

���������	��
����

� � ��� ��
��
�������

���������	
����
������
������
��

������������
���� ������!��!��

" ��������

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

���������	
����
������
������
��

������������

���� ������!��!��" ���

�����

���������	��
����

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� � ��� ��
��
�������

�

��# ��$

i

PREFACE

This thesis is the final work of my International MSc studies in Computer Systems
Engineering in the department of Informatics and Mathematical Modeling (IMM), at the
Technical University of Denmark (DTU). This thesis has been developed under the
Division for Computer Science and Engineering (CSE) and Professor Paul Fischer has
supervised this project.

During the development of my thesis I had the opportunity to finish my studies doing
something of my interest. I developed a system applying mathematical theory, which
always has been one of my favorite areas. I combined system development and
mathematical theory to some of my ideas to solve a challenging problem.

I must thank my supervisor Paul Fischer, for his motivating guidance during this thesis,
and the Coordinator of the International Master of Science in Computer Systems
Engineering Flemming Stassen, for his guidance during all my international studies in
Denmark. Some other course teachers I would like to thank, for their help and inspiration
during courses of my study program, are: Jens Thyge Kristensen, Tom Østerby, Robin
Sharp, Anne E. Haxthausen, Jørgen Fischer Nilsson and Michael R. Hansen.

I would especially like to thank my parents Anisio and Adelina, for the emotional and
financial support during my international studies, my Danish sister Ingrid Vangkilde, for
her support during my entire stay in Denmark, and my fiancee Elma Carvalho, for her
emotional help during hard moments of these studies.

Kongens Lyngby, 31 January 2005

Irving Antunes de Cerqueira Luz

ii

iii

ABSTRACT

Global Positioning System, usually called GPS, is a satellite navigation system used for
determining the precise location of an object and providing a highly accurate time
reference almost anywhere on Earth. A GPS receiver is an electronic device attached to
something that listens to multiple satellites and uses their information signals to
determine and display the receiver’s location, speed, altitude and heading. A GPS
receiver decodes time signal transmissions and calculates its position by triangulation.

This thesis will show problems that GPS systems face due to lack of accuracy during
interpretation of GPS data and ideas for solving these problems. This lack of accuracy
may vary from system to system depending of the monitored global area, the number of
accessible satellites and other factors.

In the domain of this thesis, the GPS information is going to be transmitted from a
monitored mobile body to a data storing machine and converted into files to be used later.
This data is going to be read by a pathfinder system whose aim is to make this
information become as clean and undestandable as possible.

In this project, computational geometry concepts are going to be exploited to solve
mathematical problems faced during the pathfinder development. Many ideas to solve the
problems are going to be analyzed by studying their advantages and disadvantages.

Keywords: Global Positioning System (GPS), GPS receiver, triangulation, GPS data,
pathfinder, computational geometry.

��

iv

v

�

TABLE OF CONTENTS

1 Introduction... 1

1.1 Problem description .. 1

1.2 Project Requirements .. 2

2 Domain Analysis... 4

2.1 Domain of use ... 4

2.2 Definitions of basic terms ... 5

2.2.1 Pathfinder program ... 5

2.2.2 GPS path file ... 5

2.2.3 Points... 6

2.2.4 Segments ... 7

2.2.5 Vectors .. 7

2.2.6 Paths.. 8

2.2.7 Intersections and loops.. 10

2.2.8 Point, segment and vector sequences.. 11

2.2.9 Path fragments .. 12

2.2.10 Path map.. 13

2.2.11 Map graph and nodes .. 13

2.3 Project aim .. 13

2.4 Relationship diagram .. 14

3 System Analysis and Design... 16

3.1 Cleaning process ... 16

3.1.1 The EMD, PSD and PPW distances ... 16

3.1.2 Vertex Fluctuation .. 17

3.1.3 Self-similarity ... 18

3.1.4 Cleaning types... 19

3.1.5 Cleaning combinations.. 34

3.2 Similarity Detection process ... 35

3.2.1 Path similarity ... 35

3.2.2 Detecting similarity... 44

vi

3.2.3 Building the map graph... 49

3.3 Path averaging process.. 52

3.3.1 Polygon average.. 54

3.3.2 Path averaging by using convex triangulation .. 58

3.3.3 Path cleaning after using convex triangulation ... 82

3.4 Fragment averaging process and stitching process ... 83

3.4.1 Fragment similarity... 83

3.4.2 Fragment Averaging process .. 84

3.4.3 Stitching process ... 91

4 Implementation ... 94

4.1 The Const class ... 94

4.2 The MListener, KListener, MapFrame, MapPanel classes 94

4.3 The Point and Segment classes ... 95

4.3.1 Position Coordinates ... 95

4.3.2 Dealing with geographical coordinates from income data 96

4.3.3 Distances ... 97

4.3.4 Intersections .. 100

4.4 The Node class .. 105

4.5 The Path class ... 106

4.5.1 Pseudo-codes... 106

4.6 The Polygon class ... 117

4.6.1 Pseudo-codes... 117

4.7 The PathFinder class .. 124

5 Test.. 127

5.1 Testing the cleaning process... 131

5.2 Testing the similarity detection process ... 132

5.3 Testing the path averaging process .. 134

5.4 Testing the fragment averaging process... 135

6 Conclusion .. 138

7 References... 141

Appendix A – The Const class.. 144

vii

Appendix B – The Point class .. 146

Appendix C – The Segment class.. 150

Appendix D – The Node class .. 161

Appendix F – The Polygon class .. 182

Appendix G – The PathFinder class .. 192

Appendix H – The KMapFrame and the MapPanel classes... 196

Appendix I – The MListener class .. 199

Appendix J – The KListener class .. 201

viii

1

1 INTRODUCTION
This project is about developing a system to construct a graphical map from a given input
set of GPS motion data representing trajectories of monitored bodies. The satellite data
might come from a GPS receiver attached to a vehicle, an animal or any other kind of
mobile body. The road map then shows, on a user graphical interface, the streets or other
kind of trails traced by such body.

The project has as objective to introduce GPS solution developments. Computational
geometry [CG1] is helpful to solve these problems as they have a great geometrical
aspect because of the essential data to work with (GPS data) that are information about
geographical positions at fixed time intervals.

1.1 Problem description
The approach in this project is to create a graphical map from a set of given GPS-data.
This information data can be disturbed by atmospheric effects and reflections by
buildings or other great objects. Because of these disturbances and lack of complete
accuracy, error margins have to be taken in account.

The problem with building a concise map is that we may have several lines on the map
trying to represent the same path or road. Because error margins are assumed on the input
data, we may have several shuffled lines. These shuffled lines would cause a confusing
map and a lot of unnecessary data to manage.

Computational geometry [CG2] is a very useful tool that will be used during the solution
of this problem, but processes involving computational geometry may involve too many
data and heavy mathematical calculations. For instance, several points could be needed to
represent a simple curved line and the more accurate you want the line to be the more
points you need to represent it.

Calculations like point-to-point distances, line intersections, point-to-segment shortest
distances, average points, etc, seem to be solved in few and simple mathematical
operations, but sometimes they are not so simple. However, they should be very practical
operations because they have to be calculated several times during the pathfinder
program.

The simplest equation to find the shortest spherical distances (great circles distances
[GCD]) between two points on the globe is a complex formula that involves many
trigonometric functions. Now try to imagine several basic operations like this being used
very frequently. Hence, one of the aims here is to look for short operations and to avoid
the long ones when they are not really necessary.

Processing time is very susceptible to the used computational geometry. This means that
a small code change may result in great time differences. Even though the approach in

INTRODUCTION

2

this project is not to find optimal methods for solving the geometrical problems, I have
tried to find solutions with acceptable processing time for a reasonable set of data.

As you can notice, the more data used to define paths, the more accurate they get. On the
other hand, the more data used to define paths, the slower the program will get.
Therefore, a balance between accuracy and computability is needed to have enough
accurate data but an acceptable processing time

1.2 Project Requirements
The focus of this project is on the specification and theoretical solution of the problem.
Relevant concepts have to be found and specified, e.g., path, crossing, branching, path
fragment, etc. After that, more complex concepts have to be defined, e.g., path average,
fragment similarity, clean path, etc.

Some methods using prior concepts need to be defined for the theoretical solutions, as
finding average for similar paths, matching similar fragments of a path to another, and
other relevant methods.

Conditions for the input data have to be specified to make it accessible for the defined
methods. The input data has to be preprocessed to meet these conditions. The solution has
to be implemented in Java language and the graphics should be implemented using the
Swing library.

INTRODUCTION

3

4

2 DOMAIN ANALYSIS
This chapter has the purpose of providing a better understanding of the problems that are
going to be solved in this project. This is done by identifying its domain of use and all the
basic terms used in a mathematical domain and finding relations among these terms.

2.1 Domain of use
The main use of the pathfinder system being developed in this project is to track mobile
objects. These mobile objects can be classified according to some characteristics that are
essential for the system development. For instance, it is not the same to develop a system
for monitoring a car driving on the streets of a city or for monitoring an airplane
performing intercontinental flies.

Therefore, these mobile objects can be classified according to their average speed, the
scope of their trajectories, the kind of trajectories they use to perform and the required
system accuracy for tracking them.

Commercial airplanes: The trajectories that they perform use to be quite linear, making it
easier to be defined, and the required system accuracy for locating them usually isn’t very
high. For instance, one kilometer of distance does not represent much for airplane
trajectories. On the other hand, their scope is frequently the entire globe and their normal
average speeds are beyond 500 Km/h. This means that few seconds of monitoring failure
might be a considerable data loss.

Maritime ships: Their trajectories are also quite linear and the average speed is
considerable but not as fast as airplanes. This makes it easier to monitor ships than
airplanes because the required accuracy is not very high either. The scope can also be
global.

Trains: Train Trajectories are not so linear but we still could consider them linear
trajectories with respect to trajectories of other mobile bodies. The required accuracy
begins to get greater as well as the scope begins to be smaller with respect to prior
examples. The speed may vary according to the type of train.

Animals: Of course it depends of the animal we want to monitor, but most of them may
have very curved trajectories. Their scopes don’t use to be (relatively) very large as well
as their speeds don’t use to be very high. The required accuracy may vary depending of
the animal speed, size and other factors.

Cars: This is the domain used in this project. Trajectories of cars are not so curved like
animal trajectories can be; anyway they can be very curved sometimes. They use to
require more positioning accuracy than any other example mentioned before, especially
because of the kind of traffic they face. Their scopes and average speeds are quite
variable, but not excessive.

DOMAIN ANALYSIS

5

2.2 Definitions of basic terms
A common way of specifying terms is using a list of all the relevant terms to understand
the domain. Some terms have strong relations among them and sometimes it is crucial to
understand one concept before understanding another one. Most of the terms at this
domain have to be defined mathematically, what sometimes makes the concept large or
difficult to explain in few lines as in a simple term dictionary.

Other terms of this domain have similar concepts to the popular language, but here they
have some constraints that popularly are not taken into account. Sometimes it can get
confusing if we try to associate these terms to the frequent concepts we have in ordinary
languages.

It was preferred to offer a more expansive explanation of each basic term instead of
having just a term dictionary because these terms need to be well understood. Some terms
will have more than one definition due to different constraints they may have. Here we
try to name terms according to their constraints to avoid confusions.

2.2.1 Pathfinder program
This is the main program developed for a system to construct a graphical map from a
given input set of GPS motion data representing trajectories of monitored bodies.

2.2.2 GPS path file
GPS path files are files containing input data given to the pathfinder program as the most
basic data. Each of the given files represents a trajectory traced by one mobile body that
is being monitored. For being considered GPS path files in this project, these data and
files have to follow conditions defined here.

GPS path files have to be stored in a determined folder and directory to be read during the
program execution. Each line of these files has to contain GPS-data about one specific
geographic position, the time this information was obtained and its data precision. It
makes no sense for a file to contain no lines because they try to represent the trajectory of
a mobile body and if there is no trajectory then no file is needed. Each file line should
have information similar to the line below:

100;0.9736992056677011;0.21888889734254205;69.2;OK

The first number in the line indicates the time (in seconds since midnight) when this data
has been obtained; The second number indicates the mobile body position latitude on the
Earth globe (latitude>0 at the north, latitude<0 at the south); The third number indicates
the mobile body position longitude on the Earth globe (longitude>0 at the east,

DOMAIN ANALYSIS

6

longitude<0 at the west); The fourth number indicates the mobile body altitude above a
reference geoid; The last information is a string that indicates this data precision. If the
string contains ‘OK’ it means this data is trustful otherwise the precision may not be good
and the data might not be accurate at all.

2.2.3 Points
A point is a set of geometrical information about a unique position on the globe. Unlike
GPS-data, it will not contain other non-geometrical information as time and precision. In
this context, it will have the same concept as in the mathematical context, but even in
mathematics there are different point definitions depending of the kind of coordinate
system that is used to identify the point. There exist systems using planar coordinates,
polar coordinates, spherical coordinates, x-dimensional coordinates, etc. Here we are
going to mention three kinds of points that are the most common ones for this domain.
Each one has its advantages and disadvantages.

• Geographical point: This kind of point is the most accurate one to represent exact

information about a position over the planet globe. The input data contained in GPS
path files are geographical points. Each of these points has a latitude angle, a
longitude angle and an altitude. In spite that this kind of points gives the most
accurate positions on the globe, its coordinate system is the most complex to work
with geometrically.

• Spherical point: It is simpler to work in a spherical coordinate system than to work in
a geographical coordinate system because spherical points only have latitude and
longitude, discarding system complexities due to altitude. On the other hand, only
positions on the surface of the globe can be represented by these points.

• Planar point: The great advantage of a planar coordinate system is that it is much
simpler to work in it geometrically talking. A planar point just has an x-axis
coordinate and a y-axis coordinate, both representing linear distances instead of
distance angles. The only disadvantage for this coordinate system is the loss of
accuracy when trying to represent geographical positions from the real world, but this
loss of accuracy may vary depending of the scope area and the pathfinder system
itself.

A special classification for points is an endpoint. An end point is a point at some
extremity of a continuous line, and if such line has an origin and a destination, we can be
more specific classifying endpoints again as the line startpoint and the line endpoint
respectively. This point classification is going to be used for the introduction of following
terms.

Points will be represented by the lowercase letter p and identified by a subscript i: pi. The
shortest distance between two points pa and pb will be represented by the expression
d(pa , pb). If the points are planar, this distance will be a Euclidean distance, and if the
points are spherical, this distance will be an arc distance. Geographical point distances are

DOMAIN ANALYSIS

7

more ambiguous because they are a combination of Euclidean and arc distances due to
the altitude.

2.2.4 Segments
A segment is a set of two endpoints (pi and pj) and every point on the shortest trajectory
between them. All the points of a segment are planar points and the trajectory along its
endpoints is a straight line.

An arc segment is also a set of two endpoints (pi and pj) and every point on the shortest
trajectory between them, but the points of an arc segment are spherical points and
consequently the trajectory along its endpoints is a curved line on a spherical surface.

Both segments and arc segments represent the approximated trajectory a mobile body has
trailed from a position (point) to another. Segments and arc segments will be represented
by the lowercase letter s and identified by a pair of subscripts i and j that specifies the
segment endpoints: sij . To shorten future notations, the term ‘segment’ is going to be
used to reference both segments and arc segments. The term ‘arc segment’ will be used
only when necessary.

The shortest distance between a point pa and a segment sbc will be represented by the
expression d(pa , sbc) or d(sbc , pa), and the shortest distance between two segments sab and
scd will be represented by the expression d(sab , scd).

Figure 1. A segment (left) and an arc segment (right).

2.2.5 Vectors
A vector is a segment with a defined direction and an arc vector is an arc segment with a
defined direction. Both, vectors and arc vectors, will be represented by the lowercase
letter v and identified by a pair of subscripts i and j that specifies the vector segment and
direction: vij . To shorten future notations, the expression ‘vector’ is going to be used to
reference both vectors and arc vectors. The term ‘arc vector’ will be used only if
necessary.

The subscripts i and j determine that the vector direction is from the startpoint pi to the
endpoint pj. The segment sij and sji are the same, while the vectors vij and vji are not
because they have different directions. The shortest distance between a point pa and a

DOMAIN ANALYSIS

8

vector vbc will be represented by the expression d(pa , vbc) or d(vbc , pa), and the shortest
distance between two vectors vab and vcd will be represented by the expression d(vab ,vcd).

Figure 2. A vector (left) and an arc vector (right).

2.2.6 Paths
In this context, a path is a set of segments that represents an approximate trajectory of
some monitored mobile body. These segment endpoints are going to be called path
vertices and they are going to be used to define the path. An ordered list of path vertices
(to represent a path) is going to be called path vertex list.

A path will be represented by the uppercase letter P and identified by a subscript x: Px .
Each GPS path file is going to be converted into a path for making it easier to work with
the input data.

The notation for a path vertex will be very similar to point notations; however, its
subscript will not be just an identifier but an index number. Moreover, vertices will also
have superscripts indicating the path they belong to. For instance, x

kp represents a vertex
that belongs to the path x and it is the k-th element from its path vertex list, while pk
represents an ordinary point that not necessarily belongs to a path, and the subscript k
only is a simple identifier.

Similar notations are going to be used for segments (or vectors) that belong to a specific
path; therefore their endpoints must be consecutive vertices from such path. For instance,

x
is represents a segment from the i-th vertex of the path x to its consecutive vertex. Once

the segment endpoints must be consecutive vertices, we don’t need two subscript indexes
(like for ordinary segments) but just the first endpoint index. Exactly the same notation
concept is applied for vectors in case of oriented paths to be defined soon.

� Formal definitions for a path:

A path Px is a sequence of segments xs0 , xs1 , … , x

ns 1− defined by an ordered list of path

vertices xp0 , xp1 , … , x
np , where x

ip represents the (i+1)-th vertex from the path vertex

list, and x
is represents the segment defined by the consecutive path vertices x

ip and x
ip 1+ .

DOMAIN ANALYSIS

9

Figure 3. A path defined by its vertices and built by its segments.

A path may be defined in different ways depending on if it has an orientation or not.
Sometimes it is interesting for the path to have an orientation while sometimes its
orientation is completely useless.

An oriented path Px is a sequence of vectors xv0 , xv1 , … , x

nv 1− , also defined by the same

list xp0 , xp1 , … , x
np , where x

ip represents the (i+1)-th vertex from this path vertex list ,

and x
iv represents the vector defined by the consecutive vertices x

ip and x
ip 1+ .

A point is said to belong to a path Px (oriented or not) when it belongs to a segment
defined by consecutive vertices of Px.

When a path has an orientation, its first vertex xp0 is called path origin point or path

origin vertex, and its last vertex x
np is called path destination point or path destination

vertex. In an oriented path, every point from the path belongs to a vector that indicates
the direction along the path that should be followed from this point to reach the path
destination point. Both origin and destination points belong to the path vertex list.

The path Prev x represents the path Px with its opposite orientation. It will be called Px’s
reversed path and will be determined by Px’s vertex list but in its opposite sequence.

Figure 4. An oriented path built by its vectors (above) and its reversed path (below).

As we can notice, both oriented and non-oriented paths are represented by the same data
structure: an ordered list of points (path vertex list). Therefore, the concept of path
orientation is abstract1. One can decide if the link of two consecutive vertices will be

1 Observation: The same path can be oriented and disoriented according to the convenience on a situation.

DOMAIN ANALYSIS

10

segments or vectors, although in some future definitions this abstract concept is
important.

2.2.7 Intersections and loops
An intersection of two different paths Px and Py is said to occur when two segments of
these different paths (x

is and y
js) intersect, that is when these two segments have at least

one point that belongs to both of them. These points are called intersection points.

A path Px is said to be self-intersecting if it contains at least two different egments, x

is and
x
js , and either:

• x

is and x
js are not consecutive and at least one of their points belongs to both

segments, or
• x

is and x
js are consecutive and more than one of their point belongs to both segments

(at least one point besides their linking vertex x
jp).

These common points from a self-intersecting path are called self-intersection points, and
they are not necessarily vertices of their paths (figure 5: left example). Analogously,
intersection points of different paths are not necessarily vertices of them.

A loop is said to occur in a path Px when it is self-intersecting and the only self-
intersection points of the path are its origin and destination points (figure 5: right
example).

Figure 5. A self-intersecting path with its intersection point pi (left) and a looping path (right).

DOMAIN ANALYSIS

11

2.2.8 Point, segment and vector sequences

A vector x
iv is said to be before another vector x

jv (from the same path Px) when i < j.

Analogously, x
jv is said to be after x

iv .

Segments x

is and x
js or vectors x

iv and x
jv (from the same path Px) are said to be

consecutive segments or consecutive vectors if their indexes are consecutive numbers, as
well as they are said to be the same segments or vectors if their indexes are the same
(i = j).

A point pa is said to be before another point pb when both of them belong to the same
oriented2 path Px, pa belongs to a vector x

iv , pb belongs to a vector x
jv , and either:

• x

iv is before x
jv , or

• Both points are on the same vector (i = j) but d(pa , x
ip) < d(pb , x

ip).

Analogously, the point pb is said to be after pa.

Figure 6. Examples of a point pa before another point pb from the same path Px when they are in separate segments

(left), in consecutive segments (middle), or in the same segment (right). At the same time, the point pb is after pa.

A point pb is said to be between two other points pa and pc when they belong to the same
oriented path Px, and pb is after pa but before pc

3.

2 Observation: Even a non-oriented path has an ordered vertex list, and a point from this path may also be

said to be before or after another one with respect to its list. To check if a point is before or after another
one from a non-oriented path, just orient the path (considering the first vertex in the list as origin point,
the last vertex as destination point, and vectors instead of segments) and follow the same concepts.

3 Observation: One point can be after and before itself in a self-intersecting or looping path, as well as a set
of points can be both after and before a unique self-intersection point. In the left example of the figure 5,
the vertices xp2 and xp3 are after and before the intersection point pi of the self-intersecting path Px. In the

looping path Py at the right example of the same figure, all the points are after and before yp0 and yp7
,

including themselves.

DOMAIN ANALYSIS

12

2.2.9 Path fragments
A path fragment is a subset of consecutive points from a determined path Px, and is
represented by an ordered list of vertices called fragment vertex list. This list will contain
the following elements:

• A point po from the path Px (not necessarily a path vertex), which will be the first

element of the fragment vertex list and is going to be called the fragment origin point.

• A point pd, not before po, in the path Px (not necessarily a path vertex), which will be

the last element of the fragment vertex list and is going to be called the fragment
destination point4.

• All Px’s vertices that are between po and pd in the path Px, which will be in the

fragment vertex list in the same order that they were in Px’s vertex list.

A path fragment will be represented by the lowercase letter f and identified by subscripts
and/or superscripts. Fragment notations may have few changes depending on which of its
information is more important to manage, and then its subscript or superscript function
will be different for each situation.

One subscript just gives a name for the fragment (e.g. the notation fk is just identifies the
fragment), but a pair of subscripts represent information about the fragment origin and
destination points (e.g. the fragment fod begins at the point po and ends at the point pd).

One superscript represents just the path the fragment comes from (e.g. the fragment f x is
from the path Px), but if it also contain a parenthesis with two indexes then it defines from
which vector to which vector (from the path) the fragment goes (e.g. the fragment f x(i , j)
goes from the vector x

iv to the vector x
jv).

We may use both subscripts and superscripts if we need full information about a fragment
(e.g. the fragment),(jix

odf belongs to the path Px and goes from the point po on the vector
x
iv to the point pd on the vector x

jv .

Path fragments have the same orientation as their original paths. This orientation can also
be considered or not depending of the convenience. The path fragment f rev x will be called
the reversed fragment of f x and it will be represented by its same fragment vertex list but
with an opposite sequence of vertices.

After fragments have been defined, they can be treated as independent paths once they
also are represented by an ordered list of vertices.

4 Note that the fragment origin point may be equal to the fragment destination point if the path fragment is

a single point.

DOMAIN ANALYSIS

13

2.2.10 Path map
The path map of this system is a set of paths drawn on a two dimensional graphical
surface, representing the trajectories of monitored bodies on a certain area. A path will be
represented in the path map as a set of consecutive segment lines.

2.2.11 Map graph and nodes
A Map graph is a data structure used in this system to represent all paths created from
previous obtained data and processes. The aim of a map graph is to find path
relationships in a process for defining which paths are going to become part of the path
map.

There exist two kinds of nodes to be defined here and they should not be confused. There
are nodes that just represent paths in a map graph, and these nodes are going to be called
graph nodes.

The other kind of nodes represents special points that link (two or more) different paths,
i.e. concatenations, branchings, crossings, etc. The expressions of concatenations,
branchings, and crossings are going to be defined later in the report. These nodes are
going to be called linking nodes and they must have an especial treatment. Linking nodes
should inform their positions, every path they link, besides other details.

2.3 Project aim
Many terms still have to be defined but they cannot be defined here yet because they are
part of problems or solutions explained during the analysis design or because they need to
be defined after some of these explanations.

For instance, the required definitions for branchings and crossings are quite ambiguous in
some situations and difficult even for humans to define if they occur in a set of shuffled
lines to be averaged, or not.

Actually, the aim of this pathfinder system is not just to obtain paths and throw them in a
graphical map but to create a concise map containing comprehensible data to human
eyes. Moreover, it has to be a computable system that discards unnecessary data that only
would cause processing delays and system troubles.

Therefore, some processes are necessary to avoid unnecessary and confusing data. In this
project we mention five necessary processes for reaching the aim of the pathfinder
system: 1) Cleaning unnecessary points, 2) Detecting similarities between paths, 3)
Averaging the similar ones, 4) Averaging similar path fragments, and 5) Stitching path
extremes.

DOMAIN ANALYSIS

14

All of these processes are going to be explained further in this report, but not all of them
have been deeply analyzed and implemented. The first three processes have been the
most elaborated ones. Anyway, all these processes have been studied and mentioned
further.

2.4 Relationship diagram
The following ER-model has as goal to give a graphical overview of the domain concepts
and the relations among them. Every entity class and entity property in the following
diagrams has been mentioned in the domain analysis.

Figure 7. Relationship Diagram for the project.

DOMAIN ANALYSIS

15

16

3 SYSTEM ANALYSIS AND DESIGN
The single terms to understand the problem were already explained in the last chapter. In
this chapter, the essential processes for reaching this project aim are going to be studied.
More elaborated terms used for the solutions are also going to be defined here.

There are five fundamental processes for building a concise map from the given input
data. The first one is the cleaning process and its goal is to discard unnecessary data
facilitating future processes and saving processing time and computer memory. The
second fundamental process is the similarity detection that finds pair of paths (or path
fragments) that deserves to be replaced by just one average path. The third process is the
path averaging process that finds the best path to replace two other similar paths with.
This process is very important for having concise paths on the map. The fourth process of
fragment averaging is a complement for the second and third processes but it works with
path fragments instead of entire paths. The last procedure is called the stitching process
and its goal is to connect some of the concise paths that deserve to have a permanent link.
These fundamental procedures are going to be explained next.

3.1 Cleaning process
One of the objectives in this project is to manage inaccurate input information to create a
concise map from it. This inaccuracy is liable to error margins that are going to be
explained. It is tried to avoid confusing situations that make good data management
difficult, e.g. several shuffled lines on the map that should represent the same road.

Another objective is to discard unnecessary data for avoiding excess of processing time
due to useless extra calculations. To discuss about these two main objectives, we need to
define some concepts before we use this process to reach them.

3.1.1 The EMD, PSD and PPW distances
The GPS-data, received as input, is not supposed to be very accurate information because
of the satellite limitations and the disturbances that their signals may suffer. Normally,
there is an error margin distance between a given GPS data position and the real
geographic position it represents. This distance is relative to some factors, e.g. the
number of used satellites. Hence, a constant will be used in the pathfinder program to
represent such ‘Error Margin Distance’ EMD.

Due to this error margin, two real equal trajectories would probably never be represented
in exactly the same paths, but if they are quite close one to another they could be
considered the same. There is a distance used to check if two paths are close enough to be
considered the same one or not. This distance is also relative to some factors, e.g. the
EMD distance and road standard widths. Therefore another constant will be used to

SYSTEM ANALYSIS AND DESIGN

17

represent this ‘path similarity distance’ PSD. Two points are going to be called close
enough if their distances are lower than or equal to the constant distance PSD.

As it has been mentioned above, the PSD depends of how wide the used roads or paths
can be. This width difference may be considerable if we are talking about boats on rivers,
trains on rails, cars on motorways, airplanes on air lanes, bicycles on bike roads, animals
on jungle tracks, etc. Therefore, we have to consider a ‘path pattern width’ PPW that our
monitored object is going to use.

Figure 8. A road and the relationship between the constants EMD, PPW and PSD.

In the criterion used for this project, the best relation of these distances is the equation
below (check the figure 8):

EMDPPWPSD ⋅+= 2

This relation may be changed once PSD, PPW and EMD are independent constants
defined in the program, but this relation ensures that two points from the same path are
going to be considered as from the same path.

3.1.2 Vertex Fluctuation
Two consecutive geographical points sent by a GPS-receiver should be exactly the same
if the monitored object was stopped during the time interval between these two data
receptions. Due to an error margin, probably these two points would be very near but not
the same. The points sent by the GPS-receiver are converted into path vertices. A vertex
fluctuation happens when consecutive vertices actually are different just because of an
error margin. These consecutive similar vertices are called fluctuation vertices. In more
formal definitions,

• Given a path Px, two of its vertices x

ip and x
jp are fluctuation vertices if they are

consecutive (i = j ± 1), and the distance between such vertices is not bigger than the
error margin distance, d(x

ip , x
jp) ≤ EMD.

• A vertex fluctuation is said to occur in a path or path fragment where at least two of

its vertices are fluctuation vertices.

SYSTEM ANALYSIS AND DESIGN

18

• A fluctuation sequence is a set of vertices from the same path where every pair of

consecutive vertices of this set causes a vertex fluctuation in the path.

• A complete fluctuation sequence is a fluctuation sequence where, given the last
sequence vertex and its next vertex, they are not fluctuation vertices, as well as the
first sequence vertex and its prior vertex.

Figure 9. Examples are painted in red. Example A: two fluctuation vertices among many vertex fluctuations. Example
B: a fluctuation sequence (that is not complete). Example C: a complete fluctuation sequence. Example D: two

separated complete fluctuation sequences.

The shorter the data reception interval is the fewer possibilities of different trajectories
exist along a short distance between two consecutive received points (especially if the
distance is too short: lower than or equal to EMD). On the other hand, the longer the data
reception interval is the less probable two consecutive non-fluctuating vertices are very
near, but even if a coincidence existed we cannot predict what happened during a long
data reception interval. So, Even if the monitored object were in (fast or slow) movement,
two very near consecutive received points with a distance lower than or equal to EMD are
“also going to be considered fluctuation vertices”, supposing that nothing considerable
happened along the trajectory between these points.

The altitude distance is not going to be considered here because the map is not 3D, so, the
altitude is not going to help our 2D map to be more concise or more accurate; it would
only raise difficulties and slow the calculations.

3.1.3 Self-similarity
Until now, we have talked about an averaging process and its aim of finding a path to
substitute other two different but similar paths. We also mentioned the possibility of
paths to be not similar but have similar fragments to be averaged. But we didn’t even
mention the possibility of the same path to have similar fragments.

Definitions for similarity are not so simple, and then we are not going to define path
similarity nor fragment similarity in this subchapter for the cleaning process. We are
going to let it be explained in the next subchapter for the similarity detection process.

SYSTEM ANALYSIS AND DESIGN

19

The only thing we need to know here is that similarities may happen when paths are very
close to each other and it seems that they represent the same trajectory. The same
happens for path fragments, i.e. fragments from a same path may also be similar causing
what we call path self-similarity5. Once the term ‘similarity’ is explained further we are
going to be able to understand perfectly what self-similarity means.

An example of self-similarity is a situation where a mobile object passes by the same
point during just one trajectory. It causes a path self-similarity that would be very short if
it was just a crossing6, or relatively long if a road was used more than once. Self-
similarities may cause several problems to future processes and we may try to avoid them
already in this cleaning process.

3.1.4 Cleaning types
A unique path may have fluctuation vertices, self-similarities, self-intersections, loops,
etc, having many unnecessary data and troublesome path fragments. A cleaning process
is the first fundamental process that is applied to already existing paths or to input GPS
data files for transforming them in consistent paths without these useless confusions.
These consistent paths are called clean paths.

There are different types of cleanings depending on each of the prior mentioned problems
we want to avoid for clean paths. For instance, the simple path cleaning only cares about
discarding completely unnecessary data.

• A clean path does not have excess of unnecessary vertices after a simple path

cleaning.

The next type of cleaning discards all those vertices that do not increase much the path
accuracy but decrease the processing speed. This basic path cleaning fills the following
constraints (to be explained later):

• A clean path does not have non-OK vertices after a basic path cleaning.
• A clean path does not have very distant consecutive vertices after a basic path

cleaning.
• A clean path does not have fluctuation vertices after a basic path cleaning.

A general path cleaning follows the same constraints than a basic cleaning, but one more
constraint is added to this cleaning process. This constraint is not as easy to reach as the
past ones because of possible confusions caused by ‘immediate returns’ (that is also
going to be explained later).

• A clean path does not have non-OK vertices after a general path cleaning.

5 The term ‘self-similarity’ is going to be explained better in the subchapter of total path cleaning (3.1.4.4)
6 The term ‘crossing’ mentioned here is the same used popular term, once this is an empiric example.

SYSTEM ANALYSIS AND DESIGN

20

• A clean path does not have very distant consecutive vertices after a general path
cleaning.

• A clean path does not have fluctuation vertices after a general path cleaning.
• A clean path does not have immediate returns after a general path cleaning.

A total path cleaning adds two more constraints to the general cleaning. These
constraints may increase considerably the cleaning processing time, but at least we may
use the same processing time to reach both additional constraints.

• A clean path does not have non-OK vertices after a total path cleaning.
• A clean path does not have very distant consecutive vertices after a total path

cleaning.
• A clean path does not have fluctuation vertices after a total path cleaning.
• A clean path does not have immediate returns after a total path cleaning.
• A clean path does not have self-intersections (or loops) after a total path cleaning.
• A clean path does not have self-similarities after a total path cleaning.

Although the last constraints may be expensive in time, if detections for self-similarities
and self-intersections are not achieved here, they will have to be achieved later; otherwise
the map might be not concise. On the other hand, if we achieve these constraints here, we
would simplify future fundamental processes and save time later.

Next, the reasons of each mentioned constraint of path cleaning procedures, and how they
are achieved, are going to be explained.

3.1.4.1 Basic path cleaning
Here, each necessary constraint for the basic path cleaning is going to be explained. The
Simple path cleaning should be explained first because it includes part of the basic path
cleaning procedure, but due to practical reasons, basic path cleaning constraints are
going to be explained first.

3.1.4.1.1 A clean path does not have non-OK vertices after a basic path cleaning.
Non-Ok points or non-OK vertices are those GPS-data whose last item (that indicates the
data precision) does not contain the ‘OK’ substring. Hence, these data are not very
trustful, so they do not increase the accuracy, but they include vertices in the path
increasing calculations and decreasing the processing speed (the other vertices are called
OK points or OK vertices).

At the beginning there were some ideas about what to do with these insecure signals, but
we never know how wrong these data could be and they are undesired during time-
expensive procedures.

SYSTEM ANALYSIS AND DESIGN

21

Instead of finding what to do with these points, a strict elimination of the non-OK points
is possible, splitting the path each time the elimination happened (due to the lack of these
eliminated points without further vertex connections). Although we may have many split
paths, we would ensure the elimination of false trajectories.

A non-strict cleaning of non-OK points would ignore them when transferring GPS data
from a file to a path structure but without splitting the path, by linking the prior and next
vertices of the ignored non-OK point.

A path segment can get very long due to consecutive eliminated non-OK points in a non-
strict cleaning (where the path is not split), and we don’t know what happened during this
long trajectory. This problem will be discussed in the next constraint about distant
consecutive vertices.

3.1.4.1.2 A clean path does not have very distant consecutive vertices after a basic
path cleaning.

Too distant consecutive vertices may be found due to three reasons: data failure,
excessive speed of the monitored object body, or discarded non-OK vertices. Data
failures and excessive speed (higher than the expected one) don’t use to be frequent
situations and they are quite improbable. Discarded non-OK vertices are going to be more
frequent and they might cause quite long path segments if these discarded vertices are
consecutive ones in a non-strict cleaning.

A path full of long segments could be a very nonsense data when compared to the real
path. We may assume a constant for a maximal segment length MSL. We could use a
maximal considerable speed, the error margin, and the signal reception time interval as
parameters to consider this constant value. For instance, if the signal reception time
interval is 10 seconds, the error margin is about 10 meters and the maximal considerable
speed is of 200 Km/h, then our MSL constant should be about 575 meters:

mm
m

errorntervalspeed 575102sec10
sec3600

1000200
2 ≈⋅+⋅⋅=⋅+⋅ι

The MSL is just a constant defined initially and we may adapt it to the best value
according to the system domain. It could even have an infinite value, if we want to
consider any segment, independent of its length.

It is a good idea, though, to split a path into two, if there is a segment in it that is longer
than a defined MSL value. The new paths will not lose any useful information from the
original path file; moreover they will not use the very insecure information from the long
segment.

A very long segment would probably not improve a path average, but would instead
disturb a good one. We should discard the long segment and hope another similar

SYSTEM ANALYSIS AND DESIGN

22

trajectory to happen with more OK vertices and consecutive short distances, resulting in a
more accurate path.

However, non-OK vertices could happen everytime in a same trail because of certain
given circumstances, for instance a long tunnel. It could be a good idea to represent some
kind of link on the map for distant consecutive OK vertices (e.g. points with the same
color may represent tunnel endpoints or other kind of endpoints). But it is not a good idea
to represent such links with a straight segment possibly faking the trail between them.
The possible fake is the reason why it was decided to split the paths when very long
segments happens (figure 10).

Figure 10. A trajectory where the black vertices are received data and the green segments are the supposed

approximated trails between them. Example A: One long segment happened because of discarded consecutive non-OK
vertices. Example B: The path was split in two, ignoring the long segment.

3.1.4.1.3 A clean path does not have fluctuation vertices after a basic path cleaning.
Fluctuation vertices do not help a map to be more concise, the map accuracy does not
increase significantly due to them, and many times the map accuracy even decreases
because of them. Moreover, they use to be several useless data that causes a considerable
delay in many steps of the program.

It is always a good idea to eliminate fluctuation vertices from every path and to ignore
input GPS data that cause these vertices. If two consecutive vertices have quite short
distance between them, they are fluctuation vertices and probably try to represent the
same position on the map.

Perhaps the very last supposition is not correct, because the proximity of consecutive
vertices may be due to a coincidence in case that a significant trajectory happened during
these near consecutive vertices (figure 11). But these very near vertices will not help us to
predict what happened during this lack of information, and then they will not make the
map much more accurate. So, (as it already has been said) it was decided to consider
every pair of vertices whose distance between them is lower than the error margin
distance EMD as fluctuation vertices.

The decrease of accuracy will not be significant if we discard fluctuation vertices, but
later we may save time due to this operation. The question here is “how to eliminate the
fluctuation vertices”. We should not just ignore all of them; otherwise we are going to
lose important data. Each eliminated fluctuation sequence should be represented in the

SYSTEM ANALYSIS AND DESIGN

23

clean path by one vertex. There is more than one kind of fluctuation cleanings. Next we
explain some of them.

Figure 11. A real trajectory is represented by the black dotted line. The obtained GPS data are the black and red points,
and they will be converted into vertices of a path (represented by the red straight lines) that tries to predict an

approximated trajectory (obs: in this case the approximation is not very successful). There are two fluctuation vertices
(red points) in this example and they don’t help us to predict the real trajectory, therefore, if we replace them by just

one average vertex, we are not going to lose significant information due to this replacement.

Fluctuation cleaning by average:

The first prupposed method for cleaning fluctuation vertices is: “If the distance between
two consecutive vertices is too small (smaller than or equal to EMD) then an average
point between them will be found to substitute both vertices by only one”. But this
method could not work in some situations. For example, if the mobile object traveled at a
very slow speed (e.g. a car in a traffic jam) then all the vertices of a long path could be
converted at the end to a unique average vertex! (example A in the figure 12). For making
this possibility more improbable, I decided to work with fluctuation sets instead of
working with pairs of fluctuation vertices.

Figure 12. Example A: If we convert a pair of fluctuation vertices (linked by red lines) in an average vertex
(represented by red points) and use this average vertex again to next averages, we may convert an entire path in a

unique vertex. Example B: The fluctuation set from a vertex x
ip (represented by points linked by red lines) is

converted into an average vertex (represented by a red point).

The fluctuation set from a determined vertex x
ip is a set of consecutive fluctuation

vertices, composed by x
ip itself and all the consecutive vertices after it whose distance

SYSTEM ANALYSIS AND DESIGN

24

to x
ip is lower than or equal to the error margin distance EMD (example B in the figure

12).

In other words, this set begins on a determined vertex and it includes all posterior
consecutive vertices along the path whose distances to the given first vertex are not
greater than EMD 7.

However, the new concept of fluctuation set does not avoid the possibility of converting
the entire path in a single vertex during their substitutions (example A in the figure 13). It
can still happen in traffic jam, for example.

To avoid this undesired possibility, we should not use average vertices to find the next
fluctuation vertices or fluctuation sets to be averaged in this procedure, and then this
problem would be solved. But if we don’t use the average vertices for future fluctuation
searches then the resulting path may still have fluctuation vertices at the end of this
cleaning procedure (example B in the figure 13). So, the vertex fluctuation problem could
still persist if we don’t reuse average vertices, thus the main aim of this process would not
be reached.

Figure 13. Example A: The path can still be converted to a single vertex even though fluctuation sets are used to find
average vertices. Example B: The way for avoiding the problem on the example A is to use not the average vertex for
the next fluctuation set, but then we may keep having fluctuation vertices in the resulting path, as we can notice in this

example.

Therefore, if we don’t reuse average vertices, the path would have to be checked again
after it ends each time a new vertex fluctuation was found during the procedure (for
guaranteeing the aim approach in this cleaning). The procedure might have to be repeated
many times, but at least the prior undesired situation would not happen anymore.

7 Observation: Even though the maximal distance among its vertices is the EMD, a fluctuation set can be

long, e.g. a spiral path. A fluctuation set can also be unitary (have only one vertex) if no other vertex in
the path is near to the determining vertex of the set.

SYSTEM ANALYSIS AND DESIGN

25

Our question now is “how many times might we have to repeat this process? And, how
expensive (in time) could it be if we have to repeat it many times for several paths?!”

If we are going to reuse average vertices, the fluctuation sets would be a very practical
tool to diminish the number of necessary repetitions, because working with them would
help to finish the vertex fluctuations much faster than working with pairs of fluctuation
vertices. Even though fluctuation sets make several repetitions less probable, They don’t
make them impossible.

In the next type of path cleaning, another possible solution (that also can be used for
basic path cleanings) for discarding fluctuation vertices will be explained and its
advantages and disadvantages will be discussed.

3.1.4.2 Simple path cleaning
The prior explained cleaning type is applied only for paths created from input data. The
simple path cleaning can also be applied for already existing paths, e.g. paths resulting
from further procedures. But this type of path cleaning has one constraint that extends the
last constraint of the basic path cleaning.

However, the solution to be explained next for the only constraint of the simple path
cleanings can also be used for the basic path cleaning, and is actually the suggested
solution for the problems of fluctuation cleaning mentioned before.

3.1.4.2.1 A clean path does not have excess of unnecessary vertices after a simple path
cleaning.

The most common vertices that cause excess of vertices in paths are fluctuation vertices,
so we must begin this procedure also cleaning them.

Is there a procedure that can discard every consecutive vertex fluctuation without needing
algorithm repetitions? The answer is ‘yes’, and here we have a suggestion for this simple
path cleaning or simple fluctuation cleaning. Even though this procedure might lightly
diminish the path accuracy, it would not diminish it significantly.

The fluctuation sets would be a useful tool again, but we don’t need to find their average
vertices anymore. That means we will avoid problems due to averages. Only the first
vertex of a fluctuation set will be used instead of its average vertex. The average
calculation is not necessary anymore, and the first vertex from the fluctuation set is the
only data from it that is necessary to be stored during this procedure. The other vertices
from the set (if there are aby) are just garbage to be ignored.

Using only the first vertex (by ignoring the other fluctuating vertices from the set) instead
of the using the average vertex for replacing the entire fluctuation set is the reason of the

SYSTEM ANALYSIS AND DESIGN

26

possible accuracy loss, but we must analize if this simpler procedure would be efficient.
How low an accuracy would be acceptable? How much would this change improve the
processing time?

One thing is for sure: the distance between the first vertex and the average vertex from
the same fluctuation set cannot be greater than EMD because no distance between
vertices from a fluctuation set can be greater than that. Therefore, even though it is almost
sure that the accuracy would diminish, it can not diminish significantly. Moreover, this
accuracy loss would be inversely proportional to the error margin; hence, the lower the
EMD distance is the more insignificant the accuracy loss is.

The great advantage of this algorithm is that we avoid unnecessary repetitions.
Nevertheless, it is guaranteed that the discarding of every consecutive fluctuation vertices
is achieved, because the distance from the first vertex of a fluctuation set to the first
vertex of the next fluctuation set must never be lower than the EMD (figure 14).

Figure 14. If the first vertex from each fluctuation set is used to replace it, fluctuation vertices will disappear without
needing repetitions (this figure is not a good example for showing accuracy loss because the path keeps an absolute

direction).

A strict simple cleaning should not only care about fluctuation vertices but also about
vertices that are not helpful for the path accuracy, so their absence in the path would not
cause any consequence. The elimination of these verticess would avoid excess of vertices
in paths even if these excessive vertices were not fluctuation vertices.

Those unhelpful vertices are detected by checking how much distances between vertices
vary whether an intermediate vertex is removed. If no significant variance happens,
definitely the vertex is unnecessary (left example at figure 15).

We must be aware that a single elimination of a vertex might not vary significantly the
distance from its prior to its next vertex, but consecutive eliminations might do it
discretely. So, when consecutive eliminations happen, we have to check not only the
distances from the prior to the next vertex of an eliminated one, but the entire variance of
the distance after the elimination sequence: from the prior vertex of the first eliminated
vertex to the next vertex of the last consecutive eliminated vertex of the sequence (right
example at figure 15). A program constant MSV (Minimal Significant Variance) will be
used to determine the necessary distance variance for considering it significant.

SYSTEM ANALYSIS AND DESIGN

27

Figure 15. In this figure, the red vertices are being analyzed for possible eliminations, the blue vertices are prior or next
vertices of the analyzed ones, blue dotted lines represent resulting distances whether the eliminations happen, and the

black lines are path segments. The left example illustrates a possible single eliminations and the right example
illustrates the possible elimination of a set of consecutive vertices.

We expect to have no excess of vertices after the simple path cleaning and it will save
processing time for future processes and facilitate them.

3.1.4.3 General path cleaning

A clean path has to be free of fluctuation vertices, non-OK vertices and very large
segments after a basic path cleaning. But general path cleanings do also eliminate
immediate returns from the paths. The prior constraints do not need to be explained again
but just the last one.

3.1.4.3.1 A clean path does not have immediate returns after a general path cleaning.
Initially, it is difficult to explain formally what an immediate return is, but it is not
difficult to understand when an immediate return occurs. In the uppermost examples of
the figure 16, we have trajectories with immediate returns (red lines) and these paths are
not desired. The lowermost examples illustrate the equivalent desired trajectories that do
not have immediate returns and may be represented by one or more paths (green lines).

In a not formal definition, immediate returns happen when similar consecutive fragments
of the same path have very different directions. It may happen in cases as the next
examples: A person in a car stopped it and went back some meters to check an interesting
announcement; a vehicle turned back and drove through the same road; a car driving on
an avenue made a U-turn; an animal made a very acute bend during its trajectory; etc.

SYSTEM ANALYSIS AND DESIGN

28

Figure 16. The uppermost examples illustrate trajectories with immediate returns and the lowermost examples

illustrate equivalent trajectories without immediate returns (some of them represented by two paths).

One reason that makes immediate returns undesired is that they make self-similarity
detection difficult to solve. For instance, we could say “we find a self-similarity on a path
if two of its points are very close one to another, except if these points belong to the same
or consecutive segments”. But immediate returns make this condition insufficient
because an immediate return can make a self-similarity to happen on consecutive
segments. If we eliminate immediate returns from same paths, we can use this prior
condition later for finding self-similarities.

Actually, an immediate return is undesired because it is a kind of self-similarity, and the
averaging process for two paths gets very confusing due to self-similarities (we would
never know which segments from self-similarities we should choose for the average).

Figure 17. The angles formed by consecutive segments are not good references for determining if they form immediate
returns or not. Above we have trajectories where every angle formed by consecutive segments is acute (examples A),

obtuse (examples B) and right angles (examples C). For all examples we have trajectories we would like to accept
(green lines) and trajectories we would not (red lines).

We could use the angle between consecutive segments for seeking immediate returns and
try to eliminate them whether they happen, but angles are not enough to define the
concept of immediate return. It is more complex and the figure 17 illustrates this.

The first idea was to detect immediate returns checking not only the angle formed by
(two or more) consecutive segments but also the minimal distance from their endpoints to

SYSTEM ANALYSIS AND DESIGN

29

the other segments. The first intent for this formal definition was: “an immediate return
happens when the lower angle formed by two consecutive segments is lower than 90º and
the minimal distance from their endpoints to the other segment is lower than or equal to
the PSD distance8” (example A in the figure 18). This definition was not sufficient
because immediate returns could keep occurring for ‘soft’ returns without acute angles
between consecutive vertices (example B in the figure 18).

Figure 18. Example A: First idea of immediate return definition: The angle between consecutive segments should be
acute and their endpoint vertices should be close enough to the other segment. Example B: The prior definition is not
sufficient. This example illustrates a ‘soft’ return where the lower angles between all consecutive segments are obtuse

but the immediate return keeps occurring.

Therefore, not always only two segments, but a set of consecutive segments have to be
taken in account to check immediate returns, and this set of segments that has to be
checked is going to be called PSD range set of consecutive segments, or simply PSD
range set.

In a formal definition, the PSD range set of a given segment x

is (between the vertices
x
ip and x

ip 1+) is a set of consecutive segments before x
ip whose last endpoints9 are close

enough to the vertex x
ip (example A in the figure 19). It means, the PSD range set is the

set of segments that are interesting to be compared with the segment x
is (red segment in

the figure 19) for immediate return searching.

Now we can finally define immediate returns. An immediate return happens for a
segment x

as when it forms an acute angle with some segment x
bs from its PSD range set and

the last endpoint of x
as or the first endpoint of x

bs is close enough to the other segment.

To compare the angle of two non-consecutive segments, a segment has to be displaced to
another making its first endpoint to coincide to the last endpoint of the other segment.
The example B in the figure 19 illustrates how these angle comparisons are performed.

8 Remark: The PSD distance defines if two points from different paths can belong to a same road tried to be

represented by both paths. These points are close enough if the distance between them is lower than the
PSD distance.

9 Path orientations are going to be taken into account for the next definitions, but we are just going to
consider segments with first and last endpoints (with respect to the path orientations) instead of vectors.

SYSTEM ANALYSIS AND DESIGN

30

Figure 19. Example A: The PSD range set of the red segment

x
is between the vertices x

ip and x
ip 1+ is the set of blue

segments whose last endpoints (blue vertices) are close enough to this red segment. Example B: The angles formed by

two non-consecutive segments (x
as and x

bs) are checked by displacing the segment x
as and making its first endpoint to

coincide to the last endpoint of the other segment x
bs . They will form two angles, but we will just care about the acute

angles for checking immediate returns, and only one of these two angles can be acute (whether there is an acute angle).

The questions now are “what should we do to eliminate immediate returns when they are
found? Ignore vertices? Split paths?” Ignore a vertex in such situation may represent a
quite considerable loss of accuracy, so it was thought to simply split the path in two. But
later it was realized that the performance of this idea could be responsible of several path
divisions, and some of these splits could even be unfair! For instance, a common turn on
an ordinary corner could cause an immediate return but a path split wouldn’t be desired
in this situation (figure 20).

Figure 20. The leftmost example illustrates a possible trajectory of a car that turned on a corner occasioning a little
immediate return due to an error margin. The middle example illustrates a path split in two ones (blue and black) due to

the immediate return. The red point is the vertex where the immediate return is detected but actually the vertex
responsible for it is the next vertex. The rightmost example illustrates that to ignore a vertex responsible for the

immediate return could be much more interesting in this situation (but not always).

The chosen approach is to ignore those vertices that are responsible for immediate returns
(explained in the middle example of the figure 20). But then we face another problem: we
could lose considerable path accuracy! The figure 21 illustrates this possible loss.

So, sometimes it is better to discard vertices and sometimes it is better to split the path.
The situations where we would desire to fix the path instead of splitting it happen only on
‘natural’ corner turnings (like in the figure 20). But a ‘natural’ corner turning is quite
hard to define (due to the error margin) even if they are quite obvious for human eyes.

SYSTEM ANALYSIS AND DESIGN

31

Figure 21. The leftmost example illustrates a possible trajectory of a car with a relatively small immediate return for

taking another way to the left. The rightmost example illustrates the loss of accuracy that happens in this situation due
to the removal of only one vertex that is responsible of an immediate return.

It is nice to fix an immediate return whether it is possible, instead of splitting the path.
Many ideas were considered to solve this problem, but there were no simple solutions for
fixing immediate returns that do not put in risk a significant accuracy loss.

Of course there are complex solutions for it, like checking angles and distances of many
consecutive segments before and after any vertex elimination and giving a particular
solution for each of the many possible situations, but these heavy solutions were not
welcomed due to its complexity and possible time cost!

Many complex solutions were discarded because most of them were just partial solutions
with many conditions with many comparisons that could slow the process significantly.
The aim of immediate return cleaning is to solve problems here to make future processes
easier and faster, but not to create problems already here making the program quite slow.

Instead of searching these complex solutions for the situation of ‘natural’ corner turnings
(that are not returns) we could be less strict on immediate return checks. We were
checking immediate returns for segments forming ‘any’ acute angle. Whereas we could
check immediate returns only for segments forming an angle lower than a pattern angle
(e.g. 60º, 45º, etc). It is a little risky because then immediate returns might happen
without being detected and the more acute the pattern angle is the more risky it will be.

This angle (lower than 90º) that is taken as a pattern to check immediate returns is also
going to be a program constant whose value can be previously defined and it is going to
be called MAIR (Maximal Angle for Immediate Returns).

If the MAIR angle is reasonably close to 90º, it is quite difficult that a real return happens
without being detected; and if the immediate return whose angle is greater than MAIR
actually was not a return but an ordinary turned corner, we would be glad to ignore such
immediate return and avoid unnecessary path splits. Anyway, mathematically the risk of
not detecting real immediate returns will exist for any MAIR angle lower than 90º.

Nevertheless, to be totally strict is also a risk for memory management and the processing
time due to the possibility of several path splits caused by many accidental immediate
return that were not returns but simple corner turnings disturbed by the error margin.

SYSTEM ANALYSIS AND DESIGN

32

3.1.4.4 Total path cleaning
This type of cleaning is the last one in this project and it has only two additional
constraints that have not been explained before. They are going to be explained next.

3.1.4.4.1 A clean path does not have self-intersections after a total path cleaning.
Self-intersections are important information because they may be quite troublesome data
to work with, especially when they form very small loops and we have to find path
averages near to it. The prior general path cleaning (that avoids immediate returns)
should discard every small loop (because they cause immediate returns) but not big
loops. It is recommended to split the self-intersecting paths having two (clean) paths
without self-intersections as result (figure 22). Then we can use them for further
fundamental processes.

Figure 22. A self-intersecting path is illustrated in the left figure. In a total cleaning, this path should be split in two

paths (right figure) without self-intersections.

However, a self-intersecting path must have a self-similarity near to its self-intersection,
and we also want to clean paths from self-similarities in total cleanings. Therefore,
instead of discussing about an effective procedure for avoiding only self-intersections, we
are going to assume that they have self-similarities and they will be clean when their self-
similarities are gone.

3.1.4.4.2 A clean path does not have self-similarities after a total path cleaning.
Later on, different paths are going to be checked for searching possible similarities
between them, but one path may have similarities to itself (self-similarities), and it might
complicate this further process. Then, we desire clean paths to be free of self-similarities
and we are going to discard these inconveniences in this cleaning process.

It seems to be easy to find a simple definition for self-similarity, and the first definition
that one uses to imagine is the following:

- “A self-similarity happens when two different segments from the same path have points

that are close enough (have a distance smaller than PSD between them”.

SYSTEM ANALYSIS AND DESIGN

33

This definition is wrong, because any segment from any path has points that are close
enough to points from its consecutive segment, and not every path has self-similarities.
Then, another definition was quickly created:

- “A self-similarity happens when two segments from the same path, that are not

consecutive segments, have points that are close enough”.

The new definition is still wrong because of two reasons. First, two segments that are not
immediately consecutives might still have points that are close enough without causing a
self-similarity (figure 23). Second, remember that two consecutive segments may
represent a return and they also should be considered self-similarities in this situation.

Figure 23. Two non-consecutive segments (the leftmost and the rightmost segments) can be close enough (having point
distances lower than or equal to PSD) and cause no self-similarity. The minimal distance between consecutive vertices

(clean of fluctuations) is EMD, and the distance PSD can be equal to 2 EMD + PPW.

Because of that, the need of the PSD range set definition arose, and it was used before in
general path cleanings. The real reason of this set definition was the need of having a
special segment set, where its segments can have points that are close enough to some
point from another of its segment but without necessarily causing a self-similarity. That is
the already defined PSD range set. Now we can define a self-similarity:

- “A self-similarity happens when a segment x

as has at least one point x
ip that is close

enough to some point from another segment x
bs (from the same path) that does not

belong to the PSD range set of the segment x
as ”.

However, special kinds of self-similarities may also happen in a PSD range set, for
instance when very acute angles are formed by immediately consecutive segments. That
is completely right, and this special kind of self-similarities in PSD range sets is what we
have called immediate returns. Therefore, immediate returns are special kinds of self-
similarities because they only happen in PSD range sets.

The total path cleaning will split the path if it is necessary for avoiding self-similarities in
the same one, thus self-intersections on the same path will also be impossible. Self-
similarities do not imply immediate returns, as immediate returns do not imply (other
kinds of) self-similarities. This is one of the reasons why they are checked separately.

The approach of the total path cleaning procedure could be to find the average of all
these segments that cause self-similarity and already replace them by their averages. But
it was preferred just to split the path in two paths without self-similarities (nor self-

SYSTEM ANALYSIS AND DESIGN

34

intersections) and let the average of similar segments to be done in a later averaging
process.

3.1.5 Cleaning combinations
As it was said before, the basic path cleaning is only interesting for input data cleaning
because the simple path cleaning has the only constraint from the basic path cleaning that
is of interest for already constructed paths, even after modifications due to future
processes.

However, the general and total path cleanings have additional constraints (that do not
belong to the basic path cleaning) that could be usefull for already constructed paths.
These additional constraints could be combined to the simple path cleaning for creating
other types of cleaning for already constructed paths, but these types are not considered in
this project.

SYSTEM ANALYSIS AND DESIGN

35

3.2 Similarity Detection process
One of the main objectives of this project is to manage inaccurate information (liable to
error margins) to create a concise map from it. It is tried to avoid confusing situations that
make a good data management difficult, e.g. several shuffled lines on the map that should
represent the same road.

Sometimes two paths or path fragments want to represent the same trajectory, and we
would like to replace them by a unique substitute path or path fragment. For that, it is
necessary to detect when these situations occur.

Here we are not going to care about path fragments yet because in this process we just
want to detect and manage pairs of paths that are entirely similar (path similarity is going
to be defined soon), preparing them for the next path averaging process. However, path
fragments are going to be considered later in the fragment averaging process, and these
fragments can be managed as if they were complete independent paths. But now, let us
just to care about entire paths.

Resuming it, the goal of this process is to detect those paths that try to entirely represent
the same trajectory and to manage them before the next path averaging process.

The next process of path averaging should be applied for those detected similar paths, for
replacing them in a unique one. If we just work with clean paths, it is much easier to
achieve similarity detections. If the simple or basic cleaning was applied, we are not
going to have useless data to work with, and if the general cleaning and total cleaning
were applied we shouldn’t care about immediate returns, self-similarities, nor self-
intersections anymore. Next we are going to define when paths are considered similar.

3.2.1 Path similarity
Path similarity is a condition where two different paths want to represent the same single
trajectory and then they could be replaced by just one path. Many definitions of similarity
are possible; some of them will be introduced is this subchapter and their advantages
and/or disadvantages will be discussed. Their implementations may allow further
concepts to be added.

There are two interesting similarity definitions that have been analyzed initially. In the
first one, path orientations are not taken in account and we just care about path
proximities. In the second definition, it is not enough one path to be completely close to
the other one but the paths also have to keep similar orientations during all their
trajectories.

SYSTEM ANALYSIS AND DESIGN

36

3.2.1.1 Distance-similarity
The first definition for similar paths was: “if every vertex from both paths is near to some
point from the other path, then these two paths are similar”. This is the concept used for
the created terms distance-similarity and similar paths.

Later on, it was found some situations where every point from a path is near to another
path but we didn’t want to consider them similar paths, because their trajectories were
different. For instance, two mobile objects (one in each of these paths) beginning their
trajectories at near path endpoints (at the same start time) would be in very distant
positions after some time interval, even if they always had the same speed. A figure
illustrating this situation can be found in the subchapter for oriented distance-similarity
(figure 26).

Therefore, other concepts are necessary not just for checking the proximity of two paths
but also for checking their approximated orientations during their complete trajectories.
Then, the terms oriented distance-similarity and similar oriented paths were created, but
they are going to be better defined later. Now we are going to define formally the simple
distance similarity concept.

Distance-similarity:

Let say we have two different paths Px and Py. They are said to have distance-similarity
if they fill the following conditions:

• Every vertex x

ip is close enough10 to a point pa that belongs to Py.

• Every vertex y
jp is close enough to a point pb that belongs to Px.

Let us look at some examples to understand these conditions easily. The paths from the
example A of the figure 24 are similar, while the paths from the example B of the same
figure are not similar if we use the prior distance-similarity definition. The PSD distance
(path similarity distance) is being taken in account to judge if each vertex is close enough
to some point from the other path. In these figures, the red and green lines represent the
smallest distance from path vertices to the other path. At the example B, the similarity
fails because, even though all the vertices from the blue path are close enough to the
black path, two vertices from the black path are not close enough to the blue path (the
smallest distance is greater than the PSD distance).

3.2.1.2 Path similarity using polygon areas

It also was thought to use polygon areas to check similarity between two paths: “If the
areas of all the polygons formed by path fragments between consecutive intersection

10 Remarks: Two points are close enough if the distance between them is not greater than PSD, and a point
belongs to a path when it belongs to a segment defined by consecutive vertices of the path.

SYSTEM ANALYSIS AND DESIGN

37

points are considerably small, then the paths are similar”. But this concept did not work
always. In the figure 25, we can see a situation where such a polygon area could be small
but the distance between some vertices and the other path could be quite considerable.
Whereas the prior definition keeps working in this situation and would not accept the
similarity.

Figure 24. There is distance-similarity between the paths of the example A (left figures) but the distance-similarity
fails in the example B (right figures). In the lowermost figures, red lines represent the smallest distance from vertices of

the blue path to some point from the black path and green lines represent the smallest distances from vertices of the
black path to some point from the blue path. The PSD distance is used to judge the similarity.

Figure 25. The similarity should be denied in this example, but the method using polygon areas doesn’t work for this
situation. Vertex-to-path distance is a better tool to judge similarity than polygon area is.

SYSTEM ANALYSIS AND DESIGN

38

3.2.1.3 Oriented Distance-similarity
In the next figure 26, all the vertices from a path are close enough to the other path, so
they have distance-similarity. However, the prior similarity definition may be not enough
for judging similar trajectories in some situations. In this figure, for example, if two
mobile objects begin the trajectory at near origin points and travel the same distance, they
might be in very distant positions. Hence, we begin to understand the importance of path
orientations for comparisons, and we need another concept for oriented similarity
comparisons.

Figure 26. The similarity between the black and the blue paths should be denied in this example if we care about the
path orientations and constant trajectory similarity, but the similarity is going to be accepted if we just use the simple

distance-similarity concept.

To introduce the concept of oriented distance-similarity, we first have to introduce other
concepts that were not necessary for the prior distance-similarity due to the definition
simplicity.

3.2.1.3.1 Oriented distance-similarity by using approximation points:
For two paths to have oriented distance-similarity they have to follow the same distance-
similarity conditions mentioned before, but one more condition is added for this new
concept. Thus, it is necessary to introduce the new term for ‘approximation fragments’.
When two paths are said to be similar, each of their vertices should have approximation
fragments in the other path. Let us to define this new term in a formal way:

Given two paths Px and Py, the approximation fragment of a vertex x

ip (from the path Px)

is every fragment y
af (from the other path Py) where all its points are close enough

to x
ip and points immediately after or before y

af (whether they exist) aren’t close enough

to x
ip (this means that the approximation fragment of a vertex should include every

consecutive points that are close enough to its correspondent vertex). A simple example
is illustrated in the figure 27.

SYSTEM ANALYSIS AND DESIGN

39

Figure 27. Finding the approximation fragment of a vertex x

ip from the path Px with respect to another path Py (left

figure): In the right figure, the red fragment is an approximation fragment of the only vertex in this figure. The points
immediately after and before the fragment aren’t close enough to the vertex.

If a vertex doesn’t have any approximation fragment with respect to another path, then
they aren’t similar paths because it fails even the condition for simple distance-similarity.
But in case that the condition for distance-similarity is accomplished, the vertex must
have one and perhaps more than one approximation fragment, as we can observe in the
figure 28, so we have to consider this possibility.

Figure 28. A vertex on a path might have more than one approximation fragment on the other path, even though self-
similarities or immediate returns don’t occur. This figure induces us to believe there is self-similarity in this example

but it depends of the relativity between the distances on this figure and the PSD distance. The roads represented by the
upper and the lower black path fragments might be parallel streets for instance.

The figure above only illustrates an example with two approximation fragments, but a
vertex can have even more approximation fragments like these. However, only one of
these approximation fragments is going to be chosen for each vertex when defining the
concept of oriented distance-similarity. The chosen one is not necessarily the
approximation fragment that is the closest one to an analyzed vertex, but the first
approximation fragment (with respect to its path orientation) will be used to guarantee the
similarity of the orientations.

The ‘first approximation fragment’ means the one that hast points before any point from
another approximation fragment from a same set. What we really want to find for each
vertex is a unique point of comparison on the other path, and this point is going to belong

SYSTEM ANALYSIS AND DESIGN

40

to the first approximation fragment of the vertex. This point of comparison will be called
prime approximation point, but first we need to define the concept of approximation
point.

An approximation point ps of a vertex x

ip is a point from an approximation fragment y
af

of x
ip that has the closest distance to this vertex. Every approximation fragment has at

least one approximation point.

Again, the same approximation fragment y

af might have more than one approximation

point: these points from y
af have the same distance to the vertex x

ip but these distances are

equal and they are the closest distance from y
af one to x

ip .

Again, we have to choose just one of the approximation points for each vertex, because
just one of them is enough for similarity comparisons. We are going to choose the first
approximation point (with respect to the path orientation) and this point is going to be
called the prime approximation point. Formally talking, the prime approximation point of
a vertex x

ip is the first approximation point from its first approximation fragment of x
ip

with respect to the orientation of a reference path Py. It is illustrated in the figure 29.

Figure 29. A vertex might have more than one approximation point from the same approximation fragment. In the left
figure, the approximation fragment for the blue vertex is just defined, and in the right figure we can notice that the blue

vertex has two points from this approximation fragment that have the closest distance to such vertex (two
approximation points). The first of them (considering path orientations from left to right) is chosen to be the prime

approximation point of the blue vertex (supposing that it has no prior approximation fragment).

Now that we have defined a prime approximation point and it is the only point for each
vertex to be used for comparisons, we can finally define the conditions for oriented
distance-similarities. However, this next definition got deprecated and the reason will be
explained soon.

Deprecated oriented distance-similarity:

Let say we have two different paths x

m
xx

x pppP ,,, 10 �= and y
n

yy
y pppP ,,, 10 �= . They are

said to have oriented distance-similarity if they fill the following three conditions:

• Px and Py must have (simple) distance-similarity, thus every vertex from a path must

have its prime approximation point on the other path.

SYSTEM ANALYSIS AND DESIGN

41

• For all i, where i is the index of an existing vertex from the path Px, the prime
approximation point of the vertex x

ip is not before the prime approximation point of

the prior vertex x
ip 1− .

• For all i, where i is the index of an existing vertex from the path Py, the prime

approximation point of the vertex y
ip is not before the prime approximation point of

the prior vertex y
ip 1− .

In other words, every vertex from a path must be close enough to some point from
another similar path, either they are oriented or not, but in an oriented distance-similarity,
the comparison point for a vertex(prime approximation point) must not be before the
comparison point for the prior vertex. It will guarantee a strict orientation similarity.

We can notice that it if we apply this oriented distance-similarity definition for the
anterior example of the figure 26 (now illustrated in the figure 30 considering path
orientations) the similarity will be denied, as we expected it to be because of different
orientations in some considerable fragment. In a given moment of these trajectories, a
vertex (from any of these paths) will have a prime approximation point that is before the
prime approximation point of its prior vertex, so the oriented distance-similarity will fail.

Figure 30. The same example that didn’t fail for the simple distance-similarity fails for the oriented distance-
similarity. When finding the prime approximation point of vertices, it does not follow every condition for oriented

distance-similarity. The first failure (for each path) happens at a vertex marked with an exclamation sign.

3.2.1.3.2 Oriented distance-similarity by using approximation sets:
The prior concept of oriented distance-similarity by using approximation points is strong
and quite hard to fail. On the other hand, this concept would be very hard to implement.
Imagine that for each vertex of each path we would have to find its first approximation
fragment for then calculating its prime approximation point, and only after that, the
comparison for similarity would be applied.

SYSTEM ANALYSIS AND DESIGN

42

Just the work for finding the first approximation fragment is sufficiently hard! Try to
realize the needed calculations for determining the exact point where such fragment ends
and begins. It would coast a lot.

Hence, it was thought to use ‘sets of near segments’ instead of approximation fragments
because we don’t need to calculate the limits of segments once they are already well
defined by their endpoints (that are vertices on the path). Then we have to define new
concepts for a simpler similarity definition, but these new concepts are very simple and
all they can be defined in a single paragraph by using prior defined concepts.

‘An approximation segment of a vertex’ is a segment from another path that has points
close enough to such vertex. We are going to define the ‘approximation set of a vertex’
as the first set of its consecutive approximation segments on another path. The vertex that
has been analyzed for defining such set of segments is called the generator vertex of the
approximation set. The next figure illustrates it.

Figure 31. Any approximation segment encloses part of an approximation fragment for a given vertex. The example A
shows to us that often the limit points of an approximation fragment (red line) are not necessarily well defined vertices,

but in the example B we can see that approximation sets are always well defined by vertices because they are sets of
approximation segments. In the example B we have more than one set (up and down) for one generator vertex, but

again only the first of these sets will be chosen as its approximation set.

Another advantage during the implementation of this new similarity concept to be
explained is that we don’t need to check distances from vertices of a path Px to another
path Py and then to check distances of vertices from Py to the path Px. Only one of these
checks is necessary.

For checking complete similarity, we are going to compare the approximation set for
every vertex (from only one path) with the approximation set for its next vertex. Next, we
are going to mention the possible situations of similarity gap and explain how to ensure
these situations won’t occur (guaranteeing oriented distance-similarity) for each case:

1) An approximation set may have gaps of similarity among their segments (leftmost

example in the figure 32) and a way for controlling that it doesn’t occur is checking

SYSTEM ANALYSIS AND DESIGN

43

every set vertex that links set segments. All these vertices must be close enough to the
generator vertex of their approximation set for ensuring continuity of similarity

2) Whether two consecutive vertices are distant, their approximation sets on the other

path may have gaps of similarity between them (rightmost example in the figure 32)
and a way for controlling that it doesn’t occur is checking every vertex between these
two approximation sets (including their endpoints).

Figure 32. The leftmost example illustrates a generator vertex and all the consecutive segments of its unique

approximation set, but this set has a gap of similarity due to a distant vertex. The rightmost example illustrates two
consecutive generator vertices forming two approximation sets on the other path with a similarity gap between them,

due to only one distant vertex.

3) Points from or before the first segment of the first approximation set of a path may

have gaps of similarity. These gaps weren’t checked here yet because they aren’t in
nor between approximation sets (figure 33). The same happens for possible gaps from
or after the last segment of the last approximation segment of a path. The path
endpoints must be checked to ensure that there is no similarity gap.

Figure 33. Similarity gap at the beginning and end of paths use to be very frequent, so, path endpoints have to be
checked. One (right example) or more (left example) vertices from the same path extremity can fail. Only the vertices

from one path (the blue one) would not fail because they have approximation sets on the other path.

4) We already checked every condition for distance-similarity, but nothing ensures yet

that it is oriented. The way for ensuring similar orientation is controlling the order of
the computed approximation sets. It is done by checking that any approximation set
begins before the first endpoint of its next approximation set, as well as it ends before
the last endpoint of its next approximation set11.

11 Remark: Each generator vertex has only one approximation set defined by its first set of consecutive
approximation segments.

SYSTEM ANALYSIS AND DESIGN

44

The new definition for oriented distance-similarity is going to be explained next, having
its five conditions in the same order that they have been explained before.

Oriented distance-similarity:

Let say we have two different paths x

m
xx

x pppP ,,, 10 �= and y
n

yy
y pppP ,,, 10 �= . They are

said to have oriented distance-similarity if they fill the following conditions:

• Every vertex from Px must have one approximation set (with at least one

approximation segment in each).

• Every vertex linking segments of any approximation set must be close enough to its
generator vertex.

• For all i, where i is the index of an existing element from the path Px excepting the
last one, if the last vertex yp

�
from the approximation set generated by a generator

vertex x
ip is before or the same first vertex y

fp from the approximation set of the next

generator vertex x
ip 1+ , then all the vertices from Py between the vertices yp

�
and y

fp
(including themselves) must be close enough to some point from the segment formed
by the generator vertices x

ip and x
ip 1+ .

• All vertices from Py before the first approximation set endpoint and after the last

approximation set endpoint for generator vertices from the path Px have to be close
enough to some point from Px.

• For all i, where i is the index of an existing element from the path Px excepting the
last one, the first vertex from the approximation set for a generator vertex x

ip must be

before the first segment from the next approximation set generated by x
ip 1+ , and the

last vertex from the approximation set for a generator vertex x
ip must be before the

last vertex from the next approximation set generated by x
ip 1+ .

3.2.2 Detecting similarity
Now we would like to gather all those paths that have oriented distance-similarity
between them. We want to create sets of similar oriented paths for replacing later each of
these sets by a unique substitute path. It would save a lot of memory and future
processing time, but a new question arises again.

“What if we have two paths that contain exactly the same trajectory but their
origins/destinations is the only difference? Should they belong to the same set?”

SYSTEM ANALYSIS AND DESIGN

45

The answer is simple: Yes, they should. As we have said before, orientation is something
abstract that we can define according to our convenience. In the similarity detection
process we don’t care about origins and destinations and we might want to swap them.

Here we don’t use orientations for knowing from where to where two mobile objects
went, but we use orientations for checking if they used exactly the same real path that
links these places, independently of the trajectory start or end. So, we can perfectly
redefine which endpoint is going to be the origin and which endpoint is going to be the
destination of a path for further comparisons. It is done by reversing the order of a path
vertex list.

Explaining it in one paragraph: “If a path Px from a set S (of similar oriented paths) has
no oriented distance-similarity to a path Py but it has to its reverse path Prev y, we are
going to include Prev y to the set S and we are going to substitute Py by Prev y during all this
comparison procedure and during the further path averaging processes for similar
oriented paths”.

The first thing that must be examined for checking if two paths are similar or not are their
endpoints, because initially we expect similar paths to have similar endpoints.

3.2.2.1 Tolerance for path extremities
We would expect two mobile objects that went from the same place of origin to the same
place of destination using the same trajectory to have oriented distance-similarity. But we
have to consider some possible similarity denials at the beginning and/or end of these
paths that should be similar oriented paths.

The first and very common of these similarity failures may happen due to a GPS-receiver
delay for receiving its first satellite signals. Of course that this time can vary from system
to system. Moreover, this is not the only factor that would influence in initial or final
differences of two (paths that should be) similar oriented paths. Other factors might be
small differences between the starting points (e.g. different car positions in a parking
zone), the initial mobile object speed, the system error margin, etc.

Due to these possible factors, we must be tolerant with respect to path similarity during
comparisons, but only at path extremities because we don’t have reasons to tolerate
similarity failures at the middle of path trajectories. An example of unequal extremities of
similar oriented paths is illustrated in the figure 34, and it also shows the tolerance that
should happen for their similarity comparisons.

Another program constant is going to be needed for defining how much length we can
accept as tolerable path extremities, and it may vary from system to system as well as the
factors that produce this problem. The used constant is called TLE (Tolerable Length for
Extremities) and an exception is going to be considered during comparisons for finding
similar oriented paths.

SYSTEM ANALYSIS AND DESIGN

46

Figure 34. Two similar paths (red and blue lines) that begin in different places of the same parking zone. At the left

example, they have different extremities but we would like them to be considered as similar oriented paths. At the right
example, just the different extremities were tolerated making the oriented similarity possible.

Exception for path similarity comparisons:

When comparing the similarity between two pats Px and Py, if some point pa from the
path Px is not close enough to the other path Py but the length (along the path Px) from pa
to some Px endpoint is lower than TLE and pa is before any other point that is close
enough to Py, we could consider that pa does not exist ‘for this similarity comparison’
between Px and Py.

This exception solves the problem for unequal extremities of similar paths, but now there
is a new problem for applying this exception. Let us to explain it using a new term TLE
range as the set of initial segments and sub-segments of a path that are not after the point
whose length (along the path) to its origin vertex is equal to TLE (as well as for the set of
final segments and sub-segments of a path that are not before the point whose length to
its destination vertex is equal to TLE). We are going to explain this problem just for the
initial extremities because then the explanation for final extremities can be induced.

It is easy to work with segments and vertices from a path but not with other path points.
Let say that the last point p� from the TLE range for a path extremity is in the same
segment than the first path similarity point pi is. How would we know if pi belongs to the
TLE range or not?

There is only one way for knowing it: computing the points p� and pi and comparing
which point is before the other. If p� is before pi then pi does not belong to the range,
otherwise it does belong. Sometimes this problem seems to be insignificant, but
considering that the segment containing p� and pi can be quite long then it becomes
significant, so these points must be computed.

To compute p� is quite simple by measuring the TLE length from the path origin to some
point of the respective segment containing p�. But… how to compute the first similarity
point pi in the segment? This is the problem.

Many ideas were analyzed for computing the first/final similarity points and all they had
advantages and disadvantages. Again, we are going to explain the ideas for computing
just the first similarity points in initial extremities, because solutions for computing last

SYSTEM ANALYSIS AND DESIGN

47

similarity points in final extremities can be induced after it. The best ideas are going to be
explained below.

• The exact first similarity point:

This is the most accurate solution but the hardest one to be reached. It is not impossible to
find the exact path points where the first similarity happens with respect to another path,
but we would need second order equations for calculating such points and the needed
equations are not short at all. Therefore it was preferred to find approximated points
instead of the exact first similarity points.

The points that should be computed are illustrated in the figure for the next solution, and
we can have a basic notion of the second order equation that we would need for
computing their positions (considering that the only information we have are the position
of the segment vertices).

• The first vertices from the first related segments:

Related segments are pairs of segments of different paths that have at least one point from
each segment that are close enough to each other. This solution just finds the first related
segment of each path and considers the first vertex of each segment as the first similarity
point for the correspondent path.

This is the easiest solution for determining some point to be taken as the first similarity
point; on the other hand this is the only advantage of this idea, and not a good solution for
many common situations. This approximation could be quite bad, especially when the
considered segments are long. The next figure illustrates a possible bad approximation.

Figure 35. The green area represents a similarity area where every internal point is close enough to both paths. The
green points represent the first similarity point for each path. We can notice that these green points might be quite
distant from the first vertex of their segments. The leftmost segments of this figure are the first related segments.

SYSTEM ANALYSIS AND DESIGN

48

• The closest points from the first related segments:

It was taken in account that it is not hard to find the closest points between two given
segments, so the considered first similarity points for two paths could be the closest
points between their first related segments.

For some situations this solution works perfectly, but for other situations it may cause a
considerable accuracy loss as we can observe in the next explained figure.

Figure 36 The green points here represent the closest points between the first related segments. Sometimes these green
points are strategic for beginning an average process, but sometimes they can be quite distant to the real start of the

similarity and a lot of necessary path averaging would be avoided.

• Approximated first similarity point:

This solution was the best one because it finds the balance between computability and
accuracy. It doesn’t try to use hard calculations for computing exact points and it does not
try to guess the best approximation point (like previous ideas did).

For finding the first similarity point for a segment using this solution, we divide the
segment into two sub-segments and choose one of its halves for continuing the procedure.
The chosen half is the one containing the first similarity point and the other half is
discarded. We continue this procedure until the remaining half is quite short, and then the
distance between its middle and the first similarity point cannot be considerable.

Even if we didn’t use hard calculations for it, we could compute a nice approximation for
the wanted point. The only question is how to know which sub-segment half contains the
first similarity point. It is not difficult to find out: If the middle of the sub-segment is not
close enough to the other reference segment, it didn’t reach the similarity area yet then
the second half must contain the first similarity point, otherwise the first half already
reached the similarity area then the first similarity point must be contained in the first
sub-segment half. The first and second sub-segment halves are being considered with
respect to its path orientation.

SYSTEM ANALYSIS AND DESIGN

49

Figure 37. Left: In this example we would like to find the first similarity point for the red segment. Middle: The black

transversal lines represent the middle of remaining sub-segments and the arrows represent the choice of a particular
half, the other half is discarded. Right: Halves were chosen until the last sub-segment middle point (green point) is

quite approximated to the first similarity point of the red segment.

Once we have defined how to compute the first and last similarity point for two paths, we
can determine if they are similar oriented paths or not but tolerating possible initial
and/or final undesired casualties happened in their extremities. The tolerated part of path
extremities are just going to be ignored and they are not going to be part of future
processes like the path averaging process.

3.2.3 Building the map graph
The process of similarity detection only cares about searching for similar paths, but it is
used for managing these paths for further processes. A map graph is an excellent data
structure for ordering the paths according to their similarities. The graph nodes would
represent paths, and the edges (called ‘links’ in this project) would represent the
similarities between them. The linked paths (or linked nodes) are going to be sets of paths
that we would like to replace by a substitute or average path.

However, we may have situations where we have a set of shuffled similar paths to be
replaced, but we don’t know if we want to replace all them by just one average path
because, even though every path is similar to another one in a node set, not all paths from
the set have to be similar. We have this example in the upper left example at figure 38,
where the light blue, green and yellow paths are similar; the black path is also similar to
the yellow one, but not to the other paths. Then we should want an average path for the
light blue, green and yellow lines and another average path for the black and yellow lines.

For solving this problem, we would have not only to apply the oriented similarity
detection to every pair of paths and to link the nodes of similar ones, but we would have
also to find node subsets where each node from the subset is linked to every other node
from the same subset. Moreover, these subsets should be maximal subsets; this means
they should not be subsets of another set where all nodes are linked [GM]. For instance,
in the lower left figure, Si = {P1 , P2} cannot be one of these subsets because it is a
subset of Sj = {P1 , P2 , P3} where every node is linked too (then Si is not maximal).

We could use a ‘maximal clique algorithm’ to find these maximal sets. A clique in an
indirect graph is a subset of vertices from such graph, each pair of which is connected by
an edge.

SYSTEM ANALYSIS AND DESIGN

50

Figure 38. Left: A graph for four (upper) coloured paths. The black path P4 only is similar to the yellow path P3, thus

this graph is not a clique. Right: A relatively small graph illustrating how complex to find maximal cliques can be.

But this is a hard problem to solve, especially because the ‘maximal clique problem’ is a
NP-complete problem (no polynomial time). Suppose we have a considerable quantity of
paths and they create many graph subsets like the right example in the figure above. First
we have to compare every pair of paths to form such sets, after we have to split these sets
into maximal clique sets using the NP-complete ‘maximal clique algorithm’, for then
finding their averages. How much time would it cost to us? The ‘maximal clique
problem’ is better explained in the chapter 36.5 of the book “Introduction to Algorithms”
of Thomas Cormen et.at [IA].

Then it was decided to find the average path for each maximal set of linked nodes
independently if they are cliques or not (this means that all nodes of a set have to be
linked but not necessarily with direct links). Paths of a maximal set will be compared,
pair by pair, and a pair of similar nodes (or paths) will be replaced by a new node for the
average path of this pair. Therefore, the future path averaging process only needs to be
applied for pairs of paths.

Probably it would be much more accurate to use maximal cliques, but it would cost us a
lot of extra time and programming confusions. Remember that similarity will be applied
not only for paths but also for path fragments! How many pair of similar path fragments
could exist?

“To find a substitute path for a maximal set even if the set is not a clique” does not mean
that “the similarity links are going to be ignored when choosing the sequence of path
pairs to be averaged”. We are never going to average paths of two nodes that are not
linked, but we are going to replace each pair of linked nodes by a new substitute path
node, always keeping those links to the new node that were referent to the prior
substituted nodes (figure 39).

SYSTEM ANALYSIS AND DESIGN

51

Figure 39. The yellow nodes 2 and 3 are replaced by a substitute node 5, but links from the node 5 to the nodes 1 and 4

exists due to the prior links from the substituted node 2 to the node 1 and from the substituted node 3 to the node 4.

But it may happen that a new substitute node is not similar to its linked nodes, because
not all initial nodes (paths) were similar: the initial set was not a clique. In these
controversial cases, a choice has to be done for substitutions of non-similar nodes: One
node of the pair will remain as substitute and the other one will be discarded (because it
makes no sence to average non-similar paths).

Path weights are going to be used for deciding these choices. It was decided to add
weight variables to each path instance for knowing how much we can trust in it. The more
weight a path has the more path averages it results from. This situation will be better
explained and discussed in the next chapter (for situations where path averaging
procedures fail and a substitute path has to be returned as result).

Another suggestion is to use weight for nodes in this procedure instead of path weights
whether we don’t want any interference from the path averaging process while building a
map graph.

SYSTEM ANALYSIS AND DESIGN

52

3.3 Path averaging process
This is the most elaborated process of this project and one of the most fundamental ones.
Until now, we had processes for avoiding unnecessary data and for managing the system.
The aim of this new process is to avoid map inconsistence. This is the part of the system
where each pair of similar paths is going to be studied for computing a unique substitute
path that better replace both of them.

Imagine situations where monitored mobile objects reuse several times roads that have
already been trailed. Due to the error margin, we are going to have very similar but not
equal paths for displaying the map. If we just include every received path to the map
without replacing similarities, we might have a lot of unnecessary shuffled lines. Shuffled
lines cause a confusing map and a lot of unnecessary data to manage.

To fight this undesired situation means to convert each pair of shuffled similar paths in a
concise one by averaging them but always reaching a good accuracy. Converting two
similar paths in a set of polygons makes much easier to obtain a path average from them,
because polygons have well defined areas where to compute a resulting path in. But
polygons to be used in this context have to be defined next because they have special
properties:

A polygon is geometric figure surrounding an area limited by its boundaries. These
boundaries are defined by two path fragments, where each fragment has at least one
segment and both fragments have common origin and destination points12 but no other
common point.

Figure 40. Left: Two similar paths forming one polygon. Actually, three polygons can be formed from this example.
Right: Only one polygon where the red points are its origin and destination points. These points are the only common

ones for the two fragments that form a polygon.

Normally (even similar) paths have no common origin or destination points at their
beginning or end, but we could link their closer endpoints with a segment (for closing the
polygon) and consider the middle segment point as the origin/destination for the polygon
and as the common point for both fragments.

Similar paths may have many intersections, creating many polygons, thus we have to
search for intersections along the paths. It might coast a considerable time whether the
similar paths are long, and it might be very expensive for the program whether this search
has to be done for several pairs of paths.

12 Remark: We can decide which point is the origin and which point is the destination of each fragment

according to our convenience. These points just have to be the first or last vertices from their fragments.

SYSTEM ANALYSIS AND DESIGN

53

For instance, let suppose we have a monitored car traveling on international motorways
during 5 hours, with a GPS-receiver saving information from a satellite each second. If
there are no points to be discarded during a cleaning process, the path would have 18.000
vertices. If we use the simplest algorithm for detecting intersections among two paths like
in this example, we would need about 18.0002 =324.000.000 segment comparisons for
searching common (intersection) points.

There are other algorithms that perform the same search in a better time. For instance,
there is an algorithm for a procedure that performs this search in a O(n log n) time, where
n is the number of path segments. This algorithm can be found in the chapter 35.2 of the
book ‘Introduction to Algorithms’ of Thomas H. Cormen [IA]. The expended time for
18.000 * log 18.000 = 76.595 comparisons is much more reasonable than for 324.000.000
comparisons for the simplest algorithm. Anyway, there are some not solved problems in
the book algorithm that could be necessary to and can be performed, e.g. dealing with
vertical segments, finding points intersected by more than two segments.

Another suggestion for reducing the processing time, not just for intersections but also for
similarity detections, is to perform a map grid for the pathfinder system. Only path
segments belonging to the same grid cell can have intersections and only path segments
belonging to the same or neighbor grid cells can be similar if cell sides are not smaller
than the PSD distance. Hence, not every segment pair needs to be compared. On the other
hand, an entire data structure would have to be built for the grid, where each grid cell
would have to contain information about every segment or sub-segment it contains as
well as each path segment will have to be linked to one or more grid cells.

Figure 41. A map grid, with 4 rows and 4 columns, for helping the detection of path intersections or path similarities.

Here the paths are quite accurate, but they use to be less accurate and divided in consecutive segments.

Nonetheless, we are not going to perform a map grid and we are going to use the simplest
algorithm in this project, because its objective is not to perform optimal algorithms in
time but to find out good solutions for the system requirements. Further attempts for
optimal systems can be possible by replacing some program methods, like the method for

SYSTEM ANALYSIS AND DESIGN

54

computing path intersections. We either will not care much about self-intersections here,
once they should be solved during the cleaning process.

3.3.1 Polygon average
After the polygons (formed by two given paths) have been defined, we have to decide
how to compute their averages. We are calling polygon average to a fragment that goes
from the polygon origin to the polygon destination in a balanced way between both
polygon fragments.

There are many different techniques for computing the average of a polygon. Actually we
may have different polygon averages resulting from each technique. So, we have to
consider the accuracy-computability relationship once more for choosing the technique to
be used for polygon averages in this project. Each studied technique is going to be
discussed next.

3.3.1.1 Polygon exact averaging
The first idea was to find a brilliant polygon average that would be the most centered line
between its fragments, going from the common origin to the common destination, cutting
their interior area in two equal sub-areas.

While this solution where being studied, a lot of problems arose. The main problem was
how to compute centered segments for some polygon areas. It seems to be quite simple
for some polygons like triangles or lozenges, but it may be quite complex for other weird
polygons containing many disproportional side lengths and directions. Sometimes it
could be hard even for humans to decide where the polygon center line should be.

Other non-mathematical decisions began to arise and then, some questions became
important: Is it necessary to have a so accurate average path that divides the polygon
interior in exactly equal areas using the most possible centered line? Does the result of
these operations compensate their analysis complexity and the possible expensive
processing time?

We have to take in account that we are working with data containing possible error
margin and we also may have considerable intervals between data receptions, thus the
original polygon itself don’t use to be quite accurate. Due to error margin context,
sometimes it might happen that exact fragment averages would get less accurate than an
original fragment were. This means we could expend several time with complex
mathematical procedures to have perfect average paths that actually are not very exact.
Therefore, it was decided to think about another less complex technique for a good
solution. So, the next studied techniques do not care about dividing the polygon in exact
equal areas.

SYSTEM ANALYSIS AND DESIGN

55

3.3.1.2 Polygon averaging by using triangulation
There is another technique where polygons would be divided in triangles, and then we
could calculate the in-center (median intersection point) of all these triangles for defining
the polygon average.

But, is it easy to find a rule for dividing a polygon in triangles? There are many
possibilities for dividing them. The more sides a polygon has the more possible
triangulations exist for this polygon, even if we avoid to connect points from same
original polygon fragments and we do not use the origin nor destination point (figure 42).

Figure 42. Left: A Polygon formed by two fragments that have common origin and destination (red) points. Right:

Light blue lines show how many internal triangles may be formed for this polygon, even though they do not reach the
origin nor destination point, each light blue line connects only vertices from different fragments, and they do not cross

any boundary.

If we divide the polygon using different triangulations, the polygon average would
change considerably. Therefore, it was necessary to choose one of many triangulation
techniques.

One of the first found ones while searching for triangulation techniques was the Fast
Industrial-Strength triangulation [FIST]. In the next figure we can observe the excellent
job it can perform, but once again we discarded a good technique due to its complexity.
Moreover, we don’t believe to face so complex polygons in this project as the polygon
illustrated in the figure.

Figure 43. A complex polygon triangulated by using the Fast Industrial-Strength triangulation.

SYSTEM ANALYSIS AND DESIGN

56

Another found technique was the Fast Polygon Triangulation based on Seidel’s
Algorithm [FPT], but normally the existing techniques do not follow an important
constraint for our triangulation:

• All formed triangles should be consecutive from the polygon origin to the polygon

destination point.

This constraint is going to be better explained later when applying the technique that does
follow it.

Figure 44. The Fast Polygon Triangulation technique for a polygon with red origin and destination points. This

technique is incomplete and is not going to be explained, because we already can notice that it is not interesting. We
can notice that it doesn’t care about a sequence of consecutive triangles from the origin to the destination point.

Then, it was tried to build an own triangulation technique for this project instead of
searching for existing ones.

3.3.1.3 Polygon averaging by using consecutive triangulation
This is our first created triangulation technique. Its procedure begins at the polygon origin
point and ends at the polygon destination point, trying to ensure the constraint for all
formed triangles to be consecutive. Then, we can compute the internal line of each
triangle for forming the total polygon average.

In this procedure, trips are performed from the origin to the destination point along both
polygon fragments, linking each vertex of a fragment to a vertex of the other one during
their trips, excepting the origin and destination points that must not be linked to any
vertex. The first link must happen for both next vertices of the origin point and the last
link must happen for both prior vertices of the destination point.

All links during the trips are internal triangle sides of the polygon, and these links do not
happen randomly. Every trip is performed by ‘jumping’ from vertex to (next consecutive)
vertex in each fragment, and these jumps must not happen in both fragments at the same
time. Each time a jump is done a link happens between the last reached vertices of both
fragments.

SYSTEM ANALYSIS AND DESIGN

57

Figure 45. The example A shows that triangulations can become very different depending of the used (vertex to vertex)
jumping order. Blue numbers represent these jumping orders. The example B shows that such order must not happen
randomly, not just because we would like to obtain the best triangulation, but because triangles must be completely

inner to the polygon and undesired triangles might happen accidentally (rightmost figure).

The only problem for this technique is to choose the next vertex to jump to. Sometimes it
is not difficult to make a wrong choice and even basic triangulation constraints could be
broken. The figure 45 illustrates these details.

The first imaginable solution is to retrocede in this procedure when wrong choices are
detected for fixing them. However, this solution is quite troublesome and sometimes it
might expend considerable time depending on the choices to fix. Therefore, another
solution was planed and the next technique uses it.

3.3.1.4 Polygon averaging by using convex triangulation
This is the currently used technique for this project. Its result is almost as nice as a
polygon exact average, but it is much simpler. Like the prior one, this technique also uses
triangulation for dividing a polygon in triangles and it computes their inner lines for
defining the polygon average.

These inner lines are just one segment for each triangle. Each of these triangle segments
goes from the middle point of the internal triangle side to the middle point of the other
internal triangle side (only the triangle side that is part of the polygon boundary must not
be used). The inner line formed by these consecutive defined segments tends to form a
nice average.

As we can see in the figure 46, the resulting polygon average use to be nicely distributed
when using middle side points of well-chosen triangles. Moreover, it is very easy to find
middle points of these triangle sides.

SYSTEM ANALYSIS AND DESIGN

58

Figure 46. Fragment averages (blue lines) for a simple polygon (left) and a not very simple polygon (right) computed
by using middle points of triangle sides (light blue lines). The red points represent the polygon origin and destination

point.

The triangulation used here also have the same problems that the triangulation for the
prior technique. The difference is that here we study better the vertices to be chosen
instead of going back when wrong choices are detected. Then we first divide the polygon
in convex sub-polygons and then triangulate them separately. Triangulation for convex
polygons is definitely easier, thus the convex triangulation was the chosen technique to
be used in the path averaging process.

Anyway we still may have problems using this technique. For instance, some polygons
cannot be divided in consecutive convex sub-polygons. But these situations are not very
frequent in this context, and all the problems we might have here do also represent
problems for any prior technique.

Even when it was tried to solve every individual problem, new problems happened each
time. There are infinite possible problems if we consider every possible weird path. But
many of these situations are quite improbable to happen in the context of this project.
Hence, it was decided to solve just those problems considered probable ones.

The possibility of other problems is not ignored, and the program tries to be prepared for
dealing with any unexpected situation. The entire convex triangulation technique will be
better explained during the complete path averaging process to be discussed next.

3.3.2 Path averaging by using convex triangulation
The path averaging process for this project is going to use the convex triangulation
technique for computing the average for path pairs. We have been calling an average
path to one that replaces other similar paths. The goal of this process is to compute an
average path Pavg for two given original paths Px and Py. The path averaging process tries
to keep the balanced shape for both original paths by following two conditions:

- Pavg contains all the intersection points of Px and Py.
- Pavg is always between Px and Py.

SYSTEM ANALYSIS AND DESIGN

59

Resulting paths are not going to be cleaned during this process because the main aim here
is to fight inaccuracy. Path cleanings can be performed later if it gets necessary for
resulting paths from an averaging process.

The path averaging by using convex triangulation is divided in four procedures:

• Main procedure of the path average
• Polygon average procedure
• Sub-polygon definition procedure
• Convex sub-polygon average procedure

Each procedure is going to be explained next.

1) Main procedure outline:

The main procedure for this path averaging process simplifies it by dividing the tasks.
It defines polygons formed by the parameter paths Px and Py (figure below). For that,
it is necessary to define common origin and destination vertices vo and vd for both
paths and to find their intersection points. Then we would have closed polygons,
shaped by these two given paths and divided by intersection points.

Figure 47. The upper Example A illustrates two similar paths to be averaged. The middle example B defines their

intersection points (red) and a common origin and destination (vo and vd). The lower example C illustrates the resulting
polygons defined by their common points.

The next procedure of the path averaging process computes the average of each
individual defined polygon, and then it concatenates the resulting average fragments
(in the same order) of their original polygons for having the final average path. The
‘polygon average procedure’ will be called each time it is wanted to average an
individual polygon.

SYSTEM ANALYSIS AND DESIGN

60

Figure 48. The upper example D illustrates the average of each polygon and the lower example E illustrates the

resulting path average for the original given paths.

2) Polygon average procedure:

Here we only care about one individual polygon formed by two given path fragments
whose origin and destination are common intersection points. This procedure has to
compute an average fragment that goes from the origin point to the destination point
along the inner area of the polygon (without crossing any of its boundaries).

Figure 49. Ome polygon formed by two fragments (fa and fb, one from each initial path). They also have their common
origin and destination point (vo and vd intersection points). An average fragment favg has to be computed as the polygon

average fragment.

The tasks are going to be divided again in this procedure by splitting the given
polygon in sequent convex sub-polygons. It is interesting to work with sub-polygons
because it is possible to trace a straight line from any point to any other point of a
sub-polygon without crossing any boundary, therefore, they are easy to triangulate.
Then, sub-polygons can be divided again without problems. This polygon averaging
process can result in better average fragments due to more interesting task divisions.

Figure 50. The example A illustrates a concave polygon to be split in convex sub-polygons. The example B illustrates
the split performance following the constraints for this procedure. It results in four convex sub-polygons: the red lines

are their common boundaries and the blue points are the middle points of the red lines. Later, these blue points are
going to be considered the origins and destination points for the convex sub-polygons.

SYSTEM ANALYSIS AND DESIGN

61

However, there are many possible strategies to divide a polygon in sub-polygons. It
was chosen a strategy that reaches some constraints needed for a good polygon
partition (figure above). These constraints and their reasons are listed below:

• Every sub-polygon must be convex: Convex sub-polygons are needed for the

triangulation technique used in this process.
• Each sub-polygon must contain at least one vertex from each path to be averaged:

The entire polygon average procedure must have influence from both sides (path
fragments).

• Every vertex from both polygon fragments must be a vertex from some defined
convex sub-polygon: All polygon vertices must be taken in account for the
resulting polygon average.

• The sub-polygons must be consecutive along the original polygon: This means
that every sub-polygon must have a common boundary to the prior and next one
(if they exist), but not to any other sub-polygon. This is because a unique average
line must go from the origin to the destination vertex without any branching.

• Sub-polygons should be as greater as they can, since they follow the prior
constraints, and they must not overlap: Unnecessary polygon splits are avoided, as
well as unnecessary repeating data due to overlapping sub-polygons.

Figure 51. The left example C illustrates a hypothetical average for each convex sub-polygon and the right example D

illustrates all them linked forming the polygon average.

This procedure calls a procedure to define its convex sub-polygons and another
procedure to compute the average of each defined convex sub-polygon. The resulting
fragments of the convex sub-polygons are concatenated as the polygon average
fragments are for forming the resulting average path.

3) Sub-polygon definition procedure:

This procedure receives two convex fragments as parameters. Convex fragment (also
called convex chain or convex vertex list) means a path fragment that would form a
convex polygon whether we link its endpoints by a segment. In the next figure we can
observe two (blue and green) convex chains.

Supposing that a segment links the start points of these chains and another segment
links their end points (whether the points are not the same), we would have a polygon
formed by two convex chains, but the formed polygon might be not convex yet. Both

SYSTEM ANALYSIS AND DESIGN

62

convex chains form individually a convex polygon, but they must form a convex
polygon ‘together’. Therefore, the first step in this procedure is to check if both
chains do form one convex polygon and fix the convex chains if they do not.

Figure 52. The left figure illustrates two convex chains with a common start point and different end points. The right

figure illustrates a convex chain (blue) being fixed for forming a convex sub-polygon with the other (green) convex
chain.

4) Convex sub-polygon average procedure:

This last procedure triangulates a convex sub-polygon (formed by two given convex
chains) in order to obtain its average. The middle point of each internal triangle side
computed for the sub-polygon is going to be a vertex for the sub-polygon average
fragment.

Figure 53. Example A: The convex sub-polygon to be averaged. The blue points are the origin and destination points.
The red points are sub-polygon vertices. Example B: The triangulation of the sub-polygon. Example C: Middle (black)

points of the internal triangle sides are used for the average. Example D: The resulting average fragment.

The algorithms for the four procedures of the complete path averaging process are
going to be better explained with more details and discussed next.

3.3.2.1 Main procedure for the path averaging process
The algorithm of the first procedure for the path averaging process is going to be
explained here. This is the main of four procedures for the entire process and it manages

SYSTEM ANALYSIS AND DESIGN

63

the parameters to be passed to other procedures as well as the returned results for building
the final path average.

At the beginning of this procedure, we have two similar paths Px and Py to work with, and
we want to obtain the path resulting from their average. Actually, this manager procedure
will not compute any average but it will call other procedures for doing it. This manager
procedure will build the final average according to the returned results from other
procedures.

Each step of this algorithm will be explained in details, always trying to offer an easy
comprehension of it. The graphic of the figure 54 is an example of two paths that we wish
to average and it would help to understand the algorithm.

Figure 54. Two similar paths to be averaged: the path Px and the path Py. The black points are vertices of these paths

and the smaller red points just represent the positions where both paths intersect: their intersection points.

Defining a polygon from two initial paths:

As we have said before, we expect to have two paths for this procedure then they need to
be at least unitary paths. A path containing only one vertex is called a unitary path and
this expression is going to be used further in this explanation.

The aim in this procedure is to divide the average job in parts, so we want to obtain
simple polygons to be averaged individually. As we could notice in the last example
figure, two paths don’t use to start and/or end in exact equal positions (or points), thus
normally we have to close the polygons at their extremities.

The initial path points, xp0 and yp0 , probably are not the same, as well as the destination

points x
mp and y

np . But we need both paths to have a common origin and destination points
if we want every polygon to be closed.

We have to calculate a new common origin point po and add it at the beginning of both
paths. The same happens to a new destination point pd at the end of both paths. It is
illustrated in the figure 55. The equations below are going to be used for creating the new
origin and destination points.

SYSTEM ANALYSIS AND DESIGN

64

2
00
yx

o

pp
p

+
=

2

y
n

x
m

d

pp
p

+=

Figure 55. The (left) original paths and the (right colored) simple polygons they form. The (blue) common points were

added to both paths for closing the first (yellow) and last (pink) simple polygons.

We also have to care about unexpected coincidences. If xp0 and yp0 , or x

mp and y
np are the

same points, then unnecessary points should not be added to the paths for closing already
closed polygons. These ‘repeated’ points are going to be ignored.

The last and very improbable coincidences that may happen here is that the computed
common point po and pd might be equal (the same). In such situation, the average path is
going to be a unique average point po = pd, hence this point has to be immediately
returned as the result because we don’t have at least two intersection points that are
necessary to continue this procedure.

Decomposing a polygon in simple polygons:

We want to average each simple polygon individually. For decomposing the original
polygon in simple polygons, it is necessary to compute the intersection points of the paths
Px and Py (red points in the prior figure), because these points define how we should
fragment the original paths in order to split them correctly for obtaining each simple
polygon.

When computing these points, we must consider that the intersection points may happen
in a different order on each path, as it is illustrated in the figure 56. This undesired
situation would cause troubles that make the path averaging process complex (e.g. some
simple polygon might be inside another polygon and they cannot be averaged
individually).

A pair of paths causing this situation will not be averaged but it will be treated as an
‘average error’ to be discussed in the last step of this procedure. It is possible to detect
situations like this by checking the order that the intersection points happen in each path.
This means that in an ordered search a new found intersection point should never be
before the prior found intersection point in any path.

SYSTEM ANALYSIS AND DESIGN

65

Figure 56. Blue vertices and segments of a path and black vertices and segments of another path. If we consider the

(red) intersection points from left to right, they happen in a correct order for the black path but in a wrong order for the
blue path. It causes a simple polygon inside another one.

Fortunately, this situation is not frequent at all because we expected similar oriented
paths. This is the reason why we just consider these situations as errors instead of dealing
with them.

After we have well defined intersection points and they follow a correct order for both
paths, it is time to split both paths in fragments, where each fragment belongs to one and
only one simple polygon.

Each simple polygon should be formed by two fragments: one from each path. Therefore,
each path should have an ordered list of fragments, and the i-th fragment of a list must
form a simple polygon together with the i-th fragment of the other list.

These two lists Lx and Ly, called fragment lists, follow a sub-procedure that ensures two
constraints:

• Each fragment list will contain every fragment (between intersection points) from it

correspondent path (Px or Py).
• Each fragment list will be ordered in the same order as the fragments are in the path.

Averaging simple polygons:

In case that the fragment lists x

k
xx

x fffL ,...,, 10= and y
k

yy
y fffL ,...,, 10= are successfully

created, we can define each existing simple polygon (that now we are going to refer to
them just as polygons). The i-th fragments x

if and y
if of these lists build the i-th polygon

formed by the paths Px and Py. Obviously, both paths are going to have the same number
of fragments because the number of splitting intersection points is common for them.

Each pair of i-th fragments (x

if and y
if) forms a polygon that is sent to the next polygon

averaging procedure. A returned fragment avg
if will be the average of these two sent

fragments (or polygon). Each returned polygon average avg
if is added to the end of a path

SYSTEM ANALYSIS AND DESIGN

66

that will be used to store the result of the whole averaging process13. This resulting path
Pavg is going to be the average path.

Every polygon average is going to be added to the average path, except if some error
happened during procedures called by this step.

Figure 57. The resulting (red line) average for two (black) given paths.

Dealing with errors:

The average path Pavg should be returned as the result of this procedure, except if some
error was detected during it. An error occurrence means that this procedure could not be
completely performed due to some situation that it was not prepared to deal with.

Therefore, it makes no sense to return the average path Pavg if an error happened. What
should be returned then? It is better to return back one of the given paths than to return
nothing as result.

We know that the prior suggested return is not an average, but actually here we try to
discard unnecessary paths and choose a substitute one. Hence, it is a good idea to return
back the path that is better prepared for future averages instead of nothing. We would like
to discard one of both given paths and return the other path that:

• Retains the most elaborated data.
• Would avoid more errors in the future

It was created a path member variable for the first item required above: the path weight.
This variable will inform us how many path averages it results from. Obviously, a path

13 Observation: When a polygon average is added to the average path Pavg, the start point of this new

average fragment avg
if is equal to the end point of the prior fragment avg

if 1−
 , but it should not get repeated

in the resulting path. These repetitions are going to be avoided.

SYSTEM ANALYSIS AND DESIGN

67

will retain the more elaborated data the more times it has been averaged, and the
tendency is a path to be closer to the real path whether its weight is higher. The path
weight also helps us to obtain more accurate results from successful averages. This is
going to be explained later in further procedures.

It was also created a path member variable for the second item required above: the
counter-weight. This variable will inform us how many times this path failed in average
processes with other paths. Obviously, a path having a high counter-weight has some
undesired situation that causes conflicts with other paths, and the tendency is a path to
fail more times in the future whether its counter-weight is higher. Failed averaged
processes would not increase path weights but their counter-weights.

The total weight of a path is the difference between its weigh and counter-weight. The
total weight represents the resulting balance between its data accuracy and its conflictive
factors. For instance, a path might result from many averaging processes but at the same
time have conflicts that would cause failures in any future averaging process, so its
counter-weight should overpass its weight, and a less elaborated path might replace it.

The total weight of given paths is what we will compare to determine which path should
be returned back in case of average failures. The other path is just going to be ignored or
discarded.

3.3.2.2 Polygon averaging procedure
The second procedure of the path averaging process is in charge of one simple polygon
formed by two fragments x

if and y
if passed as parameters (and now we can drop their

sub-index i). Here we have to split the polygon again in disjoint convex sub-polygons
(colored sub-polygons in the figure 58), and we need to define new terms for the
explanation of this procedure.

The aim of this procedure is to build an average fragment f avg that lies completely inside
the polygon built by the fragments f x and f y and goes from the polygon origin to the
polygon destination point, replacing both original fragments.

Since now, the origin and destination points of the polygon are going to be considered as
vertices, like the polygon vertices that they really are. But they keep being special ones:
the origin vertex vo where the average fragment f avg is going to start, and the destination
vertex vd where the average fragment f avg is gong to end14.

14 In the program code, the origin and destination vertices vo and vd keep being called as origin and

destination points po and pd. They are going to be called vertices just in the explanations for facilitating it.

SYSTEM ANALYSIS AND DESIGN

68

Figure 58. Left: A polygon formed by two given path fragments with red origin and destination vertices. Right: The

same polygon split in disjoint convex sub-polygons. As we can notice, in a convex polygon every point from its
boundary can reach any other point from the polygon with an internal straight line.

For splitting a polygon in disjoint convex sub-polygons, we are going to need reference
vertices for both polygon fragments. These reference vertices will be called leader
vertices lv x and lv y and they are used to mark the start limit of a convex sub-polygon.
Their function is going to be better explained during the procedure algorithm.

There are also lists of consecutive vertices for each polygon fragment. These lists are
going to be called convex lists and they use to contain the already mentioned convex
chains. A convex list is a list of consecutive vertices (most of the times a convex chain)
that forms no more than one simple convex polygon when its endpoints are linked (figure
59).

Figure 59. The right chain is a convex list because it forms one convex polygon when its endpoints are linked. The
middle chain also forms (two) convex polygons but not just one. The right chain forms just one polygon but not a

convex one. So, just the left chain is a convex list of vertices.

These special vertex lists for each correspondent polygon fragments are going to be the
convex lists cl x and cl y. Their objective is not to form individual convex sub-polygons by
themselves but to form one together. It is going to be better explained in the following
steps of this procedure algorithm.

Treating initial situations:

At the beginning of this procedure, we automatically add the polygon origin vertex vo to
the average fragment f avg as its first vertex. There is no doubt that this should be the start
point for the polygon average.

If the destination vertex vd is the next vertex of vo in both fragments (there are no other
polygon vertices: f x = f y = {vo, vd}), we don’t have a polygon but just a segment formed

SYSTEM ANALYSIS AND DESIGN

69

by these fragments. Both fragments are the same segment, and the average for just one
segment is the segment itself. Then we just would have to add vd to the end of f avg and
return it as result of this average.

Another possible situation that we should manage at the beginning of this procedure is
the situation where not both but only one fragment (f x or f y) contains just the two vertices
vo and vd, e.g. the polygon is a simple triangle.

This situation would cause problems for further procedures. We are going to understand
them later, but now we can already observe one undesired condition in this example: We
remember that internal triangle sides are needed for performing the polygon average by
using convex triangulation. Do we have internal triangle sides in a simple three-sided
polygon? Definitely we don’t, but we can ‘supply’ it.

A new vertex can be added to the polygon without modifying it. This vertex vavg is the
average point of the fragment containing only two vertices (vo and vd), so vavg will be in
the middle of the segment defined by the origin and destination vertices (figure 60).

Figure 60. The left triangle is formed by two fragment f x and f y, where f x contains only the polygon origin and

destination (blue) vertices vo and vd. No nice average was possible, but (in the example at the middle) an average vertex
vavg was added to the fragment f x between its two endpoints. A nicer (red) triangle average was possible for the right

triangle by allowing the use of internal triangle sides for convex triangulation.

Without the supplied average vertex, the polygon average would be a straight line from
the origin to the destination (blue) vertices, as we will be able to understand further, but
this new average changes this situation permitting a much nicer polygon average.

Defining sub-polygons with convex lists:

We want to work with convex sub-polygons because they are much easier to average.
Hence, we need to obtain them from the original polygons. The convex lists will help us
to define them. But even if each convex list forms a convex sub-polygon individually,
perhaps they don’t form a convex sub-polygon together. We have to study the sub-
polygons formed by convex lists and define new terms to be used by this step.

Let us begin by talking about leader vertices of sub-polygons. The leader vertices
indicate where a new sub-polygon begins, and two casualties about the leader vertices are
interesting (example B of the figure 61). First, at the beginning and only at the beginning
of this polygon averaging procedure the leader vertices lv x and lv y are going to be the

SYSTEM ANALYSIS AND DESIGN

70

same: the origin vertex vo. Second, the leader vertices can never reach the destination
vertex vd, because no sub-polygon starts at the polygon destination.

The leader vertices lv x and lv y define the first internal segment of a sub-polygon
(example A of the figure 61). This segment is very important because it defines the
border between two consecutive sub-polygons: where the prior sub-polygon ends and
another starts. But at the polygon origin the leader vertices are equal, so there is no
segment that they define. However, it is comprehensible that there is no first internal
segment in this situation because there is no prior sub-polygon.

Figure 61. Example A: A sub-polygon formed by two convex lists (cl x and cl y) and all its parts: The leader vertices lv x

and lv y are the first vertex of each correspondent convex list. They define the first internal segment. The last internal
segment is defined by the last vertices of the convex lists. Example B: Here the leader vertices are the same for the first

sub-polygon: the polygon origin vertex. The convex lists can never reach the polygon destination vertex.

Another ‘internal’ segment of a subpolygon is the last internal segment. These internal
segments are called ‘internal’ because they do not belong to the boundaries of the original
polygon but they are into it, and they just limit sub-polygons. The last internal segment
has a fundamental role later, when the convex lists are fixed for forming convex sub-
polygons.

Until now it was not explained how the convex lists are built, and it is what we are going
to do next. We want to build a convex list of consecutive vertices that begins in a
determined point that will be its leader vertex, and we don’t know yet where this list will
end. This means that initially a convex list contains only its leader vertex and we are
going to add more consecutive vertices to it.

Polygon vertices are going to be loaded to the convex lists separately, then we can explain
this step for just one convex list, let say cl x, and the same is going to be done for the other
list cl y.

A convex list cl x must contain all the consecutive vertices of its fragment f x, from a
chosen leader vertex lv x to the last vertex (after it) that forms a point or a segment or a
convex chain. Initially, a convex list must contain the maximal number of consecutive
vertices that it is allowed to: it must not form a concave figure or more than one closed
figure. For that, every formed segment by consecutive vertices of the convex list must
turn to the same side, not considering those segments that do not turn with respect to its

SYSTEM ANALYSIS AND DESIGN

71

prior segment. The turning of the first convex list segment will be considered with respect
to the first internal segment.

There are two exceptions for the convex list to be not maximal, and in the first case the
convex list must contain just its leader vertex. The second case will be explained after.
Let us try to explain the situation for the first case:

Two convex lists are created in the attempt to build a convex sub-polygon, even though
some convex list has to be fixed later by removing its last vertex (example A in the figure
62).

But sometimes the first segment of a convex list and the first internal segment linked to it
form an internal angle α that is greater than 180° (example B of the figure 62). Definitely
this convex list cannot form a convex sub-polygon with any other convex list, thus it has
to be fixed. The first internal segment has a final value that cannot be changed for fixings
because it also belongs to a prior convex sub-polygon that did not offer any problem.
Therefore the first segment of such convex list has to be discarded, and the only way for
doing it is by removing every vertex from this convex list but its first vertex.

Figure 62. The yellow polygons represent prior convex sub-polygons that was already defined. The red dotted

segments are first internal segments (leftmost) and last internal segments (rightmost) after the convex lists have been
fixed. In the example A, it was necessary just to remove one last vertex from the (green) convex list to make the formed

sub-polygon convex. But in the example B only the first green vertex could remain in its convex list for making the
formed sub-polygon convex, because the first internal angle α of its convex list was greater than 180°.

As it has been said, after the convex lists cl x and cl y are defined in this step, sometimes
they still have to be fixed because the sub-polygon that they form is not convex yet. As
we can see in the example A of the figure 62, we have both convex list (green and blue)
but the sub-polygon formed by them is not yet a convex sub-polygon. The green convex
list has to be fixed for obtaining the convex sub-polygon we wish. After fixing it, the last
green vertex does not belong to the convex list anymore.

In the example B of the figure 62, it is illustrated the only possible exception when
building convex lists: Even before fixings, the built convex list will not be maximal due to
this exception. In this example, the first internal segment and the first segment of the
green convex list forms an internal angle α greater than 180°. But no convex sub-polygon
may have an internal angle that is greater than 180°. So, even if there were a nice green
convex list to be defined, only its leader vertex will belong to the fixed list in the situation

SYSTEM ANALYSIS AND DESIGN

72

that its internal angle (defined by the first internal segment and the first convex list
segment) were greater than 180°.

The question now is: how to check if this undesired angle happened? We shall have the
first segment of a convex list and a first internal segment linked to it. They form two
angles like every pair of segments. Both might be the internal one, so: how to check it?

There is an answer for this question but we are going to need the polygon segment that is
prior to the convex list. The answer is in the next paragraph, and it is illustrated in the
figure 63.

Let us consider the first segment of a convex list and a first internal segment linked to it.
If the segment defined by their non-common endpoints intersects the prior segment to the
convex list, then the first internal angle formed by this convex list is greater than 180º,
otherwise it is not.

Figure 63. It is illustrated (in each example) the first segment of a (green) convex list, a (red dotted) first internal

segment linked to it, and the (black) polygon segment that is prior to the convex list. The light blue dotted segment is
defined by the non-common endpoints of the red and the green segments. If the light blue segment intersects the black

segment (right example) then the first internal angle α is greater than 180º, otherwise (left example) it is not.

This exception will never happen for a very first convex list (or first sub-polygons)
because there both leader vertices are the same polygon origin vertex, then there is no
first internal segment for forming angles with.

The first exception for maximal convex lists has been explained and solved, but there is
still a second exception for it: Spiral lists are also undesired. This is what the next
explanation is about.

Actually, a spiral list is not a real exception because it is not a convex chain! But if we
consider just the turnings of consecutive segments when constructing convex lists, we can
fall in this mistake. If we link the endpoints of a spiral we are not going to have just one
simple convex polygon. Therefore, even though all the consecutive segments of a spiral
list turn to the same side, not all these segments are desired. Let us formally define a
spiral list:

A spiral list is a list of vertices that forms at least three consecutive segments that always
turn to the same side or do not turn with respect to the prior one, and if the first and last
vertices of this list are linked then it forms a segment that intersects some of the

SYSTEM ANALYSIS AND DESIGN

73

consecutive list segments or it forms a non-convex polygon (example A of the figure 64).
The segment formed by linking these list endpoints is going to be called its link segment.

For avoiding spiral lists, we must control no ‘spirality’ during the construction of a
convex list by checking one condition each time that a new vertex is added to it: “The
turning from the last list segment to its link segment must turn to the same side than from
its link segment to the first list segment” (examples B and C of the figure 64).

Figure 64. Example A: a spiral list with its endpoints linked by a link segment. Example B: the turning from the last

segment of a vertex list to its link segment is the same than from its link segment to the first segment of the list, so it is a
convex list. Example C: the turning from the last segment of a vertex list to its link segment is not the same than from

its link segment to the first segment of the list, so it is a spiral list

Remembering the aim of this step again, the objective here is just to define convex lists
but not to fix them yet. The fixings where mentioned just to explain two possible
exceptions for not adding the maximal number of vertices to convex lists: 1) spiral lists,
which really are not convex lists, and 2) first internal angles greater than 180º.

The last casualty we have to consider in this step is not an exception but a possible error:
Internal immediate returns. We already defined immediate returns and tried to solve
them during the cleaning process, but we agreed that sometimes they are quite difficult to
be detected and we must be prepared for unexpected casualties.

Here we are going to work with the most undesired kind of immediate returns, and they
happen when some next segment gets in a prior defined sub-polygon! This is why it is
called ‘internal’ immediate return (figure 65). We are not going to find solutions for it
(once it is not responsibility of the averaging process) but we are just going to detect
them and send an ‘average failure alert’ whether it is detected. This averaging process is
not prepared for dealing with it.

However, just to detect it might be difficult. This detection is not difficult if a first
internal segment is intersected. Such intersection should never happen in normal
situations, thus it is obvious that something wrong happened.

SYSTEM ANALYSIS AND DESIGN

74

Figure 65. Internal immediate return occurrences. They are obvious when a first internal segment is intersected

(middle and right examples), but they are quite difficult to be detected if the cleaning process already failed and no first
internal segment is intersected (left example).

We are not expecting internal immediate returns to happen without intersection of a first
internal segment, and this undesired intersection is the only thing we are going to check,
because it is quite hard to detect internal immediate returns for other situation where the
first internal segment is not intersected.

But then there is a little risk for detection failures of internal immediate returns as well as
a detection failure could happen in the cleaning process.

Fortunately, these detection failures are not frequent and we suppose that, anyway, if an
internal immediate return happened and it was not detected, some future problem would
be detected later due to it or the happened mistake would not be considerable. For
instance, a little error might happen in the end of a path, but we always expect weird
situations at path extremities and a future stitching process might care about path
extremities when linking them. If some path extremity is not linked, a little error in it
would not be considerable.

Fixing convex lists for obtaining convex sub-polygons:

The prior step defined pairs of convex lists to form convex sub-polygons with, but
perhaps this sub-polygon they form is not convex yet and some convex list has to be
fixed. We are going to explain how to decide which vertices to discard from convex lists
for obtaining a convex sub-polygon.

First we have to consider that if both convex lists contain only the leader vertex (lv x and
lv y correspondently), a convex polygon cannot be created just by them and these list
cannot be fixed. It is not permitted to remove elements from a unitary list (that contains
only one vertex).

Three situations may cause both convex lists to have only the leader vertex. The first
situation happens when both convex lists were reduced to unitary lists because of fixings
or because both they form an angle that is greater than 180º with the first internal
segment (figure 66).

SYSTEM ANALYSIS AND DESIGN

75

Figure 66. A first internal segment forming an angle grater than 180º with both next convex lists. In this situation both

convex lists would be unitary, containing only the leader vertex. The procedure would not be able to continue.

If both convex lists are reduced to unitary lists, containing no segments, this means that
we cannot form a next convex sub-polygon. This situation should not happen if the
cleaning process avoided immediate returns and the path similarity detection process
happened successfully. It is an unexpected failure that we cannot deal with, so this
procedure should inform that this polygon is not able to be averaged by this process.

The second situation happens when the next vertex of both leader vertices is the
destination vertex vd, which can never be reached by them. In this case, the polygon
averaging has been successful and only the destination vertex vd needs to be added to the
average fragment before returning it as the result of the polygon average.

The third and last possible situation happens when one convex list is unitary because the
destination vertex vd is the next vertex of its leader vertex but the other convex list is
unitary due to fixings or the mentioned angle greater than 180º.

This conflictive situation can happen for polygons that still might be averaged. At the end
of the polygon, a convex list cannot advance anymore and the other one formed an angle
greater than 180º but nothing irremediable. In the attempt of allowing this procedure to
continue normally, we are going to add an extra vertex to the convex list that could not
advance anymore, between its leader vertex and the destination vertex vd, like it was done
for a particular situation at the beginning of this polygon averaging procedure (figure
60). Then we must go back to the prior step, redefine new convex lists and continue this
procedure normally.

This vertex addition might weirdly happen many consecutive times, and it might be
consequence of some prior non-detected error. So, this extra vertex addition should be
available just a limited number of times, otherwise a procedure error is going to be
considered.

Now let us suppose that we have a normal pair of convex lists cl x and cl y where at least
one of them is not unitary, thus some sub-polygon is formed by them. If this sub-polygon
is not convex yet we must make it convex by fixing some of its two convex lists.

So, it is time to fix convex lists (if necessary) for obtaining a convex sub-polygon and
then to compute the average of the obtained sub-polygon. But this procedure is not going
to do these jobs. It is going to call other procedures for doing it: The first called sub-
polygon definition procedure is in charge of convex list fixings for obtaining the convex

SYSTEM ANALYSIS AND DESIGN

76

sub-polygon, and the next called convex sub-polygon averaging procedure finds the sub-
polygon average as its name implies.

For each convex list, the sub-polygon definition procedure is going to be called and, after
it is performed, we will have two lists for a convex sub-polygon. Some vertices could be
discarded from the convex lists when fixing them, but of course that these vertices are not
discarded from the entire original polygon: they are discarded just from the convex lists.
The next convex lists to be defined are going to reuse the vertices discarded from prior
lists.

The convex sub-polygon averaging procedure is called for each pair of fixed convex lists
(that forms a convex sub-polygon). The resulting average of such sub-polygon is going to
be added to the polygon average fragment f avg.

Figure 67. Polygon Average fragment resulting from the partial averages of each obtained convex sub-polygon.

After the called procedures, the leader vertices are set up with the value of the last vertex
of each fixed convex list, and these lists are cleared for defining next convex sub-
polygons. The steps for ‘defining polygons with convex lists’ and ‘fixing convex lists for
obtaining convex sub-polygons’ are going to be repeated until the last convex sub-
polygon has been defined and its average has been added to the polygon average
fragment f avg.

Remember that this procedure can be interrupted due to unexpected situations (errors)
happened during called procedures or during this procedure itself. In such situation, this
procedure just needs to inform somehow to the main procedure that an error happened.

3.3.2.3 Sub-polygon definition procedure.
The goal of this procedure is to control the convexity of one convex polygon defined by
two given convex lists cl x and cl y, and to fix some or both convex lists whether necessary.
Let begin with the first step.

Fixing possible initial exceptions:

The first situation we are going to analyze is simple and important: “If two convex lists
turn to the same side, they cannot form a convex polygon”. It is easy to observe in the
next figure and this problem is also easy to be solved.

SYSTEM ANALYSIS AND DESIGN

77

The only and easy way to avoid two convex lists turning to the same side is to convert
one of these lists in a single segment, because a single segment does not turn to any side.
The convex lists may keep being not convex, but the reason why it happens now is not
because they turn to the same side. Even if they do not form a convex polygon yet, we
will be able to fix them normally in the next step: fixing convex lists.

Figure 68. Two convex lists turning to the same side that obviously don’t form a convex sub-polygon. The inner

convex list is reduced to a single segment. It still doesn’t form a convex polygon with the other convex list, but then the
other list can be fixed for reaching the wanted convexity.

Due to practical reasons, not any list must be the one reduced to a segment. The inner of
them both must be the reduced one. This means: “if they turn to the left then the leftmost
list must be reduced to a segment, but if they turn to the right then the rightmost list must
be reduced to a segment”. This choice is done to avoid the definition of many little
convex sub-polygons instead of defining few but bigger ones that are also convex.

Fixing convex lists:

If both convex lists do not form a convex sub-polygon, some internal angle of the formed
sub-polygon has to be greater than 180°. At this moment, only four internal angles are
able to be greater than 180° if the given lists are really convex lists. We also must
remember that convex lists having the first internal angle greater than 180º do not reach
this procedure. Then, actually only two internal angles may be greater than 180º, and
these angles are formed by the last segment of each convex list and the last internal
segment of the sub-polygon. The figure 69 is an example where these two angles are
illustrated.

Figure 69. Internal angles of a sub-polygon that are possibly greater than 180º are formed by its last internal segment

and the last segment of each convex list. Here, just one of these segments is greater than 180º but both might be so.

SYSTEM ANALYSIS AND DESIGN

78

Each convex list is going to be analyzed with respect to the last internal segment for
knowing if the other convex list must be reduced or not. If the angle formed by the last
segment of a convex list and the last internal segment of the sub-polygon is greater than
180°, then this list must not be reduced but we must discard the last vertex from the other
convex list until the sub-polygon formed by both lists gets convex (figure 70). The vertex
eliminations are done one by one, and each time it happens this step has to begin again
for checking if the sub-polygon got convex

Figure 70. Left: Two convex lists starting by their leader vertices lv x and lv y where one of them forms an angle greater

than 180º with the last internal segment. Middle: the last vertices from the other convex list are discarded one by one
and the formed angle is reduced each time. Right: The formed angle is no greater than 180º anymore and the convex

list is fixed: the sub-polygon got convex.

The last segment of a convex list and the last internal segment of the sub-polygon form
two angles, and once again we cannot easily know which angle is the internal one.
Therefore we are going to use turning sides instead of using angles. As we could see in
the figure 70, the polygon turning side changes where the internal angle gets greater than
180º [PO].

Therefore, we need to compute the turning side of each convex list for checking if this is
the same than the one from its last segment to the sub-polygon last internal segment. For
computing each convex list turnings, we will need to get the first segment of each convex
list and the sub-polygon first internal segment.

But perhaps we have no first internal segment: the leader vertices of cl x and cl y might be
the common polygon origin vertex vo, and common vertices form no segment. In this
situation, we would have to use the first segment of both lists for computing their
common turning side.

Unfortunately, one of both convex lists may have no segments (is a unitary list). First we
are going to suppose that both lists are not unitary, and further we are going to explain the
solution for unitary lists.

There is another problem that may happen when trying to compute the turning side for
non-unitary convex lists. Perhaps the chosen segments for computing it do not turn to any
side, and they would not inform us the main turning side of any convex list! A solution is
to ignore the chosen first segment from each convex list and take the next segment (if
some convex list has a next one) for trying it again. Of course that an error might happen

SYSTEM ANALYSIS AND DESIGN

79

whether we convert both convex lists to unitary ones, but we expect this improbable
situation not to happen and we are going to interrupt this procedure if it happens.

Once we already have the turning side of a convex list, we can check if it is equal to the
turning side from the last segment of such list to the sub-polygon last internal segment. If
both convex lists do so, no changes are necessary because they already form a convex
sub-polygon. But if some convex list does not, then the other convex list must be reduced
to fix the internal angle that is greater than 180º.

An error may happen whether both convex lists form an angle that is greater than 180º
with the sub-polygon last internal segment (right example in the figure 71). These lists
can be fixed normally but it would cause future internal immediate returns. It is
recommended to react to this error as soon as it is detected.

Figure 71. Left: One (blue) convex list is unitary, and then the (leftmost red dotted) first internal segment is used to be
compared with the (rightmost red dotted) last internal segment for checking the reduction necessity of the other (green)

convex list. The red crosses mean the vertices that must be discarded for obtaining a convex polygon. Right: Both
convex lists form an angle greater than 180º with the last internal segment. It is an error that can be fixed but will

persist later as an internal immediate return.

Now we have to analyze the situation of having one unitary convex list, remembering that
having two unitary lists is not allowed here. This situation has some problems but it also
has two advantages: 1) In this situation it is not possible that both lists need to be
reduced, and 2) if some list is unitary and the sub-polygon is not convex we already know
that the non-unitary list is the one that must be reduced. An example is illustrated in the
left figure 71.

When dealing with unitary lists, we are going to check if two turning sides are the same.
The first turning is from the last segment of the non-unitary convex list to the sub-
polygon last internal segment. The second one uses to be from the first internal segment
to the last internal segment. However, in weird but possible situations we might also have
no first internal segment and it would have to be replaced by the first segment of the non-
unitary convex list.

Then, the convexity may be checked also for sub-polygons formed by unitary convex
lists, and the non-unitary list must be reduced if the two turning sides are different. If

SYSTEM ANALYSIS AND DESIGN

80

some compared turning is null (have no side), we are going to consider that the turnings
did not change.

If a convex list must be fixed, then its last vertex is discarded and this step is repeated to
check sub-polygon convexity again. Once the sub-polygon formed by both lists is
convex, this procedure is finished.

3.3.2.4 Convex polygon averaging procedure
This last procedure just has to compute the simple average of a convex sub-polygon
formed by two convex lists.

Before beginning the sub-polygon averaging procedure, we have to define turn vertices.
We are going to advance in each convex list from its first vertex to its last vertex, and
each time we advance one vertex in some list we have to find a new average vertex for
the last chosen vertices of each convex list. Hence, we need to know which vertex was the
last chosen one for each list. They are going to be the turn vertices x

tv and y
tv (one for

each list). They will represent the two vertices we are going to be working with.

Average initialization:

Initially, each turn vertex is going to be the first vertex of its correspondent convex list,
and we have to check if these first vertices are not equal, i.e. they aren’t the polygon
origin vertex vo.

If they are the same, we must advance to the next vertex of ‘both’ convex lists, because
the origin vertex vo has already been added to the polygon average fragment f avg (and the
average between the origin vertex ov and any second vertex of a polygon is on its own
boundary). We are going to compute the average for the present turn vertices and add it
to an average fragment f sub for the sub-polygon, excepting if an exception happened.

First, we had to check if some convex lists is unitary, having only the origin vertex vo. In
this case, not both turn vertices could advance. However, we can advance twice in the
non-unitary convex list for solving this exception (figure 72). It is equivalent to advance
just once in the list but compute no average vertex, ignoring the second vertex of the non-
unitary convex list for avoiding an average vertex to be on the polygon boundary. The
non-unitary convex list must have at least three vertices whether the leader vertices are
equal and the other convex list is unitary.

In a second exception, the average vertex might be exactly equal to the prior vertex added
to the polygon average fragment f avg. This exception is possible to occur only if this is
the first polygon of the whole path averaging process, due to the closure of the first
polygon. In this exception, we do not add the average vertex to f sub but we advance the

SYSTEM ANALYSIS AND DESIGN

81

turn vertices in both convex lists again. There are no more exceptions in this procedure
then we go to a next step.

Figure 72. Left: the polygon origin vertex vo is the leader vertex of two convex lists, and the green convex list had to be

reduced to an unitary list containing only vo. The first average vertex (red empty circle) would be on a boundary
segment if the blue convex list advances to its second vertex. Middle: The blue convex list advances to the third vertex
for computing the first average vertex, ignoring the second vertex. Right: The resulting averaged is quite acceptable.

Computing average vertices:

Here we will advance to the next turn vertex, compute a new average vertex for the
convex sub-polygon and add it to the fragment f sub. This step will be repeated until it
cannot advance anymore in any convex list when both turn vertices reached the last
vertex of their lists.

Now we just need to understand how to decide which turn vertex must advance in its
convex list to compute a new average vertex. This entire step is illustrated in the figure
73.

Figure 73. This is an example of the entire step for computing (red) average vertices for a convex sub-polygon formed

by two (blue and green) convex lists. The (light blue) arrows represent a chosen segment to advance on for getting a
new turn vertex, and the crossed arrows represent the discarded choice. The light blue segments are internal segments

formed by turn vertices and the angles α and β will be used to choose the next vertex advancement. The red fragment is
the resulting sub-polygon average fragment. In this example, it is assumed that every vertex has the same weight.

SYSTEM ANALYSIS AND DESIGN

82

The convex list segment where this step must advance on for computing a new average
vertex is the next segment to some present turn vertex x

tv or y
tv that forms the lower

angle with the internal segment between them both.

Of course that if some convex list already has reached it last vertex, it has no next
segments to form angles with, and then the other convex list is going to be the chosen one
for advancing on.

Each average vertex would be the middle point of the segment that links the present turn
vertices x

tv and y
tv if we didn’t use weights or both turn vertices had the same weight.

But it is not always the exact middle segment point because we use weights that vary, and
the position of the average vertex on this segment will depend of the total weight of each
turn vertex. In the implementation of this project program, we just consider path weights,
and then each turn vertex has the same weight than its path, of course.

Other possible suggestion is to give weights for each vertex individually, what would
make possible to define different weights for disjoint fragments of the same path.
However, in this project we just use weights and counter-weights for the whole path, and
the two distances from an average vertex to its original vertices are inversely proportional
to the total weight of the correspondent path of each original vertex, where total weight is
the difference between path weight and path counter-weight.

3.3.3 Path cleaning after using convex triangulation

A path cleaning may be needed, after some types of averaging processes, for discarding
unnecessary data that can be added to average fragments during the path averaging
process.

The path cleaning process by using convex triangulation definitely needs a path cleaning
for its resulting average path. The number of vertices for the average path is almost the
sum of vertices from both original paths.

If one original path have m vertices, and the other original path have n vertices, and no
intersection points coincide with path vertices, then we will have an average path
containing m + n - 1 vertices.

Many of these vertices might be unnecessary data and a simple cleaning for discarding
excessive points would be very welcomed.

SYSTEM ANALYSIS AND DESIGN

83

3.4 Fragment averaging process and stitching process
Once we have replaced all paths that are completely similar, there are no unnecessary
paths to manage anymore. Every present path should contain data that any further path
average can replace. On the other hand, it doesn’t imply that there are no more data to be
replaced.

We still may have different paths that contain similar fragments. Therefore, we still may
have shuffled lines on the map due to fragments that should be replaced by averaged
fragments. Fragment similarity will be defined soon and we are going to discuss about
the process in charge of finding out similar fragments from different paths to be replaced.

The fragment averaging process was very studied like the prior processes, but many of its
problems were not solved in this project. Its development was chosen as a compromise
between ease of implementation and program efficiency. During the implementation of
this process, we have noticed the importance of the next stitching process that was
discussed but not implemented in this project. The stitching process is important due to
the need of its participation in the fragment averaging process for obtaining a nice
resulting map. The stitching process and its importance are going to be discussed also in
this chapter.

3.4.1 Fragment similarity
The same concepts used for path similarity are used for fragment similarity because paths
and path fragments are abstractly the same. Path fragments also are defined by ordered
list of vertices, thus they can be treated as independent paths. The same similarity
definitions used for paths can be used for path fragments. Therefore, similar fragments
are similar paths that belong to other paths.

The only difference between similar fragments and similar paths is that a fragment is
‘part of’ a path, and two fragment vertices are special: the fragment origin and
destination vertices, f

ov and f
dv . These vertices are said to be special because perhaps they

are points but not vertices from the path containing the fragment they belong to (i.e. they
are not necessarily endpoints of path segments but they are considered as vertices with
respect to their fragments: figure 74).

The special origin and destination vertices don’t change the concepts defined before. We
just need to treat the fragments as paths, and the definition for fragment similarity would
be exactly the same.

A special kind of fragment similarity is the already explained Self-similarity. It is the
situation where two fragments of the same path have distance-similarity (not necessarily
oriented).

SYSTEM ANALYSIS AND DESIGN

84

Figure 74. Left: The green and blue paths are not similar but they have (non-dotted) similar fragments. Right: A green

path containing a (non-dotted) fragment whose (red) origin and destination vertices are not vertices of the path it
belongs to.

3.4.2 Fragment Averaging process
At the beginning, it was thought that the fragment averaging process would be quite
simple and fast to be implemented. We should have the similarity detection process and
the path averaging process already designed, and actually we do have. The initial thought
was: “Any path fragment can be treated as a path, so we can apply the same prior
processes for detecting fragment similarities and for averaging similar fragments”.

On one hand, it is true. We can define if two given fragments are similar by using the
path similarity detection process. We also don’t have any problem for computing the
average of two given similar fragments.

On the other hand, it is false. An ordinary path can be split in infinite possible fragments
combinations. It is not computable to check every possible pair of fragments that two
paths may form for checking if these paths have some similar fragment! It is much more
reasonable to check all possible pair of segments from two different paths.

However, it is much more troublesome to compute from where to where path fragment
are similar than simply finding a couple of similar segments. Moreover, the problem is
not just the complexity for defining the entire similar fragments. Even though we can
average them as normal paths, what should we do with some resulting average fragment?
And what should we do with paths whose fragments were averaged?

We cannot just discard paths after a fragment averaging like we did after a path
averaging, because we don’t want to lose data and a resulting average fragment does not
substitute any entire path but just part of it.

First, we are going to discuss about a procedure for detecting similar fragments between
two paths and defining from where the fragment similarity begins to where the fragment
similarity ends. Later, we are going to discuss how to manage resulting average
fragments.

SYSTEM ANALYSIS AND DESIGN

85

3.4.2.1 Detecting fragment similarity
Now we have to find similarity between any part of two given paths Px and Py. There is
only one computable way for checking if there is similarity between some pair of path
fragments. Somehow, we have to compare every segment from Px with every segment
from Py in a search for points that are close enough.

This step is a little similar to computing intersection points, but instead of searching for
‘equal’ segment points we look for ‘similar’ segment points. Once more, we have many
possibilities for performing this search, e.g. constructing a grid map for comparing just
near segments, creating an optimal search algorithm for comparing all segments, or using
an algorithm that is not the most efficient but a simple one. The last example was chosen
again because it is not tried to find an optimal solution but a first solution to the problem.

Even trying the simplest similarity search by comparing segments, troubles were found
anyway. This procedure seems to be much easier than it really is. For instance, the fact
that we don’t have to care about extremity tolerance (like for path similarity detection)
makes us to believe that it is going to be very simple. We are going to explain how the
problems arose and how they were solved, or partially solved.

Initially, we want to find the first segment of the path Px that has some point close enough
to the path Py. This is simple by using ‘for’ loops and checking each segment of Px with
every segment from Py. Let us call these ‘segments containing points that are close
enough’ as approximated segments. The first time that we find (whether they exist)
approximated segments by using ‘for’ loops, we can be sure that we have found the first
segment from Px (with respect to its orientation) that belongs to a fragment similarity
between Px and Py. But did we find the first segment from Py that belongs to this
fragment similarity? The answer is yes if and only if path fragments had the same
orientation. But if the fragment orientations are inverse, probably the answer is ‘no’
(figure 75).

Figure 75. Fragments with inverse orientations do not help the similarity detection. Here we have two similar path

fragments with inverse orientation. In this ordered search, every segment from the black path is compared with each
segment from the blue path. Therefore, the first found approximated segments (red segments) are not going to be both
the first segment of these similar fragments. In this example, the approximated segment of the black path is almost the

last segment from this similar fragment.

If there is some fragment similarity between Px and Py, we want to obtain the two
‘complete’ fragments of this similarity, for instance the entire non-dotted fragments from
the figure 75. We also wish their segments to be correctly ordered in cloned fragments,
for working with them later. Hence, we need to answer the following questions:

SYSTEM ANALYSIS AND DESIGN

86

• Is there some fragment similarity (or close enough segments) between Px and Py?
• If yes…

o Which is the first approximated segment of each similar fragment?
o Which is the last approximated segment of each similar fragment?

If we have the answer to these questions, we can know if there is fragment similarity and
we can build a clone fragment for each similar fragment (whether they exist). These
answers allow us to know the path of each (similar) fragment, the path segment where
they begin and the path segment where they end. We can even apply methods for
checking if these similar fragments have the same orientation or not.

When the first approximation segments are found, we can stop the ‘for’ loop and begin
another type of similarity search using a ‘while’ loop. Now we only need to analyze
segments prior to a first and next to a last approximated segment. If the segment prior to a
first approximated segment is also approximated then it becomes the first one and this
check is done again15. The same happens for last approximated segments and their next
segments. Changing this search from a ‘for’ to a ‘while’ loop also tends to finish the
process faster because is not necessary to check every pair of segments anymore.

When there are no more prior or next approximated segments to be found, we can build
clone fragments with these segments following their original order. We also can check if
the similar fragments are inverse ones, and we can equalize their orientations by
changing the segment order of one of them whether they are inverse fragments. Here we
want the average of these similar fragments to have a same orientation: the reference
orientation. We are going to assume the first parameter path Px as the reference path, and
the reference orientation belongs to this path. This is just for having control of the
resulting average fragment orientation.

After building the clone fragments of a fragment similarity, we could still keep searching
for further fragment similarities between the paths. But instead it, this process just ends
the fragment similarity detection, assuming that there are no more fragment similarities.
This assumption may be false but if the resulting paths are checked again, new fragment
similarities are able to be detected. Later, it is going to be explained how to manage
resulting paths.

Even though we don’t need to tolerate path extremities in this procedure, we must
remember that we are working with segments. Perhaps the origin and destination points
of fragments are not path vertices (or segment endpoints). Therefore we have to compute
the first and last points where the fragment similarity starts and begins. The same
procedure used for computing these points in path similarity detections is going to be
used here, but here we have the advantage that we already know that these points must
belong to the very first and very last segment of their correspondent fragments.

15 There is no need to check segments before the first approximated segment of the (main reference) path Px

because we already know that it is the first segment of its fragment.

SYSTEM ANALYSIS AND DESIGN

87

When having the cloned similar fragments, we can treat them as independent paths and
we can use the path averaging process for computing an average fragment that would
replace these two similar fragments in the map.

3.4.2.2 Averaging similar fragments
To average two defined similar fragments is as easy as to call the path averaging process
passing the similar fragments to it as parameter paths. But the goal of this process is not
only to compute the average of similar fragments, but also to figure out if they do deserve
an average. We may have troublesome situations if we average any pair of similar
fragments. We may even distortion nice paths due to it. For instance, imagine two paths
containing a ‘natural link’ between them (figure 76), e.g. a path ends where another path
begins. Of course that we are going to detect this kind of fragment similarities, but it
doesn’t deserve an average.

Figure 76. Natural links between two paths. Example A: a crossing. Example B: a branching. Example C: a road

concatenation. Example D: a road fork. Example E: a road split.

In the next figure, we can observe that some averages are not necessary, and they also are
unwished. This distortional type of fragment averaging generates quite short average
fragments, and we can use this property to avoid them. A program constant MAFL
(Minimal Average Fragment Length) is going to be used for determining the minimal
length of an average fragment to be considered useful. Another program constant MPL
(Minimal Path Length) is going to be used for limiting the shortest length that a path must
have to be considered in the project processes.

Figure 77. The same pairs of paths from the prior figure have been ordinarily averaged without deserving it. The
example C suffered no consequences of it, but all the other examples suffered unnecessary distortions. The red

fragments are average fragments that are common for the blue and green path.

SYSTEM ANALYSIS AND DESIGN

88

Too short paths don’t use to be important data and they can be conflictive in this process
depending on the process management16. For instance, we are going to notice the conflict
they can cause when we try to define a crossing. However, the constant MPL can be set
up to zero making this process to accept any path.

3.4.2.3 Path concatenation, branching and crossing
There are three kinds of path links and their definition is a project requirement. It was not
possible to define them before and it is still difficult to define path links due to special
casualties.

Empirically talking, a concatenation is the link between two different paths where some
endpoint of a path is equal to some endpoint of the other path. A branching is also a link
between two different paths where some endpoint of a path also belongs to another path
but is not its endpoint. A crossing is the last kind of link between two different paths
where one segment of a path intersects one segment of the other path in one point.

These empirical definitions suppose we are dealing with non-shuffled paths without error
margins, without self-intersections, with no large similarities, etc. Of course that these
definitions are not always right. First, we cannot be very accurate in the definitions of
path links if we work with paths containing error margin. Second, we have to use path
fragments in these definitions instead of using entire paths, because even two non-similar
paths can have similarity in some fragments.

Definitions for linking paths:

Let us consider two paths (that even might be the same one) having some fragment
similarity. Then, let us consider a pair of similar fragments, where one fragment belongs
to each path. These similar fragments must be ‘complete’. This means that their prior and
next (sub) segments cannot be part of this fragment similarity.

The considered ‘complete similar fragments’ must be determinately short for the next
definitions. The length for determining if these similar fragments are short enough can be
modified. It could be determined by the constant MAFL or another constant created
especially for that. We are going to use the term ‘short enough’ for referring to this length
during the definitions.

Considering the complete similar fragments again, they cause a path concatenation if:

• Both they are short enough,
• Each fragment contains a path endpoint, and
• These path endpoints are close enough.

16 Too short paths might cause infinite loops in the implementation of this process. The constant MPL

should not have a very small value for this implementation.

SYSTEM ANALYSIS AND DESIGN

89

Considering the same similar fragments, they cause a branching if:
• Two fragment endpoints are close enough and they are not path endpoints.
• The fragments are not short enough or they have no intersections or they have

more than one intersection17.
One or two branchings may happen for a pair of similar fragments. They just happen
near to extremities of similar fragments.

Considering the same similar fragments once more, they cause a crossing if:

• Both are short enough,
• They have no path endpoint, and
• They intersect just once.

If a crossing happens, it happens in the intersection point.

Figure 78. Example A: It is a path concatenation because one path begins approximately where another end (red
points). Example B: It is a branching because one path begins or ends at the middle of another one. Example C: It is a

pair of branchings, because no path begins nor ends but they got divided twice. Example D: It is a crossing, because no
path begins nor ends and they have a unique intersection point. Example E: Popularly it would be considered a crossing
but here it is a pair of branchings (like in the example C) because it has no intersection. Example F: Again, it is a pair

of branchings because the intersection happens twice and the formed rectangle should be averaged. Example G:
Definition conflicts due to very short paths.

Analyzing the definitions for path links, we can understand some conflicts that very short
paths can create. The example G of the figure 78 illustrates two situations that we would
consider as crossings, but perhaps these fragments are ordinary similar fragments that
should be averaged. If we decide not to average crossings for avoiding unnecessary
distortions, we might stop averaging several short paths that actually are ordinary
fragment similarities. It is suggested to ignore very short paths by discarding them from
the map.

After discarding very short paths, we still need to decide when similar fragments would
result in distortions or in good averages. Similar fragments are passed as independent
paths to the path averaging process, and then they are split in polygons like normal paths
were.

We remember that normally the first and last simple polygons resulting from similar
paths had to be closed by a segment. Actually, we just need to check simple polygons
that initially are not closed, because every closed polygon deserves an average fragment.
Every ‘closed’ polygon has intersection points as origin and destination vertices.

17 Observation: A branching cannot be a crossing according to the definitions of this project.

SYSTEM ANALYSIS AND DESIGN

90

Opened figures are not really polygons, but we are going to refer as ‘opened polygons’ to
these figures that can form a simple polygon by linking their endpoints. Opened polygons
(containing only one or no intersection points) might be a distortion if they are averaged.
Then, we have to decide which polygon formed by similar fragments should be replaced.

Closed polygons must be averaged for sure, but opened polygons must be studied. It is a
good suggestion to not average open polygon that is part of a crossing, because crossings
always cause distortions when they are averaged. We shouldn’t average opened polygons
causing path concatenations as well, because this fragment averaging process don’t
manage concatenations. The stitching process should care about it.

If the first or last simple polygon formed by two similar fragments is an opened polygon
and it causes a path branching, then only the closest segment to each fragment endpoint
must not be averaged.

Figure 79. Example A: The similar fragments cause a branching, thus only the segments that contain fragment

endpoints aren’t averaged. Example B: All closed polygon are averaged. Example C: It is not a crossing but a pair of
branchings, and then only some segments are not averaged like in the example A. Example D: It is a crossing and

crossings are not averaged.

Actually, this step of the fragment averaging process is an optimization for the path
averaging process because it is the best process where to implement it. But this step was
not implemented in the path averaging process because it is not needed for working with
entire similar paths. The problems for linking paths and their fragments were noticed
during the implementation of a simple optional method for averaging fragments.
Therefore, we are not working with the concepts of concatenations, branchings and
crossings in the implemented program. The implementation of the path averaging
process only suffered one little modification due to these definitions: It ignores very short
average paths for avoiding disturbed crossings.

SYSTEM ANALYSIS AND DESIGN

91

3.4.2.4 Managing averaged fragments
Sometimes the average of two similar fragments is null because it is an ignored result due
to its too short length. However, in case that the resulting average fragment has a
considerable size, what should we do with it? And, what should we do with the paths that
contain the averaged original fragments? Definitely we have to discard those averaged
original fragments from their paths because they are not useful anymore. They must be
replaced.

Each original path can be split up to two shorter paths if we eliminate one of its middle
fragments, thus the two original paths may result in up to five paths: two split fragments
for each path and an averaged fragment (middle example in the figure 80).

Figure 80. Left: Two paths (green and blue) have similar fragments. Middle: An (red) average fragment was computed
for replacing the similar fragments. Right: The red average fragment replaces its original fragment from the green path,

and the resulting blue split paths were linked to it.

Therefore, it was decided to replace the original fragment of a reference path Px by the
average fragment. Hence, we would have no more than three paths resulting from the two
original ones.

Thus, now we have a path Px’ with a replaced fragment, and two paths Py’ and Py

’’ split
from a discarded original path. These paths Py’ and Py

’’ have to be linked to the Px’, as we
can observe again in the (right example in the figure 80).

3.4.3 Stitching process
The stitching process was analyzed but not implemented in this project. However, this
process is very important for having a nice map. Actually, it avoids not only the
inconsistencies caused by those path endpoints that are very near to each other but not
linked.

Definitely, avoiding this inconsistency is not the only importance of this process. It was
noticed when during the analysis of the fragment averaging process. There, we
understood the importance of path links, and we also noticed that they must keep linked
even after future procedures.

Paths resulting from a same fragment averaging can be correctly linked by adding the
first and the last vertex of the average fragment (replaced in Px

’) to the split paths Py
’ or

SYSTEM ANALYSIS AND DESIGN

92

Py
’’ correspondently. But even though these points are added correctly creating a nice

link, these links can suffer a distortion later. Let us suppose that the same fragment
replaced in the path Px

’ suffers a position change due to another fragment averaging
(figure 81). The linked paths Py

’ and Py
’’ are not going to be displaced together with it!

The same problem may happen to path concatenations. We need a stronger ‘linking
structure’ if we don’t want links to suffer distortions like in the last example.

Figure 81. The green path containing a red replaced fragment was moved due to other averaging process with another

(not illustrated) path fragment, but the linking vertices from the blue paths did not move together.

Then, the concept of the linking nodes appeared. These nodes, already defined in the
domain analysis, are not real but abstract points in the map. A linking node must refer to
two path vertices that it links, but not to the positions of these vertices because they might
change. At the end of every process for building the map, we should add in the map a
segment for each linking node.

This idea implies an array for storing linking nodes, and it also implies vertex
identifications. We must be able to localize any referred vertex easily; therefore path
identifications are also needed. It was thought to identify every vertex by its path ID and
the vertex position in the correspondent path vertex list. But the problem is that “if we
add or remove vertices from the path the vertex, IDs are going to change”. The same
problem would happen if we identify paths by their indices in a list for storing paths, and
IDs must not change.

The stitching process should be used not only for linking paths but also for repairing
some problematic complexities that are typical in path links, e.g. self-intersections and
immediate returns caused by linking paths or fragments (figure 82).

Figure 82. Example A: If more than two (red) path endpoints are very close, their individual links probably would not

result in a concise link. Example B: Path links might result in not nice unions.

SYSTEM ANALYSIS AND DESIGN

93

94

4 IMPLEMENTATION
Although the implemented codes were written for not using unnecessary processing time
and avoiding other considerable problems, optimization is not the aim of them. Therefore,
many of them probably can be improved.

Each coded class is going to be explained below, enhancing the priority classes and their
most important methods. Ordinary methods will not be explained here but they can easily
be understood by just checking their codes in the appendices, where all the codes are
included.

4.1 The Const class
This is a class built only to gather important constant values that will decide the behavior
of many program methods and the final map result to be displayed. Some of these
constants are the distance for considering path similarities (PSD), the error margin
distance that define vertex fluctuations (EMD), the tolerable lengths at extremes of
similar paths (TLE), etc. All these important values are shown in the appendix A.

4.2 The MListener, KListener, MapFrame, MapPanel

classes
These are classes and interfaces in charge of the Graphical User Interface issues. All they
are going to have a short and simple explanation here.

MListener (whose code is added to the appendix I) is an interface for the mouse usage,
but we are not going to use the mouse for displacing the map into the frame. We are
going to use the keyboard for that. Therefore, the only objective of this interface is to
allow the mouse to activate the focus for the keyboard on the frame used for displaying
the map.

KListener (whose code is added to the appendix J) is the responsible interface for
listening at the keyboard and displacing the map into the frame according to the pressed
keys. These keys are going to be the number keys (containing arrows in the keyboard set
for numeric keys) and the keys ‘+’ and ‘-’ (in the same set of keys) for zooming in and
out the map correspondently.

The MapFrame class (whose code is added in the appendix H) just sets the frame for the
map and creates its panel. The MapPanel class (whose code is also added in the appendix
H) is the responsible for drawing the map according to its member called pathList. This
member contains every path to be in the map. Changing the map is as easier as to change
the paths contained in this array and repainting the panel. Other members of this class
only define the position and size for the map to be displayed into the frame.

IMPLEMENTATION

95

4.3 The Point and Segment classes
These classes includes methods for setting points and segments, mesuring them and
computing relationships between them. They are the base for future implementations in
this project. Other implementations depend of instances of these classes and of many
methods provided by them. Even though we should work with positions on the Earth
globe, the Point and Segment classes were limitedly implemented to work with planar
coordinates, and the reason of that is going to be explained next.

4.3.1 Position Coordinates
The surface of the globe is divided into a spherical grid for the convenience of finding
certain points. The grid consists of imaginary lines called latitude and longitude. Latitude
is a series of circles running parallel to the equator and extending to both poles.
Longitude is a series of lines drawn between the poles at regular intervals that pass
perpendicularly through the equator. Everywhere on the globe, a particular latitude
crosses a particular longitude and gives to us a pair of spherical coordinates indicating
this position.

However, in this project we will work with planar coordinates instead of geographical or
spherical coordinates [GoS] because of its geometric simplicity. The main aim of this
project is not to work with a particular kind of coordinates but to find solutions for a
pathfinder system, independently of the used coordinates.

The simplest type of coordinates is going to be used here. However, other coordinate
types can be used without changing other implementations of this project. These Point
and Segment classes are the responsible for determining which type of coordinate is going
to be used. They provide tools to the project for computing distances, lengths,
intersections, angles, orientations, etc, and the performance of these tools depend of the
used coordinate system. Other classes of the Pathfinder project do not work directly with
coordinates, but they work with Point and Segment instances and with the methods
offered by these two classes.

Therefore, only methods of these classes have to be adapted to a new coordinate system if
planar coordinates are going to be replaced. A program constant might be created to
determine the type of coordinate to be used. Point and Segment classes might be coded
for working with alternative different coordinate types, according to the last mentioned
constant value.

We could insist on using spherical coordinates in this project but it would bring some
problems. Even though an optimal processing time for the implemented methods is not an
aim of this initial project, spherical coordinates would just slow down the processing
speed of the program due to necessary complex formulas [ST] full of trigonometric
functions for computing often used data like distances, lengths and intersections.

IMPLEMENTATION

96

These formulas were replaced by simple planar formulas with a scope for relatively small
areas on the globe (e.g. 10.000 Km2). Anyway, this scope is quite considerable for an
initial project and it allows us to convert spherical coordinates to planar coordinates.
Then, we can use simple planar formulas in this project for computing those frequent
needed data.

4.3.2 Dealing with geographical coordinates from income data
The income data we have for this program are files loaded with geographic coordinates,
providing latitude, longitude and altitude for each point. The altitude is the minimal
distance from an exact position to a reference geoid. Altitudes are just going to be
ignored because we are going to work in a planar system. But latitudes and longitudes
have to be transformed from the spherical coordinate system to x and y coordinates
[Map].

Latitude is measured from -90 degrees (at the South Pole) to +90 degrees (at the North
Pole), being zero at the Equator line. Longitude is measured from -180 degrees (at the
West) to +180 degrees (at the East), being zero at the Greenwich Meridian. The reference
lines for counting are the Equator, for latitude, and a line drawn through Greenwich in
England, the prime meridian (or Greenwich meridian), for longitude. These are the zero
lines that we are going to use as x-axis and y-axis correspondently in this project. The
income data uses radians instead of degrees for measuring these angles: π radians are
equivalent to 180 degrees.

For using planar coordinates, we have to work with distances but not angles of distance.
We have to convert angles of latitude and longitude to distances on the globe. The Earth
polar circumference (2π * Earth polar radius) is approximately 39940 Km. If we divide it
in 360 degrees, we get 110,9 Km. This means that a degree of latitude is equivalent to
about 111 kilometers on the y-axis. If we want to have the reference between ‘latitude
radians’ and meters on the globe, we should divide the circumference by 2π radians
instead of 360 degrees: 1 radian of latitude is equivalent to about 6356,7 kilometers on
the y-axis.

For longitudinal lines, the conversions are a little different because they converge towards
the poles, meaning that degrees of longitude vary according to the position on the Earth.
At the Equator, one degree of longitude is practically the same length as one degree of
latitude. At the north and south poles the distance between degrees of longitude is zero.

We have to calculate the coordinate value on the Equator for the given longitude and then
we have to multiply it by the cosine of the ‘reference latitude’ for converting our
calculated equatorial distance to the distance on the desired latitude. After it, we have
converted he longitude angles in meters of distance on our x-axis. The following latitudes
have being analyzed for being the ‘reference latitude’ on this project program:

IMPLEMENTATION

97

• Denmark average latitude: 56°25’ or 0,98465656 radians
• Great Copenhagen average latitude: 55°40’ or 0,97156661 radians
• Lyngby approximated latitude: 55°46’ or 0,97331194 radians

It was decided to get the approximated latitude of Lyngby because most of the paths used
for tests are near to it. But it is going to be just a constant called ‘ReferenceLatitude’ in
the program, and it can be easily changed without affecting the remaining
implementation. However, less than half degree of reference latitude is not going to
change the distances significantly.

The Earth equatorial circumference (2π * Earth equatorial radius) is approximately 40075
Km (The Earth polar circumference and the Earth equatorial circumference differ a little
bit [ER]). If we divide it in 360 degrees we get 111,3 km. So, a degree of longitude is also
equivalent to about 111 kilometers on the Equator. If we want to have the reference
between ‘longitude radians’ and meters on the Equator, we should divide the
circumference by 2π radians instead of 360 degrees: 1 radian of longitude on the
Equator is equivalent to about 6378,1 kilometers on the x-axis.

Now we have to convert this distance on the Equator to the distance on our chosen
reference latitude. A degree of longitude is going to be equivalent to 111 * cos(55°46’) =
62,44 km on this latitude, so a longitude degree will represent 62,44 km on our x-axis.
Similarly, 6878,1 * cos(55°46’) = 3588,09 km, so 1radian of longitude on our chosen
reference latitude will represent 3588,09 km on the x-axis.

These calculated numbers are some of the program constants that are added in the
appendix A (in meters instead of kilometers). The code of a simple method from the
Point class for converting latitudes and longitudes to planar coordinates is called
sphericalToPlanar. It can be found in the appendix B.

4.3.3 Distances
Three kinds of distances are needed in this project and their methods are implemented in
the Point or Segment classes.

4.3.3.1 Point-to-point distance
We can use the very well known mathematical formula for calculating the Euclidean
distance between two given planar points p1 = (x1 , y1) and p2 = (x2 , y2):

d(p1 , p2) = [] []2
21

2
21 yyxx −+−

We have used this formula instead of using complex formulas [STC] for calculating the
shortest distance between two spherical points.

IMPLEMENTATION

98

4.3.3.2 Segment-to-point distance
Another useful distance is the minimal distance between a point and a segment. Planar
coordinates make it much easier to be calculated because we just have to follow some
simple planar geometric concepts. The formula for straight lines will be used for
computing this distance:

bxay +⋅= , where a is the line slope and b is its vertical displacement.

Given two points from a line, p1 = (x1 , y1) and p2 = (x2 , y2), it is always possible to
compute its slope and vertical displacement by using the following formulas:

21

21

xx
yy

a
−
−= 11 yxab −⋅= or 22 yxab −⋅=

One possible situation should be taken in account. Vertical lines have infinite slopes and
incomputable vertical displacements. There are simple solutions for it because, even if we
cannot work with infinite values, vertical lines have another formula for this situation and
it is even easier to work with this formula:

cx = , where c is the horizontal displacement constant 18.

Therefore, given both endpoints of a segment, we can define its segment line ��finding the
equation constant values a and b, or c.

Given another point p3 = (x3 , y3), we can find the transversal line � t (of the line �) that
intersects the point p3 (illustrated on the figure 83). We know that the slope of the
transversal line is at = - 1 / a and we can calculate its vertical displacement bt with the
coordinates of the new point p3: axybxaybbxay ttttt /333333 +=⇔⋅−=⇔+⋅= .

Figure 83. Left: a given segment and a given point for computing the distance between. Middle: It is defined a

transversal line for the given segment line. The defined line intersects the given point. Right: The (red) point where the
transversal lines intersect is the closest point of the segment line to the given point.

18 Observation: All the methods that work with line equations check if they would be vertical. In such

situation, they work with the line equation “x = c”. If and only if the slope of a line is infinite, the slope
of its transversal line is zero and vice-versa.

IMPLEMENTATION

99

Once we have the transversal lines � and � t, we can compute their unique intersection
point pi = (xi , yi) by using formulas that result from the following equation calculations:

bxay ii +⋅=

 - titi bxay +⋅=

)()(0 tit bbxaa −+−=

Having the intersection point pi, we can calculate the distance from this point to the given
point p3, what represents the closest distance from the given point p3 to the segment line
�. It is not sure that this is the closest distance between the point and the segment yet! The
figure 84 illustrates that if the intersection point pi doesn’t belong to the given segment,
the closest segment point to p3 is not pi but one of the segment endpoints.

Figure 84: Not always the computed intersection point pi belongs to the given segment, so the closest segment point to

the given point is not pi but a segment endpoint.

For avoiding this problem, we just check if the computed intersection point pi belongs to
the given segment. If it does so, we calculate and return the distance between pi and the
given point. Otherwise we compute the distances from the given point to both segment
endpoints and return the shortest of them.

aa
bb

aa
bb

x t

t

t
i /1+

−=
−
−=

bxay ii +⋅= or titi bxay +⋅=

IMPLEMENTATION

100

4.3.3.3 Segment-to-segment distance
Another useful distance that has its implemented method is the shortest distance between
two segments. This distance is not difficult to be computed if we use other methods from
the Segment class. We just have to realize that the minimal distance between two non-
intersecting segments is the distance from an segment endpoint to the other segment
(figure 85). We just have four endpoints for taking in account, so we only need to
compare four distances and return the lowest of them. Intersecting segments are
exceptions for these calculations, but it is obvious that the minimal distance of any two
intersecting segments is zero.

Figure 85. A pair of segments has four distances from some segment endpoint to the other segment. The lowest of
them four is the minimal distance between the two segments (examples A and B), except if the segments intersect

(example C). In intersecting situations, the minimal distance is zero.

The first step in this distance calculation is to check if the given segments intersect
(method explained next). If they don’t, each distance from an endpoint to the other
segment is going to be calculated by using the method for computing minimal distances
between segments and points. The shortest of them is going to be returned.

The method called distance for computing point-to-point distances belongs to the Point
class and its code can be found in the appendix B. The methods also called distance for
computing the segment-to-point and segment-to-segment distances belong to the Segment
class and their codes can be found in the appendix C.

4.3.4 Intersections
The intersection point of two lines is easily computable in few steps, but a procedure for
computing the intersection point of two segments needs more steps to be performed.
However, it is not difficult just to check if an intersection happens between two segments.

4.3.4.1 Detection of intersections
Initially, we want a fast method that does not compute any intersection position but just
checks if two segments do intersect. This method is frequently used, thus it is important
to be as short and simple as it can 19.

19 An algorithm for this method is explained in the chapter 35.1 of the book ‘Introduction to Algorithms’ of

Thomas Cormen et.at. [IA]

IMPLEMENTATION

101

An initial and quick test called ‘the boundary box’ is used for checking if it is possible for
two segments to be intersecting or not. One segment is completely enclosed in a minimal
‘box’ (or rectangle). If the other segment is completely out of such ‘box’ the intersection
is not possible.

Whether the two given segments do pass the boundary box test, we are going to use cross
products in the next step. Due to cross products, we don’t need to care about vertical lines
and we can check in few steps if the intersection happens. One segment is going to be
taken as the base for this test and its line (containing such segment) is going to be the
‘judge’ for it. Each endpoint of the other segment is going to be analyzed respect to the
base segment line.

The cross product tells us in which side (left or right) of the base line each other endpoint
is. If both endpoints of the other segment are at the same side of this line, the segments
are not intersecting, but if they are at different sides or some of them are on this base line,
definitely they are intersecting.

4.3.4.2 Positioning of segment intersection points
Often, we want to have the exact position where a segment intersection happened after
we know it occurred. It is quite simple to calculate this position using the already
mentioned line equations, but we have to deal with some possible exceptions. Now we
are not just talking about vertical lines, whose problems were already solved. The new
condition we have to consider is that segment intersections are not always just a point.
The intersection of two segments could be another segment whether they are collinear.

Therefore, if we detect that there is intersection between two segments and we know that
they are collinear (or have the same slope), a special intersection happened. This situation
is not very frequent at all because a considerable coincidence is needed. However, a
method for this possible coincidence was implemented.

A private method is going to be called when this not very common exception happens,
and this method returns a resulting intersection segment (instead of an intersection point).
If this exception does not happen, we just need to use simple mentioned calculations for
computing the intersection point of two segments. A method is in charge of computing
intersections and it will call the private method if necessary.

However, this method is in charge of computing intersections has also to return segment
as result because of the possible exception. Actually, it is not a problem because we can
return a ‘unitary segment’. We call ‘unitary segment’ to a segment containing two equal
endpoints, thus it really represents a unique point. Other methods have to check if this
returned segment is unitary or not.

IMPLEMENTATION

102

Whether the intersecting segments are collinear, two situations are possible. First, one of
the segments could completely overlap the other one. Second, just part of them could
overlap. Both situations are illustrated in the figure 86. Those situations where just two
endpoints are equivalent or the complete segments are equivalent are going to be
considered special but they also match the prior situations.

Figure 86. Two given collinear segments. In the example A a segment is completely overlapped by the other one. In

the example B just part of them overlap. In the example C only one endpoint of each intersecting segment is equivalent
to another: a special situation that matches the example B.

The private method for collinear exception is going to check all possibilities for collinear
segments, taking in account that:

• Situations like the example A of the figure 86 occur independently of which given
segment is the overlapped and which is the overlapping one.

• Situations like the example B of the figure 86 occur independently of which given
segment is the upper and which is the lower one.

• If it happens that the segments are completely horizontal in situations like the
example B, we are going to consider leftmost and rightmost segments instead of
upper and lower segments.

A method called checkIntersection just inform if an intersection happened between two
given segments. A method called intersection computes the position where two given
segment intersect. If the given segments are collinear, the private method
collinearIntersection is called. These methods belong to the Segment class and their
codes can be found in the appendix C.

4.3.4.3 Angles, turnings and orientations
There are three properties of consecutive segments that give us notion of road directions.
They are angles, turnings and orientations. They are going to be discussed below.

Angles:

The main reason for having a method in this project that computes angles is the need of
detecting immediate returns. We must remember that not only consecutive segments may
form immediate returns. Hence, not only the angles formed by consecutive segments
need to be checked.

IMPLEMENTATION

103

For computing the angle of non-consecutive segments, we are going to consider these
segments as vectors containing start and end points. We are going to match vector start
points for computing the angle they form. The computed angle can vary if we match a
vector start point with a vector end point instead of matching both of their start points
(Example A of the figure 87). Therefore, the orientation that we give to each segment,
when converting them to vectors, is very important 20.

A pair of matched vectors forms two angles, and only one of these angles has to be
returned. Only the smaller of them cares for immediate returns. Therefore, we decided
this method to return the smaller angle, even though this method was coded not only for
detecting immediate returns. It was also coded for other occasional needs.

So, we have to match vectors but there are different ways for doing it. How are we going
to match the start points from separated vectors? Should we translate the position of one
of them to the other’s position?

No. This method does not translate vector positions by calculating new coordinates for
their endpoints. Actually, this method doesn’t match the vector start points. It works with
them in their original positions because of efficiency reasons. Translations are not needed
and the match happening here is completely abstract. We can compute the independent
angle of each vector respect to the coordinate axes and then combine these computed
angles to obtain the final one (Example B of the figure 87).

Figure 87. Example A: The same pair of segments/vectors matched in different ways can form different angles.

Example B: The difference of independent vector angles results in the angle they form together.

Anyway, the direction given to each vector is still important. This method computes the
slope of each vector line, what depends of the vector direction. Then, the vector angle can
be obtained from slopes using inverse trigonometric function of arc tangent. Once again
we have to care about vertical lines and their infinite slopes. However, we already know
that the angle for an infinite slope is ± 90 degrees (or ± π/2 radians).

The mathematical arc tangent function always can have two possible results: ϕ and
180+ϕ. This means that obtained angles from the arc tangent of a line slope are possibly
two because lines don’t have directions like vectors have. It makes necessary to check if
the default value (-90º < α < +90º) from our obtained angle α is the correct one. Hence,

20 Observation: The endpoint of a vector has to match the startpoint of another vector for immediate return

checks, so a segment has to invert its path orientation before using this method. Which vector is inverted
is not a decisive factor.

IMPLEMENTATION

104

start and endpoints of each vector are checked for correcting the default obtained angles.
An angle has to be corrected whether its vector direction goes from right to left. In case
of correction, the vector angle has to be modified to the angle of the inversed segment
direction (e.g. -135º instead of 45º, or 135º instead of -45º). A new range for possible
angles will be the complete range -180º < α ≤ +180º due to these corrections.

The last step of this method is to get the difference of the obtained angles of both vectors
and return the minimal angle that these vectors form. The range of this angle difference is
0º ≤ α < 180º, thus the resulting angle will always going to be minimal. If its
complementary angle is wanted then it is quite easy to obtain: 360-α.

Orientations:

Sometimes it is also important to know if segments have the same orientation. This
method was created to return a Boolean result indicating equal or different segment
orientations. It is important to remark that ‘orientation’ does not have the same meaning
that ‘direction’ has. Probably, different vectors have different directions, but at the same
time, they can have the same orientation. The way that this method uses for obtaining its
result gives to us an excellent notion of what orientation is.

This method uses the mathematical projection of a given vector on the line of another
given vector for checking if they have the same orientations. This is the last method
where vertical lines might cause problems.

We can check if the given vectors have the same orientation by examining the angle that
one of these vectors forms with the projection of the other one. The figure 88 illustrates
it. If such angle is zero, the vectors have the same orientation, but if this angle is 180º, the
vectors have inverse orientation.

Figure 88. Example A: Two vectors for comparing their orientations. Example B: The projection of a vector over the
line of the other vector. The red vector is the projection of the blue vector on the line of the green vector. Example C:

Possibilities with respect to angles after projections. If the angle is zero the orientations are the same, otherwise they are
inverse.

This method, as well as the prior ones, is not safe from exceptions. A vector could be
transversal to the line of the other vector, and its projection would result in a single point
without direction (nor angle). Even though it is controversial, it was decided to assume
that in such case the vector orientations are the same. This controversial decision avoids

IMPLEMENTATION

105

many problems, for instance, with unitary segments (with the same point as start and
end).

Turnings:

Vector cross products are used here for the purpose of defining turning orientations. A
positive cross product of two consecutive vectors v1 x v2 indicates that a left turning
happens from v1 to v2, and a negative result indicates that a right turning happens from v1
to v2. Hence, only the sign of the resulting cross product interests for determining the
turning orientation. Null signed results (zero) indicate that no turn happens. Comparing
two turnings is as easier as defining them.

The method in this project program for computing angles is called angle. The method for
checking orientations is called sameOrientation. The method for computing turnings is
called turnSign, and the method for comparing two of them is called sameTurn. All of
them belong to the Segment class and they can be found in the appendix C. There are
other less important implemented methods from the Point and Segment classes that have
not been discussed in this chapter. But they also can be found in the appendices B and C,
they are short and can be understood with a simple view.

4.4 The Node class
This class is needed just for one reason, and this is the objective of its only method called
nodeAveraging that can be found in the appendix D. Each instance of this class represents
a node from the map graph. Each node represents a particular path obtained for this
graph. The map graph is the only instance passed to this method as parameter. Its class
member called path is loaded with the path it represents and its class member called links
is loaded with the indices of all nodes from the map graph that must be linked to this one.

The final objective of the only method of this class is to reduce the map graph to a
shorter and equivalent graph. To reduce the entire graph means to reduce each of its
complete connected sub-graphs. Let us call connected sub-graph to a graph subset that
has a, not necessarily direct, link from all to all of its nodes. These subsets are complete
when there is no greater connected sub-graph including them.

The way for reducing each complete connected sub-graph is applying the method of this
class to just one of the sub-graph nodes. This method is applied recursively to every node
that the first one is linked to, caring to not be applied again to some node that has already
been part of a reduction in this recursive procedure. This is the reason of the class
member called flag that indicates if a node instance has already participated of some
reduction process or not. The reduction of just two linked nodes means the average of the
paths they represent.

Every node from the map graph is checked one by one, and this class method is applied
to each one of these nodes that still doesn’t have participated on a reduction process,

IMPLEMENTATION

106

because such node is part of a new complete connected sub-graph. So, at the end of this
check, the entire map graph will be reduced to only one node for each set of similar paths
(or each complete connected sub-graph).

4.5 The Path class
The instances of this class represent the most important objects of this project. Therefore,
it has more methods than any other class and they are essential methods. These methods
have to be used for cleaning, detecting path similarity and averaging path instances.

The way how these essential methods work is not easily explained in short sentences.
However, they already have been explained in the prior chapter of ‘system analysis and
design’. Therefore, Instead of explaining them in many paragraphs, it was preferred to
write a pseudo-code for each method implemented in this class.

Actually, a textual explanation of these methods would be a repetition of the explanations
from past chapters: perhaps a resumed explanation. Moreover, the pseudo-codes are also
understandable and can offer a much better relationship between each part of the
explanation and each part of the code. This means that a pseudo-code is much better
related to each Java code line than a textual explanation would be.

4.5.1 Pseudo-codes
This subchapter is a comprehensive step. Once we have read the ‘system analysis and
design’ chapter, we are ready to understand the following pseudo-codes, and if we read
the pseudo-codes, we will be ready for understanding the Java codes. But reading and
analyzing some of the next many consecutive pseudo-codes is just necessary if there is an
interest or curiosity in some specific part of the program code, e.g. for improving part of
the program, for optimizing some method, for correcting some detected error, etc. It is
suggested to jump these pseudo-codes related to some part of the program of no interest.

If some pseudo-code is not understood, a simple review on a correspondent part of the
system analysis and design should be sufficient for understanding it. Each pseudo-code
will have a brief introduction, and there they will be related to methods and to prior
correspondent sub-chapters. All their respective Java codes can be found in the appendix
E for the Path class.

4.5.1.1 Initial cleaning pseudo-code
This first pseudo-code is for cleaning input data from a file and constructing path
instances from it. The ‘initial cleaning’ pseudo-code is related to the chapter 3.1 of
cleaning process. It can be used for every type of cleaning mentioned in this chapter,
excepting the simple path cleaning that will be represented by the next pseudo-code. The
‘initial cleaning’ pseudo-code is related to the method called cleaning whose initial

IMPLEMENTATION

107

parameters are: a file Fx that contains information about a particular path, and a flag
indicating the type of wanted cleaning: 1 = basic cleaning, 2 = general path cleaning, 3 =
total path cleaning.

1) Create necessary variables, including a path Px to be loaded and a list L of resulting

paths to be returned.

2) While there are (lines of) information to be read in the file Fx do:

a) Read the information from the next file line and if the information is acceptable
(is an OK point) do:

i) Obtain the vertex x

ip from the line information.

ii) If x
ip forms a very long segment 21 with its prior segment, split the file path

by adding Px to the list L, clearing Px and adding x
ip as its first element.

iii) Else, if x

ip does not fluctuate respect to its prior vertex and the solicited type
of cleaning is general or total do:

(1) Compare the segment formed by x

ip with each segment of its PSD range
set and if an immediate return occurs then split the file path by adding Px
to the list L, clearing Px and adding x

ip as its first element.

(2) If the solicited type of cleaning is total, compare the segment formed
by x

ip with each prior segment from Px, and if some self-similarity
occurs then split the file path by adding Px to the list L, clearing Px and
adding x

ip as its first element.

(3) Add x
ip to Px and update the variables that need to be updated.

3) Add the last built path Px to L and Return the resulting path list L.

4.5.1.2 Simple cleaning pseudo-code
This pseudo-code is used for a fast cleaning of a path resulting from some averaging
process. The ‘simple cleaning’ pseudo-code also is related to the chapter 3.1 of cleaning
process, but the only cleaning type that is related to it is the simple path cleaning (on the
subchapter 3.1.4.2). The ‘simple cleaning’ pseudo-code is related to the method called

21 The first obtained segment is very long by default (because it doesn’t exist any prior point to the

first x
ip), and then the path Px has to be initialized instead of split.

IMPLEMENTATION

108

simpleCleaning whose initial parameter is one path containing its respective vertex
list: x

m
xx

x pppP ,...,, 10= .

1) Create necessary variables, including a reference vertex x
refp (or reference point) that

initially will be the first path vertex xp0 .

2) For i from 0 to m-2, where m is the number of vertices from xP , do:

a) Compute the length of the segments x
is and x

is 1+ next to the vertex x
ip .

b) If some of these segments are too short, the vertex x

ip 1+ is a fluctuation vertex of
x
ip , then, remove x

ip 1+ from the path.

c) Else, do:

i) If x
ip is not the reference vertex (what means that a fragment cleaning

already started), add the lengths of x
is and x

is 1+ to a variable containing the
total length lf of the analyzed fragment. Else a new fragment begins to be
cleaned, so make the total fragment length lf equal to the length sum
of x

is and x
is 1+ .

ii) If the fragment length lf is approximately equal to the distance between the

fragment start point and the end point of the segment x
is 1+ , then the

vertex x
ip 1+ is not a necessary vertex once its absence practically doesn’t

change the fragment (even considering prior removals), then do:

(1) If this is the first of some sequence of consecutive removals, then start a
new fragment cleaning by making the new reference vertex x

refp equal

to x
ip .

(2) Remove x

ip 1+ from Px.

4.5.1.3 Path similarity pseudo-code
This short pseudo-code is for detecting the similarity between two given paths. It is also
going to check if these paths would be similar oriented paths whether one of them is
inversed. However, this pseudo-code doesn’t detect similarity by itself, but it calls
another method (represented by the next pseudo-code) for doing it. Its only work is
related to the management of the similarity detection process, and the introduction of the
subchapter 3.2.2 is enough for understanding this management. The ‘Path similarity’

IMPLEMENTATION

109

pseudo-code represents the method called pathSimilarity whose initial parameters are:
two paths containing their respective vertex lists, x

m
xx

x pppP ,...,, 10=
and y

n
yy

y pppP ,...,, 10= , and a maximal length tle for path extremes that can be tolerated
during path comparisons.

1) Call the method represented by the ‘oriented similarity’ pseudo-code for computing
an oriented average of the same given paths Px and Py.

2) If the result from the called method is a non-empty array (Px and Py are similar

oriented paths) then return the same array as result.

3) Else, invert the path Py and call the same method again for Px and the inversed path Py.

4) Return the resulting array: A non-empty resulting array indicates oriented
similarity of Px and the inverse Py, and another empty resulting array indicates no
similarity.

4.5.1.4 Extremity similarity pseudo-code
This pseudo-code checks if a path is similar to another one in their original orientations.
This pseudo-code represents a method called by another one (represented by the prior
pseudo-code). However, the similarity between two paths is still not checked here.
Another further method (represented by the ‘oriented similarity’ pseudo-code) is called
for that. The ‘Extremity similarity’ pseudo-code cares about eliminating those parts of
tolerable path extremities that are not similar, and if no similarity is found in these
extremities this method directly denies path similarity instead of calling another method.

The ‘extremity similarity’ pseudo-code is related to the complete subchapter 3.2.2.1 of the
similarity detection process. This pseudo-code represents the method called isSimilar
whose initial parameters are: two paths containing their respective vertex lists,

x
m

xx
x pppP ,...,, 10= and y

n
yy

y pppP ,...,, 10= , and the maximal length tle for path extremities
that can be tolerated in path comparisons.

1) For i from 0, while i is the index of a segment x
is that has some point belonging to

the first tolerable path extremity 22 of Px:

a) For j from 0, while j is the index of a segment y
js that has some point belonging

to the first tolerable extremity of Py:

22 Remark: the first/last tolerable extremity of a path are all its consecutive segments and sub-segments

(from the first/last one) whose length sum do not exceed a defined maximal tolerable length, that in this
algorithm is the given tle parameter.

IMPLEMENTATION

110

i) If the segments x
is and y

js have the same orientation and they have some
points that are close enough then finish both ‘for’ cycles. Two close
segments, from different paths, were found in the initial extremities.

2) If two close segments x

is and y
js , from different paths, were found in the initial

extremities, do:

a) Call the ‘similarity limit’ pseudo-code, passing x
is and y

js as parameters, for

computing the approximate points x
initp and y

initp from where the similarity begins.

b) Check if the computed points x
initp and y

initp belong to the first tolerable
extremities of their correspondent paths. If some of them don’t, return an
empty array as result indicating no path similarity.

3) Else, return an empty array as result indicating no path similarity.

4) For i from 0, while i is the index of a segment x

is that has some point belonging to
the last tolerable extremity of Px:

a) For j from 0, while j is the index of a segment y

js that has some point belonging
to the last tolerable extremity of Py:

i) If the segments x

is and y
js have the same orientation and they have some

points that are close enough then finish both ‘for’ cycles. Two close
segments, from different paths, were found in the final extremities.

5) If close segments x

is and y
js , from different paths, were found in the final extremities:

a) Call the ‘similarity limit’ pseudo-code, inversing and passing the

segments x
is and y

js as parameters, for computing the approximate

points x
endp and y

endp to where the similarity ends.

b) Check if the computed points x
endp and y

endp belong to the last tolerable
extremities of their correspondent paths. If some of they don’t, return an empty
array as result indicating no path similarity.

c) Define a new path Px’ cloning only the part from Px that are between x

initp

and x
endp (they included). Also define a new path Py’ cloning only the part from

Py that are between y
initp and y

endp (they included). Here, the tolerable extremities
are discarded.

IMPLEMENTATION

111

6) Else, return an empty array as result indicating no path similarity.

7) Call the ‘oriented similarity’ pseudo-code for checking if the cloned paths Px’ and

Py’ are similar oriented paths by passing them as parameters. After it, return the
resulting path.

4.5.1.5 Similarity limit pseudo-code
This short pseudo-code computes the point of a given segment where the similarity with
another given segment begins. This pseudo-code represents a method called by another
one (represented by the prior pseudo-code). The ‘similarity limit’ pseudo-code is related
to the search of the approximated first similarity point mentioned at the end of the
subchapter 3.2.2.1 of the similarity detection process. This pseudo-code represents the
method called similarityLimit whose initial parameters are: two given segments (from
different paths to be compared) defined by their respective start and endpoints,

),(x
e

x
s

x
m pps = and),(y

e
y
s

y
n pps = , where the first defined segment x

ms is the one where the
similarity limit wants to be found.

1) Create and initialize necessary variables, including a segment to be a sub-segment
ssub of the segment x

ms . Initially, ssub is equal to x
ms .

2) While ssub is not shorter than an stipulated small distance (enough for saying that

points separated by this distance might be considered the same), do:

a) Update the subsegment ssub by discarding its half whose endpoint is not close
enough23 to the other given segment y

ns .

3) Return the middle point of the resulting subsegment ssub.

4.5.1.6 Oriented similarity pseudo-code
This pseudo-code checks if a path is similar to another one in their original orientations.
It represents a method called by another method (represented by the ‘extremity similarity’
pseudo-code). The ‘oriented similarity’ pseudo-code is related to the oriented distance-
similarity by using approximation sets (subchapter 3.2.1.3.2 of the similarity detection
process). This pseudo-code represents the method called similarityDetection whose initial
parameters are: two paths containing their respective vertex lists, x

m
xx

x pppP ,...,, 10=
and y

n
yy

y pppP ,...,, 10= .

23 Exception: Here, a ‘close enough’ distance has to be a little smaller than PSD because we must ensure

that the resulting approximate limit point will not be out of the similarity area.

IMPLEMENTATION

112

1) Create necessary variables, including an empty approximation set A y for the path
Py, another empty set y

lastA to be the last computed approximation set, a Boolean
variable flag that indicates if still there are possible segments from Py to be added to
A y, and a counter j = 0 where j will be the segment index for the path Py.

2) For i from 0 to m, where m is the number of vertices from the path xP , do:

a) Set the flag for indicating that there are still possible segments to be added to

the approximation set A y.

b) While the flag indicates that still there are possible segments to be added to the
approximation set A y and j is not greater than n-1, where n-1 is the number of
segments from Py, do:

i) If the segment y

js is close enough to the vertex x
ip and such segment doesn’t

cause similarity gap24 in the approximation set A y, add y
js to the end of A y.

ii) Else, y

js is not as approximation set, then do:

(1) If the approximation set A y for the vertex x
ip is not empty (it has been

defined), do:

(a) Set flag for indicating that there are no more segments to be added to
this approximation set A y.

(b) If there is a non-empty approximation set y

lastA before A y, it is
necessary to check if there is similarity gap between them, then do:

(i) If the initial vertex of A y is before the initial vertex of its prior

approximation set y
lastA or if the final vertex of A y is before the

final vertex of y
lastA , return a value indicating failure.

(ii) Check if there is some similarity gap between A y and y

lastA by
comparing each vertex (from Py) between them with the segment
from x

ip 1− to x
ip . If a vertex is not close enough to this segment in

some of these comparisons, return a value indicating similarity
failure.

24 If the start point of every segment (excepting the first added one) from an approximation set is close

enough to its respective vertex, we may be sure that there is no ‘similarity gap’ for such set.

IMPLEMENTATION

113

(c) Set y
lastA with the value of the approximation set A y and empty A y.

After it, set j to zero for seeking a new approximation set for the next
vertex of Px.

(2) Else, do:

(a) if j = n-1 (there are no more segments to be checked) then a vertex

do not have approximation set. Therefore, return a value indicating
similarity failure.

(b) Else, increase j.

3) Return a value indicating that the parameter paths are completely similar.

4.5.1.7 Path averaging pseudo-code
This pseudo-code is for computing an average path for two given paths. However, this
pseudo-code doesn’t compute the average by itself, but it calls other methods for it. It
uses the convex triangulation (subchapter 3.3.2) for averaging paths and it is more
specifically related to the main procedure for the path averaging process of the
subchapter 3.3.2.1. The ‘Path averaging’ pseudo-code represents the method called
pathAveraging whose initial parameters are: two paths containing their respective vertex
lists, x

m
xx

x pppP ,...,, 10= and y
n

yy
y pppP ,...,, 10= .

1) If some initial path is empty (so there is no average), return immediately an empty

path as result.

2) Create necessary variables, including the origin and destination points (po , pd) for
the average of both initial paths, two growable arrays for being the fragment lists
(Lx and Ly) of each given path, and an empty path Pavg to store the vertices of the
average fragments.

3) It is necessary to load Lx and Ly with the elements from their respective given paths,

but ensuring that they will have a common origin and destination point, thus they
will form at least one polygon. These lists are going to be fragmented later. This
step is divided in other three sub-steps:

a) Compute the average point po (new origin point) for the first vertex of each

given path (xp0 and yp0) and add po at the beginning of both fragment lists Lx and

Ly whether it is necessary. If po is equal to xp0 and/or yp0 , it is not necessary.

b) Copy all elements from the vertex lists of the given paths Px and Py to the
correspondent fragment lists Lx and Ly.

IMPLEMENTATION

114

c) Compute the average point pd (new destination point) for the last vertex of each
given path (x

mp and y
np) and add pd at the end of both fragment lists Lx and Ly

whether it is necessary. If pd is equal to x
mp and/or y

np , it is not necessary.

4) If the computed origin and destination points are the same (po = pd), the resulting
average is a path with a unique vertex. Then, return a unitary average path as result
and end the procedure.

5) Call the ‘fragment lists’ pseudo-code for fragmenting the lists Lx and Ly, converting

them in lists of path fragments (x
k

xx
x fffL ,...,, 10= and y

k
yy

y fffL ,...,, 10=) divided
by all intersection points (remembering that at least the origin points and destination
points intersect). If some error result is returned from this method, jump to the step
7.

6) For i from 0 to k, where k is the last element index of both fragment lists, do:

a) Call the ‘polygon average’ pseudo-code (from the class Polygon), passing a

polygon formed by x
if and y

if (the correspondent fragments from each fragment
list) as parameter.

b) If an empty array is received from the called process (some error happens),

finish the ‘for’ cycle. Else add the returned average fragment avg
if to the end of

the average path Pavg.

7) If some error occurred before in some called procedure, return the given path with
higher total weight as result, where the total weight of a path is the difference of its
weight and its counterweight (in case that both paths have the same total weight,
one of them is going to be returned by default).

8) No error happened before then return the average path Pavg.

4.5.1.8 Fragment lists pseudo-code
This pseudo-code is for fragmenting two paths according to the polygons that they form
together. The ‘fragment lists’ pseudo-code is called by the method represented by the
prior pseudo-code, and it is also related to the subchapter 3.3.2.1 but more specifically
related to decomposing a polygon in simple polygons (also in this subchapter). The
‘fragment lists’ pseudo-code represents the method called createFragmentLists whose
initial parameters are: two given growable arrays, initially containing the vertex list of a
respective path, with similar origin points and similar destination points,

x
m

xx
x pppL ,...,, 10= and y

n
yy

y pppL ,...,, 10= where yx
o ppp 00 == and y

n
x
md ppp == .

IMPLEMENTATION

115

1) Clone the data from the given arrays to other arrays (because the parameter arrays
have to be modified and the initial data must not be lost).

2) If the origin or destination points of the arrays are different, return an error

message (this method cannot continue).

3) Create necessary variables.

4) For i from 0 to m-1, where m-1 is the number of segments of a given list, do:

a) For j from 0 to n-1, where n-1 is the number of segments of the other given list,
do:

i) Compare the segment x

is from a list to the segments y
js from the other list

checking if they intersect.

ii) If the checked segments do intersect, and their intersection is just a point25,
and it is a new found intersection (not equal to the prior one), then:

(1) Confirm that the new computed intersection point is not before the prior

computed intersection point in any of both given lists. If it is (so the
order of intersections fails for some list) return a value indicating the
failure.

(2) Create a fragment f and add to it every vertex between the two last found

intersections of the given fragment list Lx. Also include such
intersections at the start and the end of f respectively, except if such
intersections are equal to some other added vertex.

(3) Add f to Lx, overwriting the prior list of vertices contained in Lx.

(4) Repeat the steps (2) and (3) for the other list Ly.

5) Return a Boolean value indicating success.

25 Observation: If the intersection of two segments x

as and y
bs is also a segment, this intersecting segment is

equal to x
as or y

bs , let say y
bs , and only two intersecting points are interesting: both endpoints of y

bs . But

its first endpoint was already found in the ‘for’ cycles when the prior segment to y
bs was compared to x

as .

As well as its last endpoint is going to be found again when the next segment to y
bs is compared to x

as in
the continuation of the ‘for’ cycles. So we can just ignore intersecting segments.

IMPLEMENTATION

116

4.5.1.9 Fragment averaging pseudo-code
This pseudo-code is for averaging the first detectable fragment similarity between two
given paths whether they have some fragment similarity. Actually, it calls another
method for performing averages and it doesn’t detect more than one fragment similarity
(per time) between two paths, but this method can be applied more than once to the same
pair of paths, if necessary, for ensuring every fragment similarity to be averaged. The
‘fragment averaging’ pseudo-code is related to the fragment averaging process of the
subchapter 4.3.2, and it represents the method called fragmentAveraging whose initial
parameters are: two paths containing their respective vertex lists, x

m
xx

x pppP ,...,, 10= and
y
n

yy
y pppP ,...,, 10= , and a list of paths L where to add resulting paths from this pseudo-

code.

1) For i from 0 to m-1, where m-1 is the number of segments from Px

a) For j from 0 to n-1, where n-1 is the number of segments from Py :

i) If the segment x
is is close enough to the segment y

js , do:

(1) Create necessary variables for seeking segments (in respective paths)
before and after x

is and y
js that are also part of the similar fragment.

(2) While some prior/next26 segment to the first/last found segment of

its computed27 fragment is similar to the first/last found segment of
the other computed similar segment, then keep computing the similar
fragments by seeking and adding prior/next similar segments.

(3) Use the first/last endpoints of the first/last segments for constructing

the similar fragments f x

 and f y, but considering that f x

 and f y must
get the same orientation. Also exclude non-similar fragment
extremities by replacing their first/last segment endpoints by the
first/last similarity points. For defining these similarity points, it is
necessary to call the ‘similarity limit’ pseudo-code.

(4) Call the ‘path averaging’ pseudo-code for averaging f x

 and f y.

(5) If the fragment average favg is a non-empty fragment, do:

(a) Create a resulting path Px’ by replacing the initial fragment f x by

favg in the path Px, and add Px’ to the list L of resulting paths.

26 Observation: Actually, it is not necessary to check the prior segment to x

is because we already know

that x
is is the first segment from its similar fragment.

27 The initial computed fragments, for each path respectively, contain only x
is and y

js .

IMPLEMENTATION

117

(b) Create a clone path Pant of only the vertices from Py that are

before the defined fragment f y (if there is some), and link Pant to
the resulting path Px’ by adding the correspondent endpoint of
the average favg to the end of Pant.

(c) Add Pant to the list L of resulting paths if it is not a too short

resulting path.

(d) Create a clone path Ppos of only the vertices from Py that are after
the defined fragment f

 y (if there is some), and link Ppos to the
resulting path Px’ by adding the correspondent endpoint of the
average favg to the start of Ppos.

(e) Add Ppos to the list L of resulting paths if it is not a too short

resulting path.

(f) End the ‘for’ cycles (ending this pseudo-code at the same way).

4.6 The Polygon class
The instances of this class represent basic objects for the performance of the most
elaborated process of this project. This class offers the methods that make possible the
path averaging process.

The way how these essential methods work is not easily explained in short sentences.
Therefore, once more we are going to use pseudo-codes for explaining their
performances.

4.6.1 Pseudo-codes
This subchapter is a comprehensive step like the last subchapter for pseudo-codes, and
only the pseudo-codes of interest need to be analyzed.

Like in the subchapter for Path classes, each pseudo-code will have a brief introduction,
and there they will be related to methods and to prior correspondent sub-chapters. All
their respective Java codes can be found in the appendix F for the Polygon class.

4.6.1.1 Polygon average pseudo-code
The first pseudo-code of the Polygon class is for computing the average of a given
polygon defined by two fragments. Actually, it split the given polygon in sub-polygons
and calls another method for averaging sub-polygons. The ‘polygon average’ pseudo-
code is related to the polygon average procedure of the subchapter 3.3.2.2, and it

IMPLEMENTATION

118

represents the method called polygonAveraging whose initial parameters are: a polygon

defined by a fragment
x
m

xxx pppf ,...,, 10= from the fragment list of a path, a

fragment
y
n

yyy pppf ,...,, 10= from the fragment list of another path, the origin and

destination points of the polygon (
yx

o ppp 00 == and
y
n

x
md ppp ==), and the weights of

each fragment.

1) Create the necessary variables, including a resulting average fragment favg already
containing the origin point po, two empty convex lists cl x and cl y for the
correspondent polygon fragments, and an index of the leader vertex of each convex
list (lv x and lv y) that initially have the value 0 from the origin vertices.

2) Check some initial possible casualties. Do:

a) If both origin vertices xp0 and yp0 have the destination vertex pd as their next

vertex, add pd to the end of the average fragment favg and return it (actually, the
polygon is a segment).

b) If only one origin vertex, xp0 or yp0 , has the destination point pd as its next

vertex, find the average point pavg of the origin op and destination pd, then add
the average point between them in the correspondent fragment as a new vertex
(d

x
avgo

x pppf ,,= or d
y
avgo

y pppf ,,=).

3) Call the ‘convex list’ pseudo-code twice for defining each next convex lists cl x and
cl y for each polygon fragment, passing both fragments (f x and f y), the index of both
leader vertices (lv x and lv y) and the destination point pd as parameters. If some
resulting convex list is empty because of an occurred error, return an empty array
as result.

4) If no leader vertex could advance (both convex lists cl x and cl y contain only one

element), a special situation has to be handled, then do:

a) If no leader vertex has the destination point as its next vertex, something went
wrong in the average. Return an empty array as result.

b) If the next vertex of both leader vertices lv x and lv y is the destination vertex pd,

add pd to the average fragment favg and return it (the polygon average is
complete).

c) If only one leader vertex lv has the destination vertex pd as its next vertex,

compute the average vertex between lv and pd, add it to the correspondent
fragment between these vertices, clean both convex lists and go back to the step
3 (due to flagged conditions and a while loop). A counter is used to return an
empty array (indicating failure) if this situation repeats many consecutive times.

IMPLEMENTATION

119

5) Here, the convex lists cl x and cl y contain the vertices of an internal polygon that we

want to be convex, but perhaps it is not convex yet. Define the convex sub-polygon
formed by these lists calling the ‘convex sub-polygon’ pseudo-code, passing both
lists as parameters.

6) If the called pseudo-code indicates failure or its results are not acceptable, return

an empty array as result. Otherwise, update the convex lists cl x and cl y forming a
convex sub-polygon.

7) Call the ‘convex sub-polygon average’ pseudo-code passing the updated convex

lists cl x and cl y as parameters. Add the resulting sub-polygon average fragment to
the polygon average fragment favg.

8) The last vertex from each convex list becomes the leader vertex of its fragment.

Empty the convex lists cl x and cl y and go back to the step 3.

4.6.1.2 Convex List pseudo-code
This pseudo-code is for creating a convex list for a given fragment (and its leader vertex)
with respect to another given fragment (and its leader vertex). The ‘convex list’ pseudo-
code is also related to the polygon average procedure of the subchapter 3.3.2.2, but more
specifically to defining sub-polygons with convex lists. This pseudo-code represents the
method called createConvexList whose initial parameters are: two defining polygon
fragment x

m
xxx pppf ,...,, 10= and y

n
yyy pppf ,...,, 10= , an index for the leader vertex of each

given fragment, and the polygon destination point pd.

1) Create and initialize the necessary variables: a resulting convex list cl x for the first
given fragment f x, the first inner segment si of the subpolygon that this expects to
create, and a segment x

as to be analyzed and its prior segment x
ps (both from the same

convex list cl x). These variables must have the initial values:

a) Initially, cl x contains just its leader vertex.

b) The first inner segment si links both leader vertices indicated by the given
indices.

c) Initially, x

as is the segment formed by the leader vertex of cl x and its next
vertex.

d) Normally, x

ps is the segment from f x prior to x
as , but if x

as do not have a prior
segment in the fragment (so, the leader vertex of cl x is the polygon origin
point), assume si as the prior segment x

ps .

IMPLEMENTATION

120

2) If the leader vertex of cl x is equal to the other leader vertex (so, both are the

polygon origin point) or the segments x
as and si don’t form an internal angle greater

than 180º, do:

a) Compute the side that cl x turns to, create and update necessary variables for it.

b) While the analyzed segment x

as doesn’t reach the polygon destination point
and it keep forming a convex list and it doesn’t form an spiral with the prior
analyzed segments, do:

i) If an inner immediate return is detected, return an empty convex list

indicating that it is not possible (for these processes) to compute such
polygon average.

ii) If the value for the turning variable (for the convex list cl x) is zero and this

new analyzed segment x
as do turn, keep its turning direction as the new

value for the turning variable.

iii) Add x
as to the convex list being created and update the

segments x
as and x

ps to their next segments.

3) Return the created convex list as result.

4.6.1.3 Convex sub-polygon pseudo-code
This pseudo-code is for defining convex sub-polygons by fixing two given convex lists. It
calls another method for checking if some of these givens convex lists must be fixed. The
‘convex sub-polygon’ pseudo-code is related to the sub-polygon definition procedure of
the subchapter 3.3.2.3, and it represents the method called toConvexSubpolygon whose
initial parameters are: two arrays containing convex lists x

m
xxx pppcl ,...,, 10= and

y
n

yyy pppcl ,...,, 10= from the polygon fragments.

1) If both parameter convex lists turn to the same side, only the first segment of the
internal convex list is going to be considered: remove all vertices of such list
forming other segments. This situation is possible only if both convex lists have
more than one segment. The turning from the first to the second segment of each
convex list has to be analyzed.

2) The ‘list reduction’ pseudo-code is going to be called for knowing if the first

parameter convex list cl x must be reduced to form a convex sub-polygon. While it
must be reduced do:

IMPLEMENTATION

121

a) If cl x has more than one vertex, update the list removing its last vertex.

b) Else, no more elements must be removed from cl x. Keep the unique element of

cl x and update the other list cl y eliminating every vertex from it, except its first
and last vertices.

3) The ‘list reduction’ pseudo-code is going to be called for knowing if the second

parameter convex list cl y must be reduced to form a convex sub-polygon. While it
must be reduced do:

a) If cl y has more than one vertex, update the list removing its last vertex.

b) Else, no more elements must be removed from cl y. Keep the unique element of

cl y and update the other list cl x eliminating every vertex from it, except its first
and last vertices.

4) If some failure happened during the called pseudo-code, return a value indicating

such failure, else return a value indicating success.

4.6.1.4 List reduction pseudo-code
This pseudo-code is for checking and informing if a given convex list must be fixed for
forming a convex sub-polygon with another given convex list. The ‘list reduction’
pseudo-code is also related to the sub-polygon definition procedure of the subchapter
3.3.2.3, but more specifically to fixing convex lists. This pseudo-code represents the
method called mustBeReduced whose initial parameters are: two arrays containing
convex lists x

m
xxx pppcl ,...,, 10= and y

n
yyy pppcl ,...,, 10= from the polygon fragments.

1) If both given convex lists are unitary (only has one vertex), return a value

indicating error.

2) Create the last inner segment si defined by the last vertices of both given convex
list, and create also two segments to be analyzed (x

as and y
as , one for each convex

list).

3) If some convex list is unitary (only has one vertex), do:

a) Define the analysis segment of the non-unitary convex list. The segment
endpoints are the two last vertices of such list.

b) If the convex lists have not a common start point, define the analysis segment of

the unitary convex list by equalizing it to the first inner segment (defined by the
first vertex of both lists).

IMPLEMENTATION

122

c) Else, there is no first inner segment then define the analysis segment of the
unitary convex list by equalizing it to the first segment of the non-unitary convex
list.

d) One convex list is unitary and must not be reduced, then if the angle formed by

some analyzed segment (x
as or y

as) and the last inner segment si is greater than
180º, return a value indicating the non-unitary list that must be reduced.

4) If no convex list is unitary, do:

a) It is necessary to find out the turning direction for each convex list, then do:

i) If the start points of both convex lists are not common, check the turning

direction of each convex list by analyzing the turning from the first inner
segment to the first segment of the respective list.

ii) Else, there is no first inner segment then use the first segment from the other

convex list (instead of the first inner segment) for the same analysis
mentioned at the prior sub-step.

b) If some of these segments cause no turning, then ignore the first segment of

both convex lists (if they have one) by removing the first vertex of each, and try
to compute the turnings again by calling back this recursive pseudo-code and
passing the altered convex lists as parameter. Return the same resulting value
received from this recursive call.

c) Once the turning directions are defined, redefine both analysis segments

x
as and y

as used before as auxiliary variables: define them by equalizing their
first endpoint with the vertex before the last vertex of their correspondent
convex lists, and equalizing their last endpoints with the last vertex of their
correspondent convex lists.

d) It is necessary to check if the turning directions from x

as and y
as to the last inner

segment si are the same than the turning directions of their respective convex
lists, then do:

i) If the turning direction changes from x

as to si, return a value indicating that
the other convex list cl y must be reduced (and end this pseudo-code).

ii) If the turning direction changes from y

as to si, return a value indicating that
the other convex list cl x must be reduced (and end this pseudo-code).

5) Return a value indicating that no convex list must be reduced.

IMPLEMENTATION

123

4.6.1.5 Convex sub-polygon average pseudo-code
This pseudo-code is for computing the average of a convex sub-polygon formed by two
given convex lists. The ‘convex sub-polygon average’ pseudo-code is related to the
convex sub-polygon averaging procedure of the subchapter 3.3.2.4, and it represents the
method called convexSubpolygonAveraging whose initial parameters are: two arrays
containing convex lists x

m
xxx pppcl ,...,, 10= and y

n
yyy pppcl ,...,, 10= from the polygon

fragments.

1) Create an array where to load the vertices of the average fragment g
avgf , and create

turn vertices (x
tp and y

tp ') for each given convex list cl x and cl y, initializing them
with the value of the first vertex of their correspondent convex lists
(xx

t pp 0= and yy
t pp 0' =).

2) Compute the average of both turn vertices and add it to the average fragment favg.

3) If the turn vertices are equal (x

tp = y
tp ' = po), then do:

a) If some convex list is unitary, redefine the turn vertex of the other non-unitary

list with the value of its next vertex (but do not compute nor add a new
average).

b) Else, redefine both turn vertices x

tp and y
tp 'with the value of the next vertex from

their correspondent convex lists and compute the average vertex pavg between
them. If this average vertex pavg is not approximately equal to the polygon
origin point, add pavg to the empty average fragment g

avgf .

4) While some turn vertex has nor reached the end of its convex list yet do:

a) If no turn vertex has reached the end of its convex list yet, it has to be decided
which of them must advance next. Then, find out which segment next to a turn
vertex forms the lower angle with the segment defined by both turn vertices (if
both angles are equal, a segment is chosen by default). Advance the turn vertex
that defines such segment by equalizing it to the value of its next vertex.

b) Else, advance the turn vertex that didn’t reach the end of its convex list yet

(equalizing it to the value of its next vertex).

c) Compute the average of the turn vertices and add it to the end of the average
fragment favg.

5) Return the average fragment favg as result.

IMPLEMENTATION

124

4.7 The PathFinder class
There is only one method for the PathFinder class, and this is the main method of the
program. This method can be better explained textually, and only one small pseudo-code
is going to be used during explanations. This pseudo-code is used just for part of this
method.

Initially, all files contained in a particular folder are going to be read by the program,
obtaining information from them for creating path instances. At the same time, the
information is cleaned by a chosen cleaning method (referent to the ‘initial cleaning’
pseudo-code). The folder name and directory position are defined in the construction of
this class instance.

After all the initial path instances are created, they are compared one to another. A graph
is created by constructing a node for each path instance and linking pairs of similar paths.
The method represented by the ‘path similarity’ pseudo-code is used for the similarity
comparisons of this graph building process.

Once the graph is completely defined, it is time to find sets of linked nodes (of similar
paths) that can be replaced by only one new average node (or average path). This process
may reduce the number of paths considerably. The unique Node class method is used for
these averages.

Even when there are no complete paths to be replaced anymore, we might still have many
similar path fragments that should be replaced for obtaining a nicer resulting map from
this main method. The sub-procedure being explained next is a little more complex, so a
pseudo-code will be used to explain how all the similar fragments are computed. A list L
for the present cleaned and averaged paths is the only variable defined before the next
pseudo-code that is going to be used for it.

1) Create necessary variables, including an array Pr where to load every resulting path
of this process, a pointer index p to some element of Pr, and a stack S where to load
a particular path (for working with) and its resulting paths.

2) The first path from L is directly moved to Pr.

3) While L still have paths to be checked, do:

a) Move the last path from L and add it to S.

b) Make the pointer p to point to the last element (path) of Pr.

c) While there is a path from Pr prior to p, do:

i) For i from n to 0, where n is the initial number of elements (paths) from S,

do:

IMPLEMENTATION

125

(1) Compare the i-th path from S to the path from Pr pointed by p. If some

fragment similarity is detected, average the fragments of this similarity,
remove the i-th path from S, and add every resulting path to the top of S.

(2) If a fragment average happened in the prior sub-step (the size of S got

bigger), remove the i-th path from S.

ii) If the path from Pr pointed by p was averaged with some path from S,

remove such path from Pr.

iii) Decrease p.

d) Move all resulting paths from S to Pr.

4) Copy every resulting path from Pr to the empty list L.

After this pseudo-code, we expect the similar fragments to be averaged, giving to us a
final list of paths ready to be added to a map. Displaying a path map is the last process of
the main method of this program. Though, the final list L becomes a member of the panel
that will display the map (the MapPanel class). A position in the map is chosen to be the
map center, once this unlimited map can be displaced in the panel. Initially, at least part
of the map paths wants to be seen in the panel.

IMPLEMENTATION

126

127

5 TEST
In this chapter, the results of the implemented processes are going to be discussed
individually. The general result of the project implementation was successful once it has
shown the accomplishment of the most elaborated processes. The more elaborated a
process was, the best results it demonstrated in this tests.

Even though it was acceptable to find some little failures in the first process of the
pathfinder system, this cleaning process did not show any ‘very rare’ situation (e.g. weird
immediate returns) that might cause such inconveniences, and then, no problem for this
process was found during the tests discussed here.

In the second process, the path similarity detection, we did not expect any failure and no
failure occurred. The results of this process were tested by checking the map graph
before the path averaging process was performed. The map graph was the wished one,
linking only those nodes of paths that were considered similar.

The most elaborated process was completely successful in these tests. The path averaging
process did not show undesired results in any situation, even when these situations were
made more difficult on purpose.

The fourth process for fragment averaging was not very elaborated in this project. Hence,
even if it has shown some failures, these failures were accepted. We also should also
consider that this not very elaborated process tried to supply the fifth process as well as it
could.

The stitching process was not implemented and it has shown its necessity in these tests.
The fragment averaging process tried to replace this fifth process but did not achieve it
very well. The gap of the stitching process kept being notorious.

The figure 89 illustrates a map that results from 45 read files. The initial path cleaning
process was applied on these input files and 44 paths resulted from them. We must
remember that very short paths may be ignored and some paths may be split.

This figure, of the complete initial map, is not large enough too for showing the
inconsistency of the map that we can have at the beginning of the pathfinder processes,
even after the cleaning of each individual path. But it shows a map area enclosed in a red
circle that is illustrated in the next figure 90.

The figure 90 zooms in the initial map illustrating one of the most conflictive regions of
the initial map, and there we can observe several shuffled lines that we would like to fix
by using average paths.

We can observe the success of this project when we compare these two first figures (of
the initial map) with the next figures of the resulting map. But first, it is interesting to
discuss about the value of the constants used in the pathfinder program.

TEST

128

Figure 89: The complete initial map without any process performance. The red circle encloses part of the map

illustrated in the next figure.

Figure 90: A zoom in one of the most conflictive road regions of the initial map.

TEST

129

The values that we set up for the program constants are fundamental for having a nice
resulting map. Obtained results with wrong constant values don’t use to be satisfactory.
Therefore, we have to know the properties of the received input data and analyze the
domain from where it comes.

For instance, we should not expect a nice result if we receive data with an error margin of
15 meters but we set up the constant EMD with the value 2, supposing that the maximal
distance failure due to an error margin is up to 2 meters.

Another example of a bad set-up is when we monitor a fast mobile object running at 100
Km/h and the signal comes from the satellite each 10 seconds but we set up the constant
MSL to 200, for instance. In such situation we do not accept segments that are longer than
200 meters but the segments are longer than 270 meters. It would be an exception if we
have at least one segment in this resulting map!

There are similar failure examples for every wrongly set-up constant. Hence, it is not a
good idea to randomly assign theses values; otherwise we should expect quite terrible
results, but not due to system failure.

In these tests, the best values for the example’s situation were:

• The error margin (EMD): 15 meters.
• The pattern path width (PPW): 10 meters.
• The maximal segment length (MSL): 350 meters.
• The minimal path length (MPL): 100 meters.
• The maximal tolerance length for path extremities (TLE): 100 meters.
• The approximation factor for point equalities: -6 (or 0,000.001 meters).
• The minimal significant variance when eliminating vertices (MSV): 5 meters.
• The distance for path similarities: PSD = 2*EMD + PPW.
• The minimal length for considering an average length (MAFL): 2 *PSD.
• The minimal angle for not considering immediate returns (MAIR): 8π/18 radians

or 80º.
• The reference latitude angle (latitude of Lyngby): 0.973311946195504 radians.
• The Earth polar radius: 6356752.3142 meters.
• The Earth equatorial radius: 6378137.0 meters.

Using these constant values we achieved the map of the figure 91 as result of all
processes of the pathfinder system. The conflictive map area enclosed in the red circle
can be analyzed in the next figure 92. We can observe that it is much more concise than it
was before. All the similar paths and fragments were averaged, thus we don’t have
shuffled lines anymore.

TEST

130

Figure 91: The complete resulting map. The red circle encloses part of the map illustrated in the next figure.

Figure 92: A zoom in one of the most conflictive road regions of the resulting map.

TEST

131

However, there are some failures that we can observe, like some little distortions, not
linked path unions, and loss of very short path fragments. Anyway, these little failures
will be explained later and they were not unexpected. We must remember that the fourth
process was not strongly elaborated and the fifth process was not implemented. But we
still can notice the accomplishment of the well elaborated processes of this project.

5.1 Testing the cleaning process
We have already seen examples of maps after the cleaning process for paths built from
input data. Even though we haven’t seen it in a detailed way in the figures before, the
desired results demonstrate a good initial cleaning.

Actually, the initial cleaning process has been tested and checked but we are just going to
show results of the simple cleaning performed after paths have been averaged. We are
going to use red small circles for representing the points (or path vertices) in the map
from where GPS data originated, and small green circles for positions where some path
starts.

Even though we didn’t illustrate any example of an initial cleaning, we can observe in the
figure 93 that the excess unnecessary path vertices in a map can cause conflicts that are
hard to manage. This figure illustrates a resulting map where no simple cleaning
happened after any averaging process. We got a map with excess of unnecessary points
everywhere, especially in the most averaged paths.

Figure 93: The resulting map after many averaging processes but without simple cleaning. The map region that is

enclosed by the red circle shows conflicts caused by excess of vertices. However, this excess can be observed in any
region of the map.

The more points a path has, the more conflictive it can be for averaging processes. The
next figure 94 illustrates the same prior map but with performed simple cleanings after
averaged processes. We can notice that it gets free of unnecessary points and the conflict

TEST

132

in the prior figure has disappeared. This means that cleaned paths have lower possibility
of future conflicts. Hence, it shows the important role of the cleaning process for the
pathfinder system. The figure 94 without excessive points also shows the achievement of
the simple cleaning method.

Figure 94: The resulting map after many averaging processes and simple cleanings.

5.2 Testing the similarity detection process
The great job performed by the similarity detection process was analyzed by checking the
constructed map graph. In this test we have 44 paths generated from the original input
data of the 45 cleaned GPS data files. Therefore, we have 44 original nodes representing
each constructed path.

We obtained 21 nodes without any link, but also other seven linked sub-graphs. Five of
the seven sub-graphs are complete cliques and two are not. Actually, these sub-graphs
that are not cliques demonstrated the good result of the similarity detection.

The figure 95 illustrates one of these two sub-graphs and the paths that its nodes
represent. The paths are not completely included to this figure because one set of path
extremities does not have much variance amongst them, but other set of extremities does
have considerable differences and they have been illustrated.

The same identification path numbers used in the program are used in this example. Some
extremity differences make paths not similar but other extremities differences are
tolerable. This demonstrates that the extremity tolerance does work.

Perhaps this example may seem to be wrong, but if we analyze it deeply we will notice
that it is actually a success. We must remember that what is important here is not the
straight distance between path endpoints but how long is the path extremity (of each path
individually) that must be tolerated for making endpoints similar.

TEST

133

Figure 95: A sub-graph that is not a clique and a non-linked node. It is generated from the paths whose extremities are

illustrated. The other path extremities are not included here, but the illustrated extremities are the rulers for the
construction of these graph links. Little numbered circles on the paths represent the point where they start/end.

On the other hand, the average of some sub-graphs as this one, that is not a clique, might
be the cause of little conflicts. However, the problem is neither the similarity detection
process nor the map graph formed by it. The question is how to manage graphs that are
not cliques once their management is a NP complete problem.

Another consequence of the similarity detection process is some losses of short map
fragments due to the elimination of tolerable extremities when preparing similar paths for
the path averaging process. Some fragment losses can be noticed in the figure 92.
However, these consequences were expected.

TEST

134

5.3 Testing the path averaging process
This is the most elaborated process, thus we expected more from it than from any other
process, and it didn’t disappoint us. This process offered great results. No expected or
unexpected failures happened due to this process. Only one pair of similar paths from the
44 original ones could not be averaged normally, and one of the original paths had to be
returned as result. Anyway, further averages using this resulted path were possible and
the averaging process was totally accomplished.

Of course we needed the help of the simple cleaning procedure for discarding some
unnecessary points from each path resulting from an averaging, but it was easily possible
for any resulting path.

Figure 96: The example A is a pair of similar original paths. The example B is their resulting average after a simple

cleaning.

Of course that the next fragment averaging process also shows the complete success of
the path averaging process because fragments are considered as paths for being averaged.
The figure 97 illustrates part of a map during the transition from this original map to a
map without similar paths, and then to a map without similar fragments.

Figure 97: The example A illustrates part of the map before the path averaging process. The example B shows the
same part of the map after the path averaging process. The example C illustrates this part of the map again, but after

the fragment averaging process

TEST

135

5.4 Testing the fragment averaging process
Even though the fragment averaging process was not very elaborated, some good results
can be observed from it, like the examples of figure 98. However, it is responsible of
many unwished situations like, for instance, the little distortions observed in the figure
92, especially some distortions near to path unions.

Figure 98: Three paths in the example B resulted from two paths in the example A. The original paths are not similar
but they have a long fragment similarity. This similarity was well averaged and the unique link of these three resulting

paths was a very good result.

These problems that happened many times near path unions (that are nor observed in the
prior figure) are the evidence of that we need a stitching process in charge of solving link
problems for path unions.

The fragment averaging process tried to supply the stitching process but it didn’t achieve
such process satisfactorily. Sometimes the fragment averaging process was able to solve
little link problems, but many times it could not. Actually, sometimes it even made the
problem worse. Therefore, it is suggested to elaborate a well analyzed stitching process.

Figure 99 demonstrates that we cannot blame the cleaning process, the similarity
detection process nor the path averaging process for the unwished details in the last
resulting map of this test.

TEST

136

In this figure, only the fragment averaging test (and the stitching process, of course)
hasn’t been performed yet. We can observe that, even if we still have many similar
fragments to be averaged, all similar paths were averaged and their averages are quite
accurate and clean. This figure does not show path distortions or bad path unions.

Figure 99: The most conflictive region of this map shows quite accurate results after the path averaging process, even

though the map is not concise yet and a fragment averaging process is necessary.

Therefore, this test concludes that the more elaborated a process is the more successful it
is. Every well-elaborated process reaches its aim. The process of fragment averaging,
which is not very elaborated, needs improvement. The non-elaborated process of stitching
is necessary for obtaining a map without any unwished detail.

137

CONCLUSION

138

6 CONCLUSION

The first decision in this project was to divide the performance of the studied pathfinder
system in five processes: 1) cleaning process, 2) similarity detection process, 3) path
averaging process, 4) fragment averaging process, and 5) stitching process. The obtained
results of this project matches perfectly with the results expected for each process.

The three first processes, for eliminating unnecessary data from the map, finding similar
paths on it and replacing these paths by single substitutes, were focused in this project
because the system cannot have acceptable results without these being well developed.
Theoretical solutions were elaborated. I’ve chosen some of these solutions and built
algorithms based on them. Such algorithms were implemented and their results proved
the expected success of the chosen theories.

The fourth process basically does the same that the two prior processes, but for path
fragments instead of entire paths. This process was also discussed, but not deeply
analyzed, because even though it has its particular problems, it is basically a combination
of other processes.

The fifth process, for linking path unions, was not a strong issue in the project scope and
was therefore not implemented. Moreover, algorithm implementations were not a project
requirement, but a way for testing the result of chosen theoretical solutions.

Even though quite interesting solutions where created, the algorithms developed in this
project can be optimized and the last process of stitching must also be developed for
having a total successful result. The system optimization was not a requirement for this
project either.

GPS systems are exposed to several external sources which introduce errors into a GPS
position. Hence, any system interpreting GPS data has to be prepared for dealing with
errors and trying to increase the accuracy of its data if possible. Data averaging is a good
suggestion for minimizing errors from a group of similar data.

In more critical situations, the obtained input GPS data can be more accurate than the
used for this project. For instance, it is possible to receive satellite signals in shorter time
intervals and more satellites can be used for reducing inaccuracy.

Whereas in other situations, like the one offered for the project tests, some failures cannot
be avoided, due to the lack of accuracy in the input data. Hence, some systems are made
for dealing with possible failures and trying to minimize them instead of solving them.
Sometimes it is a hard job because these assumed failures can cause hundreds of extra
problems to deal with. Sometimes it is more efficient to discard troublesome data than
trying to deal with it.

CONCLUSION

139

It is practically impossible to guess every problem that could arise when we are working
with geometrical figures with no limit of vertices. I don’t recommend the attempt of
solving each of their possible problems. There is an infinity of possible problems in this
area and some of them are very rare. Not all of these problems can be previously
imagined and each time a problem is being solved, other problems may arise.

It is recommended to analyze the most frequent and the most important problems, and
these ones should have well-elaborated solving algorithms. The possible but rare
problems should not be priorities, as well as the not very significant ones. However, the
system must be prepared for dealing with any possible exception. This means not to solve
these exceptional situations, but to minimize considerably the failure that they cause or to
discard their origins if this elimination will not represent a significant loss of information.
For instance, it is recommended to discard one of two paths that could not be averaged
instead of trying to solve every possible problem that could happen in the average of two
similar paths.

I’ve noticed during this project that sometimes there are excellent theoretical concepts
that are very strong, but they are not computable due to their complexity. The lack of
functionality for these concepts is noticed only when trying to implement them. Many
times strong mathematical concepts were developed for this project but they had to be
modified for making them possible to be codified.

On the other hand, there are casual empiric concepts that have an enormous functionality.
Therefore, only the implementation attempt of some theoretical concepts allows us to
measure for sure their functionality. A constant challenge in the computational geometry
is to find the balance between accuracy and efficiency.

Some good ideas have to be discarded due to the hard-problem algorithms that they
require for their implementations. Sometimes, easy solutions can be found but, the
simpler a good algorithm is, the more time it tends to take for dealing with thousands of
data. Therefore, processing time is a critical issue for computational geometry.

Optimal algorithms are constantly required in the computational geometry due to the
huge number of data that use to be necessary to deal with. Many procedures of this
project are able to be optimized and some suggestions for their optimizations were in the
chapters of this report.

140

REFERENCES

141

7 REFERENCES

[CG1] Mark de Berg, Otfried Schwarzkopf, Marc van Kreveld, Mark Overmars,

Computational Geometry: Algorithms and Applications
 2nd Edition, 2000

[CG2] Computational Geometry

http://www-cgrl.cs.mcgill.ca/~godfried/teaching/cg-web.html
Computational Geometry Laboratory, McGill University, Canada.

[ER] Earth Radius

http://en.wikipedia.org/wiki/Earth_radius
Wikipedia.

[FIST] Fast Industrial-Strength Triangulation of Polygons [July 2004]

http://www.cosy.sbg.ac.at/~held/projects/triang/triang.html
Universität Salzburg, Austria.

[FPT] Nikos Drakos, Fast Polygon Triangulation based on Seidel’s

Algorithm [January 1994]
http://www.cs.unc.edu/~dm/CODE/GEM/chapter.html
Computer Based Learning Unit, University of Leeds.

[GCD] Rod Dinkins, Formulae for Calculating Great Circle Heading and

Distance Information [April 2003]
http://www.ac6v.com/greatcircle.htm

[GoS] John C. Polking, The Geometry of the Sphere [January 2000]
 http://math.rice.edu/~pcmi/sphere/
 Rice University, Houston, Texas, USA.

[IA] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest,

Introduction to Algorithms,
MIT Press, 1996

REFERENCES

142

[GM] Sarah Price, Graph Matching [2000]
http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/MARBLE/
high/matching/graph.htm
Institute for Computer Based Learning, Heriot-Watt University, Scotland

[Map] How to reap a map

http://encarta.msn.com/encyclopedia_761577953/Map.html#631505884
Encarta World Atlas 2001.

[PO] Paul Bourke, Determining whether or not a polygon (2D) has its vertices

ordered clockwise or counterclockwise [March 1998]
http://astronomy.swin.edu.au/~pbourke/geometry/clockwise/
FIC Faculty, Swinburne University of Technology, Australia

[ST] Spherical Trigonometry [1999]
 http://www.hps.cam.ac.uk/starry/sphertrig.html
 University of Cambridge, United Kingdom

[STC] James Q. Jacobs, Spherical Triangle Calculator [June 2000]
 http://www.jqjacobs.net/astro/arc_form.html

143

APPENDICES

144

APPENDIX A – THE CONST CLASS

package path;

/***
* This Const class contains the constant values used in this package.
***/

public class Const
{
 /**
 * Defines how many digits to be considered when determining if two numbers are
 * approximatelly the same. (the '-' signal means after the numerical '.')
 */
 static final double approximation = -6;

 /**
 * the radius of the equatorial line of the Earth
 */
 static final double EarthEquatorialRadius = 6378137.0;

 /**
 * the radius of the meridians of the Earth
 */
 static final double EarthPolarRadius = 6356752.3142;

 /**
 * The latitude that is going to be used as reference, supposing that we are just
 * going to act (reletively) near this latitude line.
 */
 static final double ReferenceLatitudeAngle = 0.973311946195504; //(lyngby latitude = 55°46’)

 /**
 * Error Margin Distance: Defines the maximal distance for considering
 * vertex fluctuations.
 */
 static final double EMD = 15;

 /**
 * Pattern Path Width: Defines an acceptable width for paths.
 */
 static final double PPW = 10;

 /**
 * Path Similarity Distance: defines how distant the points of two paths can be
 * for still considering the complete paths similar.
 */
 static final double PSD = 2 * EMD + PPW;

 /**
 * Maximal Segment Distance: defines how long a path segment can be for
 * including it in a path.
 */
 static final double MSL = 350;

APPENDICES

145

 /**
 * Minimal Angle for Immediate Return: defines the minimal angle necessary
 * for considering a immediate return to happen.
 */
 static final double MAIR = 8 * Math.PI / 18;

 /**
 * Tolerance Length for Extremes: defines the maximal path length that can
 * be tolerated at the path extremes when detecting path similarities.
 */
 static final double TLE = 100;

 /**
 * Minimal Average Fragment Length: defines the minimal length of the average
 * fragment of similar path fragments for being taken in consideration.
 */
 static final double MAFL = Math.sqrt(2) * PSD;

 /**
 * Minimal Path Length: defines the minimal length of a path for being taken in
 * consideration.
 */
 static final double MPL = 100;

 /**
 * Minimal Significant Variance: defines the acceptable loss of accuracy (in meters)
 * during clenings of consecutive vertices (used during simple cleanings).
 */
 static final double MSV = 5;
}//class

APPENDICES

146

APPENDIX B – THE POINT CLASS

package path;

import java.util.Vector;

/***
* This Point class is limited to planar coordinates and Euclidean distances.
* <p>
* This class includes methods for setting points, examining sets of them and
* finding their distances.
***/

public class Point
{
 /**
 * The x-coordinate of the point.
 */
 public double x;
 /**
 * The y-coordinate of the point.
 */
 public double y;

 /***
 * Constructs a point with coordinates 0 (zero).
 ***/

 public Point()
 {
 this.x = 0;
 this.y = 0;
 }

 /***
 * Constructs a point so that it has a given x and y coordinates.
 *
 * @param x the x coordinate for the point
 * @param y the y coordinate for the point
 ***/

 public Point(double x, double y)
 {
 this.x = x;
 this.y = y;
 }

 /***
 * Constructs a point with the same coordinates from a given point.
 *
 * @param p the given point
 ***/

 public Point(Point p)

APPENDICES

147

 {
 this.x = p.x;
 this.y = p.y;
 }

 /***
 * Creates a planar point from the given latitude and longitude of a
 * spherical/geographical position.&bnps; Latitudes and longitudes are going to
 * be considered in radians.
 *
 * @param latitude the latitude of the spherical/geographical point
 * @param longitude the longitude of the spherical/geographical point
 ***/

 public void sphericalToPlanar(double latitude, double longitude)
 {
 this.x = longitude * Const.EarthEquatorialRadius * Math.cos(Const.ReferenceLatitudeAngle);
 this.y = latitude * Const.EarthPolarRadius;
 }

 /***
 * Makes this point to be equal to the given one.
 * <p>
 * OBS: this method makes values equal, but not pointers
 * @param p a point
 ***/

 public void equalize(Point p)
 {
 this.x = p.x;
 this.y = p.y;
 }

 /***
 * Finds the distance from this point to a given point.
 * <p>
 * It uses the Euclidean formula for planar distances.
 * @param p the given point
 * @return the point-to-point distance
 ***/

 public double distance(Point p)
 {
 if(p == null) return 0;
 return Math.sqrt((this.x-p.x)*(this.x-p.x)+(this.y-p.y)*(this.y-p.y));
 }

 /***
 * Finds the index in a given vector of points where this point happens first
 * <p>
 * Compares the coordinates of each point of the given vector with the coordinates
 * of this point.
 * <p>
 * Returns -1 if the point is not found.
 *
 * @param v the given vector

APPENDICES

148

 * @return the index of the first ocurrence
 ***/

 public int indexIn(Vector v)
 {
 for(int i=0;i<v.size();i++)
 if(this.x == ((Point)v.get(i)).x && this.y == ((Point)v.get(i)).y)
 return i; //if the first ocurrence is found
 return -1; //no ocurrence of this point was found
 }

 /**
 * Checks if this point is equal or approximatelly equal to a given point.
 * <p>
 * Returns true if they are equal, false otherwise.
 * <p>
 * A given boolean flag determines if the equality should be approximated (the
 * flag is true) or exact (the flag is false). If it should be approximated then
 * an predetermined approximation constant is going to be taken in account.
 *
 * @param p the given point
 * @param approximated the flag for approximation or exactitude
 * @return true or false
 ***/

 public boolean equals(Point p, boolean approximated)
 {
 if(approximated)
 {//approximated equality
 if(Math.abs(this.x-p.x) >= Math.pow(10,Const.approximation)) return false;
 if(Math.abs(this.y-p.y) >= Math.pow(10,Const.approximation)) return false;
 return true;
 }
 else
 {//exact equality
 if(this.x != p.x || this.y != p.y) return false;
 return true;
 }
 }

 /**
 * Computes the weighted average for this point and a given point.
 * <p>
 * The distance between the points is divided by the sum of both weights and
 * multiplyed by each weight, obtaining two distances. These distances are
 * proportional to their respective weights and their sum is equal to the original
 * distance. Therefore a weight-proportional average point is obtained.
 * <p>
 * This method also works for normal averages giving equal weights for each point.
 *
 * @param p the given point
 * @param thisWeight the weight for this point
 * @param pWeight the weight for the given point
 * @return the average point according to the given weights
 ***/

APPENDICES

149

 public Point weightedAverage(Point p,int thisWeight,int pWeight)
 {
 Point resultingPoint = new Point(0,0);

 resultingPoint.x = this.x + (p.x - this.x) * pWeight / (thisWeight + pWeight);
 resultingPoint.y = this.y + (p.y - this.y) * pWeight / (thisWeight + pWeight);

 return resultingPoint;
 }

}//class

APPENDICES

150

APPENDIX C – THE SEGMENT CLASS

package path;

/***
* This <code>Segment</code> class is limited to planar coordinates and Euclidean distances.
* It represents segments of straight lines defined by a startpoint and an endpoint.
* <p>
* This class includes methods for setting segments, mesuring them and examining
* relationships between segments and other geometrical objects like points, lines
* and other segments
***/

public class Segment
{
 /**
 * startpoint of the segment.
 */
 public Point p1;
 /**
 * endpoint of the segment.
 */
 public Point p2;

 /***
 * Constructs a segment with points (0,0).
 ***/

 public Segment()
 {
 this.p1 = new Point();
 this.p2 = new Point();
 }

 /***
 * Constructs a segment so that it beggins at a given startpoint and ends
 * at a given endpoint.
 *
 * @param point1 the given segment startpoint
 * @param point2 the given segment endpoint
 ***/

 public Segment(Point point1, Point point2)
 {
 this.p1 = new Point(point1.x, point1.y);
 this.p2 = new Point(point2.x, point2.y);
 }

 /***
 * Constructs a segment so that it beggins at a startpoint defined by the given
 * x and y coordinates and ends at an endpoint also defined by given coordinates.
 *
 * @param x1 the x coordinate for the segment startpoint
 * @param y1 the y coordinate for the segment startpoint

APPENDICES

151

 * @param x2 the x coordinate for the segment endpoint
 * @param y2 the y coordinate for the segment endpoint
 ***/

 public Segment(double x1, double y1, double x2, double y2)
 {
 this.p1 = new Point(x1,y1);
 this.p2 = new Point(x2,y2);
 }

 /***
 * Constructs a segment with the same values of the given segment.
 *
 * @param s the given segment
 ***/

 public Segment(Segment s)
 {
 this.p1 = new Point();
 this.p1.equalize(s.p1);
 this.p2 = new Point();
 this.p2.equalize(s.p2);
 }

 /***
 * Sets this segment equalizing its start and endpoint with the same values
 * of the start and endpoint of a given segment.
 * <p>
 * OBS: this method makes values equal, but not pointers
 *
 * @param s the given segment for setting this one like
 ***/

 public void equalize(Segment s)
 {
 this.p1.equalize(s.p1);
 this.p2.equalize(s.p2);
 }

 /***
 * Sets this segment equalizing its start and endpoint with the same values
 * of two given points.
 * <p>
 * OBS: this method makes values equal, but not pointers
 *
 * @param p1 the given point to set the segment startpoint like
 * @param p2 the given point to set the segment endpoint like
 ***/

 public void equalize(Point p1, Point p2)
 {
 this.p1.equalize(p1);
 this.p2.equalize(p2);
 }

 /**

APPENDICES

152

 * Checks if the given doubles (segment start/endpoints coordinates) are
 * approximately equal.
 * <p>
 * Returns true if they are approximately equal, false otherwise.
 * <p>
 * A predetermined approximation constant is taken in account in this method.
 *
 * @param d1 the first given double
 * @param d2 the second given double
 * @return true or false
 ***/

 private boolean equals(double d1,double d2)
 {
 if(Math.abs(d1-d2) < Math.pow(10,Const.approximation)) return true;
 return false;
 }

 /**
 * Returns the length of this segment.
 * <p>
 * It uses the method <code>distance(Point p)</code> from the class {@link Point}
 * of this package for calculating the distance between the endpoint and the
 * startpoint of this segment.
 *
 * @return the segment length
 ***/

 public double length()
 {
 return this.p1.distance(this.p2);
 }

 /**
 * Finds the minimal distance from this segment to a given point.
 * <p>
 * It finds the equation for the line of this segment and the equation
 * of a transversal line that passes on the given point. The distance between
 * the intersection point of this computed lines and the given point is the
 * minimal distance between the segment and the given point whether the
 * intersection point belongs to the segment.
 * <p>
 * If the intersection point is not part of the segment, the start or endpoint
 * of the segment has the closest distance to the given point.
 *
 * Cares are needed for the case of infinite slope of vertical lines but these
 * lines are even easier to work with.
 *
 * @param point the given point
 * @return the minimal distance
 ***/

 public double distance(Point point)
 {
 //equation for the segment line: y = a x + b (where a=slope, b=displacement)
 double slope, displacement;

APPENDICES

153

 //equation for the segment transversal line Y = -1/a X + c (where c=transversalDisplacement)
 double transversalDisplacement;
 //coordinates for the intersection point of the found transversal lines
 double intersectionX, intersectionY;

 if (equals(this.p1.x,this.p2.x))
 {//the segment line is vertical (slope = infinite)
 if (equals(this.p1.y,this.p2.y)) return point.distance(this.p1);
 intersectionX = this.p1.x;
 intersectionY = point.y;
 }
 else
 {//the segment line is not vertical
 slope = (this.p1.y - this.p2.y) / (this.p1.x - this.p2.x);
 displacement = this.p1.y - slope * this.p1.x;
 if (equals(slope,0)) intersectionX = point.x; //the transversal line is vertical
 else
 {//the transversal line is not vertical
 transversalDisplacement = point.y + point.x / slope;
 intersectionX = (transversalDisplacement - displacement) / (slope + 1 / slope);
 }
 intersectionY = slope * intersectionX + displacement;
 }
 // now, the intersection point is already defined
 if(((intersectionX >= this.p1.x && intersectionX <= this.p2.x) ||
 (intersectionX >= this.p2.x && intersectionX <= this.p1.x)) &&
 ((intersectionY >= this.p1.y && intersectionY <= this.p2.y) ||
 (intersectionY >= this.p2.y && intersectionY <= this.p1.y)))
 return Math.sqrt(Math.pow(point.x - intersectionX, 2)
 + Math.pow(point.y - intersectionY, 2));//intersection in the given segment
 else
 {//the intersection point isn’t in the given segment
 double distance1 = point.distance(this.p1);
 double distance2 = point.distance(this.p2);
 if (distance1 <= distance2) return distance1;//the nearest point in the segment is its point p1
 else return distance2;//the nearest point in the segment is its point p2
 }
 }

 /**
 * Finds the minimal distance from this segment to another given segment.
 * <p>
 * In case the segments intersect, their minimal distance is zero. Otherwise the
 * minimal distance between two segments is the distance from some start or
 * endpoint to the other segment. So, the only 4 possible distances are
 * calculated and compared. The lowest distance is returned.
 * <p>
 * The method <code>distance(Point p)</code> of this class is used for that.
 *
 * @param s the given segment
 * @return the minimal distance
 ***/

 public double distance(Segment sgmt)
 {
 if(this.checkIntersection(sgmt)) return 0;

APPENDICES

154

 //the distance from the startpoint from this segment to the other segment
 double distance1 = this.distance(sgmt.p1);
 //the distance from the endpoint from this segment to the other segment
 double distance2 = this.distance(sgmt.p2);
 //the distance from the startpoint from the other segment to this segment
 double distance3 = sgmt.distance(this.p1);
 //the distance from the endpoint from the other segment to this segment
 double distance4 = sgmt.distance(this.p2);

 //returns the lowest of the 4 found distances
 if(distance1 <= distance2 && distance1 <= distance3 && distance1 <= distance4)
 return distance1;
 if(distance2 <= distance3 && distance2 <= distance4) return distance2;
 if(distance3 <= distance4) return distance3;
 return distance4;
 }

 /***
 * Check if there is intersection between this segment and a given segment,
 * returning true if there is intersection, false otherwise.
 * <p>
 * It uses the vector cross product for this aim. Vectors cross defines the side
 * a vector turns (right or left) to reach another vector. Remember that if two
 * segments are intersecting, the extremes of a vector should be at different
 * sides of the other vector line.
 * <p>
 * First, a quick possibility of intersection is checked using the bounding box
 * test.
 *
 * @param sgmt the given segment
 * @return true or false
 ***/
 //Introduction to Algorithms, Thomas Cormen, chapter 35 page 889.
 public boolean checkIntersection(Segment sgmt)
 {
 //quick rejection...the bounding box test
 if(Math.max(this.p1.x,this.p2.x) >= Math.min(sgmt.p1.x,sgmt.p2.x) &&
 Math.max(sgmt.p1.x,sgmt.p2.x) >= Math.min(this.p1.x,this.p2.x) &&
 Math.max(this.p1.y,this.p2.y) >= Math.min(sgmt.p1.y,sgmt.p2.y) &&
 Math.max(sgmt.p1.y,sgmt.p2.y) >= Math.min(this.p1.y,this.p2.y))
 //the vector must turn to different sides (or not turn) if there is intersection
 if(((sgmt.p1.x-this.p1.x)*(this.p2.y-this.p1.y) -
 (this.p2.x-this.p1.x)*(sgmt.p1.y-this.p1.y)) *
 ((sgmt.p2.x-this.p1.x)*(this.p2.y-this.p1.y) -
 (this.p2.x-this.p1.x)*(sgmt.p2.y-this.p1.y)) <= 0 &&
 ((this.p1.x-sgmt.p1.x)*(sgmt.p2.y-sgmt.p1.y) -
 (sgmt.p2.x-sgmt.p1.x)*(this.p1.y-sgmt.p1.y)) *
 ((this.p2.x-sgmt.p1.x)*(sgmt.p2.y-sgmt.p1.y) -
 (sgmt.p2.x-sgmt.p1.x)*(this.p2.y-sgmt.p1.y)) <= 0) return true;
 return false;
 }

 /**
 * Finds the intersecting part of this segment and a given segment. It
 * returns a segment containing such intersecting part.

APPENDICES

155

 * <p>
 * If there is no intersection it returns a segment of null endpoints. If a
 * unique point is the intersection part of the segments then it returns a
 * segment with equal start and endpoint for representing a point of intersection.
 * <p>
 * The intersecting part might be a segment whether the segments are collinear,
 * so the collinearity is checked and the method collinearIntersection(Segment)
 * of this class is called whether they are collinear.
 * <p>
 * Actually, this method only finds the most common cases of point intersections
 * and let the rare job of finding segment intersections to the method
 * collinearIntersection(Segment) whether it is needed. Remember that parallell
 * segments that are not collinear do not have intersection.
 * <p>
 * It finds point intersections by finding the ecuation y = a x + b of both
 * segment lines and calculating the point that matches to both equations.
 * <p>
 * Cares are needed for the case of infinite slope of vertical lines but these
 * lines are even easier to work with.
 *
 * @param sgmt the given segment
 * @return the segment containing the entire intersection
 ***/

 public Segment intersection(Segment sgmt)
 {
 // return a null segment if there is no intersection
 if(!this.checkIntersection(sgmt)) return (new Segment(null,null));

 double intersectionX, intersectionY; //the intersection point coordinates
 if (equals(this.p1.x,this.p2.x))
 {//this segment is vertical
 //if the given segment is also vertical, hence the segements are collinear
 if(equals(sgmt.p1.x,sgmt.p2.x)) return this.collinearIntersection(sgmt);
 else
 {//the given segment is not vertical
 double sgmtSlope = (sgmt.p1.y - sgmt.p2.y) / (sgmt.p1.x - sgmt.p2.x);
 double sgmtDisplacement = sgmt.p1.y - sgmtSlope * sgmt.p1.x;
 intersectionX = this.p1.x;
 intersectionY = sgmtSlope * intersectionX + sgmtDisplacement;
 }
 }
 else
 {//this segment is not vertical
 double thisSlope = (this.p1.y - this.p2.y) / (this.p1.x - this.p2.x);
 double thisDisplacement = this.p1.y - thisSlope * this.p1.x;
 if(equals(sgmt.p1.x,sgmt.p2.x))
 {// the given segment is vertical
 intersectionX = sgmt.p1.x;
 intersectionY = thisSlope * intersectionX + thisDisplacement;
 }
 else
 {//no segment is vertical
 double sgmtSlope = (sgmt.p1.y - sgmt.p2.y) / (sgmt.p1.x - sgmt.p2.x);
 double sgmtDisplacement = sgmt.p1.y - sgmtSlope * sgmt.p1.x;
 //if the segments are parallel (equal slopes), so they are collinear

APPENDICES

156

 if(equals(thisSlope,sgmtSlope)) return this.collinearIntersection(sgmt);
 intersectionX = (sgmtDisplacement - thisDisplacement) / (thisSlope - sgmtSlope);
 intersectionY = thisSlope * intersectionX + thisDisplacement;
 }
 } return (new Segment(intersectionX, intersectionY, intersectionX, intersectionY));
 }

 /***
 * Checks if this segment and a given collinear segment are intersecting.
 * Returns the segment containing the intersection.
 * <p>
 * It is checked if some part of both collinear segments matches,
 * because even beeing collinear they might match nowhere having no
 * intersection. A null segment is returned when no intersection is found.
 * <p>
 * In case there exist intersection, two of the four extremepoints (startpoint
 * and endpoint) from these two segments are going to bound the intersecting
 * fragment where they match. These two extremepoints are going to be found
 * to define the intersection segment to be returned.
 * <p>
 * The x coordinates will be compared to check if a extreme point is in the
 * other collinear segment. Except if the collinear segments are vertical and
 * their x coordinates do not vary. In this case the y coordinates will be used.
 *
 * @param sgmt the given segment
 * @return the segment containing the entire intersection
 ***/

 private Segment collinearIntersection(Segment sgmt)
 {
 if (equals(this.p1.x,this.p2.x))
 {// the collinear segments are vertical
 //if this segment is completely in the given segment sgmt
 if(((this.p1.y >= sgmt.p1.y && this.p1.y <= sgmt.p2.y) ||
 (this.p1.y <= sgmt.p1.y && this.p1.y >= sgmt.p2.y)) &&
 ((this.p2.y >= sgmt.p1.y && this.p2.y <= sgmt.p2.y) ||
 (this.p2.y <= sgmt.p1.y && this.p2.y >= sgmt.p2.y))) return(new Segment(this));
 //if the given segment s is completely in this segment
 if(((sgmt.p1.y >= this.p1.y && sgmt.p1.y <= this.p2.y) ||
 (sgmt.p1.y <= this.p1.y && sgmt.p1.y >= this.p2.y)) &&
 ((sgmt.p2.y >= this.p1.y && sgmt.p2.y <= this.p2.y) ||
 (sgmt.p2.y <= this.p1.y && sgmt.p2.y >= this.p2.y))) return(new Segment(sgmt));
 if(this.p1.y > sgmt.p1.y && this.p1.y > sgmt.p2.y)
 {//if the startpoint from this segment is above the entire given segment sgmt
 //(and the endpoint from this segment is into sgmt)
 if(sgmt.p1.y < this.p2.y) return(new Segment(this.p2, sgmt.p2));
 else return(new Segment(this.p2, sgmt.p1));
 }
 if(this.p2.y > sgmt.p1.y && this.p2.y > sgmt.p2.y)
 {//if the endpoint from this segment is above the entire given segment sgmt
 //(and the startpoint from this segment is into sgmt)
 if(sgmt.p1.y < this.p1.y) return(new Segment(this.p1, sgmt.p2));
 else return(new Segment(this.p1, sgmt.p1));
 }
 if(this.p1.y < sgmt.p1.y && this.p1.y < sgmt.p2.y)
 {//if the startpoint from this segment is below the entire given segment sgmt

APPENDICES

157

 //(and the endpoint from this segment is into sgmt)
 if(sgmt.p1.y > this.p2.y) return(new Segment(this.p2, sgmt.p2));
 else return(new Segment(this.p2, sgmt.p1));
 }
 if(this.p2.y < sgmt.p1.y && this.p2.y < sgmt.p2.y)
 {//if the endpoint from this segment is below the entire given segment sgmt
 //(and the startpoint from this segment is into sgmt)
 if(sgmt.p1.y > this.p1.y) return(new Segment(this.p1, sgmt.p2));
 else return(new Segment(this.p1, sgmt.p1));
 }
 }
 else
 {//the collinear segments are not vertical
 //if this segment is completely in the given segment sgmt
 if(((this.p1.x >= sgmt.p1.x && this.p1.x <= sgmt.p2.x) ||
 (this.p1.x <= sgmt.p1.x && this.p1.x >= sgmt.p2.x)) &&
 ((this.p2.x >= sgmt.p1.x && this.p2.x <= sgmt.p2.x) ||
 (this.p2.x <= sgmt.p1.x && this.p2.x >= sgmt.p2.x))) return(new Segment(this));
 //if the given segment sgmt is completely in this segment
 if(((sgmt.p1.x >= this.p1.x && sgmt.p1.x <= this.p2.x) ||
 (sgmt.p1.x <= this.p1.x && sgmt.p1.x >= this.p2.x)) &&
 ((sgmt.p2.x >= this.p1.x && sgmt.p2.x <= this.p2.x) ||
 (sgmt.p2.x <= this.p1.x && sgmt.p2.x >= this.p2.x))) return(new Segment(sgmt));
 if(this.p1.x > sgmt.p1.x && this.p1.x > sgmt.p2.x)
 {//if the startpoint from this segment is to the right of the entire given
 //segment sgmt (and the endpoint from this segment is into sgmt)
 if(sgmt.p1.x < this.p2.x) return(new Segment(this.p2, sgmt.p2));
 else return(new Segment(this.p2, sgmt.p1));
 }
 if(this.p2.x > sgmt.p1.x && this.p2.x > sgmt.p2.x)
 {//if the endpoint from this segment is to the right of the entire given
 //segment sgmt (and the startpoint from this segment is into sgmt)
 if(sgmt.p1.x < this.p1.x) return(new Segment(this.p1, sgmt.p2));
 else return(new Segment(this.p1, sgmt.p1));
 }
 if(this.p1.x < sgmt.p1.x && this.p1.x < sgmt.p2.x)
 {//if the startpoint from this segment is to the left of the entire given
 //segment sgmt (and the endpoint from this segmentis into sgmt)
 if(sgmt.p1.x > this.p2.x) return(new Segment(this.p2, sgmt.p2));
 else return(new Segment(this.p2, sgmt.p1));
 }
 if(this.p2.x < sgmt.p1.x && this.p2.x < sgmt.p2.x)
 {//if the endpoint from this segment is to the left of the entire given
 //segment sgmt (and the startpoint from this segment is into sgmt)
 if(sgmt.p1.x > this.p1.x) return(new Segment(this.p1, sgmt.p2));
 else return(new Segment(this.p1, sgmt.p1));
 }
 }
 return null; //something wrong happened
 }

 /***
 * Finds the minimal angle (in radians) formed by this segment and a given segment,
 * as if the startpoint of both segments matches.
 * <p>
 * First it finds the independent angle of each segments (respect to a cartesian

APPENDICES

158

 * system where the origin point is at the segment startpoint).
 * <p>
 * The found independent angles are combined to calculate the angle between them.
 * Two segments form two angles between them and the lowest one is returned.
 *
 * @param sgmt the given segment
 * @return the minimal angle
 **/

 public double angle(Segment sgmt)
 {
 double slope, thisAngle, otherAngle, finalAngle;

 //computing the independent angle of this segment
 if(equals(this.p1.x,this.p2.x))
 {//this segment is vertical, hence its angle is a right angle
 if(equals(this.p1.y,this.p2.y)) return 0; //this segment is a point
 if(this.p2.y > this.p1.y) thisAngle = Math.PI / 2; //this angle is positive
 else thisAngle = Math.PI / -2; //this angle is negative
 }
 else
 {//this segment is not vertical
 //get the value of the slope of this segment
 slope = (this.p1.y - this.p2.y) / (this.p1.x - this.p2.x);
 thisAngle = Math.atan(slope);
 //this angle might be wrong yet because it might be > 90 or < -90 degrees)
 }
 //finding out if the angle of this segment is not between -90 and 90 degrees.
 //If it is not, correct thisAngle
 if(this.p2.x < this.p1.x)//180 >= thisAngle > 90 degrees or -180 < thisAngle < -90 degrees
 if(this.p2.y >= this.p1.y) thisAngle = thisAngle + Math.PI;//180 >= thisAngle > 90 degrees
 else thisAngle = thisAngle - Math.PI; // -180 < thisAngle < -90 degrees

 //computing the independent angle of the given segment: otherAngle
 if(equals(sgmt.p1.x,sgmt.p2.x))
 {//the given segment is vertical, hence its angle is a right angle
 if(equals(sgmt.p1.y,sgmt.p2.y)) return 0; //the given segment is a point
 if(sgmt.p2.y > sgmt.p1.y) otherAngle = Math.PI / 2; //the given angle is positive
 else otherAngle = Math.PI / -2; //the given angle is negative
 }
 else
 {//the given segment is not vertical
 //get the value of the slope of the given segment
 slope = (sgmt.p1.y - sgmt.p2.y) / (sgmt.p1.x - sgmt.p2.x);
 otherAngle = Math.atan(slope);
 //this angle might be wrong yet because it might be > 90 or < -90 degrees)
 }
 //finding out if the angle of the given segment is not between -90 and 90 degrees.
 //If it is not, correct the angle
 if(sgmt.p2.x < sgmt.p1.x)//180 >= otherAngle > 90 degrees or -180 < otherAngle < -90 degrees
 if(sgmt.p2.y >= sgmt.p1.y) otherAngle = otherAngle + Math.PI;//180 >= otherAngle > 90 degrees
 else otherAngle = otherAngle - Math.PI; // -180 < otherAngle < -90 degrees

 //computing the lowest angle and returning it
 finalAngle = (double)Math.round(Math.abs(thisAngle - otherAngle));
 if(finalAngle > Math.PI) return 2 * Math.PI - finalAngle;

APPENDICES

159

 else return finalAngle;
 }

 /***
 * Checks if this segment has the same orientation than a given segment,
 * returning true if the segments have the same orientation and false if not.
 * <p>
 * It finds the projection of the given segment on the line of this segment, and
 * then compares the angle between this segment and the projected segment. Such
 * angle is 0 (zero) if the orientation is the same and 180 if it is inverse.
 * <p>
 * If the projection is a unique point, then this segment and the given segment
 * are transversal. This method will assume they have similar orientation
 * however it is controversial.
 * <p>
 * Cares are needed for the case of infinite slope of vertical lines but these
 * lines are even easier to work with.
 *
 * @param sgmt the given segment
 * @return true or false
 ***/

 public boolean sameOrientation(Segment sgmt)
 {
 //segment representing the projection of the given segment
 Segment projection = new Segment();

 if(equals(this.p1.x,this.p2.x))
 {//this segment is vertical, hence the projection will also be vertical
 projection.p1.x = this.p1.x; projection.p2.x = this.p1.x;
 projection.p1.y = sgmt.p1.y; projection.p2.y = sgmt.p2.y;
 }
 else
 {//this segment is not vertical, hence the projection will not be vertical either
 //the slope for this segment line and for the projection line are the same
 double slope = (this.p1.y - this.p2.y) / (this.p1.x - this.p2.x);
 if(equals(slope,0))
 {//the segment is horizontal, hence the projection will also be horizontal
 projection.p1.y = this.p1.y; projection.p2.y = this.p1.y;
 projection.p1.x = sgmt.p1.x; projection.p2.x = sgmt.p2.x;
 }
 else
 {//the segment is not horizontal, hence the projection will not be horizontal either
 double displacement = this.p1.y - slope * this.p1.x;

 //the vertical displacement for the line that is transversal to the line of this segment
 //and passes on the startpoint of the given segment (necessary for the projection)
 double transversalDisplacement = sgmt.p1.y + (1/slope) * sgmt.p1.x;

 //the startpoint for the projection segment is defined
 projection.p1.x = (transversalDisplacement - displacement) / (slope + 1/slope);
 projection.p1.y = slope * projection.p1.x + displacement;

 //the vertical displacement for the line that is transversal to the line of this segment
 //and passes on the endpoint of the given segment (necessary for the projection)
 transversalDisplacement = sgmt.p2.y + (1/slope) * sgmt.p2.x;

APPENDICES

160

 //the endpoint for the projection segment is defined
 projection.p2.x = (transversalDisplacement - displacement) / (slope + 1/slope);
 projection.p2.y = slope * projection.p2.x + displacement;
 }
 }
 if(projection.p1.equals(projection.p2,true)) return true; //the projection is a unique point
 if(equals(this.angle(projection),0)) return true;
 return false; //different orientations
 }

 /***
 * Returns a simple integer representing the side of the turn from this
 * segment to a given segment. the value 0 (zero) means that no turning
 * happened (collinear segments), the value +1 means that a left turning happened,
 * and the value -1 means that a right turning happened.
 *
 * @param sgmt the given segment
 * @return an integer indicating the turning direction
 ***/

 public int turnSign(Segment sgmt)
 {
 double crossProduct = (sgmt.p2.x - this.p1.x) * (this.p2.y - this.p1.y) -
 (this.p2.x - this.p1.x) * (sgmt.p2.y - this.p1.y);
 if(equals(0,crossProduct)) crossProduct = 0;
 if(crossProduct > 0) crossProduct = 1;
 if(crossProduct < 0) crossProduct = -1;

 return (int) crossProduct;
 }

 /***
 * Checks if the turning from this segment to a given segment is equal to a
 * given turn. the value 0 (zero) means that no turning
 * happened (collinear segments), the value +1 means that a left turning happened,
 * and the value -1 means that a right turning happened.
 * <p>
 * It returns true if the turning directions are the same, or false otherwise.
 *
 * @param sgmt the given segment
 * @return true or false
 ***/

 public boolean sameTurn(Segment sgmt, int sign)
 {
 if(sign * this.turnSign(sgmt) < 0) return false;
 return true;
 }

}//class

APPENDICES

161

APPENDIX D – THE NODE CLASS

package path;

import java.util.Vector;

/***
* This <code>Node</code> class represents nodes of a particular graph where the
* nodes themselves represents paths of a path set.
* <p>
* Not only the nodes are expressed in this class but also their links.
* <p>
* This class includes a method for averaging these nodes.
***/

public class Node
{
 /**
 * The path represented by this node in the graph.
 */
 Path path;
 /**
 * A list of indices (from a graph vector) pointing to nodes linked to this one.
 */
 Vector links;
 /**
 * A flag indicating if this node has already been checked or not during a graph check
 */
 boolean flag = false;

 /***
 * Constructs a node with no initial links for representing a given path.
 *
 * @param p the given path.
 ***/
 public Node(Path p)
 {
 links = new Vector(0);
 path = p;
 }

 /***
 * Computes the average of this node.
 * <p>
 * The average of a node is computed by averaging its path with the averaged
 * path of every linked node in a recursively way, taking care for not repeating
 * paths that already has been part of some other average.
 *
 * @param graph
 * @return the resulting path of the averaged node.
 ***/

 public Path nodeAveraging(Vector graph)
 {

APPENDICES

162

 Path nodeAverage = new Path();//the path resulting from some averaged linked node
 //vector for saving the similarity results of this node path and a linked node path after its average
 Vector similarPaths = new Vector(2);
 int linkIndex;//the index of a linked node from the graph

 this.flag = true;//indicates that this node is already part of an average process

 for(int i=0; i < this.links.size(); i++)
 {//for each linked node
 linkIndex = ((Integer)links.get(i)).intValue();

 if(((Node)graph.get(linkIndex)).flag != true)
 {//this node has not been averaged yet
 nodeAverage = ((Node)graph.get(linkIndex)).nodeAveraging(graph);
 similarPaths = this.path.pathSimilarity(nodeAverage,Const.TLE);
 if(similarPaths.size()!=0)
 {//there is similarity between this node path and the linked node path after its average
 this.path = ((Path)similarPaths.get(0)).pathAveraging((Path)similarPaths.get(1));
 this.path.weight++;
 }
 else if((this.path.weight-this.path.counterWeight) <
 (((Node)graph.get(linkIndex)).path.weight-((Node)graph.get(linkIndex)).path.counterWeight))
 {//there is no similarity and the total weight of the linked node path is heavier
 this.path = ((Node)graph.get(linkIndex)).path;
 this.path.counterWeight++;
 }//else if
 }//if
 }//for i
 return this.path;
 }//method
}//class

APPENDICES

163

APPENDIX E – THE PATH CLASS

package path;

import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.IOException;
import java.util.Vector;

/***
* This <code>Path</code> class represents paths that are a set of sequent vertex
* points imaginarely linked by straight segments.
* <p>
* Paths do not depend of the type of coordinates used by their points. The only
* needed change in case of a different coordinate type is to call another method
* in the 'cleaning(File,int)' method for adapting the file incomes instead of
* the 'sphericToPlanar(double,double)' method from the Point class.
* <p>
* Many methods are offered by this class for working with its instances, like
* cleanings, comparisons and averagings.
***/

public class Path
{
 /**
 * The vector containing all vertices of a path in an ordered way.
 */
 public Vector vertexList;

 /**
 * The number of averaged paths that this path results from
 */
 public int weight = 1;

 /**
 * The number of conflicts this path had in anterior averagings
 */
 public int counterWeight = 0;

 /***
 * Constructs a path initializing its ordered vertex list
 ***/
 Path()
 {
 vertexList = new Vector(1);
 }

 /***
 * Makes this path equal to a given one creating a clone of the vertex list and
 * copying its weight and counterweigth values.
 *
 * @param p the given path
 ***/

APPENDICES

164

 public void equalize(Path p)
 {
 this.weight = p.weight;
 this.counterWeight = p.counterWeight;
 this.vertexList = (Vector)p.vertexList.clone();
 }

// *************************** CLEANING METHODS ********************************

 /***
 * Obtains a clean path from a file by a process of basic, general or total
 * cleaning during the file data reading.
 * <p>
 * A parameter is the file to be read and the other one indicates the type of
 * cleaning to be done. If its value is 1 (or some unexpected value) then a
 * basic cleaning will be done, if its value is 2 then a general cleaning will
 * be done, and if its value is 3 then a total cleaning will be done.
 * <p>
 * In a basic cleaning the file points that are not OK are just ignored.
 * Consecutive vertices causing too long segments provoke path partitions
 * generating more than one resulting path but any of them containing too long
 * segments. Basic cleanings do not allow fluctuation vertices either and simply
 * ignore new file points that causes fluctuation with the last accepted vertex.
 * <p>
 * General cleanings avoid immediate returns besides all basic cleaning steps.
 * If a new segment (formed by a point read from the file and the last
 * accepted vertex)forms an unaccepted angle with some prior segment close to
 * it, an immediate return happens and a path partition is necessary, where no
 * resulting path will contain both segments causing the immediate return.
 * <p>
 * Total cleanings avoid path self-similarities besides all general cleaning
 * steps. A new segment formed by the last read point from the file has to
 * compare its distance to all the already existing segments in the path being
 * built. If this distance is not long enough, this point will not be added to
 * this path but will be the origin of a new resulting path.
 *
 * @param file the file to obtain vertices from
 * @param type the type of cleaning to be done
 * @return a vector of paths resulting from this cleaning
 ***/

 public Vector cleaning(File file, int type)
 {
 int i = 0, j = 0, k = 0;//ordinary counters
 String line = ""; //file lines
 double latitude = 0, longitude = 0;//spherical coordinates of a point from the file
 //a flag for indicating if the first point from the file is being analyzed
 boolean firstPoint = true;

 Vector pathList = new Vector(1); //vector of resulting paths
 Path path = new Path();//a partial resulting path
 double pathLength = 0;//the length of a particular path
 int pathLastIndex = 0;//the last index of a particular file

 Point analysisVertex = new Point();//a vertex just read from the file
 Point lastVertex = new Point();//the last accepted vertex during the cleaning

APPENDICES

165

 Segment analysisSegment = new Segment();//a segment being analyzed during the cleaning
 Segment lastSegment = new Segment();//the just formed segment during the file reading

 try
 {//reading file lines one by one
 BufferedReader br = new BufferedReader(new FileReader(file));
 line = br.readLine();
 while(line!=null)
 {//while the file lines are not over
 line.trim();
 if(line.endsWith("OK"))
 {//if the new vertex is an OK point
 //convertion from file points to path vertices
 i = line.indexOf(";"); j = line.indexOf(";",i+1); k = line.indexOf(";",j+1);
 latitude = Double.parseDouble(line.substring(i+1,j));
 longitude = Double.parseDouble(line.substring(j+1,k));
 analysisVertex.sphericalToPlanar(latitude,longitude);//coordinate translation
 if(analysisVertex.distance(lastVertex) > Const.MSL)
 {//the last segment is too long
 if(firstPoint) firstPoint = false;
 else
 {//it is not the first read file point
 if(pathLength >= Const.MPL) //avoiding too short resulting paths
 {path.vertexList.trimToSize(); pathList.add(path);}
 path = new Path();
 pathLength = 0;
 }
 path.vertexList.add(new Point(analysisVertex));
 lastVertex.equalize(analysisVertex);
 }
 else if(analysisVertex.distance(lastVertex) >= Const.EMD)
 {//if the new vertex is not fluctuation vertex
 if(type > 1)
 {//the general cleaning is solicited
 k = 0;
 pathLastIndex = path.vertexList.size()-1;
 lastSegment.equalize(lastVertex, analysisVertex);
 while(pathLastIndex>k && lastVertex.distance(
 (Point)path.vertexList.get(pathLastIndex-k))<=Const.PSD)
 {//there are segments from the PSD range set to be checked
 analysisSegment.equalize((Point)path.vertexList.get(pathLastIndex-k),
 (Point)path.vertexList.get(pathLastIndex-k-1));
 if(lastSegment.angle(analysisSegment) < Const.MAIR && (analysisSegment.
 distance(analysisVertex) <= Const.PSD || lastSegment.distance(
 (Point)path.vertexList.get(pathLastIndex-k-1)) <= Const.PSD))
 {//an immediate return ocurred
 if(pathLength >= Const.MPL)
 {path.vertexList.trimToSize(); pathList.add(path);}
 path = new Path();
 pathLength = 0;
 path.vertexList.add(new Point(lastVertex));
 k = pathLastIndex;
 }//if
 else k++;
 }//while
 if(type == 3)

APPENDICES

166

 {//the total cleaning is solicited
 while(pathLastIndex > k)
 {//there are segments from the present path to be compared to the analysis segment
 analysisSegment.equalize((Point)path.vertexList.get(pathLastIndex-k),
 (Point)path.vertexList.get(pathLastIndex-k-1));
 if(lastSegment.distance(analysisSegment) <= Const.PSD)
 {//if a self-similarity (or self-intersection) ocurred
 if(pathLength >= Const.MPL)
 {path.vertexList.trimToSize(); pathList.add(path);}
 path = new Path();
 pathLength = 0;
 path.vertexList.add(new Point(lastVertex));
 k = pathLastIndex;
 }//if
 else k++;
 }//while
 }//if (total cleaning)
 }//if (general cleaning)
 //updates before the next file data reading
 path.vertexList.add(new Point(analysisVertex));
 pathLength = pathLength + lastVertex.distance(analysisVertex);
 lastVertex.equalize(analysisVertex);
 }//if (fluctuation check)
 }//if (non-OK point check)
 line = br.readLine(); //read a new line
 }//while (file reading)
 }//try
 catch(IOException e)
 {//an error happened when trying to read the file
 System.err.println("IO Error");
 System.exit(-1);
 }
 //add the last found path to the list if there is some resulting enoughly long path
 if(!firstPoint && pathLength >= Const.MPL)
 {path.vertexList.trimToSize(); pathList.add(path);}
 return pathList;
 }

 /***
 * Cleans a path from fluctuations and unnecessary points for avoiding excess
 * of them.
 * <p>
 * This cleaning is made fragment by fragment where a vertex is selected to be
 * the start vertex of a fragment to be analyzed. Next vertices of this fragment
 * will be analyzed observing the consequences of this vertex withdrawal. Of
 * course these consequences will not be significant in case of fluctuation vertex
 * withdrawals, then the analyzed vertex is immediately ignored in such cases.
 * <p>
 * In other situations, if the summatory of original segment lengths from this
 * fragment does not differ much (defined by the TDC constant) from the resulting
 * fragment length after a new vertex withdrawal, then this vertex must be
 * removed. Otherwise it must not be removed and will be the next start point
 * for a new fragment to be analyzed.
 *
 * @param path the path to be cleaned
 ***/

APPENDICES

167

 public void simpleCleaning(Path path)
 {
 //length of two consecutive segments and of the segment resulting from their cleaning
 double firstLength, secondLength, resultingLength = 0;
 //sum of lengths from original segments of a present analyzed fragment
 double lengthSum = 0;
 Point referencePoint = new Point();//start vertex of the fragment to be analyzed
 //flag that indicates if the analysis of the present fragment has already begun
 boolean fragmentCleaning = false;

 for(int i=0;i<path.vertexList.size()-2;i++)
 {//for each pair of consecutive segments
 firstLength = ((Point)path.vertexList.get(i)).distance((Point)path.vertexList.get(i+1));
 secondLength = ((Point)path.vertexList.get(i+1)).distance((Point)path.vertexList.get(i+2));
 if(firstLength <= Const.EMD || secondLength <= Const.EMD)
 {//there are fluctuation vertices
 path.vertexList.remove(i+1);
 i--;
 }
 else
 {//no fluctuation vertices
 if(fragmentCleaning)
 {//the cleaning of the present fragment already started
 resultingLength = referencePoint.distance((Point)path.vertexList.get(i+2));
 lengthSum = lengthSum + firstLength + secondLength;
 }
 else
 {//no cleaning of the present fragment has happened yet
 resultingLength = ((Point)path.vertexList.get(i)).distance((Point)path.vertexList.get(i+2));
 lengthSum = firstLength + secondLength;
 }
 if(lengthSum-resultingLength < Const.MSV)
 {//this fragment need to be cleaned
 if(!fragmentCleaning)
 {//the cleaning of the present fragment is going to start
 referencePoint.equalize((Point)path.vertexList.get(i));
 fragmentCleaning = true;//a new fragment analysis started
 }
 path.vertexList.remove(i+1);
 i--;
 }
 else fragmentCleaning = false;//a fragment analysis ended
 }//else
 }//for i
 }//method

// ********************** SIMILARITY DETECTION METHODS *************************

 /***
 * Manages the similarity detection between this path and a given path.&bnps;
 * The complete similarity between the entire paths will be checked.
 * <p>
 * A vector is returned containing each path ready for an averaging procedure:
 * Having the same orientation and ignored different tolerable extremes (in
 * accord to a given tolerance length for extremes). If there is no similarity

APPENDICES

168

 * between these paths then the returned vector contain no element.
 * <p>
 * First, it looks for path similarity between these paths in their original
 * orientation. If no similarity is detected then it looks again for similariy
 * inverting the orientation of the given path.
 * <p>
 * The method <code>isSimilar(Path,double)</code> is called for the similarity
 * comparison between two paths with the given orientations.
 * <p>
 * The returned vector contains no element or only two elements: the first
 * element is the this path adapted to the averaging procedure and the second
 * element is the given path adapted to it.
 *
 * @param path the given path
 * @param tle tolerance length for path extremes
 * @return a vector with two path fragments ready to be averaged
 ***/

 public Vector pathSimilarity(Path path, double tle)
 {
 Vector similarPaths = new Vector(2); //the vector to be returned

 similarPaths = this.isSimilar(path,tle);
 if(similarPaths.size() != 0) return similarPaths;//the paths are similar
 else
 {//there is no similarity for the paths in their original orientation
 //invert the vertex order of the given path
 Path inversePath = new Path();
 for(int i=path.vertexList.size()-1;i >= 0;i--)
 inversePath.vertexList.add(path.vertexList.get(i));
 //try the similarity again for the inverted given path
 similarPaths = this.isSimilar(inversePath,tle);
 }
 return similarPaths;
 }

 /***
 * Checks if this path and a given path are completely similar (excepting
 * tolerable extremes) and returns a vector containing each path ready for an
 * averaging procedure in case they are similar.&bnps; Otherwise it returns an
 * empty vector.
 * <p>
 * First, it finds the first and last similar segment from this and the given
 * path where to begin the similarity detection.
 * <p>
 * Then, it calls the method <code>similarityLimit(Segment,Segment)</code> for
 * finding the first similar point of each obtained segment respect to the other
 * one. The last similar points of the found last similar segments are going to
 * be found in the same way but senting the inverted segments (to the mentioned
 * method) as if they were intial instead of final.
 * <p>
 * Another method <code>similarityDetection(Path)</code> is called for checking
 * similarity for the reamining part of the paths whether there is similarity in
 * all the extremes (tolerated unsimilar extremes are excluded). This method
 * works only with the original orientation of this path and the given path.
 * <p>

APPENDICES

169

 * Only the part of the paths that deserve to be averaged is going to be loaded
 * in the returned vector. The first vector element will contain part of this
 * path and the second vector element will contain part of the given path. If
 * the paths are not considered similar the returned vector will be empty. The
 * returned vector must not have more than 2 elements.
 *
 * @param path the given path
 * @param tle tolerance length for path extremes
 * @return a vector with two path fragments ready to be averaged
 ***/

 private Vector isSimilar(Path path, double tle)
 {
 Vector similarPaths = new Vector(2);//vector containing 2 fragments to be averaged
 int i,j;// counters
 //The length sum of the segments at the extremes that are being tolerated
 double thisExtremeLength = 0, pathExtremeLength = 0;

 //The first similar segment of each path (where the similatity detection will begin)
 Segment thisInitialSegment = new Segment();
 Segment pathInitialSegment = new Segment();

 //********* FIRST PART: AT THE BEGGINING OF THE PATHS ***********

 //SEARCHING THE FIRST SIMILAR SEGMENTS AT THE BEGGINING OF THE PATHS)
 //obs: only part of the segment needs to be into the tolerance area to be
 //considered part of it
 for(i=0; thisExtremeLength <= tle && i < this.vertexList.size()-1; i++)
 {//for each segment of this path that belongs to the initial tolerable extreme
 pathExtremeLength = 0;
 thisInitialSegment.equalize((Point)this.vertexList.get(i),
 (Point)this.vertexList.get(i+1));
 thisExtremeLength = thisExtremeLength + thisInitialSegment.length();
 for(j=0; pathExtremeLength <= tle && j < path.vertexList.size()-1; j++)
 {//for each sgmt at the start of the given path that belongs to the toler. extrs.
 pathInitialSegment.equalize((Point)path.vertexList.get(j),
 (Point)path.vertexList.get(j+1));
 pathExtremeLength = pathExtremeLength + pathInitialSegment.length();
 //if the first similar segments are found
 if(thisInitialSegment.distance(pathInitialSegment) <= Const.PSD &&
 thisInitialSegment.sameOrientation(pathInitialSegment))
 {i = this.vertexList.size();j = path.vertexList.size();}//end both 'for'
 }
 }

 //DEALING WITH THE SEARCH RESULT

 //The first similar point of each path (where the similatity detection will begin)
 Point thisFirstPoint = new Point(); Point pathFirstPoint = new Point();
 if(thisInitialSegment.distance(pathInitialSegment) <= Const.PSD &&
 thisInitialSegment.sameOrientation(pathInitialSegment))
 {//there are similar segments at the beggining of the paths (into a tolerance area)
 //FIND THE FIRST SIML. POINTS OF THE FOUND SGMTS, CHECK IF THEY ARE IN THE
TOLER. AREA
 //call another method to find the first point
 thisFirstPoint = similarityLimit(thisInitialSegment,pathInitialSegment);

APPENDICES

170

 //if the first point of this path is out of the tolerance area
 if(thisExtremeLength-new Segment(thisFirstPoint,thisInitialSegment.p2).length()>tle)
 return similarPaths; //return an empty vector (there os no similarity)
 //call another method to find the first point
 pathFirstPoint.equalize(similarityLimit(pathInitialSegment,thisInitialSegment));
 //if the first point of the given path is out of the tolerance area
 if(pathExtremeLength-new Segment(pathFirstPoint,pathInitialSegment.p2).length()>tle)
 return similarPaths; //return an empty vector (there os no similarity)
 }
 else return similarPaths; //return an empty vector (no path similarity)

 //*************** SECOND PART: AT THE END OF THE PATHS *****************

 thisExtremeLength = 0; pathExtremeLength = 0;
 //The last similar segment of each path (where similatity detection will end)
 Segment thisFinalSegment = new Segment();
 Segment pathFinalSegment = new Segment();

 //FINDING THE FIRST SIMILAR SEGMENTS AT THE BEGGINING OF THE PATHS
 for(i=this.vertexList.size()-1; thisExtremeLength <= tle && i > 0; i--)
 {//for each segment of this path that belongs to the final tolerance extremes
 pathExtremeLength = 0;
 thisFinalSegment.equalize((Point)this.vertexList.get(i),
 (Point)this.vertexList.get(i-1));
 thisExtremeLength = thisExtremeLength + thisFinalSegment.length();
 for(j=path.vertexList.size()-1; pathExtremeLength <= tle && j > 0 ; j--)
 {//for each sgmt at the end of the given path that belongs to the toler. extremes
 pathFinalSegment.equalize((Point)path.vertexList.get(j),
 (Point)path.vertexList.get(j-1));
 pathExtremeLength = pathExtremeLength + pathFinalSegment.length();
 //if the last similar segments are found
 if(thisFinalSegment.distance(pathFinalSegment) <= Const.PSD &&
 thisFinalSegment.sameOrientation(pathFinalSegment))
 {i = 0; j = 0;}//end of both 'for' cycles
 }
 }

 //DEALING WITH THE SEARCH RESULT

 //The last similar point of each path (where the similatity detection will end)
 Point thisLastPoint = new Point(); Point pathLastPoint = new Point();
 //The resulting fragments of each path after excluding unsimilar tolerated extremes
 Path thisResultingPath = new Path(); Path pathResultingPath = new Path();

 if(thisFinalSegment.distance(pathFinalSegment) <= Const.PSD &&
 thisFinalSegment.sameOrientation(pathFinalSegment))
 {//there are similar segments at the end of the paths (into a tolerance area)
 //FIND THE LAST SIML. POINTS OF THE FOUND SGMTS, CHECK IF THEY ARE IN THE
TOLER. AREA
 //call another method to find the last point
 thisLastPoint.equalize(similarityLimit(thisFinalSegment,pathFinalSegment));
 //if the last point of this path is out of the tolerance area
 if(thisExtremeLength-new Segment(thisLastPoint,thisFinalSegment.p2).length()>tle)
 return similarPaths;//return an empty vector (no path similarity)
 //else load the path part that deserves to be averaged to the the resulting fragment
 thisResultingPath.vertexList.add(new Point(thisFirstPoint));

APPENDICES

171

 for(i=thisInitialSegment.p2.indexIn(this.vertexList);
 i != thisFinalSegment.p1.indexIn(this.vertexList) && i!=-1;i++)
 thisResultingPath.vertexList.add(new Point((Point)this.vertexList.get(i)));
 thisResultingPath.vertexList.add(new Point(thisLastPoint));
 //call another method to find the last point
 pathLastPoint.equalize(similarityLimit(pathFinalSegment,thisFinalSegment));
 //if the last point of the given path is out of the tolerance area
 if(pathExtremeLength-new Segment (pathLastPoint,pathFinalSegment.p2).length()>tle)
 return similarPaths;//return an empty vector (no path similarity)
 //else load the path part that deserves to be averaged to the the resulting fragment
 pathResultingPath.vertexList.add(new Point(pathFirstPoint));
 for(i=pathInitialSegment.p2.indexIn(path.vertexList);
 i != pathFinalSegment.p1.indexIn(path.vertexList) && i!=-1;i++)
 pathResultingPath.vertexList.add(new Point((Point)path.vertexList.get(i)));
 pathResultingPath.vertexList.add(new Point(pathLastPoint));
 }
 else return similarPaths; //return an empty vector (no path similarity)

 //*********** LAST PART: RETURNING THE RESULTING PATHS ***************

 //CHECK SIMILARITY FOR THE RESULTING FRAGMENTS OF THE PATHS
 //(TOLERATED UNSIMILAR EXTREMES ALREADY EXCLUDED)
 if(thisResultingPath.similarityDetection(pathResultingPath))
 {//Similarity of both fragments accepted. Load the vector with the fragments
 thisResultingPath.vertexList.trimToSize();
 similarPaths.add(thisResultingPath);
 pathResultingPath.vertexList.trimToSize();
 similarPaths.add(pathResultingPath);
 }
 return similarPaths;
 }

 /***
 * Finds the point of a segment where the similarity begins respect to another
 * segment.
 * <p>
 * This is a private method called by the method <code>isSimilar(Path,double)</code>.
 * <p>
 * The segment is divided in the middle and the segment half containing similarity
 * is chosen to continue the procedure, until the remaining segment length is lower
 * than a tenth of the error margin distance, having an acceptable distance
 * between the real similarity limit point and some extremepoint of the remaining
 * segment.
 *
 * @param analysisSegment the main segment, where the first similar point wants
 * to be found
 * @param referenceSegment the segment referenced to for considering similarity
 * @return the first similar point
 ***/

 private Point similarityLimit(Segment analysisSegment, Segment referenceSegment)
 {
 Segment subSegment = new Segment(); //segment to be split
 Segment firstHalf = new Segment(); //first half of the sub-segment
 double accuracy = (Const.EMD/10);
 subSegment.equalize(analysisSegment);//initially the subsgmt = the analysis sgmt

APPENDICES

172

 while(subSegment.length() > accuracy)
 {//the split continues (the subsegment is too big yet)
 firstHalf.equalize(subSegment.p1,subSegment.p1.weightedAverage(subSegment.p2,1,1));
 //if the first point of similarity is in the first half of the subsegment
 if(firstHalf.distance(referenceSegment.p1)<=Const.PSD-accuracy ||
 firstHalf.distance(referenceSegment.p2)<=Const.PSD-accuracy ||
 referenceSegment.distance(firstHalf.p1)<=Const.PSD-accuracy ||
 referenceSegment.distance(firstHalf.p2)<=Const.PSD-accuracy)
 subSegment.equalize(firstHalf); //eliminate subsegment second half
 //if the first point of similarity is in the second half of the subsegment
 else subSegment.p1.equalize(firstHalf.p2);//eliminate subsegment first half
 }
 return subSegment.p1.weightedAverage(subSegment.p2,1,1);
 }

 /***
 * Checks if this path and a given path are entirely similar (oriented similarity)
 * .&bnps; Returns true if both paths are completely similar, false otherwise.
 * <p>
 * This is a private method called by the method <code>isSimilar(Path,double)</code>.
 * The prior method already eliminated tolerable unsimilar extremes.
 * <p>
 * For being completely oriented similar paths, they have to fill the following
 * conditions.
 * <p>
 * - Every vertex of this path should have a non-empty Approximation Set on the
 * other path: For each vertex of this path, segments from the other path are
 * going to be checked searching for the vertex Approximation Set. Not all
 * segments need to be checked but all from the initial point of the last
 * Approximation Set. Once an Approximation Set ends, the search does not need
 * to continue.
 * <p>
 * - The initial vertex of an Approximation Set cannot be before the initial
 * vertex of its prior Approximation Set: These two vertices are always going
 * to be checked when a new Approximation set is defined.
 * <p>
 * - The final vertex of an Approximation set cannot be before the final vertex
 * of its prior Approximation Set: These two vertices are always going to be
 * checked when a new Approximation set is defined.
 * <p>
 * - No similarity gaps exists between Approximation Segments of the same set:
 * The distance of a vertex and each vertex of its Approximation Set is going
 * to be checked. If some of these distances are lower than PSD then the
 * similarity fails.
 * <p>
 * - No similarity gaps exists between two Approximation Sets: The segment
 * defined by an analyzed vertex and its prior vertex will be the reference to
 * define if all vertices from the Approximation Set of an analyzed vertex are
 * close enough to the other path, so no similarity gap happens between
 * Approximation Sets of consecutive analyzed vertices. If some of these
 * distances are lower than PSD then the similarity fails.
 *
 * @param path the given path
 * @return true or false
 ***/

APPENDICES

173

 private boolean similarityDetection(Path path)
 {
 Point analysisVertex = new Point(); //the vertex that is being analysed
 Vector approximationSet = new Vector(1);//the approx. set of the present anal. vertex
 Vector lastApproximationSet = new Vector(1);//the approx. set of the last anal. vertex
 int i, j=0; //counters
 //the segment being compared to the present analysed vertex
 Segment analysisSegment = new Segment();
 //the segment between the analysed vertex and the last analysed vertex
 Segment comparisonSegment = new Segment();
 //flag indicating if there are still possible approx. sgmts to be found for the approx. set
 int flag;// 0 = yes, 1 = no
 for(i=0;i < this.vertexList.size();i++)
 {//for each vertex of this path
 analysisVertex.equalize((Point)this.vertexList.get(i));
 flag = 0; //let find approximation sets
 while(flag == 0 && j < path.vertexList.size()-1)
 {//for each segment of the given path
 analysisSegment.equalize((Point)path.vertexList.get(j),
 (Point)path.vertexList.get(j+1));
 //Building the Approx. Set for the vertex and checking similarity constraints
 if(analysisSegment.distance(analysisVertex) <= Const.PSD &&
 (approximationSet.size()==0 ||
 analysisSegment.p1.distance(analysisVertex) <= Const.PSD))
 {//another approximation segment without similarity gaps is found
 //the approx. set is empty, add the first vertex of the segment
 if(approximationSet.size()==0) approximationSet.add(new Integer(j));
 approximationSet.add(new Integer(j+1));//add the second segment vertex
 j++; //jump to the next segment
 }
 else
 {//it is not an approximation segment
 if(approximationSet.size()!=0)
 {//the Approximation Set is completly defined
 flag = 1; //no more approximation segments to be added to the approx. set
 if(lastApproximationSet.size()!=0)
 {//this Approximation Set is not empty... let check similarity conditions
 if(((Integer)approximationSet.firstElement()).intValue() <
 ((Integer)lastApproximationSet.firstElement()).intValue())
 return false;//checking the first vertices of consecutive approx. sets
 if(((Integer)approximationSet.lastElement()).intValue() <
 ((Integer)lastApproximationSet.lastElement()).intValue())
 return false;//checking the last vertices of consecutive approx. sets
 comparisonSegment.equalize((Point)this.vertexList.get(i-1),analysisVertex);
 //checking path similarity between consecutive approx. sets
 for(int k=((Integer)lastApproximationSet.lastElement()).intValue();
 k <= ((Integer)approximationSet.firstElement()).intValue();k++)
 if(comparisonSegment.distance((Point)path.vertexList.get(k))>Const.PSD)
 return false;//a gap occured
 }//the Approximation set follow every similarity condition
 //save this Approximation Set as the last one and initialize a new empty one
 lastApproximationSet = approximationSet;
 approximationSet = new Vector(1);
 j=0; //jump to the next vertex
 }
 else if(j==path.vertexList.size()-2)//are there segments yet?

APPENDICES

174

 return false; //some vertex has no approximation segment
 else j++;//jump to the next segment
 }//else
 }//while j
 }//for i
 return true; //the paths are completely similar
 }

// ****************************** AVERAGING METHODS ****************************

 /***
 * Computes the average between this path an a given path.
 * <p>
 * Returns a path resulting from the average. Any initial path can be empty
 * otherwise an empty path is returned immediatly as result.
 * <p>
 * The endpoints for the average path are computed and added to the initial
 * paths, and in case they are equal the average result is going to be just a
 * point.
 * <p>
 * Then the paths are fragmented in accord to their intersection points
 * forming polygons (pairs of fragments). The polygons are averaged one by one.
 * If some error happens during a polygon average (or in the path fragmentation)
 * the path having the highest total weight is returned (if the total weights
 * are equal this path is returned by default).
 * <p>
 * The first and last polygons are eliminated whether they are very short. It
 * happens to avoid path distortions in short averagings as branchings and
 * crossings.
 *
 * @param path the given path
 * @return the averaged path
 **/

 public Path pathAveraging(Path path)
 {
 //if some path is empty return a empty path as result
 if(path.vertexList.size()==0 || this.vertexList.size()==0) return new Path();

 //the endpoints for the resulting (averaged) path
 Point origin = new Point(); Point destination = new Point();
 //the fragment lists
 Vector thisFragmentList = new Vector(); Vector otherFragmentList = new Vector();
 Path averagePath = new Path(); //the resulting path of the average
 Vector averageFragment = new Vector();//average of each pair of fragment lists
 //vertex (from each path) to be analyzed
 Point thisAnalysisVertex = new Point(); Point otherAnalysisVertex = new Point();
 boolean error = false; //a flag for indicating if an error happened
 int i;//counter

 //computing the resulting origin vertex
 thisAnalysisVertex.equalize((Point)this.vertexList.get(0));
 otherAnalysisVertex.equalize((Point)path.vertexList.get(0));
 origin.equalize(thisAnalysisVertex.weightedAverage(
 otherAnalysisVertex,this.weight,path.weight));
 if(!thisAnalysisVertex.equals(otherAnalysisVertex))

APPENDICES

175

 {//the origin vertices are not equal (the computed origin must be added)
 thisFragmentList.add(origin);
 otherFragmentList.add(origin);
 }
 //copying the paths to the fragment lists
 for(i=0;i < this.vertexList.size();i++)
 thisFragmentList.add((Point)this.vertexList.get(i));
 for(i=0;i < path.vertexList.size();i++)
 otherFragmentList.add((Point)path.vertexList.get(i));

 //computing the resulting destination vertex
 thisAnalysisVertex.equalize((Point)this.vertexList.lastElement());
 otherAnalysisVertex.equalize((Point)path.vertexList.lastElement());
 destination.equalize(thisAnalysisVertex.weightedAverage(
 otherAnalysisVertex,this.weight,path.weight));
 if(!thisAnalysisVertex.equals(otherAnalysisVertex))
 {//destination vertices are not equal (the computed estination might be added)
 thisFragmentList.add(destination);
 otherFragmentList.add(destination);
 }

 //checking if the resulting path is not just a point
 if(origin.equals(destination,true))
 {//the origin and the destination are the same
 averagePath.vertexList.add(thisAnalysisVertex);
 averagePath.weight = this.weight + path.weight;
 averagePath.counterWeight = this.counterWeight + path.counterWeight;
 return averagePath;
 }

 //the path fragmentation
 if(this.createFragmentLists(thisFragmentList,otherFragmentList))
 {//the fragmentations has been successful.
 //avoiding path distortions in case of short similarities (e.g.crossings)
 if(thisFragmentList.size()>0)
 {
 if(((Point)((Vector)thisFragmentList.firstElement()).firstElement()).distance(
 (Point)((Vector)thisFragmentList.firstElement()).lastElement())
 < Const.MAFL)
 {thisFragmentList.remove(0);otherFragmentList.remove(0);}
 }
 if(thisFragmentList.size()>0)
 {
 if(((Point)((Vector)thisFragmentList.lastElement()).firstElement()).distance(
 (Point)((Vector)thisFragmentList.lastElement()).lastElement())
 < Const.MAFL)
 {
 thisFragmentList.remove(thisFragmentList.size()-1);
 otherFragmentList.remove(otherFragmentList.size()-1);
 }
 }

 //averaging pair of fragments
 int j; //counter
 for(i=0;i<thisFragmentList.size();i++)
 {//for each (pair of) fragment list

APPENDICES

176

 Polygon polygon = new Polygon((Vector)thisFragmentList.get(i),
 (Vector)otherFragmentList.get(i),this.weight,path.weight);
 averageFragment = polygon.polygonAveraging();
 if(averageFragment.size()==0)
 {error = true; i = thisFragmentList.size();}//error during polygon averaging
 else for(j=0;j<averageFragment.size()-1;j++)
 averagePath.vertexList.add((Point)averageFragment.get(j));
 }
 }
 else error = true; //error due to different order of intersection points

 //dealing with possible errors due to pairs of fragments that cannot be averaged
 if(error)
 {//an error happened
 //return the path with greater resulting weight as the result (ignore the other)
 if((this.weight - this.counterWeight) >= (path.weight - path.counterWeight))
 averagePath.equalize(this);
 if((this.weight - this.counterWeight) < (path.weight - path.counterWeight))
 averagePath.equalize(path);
 averagePath.counterWeight++;
 return averagePath;
 }

 //returning the resulting averaged path
 averagePath.weight = this.weight + path.weight;
 averagePath.counterWeight = this.counterWeight + path.counterWeight;
 simpleCleaning(averagePath);
 return averagePath;
 }

 /***
 * Converts two given paths to a pair of correspondent fragment lists.
 * <p>
 * It returns true in case that no error happens during this process or false
 * otherwise. The error occurs if the paths have different sequence of
 * intersection points
 * <p>
 * It finds each intersection points of both paths and (for each path) it adds
 * to a list the correspondent vertices between found pairs of consecutive
 * intersection points. Each time a intersection point is found, a list of
 * vertices (or fragment) is loaded in a vector and a new empty list is going
 * to be used for adding vertices into, creating then the fragment lists.
 * <p>
 * constraints: the order of intersections for each path will be checked and they
 * must be the same for both given paths. The paths also must have the same origin
 * and destination point. If the constraints are not accomplished, a null vector
 * will be returned indicating a failure.
 *
 * @param fragmentList1 the first given path to be fragmented
 * @param fragmentList2 the second given path to be fragmented
 * @return true or false
 **/

 private boolean createFragmentLists(Vector fragmentList1, Vector fragmentList2)
 {
 //clones of the original given paths (the fragment lists are going to be altered)

APPENDICES

177

 Vector path1 = (Vector)fragmentList1.clone();
 Vector path2 = (Vector)fragmentList2.clone();
 fragmentList1.clear(); fragmentList2.clear();
 //the paths must have the same endpoints otherwise it indicating a failure
 if(!((Point)path1.firstElement()).equals((Point)path2.firstElement()) ||
 !((Point)path1.lastElement()).equals((Point)path2.lastElement())) return false;

 Vector fragment = new Vector();//the present fragment being buit
 //Segments being analyzed to find for intersections
 Segment analysisSegment1 = new Segment();
 Segment analysisSegment2 = new Segment();
 //Segment resulting from the intersection (inters. are not always simple points)
 Segment intersectionSegment = new Segment();
 //Point where the last intersection happened
 Point lastIntersection = new Point();
 lastIntersection.equalize((Point)path1.firstElement());
 //segment index from each path where the last intersection happened
 int lastIndex1 = 0; int lastIndex2 = 0;
 int i, j, k;//counters

 for(i=0; i < path1.size()-1; i++)
 {//for each segment from the first given path
 analysisSegment1.equalize((Point)path1.get(i),(Point)path1.get(i+1));
 for(j=0; j < path2.size()-1; j++)
 {//for each segment from the second given path
 analysisSegment2.equalize((Point)path2.get(j),(Point)path2.get(j+1));
 if(analysisSegment1.checkIntersection(analysisSegment2))
 {//the analyzed segments do intersect
 intersectionSegment.equalize(analysisSegment1.intersection(analysisSegment2));
 if(intersectionSegment.p1.equals(intersectionSegment.p2,true))
 {//the intersection is just a point (ignore them if they are segments)
 if(!intersectionSegment.p1.equals(lastIntersection,true))
 {//this intersection is not equal to the last intersection (is a new one)
 //check that the order of intersections is equal for both paths
 if(i == lastIndex1 && analysisSegment1.p1.distance(intersectionSegment.p1)
 < analysisSegment1.p1.distance(lastIntersection))
 return false; //Error: unequal intersection sequences
 if(j < lastIndex2 || (j == lastIndex2 && analysisSegment2.p1.distance(
 intersectionSegment.p1)<analysisSegment2.p1.distance(lastIntersection)))
 return false; //Error: unequal intersection sequences

 //add to the fragments the vertices from the last intersection
 //point to the present one (without repeating points)
 fragment.add(new Point(lastIntersection));
 for(k = lastIndex1+1; k <= i ;k++) fragment.add((Point)path1.get(k));
 if(!((Point)fragment.lastElement()).equals(intersectionSegment.p1,true))
 fragment.add(new Point(intersectionSegment.p1));
 fragment.trimToSize();
 fragmentList1.add(fragment);
 fragment = new Vector();

 fragment.add(new Point(lastIntersection));
 for(k = lastIndex2+1; k <= j ;k++) fragment.add((Point)path2.get(k));
 if(!((Point)fragment.lastElement()).equals(intersectionSegment.p1,true))
 fragment.add(new Point(intersectionSegment.p1));
 fragment.trimToSize();

APPENDICES

178

 fragmentList2.add(fragment);
 fragment = new Vector();
 lastIntersection.equalize(intersectionSegment.p1);
 }
 lastIndex1 = i; lastIndex2 = j;
 }//if
 }//if
 }//for j
 }//for i

 fragmentList1.trimToSize(); fragmentList2.trimToSize();
 return true;
 }//method

 /***
 * Checks if there are similar fragments between this path and a given path
 * .&bnps; Computes average fragments in case of similarity and returns a vector
 * of resulting paths after this averaging.
 * <p>
 * Each segment of this path is checked to every segment of the given path until
 * a segment similarity happens. Then, prior and next segments are going to be
 * checked until the entire similar fragment is defined. Only the first fragment
 * similarity is found by this method.
 * <p>
 * Unsimilar extremes of the similar fragments are eliminated by replacing the
 * first/last fragment points by the first/last similar points. Then the
 * fragment average is computed. Only reasonable averages are accepted to
 * realize changes in the original paths.
 * <p>
 * When two similar fragments are averaged, the original fragment of this path
 * is replaced by the averaged one, and the original fragment of the given path
 * is eliminated from it (perhaps generating two smaller paths if the
 * eliminated fragment were not at the start or end of the path). Therefore,
 * one, two or three new paths are possible from this similarity. Very short
 * resulting paths are not returned but just ignored. No paths are returned in
 * case of no similarity.
 * <p>
 * If more than one new path results from a fragment average, they are redefined
 * by linking them (equaling an endpoint of a path with some point from another)
 * before they are returned. These links have been improvised and can be improved.
 *
 * @param path the given path
 * @param pathList vector where the resulting paths are loaded to
 ***/

 public void fragmentAveraging(Path path, Vector pathList)
 {
 //segments to be analized from each path
 Segment thisAnalysisSegment = new Segment();
 Segment otherAnalysisSegment = new Segment();
 int i, j, k;//counters

 for(i=0; i < this.vertexList.size()-1; i++)
 {//for each segment from this path
 thisAnalysisSegment.equalize((Point)this.vertexList.get(i),

APPENDICES

179

 (Point)this.vertexList.get(i+1));
 for(j=0; j < path.vertexList.size()-1 && i < this.vertexList.size()-1; j++)
 {//for each segment from the given path
 otherAnalysisSegment.equalize((Point)path.vertexList.get(j),
 (Point)path.vertexList.get(j+1));
 if(thisAnalysisSegment.distance(otherAnalysisSegment.p1) <= Const.PSD ||
 thisAnalysisSegment.distance(otherAnalysisSegment.p2) <= Const.PSD ||
 otherAnalysisSegment.distance(thisAnalysisSegment.p1) <= Const.PSD ||
 otherAnalysisSegment.distance(thisAnalysisSegment.p2) <= Const.PSD)
 {//a similarity happened for two segments
 //start and end indices for the similar fragment
 int thisStartIndex=i,thisEndIndex=i+1,otherStartIndex=j,otherEndIndex=j+1;
 //the initial and final segments of the present defined similar fragments
 Segment thisFinalSegment = new Segment(thisAnalysisSegment);
 Segment otherInitialSegment =
 new Segment((Point)path.vertexList.get(otherStartIndex),
 (Point)path.vertexList.get(otherEndIndex));
 Segment otherFinalSegment =
 new Segment((Point)path.vertexList.get(otherStartIndex),
 (Point)path.vertexList.get(otherEndIndex));
 //flag for indicating if the similar fragments have inverse orientation
 boolean inverseOrientation = false;
 //flag for indicating continuation of the definition of similar fragments
 boolean definingFragments = true;
 while(definingFragments)
 {//the similar fragments are not completely defined yet
 definingFragments = false;
 if(otherStartIndex > 0 &&
 thisFinalSegment.distance(otherInitialSegment.p1) < Const.PSD)
 {//recede the first index of the second path (inverted orientations)
 otherStartIndex--; definingFragments = true; inverseOrientation = true;
 otherInitialSegment.equalize((Point)path.vertexList.get(otherStartIndex),
 (Point)path.vertexList.get(otherStartIndex+1));
 }
 if(otherEndIndex < path.vertexList.size()-1 &&
 thisFinalSegment.distance(otherFinalSegment.p2) < Const.PSD)
 {//advance the last index of the second path
 otherEndIndex++; definingFragments = true;
 otherFinalSegment.equalize((Point)path.vertexList.get(otherEndIndex-1),
 (Point)path.vertexList.get(otherEndIndex));
 }
 if(thisEndIndex < this.vertexList.size()-1 &&
 (otherInitialSegment.distance(thisFinalSegment.p2) < Const.PSD ||
 otherFinalSegment.distance(thisFinalSegment.p2) < Const.PSD))
 {//advance the last index of the first (main) path
 thisEndIndex++; definingFragments = true;
 thisFinalSegment.equalize((Point)this.vertexList.get(thisEndIndex-1),
 (Point)this.vertexList.get(thisEndIndex));
 }
 }//while

 //CREATING THE FRAGMENTS TO BE AVERAGED
 //similar fragments to be created and averaged
 Path thisFragment = new Path(); Path otherFragment = new Path();
 //defining the first similar point for the similar fragments
 Segment thisFirstSegment = new Segment(

APPENDICES

180

 (Point)this.vertexList.get(thisStartIndex),
 (Point)this.vertexList.get(thisStartIndex+1));
 Segment otherFirstSegment = new Segment();
 if(!inverseOrientation)
 otherFirstSegment.equalize((Point)path.vertexList.get(otherStartIndex),
 (Point)path.vertexList.get(otherStartIndex+1));
 else otherFirstSegment.equalize((Point)path.vertexList.get(otherEndIndex),
 (Point)path.vertexList.get(otherEndIndex-1));
 thisFragment.vertexList.add(
 similarityLimit(thisFirstSegment,otherFirstSegment));
 otherFragment.vertexList.add(
 similarityLimit(otherFirstSegment,thisFirstSegment));
 //loading the fragments
 for(k=thisStartIndex+1; k<thisEndIndex; k++)
 thisFragment.vertexList.add((Point)this.vertexList.get(k));
 if(!inverseOrientation)
 for(k=otherStartIndex+1; k < otherEndIndex; k++)
 otherFragment.vertexList.add((Point)path.vertexList.get(k));
 else for(k=otherEndIndex-1; k > otherStartIndex; k--)
 otherFragment.vertexList.add((Point)path.vertexList.get(k));
 //defining the last similar point for the similar fragment
 Segment thisLastSegment = new Segment(
 (Point)this.vertexList.get(thisEndIndex),
 (Point)this.vertexList.get(thisEndIndex-1));
 Segment otherLastSegment = new Segment();
 if(!inverseOrientation)
 otherLastSegment.equalize((Point)path.vertexList.get(otherEndIndex),
 (Point)path.vertexList.get(otherEndIndex-1));
 else otherLastSegment.equalize((Point)path.vertexList.get(otherStartIndex),
 (Point)path.vertexList.get(otherStartIndex+1));
 thisFragment.vertexList.add(
 similarityLimit(thisLastSegment,otherLastSegment));
 otherFragment.vertexList.add(
 similarityLimit(otherLastSegment,thisLastSegment));

 //averaging the similar fragments
 Vector avg = new Vector();
 avg = (thisFragment.pathAveraging(otherFragment)).vertexList;

 if(avg.size() > 0)
 {//there is an acceptable average
 Path averagedPath = new Path(); //resulting path after the averaging
 averagedPath.weight = this.weight;
 averagedPath.counterWeight = this.counterWeight;

 //replacing the averaged fragment in this path
 for(k=0; k <= thisStartIndex; k++)
 averagedPath.vertexList.add((Point)this.vertexList.get(k));
 for(k=0;k<avg.size();k++) averagedPath.vertexList.add(avg.get(k));
 for(k=thisEndIndex; k < this.vertexList.size(); k++)
 averagedPath.vertexList.add((Point)this.vertexList.get(k));
 pathList.add(averagedPath);

 //creating a new path anterior to the similar fragment to be excluded
 Path fragmentedPath = new Path();
 fragmentedPath.weight = path.weight;

APPENDICES

181

 fragmentedPath.counterWeight = path.counterWeight;
 for(k=0; k <= otherStartIndex; k++)
 fragmentedPath.vertexList.add((Point)path.vertexList.get(k));
 //links the average and this new path
 if(!inverseOrientation) fragmentedPath.vertexList.add(avg.firstElement());
 else fragmentedPath.vertexList.add(avg.lastElement());
 //saving resulting paths but ignoring too short ones
 double length=0;
 for(k=0; length < Const.MPL && k < fragmentedPath.vertexList.size()-1; k++)
 length = length + ((Point)fragmentedPath.vertexList.get(k)).distance(
 (Point)fragmentedPath.vertexList.get(k+1));
 if(length >= Const.MPL) pathList.add(fragmentedPath);

 //creating a new path posterior to the similar fragment to be excluded
 fragmentedPath = new Path();//
 //links the average and this new path
 if(!inverseOrientation) fragmentedPath.vertexList.add(avg.lastElement());
 else fragmentedPath.vertexList.add(avg.firstElement());
 for(k=otherEndIndex; k < path.vertexList.size(); k++)
 fragmentedPath.vertexList.add(path.vertexList.get(k));
 //saving resulting paths but ignoring too short ones
 length=0;
 for(k=0; length < Const.MPL && k < fragmentedPath.vertexList.size()-1; k++)
 length = length + ((Point)fragmentedPath.vertexList.get(k)).distance(
 (Point)fragmentedPath.vertexList.get(k+1));
 if(length >= Const.MPL) pathList.add(fragmentedPath);

 i = this.vertexList.size();//finishing both 'for' cycles
 }//if (similarity is acceptable)
 }//if (similarity happened)
 }//for j
 }//for i
 }//method

}//class

APPENDICES

182

APPENDIX F – THE POLYGON CLASS

package path;
import java.util.Vector;

/***
* This <code>Polygon</code> class represents geometrical figures formed by two
* lines (defined by lists of vertices) that have an equal origin and destination
* point but is expected to have no other intersection point.
* <p>
* Polygons do not depend of the type of coordinates used by their vertices.
* <p>
* The public method offered by this class is for averaging a polygon. Other
* private methods are subparts of this public method.
***/

public class Polygon
{
 /**
 * The list of vertices that define the polygon boundaries.
 */
 Vector vertexList1;
 Vector vertexList2;
 /**
 * The weight for each list of vertices.
 */
 int weight1;
 int weight2;
 /**
 * The origin point for both list of vertices (also considered the polygon
 * origin point).
 */
 Point originVertex;
 /**
 * The destination point for both list of vertices (also considered the polygon
 * destination point).
 */
 Point destinationVertex;

 /***
 * Constructs a polygon formed by two given lists of vertices and their weights.
 *
 * @param vlist1 the first given list of vertices
 * @param vlist2 the second given list of vertices
 * @param w1 the weight of the first given list of vertices
 * @param w2 the weight of the second given list of vertices
 ***/

 public Polygon(Vector vlist1, Vector vlist2,int w1, int w2)
 {
 this.vertexList1 = (Vector)vlist1.clone();
 this.weight1 = w1;
 this.vertexList2 = (Vector)vlist2.clone();
 this.weight2 = w2;

APPENDICES

183

 this.originVertex = new Point((Point)vlist1.get(0));
 this.destinationVertex = new Point((Point)vlist1.lastElement());
 }

 /***
 * Computes the average of this polygon by finding the average of its two paths
 * formed by its lists of vertices.&bnps; The average is done proportionaly
 * to the weight of each list.
 * <p>
 * The polygon averaging is done by defining sequent internal convex
 * subpolygons, averaging them and adding each average to a vector to be
 * returned at the end of this method.
 * <p>
 * Consecutive convex lists are computed for each list of vertices and special
 * situations are handled. The convex lists are computed by another method and
 * the prior function of this method is to manage the polygon averaging and to
 * deal with exceptions.
 * <p>
 * Convex subpolygons are defined from each pair of computed convex lists. The
 * subpolygons are also defined and averaged by other methods. An empty vector
 * is returned in case of average failure.
 *
 * @return a vector containing the resulting list of vertices after the average
 ***/

 public Vector polygonAveraging()
 {
 Vector averageFragment = new Vector();//the resulting fragment of this average
 averageFragment.add(new Point(this.originVertex));//add the first average point
 Vector convexList1=new Vector(); Vector convexList2=new Vector();//convex lists
 //first indices of the next convex lists to be built (next leader vtx indices)
 int firstIndex1=0; int firstIndex2=0;
 int i, counter = 0; //counters
 boolean goBackAndTryAgain = false;//flag to jump some steps in a while loop
 Vector auxiliarVector = new Vector(2);//just for help

 //dealing with initial exceptions: at least 1 leader vertex cannot advance
 if(((Point)this.vertexList1.get(1)).equals(destinationVertex,false) &&
 ((Point)this.vertexList2.get(1)).equals(destinationVertex,false))
 {//both leader vertices have the destination point as the next vertex
 averageFragment.add(new Point(this.destinationVertex));
 return averageFragment;
 }
 if(((Point)this.vertexList1.get(1)).equals(destinationVertex,false))
 {//only the leader vertex 1 have the destination point as the next vertex
 this.vertexList1.remove(this.vertexList1.size()-1);//remove the last element
 this.vertexList1.add(originVertex.weightedAverage(destinationVertex,1,1));
 this.vertexList1.add(new Point(destinationVertex));
 }
 if(((Point)this.vertexList2.get(1)).equals(destinationVertex,false))
 {//only the leader vertex 2 have the destination point as the next vertex
 this.vertexList2.remove(this.vertexList2.size()-1);//remove the last element
 this.vertexList2.add(originVertex.weightedAverage(destinationVertex,1,1));
 this.vertexList2.add(new Point(destinationVertex));
 }

APPENDICES

184

 while(true)
 {//until method results are returned
 //building a convex lists
 convexList1 = createConvexList(this.vertexList1,this.vertexList2,
 firstIndex1,firstIndex2,destinationVertex);
 convexList2 = createConvexList(this.vertexList2,this.vertexList1,
 firstIndex2,firstIndex1,destinationVertex);
 //handling an error: empty convex list
 if(convexList1.size()==0 || convexList2.size()==0) return new Vector();

 //handling special cases
 if(convexList1.size()==1 && convexList2.size()==1)
 {//both convex lists contain only one vertex and cannot advance
 if(!((Point)convexList1.get(0)).equals(
 (Point)this.vertexList1.get(this.vertexList1.size()-2),false) &&
 !((Point)convexList2.get(0)).equals(
 (Point)this.vertexList2.get(this.vertexList2.size()-2),false))
 return new Vector();//no leader vtx has the dest. point as next vtx
 if(((Point)convexList1.get(0)).equals(
 (Point)this.vertexList1.get(this.vertexList1.size()-2),false) &&
 ((Point)convexList2.get(0)).equals(
 (Point)this.vertexList2.get(this.vertexList2.size()-2),false))
 {//both leader vertices have the destination point as its next vertex
 averageFragment.add(new Point(this.destinationVertex));
 return averageFragment;
 }
 if(((Point)convexList1.get(0)).equals(
 (Point)this.vertexList1.get(this.vertexList1.size()-2),false))
 {//only the leader vertex 1 has the destination point as its next vertex
 this.vertexList1.remove(this.vertexList1.size()-1);//remove the last vtx
 this.vertexList1.add(((Point)convexList1.get(0)).
 weightedAverage(destinationVertex,1,1));
 this.vertexList1.add(destinationVertex);
 if(counter++ > 10) return new Vector();//avoid infinite loops (error)
 }
 else
 {//only the leader vertex 2 has the destination point as its next vertex
 this.vertexList2.remove(this.vertexList2.size()-1);//remove the last vtx
 this.vertexList2.add(((Point)convexList2.get(0)).
 weightedAverage(this.destinationVertex,1,1));
 this.vertexList2.add(new Point(this.destinationVertex));
 if(counter++ > 10) return new Vector();
 }
 goBackAndTryAgain=true;//jump the next steps and redefine a new convex list
 }

 if(!goBackAndTryAgain)
 {//define a convex subpolygon, find its average and add it to the vector
 if(!toConvexSubpolygon(convexList1,convexList2)) return new Vector();
 if(convexList1.size()==0 || convexList2.size()==0) return new Vector();
 auxiliarVector = convexSubpolygonAveraging(convexList1,convexList2);
 for(i=1;i < auxiliarVector.size();i++)
 averageFragment.add((Point)auxiliarVector.get(i));
 }//if
 //updating variables
 goBackAndTryAgain = false;

APPENDICES

185

 firstIndex1 = firstIndex1 + convexList1.size()-1;
 firstIndex2 = firstIndex2 + convexList2.size()-1;
 convexList1.clear(); convexList2.clear();
 }//while (Go back to define a new convex list)
 }//method

 /***
 * Creates a convex list for a given list of vertices having as reference its
 * own leader vertex, another given list of vertices and its leader vertex.
 * <p>
 * The computed convex list is going to be as longer as possible but always
 * respecting the convexity, no spirality and other requirements respect to the
 * other given convex list (internal angle greater than 180).
 * <p>
 * A vector containing the resulting convex list is returned but it will be
 * empty in case of some occurred error.
 *
 * @param thisVertexList the first given list of vertices
 * @param otherVertexList the reference list of vertices
 * @param thisFirstIndex the index for finding the leader vertex of the
 * given list to find the convex list from
 * @param otherFirstIndex the index for finding the leader vertex of the
 * reference list
 * @return a vector with the resulting convex lists
 ***/

 private Vector createConvexList(Vector thisVertexList, Vector otherVertexList,
 int thisFirstIndex, int otherFirstIndex, Point destination)
 {
 Vector convexList = new Vector();//the convex lists to be returned
 convexList.add(new Point((Point)thisVertexList.get(thisFirstIndex)));

 //the subpolygon boundary segment between the prior one and this one to be built
 Segment firstinternalSegment = new Segment((Point)otherVertexList.get(otherFirstIndex),
 (Point)thisVertexList.get(thisFirstIndex));
 //the next segment to be analized
 Segment analysisSegment = new Segment((Point)thisVertexList.get(thisFirstIndex),

(Point)thisVertexList.get(thisFirstIndex+1));
 Segment priorSegment; //the polygon segment before the one to be analized
 if(thisFirstIndex != 0)//the convex list does not begin in the polygon origin
 priorSegment = new Segment((Point)thisVertexList.get(thisFirstIndex-1),

(Point)thisVertexList.get(thisFirstIndex));
 else priorSegment = new Segment((Point)thisVertexList.get(thisFirstIndex),

(Point)thisVertexList.get(thisFirstIndex));

 if(priorSegment.p1.equals(priorSegment.p2,false) ||
 !new Segment(firstinternalSegment.p1, analysisSegment.p2).
 checkIntersection(priorSegment))
 {//ok: internal angle <= 180
 //integer for indicating which side the subpolygon is turning to
 int turnSign = firstinternalSegment.turnSign(analysisSegment);
 //the index of the last added vertex to the convex list
 int lastIndex = thisFirstIndex;

APPENDICES

186

 //the segment linking the convex list endpoints
 Segment linkSegment =
 new Segment(analysisSegment.p2,(Point)thisVertexList.get(thisFirstIndex));
 priorSegment.equalize(firstinternalSegment);//for getting in the while

 while(!analysisSegment.p2.equals(destination,false) &&
 priorSegment.sameTurn(analysisSegment,turnSign) &&
 analysisSegment.sameTurn(linkSegment,turnSign))
 {//next segment accepted: more one element for the convex list
 if(!analysisSegment.p1.equals(firstinternalSegment.p2,false) &&
 analysisSegment.checkIntersection(firstinternalSegment))
 return new Vector(); //b) Error: internal immediate return
 if(turnSign == 0)
 turnSign=priorSegment.turnSign(analysisSegment);//avoid random turn side
 convexList.add(new Point(analysisSegment.p2));//add new vtx to this cvx list
 //update the variables
 lastIndex++;
 priorSegment.equalize(analysisSegment);
 //avoid unnexpected errors
 if(lastIndex>=thisVertexList.size()-1) return new Vector();
 analysisSegment.equalize(analysisSegment.p2,
 (Point)thisVertexList.get(lastIndex+1));
 linkSegment.p1.equalize(analysisSegment.p2);
 }//while
 }//if

 convexList.trimToSize();
 return convexList;
}

 /***
 * Redefines the given convex lists to form a convex subpolygonand and returns
 * a flag indicating success or not in the subpolygon formation.
 * <p>
 * Only the part of each convex lists that forms a convex polygon is going to be
 * returned. The convex lists are reduced by eliminating its last points one by
 * one until they form a convex subpolygon.
 * <p>
 * Another method is called to know if the convex lists must be reduced or not.
 * This method just average the definition of the subpolygon and deal with
 * some possible problems that can happen.
 *
 * @param convexList1 the first given convex list to form the subpolygon
 * @param convexList2 the second given convex list to form the subpolygon
 * @return true or false (success or not)
 ***/

 private boolean toConvexSubpolygon(Vector convexList1, Vector convexList2)
 {
 //checking and solving problem caused by convex lists turning to the same side
 if(convexList1.size()>2 && convexList2.size()>2)
 {//both lists have at least 2 segments (3 vertices)
 //first and second segment of each list
 Segment first1=new Segment((Point)convexList1.get(0),(Point)convexList1.get(1));
 Segment second1=new Segment((Point)convexList1.get(1),(Point)convexList1.get(2));
 Segment first2=new Segment((Point)convexList2.get(0),(Point)convexList2.get(1));

APPENDICES

187

 Segment second2=new Segment((Point)convexList2.get(1),(Point)convexList2.get(2));
 //checking the convex lists turnings
 // -1 = turns to the right; +1 = turns to the left; 0 = do not turn
 int turnSide = first1.turnSign(second1);
 if(first2.sameTurn(second2,turnSide))
 {//both lists have turn to the same side
 //only the first segment from the most intern convex list interests
 if(first1.turnSign(first2) == turnSide) convexList2.setSize(2);
 else convexList1.setSize(2);
 }
 }

 while(mustBeReduced(convexList1,convexList2)==1)
 {//elements from the convex list 1 have to be removed for fixing the subpolygon
 if(convexList1.size() > 1) convexList1.remove(convexList1.size()-1);
 else
 {//elements cannot be removed from convex list 1 anymore
 //remove every element from the convex list 2 but it endpoints
 Point auxiliaryPoint = new Point((Point)convexList2.lastElement());
 convexList2.setSize(1);
 convexList2.add(auxiliaryPoint);
 }//else
 }//while

 while(mustBeReduced(convexList1,convexList2)==2)
 {//elements from the convex list 2 have to be removed for fixing the subpolygon
 if(convexList2.size() > 1) convexList2.remove(convexList2.size()-1);
 else
 {//elements cannot be removed from convex list 2 anymore
 //remove every element from the convex list 1 but it endpoints
 Point auxiliarPoint = new Point((Point)convexList1.lastElement());
 convexList1.setSize(1);
 convexList1.add(auxiliarPoint);
 }//else
 }//while

 if(mustBeReduced(convexList1,convexList2)==3) return false; //an error happened
 else return true; //no error...success
 }

 /***
 * Checks if some of the given convex lists need to be reduced for them to form
 * a convex subpolygon together.
 * <p>
 * It returns 0 if no convex list needs to be reduced for them to form a
 * convex subpolygon. The value 1 is returned if the first convex list needs to
 * be reduced and the number 2 is returned if the second is the one that needs
 * it. The number 3 is returned in case of an error, then it is not known which
 * convex list needs to be reduced.
 * <p>
 * It check such situation by checking the last angles formed by each convex
 * list and an imaginary segment that links their last points. If the internal
 * angle formed with a convex list is obtuse, the other convex list must be
 * reduced. Special cares are needed for dealing with unitary convex lists.
 *
 * @param convexList1 the first convex list to be checked.

APPENDICES

188

 * @param convexList2 the second convex list to be checked.
 * @return an integer indicating which convex list needs to be reduced
 ***/

 private int mustBeReduced(Vector convexList1, Vector convexList2)
 {
 if(convexList1.size()==1 && convexList2.size()==1) return 3;

 //segments (from each list) to be checked
 Segment analysisSegment1=new Segment();Segment analysisSegment2=new Segment();
 //the boundary segment between this subpolygon and the next one
 Segment lastinternalSegment = new Segment((Point)convexList1.lastElement(),
 (Point)convexList2.lastElement());

 if(convexList1.size()==1)
 {//the convex list 1 is unitary so must not be reduced
 analysisSegment2.equalize((Point)convexList2.lastElement(),
 (Point)convexList2.get(convexList2.size()-2));
 if(!((Point)convexList1.firstElement()).equals(
 (Point)convexList2.firstElement(),false))
 analysisSegment1.equalize((Point)convexList2.firstElement(),
 (Point)convexList1.firstElement());
 else //both convex lists have the origin as their first point
 analysisSegment1.equalize((Point)convexList2.get(1),
 (Point)convexList2.get(0));
 //if the polygon is not convex the convex List 2 must be reduced
 if(!analysisSegment1.sameTurn(lastinternalSegment,
 lastinternalSegment.turnSign(analysisSegment2))) return 2;
 }//if

 if (convexList2.size()==1)
 {//the convex list 2 is unitary so must not be reduced
 analysisSegment1.equalize((Point)convexList1.get(convexList1.size()-2),
 (Point)convexList1.lastElement());
 if(!((Point)convexList1.firstElement()).equals(
 (Point)convexList2.firstElement(),false))
 analysisSegment2.equalize((Point)convexList2.firstElement(),
 (Point)convexList1.firstElement());
 else //both convex lists have the origin as their first point
 analysisSegment2.equalize((Point)convexList1.get(0),
 (Point)convexList1.get(1));
 //if the polygon is not convex the convex List 1 must be reduced
 if(!analysisSegment1.sameTurn(lastinternalSegment,
 lastinternalSegment.turnSign(analysisSegment2))) return 1;
 }//if

 if(convexList1.size()!=1 && convexList2.size()!=1)
 {//no convex list is unitary
 //computing the side that the convex polygon will turn to
 analysisSegment1.equalize((Point)convexList1.get(0),(Point)convexList1.get(1));
 if(!((Point)convexList1.firstElement()).equals(
 (Point)convexList2.firstElement(),true))
 analysisSegment2.equalize((Point)convexList2.firstElement(),
 (Point)convexList1.firstElement());
 else //both convex lists have the origin as their first point
 analysisSegment2.equalize((Point)convexList2.get(1),

APPENDICES

189

 (Point)convexList2.get(0));
 int turnSide = analysisSegment2.turnSign(analysisSegment1);
 if(turnSide==0)//handling exceptions
 {//there is no turning...try this method again without the first vertices
 Vector subConvexList1= new Vector(); Vector subConvexList2= new Vector();
 subConvexList1 = (Vector)convexList1.clone();
 subConvexList2 = (Vector)convexList2.clone();
 if(convexList1.size()>1) subConvexList1.remove(0);
 if(convexList2.size()>1) subConvexList2.remove(0);
 return mustBeReduced(subConvexList1,subConvexList2);
 }
 //testing if some convex list causes concavity and need to be reduced
 analysisSegment1.equalize((Point)convexList1.get(convexList1.size()-2),
 (Point)convexList1.lastElement());
 analysisSegment2.equalize((Point)convexList2.lastElement(),
 (Point)convexList2.get(convexList2.size()-2));
 if(!analysisSegment1.sameTurn(lastinternalSegment,turnSide)) return 2;
 if(!lastinternalSegment.sameTurn(analysisSegment2,turnSide)) return 1;
 }//if

 return 0;
 }//method

 /***
 * Computes the average of a convex subpolygon formed by two given convex lists.
 * <p>
 * It returns a vector with a list of vertices resulting from the average of the
 * formed convex subpolygon.
 * <p>
 * Average points for the resulting vector are obtained from point averages of
 * pair of points (one from each convex list). These points are chosen by
 * advancing from the first to the last point from each convex list and these
 * averages are gotten in each advance. The choice of in each convex list to
 * advance is decided by formed angles by two segments: the segment between
 * the present points and the next segment of each list. The chosen convex list
 * to advance in is the one that forms a more acute angle (once they didn't
 * reach the end yet). When both lists reach the end, the average finishes.
 * <p>
 * This method also handles special situations.
 *
 * @param convexList1 the first list of vertices that forms a convex subpolygon
 * @param convexList2 the second list of vertices that forms a convex subpolygon
 * @return the vector containing the resulting vertex list
 ***/

 private Vector convexSubpolygonAveraging(Vector convexList1, Vector convexList2)
 {
 Vector averageFragment = new Vector(1);//the resulting vector to be returned
 Point averageVertex = new Point();
 //the next segment of a particular convex list to be analyzed
 Segment analysisSegment = new Segment();
 //sgmt forming angles with analysis sgmts to define in which cvx list to advance
 Segment referenceSegment = new Segment();//sgmt between the last chosen vertices
 double angle1, angle2;//angles formed by next sgmts of each cvx list and ref. sgmt
 //last chosen vertices of each convex list
 Point turnVertex1 = new Point();

APPENDICES

190

 turnVertex1.equalize((Point)convexList1.get(0));
 Point turnVertex2 = new Point();
 turnVertex2.equalize((Point)convexList2.get(0));
 //indices from the convex lists where to find the turn vertices
 int turnIndex1 = 0; int turnIndex2 = 0;

 //computing the average for the first vertices (subpolygon origin)
 averageVertex.equalize(turnVertex1.
 weightedAverage(turnVertex2,this.weight1,this.weight2));
 averageFragment.add(new Point(averageVertex));

 //dealing with possible initial special situations
 if(turnVertex1.equals(turnVertex2,false))
 {//the first vertex of both convex lists is the polygon origin point
 if(convexList1.size() == 1 || convexList2.size() == 1)
 {//some convex list only have the origin point (is unitary)
 if(convexList1.size() == 1)
 {//the convex list 1 only have the origin point
 turnVertex2.equalize((Point)convexList2.get(1));
 turnIndex2 = 1;
 }
 else
 {//the convex list 2 only have the origin point
 turnVertex1.equalize((Point)convexList1.get(1));
 turnIndex1 = 1;
 }//else
 }//if
 else
 {//no convex list only has the origin point
 turnVertex1.equalize((Point)convexList1.get(1));
 turnVertex2.equalize((Point)convexList2.get(1));
 turnIndex1 = 1; turnIndex2 = 1;
 averageVertex.equalize(
 turnVertex1.weightedAverage(turnVertex2,this.weight1,this.weight2));
 if(!averageVertex.equals(originVertex,true))
 averageFragment.add(new Point(averageVertex));
 }//else
 }//if

 while(turnIndex1 < convexList1.size()-1 || turnIndex2 < convexList2.size()-1)
 {//some convex list didn't reach its end yet...the average continues
 //advance with some vertex
 if(turnIndex1 < convexList1.size()-1 && turnIndex2 < convexList2.size()-1)
 {//no convex list reached its end yet
 referenceSegment.equalize(turnVertex1,turnVertex2);
 analysisSegment.equalize(turnVertex1,(Point)convexList1.get(turnIndex1+1));
 angle1 = referenceSegment.angle(analysisSegment);
 referenceSegment.equalize(turnVertex2,turnVertex1);
 analysisSegment.equalize(turnVertex2,(Point)convexList2.get(turnIndex2+1));
 angle2 = referenceSegment.angle(analysisSegment);
 if(angle1 < angle2)
 {//advance in the convex list 1
 turnIndex1++;
 turnVertex1.equalize((Point)convexList1.get(turnIndex1));
 }
 else

APPENDICES

191

 {//advance in the convex list 2
 turnIndex2++;
 turnVertex2.equalize((Point)convexList2.get(turnIndex2));
 }
 }
 else
 {//some convex list already reached its end
 if(turnIndex1 == convexList1.size()-1)
 {//the convex list 1 already reached its end... advance in the cvx list 2
 turnIndex2++;
 turnVertex2.equalize((Point)convexList2.get(turnIndex2));
 }
 else
 {//the convex list 2 already reached its end... advance in the cvx list 1
 turnIndex1++;
 turnVertex1.equalize((Point)convexList1.get(turnIndex1));
 }
 }

 //computes the average for the present turn vertices and add it to the vector
 averageVertex.equalize(
 turnVertex1.weightedAverage(turnVertex2,this.weight1,this.weight2));
 averageFragment.add(new Point(averageVertex));
 }//while (the subpolygon average)

 return averageFragment;
 }//method

}//class

APPENDICES

192

APPENDIX G – THE PATHFINDER CLASS

package path;

import java.io.*;
import java.util.*;

/**
* The PathFinder class displays a map resulting from the selection and modification
* of path files found in a determined file directory.
* <p>
* The paths contained in these files follow five main steps:
* <p>
* - CLEANING: Eliminates fluctuation vertices, avoids self-intersections and immediate
* returns in the same path. Paths are split whether necessary to avoid such inconvenients.
* <p>
* - SIMILARITY DETECTION: Creates a graph whose nodes represent the cleaned paths
* and the node links represent similarity between them. The applied similarity
* detection is just for whole paths (not for path fragments).
* <p>
* - PATH AVERAGING: Gets the similar paths according to the created graph and
* builds one averaged path for each set of linked nodes.
* <p>
* - FRAGMENT AVERAGING: Checks all pairs of resulting averaged paths for finding out
* fragment similarities. It Averages found similar fragments, replacing their paths by
* averaging results.
* <p>
* - GUI: Adds the final paths to a map and displays it.
*/

public class PathFinder
{
 /**
 * The map displayer.
 */
 MapFrame map;
 /**
 * The directory where to look for path files.
 */
 File pathDir;

 /***
 * Constructs an PathFinder instance creating a displayer for its resulting map.
 ***/

 public PathFinder(String directory)
 {
 this.map = new MapFrame();
 this.pathDir = new File(directory);
 }

 /**
 * Main program for the PathFinder project.
 * @author Irving Antunes de Cerqueira Luz

APPENDICES

193

 * @version 1.0
 *
 * @param args arguments
 */

 public static void main(String[] args)
 {
 //initializing necessary variables
 PathFinder PF = new PathFinder("c://paths");//instance of this class
 Vector auxiliarList = new Vector();//only for help
 //list containing all cleaned paths (but not averaged yet)
 Vector allPaths = new Vector(1);
 //the chosen candidate paths for being displayed
 Vector pathList = new Vector(1);
 int i, j, k;//counters

// CLEANING...
// **************** LOOKING FOR AND CLEANING ORIGINAL PATHS ********************

 String[] fileNames = PF.pathDir.list();//list of found path files
 Path p = new Path();//path instance to call the cleaning method
 double length = 0;//for computing path lengths

 for(i = 0; i < fileNames.length; i++)
 {//for all path files
 //get the paths resulting from this file path cleaning
 auxiliarList.clear();
 auxiliarList = p.cleaning(new File(PF.pathDir + "//"+ fileNames[i]),3);
 for(j=0;j<auxiliarList.size();j++)
 {//for each resulting path
 length = 0;//check if it deserves to be candidate for the map (enough length)
 for(k=0; k<((Path)auxiliarList.get(j)).vertexList.size()-1 &&
 length<Const.MPL; k++) length = length +
 ((Point)((Path)auxiliarList.get(j)).vertexList.get(k)).distance(
 (Point)((Path)auxiliarList.get(j)).vertexList.get(k+1));
 if(length>=Const.MPL) //if it deserves then add it
 allPaths.add(auxiliarList.elementAt(j));
 }//for j
 }//for i

// SIMILARITY DETECTION...
//*************** CREATING A GRAPH ACCORDING TO SIMILAR PATHS ******************

 Vector graph = new Vector(1);//a graph linking similar paths
 Node node;//graph nodes representing paths

 for(i=0; i<allPaths.size(); i++)
 {//for every cleaned path
 //create a node for the path and add it to the graph
 node = new Node((Path)allPaths.get(i));
 graph.add(node);
 for(j=0; j < i; j++)
 {//for every element (node) from the graph
 //check if there is similarity between this new node (path) and other node
 auxiliarList.clear();

APPENDICES

194

 auxiliarList = ((Path)allPaths.get(i)).pathSimilarity(
 ((Path)allPaths.get(j)),Const.TLE);
 if(auxiliarList.size()!=0)
 {//a similarity was found
 //link the nodes
 ((Node)graph.get(i)).links.add(new Integer(j));
 ((Node)graph.get(j)).links.add(new Integer(i));
 }//if
 }//for j
 }//for i

//PATH AVERAGING...
// ************* FINDING THE AVERAGE FOR PAIRS OF SIMILAR PATHS ****************

 for(i=0; i < graph.size(); i++)
 {//for every element from the graph
 if(((Node)graph.get(i)).flag != true)//if it has not been part of some avg. yet
 pathList.add(((Node)graph.get(i)).nodeAveraging(graph));
 }

//FRAGMENT AVERAGING...
// ********** FINDING THE AVERAGE FOR PAIRS OF SIMILAR PATH FRAGMENTS **********

 //vector containing the paths that are ready to be displayed
 Vector averagedVector = new Vector();
 //contains candidate paths being analyzed for making part of the averagedStack
 Vector jobStack = new Vector();
 int index;//index of item from averagedStack being compared to a candidate path
 int priorSize; boolean averageFlag = false;

 averagedVector.add((Path)pathList.lastElement());
 pathList.remove(pathList.lastElement());
 while(pathList.size()>0)
 {
 jobStack.add((Path)pathList.lastElement());
 pathList.remove(pathList.lastElement());
 index = averagedVector.size()-1;//averagedVector index updated to its end
 while(index >= 0)
 {//revisar todo elemento de averagedVector
 priorSize = jobStack.size();
 for(i=jobStack.size()-1; i >= 0; i--)
 {//for each element of the jobStack
 ((Path)jobStack.get(i)).fragmentAveraging(
 ((Path)averagedVector.get(index)),jobStack);
 if(priorSize != jobStack.size())
 {//a fragment average happened
 jobStack.remove(i);
 priorSize = jobStack.size();
 averageFlag = true;
 }
 }
 if(averageFlag) averagedVector.remove(index);
 averageFlag = false;
 index--;

APPENDICES

195

 }
 for(k=0; k < jobStack.size(); k++) averagedVector.add(jobStack.get(k));
 jobStack.clear();
 }
 pathList = averagedVector; //new path list gets only averaged paths to be dispalyed

//GUI...
// ********************* DISPLAYING THE AVERAGED PATHS *************************

 if(pathList.size()>0)
 {//there are paths to be displayed
 //finding a point to be the map center
 int firstX=(int)((Point)((Path)pathList.get(0)).vertexList.firstElement()).x;
 int lastX=(int)((Point)((Path)pathList.get(0)).vertexList.lastElement()).x;
 int firstY=(int)((Point)((Path)pathList.get(0)).vertexList.firstElement()).y;
 int lastY=(int)((Point)((Path)pathList.get(0)).vertexList.lastElement()).y;
 if(firstX < lastX) PF.map.panel.leftRight = firstX-50;
 else PF.map.panel.leftRight = lastX-50;
 if(firstY > lastY) PF.map.panel.upDown = firstY+50;
 else PF.map.panel.upDown = lastY+50;
 //translating the selected paths to the map
 for(i=0;i<pathList.size();i++)
 PF.map.panel.pathList.add(pathList.elementAt(i));
 }
 PF.map.repaint();//displays the map
 }//method

APPENDICES

196

APPENDIX H – THE KMAPFRAME AND THE

MAPPANEL CLASSES

package path;

import java.awt.Color;
import java.awt.Dimension;
import java.awt.Graphics;
import java.awt.Toolkit;
import java.awt.event.WindowAdapter;
import java.awt.event.WindowEvent;
import java.util.Vector;
import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.JPanel;

/**
* The class of the frame for displaying the map.
* <p>
* An extension of the {@link JFrame} class.
**/

public class MapFrame extends JFrame
{
 /**
 * The panel for the map
 */
 public MapPanel panel;

 /**
 * Constructs a Frame for the map with the screen size and a correct termination,
 * ending the program when this frame is closed.
 */

 public MapFrame()
 {
 JFrame frame = new JFrame();
 this.panel = new MapPanel(Color.white);
 //dimentioning the frame
 setSize(1025,740);
 Dimension screenSize = Toolkit.getDefaultToolkit().getScreenSize();
 Dimension frameSize = frame.getSize();
 if (frameSize.height > screenSize.height) frameSize.height = screenSize.height;
 if (frameSize.width > screenSize.width) frameSize.width = screenSize.width;
 //correct termination
 addWindowListener(new WindowAdapter()
 {
 public void windowClosing(WindowEvent e)
 {
 System.exit(0);
 }
 });

APPENDICES

197

 setTitle("PathFinder Map");
 //makes the frame/panel entirely visible and add listeners to it
 setLocation(0,0);
 this.getContentPane().add(panel,"Center");
 setVisible(true);
 JButton b = new JButton();
 this.panel.setFocusable(true);
 MListener mL = new MListener(this); KListener kL = new KListener(this);
 this.panel.addMouseListener(mL); this.panel.addKeyListener(kL);
 this.panel.setFocusTraversalKeysEnabled(false);
 }//method
}//class

/**
* The class of the panel where the map will be drawn.
* <p>
* An extension of the {@link JPanel} class
**/

class MapPanel extends JPanel
{
 /**
 * The vector containing all the paths to be drawn in the map panel.
 */
 public Vector pathList;

 public double upDown = 0;
 public double leftRight = 0;
 public double mapSize = 2; //The size of paths in this map panel

 /**
 * Constructs a map panel with a given background color.
 * <p>
 * Also initializes the vector to be loaded with paths for the map.
 *
 * @param color the map background color
 **/

 public MapPanel(Color color)
 {
 this.pathList = new Vector(1);
 setBackground(color);
 }

 /**
 * Redraws the panel.
 * <p>
 * Automatically called by the runtime system when the panel need to be redrawn.
 *
 * @param g Object that connects the Java drawing commands to the actual drawing
 * mechanism of the current computer.
 **/

 public void paintComponent(Graphics g)
 {
 super.paintComponent(g);

APPENDICES

198

 addLines(g);
 }

 /**
 * Draws the paths in the map panel.
 * <p>
 * It seeks all the vector of paths of this map panel, drawing
 * path by path, segment by segment.
 *
 * @param g Object that connects the Java drawing commands to the actual drawing
 * mechanism of the current computer.
 **/

 public void addLines(Graphics g)
 {
 int i, j=0; //counters
 double x1 = 0, y1 = 0, x2 = 0, y2 = 0; //x and y coordinates for the start and
 //endpoints of each path segment to be drawn
 g.setColor(Color.red);
 for(i=0; i < this.pathList.size(); i++)
 {//for each path of the vector containing all the paths to be drawn
 for(j=0; j+1 < ((Path)this.pathList.get(i)).vertexList.size() ;j++)
 {//for each segment (two consecutive points) of a path
 //defines the startpoint of the segment
 x1 = ((Point)((Path)this.pathList.get(i)).vertexList.get(j)).x;
 y1 = ((Point)((Path)this.pathList.get(i)).vertexList.get(j)).y;
 //defines the endpoint of the segment
 x2 = ((Point)((Path)this.pathList.get(i)).vertexList.get(j+1)).x;
 y2 = ((Point)((Path)this.pathList.get(i)).vertexList.get(j+1)).y;
 //reposition the segment to a pattern position
 x1 = (x1 - leftRight)/mapSize; y1 = (-y1 + upDown)/mapSize;
 x2 = (x2 - leftRight)/mapSize; y2 = (-y2 + upDown)/mapSize;
 //draw the segment line
 g.setColor(Color.blue);
 g.drawLine((int)x1,(int)+y1,(int)x2,(int)y2);
 //draw the segment startpoint
 //if(j==0) g.setColor(Color.green);//it is the first startpoint
 //else g.setColor(Color.red); //it is not the first startpoint
 //g.fillOval((int)x1,(int)y1,3,3);
 }//for j
 //draw the endpoint of the last segment (the last path point)
 //g.setColor(Color.red);
 //g.fillOval((int)x2,(int)y2,3,3);
 }//for i
 }//method
}//class

APPENDICES

199

APPENDIX I – THE MLISTENER CLASS

package path;

import java.awt.event.ActionEvent;
import java.awt.event.MouseEvent;
import java.awt.event.MouseListener;

/***
* This class permits the key listener to listen the map window activating the
* focus on the class frame.
***/

class MListener implements MouseListener
{
 /**
 * The frame where to listen the mouse
 */
 MapFrame mf;

 /**
 * Constructs a mouse listener on the given frame
 * @param frame
 */
 public MListener(MapFrame frame)
 {
 this.mf = frame;
 }

 /**
 * Invoked when the mouse button has been clicked (pressed and released) on a component.
 * <p>
 *
 * @param e the MouseEvent object passed to the MouseListener
 */
 public void mouseClicked(MouseEvent e)
 {
 this.mf.panel.requestFocusInWindow();
 }

 /**
 * Invoked when a mouse button has been released on a component.
 *
 * @param e the MouseEvent object passed to the MouseListener
 */
 public void mouseReleased(MouseEvent e){}
 /**
 * Invoked when a mouse button has been pressed on a component.
 *
 * @param e the MouseEvent object passed to the MouseListener
 */
 public void mousePressed(MouseEvent e){}
 /**
 * Invoked when the mouse exits a component.

APPENDICES

200

 *
 * @param e the MouseEvent object passed to the MouseListener
 */
 public void mouseExited(MouseEvent e){}
 /**
 * Invoked when the mouse enters a component.
 *
 * @param e the MouseEvent object passed to the MouseListener
 */
 public void mouseEntered(MouseEvent e){}
}//class

APPENDICES

201

APPENDIX J – THE KLISTENER CLASS

package path;

import java.awt.event.KeyEvent;
import java.awt.event.KeyListener;

/***
* This class permits the keyboard to be listened on the map window for displacing
* and zooming it when it is desired.
***/

class KListener implements KeyListener
{
 /**
 * The frame where to listen the keyboard
 */
 MapFrame mf;

 /***
 * Constructs a key listener on the given frame
 * @param frame
 ***/
 public KListener(MapFrame frame)
 {
 this.mf = frame;
 }

 /**
 * Invoked when the keys are typed.
 * <p>
 * '+': zoom in the map.
 * '-': zoom out the map.
 * '1': goes to the lower left direction in the map.
 * '2': goes down in the map.
 * '3': goes to the lower right direction in the map.
 * '4': goes to the left in the map.
 * '6': goes to the right in the map.
 * '7': goes to the upper left direction in the map.
 * '8': goes up in the map.
 * '9': goes to the upper right direction in the map.
 *
 * @param e the KeyEvent object passed to the KeyListener
 */

 public void keyTyped(KeyEvent e)
 {
 char c = e.getKeyChar();
 if(c == '+')
 {
 if(this.mf.panel.mapSize > 0.21) this.mf.panel.mapSize = this.mf.panel.mapSize - 0.2;
 }
 if(c == '-') this.mf.panel.mapSize = this.mf.panel.mapSize + 0.2;
 if(c == '1') {this.mf.panel.leftRight = this.mf.panel.leftRight - 20;

APPENDICES

202

 this.mf.panel.upDown = this.mf.panel.upDown - 20;}
 if(c == '2') this.mf.panel.upDown = this.mf.panel.upDown - 20;
 if(c == '3') {this.mf.panel.leftRight = this.mf.panel.leftRight + 20;
 this.mf.panel.upDown = this.mf.panel.upDown - 20;}
 if(c == '4') this.mf.panel.leftRight = this.mf.panel.leftRight - 20;
 if(c == '6') this.mf.panel.leftRight = this.mf.panel.leftRight + 20;
 if(c == '7') {this.mf.panel.leftRight = this.mf.panel.leftRight - 20;
 this.mf.panel.upDown = this.mf.panel.upDown + 20;}
 if(c == '8') this.mf.panel.upDown = this.mf.panel.upDown + 20;
 if(c == '9') {this.mf.panel.leftRight = this.mf.panel.leftRight + 20;
 this.mf.panel.upDown = this.mf.panel.upDown + 20;}

 this.mf.repaint();//repaint the map after it is displaced
 }//method

 /**
 * Invoked when the keys are pressed.
 *
 * @param e the KeyEvent object passed to the KeyListener
 */
 public void keyPressed(KeyEvent e){}

 /**
 * Invoked when the keys are released.
 *
 * @param e the KeyEvent object passed to the KeyListener
 */
 public void keyReleased(KeyEvent e){}
}//class

