.2 Abbreviations . 98

B Sample Configuration file 99

C FANNC Library 101

C.1 Overview . 101

C.2 FANNC Class List . 102

C.2.1 FANNC Library Class List . 102

C.3 FANNC Class Documentation . 102

C.3.1 Conn Class Reference . 102

C.3.2 DataErrorException Class Reference 104

C.3.3 FANNCDOM Class Reference . 105

C.3.4 FANNCNetwork Class Reference . 106

C.3.5 GaussConn Class Reference . 109

C.3.6 IICNeuron Class Reference . 111

C.3.7 InputNeuron Class Reference . 112

C.3.8 IOCNeuron Class Reference . 113

C.3.9 Neuron Class Reference . 115

C.3.10 NeuronIndex Class Reference . 116

C.3.11 OutputNeuron Class Reference . 118

D HTTP Parser Library 119

D.1 Overview . 119

D.2 HTTP Class List . 119

D.2.1 HTTP Parser Library Class List . 119

D.3 HTTP Class Documentation . 120

D.3.1 ENTHeader Class Reference . 120

D.3.2 GNLHeader Class Reference . 121

D.3.3 Header Class Reference . 122

D.3.4 HTTPRequest Class Reference . 123

D.3.5 HTTPRequestException Class Reference 125

D.3.6 HTTPResponse Class Reference . 126

D.3.7 HTTPResponseException Class Reference 128

D.3.8 Method Class Reference . 128

D.3.9 REQHeader Class Reference . 129

D.3.10 RESHeader Class Reference . 130

D.3.11 STATUSCode Class Reference . 131

TABLE OF CONTENTS ix

E FDL 133

E.1 Overview . 133

E.2 FDL Class List . 134

E.2.1 Feature Description Language Class List 134

E.3 FDL Class Documentation . 134

E.3.1 Add Class Reference . 134

E.3.2 Aexp Class Reference . 135

E.3.3 And Class Reference . 137

E.3.4 Bexp Class Reference . 138

E.3.5 Div Class Reference . 138

E.3.6 Eq Class Reference . 139

E.3.7 ExpLangObject Class Reference . 140

E.3.8 FF Class Reference . 141

E.3.9 Ge Class Reference . 142

E.3.10 Le Class Reference . 143

E.3.11 Mult Class Reference . 144

E.3.12 Not Class Reference . 145

E.3.13 Num Class Reference . 146

E.3.14 Sub Class Reference . 147

E.3.15 TT Class Reference . 148

E.3.16 Var Class Reference . 148

F TPDL 151

F.1 Overview . 151

F.2 Overview . 151

F.3 TPDL Class List . 152

F.3.1 Temporal Pattern Description Language Class List 152

F.4 TPDL Class Documentation . 152

F.4.1 TMPAexp Class Reference . 152

F.4.2 TMPBexp Class Reference . 153

F.4.3 TMPEq Class Reference . 154

F.4.4 TMPGe Class Reference . 155

F.4.5 TMPLe Class Reference . 156

F.4.6 TMPNum Class Reference . 157

F.4.7 TMPPattern Class Reference . 158

F.4.8 TMPVar Class Reference . 159

x TABLE OF CONTENTS

G Analysis Results 161

G.1 Overview . 161

G.2 Tables . 161

LIST OF FIGURES xi

List of Figures

1.1 Layered architecture of a TCP/IP network. 2

1.2 A set of IDS sub-systems interconnected providing precise views of the network’s state.. . . . 3

2.1 Main components in a CIDF Model. 6

2.2 Difference between host-based and network-based intrusion detection.. 8

3.1 String detection and filter description GUI window of Titan.. 14

3.2 Sample instructions from Apache’s configuration file Mod_Security section.. 15

3.3 Entercept’s interaction with the Web-Server and its environment.. 16

3.4 Intelliwall’s device architecture. This device may be switched between a networks sniffer to a

firewall-like specialized device.. 17

3.5 FANNCs Gaussian weight parameters.. 20

3.6 Reverse proxy like IDS filtering all traffic from and to clients. 21

3.7 Use-case scenarios for the countermeasures sub-system.. 22

3.8 If a source entity insists with suspicious requests, the system exponentially increases the response

delay. Every unit of delay is worth ten seconds.. 23

4.1 Main system data-structures components.. 28

4.2 Main system components including data-structures.. 29

4.3 System components required during system startup.. 29

4.4 System components required during training of the kernel’s neural networks.. 30

4.5 Functional components required during system testing.. 30

4.6 The Kernel’s layered architecture.. 32

4.7 Associative maps data-type abstraction.. 35

4.8 Required data-types of the Source Entities Container.. 36

4.9 Connection manager’s data-flow context diagram.. 38

4.10 Scenario for a DoS attack against the system’s Connection Manager.. 39

4.11 CIDF Thread’s data-flow context diagram.. 40

xii LIST OF FIGURES

4.12 Partial content of the system related log file.. 41

4.13 Partial content of the system related log file.. 41

4.14 Console output of user interaction, showing a user fetching the Dynamic Data-Structures’ content.42

4.15 Control-flow diagram for the CIDF Thread.. 47

4.16 Control-flow diagram for the CIDF Thread Events box.. 48

4.17 Pseudo-code demonstrating how HTTP request features are extracted.. 48

4.18 Control-flow diagram for the CIDF Thread Analysis box.. 50

4.19 Delay Source Entity functional components internal workings.. 51

4.20 Component interaction during stateless validation and the neural networks.. 51

4.21 Component interaction during stateful validation and the Source Entity container.. 52

6.1 Main system data-structures components.. 89

7.1 Vector VS. Hash, best case for vector data-structure.. 94

7.2 Vector VS. Hash, best case for the hash-table data-structure.. 94

LIST OF TABLES xiii

List of Tables

3.1 Conceptual comparison between some HTTP Application-level IDSs.. 18

3.2 Neural Network algorithm performance comparison during the Telling-Two-Spirals apart test.. 19

6.1 Relevant features extracted from anomal HTTP activity.. 87

6.2 Relevant features extracted from suspicious HTTP activity.. 88

G.1 Content size and usage features extracted from sample anomal HTTP request Request-Lines.. . 161

G.2 Content size feature extracted from sample anomal HTTP request Request Header fields.. . . 162

G.3 Content size feature extracted from sample anomal HTTP request Request Header fields.. . . 162

G.4 Content size features extracted from sample anomal HTTP request General Header fields.. . . 162

G.5 Content size features extracted from sample anomal HTTP request Entity Header fields.. . . . 163

G.6 Content size features extracted from samples anomal HTTP request Add-on Header fields.. . . 163

G.7 Content size and segment frequency analysis from sample anomal HTTP request bodies.. . . . 163

G.8 Method distribution from signature-based misuse HTTP request Request-Lines.. 164

G.9 Content size and segment frequency analysis from sample signature-based misuse HTTP request

Request-Lines.. 164

G.10 Content size feature extracted from sample signature-based misuse HTTP request Request Header

fields. 164

G.11 Content size feature extracted from sample signature-based misuse HTTP request General Header

fields. 164

G.12 Content size feature extracted from sample signature-based misuse HTTP request Entity Header

fields. 164

G.13 Content size feature extracted from sample signature-based misuse HTTP request Add-on Header

fields. 165

1

Chapter 1

Introduction

1.1 Overview

The problem that this M.Sc. Thesis will address, are the issues presented while analyzing
application-level network traffic for intrusion detection. The application-level protocol that is
the subject of analysis is HTTP. An application-level IDS (Intrusion Detection System) is pre-
sented. The IDS was developed, in parallel with this document, in order to prove the stated
concepts. The system is based on neural-network technology, and is composed of a series of
sub-systems intercommunicating to provide fast and precise intrusion detection. The analysis,
design and testing of the individual sub-systems along with their inter-workings as a whole
system, will be described in the following chapters.

1.2 Motivation

As information systems evolve, and the direct or indirect interaction of humans with these in-
formation systems increases, a necessity for secure communication mediums raises. Commonly
the term secure communication, is only focused towards a user perspective i.e. the client-side
within a client-server application context. Although, the integrity of data received by a partic-
ular process offering a service i.e. server-side, is just as important to the service’s availability.
How fault-tolerant are information systems towards erroneous data sent to them? Accounting
that it could be a user sending erroneous information; due to a faulty application or with a delib-
erate intention in mind. Can agents be automatized to efficiently monitor the information flow
between two or more parties and prevent the disclosure of restricted information?

Considering that modern network architectures such as the Internet, follow layered archi-
tectures e.g. TCP/IP figure 1.1. Information exchange between two or more entities happens at
different conceptual levels. Ranging from raw physical data, to higher abstract application data,
e.g. e-mails and HTTP requests.

There are a few techniques used to automatize an agent to monitor network traffic on such
a network architecture. It may sound reasonable to have one agent or various sub-agents mon-
itoring the different content from each layer. In the latter case, each sub-agent monitoring at
the corresponding layer that they are built for, e.g. a network-level sub-agent monitoring raw

2 Chapter 1. Introduction

Application Layer

Transport Layer

Internet Layer

Network Access
Layer

Transfer of physical data.

Transfer of datagrams and
data routing.

End-to-end data transfer

Transfer of application data,
such as e-mail.

Figure 1.1:Layered architecture of a TCP/IP network.

TCP, UDP and ICMP packages and an application-level sub-agent monitoring FTP transactions.
Ideally, each of these sub-agents should not only monitor data flow at their level, but also in-
tercommunicate. The data exchange between the sub-agents grants a more precise view of a
network’s state. An example of such an interconnected scheme is depicted in figure 1.2.

These monitoring agents are formally known as IDSs. Within a network schema, a network-
level IDS is known as NIDS (Network Intrusion Detection System). These are designed to mon-
itor transport layer datagrams and are, in many cases, unaware of data-exchange at higher levels
of the network’s architecture. The unawareness is due to NIDSs’ requirements specification.

Within the NIDS family, an attempt has been done to incorporate different layer-level mon-
itoring features. This multi-layered proposal raises an interesting issue within the field of in-
trusion detection. Are NIDSs capable of recognizing intrusions at a higher level of a network’s
layered architecture? For example, one aimed at taking advantage of a service’s poorly de-
signed protocol. Can the NIDSs understand the semantical properties, at an application-level of
the network’s architecture, of data-flow and not only its syntactical properties?

Up until now the most common method of analyzing application-level information, by
NIDSs, is a regular expression (character sequence) search within network traffic. This method
is also known as rule-based analysis or rule-based filtering. There are a few disadvantages with
rule-based analysis; NIDSs will not categorize highly sophisticated intrusions at an application-
level. They are unable to interpret the possible attack scenarios, for all available application-
level services. This disadvantage leads to NIDSs presenting a high false-positive rate during
analysis of application-level data i.e. categorizing abnormal but benevolent data-flows as suspi-
cious ones. This high rate is due to application-level services widely varying in scope. Hence,
data that for one type of service is of no particular interest may mean a security breach for
another.

1.3 Structure

The structure of this M.Sc. Thesis is divided into eight chapters. Being chapter three through
eight the ones that describe all aspects of the application-level IDS developed throughout this
project. It is recommended that appendix A be consulted for clarifications on definitions and
abbreviations while reading this document.

1.3. Structure 3

Figure 1.2:A set of IDS sub-systems interconnected providing precise views of the network’s state.

Chapter two, provides some basic theoretical background used to introduce IDS notions
and features. It starts off by providing some background on IDS paradigms. The CIDF frame-
work is briefly described since it conforms to the main architecture that has been chosen for the
application-level IDS. Then an introduction to application-data along with some examples, fol-
lowing with HTTP specific application-data connotations. This chapter provides the backbone
for most ideas behind the system analysis carried out in chapter three. The IDS background
provided should also correlate to a basic understanding of the problem domain.

Chapter three describes the analysis process including IDS requirements elicitation. In this
section available tools under public and private domain are reviewed in order to get a broader
idea during the requirements gathering phase. Some pros and cons are mentioned for each
of the tools reviewed. In the last section of this chapter some neural network algorithms are
mentioned. The IDS developed herein depends greatly on its classification capabilities, which
is why a neural network approach is used. Then the algorithm used by the IDS will be briefly
described.

Chapter four provides the system design describing the specific configuration chosen for
the application-level IDS along with a system architecture. Not only one particular architecture
is used for the IDS. The design is broken up into the various functional components and sub-
systems. All of these are described with different architecture types. Using different kinds of
architectures, provided more flexibility during the design phase. All of the interconnections
between system components are presented in this chapter. In the end, behavioral models for all
functional components are either described with pseudo-code or depicted.

Some of the implementation issues that were encountered are presented in chapter five. Main
class hierarchy diagrams are provided in this chapter. Why a certain style of programming was
chosen will be described along with the associated programming concepts used. The system
was developed using object-oriented techniques, and some examples of applied concepts are;
how inheritance and polymorphism were integrated into the system to facilitate implementation
tasks. The prototype implemented is not fully functional, it proves the stated concepts but is not
integrated into a true networking environment. How the networking environment was simulated
will be described in this section.

Chapter six presents, from the different tests performed, the most relevant ones that support
all final conclusions. The physical environment i.e. what types of devices were used along with

4 Chapter 1. Introduction

all auxiliary applications. How all testing data was obtained is also described e.g. how coherent
neural network training and testing data was gathered to measure the accuracy of the IDS. The
timings that the system achieves are presented in this chapter, e.g. the system’s training time as
well as the system’s request testing time. In the last section of this chapter the system’s detection
efficiency achieved is presented.

Considering that the final system delivered is at a prototype stage, chapter seven presents
some further developments that could be incorporated into the system. Some of these further
developments would be an essential requirement if the system was aimed at guarding a set of
heavily loaded Web-Servers. Some of these issues include the schema that could be used under
a hand-off scenario. Hand-off scenarios are when multiple Web-Servers are used to service a
particular site. Also some system kernel improvements are mentioned such as; on-line training
and the fix for a DoS attack against the IDS itself.

The last chapter presents all final conclusions on several aspects of this project. For example,
the feasibility of deploying the proposed system on a truly concurred web-server. After these
aspects are discussed, a final statement is given on the general development of this project.

All additional software used or implemented for this project, is presented in the appendices.
The user interface to these additional libraries i.e. how these libraries are used in user programs,
is the main content of these last sections.

5

Chapter 2

Domain Description

2.1 Intrusion Detection

Intrusion detection is one of the main branches in computer security technologies. This disci-
pline tries to effectively detect whenever users attempt or succeed, in accessing an unauthorized
service provided by a particular system. The reasons for unauthorized accesses vary, among
these, the most common is access to undisclosed information. IDSs should, in conjunction with
other security components form part of a so-called secure network. IDSs along with coopera-
tion from other security components, provide vital information to the network managers. Which
helps in getting an overall picture of the activities happening in the network.

IDSs may be categorized by various properties, for example the type of analysis that the
IDS performs, such as anomal or misuse (signature-based) analysis. Within misuse or anomal
analysis, the activities that take place can be interpreted as a single events or a series of them.
This leads to stateless and stateful analysis.

After reviewing the various components of the CIDF, IDSs may also be categorized by the
types of countermeasures that are perform i.e. preemptive or passive actions. The localization
of an IDS is also used as a valid classification property i.e. network-based or host-based IDSs.
The last set of properties mentioned herein, is how an IDS behaves when it reaches a faulty
state within itself. This means whether the system is fail-open or fail-close. All of the above
mentioned including the CIDF model will be explained in the following sub-sections.

2.1.1 The CIDF Model

The CIDF (Common Intrusion Detection Framework) model is the essential set of blueprints
under which most intrusion detection systems are built. It is composed of four main components
which are depicted in figure 2.1.

Figure 2.1 also shows the interconnections among these components through which specific
data flows. The different components represent an IDS’s internal functional parts. The four
components are:

• An event gatherer , which is constantly listening on an event medium.

6 Chapter 2. Domain Description

Analisys (A)

Countermeasures
(C)

Events (E)

Storage (S)

Event Source

Figure 2.1:Main components in a CIDF Model.

• A storage component which logs all relevant IDS activity.

• An analysis component which decides if attention should be paid to a given event or
not. This component will also trigger certain countermeasures depending on what it has
concluded from an event.

• A countermeasure component, which will take measures against malicious events.

For trivial reasons, among all of these components, the analysis component is probably the
most important. This component, given that the others work in accordance to their specifica-
tions, will determine the worth of an IDS. What is it really capable of detecting?

2.1.2 IDS Analysis Techniques

When an IDS is capable of stateful inspection, it takes into account the timing of events. Unlike
stateless analysis, most rule-based systems, where if an event matches a given rule it is dealt
with. The problem with stateless analysis is that highly sophisticated attacks are impossible to
detect. Sophisticated attacks are conformed by a series of events not just one. So a chain of
events must first be identified to successfully detect the intrusion. A good example of stateful
attacks, are distributed DoS (Denial of Service) attacks. A problem that stateful IDSs present
though, is that they can be the subject of the attack. A metaphor to help understand this problem,
is the TCP SYN attack. Where a host will continue to send SYN TCP packages, even after
receiving the corresponding ACK TCP package. In the attempt to overflow the destiny’s SYN
buffer.

A different type of analysis is when the IDS is capable of detecting usual (anomal) behavior
in the system that it is monitoring. Anything out of these predefined bounds is detected, and the
relevant countermeasures taken. The main problem with anomal analysis is that, it raises a high
number of false-positives. Making it hard to distinguish between real attacks and benevolent
data that is not common to the system. The counter-pose, is if the IDS is capable of detecting
the individual attacks themselves (signature-based) instead. The problem with misuse analysis
though, is that it is not possible to model all attack scenarios. With the growth rate that the
Internet is subject to, new attacks are constantly arising. So the modelling of attack scenarios
will always be a step behind, subject to what is already existent.

2.1. Intrusion Detection 7

2.1.3 IDS Countermeasures

The type of countermeasures taken can differentiate an IDS by whether it be a preemptive or a
passive system. When a system is only built to raise alarms and notify the appropriate identities,
it is called a passive system. Passive systems are sensor-like systems, where if a determined
event triggers a sensor an alarm is raised. In the event of an attack these systems generate data
which is later used for forensics examination. Passive systems can be best seen as observers that
are monitoring data between two or more parties. Most IDSs on the market today behave in a
passive manner. One of the problems with these systems is that, it may take just one event to
bring down the target of an attack.

Preemptive systems on the other hand, behave like filters. Where there is no time to raise
alarms, the actions which cause faulty system behavior have to be spotted beforehand and con-
tained before they reach their intended destiny. The main disadvantage that preemptive systems
present is that in an excessive security policy, a service’s availability can be affected, resulting
in an annoyed group of users.

2.1.4 IDS Localization

The localization of an IDS is another important factor while categorizing. The main two cate-
gories are host-based systems and network-based systems.

Host-based IDSs, reside in the same machine where the service is being offered. These IDSs
can have a very good idea of which data is being directed towards a given service. There are no
network data desynchronization problems between the IDS and the destiny service with these
IDSs. These IDSs are built into the application which they are monitoring, as a sub-system. This
property allows the IDS to even monitor encrypted data being sent to the service. A depiction of
the idea may be seen in figure 2.2. The only problem with these systems is that they cannot have
a broader view of the events happening throughout the entire network. This affects distributed
networks, where several machines are used to offer different services. Sophisticated intrusions
sometimes take advantage of this network layout, and not only target single services but several
of them. An issue that sometimes drives attention away from host-based IDSs, is the impact
that they will have on the machine offering a given service. If it is a very concurred service,
it may be necessary that it be offered by a single machine. Therefore, having another process
monitoring on the same machine, may affect its performance.

The other type of IDS localization is network-based, also depicted in figure 2.2. These sys-
tems are laid out somewhere in the network, monitoring all traffic. Sometimes these systems
are actual specific hardware devices that may only receive data through their network interfaces.
This helps in making them invisible to the rest of the network, since no response will be obtained
from them. The main problem that these systems present, which is also the main argument for
the application-level IDS built herein, is data desynchronization. Thomas H. Ptacek,et al. [3],
proved that the data received by a service and a network-based IDS, may be tampered with by
means of insertion/evasion techniques. What this means is that the IDS will not receive the
same data that the service does. Making application-level attacks impossible to detect. An-
other considerable problem is that these systems are of little or no use while trying to monitor
encrypted information within a packages content.

8 Chapter 2. Domain Description

IDS
Program

Host-based System

Client
Computer

Server
Computer

Server
Computer

Network-based System

Client
Computer

Server
Program

IDS
Device

Figure 2.2:Difference between host-based and network-based intrusion detection.

Some network security policies try to find the compromise between using both types of
IDSs. In this system layout, the various IDSs, will communicate with each other. This helps
avoid the individual problems that each present.

2.1.5 IDS Fault Consequence Actions

What is meant by an IDS fault consequence action, is relevant to which actions will be taken
once a fault occurs within the IDS. If the IDS comes to a faulty state, where it cannot continue
to monitor events. Should the service that it is monitoring still be available or not? The two
approaches to this issue, are fail-open and fail-close IDSs. Fail-open IDSs will leave the network
open, accessible, after failure. This may be a security compromise, since once the IDS is brought
down, the services are left vulnerable to intruders. Fail-close systems on the other hand, will
take the services that it is protecting off-line after failure. This seems like the best approach, of
the two, from a tight security point-of-view. The problem is that if the IDS is not implemented
correctly, faulty situations may constantly arrive due to strange but benevolent network traffic.
This will seriously affect the availability of the service.

2.2 Application-level Communication

Recalling the layered network architecture mentioned above, the application-level is the upper-
most layer . This layer resembles the highest abstraction form of communication, where applica-
tions communicate by means of their protocols. An application’s protocol defines; the sequence
of actions that must be followed, in order to achieve successful data exchange between two or
more entities following the same protocol. At this level of the layered architecture, applications
communicate without notion of all data exchange happening in the inferior layers. For example,
in an FTP transaction, the FTP-Server and clients are unaware of the TCP packages being sent
to and from them. The server and clients just have notions of the FTP commands that they
receive or send once a connection has been established. Connections between applications are
handled at OS level. It is the OS’s responsibility to manage the lower level communication of
the network’s architecture. Application commands are normally in the form of lines of strings
(arrays of character sequences). The command’s functional specification, are defined by the

2.3. HTTP Application Data 9

application protocol.
Once the concept of application-level data has been established, application-level vulnera-

bilities may be better understood. An example of what is not an application-level vulnerability,
is the corrupt sequence of TCP packages trying to accomplish a Denial of Service (DoS) attack,
at an OS buffer level. A good example of an application-level attack is when a certain character
sequence is sent, with special meaning to the application. The character sequence might not
mean anything at an OS level, but it may disrupt the applications normal behavior. For exam-
ple, the stated character sequence might make the application return more information than it
really should. These vulnerabilities are normally the result of application misconfiguration or
application design or implementation errors.

Hence, application-level IDSs should analyze the final content that an application receives
to its input. Not the bits and pieces that conform the process of sending and receiving data.
As it may have been expected, application-level IDSs, are highly dependent on the functional
specification of the protocol which the monitored application functions on. Although a strict
IDS policy in analyzing just application-level content might prove to be a disadvantage at times.
While analyzing application-data within a stateful context, a useful technique for marking re-
quest is by its source and destiny IP field. This data can be accurately obtained from the Internet
layer. On the other hand, a useful technique for spotting distributed DoS attacks, is by marking
a client’s request by content, instead of its addressing. So a compromise should be deducted
from what the IDS being designed shall be capable of detecting.

2.3 HTTP Application Data

A particular protocol, that has been a case of study for application-level IDS development, is
HTTP (Hypertext Transfer Protocol) [11] i.e. relevant to Web-Servers and related applications.
The reason behind giving such importance to a single protocol, is that Web-Services are nor-
mally, the main gateways between an organization’s presence on the Internet and the general
public. Hence, making all types of Web-Services access points to an organization’s assets. Even
if the organization is protected by gateway firewalls, Web-Services will normally be accessible
from a DMZ∗ of an organization’s computer network.

There was a survey conducted by the SecurityTracker team [10], during the period of April
2001 until March 2002. The total number of application software vulnerability alerts raised,
during the establish period of time, were classified. From the total of raised alerts on application
software vulnerabilities, 22.8% belonged to web-oriented applications. A total of 21 different
categories of application alerts where identified, and web-oriented ones came in second place.
A peculiar observation from this survey, is that the category of alerts that came in first place, at
25.9%, had no specific category. These where all the applications, that due to their functional
specification could not be classified under a more general family. In third place, at 9.4 %, came
alerts raised for security oriented applications e.g. firewall software and anti-virus software.
These facts lead to believe, that really some of the most vulnerable services are those offered by
Web-Servers and related applications. Having more time and effort being used, by private and

∗The Internet is normally regarded as a DMZ.

10 Chapter 2. Domain Description

public domain companies, for the development of Web-Servers and related applications then
toward other types of applications. Hence, these applications are outnumbering the amount of
applications within other categories.

It is important to differentiate between vulnerabilities and exploits that are identified in an
application. Vulnerabilities are the cause of the faulty behavior, while an exploit is the actual
effect (the faulty behavior). A classification is needed in order to efficiently take the appropriate
countermeasures against intrusions. The classification can be for the various causes or the var-
ious effects. Sometimes within an application’s vulnerabilities and exploits, the sets of causes
and effects are associative. That is, a cause can cause several effects and an effect may be present
due to several causes.

Next an underlining set of underlying HTTP vulnerabilities are presented. Due to the nature
of the HTTP protocol, related vulnerabilities and exploits are associative. The set of HTTP
related effects is inferior, in number, to that of the causes. There are two main effects that an
intruder is after within a Web-Server or its related applications.

• Granting undesired/illegal access to a system and its data.

• Denying a certain service offered by a system.

If the classification is generated by effects, it would be too general. An outcome of this general-
ization is that the task of an analysis component (CIDF) of classifying becomes longer in time
and inefficient. A less general classification method would be by the causes of the mentioned
effects. This classification is divided into three classes of causes.

• Legal but undesirable activity within HTTP.

• Vulnerabilities within scripting languages.

• Illegal resource access.

2.3.1 Legal But Undesirable Activity

At times, there may be singular (outlandish) use of the HTTP protocol. A good example of
outlandish use of the protocol is the hexadecimal encoding of characters. The intended purpose,
that this feature was built into the protocol, is for special keyboards that do not have international
language support. The vulnerability though, is that when a character or a sequence of them
are encoded, a network-level IDS, might not detect any irregularity other than “arbitrary” data
flowing to an application.

2.3.2 Scripting Languages

Vulnerabilities that are normally found between the Web-Server and the sub-system supporting
the scripting language. They normally exploit some misconfiguration or a lower implementa-
tion error, such as buffer overflows. The scripting language that is most often targeted is CGI.
Although misconfiguration problems are also a high target for intrusions. All scripting lan-
guage sub-systems will normally present these misconfiguration vulnerabilities in their default

2.3. HTTP Application Data 11

installation configuration. For example, PHP , ASP , ASP.NET and Javascript . This general
class of vulnerabilities in scripting sub-systems, can be broken up into more specific classes, for
example:

• SQL injections, where a user will have partial or complete access to undisclosed informa-
tion. This is achieved by passing faulty SQL commands to a scripting sub-system.

• Cross-Site scripting, where an intruder can obtain information from a third party. That is,
another user using the breached Web-Server.

• Buffer overflows, where a user will be able to execute commands with the privileges of
the Web-Server. At the same time this vulnerability grants a user access to undisclosed
information. This vulnerability is strongly related to the next category of vulnerabilities.

2.3.3 Illegal Resource Access

This type of vulnerability causes can be summarized in three main categories. These categories
are presented with some more specific examples.

1. Access failure to protected resources are caused by:

• Path manipulation, where an intruder may be trying to obtain an overview of the
system’s file structure, and map-out installed vulnerable web-applications.

• Password guessing, where an intruder may be trying to access undisclosed informa-
tion.

• Overloading the system and generating a DoS scenario.

2. Access failures to inexistent resources are caused by the same vulnerabilities as above,
except for password guessing.

• User guessing, where an intruder will try to map existing user-names in the system
by guessing a Web-Server’s home directories. For example, in the Apache Web-
Server these would be directories which precede the user-name with a tilde,

http : //servername/ ∼ username

3. Access failure to server error-prone resources. That is, resources that cause faulty behav-
ior within the server. These are caused by the same vulnerabilities as accesses to inexistent
resources.

13

Chapter 3

System Analysis

3.1 Overview

After having presented the domain description, there is a broader idea of the environment in
which the IDS will perform its activities. In this chapter, existing systems are analyzed to
gain knowledge of what kind of functionality fully deployed application-level IDSs, monitoring
HTTP traffic, provide. The knowledge gathered from these existing systems along with the
domain description can then be used to elicit system requirements. These requirements, as
will later be presented, are broken up into two categories; all required functionality towards an
end-user and that which the IDS must meet as a system, to perform in its environment.

3.2 Existing Systems

From the existing systems presented in this document, there are three main families. Those that
function under strict pattern matching, rule-based systems. Those systems that try to correlated
stateless events within an HTTP request with the OS system calls that the Web-Server will
make during the processing of the request. More advanced systems that function under pattern
matching as well, but where patterns are not elicited from rules (regular expressions), but request
features i.e. Neural Network-based classification systems. The last group of systems, are those
that are oriented towards a pure stateful analysis of incoming and outgoing HTTP traffic events.

3.2.1 Titan

The Titan software system is an application developed and commercialized by Flicks Software
[15]. This tool is a signature-based stateless IDS. It behaves like a firewall wrapped around
Microsoft IIS. Titan may be categorized as a host-based system, since in its specifications it
must be installed in the same computer where the web-server resides.

This tool behaves like a firewall in that through its user-friendly GUI, figure 3.1∗. The system
administrator specifies rules that the IDS will look for in an HTTP request. The signatures

∗The figure was obtained from [15].

14 Chapter 3. System Analysis

Figure 3.1:String detection and filter description GUI window of Titan.

that Titan looks for are defined strings which if found tick off the alarms and relevant counter
measures taken. The evaluated version of Titan, does not support the description of regular
expressions . Another system that behaves in the alike of Titan i.e. a firewall-like system, is
Apache’s Mod_Security [16]. This system provides more flexibility in describing rules since
it supports searching for POSIX defined regular expression. This system is embedded into the
Apache Web-Server. A sample configuration can be seen in figure 3.2†.

From this sample configuration file, there are three sample rules listed. The first rule helps
in preventing XSS tampering of Web-Sites. It checks all incoming variables for JavaScript
allowing only the HTML variable to have such values. The second rule is used against port
scans, searching for the existence of the HTTP User-Agent and Host header-fields. If these are
not present the request is dropped. The third rule specifies that all dropped rules (deny) shall be
logged and responded with a 500 Server-Error Status-Code response.

The inconvenience with both of these host-based systems, is that they do not keep track of
certain events that have occurredi.e. they do not perform stateless inspection. It is left up to the
administrator to be clever enough to realize that a sophisticated attack is taking place based on
the logs generated by these systems. The fact that these systems are host-based, do not make
them optimal for a heavily loaded Web-Server. Although pattern matching does not consume
many resources, these systems may affect the performance of a server within the order of tens
of thousand hits per second e.g. one of Google.com’s Web-Servers.

†These sample instructions were obtained from [16].

3.2. Existing Systems 15

3.2.2 SecureIIS

This tool is within the family of IDSs along with AppliCure TotalShield [19] and McAfee En-
tercept Web-Server Edition [17]. These tools add-on an extra feature to that of signature-based
stateless inspection of HTTP Request. They correlate the system calls made to the OS during an
HTTP transaction. These systems do perform some sort of stateful analysis in that a certain set
of established system calls are recognized as an intrusion. An example of this type of behavior
is presented in figure 3.3‡.

<IfModule mod_security.c>
...

SecFilter "ARGS|!ARG_html" "<[:space:]*script"
SecFilterSelective "HTTP_USER_AGENT|HTTP_HOST" "^$"
SecFilterDefaultAction "deny,log,status:500"

...
</IfModule>

Figure 3.2:Sample instructions from Apache’s configuration file Mod_Security section.

SecureIIS [14] is embedded into Microsoft IIS, as AppliCure TotalShield is into the Apache
web-server. McAfee’s Entercept can be embedded into these two Web-Servers as well as into
iPlanet’s Web-Server. All three provide an advanced friendly GUI, through which an administra-
tor can customize the behavior of the system. These systems are host-based, not only embedding
themselves between the WWW client-server communication but also in between the server and
the OS. These systems have a considerable impact on the a Web-Server’s performance, which
makes the suitable for a small to medium sized Web-Server in terms of hits per second.

These systems are fail-close systems, meaning that if the IDS is compromised it will bring
the Web-Server completely out of service. Not only disallowing access to the the Web-Server
from the DMZ, but disallowing any sort of Web-Server access to system resources such as;
databases and file-systems. These systems, in relation with their modus operandi and localiza-
tion, are preemptive. Although most of them may be switched on sniffer mode. Sniffer mode, is
used for logging purposes, where data is used after an intrusion has taken place. This analysis
technique is considered as forensics examination, and is the common mode that most NIDSs
operate under.

3.2.3 Intelliwall

The system that seems to be fitted best for large-scale Web-Servers and has one of the more
general classification techniques is Bee-ware’s Intelliwall [12]. This network-based IDS, sits on
a specialized device either under sniffer mode or serving as a firewall-like system 3.4§. Intelli-
wall is the only system, from the ones mentioned, that includes neural network technology for

‡The figure was obtained from [17].
§The figure was obtained from [12]

16 Chapter 3. System Analysis

classifying anomal and misuse HTTP requests. The system also presents a GUI through which
a system administrator can interact with it.

Figure 3.3:Entercept’s interaction with the Web-Server and its environment.

This is system is highly portable since it can be used with any Web-Server. It does not affect
the performance of the Web-Server since all computations are done on its intended hardware
device. This system differentiates between anomal and misuse events, by the extraction of
certain features from all incoming events. This property makes the system a very powerful
classification tool. The only feature that Intelliwall does not present is that it does not correlate
sequences of events. It “learns” to accurately detect stateless events, by having two lists of
predefined anomal and misuse events. But from the specifications presented in [12], it does not
correlate client requests with server responses. This technique allows a system to model client
behavior.

3.2.4 WebSTAT

This last tool, is built around the STAT framework [18]. The STAT framework is an intrusion
detection set of tools that operate at different levels of the networks architecture, and then in-
tercommunicate to reach accurate conclusions. This system is based on automaton models of
misuse scenarios which are hard coded into a the application-level IDS. More than WebSTAT
itself, the STAT framework is a powerful utility around which IDSs can be built. The only in-
convenience with this framework is its complexity and its poor adaptability to future trends of
net traffic once put into applications.

The reason behind this poor adaptability is that the scenarios, modelling stateful inspection,
are hard coded into the system. WebSTAT is a host-based system which is embedded into into
the Apache Web-Server. It has a surprising low impact effect on the Web-Server’s performance.
In the average case affecting the total HTTP transaction time by less than 0.5% of its original

3.3. Comparisons 17

Figure 3.4:Intelliwall’s device architecture. This device may be switched between a networks sniffer to a firewall-
like specialized device.

time.

3.3 Comparisons

Most of the system comparisons could only be made at a conceptual level. In table 3.1 the most
relevant IDS paradigms are presented from each of the above mentioned systems. Where there
is a reference to the “switch” value, it means that the IDS can switch between one value or the
other mentioned. For example, Intelliwall can function as a preemptive device or as a passive
analysis tool. From the systems shown, non present true stateful analysis of HTTP traffic, except
for WebSTAT. The type of stateful analysis is based on the correlation of HTTP requests and a
Web-Server’s resource usage (system calls). The false-positive rate of these systems could not
be tested on all. It was only tested on Mod_Security, and Titan since most of these tools are
withing the private domain.

Most information gathered for those systems that could not be tested, was from their cor-
responding white-papers (data-sheets). From which concrete data could only be extracted for
Intelliwall. One of the most interesting features from this system is the amount of requests that
it can process per second, twenty five thousand. From the systems that were tested, Titan and
Mod_Security, they function in a similar manner. Both systems presented a high level of false-
positives since they are based on string-based regular expression matching algorithms. Although
all well known attack were acknowledged. It should also be noted that from the systems that
do present stateful inspection (AppliCure, Entercept and SecureIIS), it is not a stateful inspec-
tion correlating Web-Server response status-codes with requests. It is through the correlation of
system calls and client requests. This helps in preventing critical future intrusions, i.e. buffer
overruns (BoF). But is of not much use for detecting events implicit to the HTTP protocol itself.

18 Chapter 3. System Analysis

For example, the indirect disclosure of restricted information.

Localization Counter Analysis Fail Mode Embedded

Intelliwall network-based switch stateless switch own device
WebSTAT host-based passive stateful fail-open Apache
SecureIIS host-based switch stateful fail-close IIS
Titan host-based switch stateless fail-close IIS
Mod_Security host-based preemptive stateless fail-close Apache
Entercept host-based preemptive stateful fail-close Apache, IIS and iPlanet
Applicure host-based preemptive stateful fail-close Apache

Table 3.1:Conceptual comparison between some HTTP Application-level IDSs.

All of the systems except Mod_Security presented GUIs as an interface to the system.
Mod_Security’s user interface is through a sequence of instructions present in the Apache con-
figuration file. Those systems that did present GUIs, make user interaction more intuitive than
that of Mod_Security’s. The way that the system communicates events to the user is done
through log file in Mod_Security. While on other systems they may be either log files or GUI
notifications.

3.4 Neural Network Classification

The technology that should be used for this system is based on neural networks. As opposed
to that of traditional pattern matching-based categorization systems, neural network-based cat-
egorization systems present a higher level of scalability, adaptability and accuracy. The reason
behind these enhancements is that neural-network systems have the ability to be trained to recog-
nize related sets of data. The recognition process with neural-networks is not done by traditional
pattern matching. It is done by finding features representative of the data that needs to be clas-
sified. A draw-back with neural-network technology is that finding representative features is a
time consuming process. Which is later paid back in terms of recognition speed and accuracy.

The use of neural-network algorithms for an intrusion detector is ideal since the IDS is really
a classification system. The power that is delivered by classifying suspicious events by domain
related features, provides accuracy levels that are not delivered by ordinary pattern matching
systems. The scalability that neural network systems provide, from classifying between small
sets of data to large ones do not bring loss of accuracy to the system.

The adaptability that neural network system present is fundamental under the HTTP domain.
Web-applications vary greatly in content, as mentioned earlier in this document. What may be
classified as misuse behavior for one type of web-application might be sane content to another.
Therefore, with the training ability that neural network systems present, they can be adapted
to almost any environment. Again it their training ability that also makes them less sensible
to changes in future trends of requests. Neural networks can be retrained or instances of new
significant training data added to what the system already knows.

Neural Networks also have another advantage over conventional pattern matching algo-
rithms. Neural Networks are not sensible to noise, i.e. these algorithms can recognize given

3.4. Neural Network Classification 19

patterns even when the exact training pattern is not available. Unlike pattern matching algo-
rithms that can only provide exact matches of their coded patterns.

3.4.1 Available Algorithms

There are a wide variety of algorithms implementing neural network theory available. These
can be classified by different aspects. One of these being how the neural network is trained. The
type of training is considered either supervised or un-supervised . Given that a basic notion on
neural network theory is understood, supervised training is where the algorithm is fed not only
a set of inputs but also an associated set of outputs. Unsupervised learning on the other hand,
the algorithms are only provided with stimulus i.e. input data. The algorithms job is to find,
given certain criteria within the networks internal setup, different classes of categories within
the input data.

Associating a set of inputs with known outputs is what makes neural network algorithms
of interest to the given domain. It is the wide variety of web-application data-flows that have a
meaning to one application and a different one to another. Therefore, an algorithm implementing
supervised training is required, in order to customize the IDS for the Web-Server’s context of
operation.

Training set Test set Training time Test time
accuracy accuracy (s) (s)

FANNC 100% 100% 523 1
Fuzzy ARTMAP 100% 99.1% 537 1

CPM 100% 62.9% 435 4,179
SuperSAB 95.5% 94.7% 6,923 9

Table 3.2:Neural Network algorithm performance comparison during the Telling-Two-Spirals apart test.

From the available algorithms that where reviewed, there were representatives of ART
(Fuzzy ARTMAP), from Field Theory (CPM), a mixture of ART and Field Theory (FANNC)
and a representative from Back-propagation (SuperSAB) [6]. From an experiment performed on
all four families of algorithms Telling-Two-Spirals-Apart Zhihua Zhouet al. [6] , the results are
displayed on table 3.2¶. From these results it may be seen that the FANNC algorithm is not only
one of the most accurate ones during testing but also one of the fastest. Considering the tight
real-time constraints that the IDS, described herein, must meet during an HTTP client-server
transaction. In the following sub-section, the FANNC algorithm is over-viewed.

3.4.2 Selected Algorithm

The selected algorithm is FANNC (a Fast Adaptive Neural Network Classifier). This algorithm
is based on supervised learning and is and requires one-pass training to achieve high predictive
accuracy. FANNC is also characteristic for its high learning as well as testing speed. The neural
network is divided into four layers: an input layer, an internal classification layer, an external

¶This results table was obtained from [6].

20 Chapter 3. System Analysis

classification layer and an output layer. Initially the algorithms hidden layers are empty and as
new data arrives units are adaptively appended.

Threshold

Theta (center)

Alpha (variance)

1

0

Figure 3.5:FANNCs Gaussian weight parameters.

The idea behind the FANNC algorithm is that it starts creating multi-dimensional basins
out of each training instance of data fed to the system. Each training instance containsn input
units. Each input unit is modelled with a Gaussian weight , figure 3.5. As the learning process
begins the basins representing data input will be modified. Their width and center are modified
as similar instances of data are arrive. If the data is too different, and cannot be covered by the
current basin, new ones are inserted. For a detailed description on how the algorithm is designed
refer to 3.5.

3.5 Requirements Elicitation

The following sub-sections will discuss, in a structured manner, the requirements that the HTTP
IDS must fulfill. These requirements range from a user’s perspective to the functionality that the
HTTP IDS must provide as a black-box system. The elicitation process has been done through
the knowledge gained from; the problem’s domain description and functionalities that existing
systems provide. Note that, the requirements are itemized without a particular notation e.g. PDL
language. No PDL was used due to flexibility within the elicitation process. It has proved to be
less time-consuming to describe and modify the requirements with natural language rather than
with a PDL.

3.5.1 System Requirements

System requirements are broken up into three categories: the system’s localization, its depen-
dence on a particular Web-Server or OS and its behavioral models. Behavioral models describe
the type of analysis the system should be capable of performing. In response to analysis how the
system will react under positive and negative findings. Another aspect of the systems behavior
is its fail-mode i.e. how should the system react under an internal faulty state. These system
requirements are described in the following sub-sections.

3.5. Requirements Elicitation 21

3.5.1.1 Localization

The system should act as a host-based IDS being physically localized as a network-based IDS.
The system should benefit from both network and host-based advantages. The IDS should have
a specific hardware device assigned to it. The hardware device may range from a stand-alone
computer to a customized hardware device. The IDS should behave, by default, like a reverse-
proxy.

W3IDSWeb Server ...

System and
Analysis Log files

Predifined Port (80)

Localhost Port
Communication

Port (80)
Port (80)

Port (80)

Figure 3.6:Reverse proxy like IDS filtering all traffic from and to clients.

In a reverse-proxy setup 3.6, the IDS is place in between the clients and the servers. All
traffic is buffered in the reverse-proxy, in this case analyzed and then forwarded to its destiny.
Notice that NIDS evasion/insertion techniques do not apply under a reverse-proxy setup. All
information that the reverse-proxy receives it forwards to its intended destiny. Therefore, clients
cannot connect directly to the servers avoiding data desynchronization. A reverse-proxy scheme
adds another indirect level of protection to the servers. It hides, at a transport layer-level, their
IP addresses making public only that of the reverse-proxy’s.

3.5.1.2 Portability

The system should not be dependant on any particular Web-Server. It should be implemented
as an independent entity which analyzes traffic outside of a Web-Servers API. As mentioned in
the previous requirement it is implemented as an external entity, the reverse-proxy setup, to the
Web-Server. This allows the IDS to coexist with a wide variety of HTTP/1.1 compliant Web-
Servers. The IDS residing on a different hardware device other than the Web-Server, opens a
wide range of possibilities of OSs for the IDS to run on.

3.5.1.3 Behavior

• System Analysis- The system should be capable of combining a stateless form with
a stateful form of analysis. The stateless form of analysis should be used to identify
suspicious and potentially harmful individual client requests. During stateless analysis the
neural networks’ classification capabilities are exploited. After these have been trained
with representative data of a suspicious activity’s features, they should raise the proper

22 Chapter 3. System Analysis

alarms during testing. User defined suspicious activity features should be elicited with
the help of auxiliary tools. These tools will be presented in the following chapters.

If an alarm is raised, the proper actions should take place in order to commence stateful
analysis. Stateful analysis should only start, if the features extracted from the request
do not form part of a user defined feature blacklist. The system should record before
stateful analysis starts: the clients IP address, the type of alarm that its suspicious request
has raised and the server responses that it received. With the correlation of these three
data-types, the system should search for user-defined temporal patterns. For example, if
a stateless alarm has been raised, by the same client IP address, receiving more than fifty
server response 404 Client-Error status codes take relevant countermeasures. Significant
temporal patterns should also be obtained through auxiliary tools.

Request
Request

Response
W3-Server

W3-IDS

W3-Client

Request
Request

W3-Server
W3-IDS

W3-Client

Request
Request

404 Response
W3-Server

W3-IDS

W3-Client

Response

Response

Response

Response

Figure 3.7:Use-case scenarios for the countermeasures sub-system.

For the temporal patterns to be of use, these must not only classify events by client IP
addresses but also by the types of stateless alarms raised. This form of classification will
provide data necessary to avoid several types of distributed intrusions. This is where the
term source entityis introduced. Asource entitycontains a client IP address, an alarm
number and a Web-Server associated response Status-Code. These two properties charac-
terize the clients request under the current environment. The system must have notions to
keep track of all suspicious activity by interpreting suspicious requests as source entities.
For a better understanding of this concept refer to the kernel data-structures section in
chapter 4.

• System Countermeasures- The type of countermeasures that the system takes are two
types; the logging of events and interception of data-flow. That is, if a request is found to
meet critical criteria it is filtered and the client should then receive a decoy response. In
this case a 404 Client-Error Status-Code instead of a more informative response. It has
been shown that informative responses are giveaways of the existence of an application-
level IDS somewhere in-between the Web-Server and the clients. In most cases, resulting

3.5. Requirements Elicitation 23

as an invitation for the intruder to instigate more on the system’s network layout. In order
to detect temporal patterns, the system must forward those request that are only found
suspicious but not critical. This behavior is modelled in figure 3.7.

If a request is found to be critical (some of its features belong to the blacklist) or a tempo-
ral pattern has been met, the decoy response is not sent immediately. A delay is associated
to the source entity, which grows in an exponential manner as the the source entity’s item
(an IP address or alarm number) insists. The system’s exponential response delay behav-
ior is shown in figure 3.8. In order to avoid a DoS against the system itself, their should
be a user-defined maximum delayed time. This maximum response delay time is a sys-
tem parameter. After the source entity’s item has reached its maximum delay it should be
marked as a forbidden source entity item. In which case, an immediate 404 status code
response is sent back and the connection to the client computer closed.

• System Fail-Mode- It would not make much sense for the system to be fail-open, if it
was going to be used for more than a passive informative analysis tool. Due to the systems
reverse-proxy requirement, if the system encounters an undesired state, the Web-Servers
are taken off-line. Fail-close systems have a critical draw-back inherent to their design. If
they are poorly designed and implemented, they become an indirect form of DoS towards
anomal server requests.

 0

 5

 10

 15

 20

 25

 30

 0 2 4 6 8 10

R
es

po
ns

e
D

el
ay

 (
10

 s
)

Source Entity’s Suspicious Requests

Responsive Exponential Behavior

exp(x)

Figure 3.8: If a source entity insists with suspicious requests, the system exponentially increases the response
delay. Every unit of delay is worth ten seconds.

3.5.2 User Requirements

The first step in eliciting user requirements is establishing a user profile for the system. The
system is aimed at an experienced system/network administrator. The system administrator
should have average knowledge of the HTTP protocol. At least to the point of knowing what
each of the standard message headers, methods and response-status codes mean. The interaction

24 Chapter 3. System Analysis

between the system and user, should be at a system configuration level and internal data status
reports. These requirements are described as follows:

1. The user must be provided with some means of interacting with the system. The interac-
tion should allow the user to modify certain aspects of the IDSs behavior. The interface
should also allow a user to obtain knowledge on the system’s internal data status. The
interface should be provided in the form of either a configuration file and a graphical or
console-based user interface.

2. The configuration file shall help the user define some of the system’s parameters at system
startup. For example, the ports where the system will listen for client requests or the
number of neural networks used to classify. This configuration file shall have a basic text
format. It should also have a set of well defined options that the user can specify. An
example file can be seen in appendix B, and its available options will be described in the
following chapters.

3. Given the neural network-based nature of the IDS, the configuration file should have a sec-
tion where the user can describe request features. These features extract relevant HTTP
request information, which is then fed to the neural networks for content inspection. For
example, a request’s feature could be the content size of an HTTP request header. The
presence of the particular header can also be regarded as a request’s feature. These fea-
tures should be described in a structured manner, for example, boolean or arithmetical
expressions.

4. The configuration file should provide a section where the user can specify the neural
network training data. This data should be provided in the form of individual files. Each
file containing the training input that representing a class of suspicious behavior.

5. The configuration file should provide a section where a user can define a feature blacklist.
This blacklist allows the user to describe well known request featurese.g.the presence of
the"/etc/passwd" or "DROP%00TABLE%00*" strings in the URL content. These features
should also be described in a structured manner by the user.

6. The configuration file should provide a section where a user can specify temporal patterns.
These temporal patterns define the correlation of client requests with their responses.
These correlations help a user identify certain forms of intrusions and information disclo-
sure. These temporal patterns shall be specified by the user in a structured manner. The
user should specify these temporal patterns as boolean expressions.

7. The user interface, whether it be graphical or console-based shall be of an informational
manner. Later as will be discussed in chapter 7, this behavior should be modified for
IDS management purposes. The user interface should present, in a formatted manner, the
status of the system’s internal data-structures. A good option for presenting data is the
XML markup language. XML could allow the access of system information remotely,
from a web-based environment, in a secure manner.

3.5. Requirements Elicitation 25

8. In addition to the user interface, the system shall provide the user with a logging facility.
The logging facility shall record events in real-time regarding not only request analysis. It
should also record relevant system events, for example, the events occurring during sys-
tem startup and run-down. These logs, should help the user during analysis providing data
generated by the request analysis process. System logs provide the user with information
during forensics examination. This information is useful, in the event that the IDS reaches
an undesired state it cannot recover from.

27

Chapter 4

System Design

4.1 Overview

Throughout the system design, all conceptual ideas for implementing the ideas proposed in
chapter 3 are presented. These are either explained with pseudo-code, described or depicted.
The depictions include commonly used techniques such as: layered architecture diagrams,
control-flow diagrams, data-flow diagrams and client-server architecture diagrams.

Design is divided into three main section. The first one enumerating the necessary compo-
nents that will be required during system implementation. This part of system design is also
considered as logical design. The principle technique used during logical design was brain-
storming. The second section explains in detail each of the components identified during the
brainstorming phase. The third and last section, describes how all system functional compo-
nents interact with system data structures. The interaction between functional components is
also described.

During brainstorming, functional components are sub-divided into four categories. The first
category involves the system’s back-bone functional components. The relevant data-structures
form part of the system’s back-bone. Due to the neural network nature of the system, the next
three categories involve actions that are required during: system start-up, training and testing.

After logical design, specialized depictions are used for components identified during brain-
storming. These are mainly the architecture-descriptive diagrams mentioned above. For exam-
ple, how the IDS’s kernel is organized or what components form the system’s data-structures.

In last section system component interaction is depicted mainly by control-flow diagrams.
The diverse algorithms used are, in some cases, described with pseudo-code.

4.2 Logical Design

This section mentions most of the components that the IDS shall need during its design. All
system and user requirement gathered in chapter 3, are used as a foundation during brainstorm-
ing. There are two main classes of logical components; system data-structures and functional
components. Within the following diagrams, all data-structures have a light gray background
color while processes are depicted with a violet background color. Since the IDS is based on

28 Chapter 4. System Design

neural network technology, functional components are split-up into three types. All components
required upon system startup, during system training and system testing.

Neural Networks
Container

Source Entities
Container

Delayed
Source Entities

Container

Features
Container

Temporal
Patterns
Container

Blacklist Features
Container

Forbidden
Source Entities

Container

Figure 4.1:Main system data-structures components.

4.2.1 Required Data-structures

The system’s data-structures, figure 4.1, are sub-divided into two groups. The first group is
composed of dynamic while the second are static system data-structures . The first group, are all
of those data-structures that are modified in size during run-time. These data-structures are the
Source Entity Container, theDelayed Source Entity Items Containerand theForbidden Source
Entity Items Container. The static group of system data-structures are those that are created
upon system start-up. These data-structures will not be modified during run-time, they remain
as read-only containers. The remaining data-structures, theFeatures Container, theBlacklist
Features Container, theTemporal Patterns Containerand theNeural Networks Container, form
the static group.

4.2.2 Required Functional Components

In figure 4.2 the system’s back-bone functional components are presented. These are: theIDS’s
Kernel , theConnection Manager, theService Request CIDF Threads, theManager Console
and theLogging Sub-system.

The main functional components, required during system start-up, may be seen in figure
4.3. Start-up is characterized by the data-structure initializers, both static and dynamic. After
the system loads all of its parameters with theKernel Parameter Extractor, it begins all ini-
tializations. Initialization includes generating the static data-structures i.e. theNeural Network
Container, theFeatures Container, theBlack-list features Containerand theTemporal Patterns
Container. It includes the system reserving memory for dynamic data- structures. And reserving
all required network sockets from the OS and initializing them. Notice that theNeural Network

4.2. Logical Design 29

Connection
Manager

Service Request
CIDF Threads

Manager Console

Logging
Sub-system

IDS Kernel

Figure 4.2:Main system components including data-structures.

Trainer is presented like a main component during start-up. It is not really a major component,
since it forms part of theStatic Data-structures Initializer. That is why it is out-lined with a
dotted line, unlike the others. The importance of this component, is remarked from trying to
divide the systems behavior into three phases: a start-up, training and testing phase.

Dynamic
Data-structures

Initializer

Static
Data-structures

Initializer

IDS Kernel
Setup

Neural Network
Trainer

Kernel Parameter
Extractor

Networking
Facilities
Initializer

Figure 4.3:System components required during system startup.

Considering future system enhancements, the abstraction of anNeural Network Trainer
functional component should be considered. Simplifying the task of the neural networks on-
line training. From figure 4.4 the functional components required for training are presented.
TheTrain Data Fetcheris in charge of fetching data from specified files. Given the functional
specification of the FANNC library, developed in parallel with this project, data must be scaled
between zero and one before it is fed to the neural networks. Therefore, aTrain Data Scaleris

30 Chapter 4. System Design

required. For the actual training, of the objects within theNeural Network Container, a series
of threads are required. To measure system performance, a form of temporal measurement is
required during the training phase. These are theTemporal Cost Measurement Utilities.

Train Data
Scaler

Train Thread
Launcher

Temporal Cost
Measurement

Utilities

Train Data
Fetcher

Figure 4.4:System components required during training of the kernel’s neural networks.

The core components of the IDS is the functional components required during system test-
ing. These components model a modified version of the architecture proposed by CIDF. The
main component within system testing is aConnection Manager Initializer. This component is
in charge of launching aService Request CIDF Threadeach time a client requests a connection.
The components within a CIDF Thread are, theEvents Box, theAnalysis Box, theCounter Box
and theStorage Box. In order to measure the temporal cost efficiency of the system, certain
Measurement Utilitiesare needed.

Storage
Box

Events
Box

Conn. Manager
Initializer

Analysis
Box

Counter
Box

Temporal Cost
Measurement

Utilities

Service Request CIDF Thread

Figure 4.5:Functional components required during system testing.

4.3. System Architecture 31

As with system training, while using the neural networks for testing, multiple threads are
used. Therefore, the measurement utilities help in evaluating several aspects of the testing pro-
cess. For example, the average time in which the system is capable of handling an HTTP
client-server transaction. Other relevant evaluation parameter, are the time in which the neural
networks perform their analysis and the time required to evaluate temporal patterns.

4.3 System Architecture

The components that were mentioned during the logical design phase are now described in
detail. The required system data-structures are broken down into data that will be need to meet
the established requirements. How the data-structures are organized will also be presented.
Functional components will be broken down into sub-processes that intercommunicate. This
process decomposition will be presented with the help of data-flow diagrams. Not only will
sub-process interconnections be shown, also the data exchange among them.

The following conventions are used for the data-flow diagrams presented in the following
sub-section. All input/output entities are presented as slanted boxes with a light violet back-
ground color. All functional components are presented as circles with a light blue background
color. All internal system data is presented as a formatted box with a light gray background
color. The tagged arrows indicate the direction of component data-flow.

4.3.1 Kernel

The IDS’s kernel, within an object-oriented abstraction, is an object that holds the main func-
tional components. It also holds the system’s data-structures, providing the functional compo-
nents an access to these data-structures. The IDS’s kernel provides the Manager Console with an
interface through which information can be extracted. The MCI (Manager Console Interface),
figure 4.6, is a set of defined methods. Through these methods, the Manager Console extracts
statistical as well as data-structure status information from the Kernel. The Kernel is responsible
for the sequence of start-up events, this includes the training of its neural networks.

If on-line training mode was supported by the kernel, it would be responsible for switching
from training mode to testing mode and vice-versa. Through the MCI, the kernel would receive
the relevant command to make the testing phase stop. After all testing components were stopped
the kernel would proceed with the training phase.

During the training phase the kernel is in charge of all neural network threads spawned. The
kernel holds an internal container with each of the thread IDs. This internal ID list is required
so that the kernel knows when all of the threads have finished. After which the kernel can either
start or switch back testing mode.

4.3.1.1 Manager Console Interface

The kernel’s MCI is characterized by a set of methods that are publicly available to the Manager
Console wrapper, figure 4.6. These methods are:

• A method to extract the status of the neural networks internal state.

32 Chapter 4. System Design

W3-Client

W3-Server

Data-Structures

MCI

CIDF Logs

System Logs

IDS Kernel

W3-IDS (Manager Console)

MCI

Connection
Manager

CIDF
Thread

User

Figure 4.6:The Kernel’s layered architecture.

• A method to extract the status of the Source Entity Container.

• A method to extract the status of the Delayed Source Entities Container.

• A method to extract the status of the Forbidden Source Entities container.

• If on-line training is supported, a method to notify the connection manager that training
is about to begin. Hence the Connection Manager should pause all of its activity.

• A method to indicate the kernel that the IDS is shutting down. Therefore all allocated
memory should be freed and all live threads either joined or killed.

These set of methods are the only components publicly available to the Console Manager
wrapper. There for the CMI remains for informational purposes only and shutting the system
down.

4.3.2 Data-structures

System data-structures are divided into two classes; the static and dynamic data-structures. The
main difference, as mentioned earlier, is that static data-structures are created during system
start-up. These do not grow in size as the system begins its analysis process. Whereas the
dynamic data-structures are initially empty. As suspicious events and forbidden source entities
are found during the analysis process, these data-structures increase in size. Notice that if on-
line training was supported, the Neural Network Container would have to be a dynamic data-
structure instead. Since the data-structure components would increase in size each time training
instances were added.

Both dynamic and static data-structures must be protected with semaphores during system
testing. Multiple CIDF Threads will solicit to access the data-structures’ components. Since
this project has been developed an object-oriented technique; several threads could ask, at the

4.3. System Architecture 33

same time, to execute one of the data-structures element’s methods cause inevitable a faulty
state within the system. This particular problem could have serious effects when computing the
Neural Networks’ output.

4.3.2.1 Static Data-structures

These are the features container, the blacklist features container, the temporal patterns container
and the neural networks container. These data-structures are generated during system start-
up and are customized with the system parameters read from the configuration file. Both the
features and blacklist features containers are closely related to the neural networks container.
The size of the both the features containers determine the amount of input that each component
within the neural networks container will have.

• Features Container - The features container is set of user-defined features which are
specified in the configuration file, appendix B. These features model the properties that
wish to be extracted from each client HTTP request. The features container is a vector
that contains as many components as have been specified. Each component contains a
data element which is the string representing the feature and a method under the function
domain as shown bellow. Each component may be seen as a parser engine. This extract
method requires a special HTTP request object and the string line resembling the feature.
These are the features that are used as training and testing data for the neural networks.

features : String;
extract : S tring x HTT PRequest→ R;

Notice one of the parser engine arguments is of type HTTPRequest. An HTTP message
parser was written to fulfill the requirements of this project. The HTTP parser receives
as input a single String or several of them. Then it tries to structure the contents of its
string into HTTP jargon. Its contents can then be easily accessed by other components
making use of it. The parser supports both types of HTTP messages i.e. requests and
responses. The full specification of how this additional library is used can be found in
appendix (HTTP Parser).

Feature definition makes use ofFDL (Feature Description Language), developed for this
project. The extract member method implements the parser engine for FDL. WithFDL
a user can declare features, within the configuration file, in a structured manner. The
description language allows the user to declare certain boolean and arithmetic expressions
that model features. Its complete specification is presented in the following section. An
example FDL expression is; a user-declared feature that models the size of the User-Agent
field in a request. The syntax for this expression would be:header.User-Agent.size. FDL
models several types of features that may be extracted from a request,e.g.if a request-field
contains a defined regular expression, the occurrences of a string within a request-field or
the presence of certain request-fields. In section (Behavioral Models), how the feature
extraction process is carried out will be described in detail. It is through FDL, that the
user can customize the security policy of the application-level IDS.

34 Chapter 4. System Design

• Black-list Container - these features are also declared using FDL . These are treated in
a different manner by the system. Only FDL boolean expressions may be declared as
black-list features. An example black-list feature is:

header.Cookie.regex(*< html javascript*)

The above feature is an FDL boolean expression. When this feature is extracted if the
regular expression, enclosed within the parenthesis, is found in the Cookie header-field
theextractmethod returns its interpretation of true. Boolean values are interpreted as real
numbers; a one for true and zero for false.

• Temporal Patterns Container - The temporal patterns container, is analogous to the fea-
tures container. It is also a vector that contains objects which represent temporal patterns.
Each component of this vector has the same structure as those of the features container.
Except that theextractmethod, the parser engine, receives different parameters and be-
haves in a different manner.

This container is used to find meaningful data between the correlation of suspicious source
entities and server responses. The source entities container will be described in the fol-
lowing sub-section, along with the dynamic data- structures.

tmp_pattern : String;
extract : S tring x S RCENTContainer x S RCENT Item→ boolean;

Another description language was developed in order to search for user-defined temporal
patterns within the source entities data-structure. This is the TPDL (Temporal Patterns
Description Language) and this description language is also presented in the following
section. TPDL is composed solely of boolean expressions. As can be seen from the
parser engines arguments, it receives a user-defined temporal pattern, the source entity
bin and the data modelling a suspicious request. For example, a user could specify that a
suspicious chain of events was characteristic by an IP address that had tipped off the same
alarm more then fifty times. Receiving each time a Server-Error response (5xx). This
temporal pattern is declared with the following instruction;

NET.Server-Error.5xx> 50

Another example instead of searching by indexed IP addresses, in order to recognize a
distributed attack, perform the search by indexed alarms that have been tipped off by
certain addresses. Receiving in each case more than seventy Client-Error (4xx) status-
codes within the server response. This temporal pattern is declared with the following
instruction;

IP.Client-Error.4xx> 70

4.3. System Architecture 35

4.3.2.2 Dynamic Data-structures

These are all of the data-structures that are initially empty, and as analysis is carried out begin
to increase in size. These include theSource Entity Container, the forbidden source entity items
container and the delayed source entity items container. A fundamental building block of the
dynamic data-structures is the Source Entity abstraction.

alarm_id : Integer
ipaddr : String

status_code : String

The alarm_id is used to tag the alarm that went off. Neural Networks are abstracted as
alarms, and the one which generates the highest output value, is interpret as a sounding alarm.
Output is generated from the input request features. If none of the neural networks generate
output greater than zero, then none of the alarms have been activated. Theipaddr data member,
holds the IP address of the client that tipped off one of the alarms. Thestats_codedata member
contains the value of the status-code within the server response. Notice that if a request is
considered suspicious but not critical it will be forwarded to the server.

All of the dynamic data-structures hold two types of indexes. In order to associate alarm
IDs, IP addresses and status-code responses, there must always be one index for suspicious
IP addresses and another for suspicious alarms set off. This is clarified in the following data-
structure descriptions. A relevant data-type abstraction used for all dynamic data-structures is
that of an associative map. These are also commonly known as hash-tables and the concept is
shown in figure 4.7.

Content 0Key 0

Key 1

Key n

Content 1

.

.

.

Content n

Associative Map Containers

Figure 4.7:Associative maps data-type abstraction.

Hash-tables help accelerate lookup time, since elements are not indexed by position. Ele-
ments are indexed by unique keys, therefore lookups are performed with constant temporal cost
O(T) = const, while with other traditional data-structures used, for example vectors, lookup
times grow depending on the containers size i.e. a lineal search temporal costO(T) = n, where
n resembles the size of the vector.

36 Chapter 4. System Design

• Source Entities Container - this data-structure should be used to store two sub-
containers. Both of these sub-containers store suspicious requests along with their source
host IP addresses and the associated server responses. The difference is that one data-
structure shall be indexed by host IP addresses and the other by suspicious requests. Two
different sub-containers are required to avoid vulnerabilities against distributed attacks.
That is why an IP address that originates a suspicious request as well as the suspicious
request shall be categorized as source entities. As was described in the previous sub-
sections, temporal patterns can be specified for either IP addresses or suspicious a number
of times that an alarm has been set off. To get an idea of the layout, these data-structures
are depicted in figure 4.8.

Host IP 0

1

4

404 404 403

Host IP 1

2

Neural Net 1

IP 0

IP 1

Neural Net 3

IP 1

404 404

500

404 404 403

500 404 501

404 403 403

Figure 4.8:Required data-types of the Source Entities Container.

The advantage of having two different sub-containers is that the system shall not be vul-
nerable to distributed attacks, where IP addresses are spoofed. The system can categorize
by both host IP addresses and by the output of the neural networks. The only disadvantage
will be the temporal cost of lookups in both sub-containers for temporal patterns. Suspi-
cious requests are enumerated by the number of the neural network that has recognized
the request as suspicious.

Each element in the IP indexed sub-container is defined as:

ipaddr : String
alarm_ents : Map(Integer x Vector(String))

Client IP addresses are interpreted as Strings. Thealarm_entsis an associative map (Hash
table), where each key is a unique alarm id and its associated content a vector with cor-
responding server responses. This data abstraction relates to IP addresses the alarms that
they have sounded off. With each alarm the status-code that the server responded with.
A vector is used because an IP address can sound off the same alarm several time in a

4.3. System Architecture 37

given time frame. Each time the server response status-code must be recorded in order to
successfully implement the temporal patterns concept.

Each element in the Alarm indexed sub-container is defined as:

alarm_n : String
ip_ents : Map(String x Vector(String))

In this sub-container the way that data is related is by which addresses have sounded off

an alarm, and each time what server response status-code did those IP address get. Notice
that both of these sub-containers are associative. All data that is contained in one will be
in the other. Except that it will be ordered (interpreted) in a different manner.

• Delayed Source Entity Items Container- This data-structure also contains two sub-
containers. One to index source entity items by IP addresses and another by alarm number.
This data-structure is used to keep track of those source entity items that should receive
a delayed404Client-Error status-code server decoy response. A source entity item that
meets this requirement may be because it is an IP address that has sent a request that
contained features from the blacklist or eventually met one of the user-defined temporal
patterns. The source entity item may also be an alarm number that has met one of the
user-defined temporal patterns. That is, if alarm is on the delayed list because some
clients have tipped it off, and it has met one of the user-defined temporal patterns. When
a new client connects and it sounds off this delayed alarm. The new client will receive a
delayed decoy response according to the temporal delay associated with the alarm.

delayed_ips : Map(String x Double)
delayed_alarms : Map(Integer x Double)

Thedelayed_ipsdata member is a hash-table which uses as keys IP addresses. Thede-
layed_alarmsdata member uses as keys alarm numbers. The associateddouble floating-
point number with each key, is a delay time. This is the decoy response delay that should
be enforced as a counter-measure against critical Source Entities. Thedelayed_alarms
uses as keys the alarm numbers.

• Forbidden Source Entity Item Container - This data-structure follows the same sub-
division, as the other two dynamic data-structures. The forbidden entity items container
is used to place all of those delayed source entity items that have met their maximum
user-defined delay time. The reason behind this data-structure is to avoid an DoS attack
against the IDS itself. This DoS attack is described in the following sub-section.

forbidden_ips : Map(String x Integer)
forbidden_alarms : Map(Integer x Integer)

38 Chapter 4. System Design

The forbidden_ipsdata member is a hash-table which uses as keys IP addresses. The
forbidden_alarmsdata member uses as keys alarm numbers. The associated The asso-
ciatedIntegervalue with each key is the number of times that a forbidden source entity
item has attempted to access the system, in case its an IP address. In case its a forbidden
alarm number, the number of times that it has been sounded off. A source entity item is
placed in this container if it has met its maximum delay time in the Delayed Source Entity
Items. This behavior models the handling of a persistent HTTP client request, either by
origin (IP address) or because it has sounded an alarm too many times. With exponential
increasing response delays, an intruder is highly probable to become disinterested in their
persisting with faulty requests. There are check-ups during the testing control-flow. In
these check-ups if a clients associated source entities are forbidden, a404 Client-Error
status-code is immediately sent and the client connection is closed.

4.3.3 Connection Manager

The connection manager is in charge of listening for client connections. This component re-
trieves all of its networking information from the kernel’s parameters. For example, where the
hidden web-server resides or what port to listen for client connection requests at. When a client
connection request arrives, the connection manager, launches a CIDF thread to service it. The
data-flow from the connection manager to the CIDF threads is presented in figure 4.9. The con-
nection manager must give each service thread the address of all system data-structures. These
are wrapped up in an object, a main class hierarchy diagram is presented in chapter 5. It must
provide the thread with the file descriptor of the granted clients connection. It must provide the
service thread with the whereabouts of the Web-Server.

W3-Client
Connection

Listener

CIDF Thread
Launcher

Kernel
Parameters

TCP/IP Connection
Request

@Data-structures x
file descriptor x

W3-port

Done

System Logs

Connection
Log

Figure 4.9:Connection manager’s data-flow context diagram.

Internally the connection manager also keeps certain data-structures to measure temporal
parameters. Auxiliary OS dependent libraries have been used, these are discussed in chapter
5. These temporal parameters are extracted by the kernel’s MCI for their visualization. The
total client service request time is measured, the amount of connections established as well as a
averages of both of these parameters. Another function of the Connection Manager is to log any

4.3. System Architecture 39

relevant activity in the system log files. The connection logs are a sequence of formatted strings
that are written immediately to the system log file.

The connection manager does not make use of a thread pool for the launched CIDF Threads.
If the IDS is on a specific hardware device, the use of a thread pool would be desired. Using
a thread pool with the type of countermeasures that the system carries out, may lead to a DoS
attack against the Connection Manager. This DoS attack is depicted in figure 4.10. The scenario
implies that the intruder Joe knows that there is an application-level IDS between him and the
Web-Server. He also knows the internal workings of the IDS. The intruder could potentially
fill up the thread pool with threads, that must response with a certain delay time. This would
deny service to Mary, who is not an intruder. She could expect to wait from her arrival, at most
the user-defined maximum delay time. When the temporal constraint is met, one of the CIDF
Threads servicing one of Joe’s request will service Mary. This DoS attack is not a critical threat,
since the IDS is not completely taken off-line. Although it is rather annoying for the regular
users of the Web-Servers behind the IDS.

Port 80

Connection Manager

J0 J1 Jn

M1 J0

J1

Jn

JoeMary

Unavailable
W3-Server

Established
bidirectional
connection

Unestablished
bidirectional
connection

Counter
Delayed
Response

Bidirectional
pending
connection

Thread
 ...

Pool

Figure 4.10:Scenario for a DoS attack against the system’s Connection Manager.

In order to solve this issue, each time a client connection request arrives, a new thread is
created. The disadvantage with this approach, is that the amount of required system resources
is not known until they are needed. That is, how much dynamic memory is used depends on
the amount of threads that are alive during a certain time frame. Joe under this approach could,
potentially, congest the Connection Manager with threads. This scenario also causes a DoS, but
in a more retarded manner. An efficient fix to this problem will be presented in chapter 7

4.3.4 CIDF Threads

The CIDF framework proposed in chapter 2 is not followed in a rigorous manner. It has been
modified to fit the requirements of the IDS and to simplify design. The data-flow between its
major components is presented in figure 4.11. Each thread has semaphore protected access to
the kernel’s data-structures. The abstraction of a Countermeasure Box as well as the Storage

40 Chapter 4. System Design

Box are designed as CIDF Thread member functions. These are called from within the Analysis
or Events Box. The data exchange between the Analysis and Events Box is only a boolean flag,
“continue”, which will determines if analysis is required or not.

Events
Box

Analysis
Box

Kernel
Data-structures

Continue
W3-Client W3-Client

W3-Server

HTTP Request

HTTP Response

HTTP Response

HTTP Request

HTTP Response

CIDF LogsEvent Log Analysis Log

Figure 4.11:CIDF Thread’s data-flow context diagram.

The CIDF Threads have two different types of logs. This are related to the events box or the
analysis box. The both logs are a sequence of formatted strings that are written immediately to
the CIDF log file.

4.3.5 Logging Sub-system

The abstraction of a sub-system is designed as a shared function of CIDF Threads, the Connec-
tion Manager and the kernel. The function domain is described as:

log_event : String x String)→ Boolean

The first parameter to the function is the file-name where the log is to be placed. The second
parameter is the log content. Each component that calls the event is in charge of internally
formatting the string to a suitable format. A suitable format includes: the time and date of the
log, the component that is calling the log_event function and the actual event that has triggered
the logging activity. The partial contents of the system log file is displayed in figure 4.12.

There are several levels of priority within log messages. These can be either informative or
critical. This abstraction between two types of messages will help the user. This aid can be used
during forensics examinations, due to the IDS reaching a faulty state it cannot recover from.
The other form of logs are those generated by the CIDF threads. These are analysis oriented
whether they come from the Analysis or Events Box. The partial contents of the CIDF log file
is displayed in figure 4.13.

4.3.6 Manager Console

The Manager Console, as presented in figure 4.6, is a wrapper around the IDSs kernel. This
wrapper has access to a defined set of kernel member methods, the MCI. Provided with the

4.3. System Architecture 41

[15/Jan/2005:11:17:03 +0100] kernel msg: System started.

[15/Jan/2005:11:17:03 +0100] kernel msg: Training neural networks.

[15/Jan/2005:11:17:03 +0100] kernel msg: Connection Manager started.

. . .
[15/Jan/2005:11:17:03 +0100] Conn msg: Incoming request 127.0.0.1

[15/Jan/2005:11:17:03 +0100] Conn error: Client closed connection.

[15/Jan/2005:11:17:03 +0100] Console error: Could not fetch delayed.

Figure 4.12:Partial content of the system related log file.

127.0.0.1 [15/Jan/2005:11:17:03 +0100] Events msg: Delayed black-list.

127.0.0.1 [15/Jan/2005:11:17:03 +0100] Analysis msg: Insert in forbidden.

. . .
130.225.9.1 [15/Jan/2005:11:17:03 +0100] Analysis msg: Alarm 4 sounded off.

Figure 4.13:Partial content of the system related log file.

system’s API, the MCI allows any type of informative program to be wrapped around the kernel.
The manager console developed here in is based on a system standard output. It allows for the
user to execute a set of basic commands on the W3-IDS after it has been started. As mentioned
before, these are of an exclusive informative nature. The set of commands that a user can execute
are:

• System run-down.

• Data-structure status retrieval.

• System Temporal Statistics.

The implemented FANNC library returns the state of a selected neural network in an XML
formatted string. For the time, the CMI does not format the information it extracts to XML.
It returns its own format which may only be visualized through the standard C++ Input-output
Stream libraries. An example of a users interaction may is presented in the console output from
figure 4.14

In this Manager Console output, the user solicits to view the contents of the dynamic system
data-structures.

42 Chapter 4. System Design

=== Displaying IP index table ===
IP Addr: 127.0.0.1
Alarm: 0 -> 401 401 401 401 401 401 401 401 401 401 401 401 401 401 401 401
IP Addr: 130.225.137.12
Alarm: 0 -> 403 403 403 403 403 403 403 403 403 403 403 403 403 403 403 403
IP Addr: 98.32.11.1
Alarm: 0 -> 404 404 404 404 404 404
=================================
=== Displaying Net index table ===
Net Alarm: 0
IP: 127.0.0.1 -> 401 401 401 401 401 401 401 401 401 401 401 401 401 401 401
IP: 130.225.137.12 -> 403 403 403 403 403 403 403 403 403 403 403 403 403 403
IP: 98.32.11.1 -> 404 404 404 404 404 404
==================================
=== Displaying delayed IP source entities ===
=== Displaying delayed Alarm source entities ===
Alarm: 0, 4
=== Displaying forbidden IP source entities ===
IP: 98.32.11.1, 1
=== Displaying forbidden Alarm source entities ===

Figure 4.14:Console output of user interaction, showing a user fetching the Dynamic Data-Structures’ content.

4.4 Description Languages

The expression languages described in this section, allow the user to set the security policy of
the IDS. That is, by defining what the IDS should look for within a client request. The user
also defines what type of patterns of behavior the system shall search for within the correlation
of client IP addresses with alarm numbers and the respective server response status-code. Both
description languages share the same design principle.

They are recursive sub-systems, based on arithmetical and boolean expressions computa-
tion. Recursion allows the user to specify complex as well as atomic expressions. A complex
expression requires the the parser engine to perform actual arithmetical calculations or boolean
comparisons. While atomic expressions may be either variables or numbers. Variables must be
looked-up depending on which one of the languages the expression is being defined for.

The languages are defined using a BNF. Both languages are strongly typed against the HTTP
version 1.1 specified in [11]. Example expressions are provided with each language specifica-
tion.

4.4.1 Feature Description Language

The FDL (Feature Description Language) is used to specify user-defined features. These fea-
tures must be extracted from an incoming HTTP client request. Then, they are used to char-
acterize the request passing the characteristic request features to the system’s neural networks.

4.4. Description Languages 43

The following BNF is used to specify the FDL:

feat_aexp ::= Real| Variable| feat_aexp+ feat_aexp
| feat_aexp - feat_aexp| feat_aexp * feat_aexp
| feat_aexp/ feat_aexp

feat_bexp ::= True | False| feat_aexp= feat_aexp
| feat_aexp< feat_aexp| feat_aexp> feaet_aexp
| not feat_bexp| feat_bexp and feat_bexp
| feat_bexp or feat_bexp

Variable ::= message-line.section.feature
message-line ::= request-line| header| body

section ::= method| url | version| Host | User-Agent
| Content-Length| . . .

feature type| size| regex| occurrence| IDEN

In order to specify nested expressions, parenthesis are needed to give an order of priority.
About the above specification, if the message-line is the body it has no section. The suspensive
dots in the “section” element, refer to general-header, entity-headers, request-headers described
in [11]. The function domain for each of the feature extracting functions are:

size : String→ R
regex : String→ Boolean

occurrence : String→ R

The size feature returns the content size of a message-line section. The regex feature is pro-
vided with a regular expression, and returns true or false if a match is found. The interpretation
of Boolean values, within the given context, is a 1.0 or a 0.0. The occurrence feature behaves in
a similar manner to the regex feature. It is provided with a regular expression and then searches
for the number of times the pattern appears in the content of the message-line section. The
IDEN function is the identity function. This feature indicates if a give message-line section is
present or not. The type feature will enumerate the available methods, specified in [11], and
return the code value of an HTTP request method. Some example expressions are:

request-line.url.size

request-line.method.type

header.Cookie.IDEN and (header.Cookie.occurrences(%00) > 0)

header.User-Agent.size

4.4.2 Temporal Patterns Description Language

The TPDL (Temporal Patterns Description Language is used to specify user-defined temporal
patterns. These temporal patterns are searched for in the Source Entity Container. Temporal pat-
terns may be defined for the two components that characterize a suspicious client HTTP request.
These are either by an HTTP request origin i.e. a client IP address, or by the stateless alarm that
the HTTP request sounded off i.e. a neural network ID. Temporal patterns are described by the

44 Chapter 4. System Design

correlation of both elements of a source entity with the corresponding server response status-
code. There is one main difference between this description language and FDL. The TPDL’s
parser engine does not make sense out of arithmetical expressions. These may only be used
within boolean expressions. The following BNF is used to specify the TPDL:

tp_aexp ::= Integer| Variable| tp_aexp+ tp_aexp
| tp_aexp - tp_aexp| tp_aexp * tp_aexp
| tp_aexp/ tp_aexp

tp_bexp ::= True | False| tp_aexp= tp_aexp
| tp_aexp< tp_aexp| tp_aexp> feaet_aexp
| not tp_bexp| tp_bexp and tp_bexp
| tp_bexp or tp_bexp

Variable ::= Source-Entity.Status-Code-Type.Status-Code
Source-Entity ::= IP | NETID

Status-Code-Type ::= Informational| Success| Redirection
| Client-Error| Server-Error

Status-Code 1xx| 2xx | 3xx | 4xx | 5xx
| 100 | 101
| 200 | . . . | 206
| 300 | . . . | 305 | 307
| 400 | . . . | 417
| 500 | . . . | 505

When the parser engine does variable look-ups, it first defines what kind of source entity is
the temporal pattern defined for. If IP is defined, then the lookups in the Source Entity Container
will be done in the sub-container that is indexed by IP addresses. If NETID is defined, the
lookups are done in the sub-container indexed by neural network IDs (alarm number). As may
be seen from the language’s specification, there are five types of server response status-codes.
Notice, as stated before, in the sub-container indexed by IP addresses the alarms that that IP
address has sounded off are registered in the hash-table. The alarm number is used as the key
and it is unique. Each time this scenario is present, the corresponding server response status-
code is inserted in the vector associated with the key. Here are some example expressions that
the TPDL parser engine can interpret.

(IP.Client-Error.404 > 30) and (IP.Redirection.3xx < 5)

NETID.Client-Error.404 > 25

(IP.Server-Error.5xx > 15) or (NETID.Success.2xx > 0)

4.5 Behavioral Models

The content of this section is mainly in a graphical manner. This section contains depictions of
the control-flow diagrams of major system components. These are mainly what activities are
carried out during system testing. Inter-callings on other system activities is also provided as a
form of control-flow, e.g. what activities are carried out during system start-up and the training

4.5. Behavioral Models 45

of the neural networks. Notice that the inter-callings lay-out does not fully reflect the system’s
implementation. The inter-callings only reflect in a compact manner which activities should be
carried out.

4.5.1 System Start-up Activities

During system start-up mainly memory is allocated for the required data-structures. The static
data-structures are created and memory is allocated for memory that might be required for the
dynamic data-structures. As part of start-up activities, the training of the system’s neural net-
works is carried out. The following inter-callings describe the sequence of events that happen
during system start-up.

init_mode()

L_ set_kparameters(‘‘.conf file’’)

L_ init_kdata_structs(STATIC)

L__ load(FEATURES)

L__ load(BLACKLIST)

L__ load(T_PATTERNS)

L__ load(N_NETWORKS)

L___ train_mode()

L_ init_kdata_structs(DYNAMIC)

L__ reserve_mem(SRC_ENTS)

L__ reserve_mem(DELAYED)

L__ reserve_mem(FORBIDDEN)

The load functions push-back, through the user-defined kernel parameters, the correspond-
ing objects in their vectors. When loading the neural networks, not only is each object inserted
into its container, but after the system switches to training mode. The reserve_mem functions
only create a reference to a dynamic data-structure. Which will begin to have objects inserted
as the testing of HTTP requests is carried out. If the system should fail during any of its initial-
izations, memory allocation or during the training process, it exits providing relevant logs in the
system log file.

4.5.2 System Training Activities

From the inter-callings shown bellow, notice the that the get_kparameters receives
TRAIN_DAT_LIST which represents the training_data_list from the configuration file, ap-
pendix B. Keeping in mind that the kernel holds internal data-structures to keep track of time, it
uses init_cronos and stop_cronos. These functions should time the amount of time that it takes
each thread to train its assigned network, and the time which it takes all threads to carry out
their task. Other relevant statistical values that may be obtained from timings are the averages
of each.

46 Chapter 4. System Design

train_mode()

L_ get_kparameters(TRAIN_DAT_LIST)

L_ fetch_data()

L_ scale_data()

L_ init_cronos(GNL_TIMING)

L_ launch_threads()

L__ init_cronos(NET_TIMING)

L__ feed_nnetwork()

L__ stop_cronos(NET_TIMING)

L_ join_threads()

L_ stop_cronos(GNL_TIMING)

When the feed_nnetwork() inter-calling is carried out, the following pseudo-code describes
how the threads are launched, and what each thread does. Notice that for a detailed description
of how the FANNC library is used, refer to appendix C.

Pseudo-code presenting how the neural network training
threads ara launched
P = { neuralnets.size, 0∧

start : @FANNCNetwork→ void}

thread_vec : Array [0..neural_nets.size] of FANNCThread;
for i := 0 to neural_nets.sizedo

thread_vec[i].start(@neural_nets[i])

for i := 0 to neural_nets.sizedo
thread_vec[i]. join()

Q = {}
Pseudo-code presenting hot the neural network objects are
trained.
P = { train_input.size= train_output.size land

train_input.size, 0 ∧ net : @FANNCNetwork}

train_data : Array [0..instances]of(in : Array[]Double,
out : Array[]Double);

for i := 0 to train_data.sizedo
net→ train(train_data.in[i], train_data.out[i]);

Q = {}

4.5. Behavioral Models 47

Notice how the “@” and “→” symbols are used to differentiate between argument passing.
This is commonly known as accessing a variable by value or by reference. In this case when the
special operators are used, it means that the variable is accessed by reference “@”. When the
contents of the variable are accessed, if it is a data-structure, the “→” symbol is used.

4.5.3 System Testing Activities

Upon a client connection request to the IDS, the Connection Manager launches a CIDF Thread
with. The Connection Manager provides the CIDF Thread, with a file descriptor that indicates
the connection medium to the client e.g. a TCP/IP Berkeley socket. During the system testing
the first set of relevant activities are that of the CIDF Thread. These activities are presented in
the control-flow diagram in figure 4.15. The series of events here, differ from those proposed
in the original CIDF framework. The original proposal is just used as an abstraction, for com-
prehensive purposes. The Storage and Countermeasures Box are called from within the Events
and Analysis Box as member methods of the CIDF Thread class. The Events Box returns a
boolean value, “Continue” to the threads main execution flow. This boolean variable indicates
if the Events box has not already taken relevant countermeasures against a client request.

CIDF Thread
Start

Events
Box

Analysis
Box

Continue ?
CIDF Thread

Done

CIDF Thread
Done

No

Yes

Figure 4.15:Control-flow diagram for the CIDF Thread.

As the diagrams are broken down, the activities within the Events and Analysis Box are
presented. The Events box, figure 4.16 is in charge of checking that the serviced client request
is not in the forbidden IPs list. It is also in charge of verifying that a client HTTP request has no
black-list features and of extracting its characteristic features.

The feature extraction process may be seen in figure 4.17.
The process of feature extraction starts by receiving client input. It then parses the received

data into an HTTP. In figure 4.17 the method for starting the FDL parser engine is presented.
The same manner is used to extract black-list features from the request. Once the Events box
is finished, if no countermeasures have been taken against the client request, the analysis may
start. Notice that countermeasures are only fired, within the events box, if a request presents

48 Chapter 4. System Design

Events Box
Start

Receive Client
Request

Forbidden
Client IP ?

Log Events
Event

No Yes

Call Counter
404 Imediate

Return
Stop

Extract Reqs.
Blacklist Feat.

Extract Reqs.
Stateless Feat.

Blacklist
Feature ?

Delay
Source Entity

Call Counter
404 Delayed

Return
Continue

Log Events
Event

No

Yes

Return
Stop

Figure 4.16:Control-flow diagram for the CIDF Thread Events box.

features ...

output ...

HTTPRequest request;

// ...

while(client_input != finished)

 request.parse(client_input);

// ...

// Note: that objects within the

// features vector shall have an

// extract method.

// extract: HTTPRequest -> real

for(i = 0; i < features.size; ++i)

 output[i] = features[i].extract(request);

HTTP Request

Figure 4.17:Pseudo-code demonstrating how HTTP request features are extracted.

4.5. Behavioral Models 49

black-list features or is originated from a forbidden IP address.

GET http://www.google.com/../%00cmd.exe%00\P HTTP/1.1
Host: neodimio.egmont-kol.dk
Agent: Mozilla (Debian GNU/Linux Gecko Engine 3.74-1)
Connection: keep-alive
Keep-alive: 10000

For example, for the HTTP request presented above, and the four FDL elements declared
as:

header.Agent.size
header.Connection.size
header.Agent.size = 4 * body.size
request.Method.type
request.URI.ocurrences(%00)

when each parser engine is ran, they should return each a double value. The features extracted
for the neural networks to process would is to an output data-structure, a vector. This vector, in
the example request and features, contains listed from first to last: a46.0, a 10.0, a 0.0, a 3.0
(refer to appendix E for HTTP method encodings) and a2.0.

The control-flow within the analysis box is presented in figure 4.18. Within this diagram, a
server transaction is represents the flow of data to and from the Web-Server. That is, the client
request is forwarded to the server and its associated server response received.

Notice that if the client request, fires a forbidden alarm or is found to match a temporal
pattern, relevant countermeasures must be carried out. In case it is the forbidden alarm that has
been recognized, the countermeasure is to reply without delay a 404 status-code server response.
Otherwise, the suspicious source entity that met a pattern, must be delayed. The delay procedure
is depicted in figure 4.19. The type of temporal pattern defined i.e. whether it be for IP address
or alarm number, determines what type what type of source entity are countermeasures taken
against.

There are two types of analysis that may be deducted from figure??; stateless validation
and stateful validation. Stateless validation involves the passing of the request features through
all of the neural networks. This step hints the system as to what request might form part of
a stateful attack scenario, and which will not. The accuracy with which the system is trained,
depends on the generality of the training data. If the stateless analysis phase, figure??, raises
any alarms then stateful inspection begins.

When stateful inspection begins, if the alarm set off does not belong to the forbidden ones.
Then the suspicious request is forwarded to the server. Hence, a server transaction is carried
out in order to have all of the relevant information on the suspicious source entity item. The
sequence of steps involved during stateful is depicted in figure 4.21.

The process of pattern extraction involves three elements: the source entity container, the
temporal patterns and the current request source entity item. As stated in system in the data-
structures architecture, a source entity item characterizes a suspicious request by it client IP

50 Chapter 4. System Design

Analysis Box
Start

Feed Neural
Networks

Alarms
Raised ?

Log Analysis
Event

No

Yes

Call Counter
404 Immediate

Insert Source
Entity

Forward Client
Server Response

Delay
Source Entity

Perform Server
Transaction

Log Analysis
Event

No Yes

Forward Client
Server Response

Perform Server
Transaction

Search Temporal
Patterns

Found
Pattern ?

No

Yes

Call Counter
404 Delayed

Forbidden
Alarm ?

Figure 4.18:Control-flow diagram for the CIDF Thread Analysis box.

4.5. Behavioral Models 51

Insert / Increment
Delay

Maximum
Delay ?

Remove From
Delayed

Insert
Forbidden

�No

Yes

Delay Source Entity

Figure 4.19:Delay Source Entity functional components internal workings.

Fetch
Results

Start Neural
Network Test

Threads

Suspicious?Stateful Analysis

Perform Server
Transaction

0

n

Features Results Neural Nets Output

Yes

No

0

m

Request Feature
Extraction .

.

.

.

.

.

.

.

.

.

.

.

Figure 4.20:Component interaction during stateless validation and the neural networks.

52 Chapter 4. System Design

address, the alarm it set off and the server response status-code associated with it. The parser
engine for temporal patterns will search through the source entity container, for any matches
that the current suspicious request may have with any of the defined patterns. The search is
performed after the new source entity is inserted or an existing one is updated with its corre-
sponding server response status-code. The steps that emphasis these events are enumerated as
yellow circles in figure 4.21. Notice that steps two and three are not relevant with the source
entity container. Therefore, these are present in the control-flow but not in the depiction of the
data-structure.

Indexed IPs Index Networks

IP 2

Net 2

Net 3

Net 3

IP 2

IP 3 402

Net 2

IP 2

IP 3

Net 3 402

Receive
Server Response

Extract Response
Status-code

Insert
Source Entity

Search Temporal
Patterns

Found Pattern?

3.

4.

5.6.

5.

5.

1.- NET.Client-Error.402 > 1
2.- IP.Client-Error.4xx > 1
3.- IP.Server-Error.503 > 5

Example Temporal PatternsNo

Yes

6. 6.

6. 6.

3.-1.- Net 3
2.- IP 3

Source Entity
Item

Net 3
IP 3
402

1.

4.

Forward Server
Client Request

2.

Get item’s IP
and

alarm number

1.

Perform Server Transaction

Figure 4.21:Component interaction during stateful validation and the Source Entity container.

53

Chapter 5

System Implementation

5.1 Overview

This chapter does not provide the source code to the project. The source code may be consulted
in the attached CD. This chapter is broken up into three section: a section on how a networking
environment was simulated, hierarchical diagrams on all major system classes and the compli-
cations that were encountered during the implementation. For example, how polymorphism and
class inheritance were inserted into the system in order to facilitate certain tasks.

Regarding implementation of FDL or TPDL, refer to appendices E and F. These provide a
listing of the implementation’s public members. For a full description on the languages, refer to
the attached CD-ROM. There is a source-code browsable interface that should allow a reader to
easily navigate all source-code developed during this project.

The programming language used during implementation was C++. The system requires
tight temporal constraints, which is why not higher level programming languages were used.
For example, Java would have optimized many programming oriented issues, since there are
many utilities built into the system’s standard libraries. These libraries are not available for C++

at such a high level, although the language does provide the programmer with STL (Standard
Template Library). Most of the basic data-structure blocks used, such as vector, hash-tables and
priority queues were obtained from the STL. Also, a strong use of C++’s String class is used
throughout the various system components.

C++ was chosen due to its hardware resource access timings as well as the possibility to
design the system in an object-oriented manner. Object-oriented programming was chosen be-
cause of its additional data protection mechanisms that are available for data members of meth-
ods. The compiler used was GNU’s g++ (GCC) v3.3.4, on a Debian GNU/Linux v3.1 platform.
Additional software libraries were used during implementation, some native to the platform and
others provided by third-party organizations. The source code does not compile on standard
version of GNU’s g++ version 2.95. This is due to some unstable enhancement features added
to the compiler. These enhancement features are not available for standard versions because as
they can built-up optimized code time and space-wise, the binaries built-up can also end-up in
an undesirable state, foreign to the IDS’s design.

Some of the additional third-party libraries used are:

54 Chapter 5. System Implementation

• libxerces-c v2.6 - The Xerces c++ library is a set of utilities used to handle XML files.
The FANNC library developed for this project makes strong use of the Xerces library.
The Manager Console also makes use of the Xerces library to display in a structured
manner the systems data-structure status. The programming interface to this library may
be obtained at [21].

• libboost-regex v1.31 - Boost Regex is a C++ wrapper for the traditional POSIX regex C
functions. Regex is a family of functions used to perform operations on regular expres-
sions. That is, pattern matching with a given string of data. This library is strongly used
by FDL in order to extract or find occurrences of patterns within the content of certain
HTTP message-line sections. The programming interface to this library may be obtained
at [22].

• librt - This library is provides real-time measurement utilities under POSIX systems. The
set of functions provided, are accessed via the “time.h” system header file. Functions such
as clock_gettime() provide a measurement accuracy within the order of nanoseconds. The
real-time library functions are used by various IDS kernel components. These include,
the threads used for training, testing, the CIDF threads and the connection manager. The
purpose is to obtain statistical information on the systems speed for different purposes
during testing. The programming interface to this library may be read in [23] and usage
samples in [24].

Aside for these third party software libraries, a library implementing the FANNC algorithm
as well as an HTTP Parser library were developed for this project. Detailed information on
the design and programming interface are provided in appendix C and D. Both libraries were
developed using C++ and depend strongly on the STL components.

All source-code may be browsed-through a cross-reference guide include in the CD annexed
with this document. The path to the cross-reference guide is; “/doc/xref”.

5.2 Networking Environment Simulation

The system was not developed under a real network environment. Instead, the system developed
is a simulator that does not communicate neither with a web-server nor a web-client. In order to
simulate a networking environment, a file called “http_traffic.cpp” includes constant variables
that are globally available to all of the IDS’s functional components. The sample content of
the file may be seen in appendix (HTTP TRAFFIC). These variables are several vectors that
simulate all of the required components in an HTTP client-server session. The type of of data
contained within all of these vectors are strings of characters. The variables that are declared in
this file represent:

• A set of sane HTTP client request i.e. legal requests. The variable is called
sane_session_reqs.

• A set of sane HTTP server responses. Each of these components is associated with
the components within the sane HTTP requests variable. The variable is called
sane_session_ress.

5.3. System Class List 55

• A set of suspicious HTTP client requests i.e. the requests contain undesired data. The
variable is called suspicious_session_reqs.

• A set of server responses associated with the above suspicious requests. The variable is
called suspicious_session_ress.

• A set of client IPs simulating a client soliciting a resource from a web-server. Depending
on the simulation of malicious activity, sane activity or arbitrary activity, each component
from this vector associates with its corresponding component in one of the requests vector.
When the IDS fetches the server response, it fetches the response from the corresponding
position one of the request vectors.

5.3 System Class List

5.3.1 IDS Kernel Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

CIDFThread (The CIDFThread class) . 55

CONNManager (The CONNManager class) . 61

DELAYEntities (Delayed Source Entities Container) 64

FORBIDDENEntities (Forbidden Source Entities Container) 67

IDSKernel (The IDSKernel class) . 70

IPIndex (Suspicious Source entity IP item) . 74

NETIndex (Suspicious Source entity Alarm number item) 75

SRCENTDat (The Suspicious Source Entity class) 76

SRCEntities (Suspicious Source Entity Container) 78

SYSData(The SYSData class) . 81

5.4 System Class Documentation

5.4.1 CIDFThread Class Reference

The CIDFThread class.
#include <cidf_thread.hpp>

56 Chapter 5. System Implementation

Public Member Functions

• CIDFThread (SYSData∗data_structs_, unsigned int file_descr_, unsigned int www_-
port_)

Public constructor.

• ∼CIDFThread ()

Public destructor.

• void run ()

Initialize the HTTP request’s analysis.

Private Member Functions

• void analysis_log(const char∗msg_)

The analysis logs sub-system abstraction.

• boolevents_box()

Perform the events extraction.

• void analysis_box()

Perform event analysis.

• void counter_box(unsigned int res_status_)

Carry-out relevant countermeasures.

• int storage_box(std::string ipaddr_, unsigned int status_)

Used to store a client IP.

• int storage_box(unsigned int alarm_n_, unsigned int status_)

Used to store an alarm number.

• int storage_box(SRCENTDat ∗item_)

Used to store a Source Entity.

5.4. System Class Documentation 57

Private Attributes

• HTTPRequest∗ client_req

Pointer to an HTTP client request.

• HTTPResponse∗ server_res

Pointer to an HTTP server response.

• SYSData∗ data_structs

Pointer to the IDS’s Data-structures.

• std::vector< double> features

Extracted request features.

• std::vector< double> bl_features

Extracted black-list request features.

• std::vector< double> alarms

Stateless Neural Network analysis result.

• std::vector< bool> patterns

Stateful Temporal Patterns analysis result.

• unsigned intnet_descr

File descriptor connection to the client.

• unsigned intwww_port

Port that the W3-Server is listening on.

• std::stringanalysis_fname

The analysis log file-name.

58 Chapter 5. System Implementation

• std::vector< pthread_t> test_threads

The test thread ID vector.

5.4.1.1 Detailed Description

This class implements the threads that perform stateless and stateful validation of HTTP client
requests.

5.4.1.2 Constructor& Destructor Documentation

CIDFThread::CIDFThread (SYSData ∗ data_structs_, unsigned int file_descr_, unsigned
int www_port_)

The constructor initializes the data-structure reference, gets the file descriptor for the client
connection and the web-server’s port. The constructor also prepares the test thread id vector

See also:
test_threads(p. 61)

CIDFThread:: ∼CIDFThread ()
The destructor deletes all allocated memory to the HTTP request and response objects.

5.4.1.3 Member Function Documentation

void CIDFThread::analysis_box () [private]
This method is called after the events, features, have been successfully extracted. It starts

stateful and stateless analysis. Stateless analysis makes use of the Neural Networks and stateful
analysis makes use of the Suspicious Source Entity Container.

void CIDFThread::analysis_log (const char∗ msg_) [private]
The logging sub-system will write a log message to the file specified by

Parameters:

See also:
syslog_fname

Parameters:
msg_ content of analysis log

Returns:
void

5.4. System Class Documentation 59

void CIDFThread::counter_box (unsigned int res_status_) [private]

This method will auto-generate a 404 reply and respond with to a client. The response is
not immediate unless the client has an associated Source Entity Item in the Forbidden Source
Entity Container. Either the Events or the Analysis Box can call this method.

Parameters:
res_status_indicates the type of response

bool CIDFThread::events_box () [private]

This method must be the first step called while analyzing a client’s HTTP request. It extracts
the request’s black-list and normal features.

void CIDFThread::run ()
This method is called by one of the threads launched by the Connection Manager and it

services the clients request. This method performs the main analysis control-flow.

int CIDFThread::storage_box (SRCENTDat ∗ item_) [private]

This method is used to store a source entity in the Source Entity Container.

Parameters:
item_ Request’s source entity.

Returns:
if a 0 the source entity was inserted successfully, anything else denotes an error.

int CIDFThread::storage_box (unsigned int alarm_n_, unsigned int status_) [private]

This method is used to store an alarm number, neural network index number, in the delayed
source entity items Container.

Parameters:
alarm_n_ source entity alarm number.

status_ UNDEF

Returns:
if a -1 is returned an error occurred and the the insertion was not completed. If a 1 is
returned then the source entity item was delayed. If a 0 is returned the source entity was
removed from delayed and inserted in forbidden.

60 Chapter 5. System Implementation

int CIDFThread::storage_box (std::string ipaddr_, unsigned intstatus_) [private]
This method is used to store a client IP in the delayed source entity items Container.

Parameters:
ipaddr_ source entity IP address.

status_ UNDEF

Returns:
if a -1 is returned an error occurred and the the insertion was not completed. If a 1 is
returned then the source entity item was delayed. If a 0 is returned the source entity was
removed from delayed and inserted in forbidden.

5.4.1.4 Member Data Documentation

std::vector<double> CIDFThread::alarms [private]
This vector is the result of the multi-threaded neural network testing process. The position of

each neural network in the Neural Networks Container will output its result in its corresponding
position here.

std::string CIDFThread::analysis_fname [private]
This is the name of the file where the logging sub-system shall log all analysis related activ-

ity.

std::vector<double> CIDFThread::bl_features [private]
This vector is the result of the black-list feature extraction process. The position of each

feature in the Black-list Feature Container will output its result in its corresponding position
here.

HTTPRequest∗ CIDFThread::client_req [private]
This is a pointer to the parsed HTTP request send by a client. Before this element may be

used its parse method must be carried out.

SYSData∗ CIDFThread::data_structs [private]
This is a pointer to all of the IDS’s data-structures i.e. the dynamic and static ones.

std::vector<double> CIDFThread::features [private]
This vector is the result of the feature extraction process. The position of each feature in the

Feature Container will output its result in its corresponding position here.

unsigned int CIDFThread::net_descr [private]
This is a simulation of the file descriptor that would obtain the socket connection to the

client. Instead an unsigned integer is provided and a lookup in the client_ips extern value is
done.

5.4. System Class Documentation 61

std::vector<bool> CIDFThread::patterns [private]
This vector is the result of the Temporal Patterns extraction process. The position of each

temporal pattern in the Temporal Patterns Container will output its result in its corresponding
position here.

HTTPResponse∗ CIDFThread::server_res [private]
This is a pointer to the associated HTTP server response to the received server request. In

case of countermeasures taken, it will be created by the IDS and sent as a decoy.

std::vector<pthread_t> CIDFThread::test_threads [private]
This vector is used to keep track of all the threads launched during the neural networks’

testing mode. It is useful while "joining" threads.

unsigned int CIDFThread::www_port [private]
This is the port that the thread should use to connect to the hidden server.
The documentation for this class was generated from the following files:

• cidf_thread.hpp

• cidf_thread.cpp

5.4.2 CONNManager Class Reference

The CONNManager class.
#include <conn_manager.hpp>

Public Member Functions

• CONNManager (SYSData ∗data_structs_, unsigned int listen_port_, unsigned int
www_port_)

Public constructor.

• void set_stop(bool)

Member method used to stop the connection manager.

• void run ()

Method that initializes the the Connection Manager.

• void reset_counter()

Auxiliary network simulator function.

62 Chapter 5. System Implementation

Private Attributes

• boolstop

Enable/ Disable the Connection Manager.

• SYSData∗ data_structs

Pointer to the IDS’s Data-Structures.

• unsigned intlisten_port

Port to listen on for clients send connections requests.

• unsigned intwww_port

Port to connect to hidden web-server.

• unsigned intcounter

Auxiliary counter for network simulation.

5.4.2.1 Detailed Description

This class is the component that accepts client connections. Upon a client connection this com-
ponent launches aCIDFThread (p. 55) to service the request. It does not use a thread pool, due
to a DoS attack described in the system design specification.

5.4.2.2 Constructor& Destructor Documentation

CONNManager::CONNManager (SYSData∗ data_structs_, unsigned int listen_port_, un-
signed intwww_port_)

The constructor initializes the listen_port and www_port components. The stop flag is ini-
tialized to false and the counter reseted to zero.
Parameters:

∗ data_structs_ pointer to Kernel Data-Structures.

listen_port_ port where clients connect to.

www_port_ port where the hidden server is listening on.

See also:
data_structs(p. 63)

listen_port(p. 63)

www_port(p. 63)

5.4. System Class Documentation 63

5.4.2.3 Member Function Documentation

void CONNManager::reset_counter ()
This method is called from the MCI. It is used to re-read the http traffic from its vector

containers.

void CONNManager::run ()
This method sets the Connection Manager in listening mode. It also spawns CIDFThreads

when a client connection request is acknowledged.

void CONNManager::set_stop (bool)
This method indicates the connection manager that either training will begin, or the system

is shutting down. The Connection Manager does not shut-down until all of its CIDFThreads are
finished.

5.4.2.4 Member Data Documentation

unsigned int CONNManager::counter [private]

The value of this counter indicates to the CIDFThreads which component of the http traffic
vector should be accessed. HTTP traffic vectors include sane requests and responses. Illegal
requests and responses and the origin client IP address.

SYSData∗ CONNManager::data_structs [private]

This pointer is only needed when the CIDFThreads are started. It must be passed as an
argument to their constructor.

unsigned int CONNManager::listen_port [private]

This is the port that clients should attempt to connect to the system when it is on testing
mode.

bool CONNManager::stop [private]

This variable is set by the user through the MCI either during system shut-down or during
system training.

unsigned int CONNManager::www_port [private]

This is the port where the CIDFThreads will attempt to forward any valid HTTP requests.
The documentation for this class was generated from the following files:

• conn_manager.hpp

• conn_manager.cpp

64 Chapter 5. System Implementation

5.4.3 DELAYEntities Class Reference

Delayed Source Entities Container.
#include <src_ent.hpp>

Public Member Functions

• DELAYEntities (double max_delay_, double incr_)

Public constructor.

• doubleget_ip_delay(std::string ipaddr_)

Get the IP address’s delay time.

• doubleget_alarm_delay(unsigned int alarm_n_)

Get the alarm number’s delay time.

• int delay_ipaddr (std::string ipaddr_)

Insert or increment the IP address’s delay time.

• int delay_alarm (unsigned int alarm_n_)

Insert or increment the alarm number’s delay time.

• void erase_ipaddr(std::string ipaddr_)

Delete IP address from Delayed Source Entity IPs.

• void erase_alarm(unsigned int alarm_n_)

Delete Alarm number from Delayed Source Entity alarms.

• const char∗ to_string () const

Serialize the Delayed Source Entities to XML string.

5.4. System Class Documentation 65

Private Attributes

• doublemax_delay

The user-defined maximum delay.

• doubleincr

The user-defined delay increment.

• DELAYNetHashdelayed_alarms

Map containing delayed alarm numbers.

• DELAYIPHashdelayed_ips

Map containing delayed IP addresses.

5.4.3.1 Detailed Description

This class contains two maps of Delayed source entity items. One is indexed by Delayed IPs
and the other by sounded off alarm numbers. These maps are not associative in their layout.

5.4.3.2 Constructor& Destructor Documentation

DELAYEntities::DELAYEntities (double max_delay_, double incr_)
This public constructor initializes the maximum user-defined delay time and the user-defined

increment. User-defined parameters are defined in the .conf file.

Parameters:
max_delay_maximum user-defined delay time.

incr_ user-defined increment.

5.4.3.3 Member Function Documentation

int DELAYEntities::delay_alarm (unsigned int alarm_n_)
Increment the alarm number’s delay time. If it does not exist insert it.

Parameters:
alarm_n_ delayed alarm number.

Returns:
status -1.0 error else update successful.

66 Chapter 5. System Implementation

int DELAYEntities::delay_ipaddr (std::string ipaddr_)
Increment the IP address’s delay time. If it does not exist insert it.

Parameters:
ipaddr_ delayed IP address.

Returns:
status -1.0 error else update successful.

void DELAYEntities::erase_alarm (unsigned int alarm_n_)
Remove an entry from the Delayed Source Entity alarms vector. This activity is carried out

when the alarm’s delay time is greater then the maximum delay.

Parameters:
alarm_n_ Alarm number to delete.

void DELAYEntities::erase_ipaddr (std::string ipaddr_)
Remove an entry from the Delayed Source Entity IPs vector. This activity is carried out

when an IP’s delay time is greater then the maximum delay.

Parameters:
ipaddr_ IP address to delete.

double DELAYEntities::get_alarm_delay (unsigned intalarm_n_)
Get the alarm number’s delay time.

Parameters:
alarm_n_ delayed alarm number.

Returns:
alarm number’s delay time.

double DELAYEntities::get_ip_delay (std::string ipaddr_)
Get the IP address’s delay time.

Parameters:
ipaddr_ delayed IP address.

Returns:
IP address’s delay time.

5.4. System Class Documentation 67

const char∗ DELAYEntities::to_string () const
This method translates the content of the Delayed Source Entities Container into an XML

document.

Returns:
an XML formatted string.

5.4.3.4 Member Data Documentation

DELAYNetHash DELAYEntities::delayed_alarms [private]
This map contains elements of: typedef std::map<unsigned int, double> DELAYNetHash

DELAYIPHash DELAYEntities::delayed_ips [private]
This map contains elements of: typedef std::map<std::string, double> DELAYIPHash

double DELAYEntities::incr [private]
This increment is done by multiplication, i.e. current_delay := current_delay∗ incr, hence

defining an exponential behavior.
The documentation for this class was generated from the following files:

• src_ent.hpp

• src_ent.cpp

5.4.4 FORBIDDENEntities Class Reference

Forbidden Source Entities Container.
#include <src_ent.hpp>

Public Member Functions

• FORBIDDENEntities ()

Public constructor.

• void insert_ipaddr (std::string ipaddr_)

Insert a Source Entity IP address.

• void insert_alarm (unsigned int alarm_n_)

Insert a Source Entity alarm number.

• bool forbid_ipaddr (std::string ipaddr_) const

68 Chapter 5. System Implementation

Check if ipaddr_ is within the forbidden list.

• bool forbid_alarm (unsigned int alarm_n_) const

Check if alarm_n_ is within the forbidden list.

• const char∗ to_string () const

Serialize the Forbidden Source Entities to XML string.

Private Attributes

• FORBIDDENNetHashforbidden_alarms

Map containing forbidden alarm numbers.

• FORBIDDENIPHashforbidden_ips

Map containing forbidden IP addresses.

5.4.4.1 Detailed Description

This class contains two maps of Forbidden source entity items. One is indexed by Forbidden
IPs and the other by sounded off alarm numbers. These maps are not associative in their layout.

5.4.4.2 Member Function Documentation

bool FORBIDDENEntities::forbid_alarm (unsigned int alarm_n_) const
Check if alarm_n_ is within the forbidden list.

Parameters:
alarm_n_ Source Entity alarm number.

Returns:
true if

Parameters:
is forbidden false otherwise

5.4. System Class Documentation 69

bool FORBIDDENEntities::forbid_ipaddr (std::string ipaddr_) const
Check if ipaddr_ is within the forbidden list.

Parameters:
ipaddr_ Source Entity IP address.

Returns:
true if

Parameters:
is forbidden false otherwise

void FORBIDDENEntities::insert_alarm (unsigned int alarm_n_)
Insert a Source Entity alarm number.

Parameters:
alarm_n_ Source Entity alarm number.

void FORBIDDENEntities::insert_ipaddr (std::string ipaddr_)
Insert a Source Entity IP address.

Parameters:
ipaddr_ Source Entity IP address.

const char∗ FORBIDDENEntities::to_string () const
This method translates the content of the Forbidden Source Entities Container into an XML

document.
Returns:

an XML formatted string.

5.4.4.3 Member Data Documentation

FORBIDDENNetHash FORBIDDENEntities::forbidden_alarms [private]
This map contains elements of: typedef std::map<unsigned int, int> FORBIDDENetHash,

the key contents are the number of hits that have been registered for a forbidden source entity
alarm number.

FORBIDDENIPHash FORBIDDENEntities::forbidden_ips [private]
This map contains elements of: typedef std::map<std::string, double> FORBID-

DENIPHash, the key contents are the number of hits that have been registered for a forbidden
source entity IP address.

The documentation for this class was generated from the following files:

• src_ent.hpp

• src_ent.cpp

70 Chapter 5. System Implementation

5.4.5 IDSKernel Class Reference

The IDSKernel class.
#include <idskernel.hpp>

Public Member Functions

• IDSKernel ()

Public constructor.

• ∼IDSKernel ()

Public destructor.

• void init_mode ()

Switch the kernel to initialization mode.

• void train_mode ()

Switch the kernel to training mode.

• void test_mode()

Switch the kernel to testing mode.

• const char∗ getmci_nets(const char∗net_n_)

MCI method - Extract the state of Neural Net n.

• const char∗ getmci_delayed()

MCI method - Extract the state of the Delayed Entities Bin.

• const char∗ getmci_srcents()

MCI method - Extract the state of the Source Entity Bin.

• const char∗ getmci_forbidden ()

MCI method - Extract the state of the Forbidden Entities Bin.

5.4. System Class Documentation 71

• void setmci_exit()

MCI method - Stop the IDS.

• void setmci_train ()

MCI method - Prepare the IDS for training.

Private Member Functions

• void system_log(const char∗msg_)

The system logs sub-system abstraction.

Private Attributes

• CONNManager ∗ conn_manager

Pointer to the IDS’s Connection Manager.

• SYSData∗ data_structs

Pointer to the IDS’s Data-Structures.

• std::stringsyslog_fname

The system log file-name.

• std::vector< pthread_t> train_threads

The train thread ID vector.

5.4.5.1 Detailed Description

This class is the back-bone of the W3-IDS. It binds the data-structures with the Connection
manager. It contains method used in the MCI.

See also:
Stateless

72 Chapter 5. System Implementation

5.4.5.2 Constructor& Destructor Documentation

IDSKernel::IDSKernel ()
The IDS’s constructor initializes the system’s data-structure along with the connection man-

ager. It also prepares the train_threads for usage.

See also:
train_threads(p. 74)

IDSKernel::∼IDSKernel ()
The IDS’s destructor releases the memory used by the Connection Manager and the Data-

structures.

See also:
conn_manager(p. 74)

data_structs(p. 74)

5.4.5.3 Member Function Documentation

const char∗ IDSKernel::getmci_delayed ()
This method forms part of the MCI, it extracts the state of the Delayed Entities Container.

Returns:
the state in an XML formatted string.

const char∗ IDSKernel::getmci_forbidden ()
This method forms part of the MCI, it extracts the state of the kernel’s Forbidden Entities

Container.

Returns:
the state in an XML formatted string.

const char∗ IDSKernel::getmci_nets (const char∗ net_n_)
This method forms part of the MCI, it extracts the state of neural network net_n_ from the

neural network container.

Parameters:
net_n_ the selected neural network.

Returns:
the state in an XML formatted string.

5.4. System Class Documentation 73

const char∗ IDSKernel::getmci_srcents ()
This method forms part of the MCI, it extracts the state of the kernel’s Source Entity Con-

tainer.

Returns:
the state in an XML formatted string.

void IDSKernel::init_mode ()
Initializes all of the components within the data_structs instance. These vectors are the

features, the black-list, the neural networks and the temporal patterns.

See also:
data_structs(p. 74)

void IDSKernel::setmci_exit ()
This method forms part of the MCI, it stops the Connection Manager. This method must be

called before destroying the kernel.

See also:
conn_manager(p. 74)

void IDSKernel::setmci_train ()
This method forms part of the MCI, it stops the Connection Manager and starts the training

process. When training is finished, the Connection Manager is re-enabled.

See also:
conn_manager(p. 74)

void IDSKernel::system_log (const char∗ msg_) [private]

The logging sub-system will write a log message to the file specified by

Parameters:

See also:
syslog_fname(p. 74)

Parameters:
msg_ content of system log

Returns:
void

74 Chapter 5. System Implementation

void IDSKernel::test_mode ()
Test mode means that the Connection Manager is enabled and listening for client connection

requests.

See also:
conn_manager(p. 74)

void IDSKernel::train_mode ()
Start the multi-threaded training process. During train_mode real-time timings are carried

out. The results are the temporal cost (ns) from the training of each thread and the average
training time for all threads.

5.4.5.4 Member Data Documentation

CONNManager∗ IDSKernel::conn_manager [private]
The Connection Manager is referenced through a pointer. The Connection Manager is cre-

ated with the IDSKernel public constructor. And it is deleted with the destructor.

SYSData∗ IDSKernel::data_structs [private]
The Data-structures are referenced through this pointer. These are created when the kernel

is started throughinit_mode()(p. 73). All dynamic and static vectors reside within this object.

std::string IDSKernel::syslog_fname [private]
This is the name of the file where the logging sub-system shall log all system related activity.

std::vector<pthread_t> IDSKernel::train_threads [private]
This vector is used to keep track of all the threads launched duringtrain_mode()(p. 74). It

is useful while "joining" threads.
The documentation for this class was generated from the following files:

• idskernel.hpp

• idskernel.cpp

5.4.6 IPIndex Class Reference

Suspicious Source entity IP item.
#include <src_ent.hpp>

Public Member Functions

• IPIndex ()

Public constructor.

5.4. System Class Documentation 75

Public Attributes

• std::stringip_addr

Item’s IP address.

• std::map< int, std::vector< std::string> ∗ > s_ents

The alarms that the IP has sounded off.

5.4.6.1 Detailed Description

This class represents an item of a Suspicious Source Entity. A suspicious source Entity is
characterized by a suspicious IP and an alarm number.

5.4.6.2 Member Data Documentation

std::string IPIndex::ip_addr
This Suspicious Source Entity Item represents an IP address that has set n number of alarms

off.

std::map<int, std::vector<std::string>∗ > IPIndex::s_ents
These are the alarms that are associated to the IP address. Each alarm is a unique key in the

associative map. The content of each key is a vector containing associated server responses.
The documentation for this class was generated from the following files:

• src_ent.hpp

• src_ent.cpp

5.4.7 NETIndex Class Reference

Suspicious Source entity Alarm number item.
#include <src_ent.hpp>

Public Member Functions

• NETIndex ()

Public constructor.

76 Chapter 5. System Implementation

Public Attributes

• int net_id

Item’s alarm number.

• std::map< std::string, std::vector< std::string> ∗ > s_ents

The IPs that have sounded the alarm off.

5.4.7.1 Detailed Description

This class represents an item of a Suspicious Source Entity. A suspicious source Entity is
characterized by a suspicious IP and an alarm number.

5.4.7.2 Member Data Documentation

int NETIndex::net_id
This Suspicious Source Entity Item represents an Alarm number that has been set off by n

number of IP addresses.

std::map<std::string, std::vector<std::string>∗ > NETIndex::s_ents
These are the IPs that are associated to an alarm number. Each IP is a unique key in the

associative map. The content of each key is a vector containing associated server responses.
The documentation for this class was generated from the following files:

• src_ent.hpp

• src_ent.cpp

5.4.8 SRCENTDat Class Reference

The Suspicious Source Entity class.
#include <src_ent.hpp>

Public Member Functions

• SRCENTDat (const char∗client_ip_, const char∗net_num_)

Public constructor.

• const char∗ get_svr_res() const

Get the server response status-code.

5.4. System Class Documentation 77

• const char∗ get_client_ip() const

Get the client’s IP address.

• int get_net_num() const

Get the alarm number sounded off.

• void set_svr_res(const char∗)
Set the server response status-code.

Private Attributes

• std::stringsvr_res

The associate server response status-code.

• std::stringclient_ip

The client’s IP address.

• int net_num

The alarm number sounded off.

5.4.8.1 Detailed Description

This class represents the contents of a suspicious source entity. It contains the client IP address,
the alarm number sounded off and the associated server response status-code to a suspicious
HTTP request.

5.4.8.2 Constructor& Destructor Documentation

SRCENTDat::SRCENTDat (const char∗ client_ip_, const char∗ net_num_)
This public constructor is used to set the client IP address and alarm number of this suspi-

cious source entity.

Parameters:
client_ip_ the client’s IP address.

net_num_ the alarm number sounded off.

78 Chapter 5. System Implementation

5.4.8.3 Member Function Documentation

const char∗ SRCENTDat::get_client_ip () const [inline]
This is a constant in-line method for retrieving the client’s IP address that sent a suspicious

HTTP request.

Returns:
the client’s IP address.

int SRCENTDat::get_net_num () const [inline]
This is a constant in-line method for retrieving the alarm number that a suspicious HTTP

request has sounded off.

Returns:
the alarm number sounded off.

const char∗ SRCENTDat::get_svr_res () const [inline]
This is a constant in-line method for retrieving the server’s response status-code from a

suspicious HTTP request.

Returns:
the associated server’s response status-code

void SRCENTDat::set_svr_res (const char∗)
After a suspicious request has been acknowledged as non-critical it is forwarded to the

server. This method is used to set the associated server’s response status-code to a suspicious
request.

The documentation for this class was generated from the following files:

• src_ent.hpp

• src_ent.cpp

5.4.9 SRCEntities Class Reference

Suspicious Source Entity Container.
#include <src_ent.hpp>

Public Member Functions

• SRCEntities ()

Public constructor.

5.4. System Class Documentation 79

• ∼SRCEntities ()

Public destructor.

• void insert_ip (SRCENTDat item_)

Perform a unique IP address insertion.

• void insert_net (SRCENTDat item_)

Perform a unique Alarm number insertion.

• const char∗ to_string () const

Serialize the Source Entity Container to XML string.

Private Member Functions

• void insert_ip_index (SRCENTDat)

Insert and Source Entity IP Item.

• void insert_net_index(SRCENTDat)

Insert and Source Entity Alarm number.

Private Attributes

• std::vector< IPIndex ∗ > ips

The Suspicious Source Entity IPs.

• std::vector< NETIndex ∗ > nets

Ths suspicious Source Entity Alarm number.

Friends

• classTMPVar

The Temporal Patterns variable.

80 Chapter 5. System Implementation

5.4.9.1 Detailed Description

This class contains two vectors of suspicious source entity items. One is indexed by suspicious
IPs and the other by sounded off alarm numbers. The data in both vectors has an associative lay-
out. The data in one vector is contained in the other and vice-versa. But the data is interpreted
in a different way.

5.4.9.2 Constructor& Destructor Documentation

SRCEntities::∼SRCEntities ()
This method is in charge of cleaning out the IPs and alarm numbers vectors.

5.4.9.3 Member Function Documentation

void SRCEntities::insert_ip (SRCENTDat item_)
This method inserts an IP address into the its vector. It will search for the IP address within

Parameters:
If it is found it will insert the alarm sounded off. If no alarm number is found a new one

with its associated server’s response status-code is, or the associated server’s response
status-code is appended to the existing entry.

item_ the content of a Suspicious Source Entity.

void SRCEntities::insert_ip_index (SRCENTDat) [private]
This method directly pushes-back a Source Entity IP Item in its vector.

void SRCEntities::insert_net (SRCENTDat item_)
This method inserts an alarm number into the its vector. It will search for the alarm number

within

Parameters:
If it is found it will insert the IP that sounded off the alarm. If no IP is found a new one

with its associated server’s response status-code is, or the associated server’s response
status-code is appended to the existing entry.

item_ the content of a Suspicious Source Entity.

void SRCEntities::insert_net_index (SRCENTDat) [private]
This method directly pushes-back a Source Entity alarm number in its vector.

const char∗ SRCEntities::to_string () const
This method translates the content of the Source Entity Container into an XML document.

Returns:
an XML formatted string.

5.4. System Class Documentation 81

5.4.9.4 Friends And Related Function Documentation

friend class TMPVar [friend]
The Temporal Patterns variable must perform lookups in both the Source Entity Container.

5.4.9.5 Member Data Documentation

std::vector<IPIndex ∗> SRCEntities::ips [private]
This vector contains all IPs that have sounded n number of alarms off (n > 0).

std::vector<NETIndex ∗> SRCEntities::nets [private]
This vector contains all of the alarm numbers that have been sounded off by n number of IP

addresses (n> 0).
The documentation for this class was generated from the following files:

• src_ent.hpp

• src_ent.cpp

5.4.10 SYSData Class Reference

The SYSData class.
#include <sys_data.hpp>

Public Member Functions

• SYSData()

Public Constructor.

• ∼SYSData()

Public Destructor.

Protected Attributes

• std::vector< ExpLangObject∗ > features

The Features Container.

• std::vector< ExpLangObject∗ > blacklist

The Black-list Features Container.

82 Chapter 5. System Implementation

• std::vector< TMPPattern∗ > tmp_patterns

The Temporal Patterns Container.

• std::vector< FANNCNetwork∗ > neural_nets

The Neural Network Container.

• SRCEntities∗ src_ents

The Suspicious Source Entity Container.

• DELAYEntities ∗ delayed_ents

The Delayed Source Entities Container.

• FORBIDDENEntities ∗ forbidden_ents

The Forbidden Source Entity Container.

Friends

• classCIDFThread

TheCIDFThread (p. 55)has access kernel Data-Structure.

• classIDSKernel

TheIDSKernel(p. 70)has access its Data-Structure.

5.4.10.1 Detailed Description

This class holds all kernel Data-Structures. Including both dynamic and static types.

5.4.10.2 Constructor& Destructor Documentation

SYSData::∼SYSData ()
The public destructor is in charge of freeing all memory occupied by the dynamic Data-

Structures.

5.4. System Class Documentation 83

5.4.10.3 Friends And Related Function Documentation

friend class CIDFThread [friend]

CIDFThread (p. 55) class is allowed to directly manipulate the IDSs Data-Structures.

friend class IDSKernel [friend]

IDSKernel(p. 70) class is allowed to directly manipulate the Data-Structures.

5.4.10.4 Member Data Documentation

std::vector<ExpLangObject ∗> SYSData::blacklist [protected]

This container is static. It holds all of the user-declared black-list features. Each element in
this vector has its own parser engine.

DELAYEntities ∗ SYSData::delayed_ents [protected]
This container is dynamic. It holds all source entities characteristic items that have been

delayed. Characteristic items may be an IP address or an alarm number.

std::vector<ExpLangObject ∗> SYSData::features [protected]

This container is static. It holds all of the user-declared features. Each element in this vector
has its own parser engine.

FORBIDDENEntities∗ SYSData::forbidden_ents [protected]

This container is dynamic. It holds all source entity characteristic items that have reached
their maximum delay time.

std::vector<FANNCNetwork ∗> SYSData::neural_nets [protected]

This container is static. It holds all of the stateless validation neural networks. Each neural
network in this vector is also interpreted as an alarm.

SRCEntities∗ SYSData::src_ents [protected]

This container is dynamic. It holds all of the source entities that have fired a stateless alarm.
Alarms are fired due to suspicious content within the HTTP request.

std::vector<TMPPattern ∗> SYSData::tmp_patterns [protected]

This container is static. It holds all of the user-declared temporal patterns. Each element in
this vector has its own parser engine.

The documentation for this class was generated from the following files:

• sys_data.hpp

• sys_data.cpp

84 Chapter 5. System Implementation

5.5 Complications

During the implementation phase there were two main complication issues. These had to be
solved using mechanisms provided by the programming language. The first implementation
issue was working out a simple yet robust programming abstraction for both of the recursive
languages. That is, the languages used to extract user-defined features (FDL) and temporal
patterns (TPDL). The second issue was making a wrapper around the kernel to enable user
interaction. This refers to the MC and the kernel’s MCI. With another programming language,
such as C, these implementation issues would have been complex to solve. C is mentioned
because it offers about the same hardware access time as C++. This was the main reason why
Java was not an option for this project.

During the implementation of FDL and TPDL, a strong use of C++’s polymorphic mech-
anism had to be used. Notice that FDL and TPDL share a common design, and are nearly
identical in their implementation. There are three main differences:

• The variable look-up table that each uses is different. FDL uses a parsed request object as
a look-up table while TPDL uses the Suspicious Source Entity Container.

• During the parsing of user-defined features and temporal patterns, the variable declara-
tions do not share the same syntax.

• TPDL does can only interpret boolean expressions unlike FDL that can, e.g. the size of
the HTTP header-field content.

Polymorphism allows for the recurrent traversal of data among the description language’s
expressions. In other words, the user may declare nested user-defined features and temporal
patterns. For example,

• (ALARM.Client-Error.4xx> 400) and (IP.Redirection.3xx> 5)

The other issue, was implementing the CM and the kernel’s CMI. Through object inheritance
offered by the languages facilities, this task was reduced to a few lines of code. An CM class
is derived from the kernel. Therefore, the CM is itself a kernel with added-on features. The
way that the CMI is defined is by privatizing all data-member within the kernel, except those
available to the CMI. These are defined as “protected” within the kernel, therefore only derived
kernel objects may access them. No data nor method members should be left public within
the kernel. With a well defined CMI it is easy to derive different types of user interfaces. Not
necessarily a console interface but a GUI could also be used.

85

Chapter 6

System Testing

6.1 Overview

The description of the IDS’s testing is divided into three parts: What type of equipment and
auxiliary programs were used, how relevant data was gathered and the system’s training and
testing times. Notice that these tests are subject to change from the delivery of this document to
the system’s presentation day. The system is still in a prototype stage and it is still constantly
being updated. The prototype delivered with this along with this document is the latest stable
version.

Notice that all testing data used; temporal as well as HTTP dissector results, are contained
with the CD annexed to this document.

6.2 Testing Environment

Notice that all tests were performed in an isolated environment. That is, there was never ac-
cess to the test servers nor the IDS from a DMZ. All tests were performed from the local-host
computer or using an auxiliary lap-top computer within the IMM firewall’s perimeter.

6.2.1 Equipment

All test were performed on two x86-based systems. The first running on an AMD Athlon(™)
XP 2000+ at 1.6 GHz processor. The available memory was 256MB SDRAM. The OS running
the machine was a Debian GNU/Linux 3.1. Some data characterization requests were launched
from a second system. This was a Toshiba Satellite 2430-301 lap-top computer. The lap-top has
is an x86-based system running on a Intel(™) Pentium 4 at 2.66 GHz processor. The amount
of memory available on this computer where 512 DDR-SDRAM. The OS was again a Debian
GNU/Linux 3.1 and Windows XP Professional Edition.

6.2.2 Auxiliary Applications

There were various different types of auxiliary applications used to perform the tests. These are:

86 Chapter 6. System Testing

• An Apache Web-Server version 1.3.33 on system 1. The web-server was used as a sink
for all captured test HTTP requests. These include sane HTTP requests from stress tools
and normal web-browsers to suspicious activity emulated with Nessus.

• Etherreal version 0.10.6 on system 1. This tool is a Ethernet packet sniffer and was used
to intercept all tested HTTP traffic. This traffic was then organized as application-level
data (strings) and placed inside the prototype. The HTTP traffic, as mentioned before,
resides globally accessible vectors within the IDS, enabling network simulation.

• Nessus version 2.2.0 on system 1. This tool was used to mimic suspicious and critical
activity against the test web-server. It can mimic XSS attacks, various DoS attacks, BoF
attacks and various forms of injection attacks. These injection attacks include SQL data-
base tampering.

• MyPHPMoney version 1.3RC3 on system 1. This tool makes use of the MySQL server
through the PHP scripting sub-system of Apache. It was used to launch and see if any in-
jection attacks could be performed and what information was obtained from the analyzed
traffic.

• MySQL Server version 4.0.23 on system 1. This server was used as a requirement of
MyPHPMoney and to study the effects of automatic injection attacks from Nessus. These
attacks were performed through the PHP scripting sub-system.

• Mozilla Firefox version 1.0 on system 2. This tool was used to extract properties of
normal web-traffic. It was fundamental in differentiating those features from normal and
suspicious requests.

• Opera version 7.54u1 on system 2. This tool was used to extract properties of normal web-
traffic. It was fundamental in differentiating those features from normal and suspicious
requests.

• Internet Explorer version 6.0 on system 2. This tool was used to extract properties of
normal web-traffic. It was fundamental in differentiating those features from normal and
suspicious requests.

• Hammerhead version 2.1.3 on system 1. This is a Web-Server stress tool and was used to
differentiate relevant features from normal and suspicious requests. Once the prototype
works on-line, this tool should be used to stress test how many requests it is capable of
handling per second.

6.3 Data Gathering

All data gathered was obtained through the use of an Ethernet packet sniffer. There were au-
tomatic attacks launched through Nessus at the Web-Server. These differed in the sort of at-
tack, for example, DoS attacks , XSS attacks, SQL Injection attacks and BoF attacks . Also

6.3. Data Gathering 87

data-gathering intrusions where carried out, such as techniques used by port-scanners , direc-
tory traversals and user-name account guessing techniques. Not only were malicious requests
gathered, also normal HTTP traffic from ordinary Web-Browsers was sniffed. Also the normal
interaction of a user with the SQL Database through Apache’s PHP scripting sub-system. In
order to point-out any relevant characteristics of suspicious and anomal behavior.

An auxiliary tool was used, which makes use of the HTTP Parser Library developed for this
project (appendix D). The utilities usage is

dishttp: HTTP traffic statistical analyzer, version 0.1

Usage: dishttp file ss1 ss2 ss3

file File That contains

HTTP requests.

ss1 Minimum segment size

within header content.

ss2 Minimum segment size

within URL content.

ss3 Minimum segment size

within body content.

A sample file that contains simulated HTTP traffic can be seen in the source file
“http_traffic.cpp”. This file may be accessed in the CD that is annexed to this document. It
resides within the directory path: “/src/W3ids/”. The most relevant results obtained are dis-
played in tables G.2 and 6.2. Notice that for anomel traffic, there are two types of Client-Server
interaction captures. A normal browsing mode and another one with the PHP scripting sub-
system.

Browser GET Usage POST Usage URL Range

Firefox 100% [1..56]
Firefox PHP 90% 10% [21..38]

Opera 100% [1..16]
Opera PHP 90% 10% [12..45]

IE 100% [1..7]
IE PHP 90% 10% [11..38]
Mozilla 100% [1..16]

Mozilla PHP 90% 10% [12..38]

Table 6.1:Relevant features extracted from anomal HTTP activity.

During the dissection of HTTP request in DoS attacks, the HTTP version field varied. From
distinct versions to random strings. Refer to appendix G the full content of data gathering, and
a detailed explanation.

88 Chapter 6. System Testing

Attack GET Usage POST Usage OPTIONS Usage Other method URL Range

XSS 76% 24% [10..144]
PHP-SQL 100% [11..113]

Guess 100% [3..22]
DoS 55% 5% 10% 5% [1..9]

Table 6.2:Relevant features extracted from suspicious HTTP activity.

6.3.1 Detection Efficiency

The system’s detection efficiency is hard to measure. Specially because most of the suspicious
activity was performed under a control environment. Another disadvantage was that it was not
easy to come across old software systems with vulnerabilities that had not been patched. The
system was capable of detecting from the simulations most of the attack attempts by Nessus.
Although most of the attacks were performed in one-pass mode. That is, it was only one HTTP
sent and not a sequence of them. What did turn out convincing, were the user-defined temporal
patterns. Although there was no auxiliary tool to analyze temporal patterns, from empirical cri-
teria, the system was capable of recognizing several directory traversal, and user-name account
guessing intrusions from the correlation of client IP, alarms sounded off and server responses.

Another problem while measuring the detection efficiency was that most user-defined fea-
tures were defined by heuristics. Not through the data extracted from the HTTP dissection
tool. The data that was obtained from Nessus was too general, to not be searched by regular
expression matching. For example, in specific patterns within the URL field like “<SCRIPT”.

6.4 System Timing

There are several timing parameters to considering while measuring the temporal efficiency of
the system. These are broken up into three groups of data: the training time required by the
system, the testing time required by the system and the overall time required to process a client
request. All of the timings bellow can be stipulated that the server response time and network
data-transfer rates are constant. Therefore, in each case where temporal parameters are obtained
the following expression must be kept in mind:

T(n) = n + C1 + C2

Wheren is the total time that the IDS used while processing the request.C1 is the constant
time that a server has in completing a Server Transaction. From chapter 4, a server transaction
implies, a request being forwarded to the server and the server sending back its response.C2 is
the constant time that the network data transfer-rate adds up. All system timing parameters are
given in nanoseconds (ns).

6.4. System Timing 89

6.4.1 Training Time

There is an obvious established relation with the amount of training data fed into the networks
and the time all networks require to be trained. In figure 6.1 this lineal relations is shown.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 1000 2000 3000 4000 5000

T
im

e
(m

ic
ro

se
co

nd
s)

Instances

Training Time W3IDS

train time

Figure 6.1:Main system data-structures components.

There is a small errata in figure 6.1, time units are presented as microseconds but are mil-
liseconds.

6.4.2 Testing Time

The testing time remained constant for the neural networks. The amount of Internal Input Clas-
sification units in the hidden layer of the neural network had no impact. There was an average
testing time of:

4,289µs

With a minimum time of3, 6 µs and a maximum of9, 8 µs. On seldom occasions there
were testing peaks of195, 6 µs. Testing time peaks could be due to system overload during the
process of testing.

6.4.3 HTTP Request Service Time

The overall system request service time i.e. from the time that a client sends the HTTP request
to the time it gets a response needs to be broken down. There are two main cases; the case when
a request is considered sane, and undergoes no further analysis other than stateless analysis. In
this case the system timing was of,

300µs

90 Chapter 6. System Testing

while during the works case scenario i.e. when the system must undergo stateless as well as
stateful analysis. The timing averaged out to,

972,25µs

91

Chapter 7

Further Developments

7.1 Overview

In this chapter a series of improvements that the system should be subject are given. These go
from major system architecture changes to some minor fix-ups. Most of the developments men-
tioned here are services that are offered by current market products. For any IDS designed for
today’s Web-Application domain, most of these add-ons are fundamental system requirements.

7.2 Maximum Delay DoS Fix

In the DoS attack mentioned in Chapter 4, held against the Connection Manager. The problem
is not whether the system uses a thread pool or not, to service client requests. The problem is
within the design of the modified CIDF proposal.

The Countermeasures box abstraction should not be a function called from within the events
and analysis box. The countermeasures box should be implemented as an independent thread.
The interaction between the events, analysis box and countermeasures box should be a buffered
producer, consumer semaphore protected approach.

The fix-up proposes that each time a client needs to receive a delayed decoy response, these
be inserted into a buffer by the analysis or events boxes. A priority queue should be used as
the buffer. Having the ordering element of the queue as the shortest delay time at first position
and the largest delay time at last. The data contained in this element inserted in the shared-
buffer must also have information relevant to the clients socket descriptor. In order to allow the
Countermeasures box to take full responsibility of the response that the client will get.

This fix-up does not lock-up the CIDF Threads when a countermeasure must be taken
against a client request. Therefore, the CIDF Threads are free to process more client requests
received by the Connection Manager.

92 Chapter 7. Further Developments

7.3 On-line Training

On-line training refers to the system not only being capable of performing training during system
start-up. On-line training should be carried out while the system is up and running.

This proposal would make the stateless engine a very powerful utility if retraining from
scratch was not needed. But as soon as new instances of request features were stumbled across
these could be added into the neural network. This process could be automatic, although the
Neural Network library developed herein would need to be extended to be able to make those
kind of decisions.

What is implied here is, that the neural network would have to be trained to categorize an
event as a certain class of attack, and some features that categorize the event as not an attack.
Therefore, when data could not be fitted into either one of the two sets, a decision would have
to be made. If the neural networks were assisted by a network administrator, he could simply
decide which new instances of features were added to which nets.

Assisted on-line training could be performed from within the local-host computer or a re-
mote computer. Under a distributed network scheme, remote access would be convenient for
the system administrator. The local-host IDS management can be performed through the use
of UNIX domain sockets. For security reasons remote access to the IDS would have to then,
support SSL connections.

7.4 Hand-off Scheme

The Hand-off scheme is used for heavily loaded Web-Servers. Under this context, the load of a
Web-Server is measured by client requests or hits per second (hits/s). Some examples of a heav-
ily loaded Web-Servers are: the Google Web-Servers, the CNN Web-Servers, the Amazon.com
Web-Servers and MSN’s Hotmail Web-Servers. These Web-Servers receive loads in the order
of thousands of hits per second. A single Web-Server does not have the capacity to handle such
loads, so several of them are used together. A main Web-Server is placed to receive all client
requests, but it does not process them. The client requests get forwarded to slave Web-Servers.
These may be organized by functionality i.e. SQL oriented, or XML content pages. Or they
may be oriented by the part of the site that is being visited i.e. the Web-site is distributed among
several machines.

How the proposed Application-level IDS could be incorporated into this scheme is a mere
educated guess. Since it has not been either subject to such Web-request loads nor have the
hardware resources, allowed a hand-off scheme trial. The proposal is that an instance of each
application-level IDS be placed in-front of each slave Web-Server. The IDS’s would have to
intercommunicate adding a data synchronization temporal impact factor on the performance of
its analysis speed.

The other possibility is by having an ideal IDS in-front of the master Web-Server that could
service up to 30.000∗ hits/s in real-time. Nearly impossible, since stateful inspection adds a
server response temporal factor which is external to the IDS temporal timing constraints. Server

∗The estimate is obtained from the analysis speed that Intelliwall offers, without the stateful correlation of server
responses.

7.5. SSL HTTP Traffic 93

responses are not a constant factor either, these vary depending on the load that the machine
running the Web-Server is subject to. Therefore, the only valid scheme proposal is in front of
each slave Web-Server.

7.5 SSL HTTP Traffic

For most Web-Applications that involve the handling of user data, the encrypted version of
the HTTP protocol is used i.e. HTTPS. Which means that any intermediate point between the
client and Web-Server can receive the information, but just won’t make much sense out of it.
Therefore, the IDS would require a Web-Server certificate upload authority. This would allow
the IDS to identify itself to the clients as the server. Forwarding then to the Web-Server either
decrypted or encrypted information received from the clients.

7.6 Hash-table Over Vector

There is a minor efficiency problem in the design of the Source Entities Container. The container
is characterized by two vectors; one holding all of the information relevant to indexed IP address
and the other to alarms that have been sounded off. Within each vector component, there is a
reciprocal Source Entity Item. This means that in the indexed IPs, each IP has a set of alarms
that has set off and vice-versa. In the case of the indexed IPs, each alarm is a key within
an associative map. The key returns a vector which contains all server responses that the IP
address, having set off that alarm have received. Instead of a vector for storing server responses,
another associative map should have been used. That is, a 2-dimensional associative map and
the following cases analysis, provides an elemental mathematical proof on why.

During the case analysis vector elements are considered as constant strings of four characters
e.g. “404
0”. In the associative map, the key is also a constant string of four characters, and the key
content is a short integer i.e. an integer composed of four bytes. The key content represents the
number of time that the key has been received as a server response Status-Code. The associative
map’s keys are unique, they may not repeat. Repeated elements are represented byr;

7.6.1 First Case

From figure 7.1, the worst case scenario is modelled for the hash-table. There have beenn
Status-Codes received , up until this time frame. All of the received Status-Codes are different.
Therefore, spacial-wise the associative map occupies twice as much space as the vector.

The vector under this case occupies4bytes∗n, while the associative map occupies2∗4bytes∗
n. Notice that the number of repeated elements in this case isn, thereforer = n.

7.6.2 Second Case

From figure 7.2, the best case scenario is modelled for the hash-table. There have beenn Status-
Codes received, up until this time frame. All of the received Status-Codes are the same. There-

94 Chapter 7. Further Developments

x0 x1 xn...

x0 x1 xn...
1 1 1

Figure 7.1:Vector VS. Hash, best case for vector data-structure.

fore, spacial-wise the associative map occupies(1/n)+4bytesthe size of the vector. The amount
of repeated elements under this case is1, thereforer = 1.

x0 x0 x0...

x0
n

0 n

Figure 7.2:Vector VS. Hash, best case for the hash-table data-structure.

The vector in this case still occupies4bytes∗nbytes, while the associative map only occupies
2bytes.

7.6.3 Conclusion

Temporal-wise it is obvious that the associative map is more efficient since its lookup times are
constant, while the vectors look-up times depend on its size i.e.O(T) = n.

Spacial-wise the following relation is established: as soon as there are more than elements
than twice the amount of repeated objects the hash-table is more efficient.

n > 2r ∧ n ≥ r

From empirical results obtained during the evaluation of experiments, the number of server
response Status-Code to suspicious requests is not often unique. This value always vary between
the 4xx and 5xx status-codes,

Another advantage over the vector data-structure is that the hash-table will have a finite size
The amount of server response Status-Codes is a discrete set of values. While the vector that
has no defined size.

95

Chapter 8

Conclusion

8.1 System Efficiency

The system’s temporal efficiency makes it a fast on-line analysis tool. It would be necessary to
have the system hooked on a real environment to measure the server response time impact on
the IDS’s stateful analysis. Having an average testing time of4, 289µs, the system is capable
of meeting close to real-time constraints. Real-time constraints are met considering that the
additional constant timings added on by network data transport and server response timing do
not impact the overall IDS’s client request service phase.

Efficiency in terms of false-positives or false-negatives is greatly dependant on the training
data provided by the user. Not only the training data but also the precision while selecting ac-
curate HTTP request features and temporal patterns. A tool for eliciting HTTP request features
was developed for this project but none for temporal patterns. A tool to assist this process would
be of great helper to a system administrator using this IDS.

A disappointing fact is that most commercial application-level IDS do not implement state-
ful inspection. If they do, it is not based on the correlation of server events with associated
suspicious requests. The reason behind is that to achieve real-time analysis and prevention, the
IDS cannot depend on the response that it will “eventually” receive from the server.

8.2 Implementation techniques

As for implementation, C++ is a powerful language. Many OS components can be accessed
directly through the GNU C libraries, which cannot with many others like Java. This enables
the accurate measurement of the system in terms of nanoseconds.

The amount of available third party software, with an object-oriented abstraction is abun-
dant. Such available libraries written under C++ as XML parser engines and regular expression
processors. C++’s STL saves the programmers a great deal of work during debugging. Since
container, e.g. vector, overflows are easier to identify than without the STL.

96 Chapter 8. Conclusion

8.3 Closing Statement

I thought this day would never come. It has been fun . . .

97

Appendix A

Definitions and Abbreviations

A.1 Definitions

Paradigm, is defined under the given context as a model or a pattern of an information system.

Proxy, The agency for another who acts through the agen

Source Entity, is defined as the compound object formed of a host IP address, an alarm
number and an HTTP Web-Server response Status-Code. Its components are called Source
Entity Items. This term is useful since, it is not reliable to classify intrusions only by who is
originating them i.e. the host computer’s IP address. IP addresses can easily be spoofed, and
there are several methods of taking control of a remote computer and making it act as a zombie.
Considering these facts, it is also reliable to classify instrusions by which request is being sent.

Spoof, according to WordNet (r) 2.0 [20], to make a parody of.

Zombie, a computer that has been taken over by an intruder that performs actions on the
intruders behalf.

98 Chapter A. Definitions and Abbreviations

A.2 Abbreviations

ART Adaptive Resonance Theory
API Application Programming Interface
ASP Active Server Pages
ASP.NET Active Server Pages under the .NET framework
BNF Backus-Naur Form
CGI The Common Gateway Interface
CIDF The Common Intrusion Detection Framework
CMI The Console Manager Interface
CPM Coulomb Potential Model
DMZ Demilitarized Zone
DoS Denial of Service
FANNC A Fast Adaptive Neural Network Classifier
FDL Feature Description Language
FTP File Transfer Protocol
GUI Graphical User Interface
HTTP Hypertext Transfer Protocol
IDS Intrusion Detection Systems
IIS Internet Information Server
NIDS Network Intrusion Detection System
OS Operating System
PDL Program Description Language
PHP PHP: Hypertext Preprocessor (HTML - embedded scripting language)
POSIX Portable Operating System Interface (IEEE Standard 1003.1)
RAM Random Access Memory
SQL Structured Query Language
SSL Secure Socket Layer
STL Standard Template Library
TCP/IP Transmission Control Protocol/Internet Protocol
TPDL Temporal Pattern Description Language
URI Uniform Resource Identifier
W3 alias for WWW
WWW World Wide Web
XML eXtensible Markup Language

99

Appendix B

Sample Configuration file

Here is a sample configuration file of the proposed IDS. This file is read by the system at startup,
and then all relevant initializations are performed.

This line is a comment.
W3IDS configuration file
Fernando Alvarez 2004-2005

[Kernel]
client_threads = 5
neural_nets = 4
listen_port = 8080
server_port = 80
manager_port = 1998

File list must be as big as the number of neural
networks specified above. File names should be
comma separated.
training_data_list = sql.txt,xss.txt,scan.txt,phony.txt

Specifies the increments that will be applied each
time a suspicious source entity persists with malevolent
data. 2^n where n = n + delay_increments.
delay_increments = 2

Maximum delay time (s) before a source is transmitted to
the forbidden source entity list.
max_delay = 256

[Stateless]
header.Agent.size
header.Connection.size

100 Chapter B. Sample Configuration file

header.Agent.size = 4*body.size
request_line.Method.IDEN
request_line.URI.ocurrences(‘‘%00’’)
header.Content-Length.IDEN

[Stateful]
NETID.Server-Error.4xx > 100
NETID.Client-Error.403 > 100
IP.Redirection.3xx > 20
IP.Client-Error.400 > 10
IP.Client-Error.401 > 10
NETID.Server-Error.404 > 30

[Blacklist]
request.URI.regexp(‘‘*/etc/passwd*’’)
body.regexp(‘‘*=*/etc/passwd*’’)
header.Cookie.size > 1024
header.Cookie.regexp(‘‘*’DELETE*’’)

101

Appendix C

FANNC Library

C.1 Overview

For a detailed description of the Neural Network’s design refer to [6]. In this section of the
appendices the programming interface to the library is shown. As one of the best teaching
methods is, “learn by example”. Here is some sample code on how the library can be used. The
following code segment is provided in C++.

#include <vector>
#include ‘‘fannc.hpp’’

#define DEF_WIDTH 0.03f
#define H_BIAS 0.25f
#define DELTA 0.01f
#define L_THRESHOLD 0.70f
#define MAX_ERROR 0.01f

int main(void)
{

vector<double> v_in(4, 0.034f);
vector<double> v_out(1, 1.0);

FANNCNetwork * fannc_net = new FANNCNetwork(sigmoid,
DEF_WIDTH,
H_BIAS,
DELTA,
L_THRESHOLD,
MAX_ERROR);

fannc_net->train(v_in, v_out);
fannc_net->print_network();

delete fannc_net;
return 0;

}

102 Chapter C. FANNC Library

An input and output training instance is needed. The input is initialized as four components,
all of the equal to 0,034. The output has only one component initialized to one. The network is
created, and then can either be trained or tested. For it to be of any use it must be trained first.

C.2 FANNC Class List

C.2.1 FANNC Library Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

Conn (Neuron(p. 115) normal connection) . 102

DataErrorException (FANNC exception handling) 104

FANNCDOM (The FANNC XML document abstraction) 105

FANNCNetwork (Main FANNC Network class) 106

GaussConn(Neuron(p. 115) Gaussian connection) 109

IICNeuron (The FANNC Internal Input Classification neuron abstraction) 111

InputNeuron (The FANNC Input neuron abstraction) 112

IOCNeuron (The FANNC Internal Input Classification neuron abstraction) 113

Neuron (The FANNC base neuron abstraction) . 115

NeuronIndex (This class is used for optimization purposes) 116

OutputNeuron (The FANNC Output neuron abstraction) 118

C.3 FANNC Class Documentation

C.3.1 Conn Class Reference

Neuron(p. 115) normal connection.
#include <conn.hpp>

Inheritance diagram for Conn::

Conn

GaussConn

C.3. FANNC Class Documentation 103

Public Member Functions

• Conn (unsigned int _neuron=PLUS_INF, double _weight=MINUS_INF)

Constructor.

• unsigned intget_neuron() const

Get the destiny neuron’s layer position.

• doubleget_weight() const

Get the connection’s weight.

• void set_weight(double _weight)

Set the connection’s weight.

Protected Attributes

• unsigned intneuron

The destiny neuron’s layer position.

• doubleweight

The connection’s weight.

C.3.1.1 Constructor& Destructor Documentation

Conn::Conn (unsigned int_neuron= PLUS_INF, double_weight= MINUS_INF)
The constructor initializes the destiny neuron’s position to infinity and the connection’s

weight to -infinity.
The documentation for this class was generated from the following files:

• conn.hpp

• conn.cpp

104 Chapter C. FANNC Library

C.3.2 DataErrorException Class Reference

FANNC exception handling.
#include <errors.hpp>

Public Member Functions

• DataErrorException (const std::string _pmsg="Error: Undefined", unsigned int _-
code=UNDEF_ECODE)

Constructor.

• const std::stringget_pmsg() const

Get the exception message pmsg.

Protected Attributes

• const std::stringpmsg

The exception message.

• unsigned intcode

The error message code.

C.3.2.1 Constructor& Destructor Documentation

DataErrorException::DataErrorException (const std::string _pmsg =

"Error: Undefined", unsigned int_code= UNDEF_ECODE)
Default constructor throws an undefined message with undefined error code.

Parameters:
_pmsg The exception message.

_code The error message code.

The documentation for this class was generated from the following files:

• errors.hpp

• errors.cpp

C.3. FANNC Class Documentation 105

C.3.3 FANNCDOM Class Reference

The FANNC XML document abstraction.
#include <fannc_dom.hpp>

Public Member Functions

• FANNCDOM (FANNCNetwork &_net, const char∗_xml_file="network.xml")

Constructor.

• int stream_net(const char∗_xml_file="std_out")

Save or Print the referenced FANNCNEtwork.

• int load_net(const char∗_xml_file="network.xml")

Load anFANNCNetwork (p. 106)from file. TODO!

C.3.3.1 Detailed Description

The FANNC XML document abstraction. This class depends on the C++ Xerces Library. This
library is distributed freely by Apache.org.

C.3.3.2 Constructor& Destructor Documentation

FANNCDOM::FANNCDOM (FANNCNetwork & _net, const char ∗ _xml_file =

"network.xml")
The constructor initializes the reference to theFANNCNetwork (p. 106) object and sets the

file file.

Parameters:
_net The reference toFANNCNetwork (p. 106)

_xml_file The XML file to save the networks to.

C.3.3.3 Member Function Documentation

int FANNCDOM::load_net (const char ∗ _xml_file= "network.xml")
TODO! Load an existing neural network to the from a file.

Parameters:
_xml_file The file-name where the Neural Network resides.

106 Chapter C. FANNC Library

int FANNCDOM::stream_net (const char ∗ _xml_file= "std_out")
Save or Print the referenced FANNCNEtwork.

Parameters:
_xml_file The file name. By default all serialization is done to the standard output.

The documentation for this class was generated from the following file:

• fannc_dom.hpp

C.3.4 FANNCNetwork Class Reference

Main FANNC Network class.
#include <fannc.hpp>

Public Member Functions

• FANNCNetwork (double(∗)(double), double _alpha=DEF_WIDTH, double _bias=H_-
BIAS, double _delta=DELTA, double _threshold=L_THRESHOLD, double _max_-
error=MAX_ERROR)

Default constructor.

• ∼FANNCNetwork ()

• std::vector< InputNeuron > get_inputlayer () const

Get a copy of the Input Layer.

• std::vector< IICNeuron > get_iiclayer () const

Get a copy of the Internal Input Classification Layer.

• std::vector< IOCNeuron > get_ioclayer() const

Get a copy of the Internal Output Classification Layer.

• std::vector< OutputNeuron > get_outputlayer () const

Get a copy of the Output Layer.

• FANNCDOM ∗ get_XMLDoc () const

C.3. FANNC Class Documentation 107

Get a pointer to the XML document.

• doubleget_dalpha() const

Get the default responsive width.

• doubleget_bias() const

Get the hidden layer bias.

• doubleget_delta() const

Get the Gaussian center adjustment step.

• doubleget_threshold() const

Get the leakage competition threshold.

• doubleget_merror () const

Get the maximum allowable error.

• void train (std::vector< double > &_trainInput, std::vector< double > &_expected-
Output)

Start the training algorithm.

• void test (std::vector< double> &_testInput, std::vector< double> &_actualOutput)

Start the testing algorithm.

• int save_network(const char∗_xmlFile)

Saves the neural network state to XML Doc.

• int load_network (const char∗_fileName)

Reads the neural networks values from a file.

108 Chapter C. FANNC Library

• int print_network ()

Prints the neural network to standard output.

Friends

• classFANNCDOM

XML Serializer must have access to the layers.

C.3.4.1 Detailed Description

A neural network one-pass learning algorithm with incremental learning ability. This algorithm
uses supervised training.

C.3.4.2 Constructor& Destructor Documentation

FANNCNetwork::FANNCNetwork (double(∗)(double), double_alpha= DEF_WIDTH, dou-
ble _bias = H_BIAS, double _delta = DELTA, double _threshold= L_THRESHOLD, double
_max_error= MAX_ERROR)

Default constructor.

Parameters:
The activation function.

The default responsive width.

The hidden layer bias.

The Gaussian center adjustment step.

The leakage competition threshold.

The maximum allowable error.

FANNCNetwork:: ∼FANNCNetwork ()
Default destructor clears out all of the network’s layers.

C.3.4.3 Member Function Documentation

int FANNCNetwork::load_network (const char ∗ _fileName)
Reads the neural networks values from a file.

Parameters:
_fileName The file-name to load network from.

C.3. FANNC Class Documentation 109

int FANNCNetwork::print_network ()
Prints the neural network to standard output.

int FANNCNetwork::save_network (const char∗ _xmlFile)
Saves the neural network state once it has been trained.

Parameters:
_xmlFile File-name to store XML document.

void FANNCNetwork::test (std::vector< double> & _testInput, std::vector< double> &

_actualOutput)
Classification of a given input instance generating an actual output vector. NOTE: the net-

work must first be trained.

Parameters:
_testInput The input instance.

_actualOutput The actual output instance.

void FANNCNetwork::train (std::vector < double> & _trainInput, std::vector< double>
& _expectedOutput)

Start the training algorithm.

Parameters:
_trainInput The input instance.

_expectedOutputThe expected output instance.

The documentation for this class was generated from the following files:

• fannc.hpp

• fannc.cpp

C.3.5 GaussConn Class Reference

Neuron(p. 115) Gaussian connection.
#include <conn.hpp>

Inheritance diagram for GaussConn::

GaussConn

Conn

110 Chapter C. FANNC Library

Public Member Functions

• GaussConn(unsigned int _neuron, double _theta, double _alpha)

Constructor.

• doubleget_theta() const

Get the weight’s center.

• doubleget_alpha() const

Get the weight’s width.

• void set_theta(double _theta)

Set the weight’s center.

• void set_alpha(double _alpha)

Set the weight’s width.

C.3.5.1 Constructor& Destructor Documentation

GaussConn::GaussConn (unsigned int_neuron, double_theta, double_alpha)
The constructor initializes the neuron’s position, the weight’s center and width.

Parameters:
_neuron The destiny neuron’s layer position.

_theta The Gaussian weight’s center.

_alpha The Gaussian weight’s width.

The documentation for this class was generated from the following files:

• conn.hpp

• conn.cpp

C.3. FANNC Class Documentation 111

C.3.6 IICNeuron Class Reference

The FANNC Internal Input Classification neuron abstraction.
#include <neuron.hpp>

Inheritance diagram for IICNeuron::

IICNeuron

Neuron

Public Member Functions

• IICNeuron ()

Constructor.

• bool is_winner () const

Get the winner status of the neuron.

• void set_winner(bool _winner)

Set the winner status of the neuron.

Protected Attributes

• Conn output

The neuron’s only single output connection.

• std::vector< GaussConn> inputs

The neuron’s Gaussian input connections.

112 Chapter C. FANNC Library

Friends

• classFANNCNetwork

FANNCNetwork (p. 106)methods must access the neuron’s content.

• classFANNCDOM

FANNCDOM (p. 105)methods must access the neuron’s content.

The documentation for this class was generated from the following files:

• neuron.hpp

• neuron.cpp

C.3.7 InputNeuron Class Reference

The FANNC Input neuron abstraction.
#include <neuron.hpp>

Inheritance diagram for InputNeuron::

InputNeuron

Neuron

Public Member Functions

• InputNeuron ()

Constructor.

Protected Attributes

• std::vector< GaussConn> outputs

The neuron’s Gaussian output connections.

C.3. FANNC Class Documentation 113

Friends

• classFANNCNetwork

FANNCNetwork (p. 106)methods must access the neuron’s content.

• classFANNCDOM

FANNCDOM (p. 105)methods must access the neuron’s content.

The documentation for this class was generated from the following files:

• neuron.hpp

• neuron.cpp

C.3.8 IOCNeuron Class Reference

The FANNC Internal Input Classification neuron abstraction.
#include <neuron.hpp>
Inheritance diagram for IOCNeuron::

IOCNeuron

Neuron

Public Member Functions

• IOCNeuron ()

Constructor.

• bool is_winner () const

Get the neuron’s winner status.

• doubleget_cerror () const

Get the neuron’s characteristic error.

114 Chapter C. FANNC Library

• void set_winner(bool _winner)

Set the neuron’s winner status.

• void set_cerror (double _cError)

Set the neuron’s characteristic error.

Protected Attributes

• std::vector< Conn > inputs

The neuron’s normal input connections.

• std::vector< Conn > outputs

The neuron’s normal output connections.

• std::vector< NeuronIndex> winnersMap

Optimization data-structure.

• std::priority_queue< NeuronIndex, std::vector< NeuronIndex>, std::greater< Neuron-
Index > > inputsMap

Optimization data-structure.

Friends

• classFANNCNetwork

FANNCNetwork (p. 106)methods must access the neuron’s content.

• classFANNCDOM

FANNCDOM (p. 105)methods must access the neuron’s content.

C.3. FANNC Class Documentation 115

C.3.8.1 Member Data Documentation

std::priority_queue<NeuronIndex, std::vector<NeuronIndex>, std::greater<Neuron-
Index> > IOCNeuron::inputsMap [protected]

Optimization priority queue which holds the IIC unit with maximum activation value, at the
top, connected to this

std::vector<NeuronIndex> IOCNeuron::winnersMap [protected]
Optimization structure which holds all IIC winners connected to this.
The documentation for this class was generated from the following files:

• neuron.hpp

• neuron.cpp

C.3.9 Neuron Class Reference

The FANNC base neuron abstraction.
#include <neuron.hpp>
Inheritance diagram for Neuron::

Neuron

IICNeuron InputNeuron IOCNeuron OutputNeuron

Public Member Functions

• Neuron (unsigned int _type=UNDEF_LAYER)

Constructor.

• unsigned intget_type() const

Get the neuron type.

• doubleget_value() const

Get the activation value of the neuron.

• void set_value(double _value)

Set the activation value of the neuron.

116 Chapter C. FANNC Library

C.3.9.1 Constructor& Destructor Documentation

Neuron::Neuron (unsigned int_type= UNDEF_LAYER)
Constructor for neuron base class.

Parameters:
_type

C.3.9.2 Member Function Documentation

unsigned int Neuron::get_type () const [inline]
Get the neuron type.

Returns:
type

double Neuron::get_value () const [inline]
Get the activation value of the neuron.

Returns:
value

void Neuron::set_value (double_value)
Set the activation value of the neuron.

Parameters:
_value

The documentation for this class was generated from the following files:

• neuron.hpp

• neuron.cpp

C.3.10 NeuronIndex Class Reference

This class is used for optimization purposes.
#include <neuron_idx.hpp>

Public Member Functions

• NeuronIndex (unsigned int _neuron, double _value)

Constructor.

• unsigned intget_neuron() const

C.3. FANNC Class Documentation 117

Get the winner’s position.

• doubleget_value() const

Get the winner’s activation value.

• booloperator< (constNeuronIndex &a) const

Overloaded operator less than.

• booloperator> (constNeuronIndex &a) const

Overloaded operator greater than.

C.3.10.1 Detailed Description

Used for optimization purposes while retrieving the winners from the second layer competition
and the IIC unit with maximum activation value connected to a given IOC unit

C.3.10.2 Constructor& Destructor Documentation

NeuronIndex::NeuronIndex (unsigned int_neuron, double_value)
The constructor initializes neuron and value.

Parameters:
_neuron IICLayer winner’s position.

_value IICLayer winner’s activation value.

C.3.10.3 Member Function Documentation

bool NeuronIndex::operator< (const NeuronIndex& a) const
Overloaded operator less than, helps in the prioritizing of NeuronIndex objects within their

priority queue.

bool NeuronIndex::operator> (const NeuronIndex& a) const
Overloaded operator greater than, helps in the prioritizing of NeuronIndex objects within

their priority queue.
The documentation for this class was generated from the following files:

• neuron_idx.hpp

• neuron_idx.cpp

118 Chapter C. FANNC Library

C.3.11 OutputNeuron Class Reference

The FANNC Output neuron abstraction.
#include <neuron.hpp>
Inheritance diagram for OutputNeuron::

OutputNeuron

Neuron

Public Member Functions

• OutputNeuron ()

Constructor.

Protected Attributes

• std::vector< Conn > inputs

The neuron’s normal input connections.

Friends

• classFANNCNetwork

FANNCNetwork (p. 106)methods must access the neuron’s content.

• classFANNCDOM

FANNCDOM (p. 105)methods must access the neuron’s content.

The documentation for this class was generated from the following files:

• neuron.hpp

• neuron.cpp

119

Appendix D

HTTP Parser Library

D.1 Overview

This is an incomplete and buggy HTTP Message parser. It is implemented after the specifica-
tions in [11]. It can read chunked requests in one string. It can also read multiple lines until the
request is complete. Here is an example on how to use the library. In the next sub-section the
publicly available API to the parser is given.

#include <iostream>
#include ‘‘http_req.hpp’’

const char sim_req = ‘‘GET /index.html HTTP/1.1\nHost: www.google.com\n\n’’;

int main(void)
{

HTTPRequest * req = new HTTPRequest();

req->parse(sim_req);

if (req->complete())
std::cout << req->to_string() << std::endl;

else std::cout << ‘‘Sorry Bob!’’ << std::endl;

delete req;
return 0;

}

D.2 HTTP Class List

D.2.1 HTTP Parser Library Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

ENTHeader (The extended EntityHeader(p. 122) class) 120

120 Chapter D. HTTP Parser Library

GNLHeader (The extended GeneralHeader(p. 122) class) 121

Header (The Base Header class) . 122

HTTPRequest(The HTTP Request class) . 123

HTTPRequestException(HTTP Request exception handling) 125

HTTPResponse(The HTTP Response class) . 126

HTTPResponseException(HTTP Response exception handling) 128

Method (An HTTP request-line’s method) . 128

REQHeader (The Request Headers class) . 129

RESHeader(The Response Headers class) . 130

STATUSCode(The HTTP response-line Status-Code class) 131

D.3 HTTP Class Documentation

D.3.1 ENTHeader Class Reference

The extended EntityHeader(p. 122) class.
#include <http_types.hpp>
Inheritance diagram for ENTHeader::

ENTHeader

Header

Public Member Functions

• ENTHeader (const std::string _type_name="")

Constructor.

• entity_header_baseget_base() const

Get the EntityHeader(p. 122)type.

• void set_base(entity_header_base _base)

Set the EntityHeader(p. 122)type.

D.3. HTTP Class Documentation 121

D.3.1.1 Constructor& Destructor Documentation

ENTHeader::ENTHeader (const std::string _type_name= "")
The constructor initializes the header name verifying that it is a valid header. Otherwise it

is left as a null string.
The documentation for this class was generated from the following files:

• http_types.hpp

• http_types.cpp

D.3.2 GNLHeader Class Reference

The extended GeneralHeader(p. 122) class.
#include <http_types.hpp>
Inheritance diagram for GNLHeader::

GNLHeader

Header

Public Member Functions

• GNLHeader (const std::string _type_name="")

Constructor.

• general_header_baseget_base() const

Get the GeneralHeader(p. 122)type.

• void set_base(general_header_base _base)

Set the GeneralHeader(p. 122)type.

D.3.2.1 Constructor& Destructor Documentation

GNLHeader::GNLHeader (const std::string _type_name= "")
The constructor initializes the header name verifying that it is a valid header. Otherwise it

is left as a null string.
The documentation for this class was generated from the following files:

122 Chapter D. HTTP Parser Library

• http_types.hpp

• http_types.cpp

D.3.3 Header Class Reference

The Base Header class.
#include <http_types.hpp>

Inheritance diagram for Header::

Header

ENTHeader GNLHeader REQHeader RESHeader

Public Member Functions

• Header ()

Constructor.

• std::stringget_type_name() const

Get the header name.

• std::stringget_content() const

Get the header content.

• void set_type_name(const std::string _type_name)

Set the header name.

• void set_content(const std::string _content)

Set the header content.

D.3. HTTP Class Documentation 123

D.3.3.1 Constructor& Destructor Documentation

Header::Header ()
The constructor initializes both type_name and content to null strings.
The documentation for this class was generated from the following files:

• http_types.hpp

• http_types.cpp

D.3.4 HTTPRequest Class Reference

The HTTP Request class.
#include <http_req.hpp>

Public Member Functions

• HTTPRequest()

Constructor.

• ∼HTTPRequest()

Destructor.

• boolget_expect_body() const

Get the expect_body flag.

• boolget_separator() const

Get the separator flag.

• Method ∗ get_method() const

Get the request-line’s method object.

• std::string∗ get_request_URI() const

Get the request-line’s URI content.

• std::string∗ get_http_version() const

124 Chapter D. HTTP Parser Library

Get the request-line’s HTTP version content.

• std::vector< GNLHeader ∗ > get_g_headers() const

Get a copy of all General Headers.

• std::vector< REQHeader∗ > get_r_headers() const

Get a copy of all Request Headers.

• std::vector< ENTHeader ∗ > get_e_headers() const

Get a copy of all Entity Headers.

• std::vector< Header∗ > get_a_headers() const

Get a copy of all Add-on Headers.

• std::string∗ get_msg_body() const

Get the message-body content.

• boolcomplete()

Flag to indicate if request is completed.

• void parse(const char∗_r_line)

Start the parser engine.

• void print_stats ()

Fetch request statistics.

• const char∗ to_string ()

Generate a single string HTTP Request.

D.3. HTTP Class Documentation 125

D.3.4.1 Constructor& Destructor Documentation

HTTPRequest::HTTPRequest ()
The default constructor initializes all pointers to NULL. It also sets all boolean flags to false.

HTTPRequest::∼HTTPRequest ()
Deletes the content of all pointers.

D.3.4.2 Member Function Documentation

bool HTTPRequest::complete ()
When a client sends a chunked request this flag is required to notify the parser engine when

to stop.

void HTTPRequest::parse (const char∗ _r_line)
Start the parser engine.

Parameters:
_r_line may be a whole request packed in one string or a series of them.

void HTTPRequest::print_stats ()
Print request statistics to standard output.
The documentation for this class was generated from the following files:

• http_req.hpp

• http_req.cpp

D.3.5 HTTPRequestException Class Reference

HTTP Request exception handling.
#include <http_req.hpp>

Public Member Functions

• HTTPRequestException (const std::string _pmsg="HTTPRequestException:
Undefined\n")

Constructor.

• const std::stringget_pmsg() const

Get the exception message pmsg.

126 Chapter D. HTTP Parser Library

Protected Attributes

• const std::stringpmsg

The exception message.

D.3.5.1 Constructor& Destructor Documentation

HTTPRequestException::HTTPRequestException (const std::string _pmsg =

"HTTPRequestException: Undefined\n")
Default constructor throws an undefined message.

Parameters:
_pmsg The exception message.

The documentation for this class was generated from the following files:

• http_req.hpp

• http_req.cpp

D.3.6 HTTPResponse Class Reference

The HTTP Response class.
#include <http_res.hpp>

Public Member Functions

• HTTPResponse()

Default constructor.

• HTTPResponse(const std::string _status)

Constructor used to generate a response.

• ∼HTTPResponse()

The default destructor.

• boolcomplete()

Check for chunked server responses.

D.3. HTTP Class Documentation 127

• void parse(const char∗_res)

Begin response parsing.

• void print_stats ()

Print response statistics to standard output.

• const char∗ to_string ()

Generate a single string HTTP Response.

D.3.6.1 Constructor& Destructor Documentation

HTTPResponse::HTTPResponse ()
The default constructor is used when a response is going to be received from a web-server.

HTTPResponse::HTTPResponse (const std::string_status)
The constructor can be used to generate a decoy response. This constructor can be used to

mimic a web-server responding to request.

Parameters:
_status The HTTP response Status-Code.

HTTPResponse::∼HTTPResponse ()
The default destructor is in charge of freeing all memory used by response object pointers.

D.3.6.2 Member Function Documentation

void HTTPResponse::parse (const char∗ _res)
There are two modes of parsing that may be used. One for single line requests and another

for multi-line requests.

Parameters:
_res The request line.

The documentation for this class was generated from the following files:

• http_res.hpp

• http_res.cpp

128 Chapter D. HTTP Parser Library

D.3.7 HTTPResponseException Class Reference

HTTP Response exception handling.
#include <http_res.hpp>

Public Member Functions

• HTTPResponseException (const std::string _pmsg="HTTPRequestException:
Undefined\n")

Constructor.

• const std::stringget_pmsg() const

Get the exception message pmsg.

Protected Attributes

• const std::stringpmsg

The exception message.

D.3.7.1 Constructor& Destructor Documentation

HTTPResponseException::HTTPResponseException (const std::string _pmsg =

"HTTPRequestException: Undefined\n")
Default constructor throws an undefined message.

Parameters:
_pmsg The exception message.

The documentation for this class was generated from the following files:

• http_res.hpp

• http_res.cpp

D.3.8 Method Class Reference

An HTTP request-line’s method.
#include <http_types.hpp>

D.3. HTTP Class Documentation 129

Public Member Functions

• Method (const std::string _type_name="")

Constructor.

• method_baseget_type() const

Get the method type.

• std::stringget_type_name() const

Get the received method name.

• void set_type(method_base _type)

Set the method type.

• void set_type_name(const std::string _type_name)

Set the received method name.

D.3.8.1 Constructor& Destructor Documentation

Method::Method (const std::string _type_name= "")
The constructor initializes the method name verifying that it is a valid method. Otherwise it

is left as a null string.
The documentation for this class was generated from the following files:

• http_types.hpp

• http_types.cpp

D.3.9 REQHeader Class Reference

The Request Headers class.
#include <http_req.hpp>
Inheritance diagram for REQHeader::

REQHeader

Header

130 Chapter D. HTTP Parser Library

Public Member Functions

• REQHeader (const std::string _type_name="")

Constructor.

• request_header_baseget_base() const

Get the type of header.

• void set_base(request_header_base _base)

Set the type of header.

D.3.9.1 Constructor& Destructor Documentation

REQHeader::REQHeader (const std::string_type_name= "")
The default constructor will verify _type_name and set automatically the type The request

header type.
The documentation for this class was generated from the following files:

• http_req.hpp

• http_req.cpp

D.3.10 RESHeader Class Reference

The Response Headers class.
#include <http_res.hpp>
Inheritance diagram for RESHeader::

RESHeader

Header

Public Member Functions

• RESHeader(const std::string _type_name="")

Constructor.

D.3. HTTP Class Documentation 131

• response_header_baseget_base() const

Get the type of header.

• void set_base(response_header_base _base)

Set the type of header.

D.3.10.1 Constructor& Destructor Documentation

RESHeader::RESHeader (const std::string_type_name= "")
The default constructor will verify _type_name and set automatically the type The response

header type.
The documentation for this class was generated from the following files:

• http_res.hpp

• http_res.cpp

D.3.11 STATUSCode Class Reference

The HTTP response-line Status-Code class.
#include <http_res.hpp>

Public Member Functions

• STATUSCode(const std::string _code_content="")

Constructor.

• status_code_baseget_code() const

Get the Status-Code type.

• std::stringget_code_content() const

Get the Status-Code received content.

• std::stringget_comment() const

Get the response-line comment.

132 Chapter D. HTTP Parser Library

• void set_code(status_code_base _code)

Set the Status-Code type.

• void set_code_content(const std::string _code_content)

Set the Status-Code received content.

• void set_comment(const std::string _comment)

Set the response-line comment.

D.3.11.1 Constructor& Destructor Documentation

STATUSCode::STATUSCode (const std::string_code_content= "")
The default constructor will verify _code_content and set automatically the type The Status-

Code type.
The documentation for this class was generated from the following files:

• http_res.hpp

• http_res.cpp

133

Appendix E

FDL

E.1 Overview

The Feature Description Language is used to declare features that the Application-level HTTP
IDS needs to process. These are processed by the system’s neural networks. FDL forms part
of the stateless validation carried out. The API to the language is available in this appendix.
Bellow is a brief C++ program demonstrating how the language may be used

#include <iostream>
#include ‘‘http_req.hpp’’
#include ‘‘exp_lang.hpp’’

const char feature = ‘‘header.Host.size’’;
const char sim_req = ‘‘GET /index.html HTTP/1.1\nHost: www.google.com\n\n’’;

int main(void)
{

HTTPRequest * req = new HTTPRequest();
ExpLangObject * e = new ExpLangObject(feature);

req->parse(sim_req);

if (req->complete())
std::cout << e->extract(req) << std::endl;

else std::cout << ‘‘Sorry Bob!’’ << std::endl;

delete e;
delete req;
return 0;

}

134 Chapter E. FDL

E.2 FDL Class List

E.2.1 Feature Description Language Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

Add (FDL addition expression) . 134

Aexp (FDL Arithmetic Expression) . 135

And (FDL and expression) . 137

Bexp (FDL Boolean Expressions) . 138

Div (FDL division expression) . 138

Eq (FDL equality expression) . 139

ExpLangObject (FDL Parser Engine) . 140

FF (FDL false expression) . 141

Ge (FDL greater than expression) . 142

Le (FDL less than expression) . 143

Mult (FDL multiplication expression) . 144

Not (FDL not expression) . 145

Num (FDL numerical expression) . 146

Sub (FDL subtraction expression) . 147

TT (FDL true expression) . 148

Var (FDL variable expression) . 148

E.3 FDL Class Documentation

E.3.1 Add Class Reference

FDL addition expression.
#include <exp_lang.hpp>
Inheritance diagram for Add::

Add

Aexp

E.3. FDL Class Documentation 135

Public Member Functions

• Add (Aexp ∗a1_,Aexp ∗a2_)

Constructor.

• virtual doubleA () const

Return the expressions value.

E.3.1.1 Detailed Description

FDL addition expression. Inherits virtual functions fromAexp(p. 135).

See also:
Aexp(p. 135)

E.3.1.2 Constructor& Destructor Documentation

Add::Add (Aexp ∗ a1_, Aexp ∗ a2_)
Perform the addition of the two operands (a1_+ a2_).

Parameters:
a1_ The first operand, left.

a2_ The second operand, right.

The documentation for this class was generated from the following files:

• exp_lang.hpp

• exp_lang.cpp

E.3.2 Aexp Class Reference

FDL Arithmetic Expression.
#include <exp_lang.hpp>

Inheritance diagram for Aexp::

Aexp

Add Div Mult Num Sub Var

136 Chapter E. FDL

Public Member Functions

• virtual doubleA () const=0

Return the expressions value.

Protected Member Functions

• Aexp (HTTPRequest∗request_)

Constructor.

Protected Attributes

• HTTPRequest∗ request

Pointer to associated HTTPRequets object.

E.3.2.1 Constructor& Destructor Documentation

Aexp::Aexp (HTTPRequest∗ request_) [protected]

Constructor of arithmetic expression initializes the request object.

See also:
HTTPRequest

E.3.2.2 Member Data Documentation

HTTPRequest∗ Aexp::request [protected]

Pointer to associated HTTPRequets object.

See also:
HTTPRequest

The documentation for this class was generated from the following files:

• exp_lang.hpp

• exp_lang.cpp

E.3. FDL Class Documentation 137

E.3.3 And Class Reference

FDL and expression.
#include <exp_lang.hpp>

Inheritance diagram for And::

And

Bexp

Public Member Functions

• ConstructorAnd (Bexp∗b1_,Bexp∗b2_)

• virtual boolB () const

Return the expressions value.

E.3.3.1 Detailed Description

FDL and expression. Inherits virtual functions fromBexp(p. 138).

See also:
Bexp(p. 138)

E.3.3.2 Constructor& Destructor Documentation

And::And (Bexp ∗ b1_, Bexp∗ b2_)
Perform the and of the two operands (b1_ & b2_).

Parameters:
b1_ The first operand, left.

b2_ The second operand, right.

The documentation for this class was generated from the following files:

• exp_lang.hpp

• exp_lang.cpp

138 Chapter E. FDL

E.3.4 Bexp Class Reference

FDL Boolean Expressions.
#include <exp_lang.hpp>

Inheritance diagram for Bexp::

Bexp

And Eq FF Ge Le Not TT

Public Member Functions

• virtual boolB () const=0

Return the expressions value.

Protected Member Functions

• Bexp ()

Constructor.

The documentation for this class was generated from the following files:

• exp_lang.hpp

• exp_lang.cpp

E.3.5 Div Class Reference

FDL division expression.
#include <exp_lang.hpp>

Inheritance diagram for Div::

Div

Aexp

E.3. FDL Class Documentation 139

Public Member Functions

• Div (Aexp ∗, Aexp ∗)
Constructor.

• virtual doubleA () const

Return the expressions value.

E.3.5.1 Detailed Description

FDL division expression. Inherits virtual functions fromAexp(p. 135).

See also:
Aexp(p. 135)

E.3.5.2 Constructor& Destructor Documentation

Div::Div (Aexp ∗, Aexp ∗)
Perform the division of the two operands (a1_/ a2_) .

Parameters:
a1_ The first operand, left.

a2_ The second operand, right.

The documentation for this class was generated from the following files:

• exp_lang.hpp

• exp_lang.cpp

E.3.6 Eq Class Reference

FDL equality expression.
#include <exp_lang.hpp>

Inheritance diagram for Eq::

Eq

Bexp

140 Chapter E. FDL

Public Member Functions

• Eq (Aexp ∗a1_,Aexp ∗a2_)

Constructor.

• virtual boolB () const

Return the expressions value.

E.3.6.1 Detailed Description

FDL equality expression. Inherits virtual functions fromBexp(p. 138).

See also:
Bexp(p. 138)

E.3.6.2 Constructor& Destructor Documentation

Eq::Eq (Aexp ∗ a1_, Aexp ∗ a2_)
Perform the equality of the two operands (a1_== a2_).

Parameters:
a1_ The first operand, left.

a2_ The second operand, right.

The documentation for this class was generated from the following files:

• exp_lang.hpp

• exp_lang.cpp

E.3.7 ExpLangObject Class Reference

FDL Parser Engine.
#include <exp_lang.hpp>

Public Member Functions

• ExpLangObject (const char∗inst_)

Constructor.

• doubleextract (HTTPRequest∗request_)

Initialize parse engine.

E.3. FDL Class Documentation 141

E.3.7.1 Detailed Description

Each object of the ExpLangObject class may be seen as an individual parser engine.

E.3.7.2 Constructor& Destructor Documentation

ExpLangObject::ExpLangObject (const char ∗ inst_)
Initializes exp to inst_

Parameters:
inst_ The user-declared expression.

E.3.7.3 Member Function Documentation

double ExpLangObject::extract (HTTPRequest∗ request_)
Initialize parse engine. request_ The variable lookup table.
The documentation for this class was generated from the following files:

• exp_lang.hpp

• exp_lang.cpp

E.3.8 FF Class Reference

FDL false expression.
#include <exp_lang.hpp>
Inheritance diagram for FF::

FF

Bexp

Public Member Functions

• FF ()

Constructor.

• virtual boolB () const

Return the expressions value.

The documentation for this class was generated from the following files:

142 Chapter E. FDL

• exp_lang.hpp

• exp_lang.cpp

E.3.9 Ge Class Reference

FDL greater than expression.
#include <exp_lang.hpp>
Inheritance diagram for Ge::

Ge

Bexp

Public Member Functions

• Ge (Aexp ∗a1_,Aexp ∗a2_)

Constructor.

• virtual boolB () const

Return the expressions value.

E.3.9.1 Detailed Description

FDL greater than expression. Inherits virtual functions fromBexp(p. 138).

See also:
Bexp(p. 138)

E.3.9.2 Constructor& Destructor Documentation

Ge::Ge (Aexp∗ a1_, Aexp ∗ a2_)
Perform the greater than of the two operands (a1_> a2_).

Parameters:
a1_ The first operand, left.

a2_ The second operand, right.

The documentation for this class was generated from the following files:

• exp_lang.hpp

• exp_lang.cpp

E.3. FDL Class Documentation 143

E.3.10 Le Class Reference

FDL less than expression.
#include <exp_lang.hpp>

Inheritance diagram for Le::

Le

Bexp

Public Member Functions

• Le (Aexp ∗a1_,Aexp ∗a2_)

Constructor.

• virtual boolB () const

Return the expressions value.

E.3.10.1 Detailed Description

FDL less than expression. Inherits virtual functions fromBexp(p. 138).

See also:
Bexp(p. 138)

E.3.10.2 Constructor& Destructor Documentation

Le::Le (Aexp ∗ a1_, Aexp ∗ a2_)
Perform the less than of the two operands (a1_< a2_).

Parameters:
a1_ The first operand, left.

a2_ The second operand, right.

The documentation for this class was generated from the following files:

• exp_lang.hpp

• exp_lang.cpp

144 Chapter E. FDL

E.3.11 Mult Class Reference

FDL multiplication expression.
#include <exp_lang.hpp>

Inheritance diagram for Mult::

Mult

Aexp

Public Member Functions

• Mult (Aexp ∗a1_,Aexp ∗a2_)

Constructor.

• virtual doubleA () const

Return the expressions value.

E.3.11.1 Detailed Description

FDL multiplication expression. Inherits virtual functions fromAexp(p. 135).

See also:
Aexp(p. 135)

E.3.11.2 Constructor& Destructor Documentation

Mult::Mult (Aexp ∗ a1_, Aexp ∗ a2_)
Perform the multiplication of the two operands (a1_∗ a2_).

Parameters:
a1_ The first operand, left.

a2_ The second operand, right.

The documentation for this class was generated from the following files:

• exp_lang.hpp

• exp_lang.cpp

E.3. FDL Class Documentation 145

E.3.12 Not Class Reference

FDL not expression.
#include <exp_lang.hpp>

Inheritance diagram for Not::

Not

Bexp

Public Member Functions

• Not (Bexp∗b_)

Constructor.

• virtual boolB () const

Return the expressions value.

E.3.12.1 Detailed Description

FDL not expression. Inherits virtual functions fromBexp(p. 138).

See also:
Bexp(p. 138)

E.3.12.2 Constructor& Destructor Documentation

Not::Not (Bexp ∗ b_)
Perform the not of the operand (!b).

Parameters:
b_ The operand.

The documentation for this class was generated from the following files:

• exp_lang.hpp

• exp_lang.cpp

146 Chapter E. FDL

E.3.13 Num Class Reference

FDL numerical expression.
#include <exp_lang.hpp>

Inheritance diagram for Num::

Num

Aexp

Public Member Functions

• Num (const char∗value_)

Constructor.

• virtual doubleA () const

Return the expressions value.

E.3.13.1 Detailed Description

FDL numerical expression. Inherits virtual functions fromAexp(p. 135).

See also:
Aexp(p. 135)

E.3.13.2 Constructor& Destructor Documentation

Num::Num (const char ∗ value_)
Constructor of numerical expression

Parameters:
value_ The numerical value.

The documentation for this class was generated from the following files:

• exp_lang.hpp

• exp_lang.cpp

E.3. FDL Class Documentation 147

E.3.14 Sub Class Reference

FDL subtraction expression.
#include <exp_lang.hpp>

Inheritance diagram for Sub::

Sub

Aexp

Public Member Functions

• Sub (Aexp ∗a1_,Aexp ∗a2_)

Constructor.

• virtual doubleA () const

Return the expressions value.

E.3.14.1 Detailed Description

FDL subtraction expression. Inherits virtual functions fromAexp(p. 135).

See also:
Aexp(p. 135)

E.3.14.2 Constructor& Destructor Documentation

Sub::Sub (Aexp∗ a1_, Aexp ∗ a2_)
Perform the subtraction of the two operands (a1_ - a2_).

Parameters:
a1_ The first operand, left.

a2_ The second operand, right.

The documentation for this class was generated from the following files:

• exp_lang.hpp

• exp_lang.cpp

148 Chapter E. FDL

E.3.15 TT Class Reference

FDL true expression.
#include <exp_lang.hpp>

Inheritance diagram for TT::

TT

Bexp

Public Member Functions

• TT ()

Constructor.

• virtual boolB () const

Return the expressions value.

The documentation for this class was generated from the following files:

• exp_lang.hpp

• exp_lang.cpp

E.3.16 Var Class Reference

FDL variable expression.
#include <exp_lang.hpp>

Inheritance diagram for Var::

Var

Aexp

E.3. FDL Class Documentation 149

Public Member Functions

• Var (const char∗name_, HTTPRequest∗request_)

Constructor.

• virtual doubleA () const

Return the expressions value.

E.3.16.1 Detailed Description

FDL variable expression. Inherits virtual functions fromAexp(p. 135).

See also:
Aexp(p. 135)

E.3.16.2 Constructor& Destructor Documentation

Var::Var (const char ∗ name_, HTTPRequest∗ request_)
Constructor of variable expression. The lookup "table" with possible values is the associated

HTTP request object.

Parameters:
value_ The variable name.

request_The associated request.

The documentation for this class was generated from the following files:

• exp_lang.hpp

• exp_lang.cpp

151

Appendix F

TPDL

F.1 Overview

F.2 Overview

The Temporal Patterns Description Language is used to declare correlations between between
Source Entity Items. That is, how IP addresses, Alarm number and Web-Server response Status-
Codes relate among each other. TPDL forms part of the stateful validation carried out. The API
to the language is available in this appendix. Bellow is a brief C++ program demonstrating how
the language may be used.

#include <iostream>
#include ‘‘http_req.hpp’’
#include ‘‘patt_lang.hpp’’

const char feature = ‘‘NETID.Client-Error.4xx > 4’’;
const char sim_req = ‘‘GET /index.html HTTP/1.1\nHost: www.google.com\n\n’’;

int main(void)
{

SRCENTDat * current = new SRCENTDat(‘‘130.225.63.21’’, 2);
current->set_srv_res(‘‘404’’);

SRCENTBin * src_enities = new SRCENTBin();

TMPPattern * p = new TMPPattern(feature, src_entities, current);

std::cout << p->extract() std::endl;

delete current;
delete src_entities;
delete p;

return 0;

152 Chapter F. TPDL

}

Notice that the above code would not do anything, since the Source Entity Container is
empty. It must be filled up before with previous Source Entity Dat elements. An element is a
group of Source Entity Items i.e. an IP address, an Alarm number and a Web-Server response
Status-Code.

F.3 TPDL Class List

F.3.1 Temporal Pattern Description Language Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

TMPAexp (TPDL Arithmetic Expression) . 152

TMPBexp (TPDL Boolean Expressions) . 153

TMPEq (TPDL equality expression) . 154

TMPGe (TPDL greater than expression) . 155

TMPLe (TPDL less than expression) . 156

TMPNum (TPDL numerical expression) . 157

TMPPattern (FDL Parser Engine) . 158

TMPVar (TPDL variable expression) . 159

F.4 TPDL Class Documentation

F.4.1 TMPAexp Class Reference

TPDL Arithmetic Expression.
#include <patt_lang.hpp>
Inheritance diagram for TMPAexp::

TMPAexp

TMPNum TMPVar

Public Member Functions

• virtual int A () const=0

Return the expressions value.

F.4. TPDL Class Documentation 153

Protected Member Functions

• TMPAexp (SRCEntities∗)
Constructor.

Protected Attributes

• SRCEntities∗ srcents_bin

Pointer to associated SRCEntities object.

F.4.1.1 Constructor& Destructor Documentation

TMPAexp::TMPAexp (SRCEntities ∗) [protected]
Constructor of arithmetic expression initializes the srcents_bin object.

See also:
SRCEntitites

F.4.1.2 Member Data Documentation

SRCEntities∗ TMPAexp::srcents_bin [protected]
Pointer to associated SRCEntities object.

See also:
SRCEntities

The documentation for this class was generated from the following files:

• patt_lang.hpp

• patt_lang.cpp

F.4.2 TMPBexp Class Reference

TPDL Boolean Expressions.
#include <patt_lang.hpp>
Inheritance diagram for TMPBexp::

TMPBexp

TMPEq TMPGe TMPLe

154 Chapter F. TPDL

Public Member Functions

• virtual boolB () const=0

Return the expressions value.

Protected Member Functions

• TMPBexp ()

Constructor.

The documentation for this class was generated from the following files:

• patt_lang.hpp

• patt_lang.cpp

F.4.3 TMPEq Class Reference

TPDL equality expression.
#include <patt_lang.hpp>

Inheritance diagram for TMPEq::

TMPEq

TMPBexp

Public Member Functions

• TMPEq (TMPAexp ∗, TMPAexp ∗)

Constructor.

• virtual boolB () const

Return the expressions value.

F.4. TPDL Class Documentation 155

F.4.3.1 Detailed Description

TPDL equality expression. Inherits virtual functions from Bexp.

See also:
Bexp

F.4.3.2 Constructor& Destructor Documentation

TMPEq::TMPEq (TMPAexp ∗, TMPAexp ∗)
Perform the equality of the two operands (a1_== a2_).

Parameters:
a1_ The first operand, left.

a2_ The second operand, right.

The documentation for this class was generated from the following files:

• patt_lang.hpp

• patt_lang.cpp

F.4.4 TMPGe Class Reference

TPDL greater than expression.
#include <patt_lang.hpp>

Inheritance diagram for TMPGe::

TMPGe

TMPBexp

Public Member Functions

• TMPGe (TMPAexp ∗, TMPAexp ∗)
Constructor.

• virtual boolB () const

Return the expressions value.

156 Chapter F. TPDL

F.4.4.1 Detailed Description

TPDL greater than expression. Inherits virtual functions from Bexp.

See also:
Bexp

F.4.4.2 Constructor& Destructor Documentation

TMPGe::TMPGe (TMPAexp ∗, TMPAexp ∗)
Perform the greater than of the two operands (a1_> a2_).

Parameters:
a1_ The first operand, left.

a2_ The second operand, right.

The documentation for this class was generated from the following files:

• patt_lang.hpp

• patt_lang.cpp

F.4.5 TMPLe Class Reference

TPDL less than expression.
#include <patt_lang.hpp>

Inheritance diagram for TMPLe::

TMPLe

TMPBexp

Public Member Functions

• TMPLe (TMPAexp ∗, TMPAexp ∗)
Constructor.

• virtual boolB () const

Return the expressions value.

F.4. TPDL Class Documentation 157

F.4.5.1 Detailed Description

TPDL less than expression. Inherits virtual functions from Bexp.

See also:
Bexp

F.4.5.2 Constructor& Destructor Documentation

TMPLe::TMPLe (TMPAexp ∗, TMPAexp ∗)
Perform the less than of the two operands (a1_< a2_).

Parameters:
a1_ The first operand, left.

a2_ The second operand, right.

The documentation for this class was generated from the following files:

• patt_lang.hpp

• patt_lang.cpp

F.4.6 TMPNum Class Reference

TPDL numerical expression.
#include <patt_lang.hpp>

Inheritance diagram for TMPNum::

TMPNum

TMPAexp

Public Member Functions

• TMPNum (const char∗value_)

Constructor.

• virtual int A () const

Return the expressions value.

158 Chapter F. TPDL

F.4.6.1 Detailed Description

TPDL numerical expression. Inherits virtual functions from Aexp.

See also:
Aexp

F.4.6.2 Constructor& Destructor Documentation

TMPNum::TMPNum (const char ∗ value_)
Constructor of numerical expression

Parameters:
value_ The numerical value.

The documentation for this class was generated from the following files:

• patt_lang.hpp

• patt_lang.cpp

F.4.7 TMPPattern Class Reference

FDL Parser Engine.
#include <patt_lang.hpp>

Public Member Functions

• TMPPattern (const char∗exp_)

Constructor.

• boolextract (SRCEntities∗srcents_bin_, SRCENTDat∗srcent_)

Initialize parse engine.

• std::stringget_type() const

Get the type of declared temporal pattern.

F.4.7.1 Detailed Description

Each object of the ExpLangObject class may be seen as an individual parser engine.

F.4. TPDL Class Documentation 159

F.4.7.2 Constructor& Destructor Documentation

TMPPattern::TMPPattern (const char ∗ exp_)
Initializes exp to exp_

Parameters:
exp_ The user-declared expression.

F.4.7.3 Member Function Documentation

bool TMPPattern::extract (SRCEntities ∗ srcents_bin_, SRCENTDat ∗ srcent_)
Initialize parse engine.

Parameters:
srcents_bin_The pointer to the Source Entity Container.

srcent_ The pointer to the current Suspicious Source Entity content.

std::string TMPPattern::get_type () const [inline]
Get the type of declared temporal pattern. ("IP"| "ALARM")
The documentation for this class was generated from the following files:

• patt_lang.hpp

• patt_lang.cpp

F.4.8 TMPVar Class Reference

TPDL variable expression.
#include <patt_lang.hpp>
Inheritance diagram for TMPVar::

TMPVar

TMPAexp

Public Member Functions

• TMPVar (const char∗exp_, SRCEntities∗srcents_bin_)

Constructor.

• void set_srcent(SRCENTDat∗)
Set the Pointer to the Source Entity Container.

160 Chapter F. TPDL

• virtual int A () const

Return the expressions value.

F.4.8.1 Detailed Description

TPDL variable expression. Inherits virtual functions from Aexp.

See also:
Aexp

F.4.8.2 Constructor& Destructor Documentation

TMPVar::TMPVar (const char ∗ exp_, SRCEntities∗ srcents_bin_)
Constructor of variable expression. The lookup "table" with possible values is the IDS’s

Suspicious Source Entity Container.

Parameters:
exp_ The variable name.

srcents_bin_The pointer to the Source Entity Container.

The documentation for this class was generated from the following files:

• patt_lang.hpp

• patt_lang.cpp

161

Appendix G

Analysis Results

G.1 Overview

For all of the analysis carried out with the HTTP dissection tool, there was a set of 10 sample
requests gathered. There was 10 anomal samples from each of the Web-Clients. For each
of the signature-based misuse requests 10 samples of each type of attack were gathered. The
signature-based misuse request were obtained from Nessus. Ethereal was then used to listen in
the conversation between the Web-Server and Nessus.

For the anomal behavior request, there are two types of different requests; one during normal
navigation and another during the interaction with the PHP scripting sub-system. The tool
PHPMyMoney was used as a test sink for Nessus. PHPMyMoney does not only make heavy
use of the PHP scripting sub-system, it also interact with MySQL Database-Server.

G.2 Tables

Browser GET Usage POST Usage URL Range Version

Firefox 100% [1..56] HTTP/1.1
Firefox PHP 90% 10% [21..38] HTTP/1.1

Opera 100% [1..16] HTTP/1.1
Opera PHP 90% 10% [12..45] HTTP/1.1

IE 100% [1..7] HTTP/1.1
IE PHP 90% 10% [11..38] HTTP/1.1
Mozilla 100% [1..16] HTTP/1.1

Mozilla PHP 90% 10% [12..38] HTTP/1.1

Table G.1:Content size and usage features extracted from sample anomal HTTP request Request-Lines.

162 Chapter G. Analysis Results

Browser Accept Accept-Charset Accept-Encoding Accept-Language Host

Firefox 99 30 12 [14..17]
Firefox PHP [3..19] 30 12 17

Opera 117 54 38 2 17
Opera PHP 117 54 38 2 17

IE 164 13 17 17
IE PHP [3..164] 13 17 17
Mozilla [19..99] 30 12 9

Mozilla PHP [3..99] 30 12 9

Table G.2:Content size feature extracted from sample anomal HTTP request Request Header fields.

Browser If-Modified-Since If-None-Match Referer TE User-Agent

Firefox 24 84
Firefox PHP [36..45] 84

Opera 29 20 42 84
Opera PHP 29 [19..21] [36..45] 42 84

IE 84
IE PHP [36..45] 84
Mozilla 26 84

Mozilla PHP 29 [28..37] 84

Table G.3:Content size feature extracted from sample anomal HTTP request Request Header fields.

Browser Cache-Control Connection

Firefox 10
Firefox PHP 10

Opera 14
Opera PHP 14

IE 10
IE PHP 8 10
Mozilla 5

Mozilla PHP 5

Table G.4:Content size features extracted from sample anomal HTTP request General Header fields.

G.2. Tables 163

Browser Content-Length Content-Type

Firefox
Firefox PHP

Opera
Opera PHP 3 33

IE
IE PHP
Mozilla

Mozilla PHP 2 33

Table G.5:Content size features extracted from sample anomal HTTP request Entity Header fields.

Browser Cookie Cookie2 Keep-Alive

Firefox 82 3
Firefox PHP 43 3

Opera
Opera PHP 43 10

IE
IE PHP 43
Mozilla

Mozilla PHP 43

Table G.6:Content size features extracted from samples anomal HTTP request Add-on Header fields.

Browser Content Size Max Segment Repetitions

Firefox
Firefox PHP

Opera
Opera PHP 116 e= 3

IE
IE PHP
Mozilla

Mozilla PHP [17..39]

Table G.7:Content size and segment frequency analysis from sample anomal HTTP request bodies.

164 Chapter G. Analysis Results

METHOD XSS PHP-SQL GUESS DoS

GET 76% 100% 100% 55%
OPTIONS 10%

TRACE 5%
POST 24% 5%

HEAD 5%
PUT 5%

DELETE 5%
COPY 5%

SEARCH 5%

Table G.8:Method distribution from signature-based misuse HTTP request Request-Lines.

XSS PHP-SQL GUESS DoS

URL Size [10..144] [11..113] [3..22] [1..9]
Max. Segment

Repetitions
Version HTTP/1.1 HTTP/1.1 HTTP/1.1 Various Content

Table G.9: Content size and segment frequency analysis from sample signature-based misuse HTTP request
Request-Lines.

XSS PHP-SQL GUESS DoS

Accept 67 67 67 67
Accept-Charset 18 18 18 18

User-Agent 34 34 34 34
Accept-Language 2 2 2 2

Authorization 30 30
Host 21 17 21 21

Table G.10:Content size feature extracted from sample signature-based misuse HTTP request Request Header
fields.

XSS PHP-SQL GUESS DoS

Connection 10 10 10 5
Pragma 8 8 8 8

Table G.11:Content size feature extracted from sample signature-based misuse HTTP request General Header
fields.

XSS PHP-SQL GUESS DoS

Content-Length 3
Content-Type 33

Table G.12: Content size feature extracted from sample signature-based misuse HTTP request Entity Header
fields.

G.2. Tables 165

XSS PHP-SQL GUESS DoS

Cookie 51 51 51
Keep-Alive 3

Table G.13:Content size feature extracted from sample signature-based misuse HTTP request Add-on Header
fields.

BIBLIOGRAPHY 167

Bibliography

[1] Security in Computing, Charles P. Pfleeger, Shari L. Pfleeger, 2003

[2] The Poor Man’s Guide to Computer Networks and Their Applications, Robin Sharp, April
2004

[3] Insertion, Evasion and Denial of Service: Eluding Network Intrusion Detection, Thomas
H. Ptacek, Timothy N. Newsham, January 1998

[4] Improving Intrusion Detection Performance Using Keyword Selection and Neural Net-
works, Richard P. Lippmann, Robert K. Cunningham

[5] Application-Integrated Data Collection for Security Monitoring, Magnus Almgren, Ulf
Lindqvist, October 2001

[6] A Fast Adaptive Neural Network Classifier, Zhihua Zhou, Shifu Chen, Zhaoqian Chen,
2000

[7] Anomaly Detection of Web-based Attacks, Christopher Kruegel, Giovanni Vigna, October
2003

[8] A Stateful Intrusion Detection System for World-Wide Web Servers, Giovanni Vigna,
William Robertson

[9] A Lightweight Tool for Detecting Web Server Attacks, Magnus Almgren, Herve Debar

[10] SecurityTracker Statistics 2002, http://www.securitytracker.com/learn/statistics.html,
April 2002

[11] Hypertext Transfer Protocol Specification, June 1999,
http://www.w3.org/Protocols/rfc2616/rfc2616.html

[12] Intelliwall: intelligent firewall for applications, September 2004, http://www.bee-
ware.net/#

[13] STAT Framework, http://www.cs.ucsb.edu/r̃sg/STAT/software/stat_framework.html

[14] SecureIIS Web Server Protection, http://www.eeye.com/html/products/secureiis/index.html

[15] Titan, http://www.flicks.com/titan/

168 BIBLIOGRAPHY

[16] Mod_Security, http://www.modsecurity.org/

[17] McAfee Entercept Web Server Edition, Data sheet, 2004

[18] WebSTAT, http://ftp.ics.uci.edu/pub/websoft/wwwstat/

[19] AppliCure, http://www.applicure.com/index.php?p=products

[20] WordNet (r) 2.0, http://www.dict.org/

[21] Xerces C++ Parser, http://xml.apache.org/xerces-c/

[22] C++ Boost.Regex, http://www.boost.org/libs/regex/doc/introduction.html

[23] On-line Manual Section 3, clock_gettime, standard POSIX System

[24] clock_gettime usage, http://www.cis.temple.edu/ ingar-
gio/old/cis307f02/readings/unix3.html

INDEX 169

Index

∼CIDFThread
CIDFThread, 58

∼FANNCNetwork
FANNCNetwork, 108

∼HTTPRequest
HTTPRequest, 125

∼HTTPResponse
HTTPResponse, 127

∼IDSKernel
IDSKernel, 72

∼SRCEntities
SRCEntities, 80

∼SYSData
SYSData, 82

Activity
Undesirable, 10

Add, 134
Add, 135

Aexp, 135
Aexp, 136
request, 136

Agent
Application-Level, 2
Network-Level, 1

alarms
CIDFThread, 60

Alert
Application, 9
Vulnerability, 9

Analysis
Stateful, 5
Stateless, 5

analysis_box
CIDFThread, 58

analysis_fname

CIDFThread, 60
analysis_log

CIDFThread, 58
And, 137

And, 137
Assisted On-line Training, 92
Attack

BoF, 10, 86
Cross-Site Scripting, 11
DoS, 4, 6, 9, 10, 86
Illegal Access, 10
Password Guessing, 11
Path Manipulation, 11
Port Scanning, 87
SQL Injection, 11, 86
SYN, 6
User Guessing, 11
XSS, 86

Bexp, 138
bl_features

CIDFThread, 60
blacklist

SYSData, 83
Brainstorming, 27

Certificate Upload Authority, 93
CIDF, 5, 10

Analysis Box, 6
Countermeasures Box, 6, 91
Events Box, 5
Storage Box, 6

CIDFThread, 55
∼CIDFThread, 58
alarms, 60
analysis_box, 58

170 INDEX

analysis_fname, 60
analysis_log, 58
bl_features, 60
CIDFThread, 58
client_req, 60
counter_box, 58
data_structs, 60
events_box, 59
features, 60
net_descr, 60
patterns, 60
run, 59
server_res, 61
storage_box, 59
SYSData, 83
test_threads, 61
www_port, 61

client_req
CIDFThread, 60

complete
HTTPRequest, 125

Conn, 102
Conn, 103

conn_manager
IDSKernel, 74

CONNManager, 61
CONNManager, 62
counter, 63
data_structs, 63
listen_port, 63
reset_counter, 63
run, 63
set_stop, 63
stop, 63
www_port, 63

Container
Blacklist Features, 28
Delayed Source Entity Items, 28
Features, 28
Forbidden Source Entity Items, 28
Neural Networks, 28
Source Entity, 28
Temporal Patterns, 28

counter
CONNManager, 63

counter_box
CIDFThread, 58

Data-Structure
Associative Map, 35
Dynamic, 28
Hash-Table, 35
Static, 28

data_structs
CIDFThread, 60
CONNManager, 63
IDSKernel, 74

DataErrorException, 104
DataErrorException, 104

DataErrorException
DataErrorException, 104

delay_alarm
DELAYEntities, 65

delay_ipaddr
DELAYEntities, 65

delayed_alarms
DELAYEntities, 67

delayed_ents
SYSData, 83

delayed_ips
DELAYEntities, 67

DELAYEntities, 64
delay_alarm, 65
delay_ipaddr, 65
delayed_alarms, 67
delayed_ips, 67
DELAYEntities, 65
erase_alarm, 66
erase_ipaddr, 66
get_alarm_delay, 66
get_ip_delay, 66
incr, 67
to_string, 66

Desynchronization, 7
Developments

Further, 4
Device

INDEX 171

Customized, 21
Stand-Alone computer, 21

Div, 138
Div, 139

DMZ, 9, 15
Domain Description, 13

Encoding
Hexadecimal, 10

ENTHeader, 120
ENTHeader, 121

Environment
Networking, 3
Physical, 3
Simulated, 3

Eq, 139
Eq, 140

erase_alarm
DELAYEntities, 66

erase_ipaddr
DELAYEntities, 66

Evasion, 7
events_box

CIDFThread, 59
ExpLangObject, 140

ExpLangObject, 141
ExpLangObject

ExpLangObject, 141
extract, 141

Exploit, 10
extract

ExpLangObject, 141
TMPPattern, 159

False-Positive, 2, 6
FANNCDOM, 105

FANNCDOM, 105
load_net, 105
stream_net, 105

FANNCNetwork, 106
∼FANNCNetwork, 108
FANNCNetwork, 108
load_network, 108
print_network, 108

save_network, 109
test, 109
train, 109

features
CIDFThread, 60
SYSData, 83

FF, 141
forbid_alarm

FORBIDDENEntities, 68
forbid_ipaddr

FORBIDDENEntities, 68
forbidden_alarms

FORBIDDENEntities, 69
forbidden_ents

SYSData, 83
forbidden_ips

FORBIDDENEntities, 69
FORBIDDENEntities, 67

forbid_alarm, 68
forbid_ipaddr, 68
forbidden_alarms, 69
forbidden_ips, 69
insert_alarm, 69
insert_ipaddr, 69
to_string, 69

FTP, 2, 8
Functional Component

CIDF Service Thread, 28
Connection Manager, 28
IDS Kernel, 28
Logging Sub-System, 28
Manager Console, 28
Start-Up

Kernel Parameter Extractor, 28
Static Data-Structure Initializer, 29

Test
Analysis Box, 30
CIDF Service Thread, 30
Connection Manager Initializer, 30
Counter Box, 30
Events Box, 30
Storage Box, 30

Train

172 INDEX

Temporal Cost Measurement Utili-
ties, 30

Train Data Fetcher, 29
Train Data Scaler, 29

Training
Neural Network Trainer, 29

Gateway Firewalls, 9
GaussConn, 109

GaussConn, 110
GaussConn

GaussConn, 110
Ge, 142

Ge, 142
get_alarm_delay

DELAYEntities, 66
get_client_ip

SRCENTDat, 78
get_ip_delay

DELAYEntities, 66
get_net_num

SRCENTDat, 78
get_svr_res

SRCENTDat, 78
get_type

Neuron, 116
TMPPattern, 159

get_value
Neuron, 116

getmci_delayed
IDSKernel, 72

getmci_forbidden
IDSKernel, 72

getmci_nets
IDSKernel, 72

getmci_srcents
IDSKernel, 72

GNLHeader, 121
GNLHeader, 121

Hand-off, 92
Header, 122

Header, 123
HTTP, 1, 9, 10

Exploits, 10
Vulnerabilities, 10

HTTPRequest, 123
∼HTTPRequest, 125
complete, 125
HTTPRequest, 125
parse, 125
print_stats, 125

HTTPRequestException, 125
HTTPRequestException, 126

HTTPRequestException
HTTPRequestException, 126

HTTPResponse, 126
∼HTTPResponse, 127
HTTPResponse, 127
parse, 127

HTTPResponseException, 128
HTTPResponseException, 128

HTTPResponseException
HTTPResponseException, 128

ICMP, 2
IDS

Analysis
Anomal, 5, 6
Misuse, 5, 6
Rule-based, 2
Signature-Based, 5, 6
Stateful, 5
Stateless, 5

Application-Level, 1
Countermeasures

Passive, 5, 7
Preemptive, 5, 7

Fail-Close, 5, 8
Fail-Open, 5, 8
Filtering

Rule-based, 2
Localization

Host-Based, 5, 7
Host-based, 21
Network-Based, 5, 7
Network-based, 21

Network-Level, 2

INDEX 173

Paradigm, 17
IDSKernel, 70
∼IDSKernel, 72
conn_manager, 74
data_structs, 74
getmci_delayed, 72
getmci_forbidden, 72
getmci_nets, 72
getmci_srcents, 72
IDSKernel, 72
init_mode, 73
setmci_exit, 73
setmci_train, 73
SYSData, 83
syslog_fname, 74
system_log, 73
test_mode, 73
train_mode, 74
train_threads, 74

IICNeuron, 111
Impact, 7
incr

DELAYEntities, 67
init_mode

IDSKernel, 73
InputNeuron, 112
inputsMap

IOCNeuron, 115
insert_alarm

FORBIDDENEntities, 69
insert_ip

SRCEntities, 80
insert_ip_index

SRCEntities, 80
insert_ipaddr

FORBIDDENEntities, 69
insert_net

SRCEntities, 80
insert_net_index

SRCEntities, 80
Insertion, 7
Internet, 1
Intrusion Detection, 2

IOCNeuron, 113
inputsMap, 115
winnersMap, 115

ip_addr
IPIndex, 75

IPIndex, 74
ip_addr, 75
s_ents, 75

ips
SRCEntities, 81

Kernel, 4

Layer
Upper-most, 8

Le, 143
Le, 143

listen_port
CONNManager, 63

load_net
FANNCDOM, 105

load_network
FANNCNetwork, 108

Logical Design, 27

Method, 128
Method, 129

Mult, 144
Mult, 144

net_descr
CIDFThread, 60

net_id
NETIndex, 76

NETIndex, 75
net_id, 76
s_ents, 76

nets
SRCEntities, 81

Neural Network
Gaussian Weight, 20

Neural Networks, 3
ART, 19
Back-Propagation, 19
FANNC, 19

174 INDEX

Field Theory, 19
Learning

One-Pass, 19
Supervised, 19
Un-Supervised, 19

neural_nets
SYSData, 83

Neuron, 115
get_type, 116
get_value, 116
Neuron, 116
set_value, 116

NeuronIndex, 116
NeuronIndex, 117

NeuronIndex
NeuronIndex, 117
operator<, 117
operator>, 117

NIDS, 2
Not, 145

Not, 145
Num, 146

Num, 146

Operating System, 8
operator<

NeuronIndex, 117
operator>

NeuronIndex, 117
OutputNeuron, 118

parse
HTTPRequest, 125
HTTPResponse, 127

patterns
CIDFThread, 60

PDL, 20
Performance, 7
print_network

FANNCNetwork, 108
print_stats

HTTPRequest, 125
Programming

Inheritance, 3

Polymorphism, 3
Protocol, 8
Prototype, 4

Regular Expression, 14
REQHeader, 129

REQHeader, 130
request

Aexp, 136
Requirements, 13

Elicitation, 13
System, 13
User, 13

reset_counter
CONNManager, 63

RESHeader, 130
RESHeader, 131

Resource
Error-Prone, 11

Reverse Proxy, 21
run

CIDFThread, 59
CONNManager, 63

s_ents
IPIndex, 75
NETIndex, 76

save_network
FANNCNetwork, 109

Scenario
Hand-Off, 4

Scripting Language
ASP, 11
ASP.NET, 11
CGI, 10
Javascript, 11
PHP, 11

server_res
CIDFThread, 61

Service Unauthorized, 5
set_stop

CONNManager, 63
set_svr_res

SRCENTDat, 78

INDEX 175

set_value
Neuron, 116

setmci_exit
IDSKernel, 73

setmci_train
IDSKernel, 73

Socket
SSL, 92
Unix Domain, 92

Source Entity, 22
src_ents

SYSData, 83
SRCENTDat, 76

get_client_ip, 78
get_net_num, 78
get_svr_res, 78
set_svr_res, 78
SRCENTDat, 77

SRCEntities, 78
∼SRCEntities, 80
insert_ip, 80
insert_ip_index, 80
insert_net, 80
insert_net_index, 80
ips, 81
nets, 81
TMPVar, 81
to_string, 80

srcents_bin
TMPAexp, 153

STATUSCode, 131
STATUSCode, 132

stop
CONNManager, 63

storage_box
CIDFThread, 59

stream_net
FANNCDOM, 105

Sub, 147
Sub, 147

Synchronization
Semaphores, 91

SYSData, 81

∼SYSData, 82
blacklist, 83
CIDFThread, 83
delayed_ents, 83
features, 83
forbidden_ents, 83
IDSKernel, 83
neural_nets, 83
src_ents, 83
tmp_patterns, 83

syslog_fname
IDSKernel, 74

System Calls, 15
system_log

IDSKernel, 73

TCP/IP, 1, 2, 6
test

FANNCNetwork, 109
test_mode

IDSKernel, 73
test_threads

CIDFThread, 61
tmp_patterns

SYSData, 83
TMPAexp, 152

srcents_bin, 153
TMPAexp, 153

TMPBexp, 153
TMPEq, 154

TMPEq, 155
TMPGe, 155

TMPGe, 156
TMPLe, 156

TMPLe, 157
TMPNum, 157

TMPNum, 158
TMPPattern, 158

extract, 159
get_type, 159
TMPPattern, 159

TMPVar, 159
SRCEntities, 81
TMPVar, 160

176 INDEX

to_string
DELAYEntities, 66
FORBIDDENEntities, 69
SRCEntities, 80

train
FANNCNetwork, 109

train_mode
IDSKernel, 74

train_threads
IDSKernel, 74

TT, 148

UDP, 2

Var, 148
Var, 149

Vulnerability
Application-Level, 9

Web-Server, 4
Load, 14
Performance, 14

Web-Services, 9
winnersMap

IOCNeuron, 115
www_port

CIDFThread, 61
CONNManager, 63

