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ABSTRACT
This paper describes methods for automatic localization of the mid-sagittal plane (MSP) and mid-sagittal sur-
face (MSS). The data used is a subset of the Leukoaraiosis And DISability (LADIS) study consisting of three-
dimensional magnetic resonance brain data from 62 elderly subjects (age 66 to 84 years). Traditionally, the
mid-sagittal plane is localized by global measures. However, this approach fails when the partitioning plane
between the brain hemispheres does not coincide with the symmetry plane of the head. We instead propose to
use a sparse set of profiles in the plane normal direction and maximize the local symmetry around these using a
general-purpose optimizer. The plane is parameterized by azimuth and elevation angles along with the distance
to the origin in the normal direction. This approach leads to solutions confirmed as the optimal MSP in 98
percent of the subjects. Despite the name, the mid-sagittal plane is not always planar, but a curved surface
resulting in poor partitioning of the brain hemispheres. To account for this, this paper also investigates an opti-
mization strategy which fits a thin-plate spline surface to the brain data using a robust least median of squares
estimator. Albeit computationally more expensive, mid-sagittal surface fitting demonstrated convincingly better
partitioning of curved brains into cerebral hemispheres.

1. INTRODUCTION
The human brain consists on a coarse level of the cerebrum, the cerebellum and the brainstem. Most prominent
is the cerebrum which is divided into hemispheres, connected by the nervous fiber bundle called the corpus
callosum. The surface partitioning this approximate bilateral symmetry of the cerebrum is typically denoted the
mid-sagittal plane (MSP) referring to its relative alignment with the sagittal plane of the human body.

Knowing the exact location of this surface has many applications. One is to provide the first step in spatial
normalization or anatomical standardization of brain images.1–3 Another is to provide means for estimating the
departures from bilateral symmetry in the cerebrum1, 4–6 often seen in pathological brains.5

Finally, determining the MSP is an invariable prerequisite for measurements on structures defined via this plane
such as the MSP cross-section of the corpus callosum. A structure particularly interesting due to the many
neurological studies indicating relationships between the size and shape of the corpus callosum, and gender, age,
neurodegenerative diseases et cetera.7–9 MSP estimation can thus be viewed as a step prior to automated corpus
callosum morphometry (cf.7, 10–12).

This paper presents two inherently three-dimensional methods for automatic localization of this partitioning
surface using direct optimization of a local symmetry measure. Insisting on local symmetry contrary to global,
which is the typical approach to MSP estimation, enables determination of brain symmetry that departs from
head symmetry. The first method parameterizes a mid-sagittal plane and optimizes symmetry using the well-
known Nelder-Mead simplex optimization scheme. The second utilizes results from robust statistics to fit a
mid-sagittal surface (MSS) parameterized by thin-plate kernel functions. The efficacy of both methods is eval-
uated on magnetic resonance scans of a cohort of 62 elderly subjects, obtained from the pan-European LADIS
study.13
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2. RELATED WORK

Several papers have dealt with MSP estimation. The bulk part treats the problem as an optimization of global
symmetry2, 3, 5, 14–17 resulting in solutions dominated by the skull shape. However, Ardekani et al.1 modified
a global solution by introducing a thresholding approach aiming at excluding background and parts with non-
overlapping skull.

Although being a truly three-dimensional problem, some choose to seek solutions in a two-dimensional fashion5, 6

and later fusing these into a global solution, occasionally depending on various thresholds and other parameters
that are hard to choose (see e.g. ref6). We note that two-dimensional approaches induce an implicit requirement
of having 2D image slices with near-orthogonal orientation with respect to the MSP.

To the best of our knowledge, all previous approaches, but two, models the partitioning surface between the
cerebral hemispheres as a plane. Christensen et al.18 and Darvann et al.19 assess dysmorphologies using the
craniofacial MSP modeled as a thin-plate spline surface. Aiming at measuring craniofacial rather than brain
asymmetry in infants with unilateral coronal craniosynostosis, this surface was fitted directly to landmark points
placed manually on computed tomography scans of the skull.

3. DATA MATERIAL

The data material used in this study comprises 62 magnetic resonance images (MRI) of the human brain obtained
from 62 elderly subjects (age 66 to 84 years) using a whole body MR scanner; Siemens Vision 1.5 Tesla. All
subjects originated from a subset of the LADIS study13 (Leukoaraiosis and Disability in the Elderly). MR pulse
sequence: MPRAGE; matrix size: 256×256 pixels; field of view: 250×250×150 mm (voxel size: 0.997×0.977×1.0
mm). A method for automatically locating the corpus callosum has previously been reported on a subset of the
data set mentioned above .12, 20

4. METHODS

As not all literature is in consensus regarding the understanding of the mid-sagittal plane and surface, we will
make these issues explicit by providing the following definitions:

Definition 4.1. The mid-sagittal plane (MSP) is the planar surface which bisects the cerebrum into
two cerebral hemispheres at their point of bilateral symmetry.

Definition 4.2. The mid-sagittal surface (MSS) is the general surface which separates the cerebrum
into two cerebral hemispheres at their point of bilateral symmetry.

It follows that the MSP and MSS must be placed exactly in the center of the inter-hemispheric fissure. This
eliminates the extra degrees of freedom introduced in subjects with widened longitudinal fissures, and yields a
unique MSP and MSS.

4.1. Mid-sagittal Plane Estimation

Due to the definition above, MSP estimation strategies based on global measures of symmetry must be rejected.
This work is concerned about brain partitioning, rather than head symmetry. To avoid the complex, laborious
and orientation-dependent methods induced by a slice-based approach to MSP estimation, the problem is cast
into a standard optimization framework, requiring a suitable parameterization, a cost-function and an efficient
optimizer. The parameterization should uniquely determine the orientation and position of the MSP, and the
cost-function should estimate the local symmetry around the MSP.



This work employs a three-element parameterization of the MSP,

p = [ θ φ d ]T, (1)

where θ and φ are spherical coordinates (azimuth and elevation angles) determining the orientation of the plane
and d is the perpendicular distance from the plane to the origin, determining the plane position.∗ Due to a cost-
function consisting of local measurements, the initial MSP estimate, p0, must be in the vicinity of the optimal
MSP, popt. This means that the origin of the spherical coordinates easily can be chosen so that no gimbal lock
problems occurs.

The symmetry measure considered here resembles the cross-correlation, cc, between two discreet signals x and
y of equal length

cc =
(x− x)T(y − y)√

(x− x)T(x− x)
√

(y − y)T(y − y)
. (2)

Recalling that cc ∈ [−1; 1], with x = L(−y) and x = L(y), [ L(y) = αy + β, α > 0 ], at the limits respectively,
cc can easily be modified to estimate the symmetry of a signal z = [ xT ỹT ]T, where ỹ is equal to y with a
reversed ordering of elements. Let µ = z = (x + y)/2, then a symmetry measure s ∈ [0; 1] can be stated as

q(z) =
(x− µ)T(y − µ)√

(x− µ)T(x− µ)
√

(y − µ)T(y − µ)
, (3)

s(z) = max(0, q(z))2. (4)

Notice that q is squared to emphasize strong symmetries. The symmetry at a given point of a plane is calculated
from the set of image samples, z taken from the line (incident with the plane normal) with end points having a
distance of w on either side of the plane.

The joint symmetry for the entire plane, S(p), is the sum of the symmetries for image samples obtained from a
set of spatially equally distributed plane normals, { zi }N

i=1:

S(p) =
N∑

i=1

s(zi). (5)

The above cost-function is fed into a standard Nelder-Mead simplex optimizer (see e.g.21) to obtain the optimal
MSP,

popt = arg max
p

S(p). (6)

Although the simplex optimizer suits this low-dimensional problem well, other optimizers may also be considered.
The signal intensities of z is obtained using standard tri-linear interpolation of the voxel volume.

To gain larger convergence support and robustness towards local minima, a multi-scale formulation is applied
where the normal width, w, is decreased with increasing iterations, while the simplex step-size is decreased as well.

This approach is thus inherently sensitive to a reasonable initialization. The rough in-scanner alignment should
be sufficient, however if this is not the case, a straight forward initialization can be obtained from the principal
axes of the voxel volume, e.g. as described in by Tuzikov et al.2, 3

∗The origin is here chosen as the center of the voxel volume.



4.2. Mid-sagittal Surface Estimation

The mid-sagittal plane estimate is satisfyingly accurate for the great majority of subjects. Furthermore, in
technical applications, it is reasonable to believe that planar cross-sections of the brain are favored. Nevertheless,
a few of the patients in the present data set exhibit a slight but clearly visible bending along the entire mid-
sagittal fissure, or, in some cases, a more prominent bending of the occipital lobe, proximal to the cerebellum
(the so-called torque effect15). The optimal MSP cannot accurately represent the mid-sagittal surface (MSS, see
Definition 4.2) in these cases. As shown by,18 a curved MSS may also be a result of craniofacial dysmorphologies.
To account for these cases, we have investigated the possibility of fitting a surface instead of a plane using a
similar symmetry measure as described above.

4.2.1. Surface Representation

Thin-plate splines are a natural choice of surface representation, since we are interested in capturing global
curvature trends of the MSS. Thin-plate splines are able to contain such information using a low number of
control points. The following basic description of thin-plate splines stems from.22

A single thin-plate spline is the solution to the mechanical problem of finding the shape of an infinitely large
and thin metal plate, minimizing its bending energy subject to interpolation of height values y = f(x, z).

f(x, z) = a1 + axx + azz +
p∑

i=1

wiU (‖(xi, zi)− (x, z)‖) (7)

Here, p is the number of knots, (xi, zi) on the two-dimensional manifold spanned by the imaginary steel plate.
The corresponding values yi can be interpreted as height values at the knots. U(‖(xi, zi) − (x, z)‖) is the basis
function U(r) = r2 log r, U(0) = 0. It can be shown that this choice leads to minimal plate bending energy.24

The thin-plate spline consists of an affine part determined by the coefficients a1, ax and az and a non-affine part
where {wi|i = 1 . . . p} is a set of weights. We require that

p∑

i=1

wi =
p∑

i=1

wixi =
p∑

i=1

wizi = 0 (8)

Since the thin-plate spline is an interpolant, we also have the p conditions yi = f(xi, zi). These conditions can
be arranged in a linear system as [

K P
PT O

] [
w
a

]
=

[
y
o

]
(9)

where Kij = U(‖(xi, zi)− (xj , zj)‖), the ith row of P is (1, xi, zi), O and o are the 3× 3 and 3× 1 zero matrices
respectively, and w, y and a are column vectors formed from wi, yi and the affine coefficients. The design matrix
in the linear system above is nonsingular provided that K is invertible,24 and the system can thus be solved by
matrix inversion. A regularization term λ can be added so that the spline approximates the data points instead
of interpolating them. This lowers the bending energy of the system. This is performed by changing K into
K + λI, where I is the p× p identity matrix.

The physical properties of the thin-plate spline suit our purposes fine. It will interpolate or approximate any
points that have been found to lie on a potential MSS, without introducing excessive bending or sudden kinks
in the surface.

The principal idea of the spline fitting algorithm is to first gather a set of data points in R3 which represents the
mid-sagittal surface. Among these points, there will be many outliers. The spline is therefore fitted to data in a
robust fashion.

4.2.2. Extraction of MSS Data Points

Assuming that the brain data is roughly aligned, it is possible to find reasonably accurate estimations of points
on the MSS by finding the maximal local symmetry in a slice-by-slice, scanline fashion. Restricting the search
to slices roughly containing the entire cerebrum, data points are found in the following way.



Algorithm 1 MSS Data Extraction
1: for each slice do
2: for each scale do
3: for each line do
4: Slide a profile (of width k) s pixels across the midpoint:
5: for each position do
6: Compute the correlation coefficient between the first half of the profile
7: and a mirrored version of the second half
8: Measure the image intensity at the profile’s center pixel
9: Combine the two measurements, keep track of the result

10: end for
11: Choose the position having the highest score
12: end for
13: end for
14: Average the results from each scale
15: end for

Here, four Gaussian scales are used with σ = {1, 2, 3, 4} and corresponding profile widths of k = {15, 23, 33, 43}
pixels. The search width s is s = 25 pixels. The image intensity is transformed to [0 . . . 1] and is weighted
equally with the symmetry measure as the two are combined. To reduce the number of irrelevant and erroneous
measurements, for instance points outside the cranium, values with a low symmetry measure as well as profiles
with low variation are not considered.

The method described above assumes that the scans are roughly aligned. We have also investigated the possibility
of maximizing local symmetry along profiles normal to the optimal MSP; however, the results were comparable.
The scanline algorithm was therefore favored since it is more foreseeable and easier to implement.

4.2.3. Robust Spline Fitting

As the MSS data is heavily contaminated with outliers, a regular optimization algorithm or regression technique
cannot be expected to perform well. Some robust method, capable of handling a large proportion of noise,
is therefore needed. Such methods are for instance regression diagnostics, M-estimators, RANSAC and least
median of squares.25 In this project, the least median of squares (LMedSq) method is used since it applies well
to spline fitting and is capable of handling up to 50 % outliers.25 LMedSq solves the nonlinear minimization
problem

min med
i

r2
i (10)

where ri denotes the ith residual. Unfortunately, there is no direct solution to this problem. To find the global
minimum, an exhaustive search through the entire search space must be performed. For n data points, there are
mtot =

(
n
p

)
ways to choose p points; a number that renders this strategy infeasible in most cases. The common

way to overcome this is by considering a selected number m ¿ mtot of samples of p points each. Before we get
into details of the algorithm, let’s see how it is applied here.

We wish to construct a spline that interpolates or approximates a selected number of control points from our set
of data points. To rectify the coordinate system, the data is first rotated according to a least-squares plane fit
The data is roughly planar and the rotation aligns it with the coordinate axes. The in-plane axes are interpreted
the xz-plane used in Equation 7. The data points’ deviations from the plane are interpreted as the control points
yi. Following the LMedSq algorithm, we wish to find a sample from the data points that produces a spline that
gives the lowest possible squared median distance with regards to all data points. The number of data points
p to include in each sample is hard to estimate, since we don’t have any prior knowledge of the complexity of
the MSS. This could be acquired from a training set of mid-sagittal surfaces. Experiments show that choosing
between 5 and 9 produces accurate results, and is a reasonable trade-off between low surface complexity and
specificity. The remaining question is how to estimate m, the number of random samples to draw. A sample of



p data points is considered good if it does not contain any outliers. Assuming the proportion of outliers is ε, the
probability that at least one out of m samples is good is

P = 1− (1− (1− ε)p)m (11)

Solving for m gives

m =
log(1− P )

log (1− (1− ε)p)
(12)

If our algorithm is to be successful, P should be close to 1. As in ref.,25 P is set to 0.99. What remains to be
estimated is ε, the proportion of outliers. With the data used in this project, ε = 0.65 proved sufficient. The
actual proportion of outliers among the data points is lower, probably less than 50%, however, our choice of ε
also takes into account that a sensible spatial distribution of the sample points is needed. Some samples, despite
containing inliers only, have unfortunate positioning of the data points, yielding a malformed spline. To lessen
this effect somewhat, samples with co-linear or near co-linear data points are not considered.

The algorithm proceeds by drawing m random sets of p points from the set of all points. For each set, a thin-plate
spline is constructed and the squared orthogonal† distance from each data point is calculated. The median of
these distances is the result for each spline. The spline giving the least median is chosen as the final result.

4.2.4. Other methods for spline fitting

There exist many other appealing and interesting approaches to spline fitting of the MSS. To put the chosen
method in perspective, some alternative methods are presented here.

The inter-hemispheric fissure contains cerebral spinal fluid (CSF) which gives a weak MR signal on MPRAGE
type scans. The image intensities in this region are therefore low. A straight-forward method is to place a regular
grid of control points over the interesting region of a sagittal slice, interpreted as the xz-plane. The control points
are allowed to move in the y-direction, and a slice is extracted by thin-plate spline interpolation. The objective
function consists of a summation of all pixels in a given slice. Minimizing this function amounts to finding the
darkest possible sagittal slice, hopefully representing the optimal MSS. The optimization can furthermore be
regularized by combining the intensity-based objective function with a bending energy term. This cost function
will try and find an optimal MSS while not introducing excessive bending of the MSS.

Using the data points of Section 4.2.2 it is possible to exchange the sampling technique described above with a
standard optimization method such as Nelder-Mead simplex. Again, a regular mesh of control points are placed
over an initial sagittal slice and are allowed to move in the y-direction according to some objective function.
Experiments with optimization of the median of squared residuals and the sum of squared residuals have been
carried out.

5. EXPERIMENTAL RESULTS
5.1. Mid-sagittal Plane Estimation
The mid-sagittal plane was estimated by the method described in Section 4.1 for each of the 62 subjects mentioned
in Section 3. The initial MSP, p0, were incident with the center sagittal image-slice, i.e. aligned to the image
coordinate system. These initial MSPs are shown in Figure 1. Using a Matlab implementation, a maximum of
100 simplex iterations were carried out on each subject resulting in the optimal MSPs shown in Figure 2. The
optimal MSP for subject 20 is shown in detail in Figure 3. The normal width, w, was in the interval [5;15] mm
and the spacing of the plane normals were 3 mm.

Qualitative judgement of the appearance of Figure 1 versus Figure 2 gives that the MSP improved in all cases
but subject 6. This is solely judged from the amount of cerebral spinal fluid (CSF). Although the change in
appearance for subject 6 is very subtle, the initial MSP is preferred over the optimal MSP. This results in a
success rate of 98% in the current sample set.

†Orthogonal with respect to the coordinate axes, not the spline surface.



Figure 1. Initial mid-sagittal planes for all 62 subjects (shown row-wise).



Figure 2. Optimal mid-sagittal planes for all 62 subjects (shown row-wise).
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Figure 3. Automatically detected mid-sagittal plane (MSP). (a) Initial (above) and optimal (below) MSP. (b) Axial slice
with MSP intersection. (c) Coronal slice with MSP intersection. (d) Axial and coronal slice with estimated MSP. (e)
Axial and coronal slice with MSP intersection. All images are contrast-adjusted for optimal display.

5.2. Mid-sagittal Surface Estimation

The LMedSq algorithm is very robust and may give satisfying results for up to 50% outliers.25 However, the
data points generated with the algorithm outlined in Section 4.2.2 produces very noisy data when symmetry
evidence is weak. As is turns out, this is mainly the case in areas where the MSS deviates from a plane.
Still, some evidence of the true MSS remains, and in most cases, the LMedSq algorithm was able to produce
satisfying results. Figure 4 shows an example of mid-sagittal surface estimation. At the writing of this article,
no quantitative results were available as the data set used contained few examples where the MSS was clearly
different from the MSP. Instead, the results of some straight-forward alternatives to the LMedSq method are
given below. In relation to these, the LMedSq method was more robust, consistent and conservative in terms of
bending of the MSS.

5.2.1. Results of alternative methods

The approach of finding the darkest possible sagittal slice seems to work well at a first glance. The results exhibit
satisfyingly low image intensities. However, there is no guarantee that the correct MSS has been found. Some
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Figure 4. Automatically detected mid-sagittal surface (MSS). (a) Optimal mid-sagittal plane (above) and optimal MSS
(below). (b) Points of maximal local symmetry and the optimal MSS based on a robustly estimated, non-interpolating
thin-plate spline. (c) Axial slice with MSS intersection. (d) Coronal slice with MSS intersection.

parts of the MSS, e.g. the corpus callosum, consist of white matter leading to high image intensities. The result
is that the MSS will move away from these areas into for instance the ventricles. These are areas outside the
mid-sagittal fissure also containing CSF giving low MR signal intensities. If such deviations are penalized by
introducing a regularization term, the MSS will end up being too constricted, yielding it unable to explain its
correct curvature.

For the direct optimization of median squared distance or sum of squared distance from the MSS to the data
points, the high proportion of outliers will guide the optimization process into one of the many local minima of
the objective function. These experiments clearly show the need for a robust search method such as LMedSq.

6. DISCUSSION

Albeit MSP estimation ultimately should be quantitatively assessed, this preliminary qualitative investigation
appears promising. One example out of 62 showed a slight deviation from what is perceived to be the true optimal
MSP. However, this deviation may only indicate whether the grader emphasizes on seeing CSF in the frontal
or occipital lobe. The results point towards two issues, i) that the method for symmetry estimation expresses



the features wanted in a good MSP estimation, and ii) the optimization approach is stable and accurate in a
reasonable large test set. The latter indicates that the proposed method is capable of dealing with typical clinical
variation in in-scanner head alignment.

The proposed approach is inherently three-dimensional, conceptually simple and straight-forward to implement.
The only independent parameters are the normal width and the normal spacing. In the event of having images
with permuted orientation (e.g. coronal and sagittal image slices interchanged) a standard principal axes ini-
tialization has been recommended. Due to the local symmetry measure this method is insensitive to partially
cropped brains unlike global methods, which heavily relies on the entire head to be scanned. Further, relying
on local symmetry rather than the presence of cerebral spinal fluid (CSF) should enable this method to deal
with severe variability in inter-hemispheric fissure width, e.g. due to atrophy.6 An informal investigation of the
fissure width in the present data set supported this observation. In addition, the symmetry approach renders
the method insensitive to the choice of MR scanning protocol.

However, the advantages of using a local symmetry come at a cost. Images generated with a very wide impulse-
response function (thus having very limited high-frequency content) such as functional SPECT and PET images,
will not show any pronounced local symmetry at the inter-hemispheric fissure. For such images our approach
will fail. Consequently, the MSP can in such cases only be estimated by educated guesses from global measures
such as skull symmetry, regardless of non-coinciding brain and head symmetry and torque effects causing the
partitioning surface to curve.15

There may be doubt about the usefulness of a mid-sagittal surface. For instance, varying curvature of a slice
will lead to varying geometric properties, making comparisons and statistical analysis complicated. However, a
plane approximation of a curved MSS will result in a partly misplaced cross-section. In effect, there is a trade-off
between the complexity of the MSS and the limited accuracy of the MSP.

The LMedSq algorithm works well and is easy to understand and implement. Regarding the complexity of the
problem it solves, it has relatively few free parameters that need tuning. However, more results are needed to
complete the preliminary findings reported in this paper.

7. CONCLUSION

This paper presented two inherently three-dimensional and novel approaches to estimation of the surface par-
titioning the hemispheres of the cerebral brain at their point of approximate bilateral symmetry. Contrary to
most literature, these employed a local symmetry measure and included partitioning functions being planar as
well as general surfaces. Both have been qualitatively validated in a cohort of 62 elderly subjects with encour-
aging results. Future work will concentrate on assessing their efficiency quantitatively by using synthetic brain
data supplemented by manual gold standard measurements on actual MRI. Sensitivity studies with respect to
pathologies (e.g. space-occupying lesions), field inhomogeneity and image noise should also be carried out to fur-
ther validate the current results. The road ahead for mid-sagittal surface extraction contains a mix of sampling
a direct optimization to increase efficiency, and an integration of the data point extraction and the search.
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