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We argue that published results demonstrate that new insights into

human brain functionmay be obscured by poor and/or limited choices in

the data-processing pipeline, and review the work on performance

metrics for optimizing pipelines: prediction, reproducibility, and related

empirical Receiver Operating Characteristic (ROC) curve metrics.

Using the NPAIRS split-half resampling framework for estimating

prediction/reproducibility metrics (Strother et al., 2002), we illustrate its

use by testing the relative importance of selected pipeline components

(interpolation, in-plane spatial smoothing, temporal detrending, and

between-subject alignment) in a group analysis of BOLD-fMRI scans

from 16 subjects performing a block-design, parametric-static-force

task. Large-scale brain networks were detected using a multivariate

linear discriminant analysis (canonical variates analysis, CVA) that was

tuned to fit the data. We found that tuning the CVA model and spatial

smoothing were the most important processing parameters. Temporal

detrending was essential to remove low-frequency, reproducing time

trends; the number of cosine basis functions for detrending was

optimized by assuming that separate epochs of baseline scans have

constant, equal means, and this assumption was assessed with prediction

metrics. Higher-order polynomial warps compared to affine alignment

had only aminor impact on the performancemetrics.We found that both

prediction and reproducibility metrics were required for optimizing the

pipeline and give somewhat different results. Moreover, the parameter

settings of components in the pipeline interact so that the current practice

of reporting the optimization of components tested in relative isolation is

unlikely to lead to fully optimized processing pipelines.
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Introduction

Neuroimaging researchers typically focus on extracting

bneuroscientifically relevantQ results from their data sets. Almost

always this is done without attempting to optimize and/or

understand the relative influence of the pipeline processing

choices that were made in analyzing the data. Moreover, the

generation of a bplausible resultQ that can be linked to the

neuroscientific literature is often taken as justification of the

pipeline choices made, providing a systematic bias in the field

towards prevailing neuroscientific expectations and away from

unexpected, new results (Skudlarski et al., 1999; Strother et al.,

1995a,b, 2002). In addition, there is accumulating evidence in the

literature that by applying a new processing pipeline to a raw data

set, significantly modified spatial activation patterns may be

obtained as a result of changing/optimizing preprocessing techni-

ques (Della-Maggiore et al., 2002; Friston et al., 2000; LaConte et

al., 2003a; Shaw et al., 2003a; Tanabe et al., 2002) and/or the data

analysis approach (Beckmann and Smith, 2004; Friston et al.,

1996; Kherif et al., 2002; Liou et al., 2003; Muley et al., 2001;

Nandy and Cordes, 2003; Shaw et al., 2002; Strother et al., 1995a;

Tegeler et al., 1999). These real-data results are supported by

several simulation studies, which indicated that significant differ-

ences in signal detection performance should be expected for

different preprocessing (Gavrilescu et al., 2002; Skudlarski et al.,

1999) and data analysis (Beckmann and Smith, 2004; Lange et al.,

1999; Lukic et al., 2002, 2004; Tzikas et al., 2004) approaches.

These published results demonstrate the likelihood that new

insights into human brain function may be obscured by poor

and/or limited choices in the image processing pipeline (McIntosh,

Private communication).

Simulations in which the true activation signal is known allow

different pipeline choices to be ranked using standard signal

detection metrics based on receiver operating characteristic

(ROC) curves (Swets, 1988). However, for fMRI, this is problem-
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atic because the vascular, blood oxygenation level dependent

(BOLD) signal and noise structure are not well understood, and it

is generally unknown if a particular set of simulation results are

relevant for any given fMRI data set, a problem that is compounded

if we are interested in the BOLD fMRI signal and noise structure as

a function of age and/or disease (D’Esposito et al., 2003).

In an attempt to avoid the need for simulations, researchers

have proposed data-driven techniques that estimate performance

metrics from the available data. Le and Hu (1997) suggested

estimating the true distribution based on highly averaged results.

However, the large number of repeat scanning runs required makes

this approach impractical, even if it is not biased by the

requirement for the mean to tend towards the true signal.

Other researchers have focused on the reproducibility, or

reliability, of activation patterns based on the recognition that

smaller p values do not imply a stronger likelihood of getting the

same result in another replication of the same experiment, and the

historical importance of replication as a fundamental criterion for a

result to be considered scientific (Carver, 1993; Genovese et al.,

1997; Kiehl and Liddle, 2003; Liou et al., 2003; Maitra et al.,

2002; Moeller et al., 1999; Strother et al., 1997, 1998; Tegeler et al.,

1999). This is one reason why minimizing p values as a

quantitative performance measure for pipeline optimization is a

poor choice, although it has been used repeatedly in the literature

(e.g., Hopfinger et al., 2000; Tanabe et al., 2002).

Provided at least three repeat runs are available, an empirical-

ROC curve may be estimated from the data (Genovese et al.,

1997), and by incorporating local spatial correlation into the same

framework a minimum of two runs is sufficient (Maitra et al.,

2002). An interesting application of this empirical-ROC generation

framework together with a technique for selecting the optimal

operating point on the resulting ROC curve has been recently

published by Liou et al. (2003). An alternative procedure for

generating empirical ROC curves that requires a bcontrol stateQ run
to estimate false-positive rates together with a standard experi-

mental run has been proposed by Nandy and Cordes (2003).

Strother et al. (1997, 1998) proposed an alternative reproduci-

bility metric based on a principal components analysis (PCA) of

two or more independently replicated statistical parametric images

(SPIs). This approach was further developed in Kjems et al. (2002),

LaConte et al. (2003a), Shaw et al. (2002, 2003a), Strother et al.

(2002), and Tegeler et al. (1999). A correlation coefficient

summarizes the reproducibility of two independent SPIs as

reflected in their scatter plot. This reproducibility correlation

coefficient also directly measures the overall signal-to-noise level

of the single, reproducible, Z-scored, activation SPI that is

extracted from the principal PCA axis of the scatter plot (Strother

et al., 2002). However, this reproducibility metric is a biased

measure because it inherits any data-analysis model biases that

exist when measuring SPIs. It seems likely that the empirical-ROC

metrics share this bias and that, like Strother’s reproducibility

metric, they should not be considered measures of true signal

detection performance.

Simultaneously, Hansen and Strother, guided by the field of

predictive learning in statistics (Hastie et al., 2001; Larsen and

Hansen, 1997; Mjolsness and DeCoste, 2001), introduced the idea

of using potentially unbiased cross-validation-based prediction

metrics to measure data-analytic performance in functional

neuroimaging (Hansen et al., 1999; Kjems et al., 2002; Kustra

and Strother, 2001; Lautrup et al., 1995; Morch et al., 1997).

Similar prediction metrics have recently been used by others
(McKeown, 2000; Ngan et al., 2000). In addition, prediction

metrics have been used to gain new insight into the debate over

the spatially modular versus spatially distributed nature of human

brain processing (Cox and Savoy, 2003; Haxby et al., 2001). We

expect both prediction and reproducibility metrics to play an

increasingly important role in the future optimization and

interpretation of fMRI studies.

With this in mind, Strother et al. (2002) proposed the unique

approach of simultaneously measuring and combining data-driven

prediction and reproducibility metrics for pipeline and data

analysis optimization using split-half resampling (a combination

of two-fold cross-validation and delete-d jackknife resampling) to

produce a ROC-like plot. They developed the NPAIRS (Non-

parametric Prediction, Activation, Influence and Reproducibility

reSampling) software package to implement and test this idea

(Kjems et al., 2002; LaConte et al., 2003a; Shaw et al., 2003a; Web

distribution and documentation at http://neurovia.umn.edu/incweb/

npairs_info.html). In preliminary comparisons using simulations,

Shaw et al. (2003b) have shown that prediction-reproducibility

plots seem to perform at least as well as standard ROC curves.

This paper is concerned with the combined use of prediction

and reproducibility metrics to test the relative importance of

different processing pipeline choices in the detection of large-

scale brain networks from the combined BOLD-fMRI scans of 16

subjects performing a block-design, parametric-static-force task.

We have investigated the impact and interaction of interpolation,

within-plane spatial smoothing, temporal detrending, between-

subject alignment using affine and nonlinear polynomial registra-

tion (i.e., warps), and btuningQ the data analysis approach. The

large-scale brain networks were detected for separate, uncorre-

lated OFF–ON and parametric force responses using canonical

variates analysis (CVA), a flexible multivariate form of linear

discriminant analysis that may be tuned to fit the data. The

prediction and reproducibility metrics were measured using split-

half resampling of the 16-subject group within the NPAIRS

framework. We found that the metrics could easily detect the

smoothing difference between sinc and trilinear-based interpola-

tion, and that even a small amount of smoothing together with

tuning the CVA model were by far the most important processing

parameters. Detrending was found to be essential to remove low-

frequency time trends, and to allow a reliable parametric force

response to emerge despite pseudo-randomization of the force

levels across two runs per session. In contrast, using an affine

registration compared with 3rd to 7th order polynomial warps had

only a minor impact on the performance metrics. However, our

results make it clear that both prediction and reproducibility

metrics are required for optimization as they individually select

different optimal pipeline parameter settings that are associated

with somewhat different activation patterns. In addition, the

parameter settings of components in the pipeline interact so that

the current practice of reporting the optimization of components

tested in relative isolation is unlikely to lead to optimized

processing pipelines.
Methods

Data acquisition

For a detailed description of data acquisition protocols, see La

Conte et al. (2003a,b).

 http:\\www.neurovia.umn.edu\papers\tech_reports\npairs.html 
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Behavioral protocol (the static force paradigm)

Volunteers were visually cued to alternate between resting

quietly while passively viewing the visual feedback screen (control

state) and applying a randomly presented force level with the right

thumb and forefinger to a force transducer (force state). The force

levels used were 200, 400, 600, 800, and 1000 g, and the visual

stimulus was back-projected onto the bottom one third of a screen

at the foot of the scanner couch. Each baseline and stimulus epoch

lasted 45 s. Each force level was presented once per fMRI run and

was preceded and followed by a baseline period for a total of six

baseline periods and five transition and force periods per fMRI run,

during which 124 scans were acquired in 8.25 min; two runs were

acquired per scanning session, which lasted for less than 1 h. The

task was practiced before fMRI data collection outside (and briefly

inside) the scanner.

MRI

We used a Siemens 1.5 T clinical scanner with the following

acquisition parameters: fMRI EPI BOLD, TR/TE = 3986/60 ms,

FOV = 22� 22� 15 cm, slices = 30, voxel = 3.44� 3.44� 5 mm;

MRI: T1-weighted 3D FLASH.

Subjects

Sixteen volunteer subjects were included in this study after

screening for motion (maximum pixel movement b0.5 cm),

performance of the task, and general image quality. The 16

subjects were composed of 8 men (ranging in age from 25 to 44

years with a mean of 31 years) and 8 women (ages 19 to 44 years,

mean 25 years). All subjects tested right-handed with the

Edinburgh handedness inventory (Oldfield, 1971) and underwent

a neurologic examination as in Muley et al. (2001).
Data processing

Software

The NPAIRS software used for this work is written in IDLk
(Research Systems Inc., Boulder, CO). The NPAIRS algorithm is

part of the VAST software library from the VA Medical Center,

Minneapolis, Minnesota, and the distributed NPAIRS module may

now be run without an IDL license (see http://neurovia.umn.edu/

incweb/npairs_info.html).

Preprocessing

After removal of the initial nonequilibrium scans per run, we

(1) aligned each fMRI volume and resampled it into a Talairach

reference space using either sinc or trilinear interpolation, (2)

spatially smoothed these volumes, and (3) removed temporal

trends and experimental block effects within a GLM framework.

fMRI scan alignment was implemented with the Automated Image

Registration program (AIR 5.03, Woods et al., 1998a,b). The

anatomic and fMRI data were first stripped to provide a mask of

brain-only voxels. After stripping, AIR was used to obtain a 6-

parameter alignment transformation for each masked 3D fMRI

volume (from both experimental runs), bringing that volume into

alignment with the first scan of the first run. Applying the fMRI

alignment transformations and averaging the aligned scans per

session provided a mean fMRI volume. Talairach resampling was

ultimately affected by applying a single sinc or trilinear inter-
polation step to each fMRI scan derived from the fMRI scan

alignment transformation, a mean fMRI-to-structural MRI trans-

formation (6 parameter, AIR 5.03), and a structural-to-Talairach

transformation. The structural MRI-to-Talairach transformations

were performed with four different increasingly nonlinear trans-

formations (AIR1 = 12 parameter affine, and AIR 3, 5 and 7 = 3rd,

5th and 7th order polynomial warps) to map the structural volume

for each subject to a Talairach reference volume. Smoothing was

achieved by convolving each axial slice of each volume with a 2D

Gaussian kernel with a full-width at half-maximum (FWHM),

which took pixel values {0, 1.0, 1.5, 2.0, 3.0, 4.0, 6.0, 8.0}

multiplied by the in-plane pixel size (3.44 � 3.44 mm). Temporal

detrending was performed, after principal component analysis

(PCA; see below), on the PCA-denoised subspace passed to the

CVA model by using a linear combination of cosine basis functions

within the GLM framework (Holmes et al., 1997). Cosine basis

functions and run means constituted the unwanted covariates

within a design matrix, and results from the first six columns

representing baseline and static force effects, together with the

residuals of the GLM model, were retained as the detrended data

(see Fig. 1). The number of cycles used per procedure included all

half and full cycles up to the following cutoff values {0, 0.5, 1.0,

1.5, 2.0, 3.0 cycles}, where one cycle has a period of 69 s. These

high-pass cutoffs should be compared with the 5.5 cycles of

baseline-force epochs per run (see Fig. 2). In total, 168

preprocessing combinations were studied (four fMRI to Talairach

space transformations with sinc-based interpolation, seven in-plane

smoothing levels, and six detrending levels) for each of ten

different parameterizations of the CVA model (a total of 1680

different processing pipelines). Seven additional pipelines were

studied for trilinear interpolation with an affine between-subject

registration and seven smoothing levels, together with the optimal

detrending and CVA parameterizations identified in the earlier

sinc-based studies.

Resampling and data analysis

Each of the preprocessed data sets described above had

transition scans excluded from subsequent analysis so that only

steady-state scans within the 45-s control and 45-s force states

(neglecting the 4-s breadyQ period before each force epoch) were

considered; see LaConte et al. (2003a) for details. We did this to

increase the maximum CVA cost function, based on the ratio of

between-group to within-group covariance, by removing the highly

variable transition scans from the within-group covariance. Thirty

time points (initial nonequilibrium scans plus transition scans)

were excluded from the total 124 scans per run leaving an average

of 187 scans/session with 93 or 94 scans/run.

After dropping the transition scans, the remaining scans were

each partly preprocessed (i.e., masked, aligned and smoothed),

and normalized by their scan means. Only voxels that existed in

the AND of the individual subjects’ aligned, brain-only masks

were retained for analysis. A PCA was performed on the 2992

scan (16 subjects � 187 scans/session) � 23,389 masked brain

voxels’ data matrix, and a bdenoisedQ subspace of 748 principal

components (PCs), 25% of the total of 2992 PCs generated by the

2992 scans, was passed on for subsequent resampling, detrending

and CVA analysis. For computational efficiency, we computed a

single PCA of each partly preprocessed large data matrix and then

performed smaller second-level PCA operations on the training

and test split-half partitions of the denoised subspace of 748 PCs,

as described by Kjems et al. (2002). Note that without the

 http:\\www.neurovia.umn.edu\incweb\npairs_info.html 


Fig. 1. Illustration of the design matrix used for removal, by regression within the general linear model, of unwanted voxel-based components: (1) low

frequency temporal effects removed using cosine basis functions of 0.5, 1.0, 1.5 and 2.0 cycles and (2) mean effects per run. The first six columns illustrate the

wanted effects due to the six baseline and five parametric force (columns two to six) epochs (see Fig. 2).
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cascaded PCAs to produce invertible split-half data matrices of

1496 scans (2992/2 observations) � 748 PCs (variables) instead

of the noninvertible matrix of 1496 scans � 23,389 voxels, the

CVA could not be performed. Each 1496 � 748 split-half data

matrix was detrended as described above and a flexible 11-class

CVA model was applied. As illustrated in Fig. 2, the 11 class

labels consisted of six class labels for the temporal order of the

control/baseline periods, and five class labels for each of the force

levels that were randomized in time for each run. This bagnosticQ
class structure was used to detect any unknown but consistent

parametric force response that existed across runs and subjects.

One of the advantages of this data analysis approach for group

studies is that it provides an approximate random effects model

(Kustra, 2000) with further random effects adjustments for inter-

subject noise applied as a result of the Z score normalization

within the split-half resampling procedure (Strother et al., 2002).

For each split-half group the 11-class CVA analyses were

performed using the first 5, 10, 25, 50, 75, 100, 150, 200, 300,

and 500 principal components of the possible total of 748 PCs

from the second level PCA.

Study of the processing pipeline

Each processing pipeline results in a meta-model that includes

the parameters for the preprocessing operations as well as those of

the final data analysis stage. In our specific case, an analysis

pipeline is composed of the masking, Talairach resampling,
Fig. 2. Graphical depiction of experimental design for two runs per subject of five

alternating with baseline epochs. The 11 linear discriminant classes for the canonica

and force effects are stationary across runs, but follow an unknown, common tem
smoothing, and detrending operations as well as the PCA and

CVA steps. For the denoised subspace from each of the 168

preprocessed sets, NPAIRS was run with 50 split-half resamplings

that randomly separated the 16 subjects into two independent 8-

subject groups (1496 scans/group). Using CVA parameter esti-

mates from each pair of 8-subject groups, we generated two

predictions and one reproducibility metric value. The prediction

value generated per group was the median of all of the individual

test-scan prediction values obtained when a CVA model built on

one 8-subject group (training set) was used to predict the class of

each of the 1496 scans in the independent 8-subject group (test

set). Test and training sets were then swapped to get the second

median prediction value for a given split-half sample. A

reproducibility metric was generated for each of the 10 canonical

eigenimages (11 classes provide 10 dimensions) from the two 8-

subject groups. The box-whisker plots reported in the results below

are distribution summaries of the 100 or 50, prediction and

reproducibility metric values, respectively, from the 50 split-half

resamplings. Curves are plotted through the median values of these

distribution summaries to minimize the effect of outlying perfor-

mance values from particular split-half groups. These distribution

summaries do not provide error bars per se as they are made up of

correlated estimates from the split-half groups. However, the

relative range of the distributions reflects the relative homogeneity

of the subjects compared between the split-half groups, as

discussed below.
pseudo-randomized parametric force epochs, with levels of 200 to 1000 g,

l variable analysis approach are assigned under the assumption that baseline

poral course within runs.
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Results

Figs. 3 and 4 demonstrate the basic behavior of the NPAIRS

prediction and reproducibility metrics for the 11-class CVA model

as a function of polynomial warp order and within-slice smoothing.

Figs. 3A and 4A illustrate the median of 50 split-half prediction

medians for an 11-class CVA model built on the first 100 principal

components and detrended with 0 and 1.5 cycle cosine-basis-

function cut-offs, respectively. In panels B and C, model perform-

ance is split into the underlying, uncorrelated canonical dimen-

sions, which are summarized by the NPAIRS reproducibility

values of the underlying canonical eigenimages (Figs. 3B and 4B),

and for 4.0 pixel FWHM (13.8 mm) smoothing, the canonical

variate scores (represented as one dot per subject about the 11-class

means that are connected by a solid line, Figs. 3C and 4C), for

baselines (scans 1–6) as a function of time, and static force scans as

a function of force (scans 7–11, pseudo-randomized in time).

In Figs. 3 and 4, the most striking feature is the rapid rise in

both prediction and reproducibility (see dimension one) for small

amounts of smoothing from 1 to 2 pixel FWHM (3.4 to 6.9 mm)

with broad prediction and reproducibility maxima being attained at

4 and 6 pixel FWHM, respectively (13.8 mm for Figs. 3A and 4A,

and 20.6 mm for Dimension 1, Figs. 3B and 4B). Comparing Fig.

4A to 3A, the overall prediction level drops with detrending, and in

Figs. 4A and B, there is a tendency for the 5th (blue line) and 7th

(red line) order polynomial warps to provide the optimal prediction

and reproducibility performance metrics, respectively. Moreover,

the box-whisker distribution ranges are generally larger in Figs.

3A, and B (dimension four), compared with Figs. 4A and B

(dimension two). This reflects reduced subject heterogeneity as a
Fig. 3. For no temporal detrending, plots of posterior probability prediction (A)

dimensions (B), as a function of within-plane spatial smoothing for Gaussian FWH

alignment techniques from AIR 5.03: 12 parameter affine (black line), and 3rd (g

within-plane sinc function interpolation. The split-half distributions of median pre

are plotted as thin vertical lines for each combination of parameters. The lines

dimensions one and four (B), respectively, are included for comparison with Fig

vertical scale compared to dimension one. (C) For the first four discriminant dimen

and their grand means for baseline time courses (black lines), and parametric for

pixels (13.8 mm), no temporal detrending, a 7th-order polynomial warp and within

one to four in (C) is 64.4%, 16.6%, 5.6%, and 3.9%, respectively. In B and C, th

highlighted by a thick black outline, and (2) a possible parametric force response w

a thick red outline.
result of sufficient detrending to remove large low-frequency

temporal variations allowing the subtle benefits of the 5th and 7th

order warps to be reflected in both the median and range of the

performance metrics.

Fig. 4A also illustrates the impact of trilinear interpolation

compared to sinc interpolation; by extrapolating horizontally from

the 0 pixel FWHM value, we see that trilinear interpolation is

equivalent to a little less than 1.5 pixel FWHM Gaussian

smoothing, which has a significant impact on model performance.

This finding is also mirrored by the reproducibility values and

further reinforces the importance of subtle smoothing operations on

the data.

In panels B and C, the first dimension clearly represents a

strong, reproducible OFF–ON force response, but the detection of

a much weaker parametric force response in the higher

dimensions is highly dependent on detrending. With no detrend-

ing (0 cosine) in Fig. 3C, the 2nd and 3rd dimensions represent

reliable baseline temporal trends that appear to interact with the

parametric force response despite the pseudo-randomization of

the force levels with time across the runs. The marginally

reproducible 4th dimension might represent a reliable parametric

force response with mean baseline canonical variates that are

approximately constant. We found that cosine basis functions

with a 1.5 cycle cut-off were required to remove the effects of

dimensions two and three (Fig. 3C), as illustrated in Fig. 4C.

Dimension one in Fig. 4B has slightly reduced reproducibility,

and hence overall Z-score SNRs, compared to Fig. 3B. However,

compared to dimension four of Fig. 3, dimension two in Fig. 4 is

more reproducible with a clearly linear parametric force response,

and mean baseline canonical variates that are constant with value
, and correlation coefficient reproducibility for the first three discriminant

Ms of 0 to 8 pixels (1 pixel = 3.44 � 3.44 mm2), and four between-subject

reen line), 5th (blue line), and 7th (red line) order polynomial warps with

diction, and reproducibility correlation coefficients for the 16-subject group

at prediction equals 0.18 (A), and reproducibility equals 0.6 and 0.15 for

. 4. Note that in (B) dimensions two to four are plotted with an expanded

sions, plots of canonical variate class means for each subject (black circle),

ce responses (red lines), with a Gaussian FWHM smoothing kernel of 4.0

-plane sinc interpolation. The percent variance accounted for by dimensions

e panels illustrating (1) the OFF–ON force response of dimension one are

ithout strong baseline-time interactions in dimension four are highlighted by



Fig. 4. For temporal detrending with a 1.5 cycle cosine-basis-function cut-off, plots of posterior probability prediction (A), and correlation coefficient

reproducibility for the first three discriminant dimensions (B), as a function of within-plane spatial smoothing for Gaussian FWHMs of 0 to 8 pixels (1 pixel =

3.44 � 3.44 mm2), and four between-subject alignment techniques from AIR 5.03: 12 parameter affine (black line), and 3rd (green line), 5th (blue line) and 7th

(red line) order polynomial warps. In A and B, solid lines represent within-plane sinc function interpolation and the dotted line represents trilinear interpolation

with an AIR7 warp. The split-half distributions of median prediction, and reproducibility correlation coefficients for the 16-subject group are plotted as thin

vertical lines for each combination of parameters. The lines at prediction equals 0.18 (A) and reproducibility equals 0.6 and 0.15 for dimensions one and two

(B), respectively, are included for comparison with Fig. 3. Note that in (B) dimensions two to three have an expanded vertical scale compared to dimension one.

(C) For the first three discriminant dimensions, plots of canonical variate class means for each subject (black circle), and their grand means for baseline time

courses (black lines), and parametric force responses (red lines) with a Gaussian FWHM smoothing kernel of 4.0 pixels (13.8 mm), detrending with a 1.5 cycle

cosine-basis-function cut-off, a 7th order polynomial warp and within-plane sinc interpolation. The percent variance accounted for by dimensions one to three

in (C) is 81.5%, 6.1%, and 3.4%, respectively. In B and C, the panels illustrating (1) the OFF–ON force response of dimension one are highlighted by a thick

black outline, and (2) a possible parametric force response without baseline–time interactions in dimension two are highlighted by a thick red outline.
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zero. Furthermore, the approximately quadratic force response

seen in dimension three of Fig. 4C is not associated with a

reproducible spatial pattern at any smoothing scale (Fig. 4B) and

therefore was ruled out as a reliable group response. We have

repeatedly seen reproducibility results such as those in Fig. 4B as

a function of dimension that clearly and unambiguously indicate

the dimensionality of the result; in this case two, with subsequent

reproducibility/dimension equal to zero.

Fig. 5A demonstrates the impact of the number of PCs passed

to the CVA after the second-level PCA with 4-pixel FWHM

smoothing and a fixed cosine detrending cut-off of 1.5 cycles. For

4-pixel FWHM smoothing Fig. 5B shows the effect of the number

of cosine basis functions used for a fixed 100 PC subspace.

Distributions of test-scan prediction medians for all scans are

plotted, together with distributions of the force and baseline scans

taken separately to illustrate their quite different behavior. The

baseline prediction medians tend to a little below the value 1/6 =

0.167, the value expected if the model can always tell a baseline

scan from a force scan, but is completely confused as to which

baseline class (1–6) a particular baseline scan comes from, that is,

the model performs no better than random guessing for allocating

baseline scans to classes 1–6. The small bias below the 0.167 value

for truly random baseline scans is probably due to outlying scans

with lower probabilities of being a baseline than would be expected

for the multivariate Gaussian distributions assumed in the CVA

model. More detailed study of subsets of baseline prediction values

is required to confirm this. Nevertheless, the prediction medians for

baseline classes reach a very shallow minimum for a 1.5 cycle

cosine detrending cut-off. This baseline prediction minimum
coupled with the canonical variates observation of elimination of

components with non-constant baseline means was the reason we

chose a 1.5 cycle cut-off as the optimal detrending setting.

Similarly, the force prediction medians start to rise above 1/5 =

0.2, the value expected if the model can always tell a force from a

baseline scan but is completely confused as to the true force level

of a particular force scan. Even the best prediction values for force

scans in Fig. 5 indicate that the spit-half models are confused and

unable to reliably distinguish between different parametric force

levels. These observations may be generally summarized for all

possible pairs of true-class and associated predicted-class labels

using confusion matrices as described in Kjems et al. (2002).

Despite the low force prediction values, there is a slight peak for a

1.5 cycle detrending cut-off, reinforcing this choice for optimal

modeling. Fig. 5B demonstrates why the overall prediction levels

fell with detrending in Fig. 4A compared to Fig. 3A. The drop is

caused by removing temporal-baseline trends that the model fits

and uses to improve overall prediction values (e.g., dimension 2,

Fig. 3C). These results indicate the dangers of relying on prediction

values alone to judge meta-model performance. In this data set, the

additional constraint of obtaining constant baselines means,

achieved with a 1.5 cycle detrending cut-off, is required to select

an optimal meta-model. After selecting approximately optimal

smoothing, detrending, and alignment values of 4.0 pixels FWHM,

1.5 cycle cosine basis cut-off, and a 7th-order warp, the CVA

model must still be optimized as a function of the number of PCs

used.

Fig. 6 is a prediction–reproducibility plot of dimensions one

and two for the prediction medians of the force scans alone as a



Fig. 6. Plots of the median posterior probability prediction for force scans

alone versus correlation coefficient reproducibility values from dimensions

one and two of the 11-class discriminant model as a function of the number

of principal components (PCs) passed to the model for: a Gaussian FWHM

smoothing kernel of 4.0 pixels (13.8 mm), detrending with 1.5 cycle (thick

black line), and 2.0 cycle (thin dashed line) cosine-basis-function cut-offs, a

7th order polynomial warp and within-plane sinc interpolation. The line at

0.2 represents the performance expected when randomly assigning scans to

the five force classes. Optimal performance is represented by the point (1, 1)

with perfect prediction and infinite signal to noise, that is, a correlation

coefficient of 1.0. The closest linear distances to (1,1) are 50 and 100 PCs

for dimensions one and two, respectively.

Fig. 5. For a Gaussian FWHM smoothing kernel of 4.0 pixels (13.8 mm), a

7th-order polynomial warp and sinc function interpolation, plots of median

posterior probability prediction values for all scans, and force and baseline

scans taken alone, (A) as a function of the number of principal components

passed to the canonical variates discriminant model with detrending by a

fixed 1.5 cycle cosine-basis-function cut-off, and (B) as a function of the

cosine-basis-functions cut-off used with 100 principal components passed

to the discriminant model.
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function of the number of second-level PCs passed to each split-

half CVA with the following pipeline parameters: sinc interpola-

tion, 4 pixel FWHM (13.8 mm), 1.5 and 2 cosine basis function

cut-offs, 7th order polynomial warp. The prediction values are

dimensionless and summarize the complete model, while reprodu-

cibility values are dimension specific. The tendency for reprodu-

cibility to fall with increasing numbers of PCs (i.e., increasing

model parameterization) is clearly seen once a stable subspace has

been found at about 50–100 PCs. In addition, as noticed by

LaConte et al. (2003a) prediction tends to peak at much higher

numbers of PCs than does reproducibility, indicating that

reproducibility measures tend to pick different optimal model

parameters and their resulting activation patterns from those

chosen by prediction measures.

Fig. 7 illustrates the differences in reproducible SPI Z-score

patterns for optimal reproducibility compared to optimal predic-
tion. In canonical eigenimage one (Fig. 7A), there are pronounced

changes in the activation patterns between 50 PCs (optimal

reproducibility) and 200 PCs (optimal prediction), for example,

see outlined regions in slices 18 and 25. In canonical eigenimage

two (Fig. 7B), note the lack of primary motor response in slices

26–28 with 100 PCs (optimal reproducibility, Fig. 6) compared to

the much stronger primary motor response with 200 PCs (optimal

prediction, Fig. 6; see outlined regions in slice 26–28). These

results provide an example of the pattern differences that may

result from focusing on maximal signal-to-noise (i.e., minimizing p

values), as reflected in the reproducibility correlation coefficient,

versus optimal predictive modeling.
Discussion

Our choices for the pipeline components to manipulate in this

study were based on some preliminary testing, computational

expediency and standard practice in our laboratory. We acknow-

ledge that we have not exhaustively optimized even the compo-

nents tested, which would require further testing of the

preprocessing components (interpolation, smoothing, detrending

and warps) for 150 and 200 PCs passed to the CVA to cover the

parameterization between optimal reproducibility and optimal

prediction performance. Our goal was to illustrate the issues
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involved in pipeline optimization using prediction and reproduci-

bility rather than to produce the final, optimized parametric static

force result. Fortunately, the ability to rapidly (i.e., overnight

computing on multi-processor arrays) and flexibly set up and test

different processing pipelines across multiple software packages is

being developed within the Fiswidget (Fissell et al., 2003; Strother,

2003) and LONI pipeline (Rex et al., 2003) software environments.

Both tools provide Java-based software environments for incorpo-

rating different components from heterogeneous software packages

into an fMRI processing pipeline. We have bwrappedQ NPAIRS

within Fiswidgets with the goal of conducting future optimization

studies within this framework.

Our results demonstrate the overwhelming importance of

spatial smoothing in fMRI signal detection with the importance

of the local pixel neighborhood demonstrated by the sharp rise in

prediction metrics for smoothing FWHM of 0 to 1.5 pixels (0–

5.1 mm). Reproducibility also rises sharply in dimension one for

FWHM from 0 to 2.0 pixels (0–6.9 mm), and continues rising to a

shallow peak at 6 pixels (20.6 mm); dimension two does not appear

to become reliable/reproducible until the smoothing FWHM
ig. 7. Selected slices displaying the activation pattern of the first (A) and second (B) discriminant dimensions (i.e., canonical eigenimages) for 50, 100, and

00 principal components passed to the discriminant model with a Gaussian FWHM smoothing kernel of 4.0 pixels, detrending with a 1.5 cycle cosine-basis-

unctions cut-off, a 7th-order polynomial warp and within-plane sinc interpolation. The first and second dimensions, respectively, reflect the OFF–ON and

near force responses of the canonical variates in Fig. 4C. The regions highlighted in black outlines should be compared across the SPIs for 50, 100, and 200

Cs and are discussed in the text. Image left = brain left.
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reaches 1.5 to 2.0 pixels and gradually rises to a shallow peak at a

FWHM of 6.0 pixels for the 7th-order warp (the significance of a

particular dimension’s reproducibility distribution may be tested

using a computationally intensive second level, permutation

resampling within each pair of split-half resampling groups, as

described by Strother et al. (2002)). As a consequence of the sharp

rise in prediction and reproducibility performance for smoothing in

a small pixel neighborhood, we have shown that interpolation

choices may significantly affect model performance and must be

carefully considered. It is tempting to speculate that the 0 to 5 or

6 mm smoothing range identified above represents an approximate

matched filter response to an intrinsic smoothing scale composed

of BOLD data smearing resulting from reconstruction, physiologi-

cal (Malonek and Grinvald, 1996), and anatomical–functional

smearing. Note that Woods et al. (1998b) demonstrated that 80% of

the structural landmarks tested lay within an average distance of

5 mm of each other across subjects for affine through 5th-order

warps. However, any such assignment of cause and effect must

await further analysis, particularly of single-subject results, which

may need to be individually optimized (Shaw et al., 2003a), and
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structure–function variability as described by White et al. (2001).

In the mean time, we note that these results generally support the

default spatial smoothing values suggested for the FSL (FWHM =

5 mm) and SPM99 (FWHM = 2–3 pixels) software packages. To

obtain any reliable parametric force dimension, some smoothing is

essential and up to FWHM = 20 mm may be optimal in terms of

the overall activation SNR, although this will probably be

unacceptable for some, and perhaps many neuroscience applica-

tions with spatially localized hypotheses.

Temporal detrending appears to play an important role in

removing reproducing time–force interactions while allowing a

reliable parametric force response to emerge, which can take

optimal advantage of higher-order warps. Our data clearly show

that the pseudo-randomization of the force levels with time across

two runs is insufficient to eliminate such interactions, which

remain particularly strong without explicit detrending (Fig. 3). By

introducing the additional requirement that the baseline means are

constant with time, we were able to overcome this problem, and we

demonstrated two complementary ways of measuring the elimi-

nation of baseline time trends. Experimentally, we observed the

elimination of the canonical dimensions with obvious time–force

interactions as a function of the amount of detrending applied

(Figs. 3 and 4), while simultaneously, a parametric force

component with constant baseline-class means emerged. In

addition, we noted that constant baseline-class means are equiva-
lent to a maximally confused model that is unable to predict

baseline-class membership any better than random guessing; this

detrending point may be identified using estimated prediction

values for baseline scans alone. Our choice of a detrending cutoff

of 1.5 cosine basis cycles was further reinforced by also being the

point at which the best predictive model (albeit a poor model) for

parametric force values was attained (Fig. 5B). Without the

baseline scans available to judge the time–force interactions, it

would be very difficult to make any judgement about the meaning

of the measured parametric force responses. Reproducibility itself

is insufficient to demonstrate a reliable force-dependent response

because canonical dimensions two and three in Fig. 3, with clear

time–force interactions, are as reproducible as canonical dimension

two in Fig. 4. Nevertheless, assumptions requiring the baseline-

class means to be constant are potentially restrictive from the

perspective of discovering new time-dependent brain responses.

Future experimental designs should try to eliminate the need for

such assumptions by avoiding spectral overlap between low

frequency noise and the fundamental paradigm frequency.

While the reproducibility metric is insufficient to indicate a

reliable component that reflects primarily experimental manipu-

lation, it may be used to determine the number of canonical

dimensions that must be considered for further interpretation; the

final judgment of statistical significance per dimension can be

performed by a nested permutation resampling within the split-half
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resampling (Strother et al., 2002). Determining the number of

significant dimensions is a particularly difficult problem for

multivariate models (e.g., Beckmann and Smith, 2004; Hansen

et al., 1999) and we propose the reproducibility metric as a function

of spatial smoothing scale as a means of making this determination.

Testing as a function of the smoothing scale is important because

weak effects may become considerably stronger with increased

smoothing as illustrated for the parametric force response in Fig. 4,

dimension two. While prediction metrics may be used to determine

dimensionality (Hansen et al., 1999) we believe reproducibility may

sometimes have advantages because a relatively stable and

reproducible spatial network may be associated with variable

subject and/or run-dependent experimental stimulus responses that

do not allow for reliable predictive modeling across the group, at

least with a linear discriminant model. This seems to be the situation

for the parametric-static-force data set analyzed here with a stable,

reproducible canonical eigenimage and linear parametric force

weights (Figs. 4 and 7) associated with predicted canonical variates

that are only marginally better than randomly guessing the

parametric force levels. Such uncoupling between reproducibility

and prediction, with reliable/reproducible spatial activation patterns

associated with poorly predicting models, and perhaps even vice

versa, as a function of different types of models (e.g., linear

discriminant; support vectors machines, LaConte et al., 2003b) is an

important area of future research.

Our results also illustrate the important tradeoff between

reproducibility (i.e., Z-score SNRs) and prediction as a function

of linear discriminant (i.e., CVA) parameterization; reproducibility

tends to peak for models with lower parameterization, well before

prediction reaches its maximum value, and the reproducibility of

the first dimension peaks at a lower parameterization than the

second dimension (Fig. 6). Our reported optimizations of

smoothing and detrending were performed with 100 PCs passed

to the CVA because this is the closest linear distance to the

optimal performance point for dimension two, that is, prediction

and reproducibility = (1, 1). However, Fig. 7B raises questions

about this choice as canonical eigenimage two for 100 PCs

contains a reproducing bartifactQ crossing the lateral ventricles in

slice 21 (see black ellipse) with a very weak left-sided motor

response. One might expect the strong right-sided cerebellar

response to be coupled with a clear left-sided primary motor

response for this right-handed task. However, for the optimal

prediction point at 200 PCs, compared to the pattern for 100 PCs,

the artifact has disappeared and the coupled cerebellar-primary

motor response is seen. Choosing the 200 PC activation pattern

would amount to a selection based on our neuroscientific

expectations, the very thing the metrics were introduced to avoid.

Reconciling the different activation patterns that are obtained for

optimal prediction and reproducibility is an important area for

future research. One possibility is to take a consensus of the

patterns between the two optimal points following the approach

of Hansen et al. (2001). Ultimately, automated techniques relying

on nonbiological mathematical constraints may need to be

externally validated by carefully chosen, well-established neuro-

scientific results, but this must be done with great care to avoid

the circularity described earlier that reinforces prevailing neuro-

scientific expectations.

Our results demonstrate the challenge involved in optimizing

functional neuroimaging pipelines, even when considering only a

subset of the parameters in the meta-model that constitutes the

whole pipeline. The five components we considered (interpolation,
spatial smoothing, temporal detrending, between-subject registra-

tion, and CVA model complexity) clearly interact so that it does not

seem reasonable to try to optimize then individually. Nevertheless,

when considering the whole pipeline and perhaps multiple

techniques and their software implementations for each pipeline

component, it currently seems necessary to utilize some form of

greedy search optimization to keep the combinatorial explosion of

pipeline options computationally tractable. Almost all of the

previous processing literature in functional neuroimaging is

concerned with optimization of one or two components in

isolation, typically associated with introducing a new and bbetterQ
procedure for one component, for example, detrending (Tanabe

et al., 2002) and registration (Jenkinson et al., 2002; Kjems et al.,

1999). This prevailing approach represents the strongest greedy

search assumption that there is no interaction between pipeline

components other than those being tested, an assumption that our

results demonstrate is false. We believe that the functional

neuroimaging field should now enter a new phase of testing in

which interactions of components and their software implementa-

tions are emphasized along with the testing of new procedures and

their associated software tools. In this way, it will become possible

to design better greedy search approaches that emphasize the key

components and their interactions, based on a growing testing

literature, as we move towards testing and optimizing complete

processing pipelines.
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