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Abstract
This paper presents a novel scheme for generating
points from triangle models. The method is fast and
lends itself well to implementation using graphics hard-
ware. The triangle to point conversion is done by ren-
dering the models, and the rendering may be performed
procedurally or by a black box API.

I describe the technique in detail and discuss how the
generated point sets can easily be used as impostors for
the original triangle models used to create the points.
Since the points reside solely in GPU memory, these
impostors are fairly efficient.

Source code is available online.

1 Introduction
The main advantage of points over triangles lies in the
simplicity of the point primitive. This means that the
rendering pipeline for points is simpler than for trian-
gles. Consequently, point rendering is potentially faster
than triangle rendering when the average triangle size
approaches that of a pixel.

Points were originally proposed as a primitive for
surface rendering by Levoy and Whitted [10]. Recently,
the work by Grossman and Dally [7] seems to mark the
beginning of a renewed interest in the point as a render-
ing primitive, and the last few years have seen a number
of techniques pertaining to rendering and modelling ob-
jects using points. I suggest the reader consults [9] for
a recent survey.

While there have been many papers on point render-
ing and manipulation of point models, techniques for
the generation of point models have received less at-
tention. In this paper, a simple and efficient technique
for converting triangle models to point sets is presented.
The basic idea is to render the object a number of times

from a set of directions. For each direction, all the vi-
sual layers of the object are rendered using a technique
called depth peeling [5]. From the non–background
pixels of each layer, point information is extracted.

1.1 Related Work
Most techniques for point generation mimic rendering,
but generate points instead of pixels. For instance,
Grossman and Dally project an object orthographically
from 32 directions [7]. However, instead of sampling
the projection on a square lattice they use a lattice of
equilateral triangles (i.e. the pixels of the projection are
the vertices of equilateral triangles).

Pfister et al. [12] use a ray tracer to generate their
sampling. The object is rendered from three perpen-
dicular directions, and all intersections along a ray are
recorded. Thus, a layered depth images (LDI) [15, 11]
is generated from each of the three directions. A lay-
ered depth image is an image where each pixel contains
a list of depth values. An LDI can be converted to a
point cloud simply by transforming the pixel space co-
ordinates (x,y,depth) back into object space.

Tobor et al. [17] propose a hardware based approach
which is similar to mine, but which uses only one z-
buffer. An object is rendered from multiple directions,
and, in the first pass, depth and color are extracted. Sub-
sequently, normal information is extracted by storing
normals as colors. To get all the layers of an object, the
z-buffer is fetched regularly. However, “regularly” has
to be after every triangle, unless the scene is partitioned
into sets of triangles which are guaranteed not to over-
lap. Assuming that one reads back the depth buffer after
every triangle (or just very frequently) pipeline stalling
results since the pipeline is flushed before performing
a read. Moreover, it is problematic to read the frame-
buffer too frequently since the graphics pipeline is opti-
mized for sending rather than reading data.
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Not all authors use rendering methods to generate
points, though. Stamminger and Drettakis propose a hi-
erarchical sampling scheme called the

√
5 scheme [16].

The scheme is based on sampling a parameter domain.
Another example is the work by Michael Wand et al.
who developed a probabilistic sampling strategy [18].

2 Method
To generate points from a triangle mesh model, a tech-
nique called depth peeling is used. Depth peeling can
be used to render all the visual layers of a model. The
first visual layer is what one normally sees. The second
visual layer is the set of surfaces occluded only by the
first layer. This set cannot be rendered directly using
modern graphics hardware due to the absence of two
z-buffers. However, given two z-buffers this is almost
as simple. Having rendered the first layer, the normal
z-buffer is copied to the second z-buffer and rendered
again. During this rendering the 1st z-buffer is used (as
usual) to reject a fragment if its z value is greater than
the stored z value. The 2nd z-buffer is used to reject a
fragment if its z value is smaller or equal to the stored
value. Finally, the 1st z-buffer is updated as usual with
the depth of fragments that pass the depth test whereas
second z-buffer is read-only.

After rendering, the 1st z-buffer is copied to the 2nd
z-buffer, and we are ready to render the third layer. Sim-
ply iterating this process until nothing is rendered pro-
duces all layers in the scene. For each layer a depth
buffer and at least one color buffer are obtained. The
resulting representation is a layered depth image.

Of course, it is possible to keep the second z-buffer
if one wishes to render the same layer more than once.
In fact, it is often useful to render a layer at least two
times: First to extract color information and then to ex-
tract normal information.

The only problem is that graphics cards generally do
not have more than one z-buffer. However, this problem
can be overcome using extensions for shadow mapping
which, essentially, provide an extra z-buffer using tex-
turing. This method has been used by Cass Everitt to
implement depth peeling, and details regarding the im-
plementation are provided in [5]. Everitt used depth
peeling as a part of a scheme for order-independent
transparency.

Having rendered all visual layers in an object, the re-
sulting images are traversed and the pixel x y and depth
values are combined to obtain a point in space. This

technique has a number of virtues:

• Being hardware accelerated, depth peeling is likely
to be faster than any software based technique for
LDI generation.

• Any layer can be rendered any number of times.
Thus one may extract any number of attributes for
each point.

• It is not necessary to have access to the code that
renders the original triangle model. For instance,
a vertex program can be used to copy normals to
colors. Thus, it is possible to generate an impos-
tor from an object rendered by a function from a
closed source API (as long as the API does not
load its own vertex programs).

I compute three LDI representations using the above
method. Each LDI corresponds to a viewing direction
parallel to one of the X, Y, and Z axes. Two color
buffers are generated for each layer. The first buffer ac-
tually contains color, and the second contains normals
(stored as RGB values). For each viewing direction
and for each (non-background) pixel in each layer, it is
tested whether the normal is most parallel to the given
viewing direction. If that is the case, the 3D position
of the pixel is computed from its xy position and depth.
Of course, the position is in screen coordinates, and it
must be converted back to object coordinates. Finally,
the <color, normal, position> triple is added to a vector
of points. When all layers have been processed the LDI
representation can be discarded, and the final output is
a point cloud represented by the aforementioned vector.

Note that the method applies to polygon–soups, i.e.
the models do not have to be manifold or watertight.
It is, however, important that back face culling is not
enabled. Otherwise, it would not be possible to capture
all visual layers when rendering from a given direction.

2.1 Variations
If we do have access to the individual triangles of the
model, some speedups are possible. One may partition
the triangles into three sets where each set contains the
triangles most perpendicular to a corresponding view-
ing direction. If the model consists of many triangles,
the rendering is likely to be geometry limited, and this
greatly enhances performance. It also means that one
need not detect which points to throw away afterward –
since the selection has been performed on a per triangle
basis.
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Unfortunately, this acceleration sometimes leads to
a slightly decreased point density where two neighbor-
ing triangles belong to different sets. A simple fix is to
assign a triangle to a given set if it is close to perpen-
dicular to the projection direction.

It is possible to generate LDIs from more than three
directions. I find that this improves the precision mea-
surably, but it does not make a difference in the subse-
quent visualization as the precision is good enough us-
ing only three LDIs. Typically, the error is on the order
of a millionth of a unit when the model is unit size. The
error depends almost entirely on the depth buffer preci-
sion (which is often 24 bits). The XY position is known
since fragments are sampled at their centers [14].

3 Implementation

Depthpeeling has been implemented using a class
called DepthPeeler. DepthPeeler simply pro-
vides a second z-buffer, and it has a very simple inter-
face:
c l a s s D e p t h P e e l e r
{

/ / . . .
p u b l i c :

D e p t h P e e l e r ( i n t wid th , i n t h e i g h t ) ;
void d i s a b l e d e p t h t e s t 2 ( ) ;
void e n a b l e d e p t h t e s t 2 ( ) ;
void r e a d b a c k d e p t h ( ) ;

} ;

enable depth test2 and
disable depth test2 allow the user to switch on
and off the depth test. read back depth() copies
the current depth buffer to the second depth buffer. The
user of the class is responsible for copying any other
information from the frame buffer.

A 24 bit depth buffer is used. The depth tex-
ture is a rectangular texture of the internal format
GL DEPTH COMPONENT24. The texture parameters
are set up for depth comparison which means that the
depth in the depth texture is compared against the R
texture coordinate where R codes the depth of the frag-
ment. The result of the comparison is an alpha value
of 1 if the fragment should pass and 0 otherwise. For
each fragment a very simple program is used. The pro-
gram simply uses the fragment xyz position as texture
coordinates. The result of the texture lookup is an al-
pha value which is copied to the alpha value of the
fragment whose color is otherwise unchanged. Later

an alpha test is used to reject fragments whose al-
pha value is 0. The implementation uses only stan-
dard OpenGL [14], TEXTURE RECTANGLE NV, and
FRAGMENT PROGRAM ARB.

Using the DepthPeeler, it is very simple to imple-
ment point generation as explained above. The method
has been implemented using OpenGL on a PC equipped
with a GeforceFX 5900 graphics card1

4 Examples and Discussion

Figure 1: The Happy Buddha model. The original tri-
angle model is on the left, and the point model which
consists of 6360009 points (to ensure high fidelity) is
shown on the right. Note though that with so many
points, the triangle model is actually faster to render
(6.7 fps vs. 2.1 fps). Both the mesh model and the
point model were rendered using antialiasing.

The method has been applied with good results. Fig-
ure 1 shows two images of the happy buddha. The one
on the left was rendered using triangles and the other

1Source code for both point generation and point rendering (Sec-
tion 5) has been made available online at the address listed at the end
of this paper.
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one using points. Although the two images are not
pixel–identical, they are almost indistinguishable.

I have timed the point generation program, and the
results are shown in Table 1. Clearly the timings depend
a lot on the depth complexity. For most of the other
models, the LDI viewport size (and hence the number of
generated points) used during point generation seems to
be the other most important factor. However, in the case
of the buddha model, the difference between the small
viewport and the large one is less pronounced. This is
probably due to the fact that the model is so large. For
very large models, we conclude that the geometry stage
(transformation of triangle vertices) dominates the point
generation process.

Note that this method (like other LDI based meth-
ods, such as [12]) produces a regular sampling which
does not take local variations in object detail into ac-
count. This issue could be dealt with by infusing points
with more curvature information and letting the point
size be determined by this information. However, since
the sampling is still regular, the point cloud would have
to be thinned. These issues are discussed by Kalaiah
and Varshney [8]. A technique for estimating curvature
from points is mentioned in Fleishman et al. [6].

Because depth peeling is implemented using graphics
hardware, the method is fairly efficient – even though
the model is rendered a number of times. It is also an
advantage that the rendering pipeline is used for point
generation. Because of this, the point set can be gener-
ated from a procedural model or a model rendered by a
black box API.

5 Rendering Point Impostors
As an application of the method, I present a scheme for
rendering impostors of complex geometry such as trees.
Point based imposters have been used previously as a
component of systems for rendering large scenes [19],
and the notion is somewhat related to layered impostors
[13].

Stamminger et al. suggested that one might create a
set of points by sampling random locations on an object
[16, 4]. This creates a list of points spread out over the
object, and any prefix of this list is a shorter list of points
that are also randomly distributed over the object. Thus,
by removing a point, we, effectively, go down a level of
detail. However, since the absence of a single point is
not noticeable, the transition is very smooth as pointed
out in [16].

s

α/2

d

s’

Z 0

Figure 2: This figure illustrates s′, s, Z0, d, and the
viewing angle α.

Instead of randomly sampling, I create a random per-
mutation of the points. There are many ways to create
such a permutation, and it is obviously desirable that
the points are very evenly spread out over the object. A
number of strategies were tried, for instance iteratively
choosing the point farthest from the set of points already
selected (an algorithm known as Hochbaum-Shmoys
[2]). However, simply creating a random permuta-
tion using the C++ Standard Template Library function
random shuffle produces a result that is visually
indistinguishable from the more sophisticated methods.

The number of points to use is determined by the dis-
tance from the viewer to the model. Specifically, a num-
ber of points N out of the total number N0 is selected
so that N/N0 equals the ratio of the projected area of a
pixel in the LDI to a pixel in the frame buffer. Specifi-
cally,

N = N0(s
′)

2

where s′ is the projected side length of a pixel in the
LDI representation. Let Z0 be the distance from the eye
to the plane where a unit in world space corresponds to
the side length of a pixel, and let d be the distance from
the eye point to the impostor. Now,

s

d
=

s′

Z0

⇐⇒ (s′)2 =

(

sZ0

d

)2

.

By substitution

N = N0(s
′)

2
= N0 (sZ0/d)

2
. (1)

From basic trigonometry, we know that

Z0 =
W

2 tan(α/2)
, (2)

where W is the window height and α is the viewing
angle. When N > N0 we switch to the triangle model.
(1) and (2) are illustrated in Figure 2.
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Model LDI size Loading Triangles X Y Z Generation Points Total
Man 100 0.002714 656 8 4 2 0.030281 8690 0.123
Cow 100 0.027424 5804 5 4 4 0.069103 8891 0.205
Tree 100 0.928199 67450 21 16 37 0.853004 27829 1.89
Bunny 100 0.303191 69451 3 4 4 0.530025 20395 0.946
Happy Buddha 100 5.5545 1087716 6 10 6 7.44342 12762 13.238
Man 1000 0.002818 656 8 4 3 1.76825 863837 2.225
Cow 1000 0.025001 5804 5 4 5 2.15941 875494 2.58
Tree 1000 0.977727 67450 25 20 46 22.2428 2763228 24.305
Bunny 1000 0.299279 69451 4 5 4 5.13714 2018092 6.213
Happy Buddha 1000 5.62718 1087716 9 10 6 10.864 1244814 17.201

secs. layers secs. secs.

Table 1: This table shows timings for point generation. LDI size refers to the maximum side length of any of the
viewports used when generating the X, Y, Z LDIs. Except for “Man” and “Tree”, the models are all well known
standard models in computer graphics. The “Man” model is shown in Figure 4 (right), and the trees are shown in
Figure 3.

An important advantage of the method is the fact that
there is no popping. The only place where visible pop-
ping is possible is when we switch to the triangle model.
To avoid popping in this case, the triangle model is
faded in, and then the point model is faded out. This
fading is done as a function of distance rather than time
and it removes the last traces of popping.

The technique discussed above is based on rendering
either points or triangles (except when blending the two
representations). A slightly different approach would
be to combine point and triangle rendering as advocated
by some authors. For instance, Chen et al. [1] build a
tree data structure from a triangle mesh. Parts of the tree
may be drawn as points and parts as triangles. While
this may be useful for very large models, it is unlikely
that the traversal of a hybrid hierarchy can be performed
on the graphics card. Currently, only the traversal of a
pure point hierarchy on the graphics card has been pro-
posed [3]. Hence, in the context of impostors, I suggest
that the best way to combine point and polygon render-
ing would be to divide the model into coarse features
which are best represented using polygons and small
details which are approximated using points.

5.1 Implementation Issues

A salient feature of the method is the fact that the all
levels of detail are represented by a single list of points
which is stored in GPU memory. The ordering should
be randomized only once on the CPU and then sent to
the graphics card (e.g. using vertex buffer objects). A

random subset of N points may then be rendered simply
by rendering the first N points in the list stored on the
graphics card.

Note that when rendering points which do not rep-
resent smooth surfaces, it is very important to enable
point smoothing since aliasing artifacts can otherwise
be very noticeable.

5.2 Examples and Discussion

The point impostor methods was used to render trees in
a simple terrain rendering application. A screen dump
from this application is shown in in Figure 3.

An important issue is setting the distance d0 where
the application switches from the polygonal model to
the point impostor. If d0 is too small, many points are
required. This entails a higher point rendering cost and
a large memory overhead due to the size of the point
cloud. On the other hand, if d0 is too big, the full ad-
vantage of the point impostors is not reaped.

Thus, the setting of d0 involves a tradeoff. This trade-
off is illustrated in Table 2 which compares sizes and
rendering times for the polygonal models and the point
impostors used in the terrain application. The models
were rendered at distances ranging from 100 to 2000
units. The corresponding point renderings (of Tree no.
2) are shown in Figure 4 (left). In summary, the scheme
is particularly simple, and it allows the point set to re-
side in GPU memory which is essential to ensuring fast
rendering.
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Figure 3: Point rendered tree impostors in a simple landscape. The four closest trees are rendered either using
triangles or a blend of triangles and points. The farther trees are rendered exclusively using points.

Tree no. 1 (mesh size: 1.1 MB))
points mesh

Distance no. size FPS FPS
2000 1269 0.05 MB 115 5.2
1000 5079 0.2 MB 57 5.2
500 20312 0.8 MB 19 5.2
100 57744 2.3 MB 7.5 5.2

Tree no. 2 (mesh size: 1.7 MB)
points mesh

Distance no. size FPS FPS
2000 4929 0.2 MB 58 2.2
1000 19720 0.79 MB 20 2.2
500 78815 3.2 MB 5.5 2.2
100 118398 4.7 MB 3.7 2.2

Table 2: This table shows frame rates for rendering 50
instances of the two tree model at distances ranging
from 100 to 2000 units. The sizes of the correspond-
ing point clouds are also shown. While the frame rates
for the mesh is constant (as expected), the frame rates
for point rendering depend greatly on the distance and
thus number of points used.

6 Web Information

The images from Figure 1, an animation of the
scene in Figure 3, and C++ source code for
both generation and point rendering are available at
http://www.acm.org/jgt/papers/Baerentzen05
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