
Low-Power Processors For The
Hogthrob Project

Andreas Vad Lorentzen

LYNGBY DECEMBER 2004
M. SC. THESIS

NR. 91

IMM

Printed by IMM, DTU

Preface

The work presented in this Masters thesis has been carried out by Andreas Vad Lorentzen.
This report is part of the results from the masters thesis project “Low-Power Pro-

cessors For The Hogthrob Project” conducted at department of Informatics and Math-
ematical Modelling (IMM), Computer Science and Engineering division (CSE), Techni-
cal University of Denmark (DTU). The thesis was supervised by Jan Madsen and Jens
Sparsø.

A special thank you to Martin Leopold for inspiring cooperation. The test programs
which are described in sections 2.2.3 and 2.2.4 were implemented and used to measure
the power consumption of an ATmega128L section 2.4.1 were part of this cooperation.

Further an appreciation is awarded to Hans Holten-Lund and Alberto Nannarelli
for valuable insight information of using the FPGA and ASIC developing tools.

Finally thanks to Tina Chawes, Lars Bregnbæk and Nicolai Jørgensen for proof read-
ing of this report.

The project is accompanied by a CD with all source code. These can also be found
on the following homepage:
http://vadlorenten.dk/andreas/dtu/thesis/
A description of the CD contents can be found in appendix G.

DTU, 31st of December 2004

Andreas Vad Lorentzen

iii

Abstract

The project was inspired by the Hogthrob project, which is an internal research project
funded by the department of IT-research from May 2004 to 2007. Hogthrob is a sensor
network project whose goal is to monitor the behaviour of sows in order to determine
the exact time of their ovulation. The project involves three Danish universities and
firms and among these participants is the department of Informatics and Mathematical
Modelling (IMM) of Technical University of Denmark.

The contribution to the Hogthrob project was to explore the low-power AVR micro-
processor Atmel ATmega128L on a special developed Hogthrob test board (A mote).
TinyOS, an embedded operating system for sensor network motes, was running on the
microprocessor.

The Nimbus microprocessor is a customised version of the AVR microprocessor
from opencores.org for this project. The Nimbus microprocessor was synthesised
for a Xilinx Spartan3e400, which is present on the board. It was then demonstrated that
Nimbus microprocessor was able to run TinyOS. This is interesting because TinyOS is
a very complex application.

The Nimbus microprocessor was synthesised for an ASIC based on two differ-
ent cell libraries. This was done in order to compare the power consumption for the
Nimbus microprocessor with the ATmega128L in the perspective of using the Nimbus
microprocessor for sensor networks. The measurements of the power consumption
showed that the ATmega128L consumed more power than the two Nimbus micropro-
cessors. Furthermore the measurements showed that one had much lower dynamic
power consumption than the other. The average execution of a microprocessor is only
1 % in a sensor network.

Therefore the microprocessor with the lowest leakage current was most appropriate
for a sensor network. If it was possible to power down parts of the microprocessor,
which were not in use, the other could be more efficient low-power microprocessor for
sensor network.

The Disa microprocessor is an asynchronous version of the Nimbus microprocessor
designed during this project. Disa was designed using the de-synchronisation tech-
nique. A design study of the de-synchronisation technique was successfully imple-
mented. All the different components for the Disa microprocessor were implemented,
but they werenot assembled.

Finally a programming flow was developed in order to help getting the Nimbus mi-

v

croprocessor to execute software programs. The programming flow defined a method
to compile a software program, convert the binary program file in a hardware descrip-
tion and include hardware description in the hardware model for the Nimbus micro-
processor.

vi

Resume

Dette projekt er der hentet inspiration til fra Hogthrob projektet, som er finansieret
af afdelingen for IT-forskning i perioden maj 2004 til 2007. Hogthrob er et sensor-
netværkprojekt, som har til formål at overvåge grises adfærd for at fastslå tidspunktet
for deres ægløsning. Projektet involverer tre danske universiteter og firmaer og i blandt
disse participanter er afdelingen for Informatik og Matematisk Modellering (IMM) ved
Danmarks Tekniske Universitet.

Dette projekts bidrag til Hogthrob var at undersøge lav-effekt AVR mikroproces-
soren Atmel ATmega128L på et speciel designet Hogthrob prøvebræt (en mote). TinyOs,
et indlejret operativ system for sensornetværk motes, kørte på mikroprocessoren.

Til dette projekt blev der udviklet en specialkonstrueret version af AVR mikropro-
cessoren fra opencores.org , Nimbus mikroprocessoren. Nimbus mikroprocessoren
blev syntetiseret til en Xilinx Spartan3e400, som er til stede på brættet. Det blev her vist,
at det var muligt at køre TinyOs med Nimbus mikroprocessoren. Dette er interessant,
da TinyOS er en meget kompliceret applikation.

Nimbus mikroprocessoren blev syntetiseret til en ASIC baseret på to forskellige
cellebiblioteker. Dette blev gjort for at sammenligne effektforbruget for Nimbus mikro-
processoren med ATmega128L med henblik på at benytte Nimbus mikroprocessoren i
et sensornetværk. Målingerne af effektforbruget viste, at ATmega128L har et større for-
brug end begge cellebiblioteker. Ydermere viste målinger, at den ene Nimbus mikro-
processor havde et langt lavere dynamisk effektforbrug end den anden. Den gennem-
snitlige køretid for en mikroprocessorer er blot 1 % for et sensornetværk.

Dette betyder, at mikroprocessoren med det laveste lækstrøm var den mest veleg-
nede til sensornetværket. Hvis det var muligt at lukke dele af mikroprocessoren ned,
når disse ikke var i brug, ville den anden Nimbus mikroprocessoren vil formentlig være
den mest egnede lav-effekt mikroprocessor for sensornetværket.

Disa mikroprocessoren er en asynkron version af Nimbus mikroprocessoren, der
blev designet i forbindelse med dette projekt. Disa blev designet ved hjælp af de-
synkroniserings teknikken. Et prøve eksempel af de-synkronisations teknik blev suc-
cesfuldt implementeret. Alle de forskellige komponenter for Disa mikroprocessoren
blev implementeret, men disse var ikke sammensat.

Tilsidst blev der udviklet et programmeringsforløb for at hjælpe Nimbus mikropro-
cessoren med at køre software. Programmeringsløbet definerede en metode til at kom-
pilere et stykke software, konvertere det binære program til en hardwarebeskrivelse og

vii

inkludere hardwarebeskrivelsen i hardwaremodelen for Nimbus mikroprocessoren.

viii

Word list

• Atmel Advanced Technology Memory and Logic.
• AVR People claims it stands for: Advanced Virtual Risc.
• DIKU Computer Science Department of University of Denmark
• ELF Executable and Linkable Format. A standard for binary assembly files in

UNIX.
• EMN Electro-magnetic noise.
• FPGA Field Programmable Gate Array. A device that is programmed using VHDL.
• GPL Gnu Public License, a open source license.
• IMM Informatics and Mathematical Modelling of Technical University of Den-

mark.
• KVL The Royal Veterinary and Agricultural University of Denmark.
• Motes is the nodes is a sensor network.
• Sensor Network I a network of small embedded system, which can sense of trans-

mit the information through a radio to base station.

ix

Contents

1 Introduction 1
1.1 Hogthrob - A Danish Sensor Network Project 2
1.2 Issues of a Sensor Network . 3
1.3 Product Solution for Sensor Network . 3
1.4 Low-Power Techniques . 4

1.4.1 Synchronous Circuits . 4
1.4.2 Leakage Current . 4
1.4.3 Synthesis Tools and Cell Library . 5
1.4.4 Asynchronous Circuit for Sensor Networks 5

1.5 Project Goals . 6
1.6 How to Read This Report . 6

2 ATmega128L 9
2.1 The Hogthrob Board . 9

2.1.1 Selection of the Microprocessor . 9
2.1.2 Description of ATmega128L . 10
2.1.3 Timer Setup . 11
2.1.4 Sleep Modes . 12
2.1.5 Description of Hogthrob Board . 13

2.2 Tests . 14
2.2.1 Programming of the Microprocessor 14
2.2.2 GNU AVR Library . 14
2.2.3 Memory and Arithmetic Programs 16
2.2.4 Sleep Modes Programs . 17

2.3 TinyOS . 17
2.3.1 Hogthrob Platform . 17
2.3.2 Blink Example . 18

2.4 Measurements . 18
2.4.1 Power Estimation . 18

2.5 Discussion . 20
2.6 Summary . 20

xi

3 Customised Synchronous AVR 21
3.1 Open Cores . 21

3.1.1 Some Differences Between AVR_CORE, ATmega103 and
ATmega128 . 22

3.2 Customisation . 22
3.2.1 Description of the Architecture . 22
3.2.2 ROM & RAM . 24
3.2.3 Sleep Mode . 25
3.2.4 Identified Bugs . 25

3.3 Programming Tool Flow . 26
3.3.1 Getting Started . 26
3.3.2 From Program to Chip . 26

3.4 Hogthrob FPGA . 28
3.4.1 XST ROM and RAM . 28
3.4.2 Visual Verification . 28

3.5 ASIC Synthesis . 29
3.5.1 Synopsys Synthesis . 29
3.5.2 Cell Library . 30
3.5.3 Memory . 30

3.6 Test . 32
3.6.1 Nimbus Test Programs . 32

3.7 Visual Verification . 33
3.7.1 FPGA . 33
3.7.2 ASIC . 34

3.8 Measurements - FPGA . 36
3.9 Measurements - ASIC . 36

3.9.1 Area . 38
3.9.2 Current and Power Consumption 39
3.9.3 Nimbus with Memory . 44

3.10 Discussion . 44
3.11 Summary . 47

4 Asynchronous AVR Microprocessor 49
4.1 Approach . 49

4.1.1 General Theory . 50
4.1.2 De-synchronisation . 52
4.1.3 An Other Asynchronous Microprocessor 54
4.1.4 Components . 55
4.1.5 Design Studies Using De-synchronisation Technique 55

4.2 Asynchronous AVR Architecture . 57
4.2.1 Restructuring the AVR Microprocessor 57
4.2.2 Overview . 57
4.2.3 Timing . 58

xii

4.3 Implementation . 60
4.3.1 Asynchronous Components . 60
4.3.2 Disa microprocessor . 60

4.4 Discussion . 62
4.4.1 Problems with De-synchronous . 62
4.4.2 The Optimal use of De-synchronous 62

4.5 Summary . 63

5 Comparison of Results 65
5.1 Power Consumption Estimation . 65
5.2 Usage of the Microprocessor for a Sensor Network 68
5.3 Summery . 70

6 Discussion 71
6.1 Open Cores . 71
6.2 Modelling Possibilities . 72
6.3 Technology Versus Mote Costs . 73
6.4 Power Consumption . 74
6.5 Hardware Development Tools . 75
6.6 Summary . 75

7 Conclusion 77
7.1 Contribution . 77
7.2 Discussion . 78

7.2.1 Synopsys Synthesis . 78
7.2.2 Structure of the AVR Microprocessor 79

7.3 Future Work . 79

A Working description of M. Sc. Thesis 85

B Hogthrob board - Hardware overview 87

C Measurements 89
C.1 Full-adder measurements . 89
C.2 Nimbus Measurements . 89
C.3 Nimbus memory access . 91
C.4 ATmega128L . 92

D Pictures 95
D.1 BTnode mote . 95

E Modelsim: Compilation of Xilinx library 97

xiii

F Waveforms of Nimbus 99
F.1 Back-annotated simulation . 99

F.1.1 Timer blink example . 99
F.1.2 TinyOs - Blink . 99

F.2 Chip-scope waveforms . 101
F.2.1 Timer blink example . 101
F.2.2 TinyOs - Blink . 101
F.2.3 Hamming screen dump . 103

G CD-rom 105
G.1 General . 105
G.2 Documentation . 105
G.3 Source Code . 105

H Source 107
H.1 Full-adder . 107
H.2 Nimbus Microprocessor . 107
H.3 Asynchronous components . 107
H.4 De-synchronous design study . 107
H.5 Disa microprocessor . 108
H.6 Scripts . 108
H.7 C and Assembly programs . 108

H.7.1 power-extstandby . 108
H.7.2 idle . 109
H.7.3 loop . 109
H.7.4 power-down . 110
H.7.5 power-save . 111
H.7.6 power-standby . 111
H.7.7 add-mem . 112
H.7.8 add . 113
H.7.9 hamming . 115
H.7.10 Timer Blink . 118
H.7.11 TinyOS Blink . 119
H.7.12 vhdl2init-ext2 . 122
H.7.13 Makefile . 125

xiv

List of Figures

1.1 Sensor Network on Great Duck Island . 2
1.2 Leakage power consumption versus technology from [3] 4

2.1 Overview of the Hogthrob board . 13
2.2 Sensor network BTnode. 19

3.1 Top level of the Nimbus design . 23
3.2 The structure of the Nimbus core. 24
3.3 The programming flow. 27
3.4 Synopsys tool flow. 29
3.5 Power consumption for a full-adder using a 0.12µmand a 0.25 cell library. 31
3.6 Gathering instruction trace from AVR-Core 35
3.7 The figure is from a back-annotated simulation for the timer blink example. 37
3.8 Measurements of current and power consumption for the Nimbus mi-

croprocessor running at 7 MHz. 41
3.9 Current consumption for the Nimbus microprocessor 45
3.10 Power consumption for the Nimbus microprocessor 46

4.1 (a) Synchronous circuit and (b) Asynchronous circuit 50
4.2 (a) A bundled-data channel, (b) 4-phase bundled-data protocol and (c)

2-phase bundled-data protocol . 51
4.3 (a) the symbol for the c-element and (b) the c-element functionality 52
4.4 (a) Synchronous circuit, (b) De-synchronous circuit 52
4.5 (a) Semi-decoupled control circuit, (b) Semi-decoupled 4-phase STG 53
4.6 C-element used by the semi-decoupled latch controller 53
4.7 Implementation of semi-decoupled controllers for even (E) and odd (O)

latch . 54
4.8 A simple de-synchronised circuit . 56
4.9 Mini de-synchronised microprocessor . 57
4.10 Disa architectural overview . 59

5.1 Current consumption for the ATmega128L, Nimbus 0.12 and Nimbus
0.25 for running the test programmes described in section 2.2. 66

xv

5.2 Power consumption for the ATmega128L, Nimbus 0.12 and Nimbus 0.25
for running the test programmes described in section 2.2. 67

5.3 Estimation of average power and current consumption for the three AVR
microprocessors when they are awake and running in %. 69

6.1 A diagram of the different possibilities for the use of the AVR micropro-
cessors . 72

B.1 Hardware overview of the Hogthrob board 87

D.1 Power estimation of a BTnode. 95

F.1 Back-annotated simulation of Timer blink example. 100
F.2 Back-annotated simulation of TinyOs blink example. 100
F.3 Back-annotated simulation of TinyOs blink example. 101
F.4 Waveform of Timer blink expample. 101
F.5 Waveform of Timer blink expample. 102
F.6 Waveform of TinyOs blink example. 102
F.7 Waveform of TinyOs blink example. 102
F.8 Waveform of TinyOs blink example. 102
F.9 Waveform of TinyOs blink example. 102
F.10 Waveform of TinyOs blink example. 102
F.11 Waveform of TinyOs blink example. 103
F.12 Hamming encode and decode rounding on the Hogthrob FPGA 103

xvi

List of Tables

2.1 Table include names of different low-power microprocessors and whether
the microprocessors are support by GNU. 10

2.2 Appropriate register overview for the ATmega128L timer. 12
2.3 The MCUCR register . 12
2.4 Sleep Mode select . 13
2.5 Sleep mode test programs . 17
2.6 Current and power consumption for ATmega128L. 19

3.1 Dynamic power consumption for the memories. 31
3.2 Description of STS instruction . 34
3.3 Spartan3 device utilisation summary . 36
3.4 Area of the Nimbus microprocessor without the memory based on the

ASIC cell library. 38
3.5 Area of memory for the Nimbus microprocessor based on the ASIC cell

library. 38
3.6 Total area of the Nimbus microprocessor based on the ASIC cell library. . 39
3.7 Current and power consumption of Nimbus 0.12 and Nimbus 0.25 syn-

thesised without memory. 40
3.8 Calculation of dynamic current/power consumption and leakage cur-

rent and power consumption for the ASIC library. 42
3.9 Instruction read and data write and read for the test program in the pe-

riod of 4000 clock ticks. 43
3.10 Dynamic current consumption for instruction read and data write and

read of the test program. 43
3.11 Dynamic power consumption for instruction read and data write and

read of the test program. 43
3.12 Total current and power consumption for the Nimbus microprocessor . . 44

C.1 Power consumption for a full-adder using 0.25 library running different
speeds. 89

C.2 Power consumption for a full-adder using 0.25 library running different
speeds. 90

xvii

C.3 Power estimation of the Nimbus microprocessor using 0.25µm library
run 4MHz. 90

C.4 Power estimation of the Nimbus microprocessor using 0.12µm library
run 4MHz. 90

C.5 Count of memory access for the Nimbus microprocessor running the test
program at 4MHz . 91

C.6 Count of memory access for the Nimbus microprocessor running the test
program at 4MHz (continued) . 91

xviii

CHAPTER 1

Introduction

Today, embedded systems are used for many purposes in the industry. An example is
the co-operation between the University of California at Berkeley and Intel a small em-
bedded device was developed which consisted of a microprocessor, some sensors and
a radio transmitter. This small embedded device might be able to sense or monitor e.g.
movements, temperature, humidity and/or acceleration. Using the radio, embedded
systems are able to communicate with each other.

A sensor network is a network of many small embedded devices, which are able
to sense and communicate. These small embedded systems are nodes called motes by
Berkeley in the sensor network.

The aim of a sensor network is to use the motes to sense and transmit the informa-
tion to a base station. The base station is where all the data from the network is collected
and analysed.

The transmission can be done in two ways. The first method is a single hop where
the information is sent directly to the base station. The second method is a multi hop
where the information is transmitted through other motes to the base station. The motes
might not be able to communicate with the base station and therefore the motes have
to send the data through motes, so the data can reach the base station.

[1] describe different use of a sensor network. The most famous sensor network
project, which is commonly applied as a literature example, is on Great Duck Island
[2]. The purpose of the network is to observe the weather and nesting behaviours of
seabirds on the island. The network consists of 150 motes. Figure 1.1 from [53] is
an illustration of the sensor network on Great Duck Island. The motes are placed on
the seabird nests in the ground (1) and just outside the nests exit (2). The monitored
information is transmitted from the motes to a gateway (3). The gateway transmits the
data to the base station (4) which has a satellite connection to the main lab (5).

There are many other examples of sensor network projects. For instance in Port-
land, Oregon and Las Vegas sensor networks are used to measure motion, pressure and
infrared in elder care facilities in order to analyse activity of residents. The US mili-
tary also uses sensor networks for instance in antitank mines. An other other project is
about monitoring movements on Golden Gate Bridge.

1

2 Introduction

Figure 1.1 Sensor Network on Great Duck Island

1.1 Hogthrob - A Danish Sensor Network Project

Research has also been performed in the field of sensor networks in Denmark. Hogth-
rob is a national research project funded by the department of IT-research in may 2004-
2007 [50]. This is a multi-disciplinary project between department of Informatics and
Mathematical Modelling (IMM) of Technical University of Denmark, Computer Science
Department of University of Copenhagen (DIKU), The Royal Veterinary and Agricul-
tural University of Denmark (KVL), National Committee for Pig Production (NCPP)
and IO Technologies. The goal of the project is to develop a sensor network that mon-
itors the behaviour of sows. This is done by placing a sensor mote on the back of the
sow.

The monitoring of sows is important in order to stat if the sow is ovulating and
needs to be fertilised. A sow is only fertilised over a limited period of a few days. In
this period the sow is very active and moves around a lot in the pen. The movements
can be observed by an accelerometer which is connected to a sensor board. Information
regarding the sows behaviour is then sent from the sensor to a stationary computer
using a radio transmitter. Under normal circumstances it is up to the sow farmer to
observe the sow and find the right moment of artificial insemination. This can be com-
plicated if the farmer has 10.000 sows.

1.2 Issues of a Sensor Network 3

1.2 Issues of a Sensor Network

A mote consists, as mentioned, of a small microprocessor, some sensors and a radio
transmitter. The problem with the mote is that it runs on batteries and the radio uses a
lot of energy. If the microprocessor in the mote runs all the time and uses the radio, the
batteries will only last a few days [1].

To handle this problem a range of measures have been taken. The motes have to
be equipped with a low-power microprocessor. A low-power microprocessor needs to
feature a sleep mode, which allows the microprocessor to turn off parts of or the whole
chip, when the chip is idle. This includes the sensors and radio transmitter.

The speed requirement of a microprocessor in a sensor network is limited. The
microprocessor only needs high speed operation when transmitting and receiving data
through the radio or when sensing.

The mote has to be equipped with a low power radio. This entails that the mote
has a limited transmission range of less than 30 meters. Transmission of longer ranges
consumes too much energy.

The motes can be placed in hostile environments or indoors. These areas can have
obstacles that influence the radio transmission. This can lead to a retransmission of the
messages and will lead to unnecessary use of energy.

The size of the motes is an important factor to take into consideration. The motes
must be really small so they can placed in the field e.g. in nests on Great Duck Island.

When the motes are placed in the field like the Great Duck Island it is very important
that the motes a reliable. The birds on the island are preserved and the time is therefore
limited to place the motes because the birds are not allowed to be disturbed. If the
motes break down, they are lost.

1.3 Product Solution for Sensor Network

A microprocessor, which can handle the above mentioned issues, could be an AVR mi-
croprocessor from Atmel [46]. AVR is a small 8-bit RISC processor. The microprocessor
is designed specifically for low-power consumption and is easy to integrate with sen-
sors and radios. It has been used for many years and is therefore very reliable.

The AVR microprocessor can be used with the embedded operating system from
Berkeley called TinyOS [47]. TinyOS is specially designed for sensor networks. It has
the characteristic that when the AVR microprocessor is not executing, it is put to sleep.
This is done to minimise the power consumption.

Normally in a sensor network the motes spend 99 % of the time dormant. Only 1 %
of the time is used for transmission and sensing. Both AVR and TinyOS support these
conditions.

4 Introduction

1.4 Low-Power Techniques

There are many possibilities to optimise a microprocessor for low-power. Some are
easier to implement than others. The following is a description of four such techniques:

1.4.1 Synchronous Circuits

A way to reduce power consumption for a synchronous digital circuits is to lower the
voltage. This might have some timing consequence where data would not be ready in
time.

Another option is to lower the dynamic power consumption by stopping the clock
for the microprocessor. This can be done by clock gating or by stopping the oscillator.
Nevertheless the leakage current in the microprocessor will still be a problem.

1.4.2 Leakage Current

Leakage current is becoming an increasing factor of low-power design. Figure 1.2 from
[3] shows the power consumption in relation to the gate length.

Figure 1.2 Leakage power consumption versus technology from [3]

There are three openly ways to reduce the leakage power. The leakage power may
be reduced by lowering the voltage. This can involve timing problems in a synchronous
circuit

A more dramatic way is to power down the parts of the microprocessor that are not
in use. It costs a lot of power to power up the parts of microprocessor again, but in

1.4 Low-Power Techniques 5

a sensor network, this might be a good solution because it spends so much time in a
dormant state.

Finally It is possible to reduce the leakage current by changing the gate length.

1.4.3 Synthesis Tools and Cell Library

The chosen cell library could also influence the power consumption of the microproces-
sor. Newer cell library technologies have showed that the dynamic power consump-
tion for circuit have decreased in comparison with an old cell technology when they
are running at the same frequency. But the new cell library also has increased leakage
current and this may result in that is better to use an old cell library. A cell library can
be designed for low-power, this can be done by using low-power transistors.

Modern synthesis tools have limited possibilities for optimising a circuit for low-
power. Normally the synthesis tools can only optimise for speed or area, but a minimi-
sation with respect to size will also lead to an reduction of leakage current.

1.4.4 Asynchronous Circuit for Sensor Networks

Asynchronous circuits are interesting because the design technique could lead to a re-
duction of the dynamic power consumption. [5] introduces low power implementa-
tions of asynchronous circuits for DCC error correction. The article explains different
asynchronous techniques for an implementation of the circuit. The article shows that
the asynchronous circuit obtains reduction of power consumption up to 5 times com-
pared to the synchronous version. The cost to use an asynchronous design is an increase
of area of 20 % due to the increase in control logic source.

The articles [6, 7, 8] explain the advantage of self-timed or delay-insensitive cir-
cuits for design of asynchronous microprocessors. They show the robustness of chips
with different supply voltage and temperature. An asynchronous circuit can operate
acceptably on a much lower supply voltage than a synchronous circuit. Asynchronous
circuits also support the possibility of continuant changes in supply voltage due to the
self-timed circuit. A synchronous circuit may suffer from clock skew because of the low
voltage.

This results in an asynchronous circuit supporting the possibility to go into a standby
mode with zero dynamic power consumption and that the circuit has limited wakeup
time due to the delay-insensitive design. Clock gating for synchronous circuit might
achieve similar benefits.

An other advantage of asynchronous circuits is the reduction of electro-magnetic
interference (EMI). The articles [9, 10, 11] illustrate the difference in the level of electro-
magnetic noise between a synchronous circuit and an asynchronous circuit. The asyn-
chronous does not have the EMI peak.

The problem with EMI is that it might influence the performance of an A/D con-
verter. This is important for the radio receiver on a mote and it means result that some
data having to be retransmitted.

6 Introduction

This is why asynchronous circuits are particularly interesting for sensor networks.
The technique may reduce the power consumption and supports the possibility to
wakeup, execute an event and fall back to sleep.

This results in that an asynchronous design technique may reduce dynamic power
consumption. An asynchronous circuit is more robust and has less EMI than a syn-
chronous circuit. The disadvantage is an increase of circuit area which will increase the
leakage current.

1.5 Project Goals

The project goal is split up into three parts.
• The first part is to explore the architecture of a AVR microprocessor and get

TinyOS running on the AVR microprocessor. This includes measurements of
power consumption using the different power saving modes in the microproces-
sor.

• The second part of the project is to download and explore an AVR microprocessor
from the website opencores.org . A work flow has to be structured in order
to program and test the microprocessor. The microprocessor should be able to
run on a FPGA and to be synthesised for an ASIC library. Finally some power
estimation for the microprocessor is to be calculated.

• The third part of the project covers how to convert the customised synchronous
AVR to an asynchronous AVR microprocessor using the de-synchronisation method.

Finally all three microprocessor will evaluated.

1.6 How to Read This Report

The report contains 7 chapters and an appendix:
Chapter 1 is an introduction, which describes the background and aim of the project.

The chapter discusses the problems with sensor networks, interesting issues of asyn-
chronous design and how it is possible to reduce the power consumption of a micro-
processor.

Chapter 2 describes the ATmega128L, an AVR microprocessor from Atmel and a
special design test board for the Hogthrob project. The test programs are all described
and these are used for measuring the power consumption of the ATmega128L. Finally
TinyOs is explored.

Chapter 3 contains a description and evaluation of the AVR microprocessor from
Opencores called Nimbus. Next a description of the design flow which is used to pro-
gram and test the microprocessor. The Nimbus microprocessor is synthesised for the
FPGA on the Hogthrob board and an ASIC library and then the power consumption
for the Nimbus microprocessor is measured based on the ASIC library.

1.6 How to Read This Report 7

Chapter 4 explains the theory of asynchronous design and the technique for imple-
mentation of de-synchronous AVR microprocessor called Disa.

Chapter 5 compares the measurement of power consumption for the ATmega128
and Nimbus and looks at which microprocessors are best for use in a sensor network.

Chapter 6 is a discussion of the measurements and possibilities for the micropro-
cessors. The experience of using the downloaded core and the programming tools are
also discussed.

Chapter 7 sums up the present work and the achievements and at the end there is a
recommendation for future work.

The appendix contains waveforms, pictures of the ATmega128, measurements and
all the source code.

CHAPTER 2

ATmega128L

The object of this chapter is to introduce the ATmega128L microprocessor. The AT-
mega128L microprocessor is a low-power AVR compatible microprocessor from Atmel.

To begin with there will be a discussion of reasons to select the Atmel ATmega128L
microprocessor for the Hogthrob project. The microprocessor will be compared with
some other low-power microprocessor which are available on the market. The intro-
duction of the ATmega128L will include a description of the architecture and features.
The Hogthrob board has some hardware components which can be used by the micro-
processor which are relevant from a sensor network perspective.

In order to measure the ATmega128L microprocessor there has been written some
test programs. This chapter includes a description of the different test programs and
the embedded operating system TinyOS . The test programs are used to measure the
power consumption of the AVR ATmega128L.

The reason for exploring the ATmega128L is that later it is going to be compared
with an other AVR microprocessor.

2.1 The Hogthrob Board

For the Hogthrob project, a special hardware test board was designed, which will be
refereed to as the Hogthrob board. This board contains a microprocessor and some
other sensor network related components that are described later. In the next section,
reasons for selecting the AVR microprocessor for the board will be described.

2.1.1 Selection of the Microprocessor

There are many companies today which develop low-power microprocessors. Some of
them are more useful than others in a sensor network .

Table 2.1 is a list of different low-power microprocessors. The microprocessors are
from Atmel [12], Motorola [13], Intel [14], MIPS [15] and Texas Instruments [16]. The
first column contains the product name of the microprocessors, the next column con-
tains the data size and the instruction set size for the microprocessor. The last column

9

10 ATmega128L

states whether the microprocessor is supported by the GNU programming tools [55].

Product Inst Data Supported by GNU
Atmel Atmega128 (AVR) 16-bit 8-bit yes
Motorola HCS08 8-bit 16bit no
8051 8+ 8-bit no
Mips16 (TinyRisc) 16-bit 32-bit yes
TI MSP430 8-bit 16-bit yes

Table 2.1 Table include names of different low-power microprocessors and whether the micro-
processors are support by GNU.

All the microprocessors can be used in a sensor network but some of them are more
suited than others. An example of this is the HCS08. It has an onboard radio, but the
controller is not supported by GNU programming tools. The GNU tools include many
useful programs as a compiler and debugging tools. The problem is also that TinyOs is
only supported by the GNU compuler, see section 2.3.

The reason for choosing the AVR microprocessor as the platform for the project
was that the embedded TinyOS was originally written for AVR. This means that it is
100 % supported and there are many people which can assist if there is a hardware
comparability problem with TinyOS.

The people from DIKU have also done some previous research using the ATmega128L
microprocessor on another sensor network platform. The microprocessor has many
I/O ports which are easy to use and the I/O ports can be connected to sensors.

The MSP430 would also have been a good choice. It is a new ultra low-power mi-
croprocessor. The microprocessor is interesting because it just recently the processor
got supported by TinyOs [17]. The MSP430 has the advantages that it is not a Harvard
architecture. It has a combined instruction and data memory instead of two separated
memories as in the ATmega128L microprocessor. If the whole Hogthrob project was
restarted today, it would probably included the MSP430 microprocessor on the board.

2.1.2 Description of ATmega128L

The ATmega128L is from Atmel (Advanced Technology Memory and Logic) and it is
a high performance, low-power AVR 8-bit microprocessor. [19] is the documentation
of the ATmega128L and contains a complete description of the architecture. [18] is
a description of the AVR 8-bit instruction set. There is no official translation of the
abbreviation from Atmel part, but people claim that AVR stand for Advanced Virtual
RISC [20].

The ATmega128L has a two stage pipeline. The first stage is a instruction fetch stage
and is used for instruction pre-fetch. The second of the is the execution stage, which
handles the instruction decoding, instruction execution and memory access. The AVR
instruction set is 16 bit and many of the instructions are multi-cycle.

2.1 The Hogthrob Board 11

The ATmega128L uses a Harvard memory architecture. It means that the micropro-
cessor has a separated instruction memory and data memory.

The GNU tools are used to compile the programs for the AVR microprocessor. The
AVR boot strap from GNU tools works as followed. When an AVR microprocessor
is booted, it copies all variables, which are used in the system, from the instruction
memory to the data memory. This is done by the instruction called load immediate.
This may take some time if a program has many global variables.

The microprocessor has many interesting components as UARTs, timers, a Serial
Peripheral Interface (SPI) and different sleep modes from a sensor network perspective.

The timers can use the microprocessor clock (the internal clock) or an external clock.
Section 2.1.3 describes how to setup timer.

The timer invokes a interrupts when the specified time has elapsed. This action
stops the current process in the microprocessor. The microprocessor jumps to interrupt
vector, which is placed in the first part of the instruction segment. The interrupt vector
specifies the address for the program segment, which should take care of the interrupt.
After the interrupt has been handled, the microprocessor returns to the place it was
interrupted from.

The ATmega128L has six different sleep modes which can be used when the micro-
processor does not have to execute parts of a program. The clock is stopped in order
to reduce the power consumption. The different sleep modes are described in section
2.1.4.

The ATmega128L has seven 8-bit ports, which is called PORTA, PORTB, ... , PORTG.
The pins of the port are named in the following way: pin 6 of port B is called PB6. All
the ports are connected to the main bus and use the same port components. Some of
the pins are used for more than one thing. For instance PORTE pin 2 and PORTE pin
3 are used for the SPI and the UARTs are connected to other pins. The SPI can be used
for radio transmission.

2.1.3 Timer Setup

The ATmega128L has two 8-bit timers and two 16-bit timers. The timers have individ-
ual prescalers and comparison registers. The prescaler is used to divide the clock with
1,2,4,8 and so on to 1024.

A timer can be used in two ways. It can signal an interrupt when the compare
register is equal to the timer counter. The other possibility is when a timer wrap around
it can signal an interrupt.

Table 2.2 shows the register names and the names of bit in a register which are used
by TIMER0 that is one of the 8-bit timers. Not all the bits in the registers are described
and this is because they are not used by TIMER0.

The timer also supports the use of an external clock. The external clock is much
slower than the system (internal) clock. The timer can be set either to internal or exter-
nal clock.

12 ATmega128L

Register Bit Bit Name Description
TCNT0 7-0 Timer/Counter0 (8 Bit) (Timer 0)
OCR0 7-0 Timer/Counter0 Output Compare Register
TCCR0 Timer/Counter Control Register

2-0 CS02:0 Clock Select (prescale)
TIMSK Timer/Counter Interrupt Mask Register

1 OCIE0 Timer/Counter0 Output Compare Match Inter-
rupt Enable

0 TOIE0 Timer/Counter0 Overflow Interrupt Enable
ASSR Asynchronous Status Register

3 AS0 Asynchronous Timer/Counter0
2 TCN0UB Timer/Counter0 Update Busy
1 OCR0UB Output Compare Register0 Update Busy
0 TCR0UB Timer/Counter Control Register0 Update Busy

Table 2.2 Appropriate register overview for the ATmega128L timer.

2.1.4 Sleep Modes

The ATmega128L has six different sleep modes. Table 2.3 shows the sleep register and
table 2.4 is a decoding of the sleep modes. The different sleep modes behaves as follows:

• Idle: The CPU is stopped but all the other components are still running i.e.
UARTs, ports, timers and SPI.

• ADC Noise Reduction: The CPU and the ports are stopped to reduce the
noise electromagnetic interference.

• Power-Down: The whole ATmega128L is turned off. Only an external interrupt
can wakeup the microprocessor. The oscillator is also stopped.

• Power-Save: The same as Power-Down mode except, that the TIMER0 is still
working if the external clock is enabled.

• Standby: The sleep mode is the same as Power-Down except that the Oscillator
is not stopped.

• Extend Standby: The sleep mode is the same as Power-Save mode except that
the oscillator is not stopped.

Register Bit Bit Name Description
MCUCR MCU Control Register

5 SE Sleep Enable
4-2 SM1:SM0:SM2 Sleep mode select

Table 2.3 The MCUCR register

2.1 The Hogthrob Board 13

SM2 SM1 SM0 Sleep Mode
0 0 0 Idle
0 0 1 ADC Noise Reduction
0 1 0 Power-Down
0 1 1 Power-Save
1 0 0 Reserved
1 0 1 Reserved
1 1 0 Standby
1 1 1 Extend Standby

Table 2.4 Sleep Mode select

2.1.5 Description of Hogthrob Board

For the Hogthrob a special test board was designed. The board was designed by IMM
and DIKU. The precise description of the design can be found in the internal pages
on the Hogthrog homepage. The paper [21] is a technical description of the Hogthrog
board. This paper includes a figure, which shows a hardware overview of the different
components and how they are connected. The figure is included in appendix B. The
board was printed by IO Technologies [56]. They were also responsible for the acquisi-
tion of all the components for the board. Figure 2.1 shows a picture of the board.

Figure 2.1 Overview of the Hogthrob board

On the Hogthrob board an ATmega128L, a Spartan3, a temperature sensor and
memory is mounted. The ATmega128L is a microprocessor, which is described in sec-
tion 2.1.2. The Spartan3 is a Spartan3 XC3S400 FPGA from Xilinx. The FPGA is de-
scribed in section 3.4. The board also has LEDs and buttons, which can be programmed
for different purposes.

The Hogthrob board has a interface to connect a radio board and sensor board. The
radio board is designed so it can be placed on the back of the Hogthrob board.

14 ATmega128L

2.2 Tests

In the order to test and evaluate the performance according to power consumption for
ATmega128L some test program were developed.

The next section describes shortly how to program a AVR microprocessor. After this
the different test programs and their purpose are described.

2.2.1 Programming of the Microprocessor

There are many good tools for programming a ATmega128. Atmel has an official home-
page with programming tools for the Windows platform [60]. Another good place to
look for tools is on AVR freaks homepage [61]. They have discussion forums and pro-
graming tools. The programming tools are based on the GNU compiler and is working
on Windows and Linux. For this project the GNU tools were used.

The GNU programming tools can be used in the following way. gcc is used to com-
pile and link a program. The binary program object is copied to a file in srec format.
srec is a special format, which is used by uisp to program the ATmega128. uisp
uses the serial port for programming the ATmega128. The make script can be found in
appendix H.7.13. The programming can be done as followed:

avr−gcc −mmcu=atmega128 t imer_bl ink . c −o t imer_bl ink
avr−objcopy −−output−t a r g e t = s r e c t imer_bl ink t imer_bl ink . s r e c
uisp −v=3 −dprog=stk500 −d s e r i a l =/dev/ttyUSB0 −dpart=ATmega128 \
−−erase −−upload i f =t imer_bl ink . s r e c

Programming of a AVR microprocessor using GNU tools

The example is the compiling, object copy and programming of the an example
called timer blink.

2.2.2 GNU AVR Library

The GNU library for AVR includes many useful functions. A C/C++ program must
include the following lines to use the AVR library:

def ine __AVR_ATmega128__ 1 // ATmega128L microprocessor
//# def ine __AVR_ATmega103__ 1 // or ATmega103 microprocessor
include <avr/io . h> // AVR h e a d e r f i l e

Header include of for AVR programmes

First the microprocessor is defined. This involves that when the AVR header files
are included the correct variables and constant are available.

The AVR library includes some functions to define the behaviour of a port. There
are some variables which refer to a port. The following listing is an example of how to

2.2 Tests 15

set port B bit 6 as an output signal and to set the values to 1. Function _BV(6) sets the
sixth bit in a byte to 1 i.e. 0x20or b00100000and together with the discrete mathematics
it is possible to control the behaviour of the port.

DDRB = _BV (6) ; // Set port B b i t 6 to a output port .
PORTB = _BV (6) ; // Write a one to port B b i t 6 .

AVR library function to set 1-bit in a register.

The function sbi and outp are two other often used function. sbi is used to en-
able specific functionality in a AVR microprocessor. In the following example the AS0
bit in the ASSRregister is set. The ASSRregister is used to enable the external clock. The
function outp stores a value in a specific register e.i. the TCNT0 is set to zero.

s b i (ASSR , AS0) ; // Enable async timer c lock
outp (0 , TCNT0) ; // Reset the timer0 counter

AVR library function to write a value in a register.

Further AVR microprocessor programming functionalities can be found in the doc-
umentation for the AVR library. All the register names and specific bit names can be
found in the AVR microprocessor description. In the next section a small AVR program
is described.

Timer Blink Example

The following example switches a LED on and off on the Hogthrob board. The example
uses the external clock. The time between the led switches approximated one second
if using an external clock of 32kHz. The code can be found in appendix H.7.10. The
program works as follows. First the led is turned on, next the external clock is enabled
and the timer is reset and scaled by 27. Then the system waits for the external timer to be
ready. When this happens the timer compares registers is reset and the microprocessor
interrupt is enabled. The program then enters an infinite loop where the sleep mode is
set and the microprocessor goes to sleep.

When the time is gone the microprocessor wakes up and the program counter jumps
to the segment which handles the timer interrupt. The timer interrupt is disabled. The
led is then turned on/off. The timer is reset and the interrupt for the timer is enabled.
The program returns to the place where it went to sleep and waits for the external clock
to start again. When this happens the microprocessor goes back to sleep.

def ine __AVR_ATmega128__ 1
include <avr/io . h>

i n t main (void) {
DDRB = _BV (6) ; // Enable the port f o r wri t ing
PORTB = _BV (6) ; // Turn the port on

s b i (ASSR , AS0) ; // Enable async timer c lock

16 ATmega128L

outp (0 , TCNT0) ; // Reset the t imer0 counter
outp (7 , TCCR0) ; // S c a l e the timer by 1024

// Wait f o r the async c lock to get going
while (ASSR & 0x07) ;

outp (1 2 8 , OCR0) ; // Set the t imer output compare to t r i g g e r a t 128
// t i c k s .

s b i (TIMSK , OCIE0) ; // Enable the Output Compare i n t e r r u p t
asm v o l a t i l e (" s e i ") ; // Enable i n t e r r u p t s

while (1) {
// Set the MCUCR so t h a t we enter power−save mode (which w i l l
// leave the async c lock going) .
MCUCR &= ~0x3C ;
MCUCR |= _BV(SE) | _BV(SM1) | _BV(SM0) ;
asm v o l a t i l e (" s leep ") ;
asm v o l a t i l e (" nop ") ;
while (ASSR & 0x07) ; // Wait f o r the async c lock to get going

// again .
}

re turn 0 ;
}

// Function to handle t imer i n t e r r u p t
void _ _ a t t r i b u t e ((s i g n a l)) SIG_OUTPUT_COMPARE0 ()
{

c b i (TIMSK , OCIE0) ; // Disable the Output Compare I n t e r r u p t
// Toggle the mb−led
PORTB = PORTB & _BV (6) ? PORTB & ~_BV (6) : PORTB | _BV (6) ;
outp (1 4 , TCNT0) ; // Reset the t imer counter
s b i (TIMSK , OCIE0) ; // Enable the Output Compare I n t e r r u p t

}

Timer example which turn on and off the led.

2.2.3 Memory and Arithmetic Programs

To test the power consumption for the ATmel128L, three programs were developed.
All the programs are programmed in C and the source code can be found in appendix
H.7. The programs were designed as followed:

• add.c tests how much energy the arithmetic function uses. The program uses em-
bedded assembly to program the specific behaviour. The program uses minimal
access to the data memory.

• add-mem.c is an arithmetic function and memory access. The idea was to make a
program which uses the memory instruction as well as the arithmetic instruction.

• encode_decode.c is an implementation of the Hamming algorithm. This algo-
rithm is an error correcting algorithm, which consists of encoding and decoding.
It uses nearly all the data memory (4kByte) on the ATmega128L. The Hamming
algorithm is interesting because it could be used in radio communication and it is
a larger and more complex program.

2.3 TinyOS 17

2.2.4 Sleep Modes Programs

Another interesting thing to measure the efficiency of the different sleep modes for the
microprocessor. To test the sleep modes on the ATmega128L six programs were written,
one for each sleep mode except the reduce noise mode. A program with a infinity loop
was also written. In table 2.5 is a list of which programs that test which sleep mode.

Name Description
nop A tight loop of no-operation instruction
idle Idle mode of ATmega128L
power-save Power-save mode of ATmega128L
power-down Power-down mode of ATmega128L
standby Standby mode of ATmega128L
ext-standby ExtStandby mode of ATmega128L

Table 2.5 Sleep mode test programs

2.3 TinyOS

TinyOS is a embedded operating system, which is specially designed for sensor net-
works applications. The TinyOS project was started at the Computer Science Depart-
ment at University of California, Berkeley [47] and is now a open source project and can
be found on SourceForge.Net [48]. TinyOS is written in nescC [49], which has a C like
syntax, but uses a special way of encapsulating the programming code. TinyOS pro-
vides the surroundings for the application and the program is given a strict interface
for using hardware.

TinyOS is designed specifically for sensor networks in the way that it is a event
driven operating system. The article [26] and slides [27] give a good introduction of the
possibilities with TinyOS.

In a sensor network the motes spend the majority of time at sleep to reduce power.
TinyOS is able to handle when motes wake up because of an event and the operating
system is quick to start the processing. When the event activity is done, TinyOS makes
the mote to return to sleep.

TinyOS was originally designed for the AVR microprocessor but now it also sup-
ports microprocessors from ARM and Texas Instruments. A big issue of sensor net-
works are radio communication and sensing and TinyOS has special support for radio
communication. It has routing and broadcasting functionalities.

2.3.1 Hogthrob Platform

For the Hogthrob project has people from DIKU designed a special version of TinyOS,
which supports the Hogthrob board. It can be found on the Hogthrob private home-

18 ATmega128L

page.

2.3.2 Blink Example

The TinyOS blink example is the most simple example. Like the blink example from
section 2.2.2 the blinking has a specific time interval. The example is designed in a way,
so that it wakes up four times before the led is turned on or of. The source code for the
blinking example can be found in appendix H.7.11 and in the TinyOS repository.

2.4 Measurements

The ATmega128L on the Hogthrob board has been tested by people from DIKU and
everything seems to be working. As part of the experience with the Hogthrob board
both timer blink and TinyOS has been executed on the microprocessor and they are
working as expected.

2.4.1 Power Estimation

An important part of the investigation of the ATmega128L is to measure the power
consumption of the microprocessor. The power consumption is very important from a
sensor network perspective.

Unfortunately it was not possible to measure power consumption on the Hogthrob
board because a resistance was blocking. Instead of using the measurements of the
power consumption from the ATmega128L on Hogthrob board, it was done on a BTn-
ode (version 2) [54], which has an ATmega128. A BTnode is a sensor network mote. The
BTnode has a Bluetooth radio. Figure D.1 shows a picture of the BTnode. The red lines
in the top of the picture are used for power consumption estimation and the red lines
in the button is for programming the BTnode. More pictures of the setup are shown in
appendix D.1.

Table 2.6 shows the results of measuring where current and power consumption of
the test programs running 7 MHz and with a supply voltages of 3.273 V. The measure-
ments show that the execution of a normal program has a current consumption of less
than 10mA.

The experiment illustrates that it is very important that the microprocessor is put
to sleep if it is not executing a program. It can be seen that the nop program has the
highest average consumption. This is a known problem that exists on all PCs. Power-
down is the most efficient sleep mode, but the drawback is that it takes several clock
ticks to wakeup the microprocessor.

2.4 Measurements 19

Figure 2.2 Sensor network BTnode.

Program Current Power
nop 14.5mA 47.5mW
idle 5.20mA 17.0µW
power-save 11.8µA 39.0µW
power-down 11.9µA 38.6mW
standby 0.71mA 2.32mW
ext-standby 0.71mA 2.32mW
add 9.18mA 30.0mW
add-mem 9.75mA 31.9mW
hamming 9.88mA 32.3mW

Table 2.6 Current and power consumption for ATmega128L.

20 ATmega128L

2.5 Discussion

The ATmega128L is an easy microprocessor to understand. Both the architectural and
instruction documentation from Atmel are excellent. They include small program ex-
amples which illustrates the utilisation of instructions or a special part of the micropro-
cessor. It is understandable that computer system engineers like the AVR microproces-
sors. This is because the microprocessors has many ports and timers which can be used
to control the behaviour of other hardware components.

2.6 Summary

This chapter has presented the ATmega128L and others microprocessors. It has been
showed how the ATmega128L microprocessors can use the ports and timers. Some test
programs have been written for the AVR microprocessors and the current consumption
has been measured for the test programs. Finally TinyOS has been discussed.

CHAPTER 3

Customised Synchronous AVR

This section is about the open source AVR microprocessor named AVR_CORE. A cus-
tomisation of the microprocessor will be referred to as Nimbus microprocessor. The
customisation for the Nimbus microprocessor is implemnted so it can be synthesised
for a FPGA and an ASIC.

This will lead to a new design of the sensor network platform, which can easily be
customised for special purposes. The Nimbus microprocessor can be used for estima-
tion of power consumption while executing different sensor network tasks like sensing
or doing radio communication.

This chapter describes the AVR_CORE and the differences between the AVR_CORE
and the ATmega128. There will also be a description of the customisation of the micro-
processor together with the implementation of the AVR_CORE microprocessor.

A tool flow has been developed for programming and synthesising the Nimbus
processor. The programming tool flow and the synthesis tools for FPGA and ASIC
synthesis will be described.

At the end of the chapter the tests and measurements of the Nimbus microprocessor
will be described and the microprocessor is discussed.

3.1 Open Cores

Open Cores [51] is a place like Source Forge, which has open source projects. Open
Cores have many interesting processors and I/O interfaces.

Open Cores there is a project called AVR_CORE [52], which is a implementation of
a look a like Atmel ATmega103. A description of the ATmega103 can be found here
[22]. Both ATmega103 and ATmega128L use the same instruction set.

The AVR_CORE contains:
• Core
• Program memory
• Data memory
• UART
• Timer/Counter

21

22 Customised Synchronous AVR

• PORTA and PORTB
The AVR_CORE has limitations. The microprocessor does not support the instruc-

tions concerning the sleep modes and the watchdog control. This means that the clock
cannot halt and different parts of the core cannot be disabled. Furthermore there is no
implementation of a external clock. The watchdog is used to restart the microprocessor
after a given time period.

The ports from C to F are not implemented. Port A and B are implemented as
parallel ports and they do not support the advanced port functionalities.

3.1.1 Some Differences Between AVR_CORE, ATmega103 and
ATmega128

The differences between an ATmega128L and ATmega103 can be found here [23]. The
limitations for the AVR_CORE are described in the previous section and they are all
supported in ATmega128L. The ATmega128L has another 2 timer counters where each
of the them have their own prescaler as described in section 2.1.3.

The ATmega128L has two UARTs and one SPI, where the AVR_CORE only has one
UART. The external memory interface for the ATmega128 has been improved compared
to ATmega103. In the AVR_CORE the external and internal data memory are treated as
one.

The AVR_CORE has some analog limitations compared to the two other micropro-
cessors. Therefore the AVR_CORE does not have an implementation of an oscillator. A
simple model could be implement in VHDL using and-gates and inverters.

3.2 Customisation

This section describes the customisation of the AVR_CORE microprocessor. The cus-
tomisation includes changing the the RAM and ROM, implementation of the sleep
modes and correction of bugs. To start with there will be a description of the Nimbus
architecture.

3.2.1 Description of the Architecture

Microprocessor

The microprocessor will be described in a top down approach. Figure 3.1 shows the top
level of the microprocessor. At the top-level it is possible to see the internal clock the
external clock, and the reset signal. The external clock is connected to the timer and the
internal clock is connected to the sleep control unit. The sleep control module regulates
the clock for the other parts of the system. The sleep control module is described in
detail in section 3.2.3.

The core is placed in the middle of the figure and is connected to the instruction
memory (ROM), data memory (RAM) and the I/O hardware components. The core

3.2 Customisation 23

is connected to the data memory and the I/O components through a common data
bus. As described in the ATmega103 manual the I/O components memory is mapped.
Each component listen to the address signal to find out if the data on the bus is the
component. The data bus is made as input and output signal to the core.

The I/O ports of the Nimbus microprocessor is placed in left part of the figure. In
the top left corner just beneath the timer are the I/O pins for external interrupts. Then
there are the UART and the two ports.

The I/O and interrupt component take care of the sequence of interrupt and which
IO hardware component or the data memory has the right to write the data bus. The
interrupts are arranged into a vector, so the microprocessor can handle multiple inter-
rupts.

Timer Power

UART

PORTA

PORT B

CORE

ROM

RAMIO
 &

 I
nt

er
ru

pt
s

co
nt

ro
l

E
xt

er
n

C
lk

Extern Interrupts

R
es

et

Clock Gating

Interrupt

C
lk

Clock Gating

Figure 3.1 Top level of the Nimbus design

In the listing below are names of the components, the belonging file and a short
description of the component purpose. The source for the file can be found in appendix
H.2.

• Top level (top_avr_core_rtl.vhd): Top-level design of the Nimbus microproces-
sor.

• Package (AVRuCPackage.vhd): Constants and types.
• IO & Interrupts (external_mux.vhd): Data bus multiplexer and interrupt vector.
• IO & Interrupts (Service_Module.vhd): Special registers.
• IO & Interrupts (RAMDataReg.vhd): Data-bus register.
• ROM (rom_binary/ram16bit_XXX.vhd): This is the program memory where the

XXX is the name of program.

24 Customised Synchronous AVR

• RAM (data_ram_rtl.vhd): Data RAM.
• Port A (porta.vhd): Parallel ports A.
• Port B (portb.vhd): Parallel ports B.
• Timer (Timer_Counter.vhd): Timer/Counter.
• Extra Timer (simple_timer.vhd): Simple timer.
• UART (uart.vhd): UART
• Sleep Control (power_control.vhd): Sleep mode control.

Core

The core is the main part of the Nimbus microprocessor. Figure 3.2 shows the connec-
tions between different components in the core.

pm_fetch_dec

reg_file io_reg_file io_adr_dec

dbusin

inst

irq_lines

pc

inst_req

adr

iowe

iore

dbusout

irqack

sleep_sleep_enable

irqackad

alu_avr bit_processor

cl
k

re
se

t

Nimbus Core

Figure 3.2 The structure of the Nimbus core.

• CORE (avr_core.vhd): top-level design of AVR core.
• ALU (alu_avr.vhd): ALU.
• Bit processor (bit_processor.vhd): The Bit processor is used for bitwise operation

like XOR.
• Register file (reg_file.vhd): Register file.
• Decode (pm_fetch_dec.vhd): Includes program counter, instruction decoder, mem-

ory and I/O memory.
• IO Register file (io_reg_file.vhd): I/O registers.
• IO Address Decode (io_adr_dec.vhd): Address decoder and data bus multi-

plexer for the I/O registers.

3.2.2 ROM & RAM

The ROM and RAM specification has been chanced to a VHDL description that is sup-
ported by Xilinx XST standard 3.4.1. The size of the RAM has chanced from 128Byte to
4096Bytes and the size of ROM depends on program 3.4.1.

3.2 Customisation 25

The ROM reads and RAM reads and writes are not done on the event when the
clock signal becomes zero. Before the ROM and RAM were accessed asynchronously.

3.2.3 Sleep Mode

The sleep mode for the Nimbus microprocessor has been implemented as described
in the ATmega103 documentation. The difference between the ATmega128 and AT-
mega103 is that ATmega103 does not support the standby functions as described in
section 2.1.4.

The sleep mode is implemented in form of clock-gating. The sleep instruction is
executed, the sleep mode state machine looks in the sleep mode register. If the idle
mode is set, the clock for the Core, RAM and ROM is stopped. This means that inter-
rupts from external interrupt, the timer, ports or UART can wake the microprocessor
up.

The Power-Save mode stops all the components except the timer and the external
interrupt and the Power-Down mode stops everything so only an external interrupt
can wake up the system.

On figure 3.1 it is possible to see the top level of the Nimbus microprocessor. The
green signal is the clock for the Core, RAM and ROM, the blue signal is the clock for
the I/O and the purple is the clock signal for the timer.

The clock stops when the clock signal is low. The clock is first enable when the
internal clock goes high afters an interrupt. Every component then functions normally
again. The clock starts and stops in this way to avoid that the clock period is too small.

The way the sleep model is implemented in the Nimbus microprocessor is more
like the standby sleep mode in the ATmega128. The power down and power save sleep
modes for the ATmega128 turns off the oscillator and when it is turned on, it takes a
long time for the clock to be stable again. The standby mode is not available in the
ATmega103.

3.2.4 Identified Bugs

Only a few bugs were found, but these were very essential. Some of the bugs were
described in [29] and they were wiped out. The bugs caused an incorrect handling of
the following instructions:

• push and pop instruction: The data write was done and address were set too
early. (push)

• ld rD, Y and ld rD, Z instruction: The instructions were not detected.
• st rD, Y and st rD, Z instruction: The instruction were not detected.
• ld rD, X+ and ld rD, -X instruction: The post increment (X+) and pre-decrement

(-X) were not detected.
• bst Rd,b instruction: There was an internal error where the instruction was

mistaken for the bset instruction.
In addition to these bug there were found the following bugs:
• reti instruction: Too early calculation of return address.

26 Customised Synchronous AVR

• pop instruction: The load address was wrong.
The interrupts were also handle wrong. The current program counter was calcu-

lated too early.
All these errors mean that the AVR_CORE could only have been tested using logical

instructions. The problems with these bugs are, that there has never been tested com-
plected programs on the AVR_CORE. This would have lead to detection of the bugs.

3.3 Programming Tool Flow

This section covers the tools that have been used for implementation and realisation of
the Nimbus microprocessor. First there is a introduction to the program flow and how
the AVR_CORE was explored in the first place.

In the end there is a description at how the synthesis tool from Xilinx ISE was used
for programming the Spartan3 on the Hogthrob board and how Synopsys was used for
synthesising the design for an ASIC.

3.3.1 Getting Started

It was difficult to get started using the AVR_CORE and get it to execute a program. The
source code did not include a test bench. The project was very poorly described. Only
the things which were not implemented was described.

The project also included Windows assembler which could assemble an AVR assem-
bly program into a text file with the binary program code. This was not very helpful.

The problem was how to get a C program running on the VHDL Nimbus micropro-
cessor model. To overcome this a flow was developed.

3.3.2 From Program to Chip

This section addresses how to write a program and get the program to execute on the
Nimbus. Figure 3.3 shows the programming flow.

To begin with a program is compiled and linked using the GNU AVR compiler in
a program file. The binary code from the program file is then dumped into a binary
file which only included the raw program, instead of dumping the binary code into the
srec-format as described in section 2.2.1.

A program was developed which converted the binary file into a VHDL file. The
VHDL file includes a ROM description for the AVR microprocessor. The VHDL ROM
description has the same size as the binary file. The program is called vhdl2init-ext2 and
the source code can be found in appendix H.7.12. Finally the VHDL file was moved
into the other Nimbus VHDL files. These five steps were included in one script and the
red box on figure 3.3 shows four out of five steps. If a new program was developed, it
was very easy to get the VHDL model of the program.

The program could together with the rest of the description of the Nimbus micro-
processor be simulated. The model could also be converted into a FPGA or ASIC netlist

3.3 Programming Tool Flow 27

(binary)
objectdumpobjectdump

(srec)

description
Nimbus VHDL

Synopsys
synthesis/place & route synthesis/place & route

(asm,C/C++)

program

gcc

(compile)

(converting)
vhdl2init−ext2

ISE

iMPACT

(programming FPGA)

usip

(ATmega128L)
Modelsim

Modelsim

(compile)

(simulate)

From C to VHDL

Figure 3.3 The programming flow.

28 Customised Synchronous AVR

and then make a back-annotated simulation of the model. The model could also be
placed into a FPGA.

Boot Loader

The GNU AVR compiler includes a linker which intrun a boot strip that matches the
interrupt vector as described the ATmega103 architecture description. The first instruc-
tion in a program is a jump to function, which loads every program variable into the
data memory and then jumps to main.

Instead of using the GNU boot strip a specially developed one was used which runs
a pair of nop instructions and via the icall instruction jumps to the main function.
The advantage is that it is easier to monitor what is going on to start with inside the
microprocessor and that it is started correctly. The GNU tool does many things to a
program which is difficult to foresee if it is the first time working with it.

When the Nimbus was starting as expected, the GNU boot strip was used.

3.4 Hogthrob FPGA

On the Hogthrob board, a Xilinx Spartan3-400 is placed. The idea with the FPGA on the
Hogthrob board is to be able to test different microprocessors and components, which
could be interesting in a sensor network perspective. Spartan3 is from Xilinx [57] and
the FPGA data-sheet can be found here [59]

For example it could be imagined that instead of using the microprocessor for en-
coding and decoding radio package, there could be developed a special hardware com-
ponent to do the job. The FPGA could then be used to see if it is works in reality.

The idea with FPGA on the Hogthrob is to se that the Nimbus design works as ex-
pected. In order to "synthesise" and "place and route" the design into the Spartan3 Xil-
inx ISE 6.1a was used. The FPGA top level for the Nimbus design and the pin connec-
tion is specified in appendix H.2 in the files top_spartan3.vhd and top_spartan3.ucf .
To download the design into the Spartan3 board Xilinx iMPACT was used. iMPACT is
using the JTAG port on the Hogthrob board.

3.4.1 XST ROM and RAM

Xilinx Synthesis Technology (XST) [25] is a description of supported HDL languages
Xilinx devices, and constraints for the ISE software. It is possible to map the ROM and
RAM into memory blocks in the FPGA if the VHDL description of the RAM and ROM
follows the XST specification. ISE will otherwise map the ROM and RAM to flip-flops
and it is then not possible to have the microprocessor in the FPGA.

3.4.2 Visual Verification

One of the features in the Xilinx design tools is a program which is able to look inside
the FPGA and see what is going on. The program is called ChipScope during execution.

3.5 ASIC Synthesis 29

ChipScope uses the JTAG like iMPACT. ChipScope is used to verify that Nimbus is
running as expected in section 3.7.1

3.5 ASIC Synthesis

An important part of analysing the Nimbus microprocessor is to compare it with a real
microprocessor. This can be done by using the Synopsys synthesis tools.

3.5.1 Synopsys Synthesis

Synopsys release 06-2004 was used to synthesise the Nimbus microprocessor. Synopsys
is then able to report the timing, area and power consumption after the synthesis of the
microprocessor. Figure 3.4 shows the flow.

switching activity

VHDL
description

synthesis
Synopsys

report area
Synopsys

export netlist
Synopsys

report timing
Synopsys

timing simulation
Modelsimsimulation

Modelsim

vcd2siaf

report power
Synopsys

report power
Synopsys
estimation

Figure 3.4 Synopsys tool flow.

Some scripts were developed which do all the work. To begin, with every VHDL file
is synthesised separately and in the end they are put together. The files are analysed,
elaborated and optimised. The optimisation is done with the highest effort and target
minimisation of area. Each part of the design is synthesised separately because this
makes it possible to keep the design hierarchy and reduces the optimisation timer by
several minutes, because Synopsys does not try to optimise the design through the
components.

The whole design is then synthesised with Synopsys Power Compiler to report an
estimation of area without the wiring.

30 Customised Synchronous AVR

To get a more accurate model of the power consumption a switching activity model
of a Nimbus microprocessor executing a specific program can be created. To do this
a netlist and a switching delay of the netlist for the design have to be exported. The
netlist was created in a Verilog file, because the VHDL part of Synopsys did not work
correctly. The switching delay was saved in a file called sdf (Switching Delay File).

The netlist, sdf and test-bench are loaded into the ModelSim simulator. It is not pos-
sible to see if the circuit timing is maintained. This is called back-annotated simulation.

It is possible to enable the switching activity in ModelSim and activity is written
into a VCD (Value Changed Dump) file. The VCD file is converted into a Synopsys
switching activity file (SAIF). The netlist of the microprocessor and the SAIF are loaded
into Synopsys and then Synopsys is able to estimate the power consumption based on
switching activity. This gives a more realistic estimation.

3.5.2 Cell Library

Two different cell libraries were used for synthesising the Nimbus microprocessor for
an ASIC. The libraries are from [58]. The first cell library is called CORELIB7 from
November 1998 and is based on a 0.25µm cell technology and the other cell library is
called CORE9GPLL from October 2001 and is based on a 0.12µmcell library. CORE9GPLL
is a special low leakage current cell library. There is also a high speed cell library for
the 0.12µmcell library, but this is not considered because this project only concerns the
low-power microprocessors. There does not exist a low leakage version of the 0.12µm
cell library.

Leakage current is becoming an increasing problem for the new cell library. Exam-
ination has been done using the cell libraries to find out how dominating the leakage
current is in the cells. A full-adder have been used for the experiments. Figure 3.5
shows the full-adder run at different frequencies.

It can be seen that the leakage current has as influence. The full-adder has run at
70 MHz before the full-adder based on the two different technologies used the same
amount of power. This may prove that the 0.12µmcell library is not the best cell library
for the sensor network because the motes spend much more time asleep.

The Nimbus microprocessor which is synthesised using the 0.25µm cell library is
called Nimbus 0.25 and if it is synthesised using the 0.12µmcell library the micropro-
cessor is called Nimbus 0.12.

3.5.3 Memory

The cell libraries presented in the previous section do not have any memory support
included. It has been possible to get information of some memories from STMicro-
electronics. The memories are based on the 0.12µmcell library and [43, 44, 45] contain
information on the different memory modules. The memories are from memory gener-
ator program from STMicroelectronics.

3.5 ASIC Synthesis 31

 0

 2

 4

 6

 8

 10

 12

 0 20 40 60 80 100

nW

MHz

Power consumption vs. frequency

0.25 Leakages
0.25 Total

0.12 Leakages
0.12 Total

Figure 3.5 Power consumption for a full-adder using a 0.12µmand a 0.25 cell library.

Name Unit SPHS9gp SPSMALL9gp
Technology LL+ULL LL
Dimension 8192x16 128x64
Cell lib. µm 0.12 0.12
Cell area µm2 2.5064 3.584
Voltage V 0.9 0.8
Size KB 16 1
Dynamic consumption (read) µA/MHz 85 36
Dynamic consumption (write) µA/MHz 96 36

Table 3.1 Dynamic power consumption for the memories.

32 Customised Synchronous AVR

3.6 Test

The article [30] discusses the issue of the design CMOS VLSI using the variable design
tools and the issue of testing and evaluating a digital circuit. They argue that the most
dominant way to test a chip is random pattern generation. The technique is used to
detect data hazards in different parts of the chip.

To generate random test patterns for this project is a lot of work, so instead some test
programs have been developed. The programs have been verified first in behavioural
simulation. Then everything was working perfectly and the design was converted in
a netlist using the synthesis tool. The nestlist has been simulated with the same test
program. The netlist includes timing information for the design library.

First in this section there is a description of the test programs, which were used
in the beginning to check if the microprocessor worked. Then there is back-annotated
simulation illustrating that the sleep modes and interrupts are working as expected and
finally ChipScope is used to illustrate that the Nimbus microprocessor runs perfectly on
the Hogthrob FPGA.

3.6.1 Nimbus Test Programs

Three kinds of test programs were developed. The test programs were used to see if the
Nimbus microprocessor was working in the first place. Test programs for verification
of the timing made it possible to find and correct the bugs described in section 3.2.4.
Finally the ATmega128L test programs were run on the microprocessor as described in
section 2.2. All the test program can be found in appendix H.7.

The First Programs

In the list below is a description of the first program, which was used to test if the
Nimbus microprocessor was running. The test program used the boot loader, that was
described in section 3.3.2. The timing test programs is also a boot loader.

• simple_test1_s.s loads some data and adds it together.
• test1.c tests if the boot-loader jumps to the main function. Between the main

function and icall is an unlimited while-loop. So if the icall function does
not succeed jumping to the main function, the program will be stuck at the while-
loop.

Timing Test Programs

Some bugs were found and in order to test it the system was working perfectly these
timing test programs were developed.

• ret_test.c tests that the function jumps correctly to a new function and returns
again.

3.7 Visual Verification 33

• pin_test.c three bit counts that blink the leds.
• push_pop_test.c push and pop and data to the data memory.
• sub_test.c

3.7 Visual Verification

This section shows confirmatory evidence that the Nimbus microprocessor runs as ex-
pected. All the test programs were visually verified. This includes all the test programs
that were described in section 2.2 and 3.6. It was also verified that the TinyOS blink
example was running as expected.

It is very important that the TinyOS program was running without errors because
TinyOS is a more complex program in contrast to all the other test programs which are
very simple and whose goals are to test a specific thing, where TinyOS includes parts
which are unknown and therefor if TinyOS was performing wrong, it would be really
complicated to find the error.

The verification of the Nimbus microprocessor was done using the FPGA and the
back-annotated simulation based on the ASIC cell libraries.

3.7.1 FPGA

Visual verification using the FPGA was done in three ways.

Back-annotated Simulation

ModelSim was used for back-annotated simulation of the Nimbus microprocessor. This
required that the FPGA cell library was compiled to ModelSim as explained in ap-
pendix E.

Visual

Furthermore the timer blink and TinyOS blink example were downloaded to the FPGA
for visual verification. The examples were blinking with about the same interval as
for the ATmega128L. It was not possible to have the same clock frequency as the AT-
mega128L. The FPGA has only a 40Mhzclock and therefor a clock divider was used and
the internal clock was set to 5Mhzand the external clock was set to 39,0625Khz.

ChipScopre

Finally ChipScope was used to monitor the workings inside the FPGA for the timer
blink and TinyOS blink example. Figure 3.6 shows how ChipScope have been used
to verify the timer blink example and it illustrates when the led is turned on. Figure
3.6(a) shows a screen dump of ChipScope which has collected data from the FPGA.
ChipScope is setup to sample the program counter and the loaded instructions from

34 Customised Synchronous AVR

Clock ticks PC Description
1 *16E The sts instruction is loaded from the instruction memory
2 *16E The previous instruction is a multi cycle instruction and

therefore the same instruction is loaded again.
3 *170 The sts instruction is decoded and it is determined that the

sts is a 32 bit instruction multi cycle instruction. The sec-
ond part of the sts instruction is loaded from the instruction
memory.

4 172 The sts instruction is executing.
5 172 The sts instruction is continue executing the instruction
6 174 It is possible to see that the led is turned on and a new in-

struction is decoded.

Table 3.2 Description of STS instruction

the FPGA which is listed in figure 3.7.1. Figure 3.7.1 shows the matched disassembled
code with c-source intermixed of the data.

In figure 3.7.1 the instruction with the “*” is a store direct to data space (sts) instruc-
tion, which turns the led on and off. sts is a 2 times 16 bit and is executed in 2 cycle
(multi cycle instruction). Table 3.2 explains what is going on in the microprocessor.

In appendix F.2 more waveforms made by Chipscope can be found. The waveforms
show the running of the timer blink example and TinyOS blink example.

3.7.2 ASIC

In order to show that the Nimbus microprocessor is working correctly the two next
examples are included. The two examples are looking at the Nimbus microprocessor
going to sleep and when it wakes up again. The examples are presented using wave
forms, which are created by ModelSim running a back-annotated timing simulation.
The simulation tool use the ASIC netlist from Synopsys based on the 0.12µmcell library.

In appendix F.1 there are more waveforms made by ModelSim from back-annotated
simulations of Nimbus 0.12. There are waveforms of the Nimbus 0.12 running the timer
blink and the TinyOS blink examples.

Sleep Mode

Figure 3.7(a) illustrates when the Nimbus 0.12 microprocessor is going to sleep. The
internal clock, clk_int is running at 4Mhzand the external clock, clk_ext is running
at 8Mhz. The external clock is set to this high frequency in order to reduce the simulation
time to less than a minute.

When Nimbus 0.12 is put into sleep the signal mode_idle , mode_power_save
and mode_power_down defines the sleep mode. It can be seen that the clock of the core
and all the I/O components are stopped. The clock_core_enable and clock_dev_enable

3.7 Visual Verification 35

(a) ChipScope

PC(14-0) Inst Portb_6
10a 7087 0

3c 940c 0
3c 940c 0
3e 008a 0
40 940c 0

114 921d 0
116 920f 0
118 b60f 0
11a 920f 0
11c 2411 0
11e 938f 0
120 939f 0
...
16A 8389 0
16C 8189 0
16C 8189 0

*16E 9380 0
*16E 9380 0
*170 38 0

172 E08E 0
172 E08E 0
174 9380 1
176 52 1
178 9180 1
178 9180 1
17A 57 1
...

(b) Data from Chipscope

00000000 <__vectors>:
...

38: 0c 94 50 00 jmp 0xa0
3c: 0c 94 8a 00 jmp 0x114
40: 0c 94 50 00 jmp 0xa0

...
void __attribute((signal))
SIG_OUTPUT_COMPARE0(){

114: 1f 92 push r1
116: 0f 92 push r0
118: 0f b6 in r0, 0x3f
11a: 0f 92 push r0
11c: 11 24 eor r1, r1
11e: 8f 93 push r24
120: 9f 93 push r25

...
PORTB = PORTB & _BV(6) ? PORTB & ~_BV(6) :

PORTB | _BV(6);
...

16a: 89 83 std Y+1, r24
16c: 89 81 ldd r24, Y+1

*16e: 80 93 38 00 sts 0x0038, r24
outp(14, TCNT0); // Reset timer counter

172: 8e e0 ldi r24, 0x0E
174: 80 93 52 00 sts 0x0052, r24

sbi(TIMSK, OCIE0); // OutputCompareInterrupt
178: 80 91 57 00 lds r24, 0x0057

...

(c) Disassembled code with c-source intermixed

Figure 3.6 Gathering instruction trace from AVR-Core

36 Customised Synchronous AVR

signals indicate whether the clock of the core and I/O components are enabled or not.
It can then be seen that the clock signal of core clk_core and to the I/O components
clk_dev are stopped.

Wakeup

The wakeup of the Nimbus microprocessor is illustrated on figure 3.7. It can be seen
that there are no activity signals except the external clock and the internal clock. When
there is an interrupt from the timer the Nimbus microprocessor wakes up. The program
counter is then set to the address 003C, this is the position in the instruction memory,
which handles the timer interrupt. The instruction is a jump instruction which jump to
the program segment that takes care of the interrupt.

3.8 Measurements - FPGA

There were only done measurements of the used slices in the FPGA. Table 3.3 sum-
marises the used slices, RAM block and the other FPGA logic blocks, which are avail-
able in the FPGA. The summary is from after the place and route of the Nimbus micro-
processor in the FPGA based on the TinyOS blink example.

The synthesis of the microprocessor informs that the microprocessor is able to run
at a maximum frequency of 26MHz.

Number of External IOBs 5 out of 173 2%
Number of LOCed External IOBs 5 out of 5 100%
Number of RAMB16s 1 out of 16 6%
Number of Slices 2916 out of 3584 81%
Number of SLICEMs 1152 out of 1792 64%
Number of BUFGMUXs 3 out of 8 37%

Table 3.3 Spartan3 device utilisation summary

3.9 Measurements - ASIC

This section is about the measurements of the Nimbus microprocessor synthesised with
an ASIC cell library. The section is split up in two parts where first the area measure-
ments will be evaluated and secondly the current and power consumption will be dis-
cussed. The measurements are done for both cell libraries i.e. Nimbus 0.12 and Nimbus
0.25.

3.9 Measurements - ASIC 37

9180 0055 7C83 9380 0055 9180 0055 6388 9380 0055 9588 9180

0077 0078 0079 007A 007B 007C 007D 007E 007F 0080 0081 0082

00EE 00F0 00F2 00F4 00F6 00F8 00FA 00FC 00FE 0100 0102 0104

000000

336 us 338 us

/tb_rtl/ireset

/tb_rtl/clk_int

/tb_rtl/clk_ext

/tb_rtl/inst 9180 0055 7C83 9380 0055 9180 0055 6388 9380 0055 9588 9180

/tb_rtl/instaddr 0077 0078 0079 007A 007B 007C 007D 007E 007F 0080 0081 0082

/tb_rtl/instcode 00EE 00F0 00F2 00F4 00F6 00F8 00FA 00FC 00FE 0100 0102 0104

/tb_rtl/portb(6)

/tb_rtl/top0/pw_ctrl/clk_core

/tb_rtl/top0/pw_ctrl/clk_dev

/tb_rtl/top0/pw_ctrl/sleep_enable

/tb_rtl/top0/pw_ctrl/irqlines 000000

/tb_rtl/top0/pw_ctrl/sleep_disable

/tb_rtl/top0/pw_ctrl/sleep_status

/tb_rtl/top0/pw_ctrl/sleep_help

/tb_rtl/top0/pw_ctrl/mode_idle

/tb_rtl/top0/pw_ctrl/mode_power_down

/tb_rtl/top0/pw_ctrl/mode_power_save

/tb_rtl/top0/pw_ctrl/clk_core_enable

/tb_rtl/top0/pw_ctrl/clk_dev_enable

Entity:tb_rtl Architecture:struct Date: Tue Nov 23 16:36:05 CET 2004 Row: 1 Page: 1

(a) Nimbus microprocessor goes to sleep

9180 0050 940C 008A 940C 921F 920F B60F 920F 2411

0082 0083 001E 001F 0020 008A 008B 008C 008D 008E

0104 0106 003C 003E 0040 0114 0116 0118 011A 011C

000000 004000 000000

306 us 308 us

/tb_rtl/ireset

/tb_rtl/clk_int

/tb_rtl/clk_ext

/tb_rtl/inst 9180 0050 940C 008A 940C 921F 920F B60F 920F 2411

/tb_rtl/instaddr 0082 0083 001E 001F 0020 008A 008B 008C 008D 008E

/tb_rtl/instcode 0104 0106 003C 003E 0040 0114 0116 0118 011A 011C

/tb_rtl/portb(6)

/tb_rtl/top0/pw_ctrl/clk_core

/tb_rtl/top0/pw_ctrl/clk_dev

/tb_rtl/top0/pw_ctrl/sleep_enable

/tb_rtl/top0/pw_ctrl/irqlines 000000 004000 000000

/tb_rtl/top0/pw_ctrl/sleep_disable

/tb_rtl/top0/pw_ctrl/sleep_status

/tb_rtl/top0/pw_ctrl/sleep_help

/tb_rtl/top0/pw_ctrl/mode_idle

/tb_rtl/top0/pw_ctrl/mode_power_down

/tb_rtl/top0/pw_ctrl/mode_power_save

/tb_rtl/top0/pw_ctrl/clk_core_enable

/tb_rtl/top0/pw_ctrl/clk_dev_enable

Entity:tb_rtl Architecture:struct Date: Tue Nov 23 16:35:27 CET 2004 Row: 1 Page: 1

(b) Nimbus microprocessor wakes up from sleep

Figure 3.7 The figure is from a back-annotated simulation for the timer blink example.

38 Customised Synchronous AVR

3.9.1 Area

The area calculations of the Nimbus microprocessor are based on synopsys and the
memory data sheet.

Nimbus Microprocessor Without Memory

Table 3.6 shows the estimated area of the Nimbus microprocessor from Synopsys. The
area of the microprocessor does not include memory, because the memory was not able
to synthesised. It can be seen that the area of the Nimbus 0.12 is 4.5 times smaller than
the Nimbus 0.25.

Microprocessor Nimbus 0.12 Nimbus 0.25
Total 69008.41µm2 307143.00µm2

Table 3.4 Area of the Nimbus microprocessor without the memory based on the ASIC cell
library.

Memory

Table 3.5 shows the calculations of the area for ROM and RAM. The calculation is based
on the memory from section 3.1. The size of a cell area was only available for 1 bit RAM
based on the 0.12 cell library. The area of the Nimbus 0.25 is 4.5 times larger than the
Nimbus 0.12 and this constant was used to calculate the cell area of an 1 bit memory
cell based on the 0.25 cell library. This gives the size on an 1 bit memory cell 11.16µm2.

The size of a ROM is normally smaller than a corresponding size of a RAM. This is
because it is only possible to read from the ROM and it is therefore estimated that the
ROM is only 70 % of the size of the RAM. In the bottom row of the table it is possible to
see the size of the RAM and ROM based on the two cell library.

ROM RAM ROM RAM
Technology 0.12µm 0.12µm 0.25µm 0.25µm
Cell area 2.51µm2 2.51µm2 11.16µm2 11.16µm2

Size 8 kB 8 kB 8 kB 8 kB
Scaled 0.7 1.0 0.7 1.0
Total area 57490µm2 82129µm2 255880µm2 365543µm2

Table 3.5 Area of memory for the Nimbus microprocessor based on the ASIC cell library.

Total Area

Table 3.6 shows the total size of the microprocessor when adding the size of the Nimbus
microprocessor without the memory ROM and RAM. It can be seen that the size of the

3.9 Measurements - ASIC 39

Nimbus 0.25 is about 1mm2 whereas the Nimbus 0.12 is only about 0.25mm2.

Microprocessor Nimbus 0.12 Nimbus 0.25
Core 69008.41µm2 307143.00µm2

ROM 57490.80µm2 255880.35µm2

RAM 82129.72µm2 365543.35µm2

Total 208628.93µm2 928566.70µm2

Table 3.6 Total area of the Nimbus microprocessor based on the ASIC cell library.

It should be noted that the calculation of the area of the Nimbus microprocessor
does not include any wiring. The wiring would probably increase the size of the ROM
and RAM by 1/3 because the memories are arranged into block. The memory blocks
need to be connected and the memories have to be connected to the rest of the Nimbus
microprocessor. The size of the part of the core is not increased much because it is
possible to put many metal layers.

3.9.2 Current and Power Consumption

The evaluation of the current and the power consumption for the Nimbus microproces-
sor are discussed in three parts. First the measurements of the synthesised micropro-
cessor is presented. This does not include the memory. Secondly it is explained how
the power consumption of the ROM and RAM are calculated. Finally the two parts of
measurements are added together.

The measurements are based on the test programs for the ATmega128L which are
described in section 2.2.

Nimbus microprocessor without memory

Table 3.7 shows the current and the power consumption for the Nimbus 0.12 and Nim-
bus 0.25 without memory executing at 7 MHz. It is possible to see the leakage current
and power and the total current and power consumption.

It can be seen that the leakage current has a dramatic influence on the power con-
sumption for the Nimbus 0.12 microprocessor. The loop test program has a much
higher power consumption than the add, add-mem and hamming test programs.

Figure 3.8 is a plot of the current and power consumption of table 3.7 except for
the loop test program, which is not plotted because of the large current and power
consumption.

The measurements from table 3.7 were originally made with a microprocessor run-
ning at 4MHz, but the measurements of the dynamic power consumption have been
linear scaled with the same slope as the one of the full-adder from 3.5.2. The dynamic
power consumption for the microprocessor can be assumed to be linear because the
microprocessor is running at a very low frequency. If the microprocessor was running
much faster, the dynamic power consumption would increase exponentially. This is

40 Customised Synchronous AVR

Current
Nimbus 0.12 Nimbus 0.25

Leakage Total Leakage Total
loop 6.19µA 48.76µA 0.16µA 439.32µA
idle 6.19µA 7.26µA 0.16µA 3.81µA
power-save 6.19µA 7.20µA 0.16µA 1.59.µA
power-down 6.19µA 6.63µA 0.16µA 0.16µA
add 6.19µA 8.28µA 0.16µA 18.79µA
add-mem 6.19µA 9.47µA 0.16µA 10.03µA
hamming 6.19µA 7.99µA 0.16µA 9.67µA

Power
Nimbus 0.12 Nimbus 0.25

Leakage Total Leakage Total
loop 8.17µW 64.36µW 0.28µW 790.15µW
idle 8.17µW 9.58µW 0.28µW 6.85µW
power-save 8.17µW 9.50µW 0.28µW 2.87µW
power-down 8.17µW 8.75µW 0.28µW 0.29µW
add 8.17µW 10.96µW 0.28µW 15.81µW
add-mem 8.17µW 12.50µW 0.28µW 18.05µW
hamming 8.17µW 10.55µW 0.28µW 17.40µW

Table 3.7 Current and power consumption of Nimbus 0.12 and Nimbus 0.25 synthesised
without memory.

3.9 Measurements - ASIC 41

 0

 5

 10

 15

 20

hammingadd-memaddpower-downpower-saveidle

uA

Program

Current consumption for the Nimbus core

Nimbus 0.12 total
Nimbus 0.12 leakage

Nimbus 0.25 total
Nimbus 0.25 leakage

(a) Current

 0

 5

 10

 15

 20

hammingadd-memaddpower-downpower-saveidle

uW

Program

Power consumption for the nimubs core

Nimbus 0.12 total
Nimbus 0.12 leakage

Nimbus 0.25 total
Nimbus 0.25 leakage

(b) Power

Figure 3.8 Measurements of current and power consumption for the Nimbus microprocessor
running at 7 MHz.

42 Customised Synchronous AVR

also shown in [3] for a much larger microprocessor and it can be seen that the fre-
quency of this microprocessor has to be running at least 75 MHz before the dynamic
power consumption can be assumed to increase exponential.

Memory

The calculations of the dynamic current and power consumption and leakage current
and power consumption are based on table 3.1 and the results are shown in 3.8.

It was not possible to find a memory of exactly 8KB the dynamic current consump-
tion to read from and to write to the memory. Therefore the dynamic current consump-
tion for the read and write of the 0.12 RAM are calculations based on the slope of the
SPH and SPS the memory between the dynamic current consumption per read or write
and the size of memory. It is assumed that the dynamic current consumption to read
an instruction from the ROM is the same as for the RAM and the structure of the RAM
is not taken into consideration.

The dynamic current consumption to read and write for the RAM and ROM based
on the 0.25 cell are calculated according to the differences in the slope between full-
adder synthesised with the 0.12 and 0.25 cell library.

The leakage current consumptions are calculated by the differences in size of the
Nimbus microprocessor and the memory. The difference in the size is then multiplied
by the leakage current consumptions of the Nimbus microprocessor to get the leakage
for the whole memory.

Finally the power consumption of the different parts is calculated based on the volt-
age in table 3.8.

Technology 0.12µm 0.25µm

Voltage 0.9V 1.8V

Dynamic consumption (read) 47.4µA/MHz 196.5µA/MHz
42.7µW/MHz 353.7µW/MHz

Dynamic consumption (write) 49.6µA/MHz 205.6µA/MHz
44.6µW/MHz 370.1µW/MHz

Total leakage 16.55µW 0.5651µW
ROM & RAM 18.39µA 0.3140µA

Table 3.8 Calculation of dynamic current/power consumption and leakage current and power
consumption for the ASIC library.

In order to calculate the dynamic power consumption of the Nimbus microproces-
sor the number of instructions read and data read and write were counted for the same
amount of times the test program was run. This was done by making a counter in the
ROM and RAM and the results are shown in table 3.9.

The dynamic current and power consumption was then calculated based on mea-
surements showed in table 3.9 and the dynamic current and power consumption to

3.9 Measurements - ASIC 43

Program ROM read RAM read RAM write
loop 4000 763 380
idle 0 0 0
power-save 0 0 0
power-down 0 0 0
add 4000 0 0
add-mem 4000 752 753
hamming 4000 985 123

Table 3.9 Instruction read and data write and read for the test program in the period of 4000
clock ticks.

read and write to the memory from table 3.8. The results are shown in table 3.10 and
3.11.

Technology Nimbus 0.12 (µA) Nimbus 0.25 (µA)
Program ROM R RAM R RAM W ROM R RAM R RAM W
loop 368.7 70.3 35.0 764.1 145.8 72.6
idle 0.0 0.0 0.0 0.0 0.0 0.0
power-save 0.0 0.0 0.0 0.0 0.0 0.0
power-down 0.0 0.0 0.0 0.0 0.0 0.0
add 368.7 0.0 0.0 764.1 0.0 0.0
add-mem 368.7 69.9 70.0 764.1 144.8 145.0
hamming 368.7 90.8 11.3 764.1 188.2 23.5

Table 3.10 Dynamic current consumption for instruction read and data write and read of the
test program.

Technology Nimbus 0.12 (µW) Nimbus 0.25 (µW)
Program ROM R RAM R RAM W ROM R RAM R RAM W
loop 331.8 63.29 31.5 1375.3 262.3 130.7
idle 0.0 0.0 0.0 0.0 0.0 0.0
power-save 0.0 0.0 0.0 0.0 0.0 0.0
power-down 0.0 0.0 0.0 0.0 0.0 0.0
add 331.8 0.0 0.0 1375.3 0.0 0.0
add-mem 331.8 62.9 63.0 1375.3 260.6 261.0
hamming 331.8 81.7 10.2 1375.3 338.7 42.3

Table 3.11 Dynamic power consumption for instruction read and data write and read of the
test program.

44 Customised Synchronous AVR

3.9.3 Nimbus with Memory

The total current and power consumption for the test programs are showed in table
3.12. The current and power consumptions are calculated by adding the results from the
Nimbus microprocessor without memory (table 3.7) the dynamic and leakage current
and power consumption for the ROM and RAM from table 3.8, 3.10 and 3.11.

Program Nimbus 0.12 Nimbus 0.25 Nimbus 0.12 Nimbus 0.25
loop 543.20µA 1421.90µA 509.36µW 2792.33µW
idle 27.69µA 3.98µA 27.98µW 13.00µW
power-save 27.63µA 1.77µA 27.89µW 8.69µW
power-down 26.08µA 0.34µA 27.16µW 3.02µW
add 397.39µA 773.03µA 361.14µW 1402.88µW
add-mem 538.39µA 1064.06µA 488.53µW 1933.22µW
hamming 499.23µA 985.56µA 452.67µW 1783.88µW

Table 3.12 Total current and power consumption for the Nimbus microprocessor

The results from table 3.12 are plotted in figure 3.9 and 3.10. Figure 3.9 shows the
graph of the current consumption for the Nimbus microprocessor and figure 3.10 shows
the power consumption. Figure 3.9(a) and 3.10(a) shows the consumption for all the test
programs where figure 3.9(b) and 3.10(b) shows the consumption of the microprocessor
in the sleep modes.

It can be seen on figure 3.10(a) that there is a big difference in of the power consump-
tion for Nimbus 0.12 and Nimbus 0.25. The power consumption for the Nimbus 0.25
is much higher than the Nimbus 0.12 when executing the add , add-mem or hamming
test program. The solution for this is as expected that the 0.12 cell library has a lower
dynamic power consumption than the Nimbus 0.12.

When the Nimbus microprocessor goes to sleep the picture chances. Figure 3.10(b)
shows a zoom on the sleep mode test programs and it can be seen that the power con-
sumption for the Nimbus 0.25 is much less than the Nimbus 0.12. This is because of
the high leakage for the Nimbus 0.12. The same characteristics can be seen figure 3.9(a)
and 3.9(b) where the current consumption of the Nimbus microprocessors is showed.

3.10 Discussion

The measurements had some reservation because not all the desired components and
functionalities were available in the cell libraries.

3.10 Discussion 45

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

hammingadd-memaddpower-downpower-saveidleloop

uA

Program

Current

Nimbus 0.12
Nimbus 0.25

(a)

 0

 5

 10

 15

 20

 25

 30

power-downpower-saveidle

uA

Program

Current

Nimbus 0.12
Nimbus 0.25

(b)

Figure 3.9 Current consumption for the Nimbus microprocessor

46 Customised Synchronous AVR

 0

 500

 1000

 1500

 2000

 2500

 3000

hammingadd-memaddpower-downpower-saveidleloop

uW

Program

Power

Nimbus 0.12
Nimbus 0.25

(a)

 0

 5

 10

 15

 20

 25

 30

power-downpower-saveidle

uW

Program

Power

Nimbus 0.12
Nimbus 0.25

(b)

Figure 3.10 Power consumption for the Nimbus microprocessor

3.11 Summary 47

Power and Current Consumption

The power measurements give a good indication of the power consumption for the
Nimbus microprocessor but the power estimations are not satisfactory. If the power
estimations should be more precise it requires that memory can be synthesised.

The power estimation nor includes the power consumption for the external and
internal clock. A clock generator can be implemented using and-gates and one inverter.
But there was not enough time to implement a clock.

If it was possible to includes these things in the design the power estimation would
have been more realistic.

Area

The above-mentioned problems may not change the size of the microprocessor much
because the calculation of the area included the size of the memory.

3.11 Summary

The chapter is about the Nimbus microprocessor. It has been explained how it is possi-
ble to write a C program and convert the program into a hardware description.

It has been illustrated that the Nimbus microprocessor can be synthesised and placed
& routed for a Spartan3 FGPA. The microprocessor in the FPGA was successfully able
to execute a TinyOS program and other applications.

The Nimbus microprocessor was also synthesised with two different cell libraries.
The power consumption for the microprocessor was measured based on the two cell li-
braries. The measurements showed that the Nimbus microprocessor performed better
than the ATmega128L. The measurements also showed that the Nimbus microproces-
sor, which was synthesised with the newest cell library, has the lowest dynamic power
consumption but it has a higher leakage current than the one synthesised with the other
cell library.

CHAPTER 4

Asynchronous AVR Microprocessor

This chapter concerns the implementation of an asynchronous microprocessor called
Disa. Disa takes starting point in the customised Nimbus microprocessor. The idea is
to de-synchronise the Nimbus microprocessor based on common asynchronous tech-
niques.

The chapter contains a basic introduction to asynchronous circuit design and then
the de-synchronisation technique is presented. Some research has been done in order
to find out how other asynchronous microprocessors have been implemented. Based
on this research the asynchronous protocol is chosen.

Only limited work has been published about de-synchronised. The de-synchronisation
technique is trailed in a design study and the Nimbus microprocessors is de-synchronisation
based on these experiences. It is explained how Disa is structured and there is a descrip-
tion of the different components in the Disa microprocessor.

Finally the de-synchronisation design technique is discussed and evaluated. It is
explained why the implementation did not prove successful.

4.1 Approach

Section 1.4.4 describes why asynchronous design techniques are well suited for low-
power microprocessors. The idea is to implement an asynchronous AVR microproces-
sor for a sensor network and compare it with the microprocessors introduced in the
previous two chapters.

There are many techniques to design asynchronous circuits but which one should
be used. Implementation of an asynchronous microprocessor is often done from scratch
and this is time consuming. Using the de-synchronisation technique all flip-flops in a
microprocessors are replaced by latches and asynchronous latch controllers. In this way
the structure on the synchronous microprocessor can be kept and this would hopefully
lead to a faster implementation of the asynchronous microprocessor.

To understand exactly how this is done the next chapter will introduce the basic
asynchronous technique and then the de-synchronisation design technique will be ex-
plained in detail.

49

50 Asynchronous AVR Microprocessor

4.1.1 General Theory

A synchronous system is characterised in that there is a central clock which controls
data transfer as illustrated on figure 4.1(a).

An asynchronous system is characterised by the absence of a central clock. The
data transfer is now controlled by two neighbouring circuits. The neighbouring circuits
communicate using handshake signals as shown in figure 4.1(b). This means when a
circuit wants to transfer data to an other circuit, it sends a request signal and when the
other circuit is ready and has read the data, it sends an acknowledge signals. Since
there is no global clock, all circuits have to have a built-in control, that can handle the
transfer of data.

Both figures 4.1 are from [32]. This book explains everything necessary for asyn-
chronous circuits development.

R1 R2 CL3 R3 CL4 R4

CLK

(a)

CTL CTL CTL CTL

R1 R2 CL3 R3 CL4 R4

Ack

Req

Data

(b)

Figure 4.1 (a) Synchronous circuit and (b) Asynchronous circuit

Handshake Protocols

The four most know handshake protocols are 2-phase bundled-data protocol, 4-phase
bundled-data protocol, 2-phase dual-rail protocol and 4-phase dual-rail protocol.

Bundled-Data Protocols

The bundled-data protocols utilise normal boolean encoding for the data signal. The
request and acknowledge signals are bundled to the data and hereby is the name of the

4.1 Approach 51

protocol: bundled-data protocol. This is shown on figure 4.2(a).
Figure 4.2(c) shows the 4-phase bundled-data protocol. This protocol is a little more

complicated than 2-phase bundled-data protocol. Then the sender issues data and sets
request high. When the receiver has absorbed the data, it set the acknowledge signal
high. Seeing this, the sender set the request signal low to indicate that the data is no
longer valid. The receiver acknowledges this by setting the acknowledge signal low.

Figure 4.2(b) illustrates the 2-phase bundled-data protocol and this is the most sim-
ple protocol. However research has shown that the protocol uses more space than the
4-phase bundled-data protocol. The 2-phase bundled-data protocol requires 2 registers
for every one register because the register has to store data when the request signal
goes high and low. This is described in detail on page 177 in [34] from [33]. Since the
protocol is going to be used for a low-power microprocessor where size of the micro-
processor has a big influence on leakage current, the 2-phase bundled-data protocol is
not going to be used.

Request

Acknowledge

Data

Sender Receiver

n

(a)

Request

Acknowledge

Data

(b)

Request

Acknowledge

Data

(c)

Figure 4.2 (a) A bundled-data channel, (b) 4-phase bundled-data protocol and (c) 2-phase
bundled-data protocol

Dual-Rail Protocols

Dual-rail protocols encode the data in that it uses two wires per bit. The request and
acknowledge work in nearly the same way as the other protocol.

Since the dual-rail protocols use two wires to encode one bit, it means that it uses
about twice the mount of space to implement a circuit than the bundled-data protocols
which is explored on page 178 in [34]. Therefore the dual-rail protocol is not going to
be used.

This means that the 4-phase bundled-data protocol is going to be used for imple-
mentation of the Disa microprocessors.

C-Element

In order to implement the behavior of the protocols there has been design a special
asynchronous component. The components is called a c-element and in figure 4.3(a) the
diagram of the c-element is shown and in figure 4.3(b) the truth table for the c-element
is shown.

52 Asynchronous AVR Microprocessor

The c-element functions in that way that every input has to be the same in order to
change the output. This means that when all the inputs are set to 1 the output becomes
1, otherwise if all the inputs are set to 0 the output becomes 0 and else does the c-
element keep the last value. The c-element can have more than 2 inputs. It is described
on page 21 in [32] how the c-elements are designed.

0
0
1
1

0
1
0
1

0
Y
Y
1

C
A

B
Y

A B Y

(a) (b)

Figure 4.3 (a) the symbol for the c-element and (b) the c-element functionality

4.1.2 De-synchronisation

The idea is to implement an asynchronous microprocessor based on the de-synchronisation
technique described in [36]. It is starting from a synchronous microprocessor and re-
placing the global clock network with a set of local handshaking circuits. Figure 4.4(a)
shows a synchronous circuit and figure 4.4(b) shows the synchronous circuit, which has
been de-synchronized.

CLK

FF CL FF CL FF

(a)

M S

C
T

R
L

C
T

R
L

M S

C
T

R
L

C
T

R
L

M S

C
T

R
L

C
T

R
LDelay Delay

CL CL

Req

Ack

Data

(b)

Figure 4.4 (a) Synchronous circuit, (b) De-synchronous circuit

Handshake Protocols

There are some criteria for the de-synchronisation technique which should be main-
tained for it to work. This concerns the selected the handshake protocols. The hand-
shake protocols should achieve the liveness criteria. This implies that the handshake

4.1 Approach 53

protocols have a static speed of 1 i.e. the number of empty tokens between two valid
tokens. The simple 4-phase bundled-data latch controller can therefore not be used.

The handshake should also achieve flow-equivalence and this requires that a hand-
shake controller model has less than 8 states. The semi-decouple and fully-decouple
handshake controllers both fore fill these two criterias. The semi-decouple handshake
controller is selected because it requires two less c-elements than the fully-decouple
handshake controller.

Semi-decoupled Latch Control Circuit

The semi-decoupled latch controller is designed by Furber and Day and it is presented
in [35]. Figure 4.5 shows the semi-decoupled control circuit and the ancillary STG.

C

C

latch

−

+

Rin

Aout Rout

Ain

(a) Circuit

Rin+ A+

Lt+Aun+

A−Rin−

Ain− Lt−

Rout+

Aout+

Rout−

Aout−

���
�

���
�

���
�

(b) STG

Figure 4.5 (a) Semi-decoupled control circuit, (b) Semi-decoupled 4-phase STG

Figure 4.6 shows the two c-elements used in a semi-decoupled control circuit and
the corresponding logic function. The c-elements are implemented using state-holding
gates, where the result is defined as follows: z= zset+z·zresest.

C

 −
B

A

C

Z

zset = a· b̄
zreset = ā·b·c

z = ab̄+za+zb̄+zc̄

(a)

+

C
A

B

Z

zset = a· b̄
zreset = ā

z = ab̄+za

(b)

Figure 4.6 C-element used by the semi-decoupled latch controller

54 Asynchronous AVR Microprocessor

Putting It All Together

The reasons for using the semi-decoupled 4-phase bundled-data latch controller for de-
synchronisation has been explained. Figure 4.7 shows what the implementation would
look like. The c-elements have been replaced with logic blocks. A reset signal has been
inserted to ensure that semi-decoupled latch controller start correctly.

delay delay

L
A
T
C
H

L
A
T
C
H

��
��

��

������

	

��

�

��
��

��

��

�� ��

��

E O

Combinational Logic

Ao

RoRi

Ai Ai

Ri

Ao

Ro

Figure 4.7 Implementation of semi-decoupled controllers for even (E) and odd (O) latch

4.1.3 An Other Asynchronous Microprocessor

In the process of the design of the Disa microprocessor, research was done to find out
other implementations of asynchronous microprocessors and to find out how they were
implemented. Two asynchronous microprocessors are briefly in introduced in this sec-
tion.

AMULET

The AMULET microprocessor is probably one of the most known asynchronous micro-
processors and is developed by the University of Manchester. AMULET are series of
asynchronous microprocessors where the newest one is called AMULET3i [38].

The AMULET3i is an ARM microprocessor which is compatible with the 16-bit
Thumb ARM instruction set that is used in the ARM9 microprocessors. It is imple-
mented using semi-decoupled 4-phase bundled-data latch controller.

The first AMULET microprocessor (AMULET1) was originally implemented using
a 2-phase latch control, but it was found out it was discovered that it is using too much
space as explained in the previous section.

ARISC

ARISC[39] is asynchronous microprocessors developed at IMM. The ARISC is a re-
implementation of a TinyRISC TR4101 from MIPS.

4.1 Approach 55

ARISC is implemented with Normally Opaque latch controller which is a special
4-phase low-power bundled-data latch controller. If time was available it would have
interesting to use this latch controller for the Disa microprocessors.

4.1.4 Components

The implementation of the de-synchronous microprocessor requires implementation
of extra component to ensure a safe communication between the different part of the
microprocessor.

A fork component was implemented with two outputs and a join component with
two inputs as described on page 59 in [32]. The join and fork component were expanded
so they have multiple inputs or outputs respectively as described on page 21 in [32].

A demux and mux were also implemented as described on page 76 in [32]. These
components were not used in the Disa microprocessor but they were used in design
studies, which are explained in the following section.

4.1.5 Design Studies Using De-synchronisation Technique

In order to get familiar with the de-synchronisation design technique some design stud-
ies were performed. This section will explain the different design studies. The design
studies were implemented at RTL hardware level and were simulated to verify they
were behaving as expected.

Design Study 1

The goal of the first design study was to see if it was possible to implement the tech-
nique and get it to work as desired. The most simple test example is to make a loop
consisting of a master latch, a slave latch and a combinatoric circuit as shown in figure
4.8. The master latch, semi-decoupled master control, slave latch and semi-decoupled
slave control are implemented as shown figure 4.7. These four components are called a
desyn-element in the project.

It is possible to see in the figure that the request and acknowledge signals are going
around and the request signals is delayed in the function block.

Design Study 2

It was then the idea to start implementing a small microprocessor. The first design
study includes a program counter that is stored in a desyn-element. The output re-
quest signal and data were forked where one part went into a function block which
incremented the program counter. The other part was used to load an instruction for a
memory and then the instruction was stored in a desyn-element. The instruction from
the desyn-element was the then caught by a monitor. This was sending back the correct
acknowledgements.

56 Asynchronous AVR Microprocessor

C
om

binational

L
ogic

Desyn−

Element

Request

Acknowledge

Asynchronous

Block

m
aster ctrl

slave ctrl

m
aster latch

slave latch

delay

Figure 4.8 A simple de-synchronised circuit

Design Study 3

In setup 3 an instruction desyn-element get instruction from instruction test-bench
struction. The instruction from the desyn-element was then decoded.

A register file was designed based on desyn-elements, an ALU and a bit-processor.
The alu and bit-processor have only limited functionalities e.g. and, or, addition and
subtraction. The output from the decoder was then sent to the register file, ALU and
bit-processor to tell them what to do. The communications was ensured by fork and
joins.

A demux and a mux were used to select whether the bit-processor or the ALU
should be used.

Design Study 4

Finally, design studies 2 and 3 were combined. The result is shown on figure 4.9. The
request signals and acknowledge signals are illustrated as one signal. The data signals
and decode signals are also illustrated in the figure.

Summary

The design studies explored the de-synchronisation technique and it was easy to use. It
was determined how-to reset the latch controllers, so they started correctly. The studies
showed that the implementation of the fork, join, demux and mux were working as
expected and the data was flowing correctly .

4.2 Asynchronous AVR Architecture 57

D
esyn−

elem
ent

D
esyn−

elem
ent

D
esyn−

elem
ent

D
em

ux

M
ux

ALU

BIT

reg.file

Incr.

Instruction

M
em

ory

Inst reg.PC reg.

D
ecode

Join

Fork

Fork

Fork

Ansynchronous control signasl

Data signals

Decode control signals

Figure 4.9 Mini de-synchronised microprocessor

4.2 Asynchronous AVR Architecture

This section covers the restructuring and implementation of the Disa microprocessor.

4.2.1 Restructuring the AVR Microprocessor

In order to de-synchronise the Nimbus microprocessor, the microprocessor needs to be
restructured. The de-synchronisation can easily be done if the structure of the micro-
processor is pipelined and it is clear which signals are dependant of each other. The
Nimbus microprocessor did not satisfy these criteria.

The problem with the Nimbus processor was that all the main parts of the Nim-
bus microprocessor were written in one file as described in section 3.2.1. The Nimbus
microprocessor was therefore restructured.

The restructuring included splitting up the core in many components each is re-
sponsible for controlling different parts of the microprocessor. The overall structure is
described in the next section.

4.2.2 Overview

Figure 4.10 shows an overview of the Disa microprocessor. The different components
on the figure will be described below.

• PC ALU: This component is responsible for calculation or selection of the next
value for program counter.

• Inst. Mem.: This is the instruction memory. The AVR microprocessor pre-fetches
the instruction.

• Decode: The instruction is decoded.

58 Asynchronous AVR Microprocessor

• Status reg.: The component selects and stores the status of the microprocessor.
Many of the instructions are multi-cycled instructions and therefore require that
the microprocessor knows how far it has come in executing the instruction.

• Reg read: Read data from the register file based on the decode instruction.
• ALU: The ALU.
• Write Reg: Data is written to the register file from the ALU or the data-bus.
• IO Ctrl: A read or a write to I/O components or the timer are detected and data

is written to the out data-bus . The data-bus is split into an outgoing and an
incoming data-bus.

• IO: The I/O components are accessed.
• Ram Addr. Calc.: The address is calculated.
• RAM: The memory reads/writes data from/to the data-bus.
• Interrupt: The interrupt component for detecting interrupts from the I/O com-

ponents and the timer.

4.2.3 Timing

The instruction timing for the Disa microprocessor is the same as the Nimbus micro-
processor. The timing of the different components are controlled by a number of forks
and joins which are put in the right places.

The general kind of instructions will shortly be itemised below in order to under-
stand the timing. All the instructions are pre-fetched.

• Arithmetic and Logic Instructions: This is the most simple instruction and are
executed in one cycle. When the instruction is decoded the ALU executes the
instruction and stores the result in the register file.

• Branch Instructions A branch instruction is executed in 1 or 2 stages. The ALU is
first used to find out whether the instruction should branch. If not the instruction
is executed in on cycle. If the instruction branches the status register is informed
and so the next instruction is not used. It takes a cycle to load a new instruction
from a different address.

• Data Transfer Instructions There are two different types of data transfer instruc-
tions:

– Load instruction: The normal load instruction takes two cycles. The first
cycle is the address calculated and the next cycle is data loaded from the
memory and stored in the register.

– Store instruction: The store instruction also takes two cycles like the load
instruction. The address is calculated in the first cycle and data is handled
by the IO Ctrl . In the next cycle is the data put on the data-bus and it is
stored in the memory.

• I/O access: Access to components are done in the same way as the load and store
instructions. The difference is that IO Ctrl detects that the I/O components and
the timer are accessed.

• Call instruction: This is one of the most complicated instructions because it takes
four cycles to execute. In the first cycle the instruction is decoded as a 32-bit

4.2 Asynchronous AVR Architecture 59

����������� �����������

������������ ������������ ������������ ������������

������������ ������������

������������ 												

 ����������� ������������

����������� �����������

����������� �����������

����������� �����������

������������ ������������

������������ ������������ ��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
� ������������

M
em

In
st

.

St
at

us
R

eg
.

PC A
L

U

In
te

rr
up

t

Decode

R
eg

.

R
ea

d

R
A

M

IO

A
L

U

W
ri

te

R
eg

.

In
st

. F
et

ch
E

xe
cu

tio
n

R
A

M
 &

 I
/O

 s
et

up
R

A
M

 &
 I

/O
 lo

ad
 a

nd
 s

to
re

R
am

IOA
dd

r.
C

al
c.

C
tr

l.

Databus OUT

Databus IN

Figure 4.10 Disa architectural overview

60 Asynchronous AVR Microprocessor

instruction. In same cycle the current program counter is incremented by 2. In
the second cycles, the program counter is stored in the data memory and the
stack pointer is decremented by 2. In the third cycle the new program counter is
set and in the fourth cycle the next instruction is pre-fetched.

• Interrupts: When an interrupt occurs the microprocessor is behaving like the call
instruction except that the program counter is defined by the interrupt vector.

4.3 Implementation

This section covers the implementation of the Disa microprocessor. The basic asyn-
chronous components and the Design studies components are described shortly to be-
gin.

4.3.1 Asynchronous Components

All the asynchronous components have been implemented at gate-level. All the compo-
nents have been compiled with ModelSim and all the components have be simulated in
the design studies except the fork component with more than 4 outputs and joins with
more than 4 inputs. All the components can be found in appendix H.3.

C-element

The C-elements have been compiled and simulated, but they are not possible to syn-
thesis because the synthesis tool removes the logic functionality. The problem can be
solved by using standard cells from the cell library.

The AO5LL is standard cell which has the boolean expression: Z =!((A ·B+ C) ·
(A+ B)). If the Z signal is fed back into the A signal the c-element functionality is
obtained. The component should be analysed and elaborated only. The component
will be removed if the design is optimised with Synopsys.

Design Studies

The source code for the design studies can be found in appendix H.4. All the compo-
nents were implemented at gate-level and they were simulating as expected.

4.3.2 Disa microprocessor

It was explained that the Nimbus microprocessor was re-structured in order to be de-
synchronisation. This sections describes the implementation of the Disa microproces-
sor. The implementation is described in a top-down approach. The source code for the
microprocessor can be found in appendix H.5. The implementation of the different data
blocks are the same in the Nimbus microprocessor and the Disa microprocessor. The
data blocks have been split into more files.

4.3 Implementation 61

The implementation of the Disa microprocessor was not finished. All the different
blocks for the Nimbus microprocessor were design, but not put together. The different
block will now be explained shortly according to figure 4.10. It is mentioned in the
description of the component if the implementation is not completed. The components
have been compiled, but they have not simulated.

Top

The top level includes the core, the timer and I/O components. It is the meaning that
the I/O components and timer should still be synchronous. Therefore a synchronous
module was needed to be implemented in order to ensure that the communication from
the asynchronous core to the components were not corrupted. The top level is described
in top_asyn_avr_core_beh.vhd

Core

The Core component is described in asyn_avr_core_beh.vhd and it includes con-
nect all the components. This file has not been implemented yet.

PC Select

The PC Select component consists of two parts component. The first component,
pc_selection_beh.vhd controls the selection of the value program counter and the
other,
pc_regfile_beh.vhd is the program counter register.

ROM

The ROM component rom_interface_beh.vhd encapsulates the synchronous ROM
from the Nimbus microprocessor. It also includes the instruction register.

Decoder

The Decode component decode_inst_beh.vhd decodes the instruction.

Status Register

The Status register components decode_status_reg_beh.vhd controls the decoder
and tells the decoder whether to load a new instruction or keep executing the current
instruction.

Register File

The Register component is made by two modules. The first one regfile_beh.vhd
controls the register file. The other component regstore_beh.vhd is responsible for
selecting the data which is stored in the register. This can either be data from the data-
bus or the ALU.

62 Asynchronous AVR Microprocessor

ALU

The ALU also consists two components the ALU alu_beh.vhd and the bit processor
bit_processor_beh.vhd .

I/O components and Timer

This component io_regfile_beh.vhd is an interface to the I/O components and
Timer. It is responsible for the communication between the asynchronous microproces-
sor and the synchronous microprocessor.

RAM

The RAM component decode_ram_reg_beh.vhd is like the ROM an encapsulation
of the synchronous RAM module.

Interrupts

This component interrupt_encoder_beh.vhd is responsible of detection interrupt
from the synchronous components.

4.4 Discussion

This section discusses the experience using the de-synchronisation technique. The tech-
nique is easy to understand because the asynchronous circuit is pipelined in the same
way as a synchronous circuit. The only big different in the pipelining is the asyn-
chronous request and acknowledge signals which ensure that the data is available.

4.4.1 Problems with De-synchronous

The problem with the Nimbus microprocessor is that the hardware description is writ-
ten tortuous. It would have been good to re-implement the chip before starting the
de-synchronization of the chip. It was difficult to find out how the routing of the re-
quest and acknowledge signals should be.

The status register in the microprocessor is constructed by many 1 bit registers that
control the behaviour of a multi-cycle instruction. The re-implementation would have
made it easier to de-synchronous this register and it would probably have reduced the
area of the microprocessor.

4.4.2 The Optimal use of De-synchronous

The de-synchronisation of a microprocessor is most optimal if the microprocessor has
a straightforward pipeline structure. An optimal microprocessor to de-synchronous
would be the Mips processor described in [40]. The pipeline structure of the Mips

4.5 Summary 63

processor simple and it is very easy to find out where to place the fork and joins to
ensure that the data is valid.

4.5 Summary

The chapter covers how to de-synchronise a microprocessor. The de-synchronisation
technique has been demonstrated with a number of design studies. The design for the
Disa microprocessor has been explained. All the components for the Disa micropro-
cessor have been implemented, but they have not been combined because of lack of
time.

CHAPTER 5

Comparison of Results

This chapter contains a comparison of the ATmega128L and the Nimbus microproces-
sor synthesised with the 0.12µm and 0.25µm cell library. First the current and power
consumption will be compared for the microprocessors and then the measurements are
discussed with sensor networks in mind.

5.1 Power Consumption Estimation

Figure 5.1 and 5.2 shows the power and current consumption for the ATmega128L,
Nimbus 0.25 and Nimbus 0.12 microprocessor. These measurements are found in table
2.6 and table 3.12.

The figures show that the ATmega128L is completely outperformed by the Nimbus
microprocessor. This can be explained by the fact that ATmega128L uses an old cell
library. The chip is properly made by a 0.35µm library technology, but it has not been
possible to find the precise technology information about the fabrication of the chip. For
older cell libraries the dynamic current consumption are much higher than for newer
ones.

The ATmega128L uses much more current than the other microprocessor except
during the sleep power modes that are shown in figure 5.1(a). Figure 5.1(b) only shows
the current consumption for the sleep modes. The ATmega128L has a lower current
consumption than the Nimbus 0.12. This is because of a higher leakage current for the
Nimbus 0.12 than the ATmega128L. Old cell technology has normally a lower leakage
current than the new ones.

Figure 5.1(b) shows that ATmega128L has a higher current consumption than Nim-
bus 0.25. This was not as expected, since the ATmega128L is based on an older technol-
ogy which has a lower leakage current. The reason could be that the ATmega128L has
five extra 8-bit I/O ports, two extra timers, some extra instructions, one extra UART
and a SPI more than the Nimbus microprocessor. The extra components could be the
reasons to the increase leakage current.

The power consumption for the microprocessor are seen in figure 5.2(a) and 5.2(b).
These figures show a poorer performance by the ATmega128L. This can be explained

65

66 Comparison of Results

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

hamming
add-mem

addpower-down4
power-save

idleloop

uA

Program

Current

Nimbus 0.12
Nimbus 0.25

ATmega128L

(a) Current consumption

 0

 5

 10

 15

 20

 25

 30

power-downpower-save

uA

Program

Current (Sleep modes)

Nimbus 0.12
Nimbus 0.25

ATmega128L

(b) Current consumption for the power-save and power-down sleep mode

Figure 5.1 Current consumption for the ATmega128L, Nimbus 0.12 and Nimbus 0.25 for
running the test programmes described in section 2.2.

5.1 Power Consumption Estimation 67

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

hamming
add-mem

addpower-down

power-save

idleloop

uW

Program

Power

Nimbus 0.12
Nimbus 0.25

ATmega128L

(a) Power consumption

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

power-downpower-save

uW

Program

Power (Sleep modes)

Nimbus 0.12
Nimbus 0.25

ATmega128L

(b) Power consumption for the power-save and power-down sleep mode

Figure 5.2 Power consumption for the ATmega128L, Nimbus 0.12 and Nimbus 0.25 for run-
ning the test programmes described in section 2.2.

68 Comparison of Results

by the fact that the ATmega128L, Nimbus 0.25 and Nimbus 0.12 use a supply voltage
of 3.3V, 1.8V and 1.2V respectively (The Nimbus 0.12 memory uses 0.9V).

5.2 Usage of the Microprocessor for a Sensor Network

In a sensor network the motes often wake up, senses or transmit data and then goes
back to sleep. The article [28] describes how PowerTOSSIM have been used for measur-
ing power consumption for motes in a sensor network. PowerTOSSIM is an extension
of TOSSIM, which is a sensor network simulator that can estimate power consump-
tion. The article calculates the execution time for all the programming examples that
are included with TinyOS operating system. In the article the tests are based on a Mica2
mote, which as the Hogthrob, contains an ATmega128L. Mica2’s microprocessor is run-
ning at the same frequency as the microprocessor in this project. The article shows that
the average the execution time of a mote in a sensor network is 1 % for all the test pro-
grams. This is very interesting in the perspective of using the Nimbus microprocessor
for a sensor network because different cell libraries can be used for synthesising the
microprocessor.

The measurements in section 5.1 showed that the Nimbus 0.12 has the lowest power
consumption when executing a program whereas the Nimbus 0.25 has the lowest power
consumption when the microprocessor is asleep. This rises the question about which
Nimbus microprocessors is most suitable for a sensor network.

Figure 5.3 shows the average of current and power consumption in relation to the
execution time for the microprocessors in %. The test programs add , add-mem and
hamming have been used to calculate the average power consumption, when the mi-
croprocessors is executing. The test program power-down is used to determine the
power consumption when the microprocessors is asleep. This program is chosen be-
cause of its low current and power consumption.

The calculation of the execution time in % does not includes startup time or power
down power consumption of the microprocessors. The microprocessors are either asleep
or awake.

The figures shows that the ATmega128L is completely outperformed as discussed in
the previous section, but what about the two other microprocessors? The voltage have a
significant influence on the results for the Nimbus microprocessors. Figure 5.3(a) shows
that the current consumption of the Nimbus 0.25 is much lower than the Nimbus 0.12
if the execution time is less than 5 %.

Since the Nimbus 0.25 has twice the amount of supply voltage as the Nimbus 0.12
the situation changes. The graph on figure 5.3(b) shows that only if the execution is less
than 2 % the Nimbus 0.25 is more efficient than the Nimbus 0.12.

In a sensor network the execution time is about 1 %. The figures show that the
Nimbus 0.25 is a better choice of microprocessor for a sensor network. However this is
with subject to certain reservations. If the execution time increases to 2 % the Nimbus
0.12 may be a better solution.

5.2 Usage of the Microprocessor for a Sensor Network 69

 0

 50

 100

 150

 200

 0 2 4 6 8 10

uA

awake %

Current vs. awake in %

ATmega128
Nimbus 0.12
Nimbus 0.25

1%
5%

(a) Current consumption versus awake in %

 0

 50

 100

 150

 200

 0 2 4 6 8 10

uW

awake in %

Power vs. awake in %

ATmega128
Nimbus 0.12
Nimbus 0.25

1%
5%

(b) Power consumption versus awake in %

Figure 5.3 Estimation of average power and current consumption for the three AVR micro-
processors when they are awake and running in %.

70 Comparison of Results

It should also be considered that the Nimbus microprocessor does not contain infor-
mation about the oscillators for both the internal clock and the external clock. A clock
could be constructed by and-gates and an inverter. The oscillators will then lead to
an increase in dynamic power consumption and leakage power. If the dynamic power
consumption is comparatively greater than the leakage, the Nimbus 0.12 could be the
best solution.

5.3 Summery

The ATmega128L and the Nimbus microprocessors have been compared which demon-
strated a higher overall power consumption by the ATmega128L. The Nimbus 0.12 has
the lowest power consumption when executing whereas the Nimbus 0.25 has the lowest
power consumption when the microprocessors is asleep. In a sensor network perspec-
tive it was demonstrate that the Nimbus 0.25 has a lower power consumption compared
to the Nimbus 0.12.

CHAPTER 6

Discussion

This chapter discusses the experiences and results obtained through the work of the
project. This includes the experience of using open cores. Is it a good idea to use
open cores in commercial products? There have been used and implemented some
microprocessors for this project. Here the different modelling possibilities using the
microprocessors are considered. The costs for production of a sensor network mote
using different technologies is also discussed. The results show that leakage current is
increasing in the new cell libraries. Is it possible to reduce leakage current? The asyn-
chronous microprocessor was not successfully implemented. What is the advantage
of the power consumption in an asynchronous microprocessor? At last the different
design tools are evaluated.

6.1 Open Cores

There are many reasons for using open cores instead of either developing yourself or
purchasing off-the-rack products. In this section the motivation for and against is dis-
cussed.

opencores.org is the most known homepage where hardware description of com-
ponents are available for free. These are known as open cores and most of these cores
are subject to the GNU Public license (GPL). Many of the cores are implementations of
open standards or reimplementation of commercial products.

The problem with many of the cores are that they are very poorly certified and
may include many bugs. This is due the fact that the community for developing open
hardware is not as organised as the community for open software. This means that
bugs in cores may never be notified.

The AVR microprocessor from opencores.org was very poorly documented and
many bugs were found. The microprocessor is not logically structured. Looking back
at this project it would probably have been useful to re-implement the microproces-
sor in order to ensure a more suitable microprocessor. In the re-implementation the
microprocessor could have been prepared for de-synchronisation.

71

72 Discussion

Not all the cores on opencores.org are poorly documented. Many of the com-
munication cores are not complicated to integrate in a hardware model.

If an open core is going to be integrated in a design it should be carefully examined.
Some of the main criteria for using a core is an easily understandable structure and the
level of documentation. It is a problem that no certified information for testing of the
core is available. However, if the core is put in a commercial product, it has to be tested.

The advantage of an open core is that the core is simple to start up, since many of
the cores include a test bench. If a product needs i.e. a UART it is easy to get the core
from opencores.org . The UART can be simulated and downloaded to a FPGA. Later
in the design process it can be discussed whether it is more affordable to buy the core
from an IC producer or make a full-custom chip.

6.2 Modelling Possibilities

This project concerns the use and development of different AVR microprocessors that
utilise different cell libraries. The idea was to investigate all the different platforms
which should estimate the efficiency for a sensor network.

Figure 6.1 shows how all the AVR microprocessors can be implemented. The first
possibility is to buy an ATmeage128L, which is on the Hogthrob board. Another pos-
sibility is the Nimbus microprocessor that is a customised AVR microprocessors from
opencores.org . The Nimbus microprocessor can then be synthesised and placed &
routed for the FPGA on the Hogthrob board. Hereby it is possible to observe in real
time that the Nimbus microprocessor behaves like the ATmega128L.

AVR microprocessor

Commercial Of the Shelf

ATmega128L

Synthesisable

De−synchronised (Disa)

Customised (Nimbus)

ASIC

Available

Not available

Handmade

FPGA ASIC FPGA ASIC

Direct

FPGA ASICFPGA

Synchronised

Opencores.org

Figure 6.1 A diagram of the different possibilities for the use of the AVR microprocessors

The Nimbus microprocessors can be synthesised for an ASIC using different cell

6.3 Technology Versus Mote Costs 73

libraries. The performance of the ASIC microprocessors can then be compared with the
ATmega128L which was done in this project.

It was the intention to implement an asynchronous version of the Nimbus called
Disa. This should have been compared with the other microprocessors.

The microprocessors make it possible to experiment with customisations of the
Nimbus processor. In a sensor network perspective, the Nimbus microprocessors could
integrate hardware components which are able to manipulate sensed data.

The Nimbus microprocessor could also integrate a hardware component for error
correction that can be used for radio transmission. This is today done either in the mi-
croprocessor or in the radio. If a mote in a sensor network sends large amount of data,
it would be useful to have a module designed for data compression. This may reduce
the radio transmission time and would lead to a reduction in power consumption.

Finally the microprocessors can be used in a more common perspective i.e. in a
system on a chip (SoC) or some kind of multimedia device with MP3, radio and camera.
The microprocessors could then control the behaviour of the other components.

6.3 Technology Versus Mote Costs

Motes are sometimes placed in the field where their sensitivity towards weather condi-
tions can limit their lifetime and it may not be possible to find and/or use them again.
A sensor network may consists of thousands of motes and it is therefore important that
the cost per mote is low or it will be too expensive to have a sensor network.

All the components, like sensors for the motes, have to be made in a mass produc-
tion in order to reduce the costs of the mote. The components are usually not the latest
technology, because the components based on the newest technology are extremely ex-
pensive. The motes are therefor made by components that are based on rather old
technologies. The ATmega128L consists of old technology. Nevertheless the micropro-
cessor is still popular because of its low cost.

It has been illustrated that the Nimbus microprocessor has a much lower power
consumption than the commercial ATmega128L. Production of new chips is a very ex-
pensive undertaking. The question is, does it payoff to produce full-custom micropro-
cessors like the Nimbus in order to save power or should an ATmega128L be purchased.

The price of a full-custom microprocessor may equal an IC. It is only a matter of
the number of chips that are needed and which technology to apply. It was shown in
section 5.2 that the newest technology may not be the best technology for a mote in a
sensor network which could reduce the production costs. It was not possible to find a
price to manufacture the microprocessor.

74 Discussion

6.4 Power Consumption

The advantage of full-custom microprocessors is the possibility of deciding which func-
tionalities the microprocessors should include. The ability to customise the micropro-
cessors affects performance. The customisation can include removal of all the func-
tionalities that are not being used or situations where other features are added. The
customisation issue can reduce the power consumption and this may lead to a longer
lifetime of the microprocessor in a sensor network.

As mentioned in section 5.1 the Nimbus microprocessor does not include all the
I/O components and timers, which are available for the ATmega128L. The Nimbus
microprocessor does nor have an oscillator. This helps reducing the leakage current of
the Nimbus microprocessor.

The problem with the new cell library is an increase in leakage current. The micro-
processor for the project has been synthesised with low leakage current cells and even,
then the leakage current is about ten times larger than the older cell library. The old cell
library does not have a low leakage current cell.

Another important factor is to reduce the leakage current. This can be done by using
the low leakage cell library for synthesis as it is done in this project. The low leakage
cell library uses special high-Vth transistors.

There are many solutions to reducing leakage current and some of them are easier
to implement than others. An option is to power down parts of a circuit, which are
not used. However it is difficult to estimate the amount of current that the component
consumes when being switched on and off. This is a very essential aspect in a sensor
network because a mote spends a high percentage of the time in a dormant state.

A master thesis [42] looked at the possibility of reducing leakage current. The thesis
presented some new ideas. One of them is to make larger logic blocks on-the-fly in the
synthesis process. The idea was to connect transistors in series which showed a reduc-
tion in leakage current. The problem with this technique is that it requires a company
like to Synopsys change the way a hardware description is synthesised.

The would have been useful if it was possible to change the supply voltage. This
was not possible when using Synopsys for synthesis. Many low-power microproces-
sors have voltage scaling and it could have interesting to see the effect on the power
consumption and the timing in the circuit. The Nimbus microprocessors can run at a
speed around 100 MHz.

If the Disa microprocessors was successfully implemented it would have been in-
teresting to see how the Disa microprocessor performed compared to the Nimbus mi-
croprocessor. An asynchronous microprocessor is able to execute with a much lower
voltage because it is speed independent.

6.5 Hardware Development Tools 75

6.5 Hardware Development Tools

Many tools were explored when implementing, simulating and synthesising the micro-
processors.

HDL Designer from Mentor Graphic, ModelSim editor, ISE editor from Xilinx and
Emacs were used for writing VHDL. All the editors have syntax highlight. All the
editors are available for both Windows and Linux.

The emacs is the most advanced editor and it supports many programming lan-
guages aside from VHDL and C/C++. It was mainly used for writing VHDL because it
has many auto complete functionalities and it gives the programmer the advantage to
develop both VHDL and C/C++ in the same environment. This makes the developing
of software and hardware much faster

HDL Design is the most advanced tool since it integrates a VHDL simulator and
FPGA tools in the same product. The editor has a simple VHDL error detector and
there is a graphical tool for connection components. HDL Designer is the best editor
for developing big circuit with many components because it has all the helping tools.

Compilation and simulation was mainly done by ModelSim, but the open source
simulation GHDL was also tried. The problem is that GHDL is not fully developed and
it does not support all the VHDL packages. It is there not recommended to use GHDL.

Xilinx ISE, Precision Synthesis and Leonardo Spectrum were used for synthesising
and placing & routing of the Nimbus microprocessor in the FPGA on the Hogthrob
board. ISE was most commonly used, but they are all simple to use.

Finally the Synopsys Compiler was used to synthesise the Nimbus microprocessor
for an ASIC library. Even though the Synopsys is the most advanced program the user
interface is very primitive.

Based on the experience working with all these different tools the fastest way to
develop hardware was to use FPGA’s. These design tools are much better integrated.

The problem involving the use of Synopsys is that it takes long time to setup and
synthesise a design compared to the FPGA tools.

6.6 Summary

In this chapter, many important issues related to sensor networks have been discussed.
It was argued that the use of open cores may save development time. The influence
of the different technologies have been evaluated and it showed how power consump-
tion can be reduced in a microprocessor. The potential power consumption for a asyn-
chronous microprocessor has been discussed. Finally the different tools for realisation
of the microprocessor have been evaluated which showed that a FPGA environment is
the most suitable.

CHAPTER 7

Conclusion

The conclusion consists of three different sections. The first section is about the contri-
bution and the results achieved and realised.

The project encountered some problems because of the structure of the AVR micro-
processor from OpenCores and because of unforeseeable error from Synopsys Synthesis
tools. These problems are discussed in the second section.

Finally the last section will present some ideas for future work.

7.1 Contribution

The main object of the work was to explore the Atmel ATmega128L and compare it with
a customised and a de-synchronised implementation of an AVR microprocessor, which
is based on a core from opencores in the perspective of using the microprocessor for
sensor networks.

The work has illustrated that open cores can be integrated in embedded systems,
but all the cores are not ready to use. The core can be bug infested and may require
customisation.

A tool has been developed, which integrates a software program in a hardware
model. The tools make it possible, in one step, to compile a software program, convert
the binary program file to a hardware description and include it in the other parts of
the hardware model.

The customised AVR microprocessor was successfully synthesised and placed &
routed for FPGA. The AVR microprocessor in the FPGA could successfully execute the
same programs as ATmega128L. The customised AVR microprocessor was also suc-
cessfully synthesis for an ASIC based on two different cell libraries and then compared
with the ATmega128L in order to measure the power consumption.

It was shown that a microprocessor synthesised with old cell library technology
could be more appropriate for sensor networks. This is because the leakage current is
becoming an increasing factor for low-power design.

Finally the contribution demonstrated the principle for de-synchronising a syn-
chronous microprocessor. A design study was successfully implemented which illus-

77

78 Conclusion

trated that the de-synchronising technique works. A microprocessor was successfully
designed and all the different components for the microprocessor were implemented,
but the they were not assembled because of limited time.

7.2 Discussion

The project encountered two types of problems during the implementation phase of the
Nimbus and Disa microprocessor. The first problem concerns using the Synopsys for
synthesis and the other problem is about the structure of the AVR microprocessor.

7.2.1 Synopsys Synthesis

Some problems were encountered during synthesis of the AVR microprocessor. They
resulted in that it was impossible to do back-annotated simulation of the circuit. The
problem is described in the next subsection.

It would have been a good idea in the beginning of the project to have been familiar
with synthesis flow and done some back-annotated simulation before. Then the prob-
lems would have been expected when synthesising the whole Nimbus microprocessor.
It was very difficult to find what was going wrong because ModelSim was reporting
thousands of errors.

Back-annotated Simulation Problems

A problem occurred during synthesising process of the Nimbus microprocessor be-
cause Synopsys Synthesis was using incompatible wires names, which are not sup-
ported by ModelSim. This is a known bug could be avoided by writing the command to
dc_shell . The solution was found on Synopsys SolvNet, which is a solution database
that contains answers to problems and bugs.

Another problem occurred when reading the top-level netlist and the static timing
information from Synopsys into ModelSim. The netlist variable names did not match
the static timing information names. A solution could NOT be found on SolvNet. The
problem was solved by using a Verilog netlist instead of a VHDL netlist. It was then
possible to back-annotated simulation using ModelSim.

Memory Problems

A lot of time was also spent on synthesising the memories using Synopsys Synthesis,
which is not possible using the cell library. Therefore the memory from STMicroelec-
tronics was used instead. It may have been possible to make some memory modules,
which could be synthesised. This could have be done by breaking the memory into
small pieces and put them together.

7.3 Future Work 79

7.2.2 Structure of the AVR Microprocessor

The other problem results from the structure of the AVR microprocessor from Open
Cores. A lot of time was used to understand how the AVR microprocessor was im-
plemented. The structure proved to be much more complicated when the process of
de-synchronising the Nimbus microprocessor was begun.

This is because there are many signals that are used in different components of
the microprocessor. The placement of the signals in the components is not organised
logically and they may be used in components where they look like a small hack to
solve a bug. This can be confirmed by the fact that many bugs were found. If the
microprocessor was better structured it could have led to a successful implementation
of Disa.

7.3 Future Work

This section presents some ideas for future work. A re-implementation of the Nimbus
microprocessor and a successfully implementation of the de-synchronised micropro-
cessor is an obvious idea. An other solution could be to implement an asynchronous
version of the AVR microprocessor, which should be developed from scratch and com-
pare it with the other microprocessors.

The Nimbus microprocessor is curently statically preprogrammed. This means that
every time a new program has to run on the microprocessor the microprocessor has
to be synthesised and this takes several minutes. It could be interesting to implement
components, which make it possible to download a new program to the core. This
could be done using a serial interface which is connected to the PC.

Finally it could be useful to interface the Nimbus microprocessor with the radio
and temperature sensor from the Hogthrob board so that it is possible to construct real
a sensor network.

Bibliography

[1] David E. Culler and Hans Mulder, Smart Sensors to Network the World, Scientific
American, 2004

[2] Alan Mainwaring, Joseph Polastre, Robert Szewczyk, David Culler, John Ander-
son, Wireless Sensor Networks for Habitat Monitoring, 2002 ACM International
Workshop on Wireless Sensor Networks and Applications September 28, 2002, .At-
lanta, GA.. (also Intel Research, IRB-TR-02-006, June 2002.)

[3] Trevor Mudge, Low Power Systems on a Chip - Today’s Challenge, Bredt Professor
of Engineering, The University of Michigan, Ann Arbor, Slides, July 2004

[4] Kees Van Berkel, Ronan Burgess, Joep Kessels, Marly Roncken and Firts Schalij,
Asynchronous Circuits for Low Power: A DCC Error Corrector, IEEE Design &
Test of Computers, pages 22-32, 1994.

[5] Kees Van Berkel, Ronan Burgess, Joep Kessels, Marly Roncken and Firts Schalij, A
Single-Rail Re-implementation of a DCC Error Detector Using a Generic Standard-
Cell Library, In 2nd Working Conference on Asynchronous Design Methodologies,
London, May 30-31 1995, pages 72-79, 1995.

[6] Alain J. Martin, Steven M. Burns, T. K. Lee, Drazen Borkovic and Pieter J. Hazewin-
dues, The First Asynchronous Microprocessor: The Test Results, Department of
Computer Science California Institute of Technology Pasadena CA 91125, USA,
pages 95-109, April 1989.

[7] C.D. Nielsen, J. Staunstrup and S. R. Jones, Potential Performance Advantages
of Delay Insensitivity, Department of Computer Science, Technical University of
Denmark and Department of Electrical and Electronic Engineering, The University
of Nottingham, 1991.

[8] Lars S. Nielsen, Cees Niessen, Jens Sparsø and Kees Van Berkel, Low-Power Oper-
ation Using Self-Timed Circuits and Adaptive Scaling of the Supply Voltage, IEEE
Transactions on very large scale integration (VSLI), System, Vol. 2, No. 4 December
1994, Pages 391-397, 1991

[9] Kees Van Berkel, Mark B. Josephs and Steven M. Nowick, Scanning the Technol-
ogy, Application of Asynchronous Circuits, Proceedings of The IEEE Vol. 87, No 2,
February 1999, pages 223-231, 1999.

[10] N.C. Paver, P. Day, C. Farnsworth, D. L. Jackson, W. A. Lien and J. Liu, A Low-
Power, Low Noise, Configurable Self-Timed DSP, Cogency Technology Inc., 120
Eglinton Ave. E, Suite 500, Toronto, Ontario, M4P 12 Canada, IEEE, 1998

81

82 Bibliography

[11] S. Furber, Industrial take-up of asynchronous design, slides 2, Second ACiD-WG
Workshop of The European Commission FiFth Framework Program, Munich, Ger-
many, 28-29 January, 2002.

[12] AVR Homepage. http://atmel.com/products/avr/
[13] Motorola http://www.microcontroller.com/news/motorola_hcs08.asp

and http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MC9
S08GT60&nodeId=01624684498634&tid=EMK200409EMK5246

[14] 8051 from Intell, http://support.intel.com/design/embcontrol/
[15] TinyRISC from MIPS http://www.mips.com/content/PressRoom/TechLibrary/

Backgrounders/mips_processors
[16] MSP430 from TI. http://www.ti.com/msp430
[17] TinyOs supports TI MPS430 now. http://mail.millennium.berkeley.edu/

pipermail/tinyos/2004-May/000253.html
[18] Instruction set of 8-bit AVR http://atmel.com/dyn/resources/

prod_documents/doc0856.pdf
[19] Description of Atmel AVR ATmega103 http://atmel.com/dyn/resources/

prod_documents/doc2467.pdf
[20] AVR FAQ http://partsandkits.com/avr-faq.htm
[21] Kashif Virk, Martin Leopold, Martin Hansen, Phillipe Bonnet and Jan Madsen,

Design of A Wireless Sensor Node Development Platform for Sow Monitoring,
expected released in 2005 and can be found on Hogthrob internal homepage.

[22] Description of Atmel AVR ATmega103 http://atmel.com/dyn/resources/
prod_documents/Doc0945.pdf

[23] The differences between the ATmega103 and ATmega128.
http://atmel.com/dyn/resources/ prod_documents/doc2501.pdf

[24] Martin Leopold, Power Estimation using the Hogtrob Prototype Platform, M. Sc.
Thesis, Computer Science Department of University of Denmark, 2004

[25] XST User Guide www.xilinx.com 1-800-255-7778
[26] Philip Levis, Sam Madden, David Gay, Joe Polastre, Robert Szewczyk, Alec Woo,

Eric Brewer and David Culler, The Emergence of Networking Abstractions and
Techniques in TinyOS, Proceedings of the First USENIX/ACM Symposium on
Networked Systems Design and Implementation (NSDI 2004).

[27] Joseph Polastre, Robert Szewczyk, Cory Sharp, David Culler, The Mote Revolu-
tion: Low Power Wireless Sensor Network Devices, in Proceedings of Hot Chips
16: A Symposium on High Performance Chips. August 22-24, 2004.

[28] Victor Shnayder, Mark Hempstead, Borrong Chen, Geoff Werner Allen, and Matt
Welsh Division of Engineering and Applied Sciences, Simulating the Power Con-
sumption of LargeScale Sensor Network Applications, Sensys2004, 2004

[29] Nicolai Jørgensen, Design of low-power platform running an embedded operating
system. master thesis, department of Informatics and Mathematical Modelling of
Technical University of Denmark, november 2003.

[30] Randal E. Bryant, Kwang-Ting Cheng, Anrew B. Kahng, Kurt Keutzer, Wo-
jciech Maly, Richard Newton, Lawrence Pileggi, Jan M. Rabaey and Alberto

83

Sangiovanni-Vincentelli, Limitations and Challenges of Computer-Aided Design
Technology for CMOS VLSI, Proceedings of The IEEE, Vol. 89, No. 3, March 2001,
IEEE, 2001

[31] Ran Ginosar, Fourteen Ways to Fool Your Synchronizer, Proceedings of the Ninth
International Symposium on Asynchronous Circuits and Systems (ASYNC’03),
2003 IEEE

[32] Jens Sparsø and Steven Furber, Principles of Asynchronous Circuit Design, A Sys-
tem Perspective, 2001.

[33] S. Furber and M. Edwards. Asynchronous Design Methodologies, Mancheter, UK,
31 March - 2 April, 1993

[34] Jens Sparsø, Christian D. Nielsen, Lars S. Nielsen and Jørgen Staunstrup. Design
of Self-timed Multipliers: A Comparison. Department of Computer Science, Tech-
nical University of Denmark, 1993.

[35] Stephen B. Furber and Paul Day, Four-Phase Micropipeline Latch Control Circuits,
IEEE Transaction on very large scale integration (VLSI) system, Vol 4, No 2, June
1996, Pages 247-253, 1996.

[36] I. Blunno, J. Cortadella, A. Kondratyev, K. Lwin and C. Sotiriou, Handshake pro-
tocols for de-synchronization, Proceedings of the 10th Inernational Symposium on
Asynchronous Circuits and System (ASYNC’04), 2004.

[37] Rakefet Kol and Ran Ginosar, A Doubly-Latch Asynchronous Pipeline, VLSI Sys-
tem Research Center, Electrical Engineering Department Technion, Isreal Institute
of Technology, IEEE, Pages 706-711, 1997

[38] J.D. Garside, WJ Bainbridge, A Bardsley, D.M. Clark, D.A. Edwards, S.B. Furber, J.
Liu, D.W. Lloyd, S. Mohammadi, K.S. Pepper. O. Petlin, S. Temple and J. V. Woods,
AMULET3i - an Asynchronous System-on-Chip, Dept. of Computer Science, The
University of Manchester, p. 162 -175. In: Advanced Research in Asynchronous
Circuits and Systems, 2000. (ASYNC 2000)

[39] Kåre T. Christensen, Peter Jensen, Peter Korger and Jesper Sparsø. The Design
of an Asynchronous TinyRISC TR4101 Microprocessor Core, Department of In-
formation Technologiy at Technical University of Denmark, 1998, p. 108 -119. In:
Advanced Research in Asynchronous Circuits and Systems, 1998

[40] David A Patterson and John L. Hennessy, Computer Organization & Design, The
Hardware/Software Interfase, Second Edition.

[41] Synopsys®Inc.: Power Compiler Reference Manual, (August 2001). Synop-
sys®Inc.

[42] Jacob Gregers Hansen, Design of CMOS cell library for minimal leakage current,
Master’s Thesis, Project Number 55, department of Informatics and Mathematical
Modelling of Technical University of Denmark, 2004

[43] SPHS9, Single Port High Speed SRAM Generator in HCMOS9gp, Product Specifi-
cation, Version - 2.1, ST Microelectronics Central R&D, 27 November 2002.

[44] SPSMALL9gp, Small Size Memory Generator in HCMOS9gp, Project Specifica-
tions, Version - 1.1, November 2002, ST Microelectronics Central R&D.

[45] SPLarge, Single Port, Low Power High Speed memory generator in HCMOS9,

84 Bibliography

specification, version 1.2, September 2001, ST Microelectronics Central R&D.
[46] Atmel main page, http://atmel.com
[47] TinyOS main page, http://webs.cs.berkeley.edu/tos/
[48] TinyOS project Homepage. http://sourceforge.net/projects/tinyos/
[49] nescC project Homepage. http://sourceforge.net/projects/nescc/
[50] Hogthrob.dk - Hogthrob, Networked on-a-chip nodes for snow monitoring, Offi-

cial Home. http://hogthrob.dk
[51] OpenCores.org, http://www.opencores.org/
[52] OpenCores.org - project page for AVR core,

http://www.opencores.org/projects/avr_core/
[53] Pictur af Sensor Network on Great Duck Island, The Ultimate on-

the-fly Network, Wired Magazine, Issue 11.12, December 2003,
http://www.wired.com/wired/archive/11.12/network.html

[54] BTnode Homepage http://www.btnode.ethz.ch/
[55] GNU Operating System - Free Software Foundation http://gnu.org
[56] IO Technologies homepage. http://www.iotech.dk/
[57] Xilinx Home http://www.xilinx.com
[58] Curcuis Multi-Projects, Cell library vender. http://cmp.imag.fr
[59] Spartan3 Documentation homepage. http://www.xilinx.com/spartan3/
[60] Atmel official programming tools. http://atmel.com/dyn/products/

tools.asp?family_id=607
[61] Forum of Tools and Tips for programming AVR microprocessor.

http://www.avrfreaks.net/

APPENDIX A
Working description of M. Sc. Thesis

85

86 Working description of M. Sc. Thesis

Design of a synthesizable asynchronous microcontroller

NR.: 1029
Master’s Thesis Project:
Title: Design of a synthesizable asynchronous microcontroller
Student: Andreas Vad Lorentzen
Period: 15.02.2004 - 31.12.2004
Project description: Målet med projektet er at opbygge en asynkron

mikrokontroller til afvikling af et indlejret operativsys-
tem. Mikrokontrolleren tænkes brugt i forbindelse
med forskningsprojektet Hogthrob, hvor brugen af en
asynkron processor forventes at give en reducering i
strømforbrug.

Der skal implementeres en asynkron version af AT-
MEL’s AVR mikrokontroller, som skal afvikle simple
applikation under TinyOS operativsystemet. Eksamen-
sprojektet er struktureret på følgende måde.

Først skal der opsættes et test miljø for en eksisterende
synkron AVR mikrokontroller. Den synkrone processor
skal syntetiseres til en FPGA. For at teste den synkrone
processor skal der implementeres en seriel port, som
skal benyttes af GDB til at debugge systemet. Det er
meningen at test miljø senere skal bruges til test af
asynkrone AVR mikrokontrollerer.

Herefter skal en simpel version af den asynkrone AVR
processoren implementeres for at undersøge om in-
struktionssættet virker korrekt. Der lægges særlig vægt
på design forløbet for implementering af en asynkron
mikrokontroller. Der ønskes benyttet et asynkront de-
sign værktøj til design af mikrokontrolleren.

Der skal undersøges, hvordan det mest hensigtsmæssigt
kan lade sig gøre at få et asynkront design til at kører på
en FPGA. Den simple version skal herefter syntetiseres
til en FPGA og det kontrolleres at den kører korrekt.

Den simple version skal herefter optimeres mht. strøm-
forbrug ved passende pipelining og anden form for
teknik. Den optimerede AVR processor skal syntetiseres
og sammenlignes med den simple version.

Endelig ønskes det at afvikle det indlejrede operativsys-
tem, TinyOS på FPGA’en og køre nogle forskellige pro-
grammer. Her skal de forskellige versioner af den
asynkrone AVR sammenlignes med en synkron AVR.

Supervisor: Jan Madsen og Jens Sparsø

APPENDIX B
Hogthrob board - Hardware overview

Figure B.1 show a overview of the Hogthrob board. The figure is from [21].

Sensor
Board

Radio Board

Sensors

ATMega 128L

C
om

p

A/D

AVR
Processor

Core

Program Flash
128 KB

SRAM
4KB

nRF2401

Spartan3 XC3S400

Baseband
Processing

Logic

P
A

LN
A

1.2V
MAX 192R

Flash Memory
4M x 16 bit

Serial
PROM 1

Serial
PROM 2

I 2 C

S
P
I

U
A
R
T
1

UART2

JTAG

2.5V
MAX 192R

3.0V Flash
LP2989

3.0V
LP2989

3.0V Analog

Lowpass Filter
f c =1.5MHz (max)

3.0V Clock 8MHz

2.5V
(Optional)

FPGA Core

Clock
4MHz

Clock
48MHz

UART2

S
P
I

J
T
A
G

Crystal
16MHz

U
A
R
T
1

U
A
R
T
1

S
P
I

Bus
Exchange
Switches

LED PB

LED’s

PB’s

3.0V Flash

2.5V

Frequency
Synthesizer

Mother Board

Figure B.1 Hardware overview of the Hogthrob board

87

APPENDIX C

Measurements

This section includes all the measurements from Synopsys Power Report, activity count
for the memory entry and current estimation for the ATmega128L.

C.1 Full-adder measurements

Table C.1 and C.2 includes a Synopsys Power Report for a full-adder using the 0.25µm
and 0.12µm technology libraries. The power estimation have be done using different
frequencies. The test bench includes all eight combination for the full-adder.

Frenquency Cell Internal
Power

Net Switching
Power

Total Dynamic
Power

Cell Leakage
Power

4Mhz 0.29779nW 0.11662nW 0.41441nW 0.13559nW
8Mhz 0.63176nW 0.24563nW 0.87738nW 0.13560nW
32Mhz 2.63500nW 1.01970nW 3.65470nW 0.13598nW
128Mhz 10.67670nW 4.13150nW 14.80820nW 0.13562nW
512Mhz 42.61870nW 16.51090nW 59.12960nW 0.13565nW
2048Mhz 125.44910nW 62.84030nW 188.28940nW 0.13581nW

Table C.1 Power consumption for a full-adder using 0.25 library running different speeds.

C.2 Nimbus Measurements

This section includes the measurement for the Nimbus test using the two technology
library. Table C.3 and C.4 show the power consumption for the VHDL code of the
Nimbus microprocessor running the test program at 4MHz. Synopsys and ModelSim
have be used to generate the result.

89

90 Measurements

Frenquency Cell Internal
Power

Net Switching
Power

Total Dynamic
Power

Cell Leakage
Power

4Mhz 0.07236nW 0.02679nW 0.09916nW 6.3549nW
8Mhz 0.15332nW 0.57230nW 0.21055nW 6.3549nW
32Mhz 0.63914nW 0.23986nW 0.87900nW 6.3549nW
128Mhz 2.59290nW 0.97409nW 3.56700nW 6.3564nW
512Mhz 10.36620nW 3.89620nW 14.26240nW 6.3548nW
2048Mhz 41.50380nW 15.59050nW 57.09430nW 6.3544nW

Table C.2 Power consumption for a full-adder using 0.25 library running different speeds.

Program Cell Internal
Power

Net Switching
Power

Total Dynamic
Power

Cell Leakage
Power

nop 294.0621µW 157.6521µW 451.7142µW 0.2803µW
idle 2.553µW 1.203µW 3.756µW 0.2798µW
power-save 0.999µW 0.4798µW 1.479µW 0.2794µW
power-down 0.001µW 0.005µW 0.006µW 0.2796µW
add 5.819µW 3.057µW 9.645µW 0.2785µW
add-men 6.198µW 3.958µW 10.156µW 0.2777µW
ham-ming 6.090µW 3.693µW 9.782µW 0.2788µW

Table C.3 Power estimation of the Nimbus microprocessor using 0.25µmlibrary run 4MHz.

Program Cell Internal
Power

Net Switching
Power

Total Dynamic
Power

Cell Leakage
Power

nop 23.8702µW 8.2384µW 32.1086µW 8.1698µW
idle 0.6038µW 0.2010µW 0.8048µW 8.1779µW
power-save 0.5721µW 0.1873µW 0.7594µW 8.1745µW
power-down 0.2511µW 0.0826µW 0.3337µW 8.1867µW
add 1.1103µW 0.4644µW 1.5747µW 8.1905µW
add-men 1.6254µW 0.8478µW 2.4742µW 8.1772µW
ham-ming 1.0211µW 0.3400µW 1.3611µW 8.1860µW

Table C.4 Power estimation of the Nimbus microprocessor using 0.12µmlibrary run 4MHz.

C.3 Nimbus memory access 91

C.3 Nimbus memory access

In order to calculate the power consumption for the Nimbus microprocessor running
the test programmes. Table C.5 and C.6 shows the number of ROM reads and RAM
writes and reads. The microprocessor is running 4MHz when running the test.

P2rogram nop idle power-save power-down
Time (ns) 1000000 1000000 1000000 1000000
Start instruction reads 160 0 0 0
Start data reads 20 0 0 0
Start data writes 14 0 0 0
End instruction reads 4160 0 0 0
End data reads 783 0 0 0
End data writes 394 0 0 0

Table C.5 Count of memory access for the Nimbus microprocessor running the test program
at 4MHz

Program add add-mem hamming
Time (ns) 1000000 1000000 1000000
Start instruction reads 160 160 2000
Start data reads 0 22 303
Start data writes 0 22 180
End instruction reads 4160 4160 6000
End data reads 0 780 1288
End data writes 0 781 303

Table C.6 Count of memory access for the Nimbus microprocessor running the test program
at 4MHz (continued)

92 Measurements

C.4 ATmega128L

In the following listings is the test report of current consumption for estimation of the
ATmega128L on the BTnode.

* Instruktions - benchmarks
add/sub
bit manipulation

--

call/jump

--

* Memory vs. registre
register adition vs. memmory

* CRC på noget data

* Power modes
- loop m. nop
- IDLE
- POWE Save

* Blink
Viser TOS program, men svært at lave præcise målinger på.

========================
= Journal =
========================
Vi sætter BTNoden til AVR-devkittet og måler spændingen 4.89 V -
btnode og programmer bliver _meget varme_.

======== add-mem
12. nov 12:16
add-mem (med 3xFF loops), tænder LED kører i et stykke tid og tænder LED

* 27.25 mA, 27.35 mA, 27.41 mA, 27.51 mA
* Ligger stabil omkring 27.3 mA
* Går i uendelig lykke med 59.9 mA

C.4 ATmega128L 93

======== add
12. nov 12:30
add (med 3xFF loops).. Tænder _ikke_ LED (output pins forstyrrer målinger)

* 18.65 mA (meget stabilt og varierer til 18.64 mA med 5 s mellemrum)
* Kører i ca. 3 min og tænder LED

======== add-mem
12. nov 12:35
add-mem (med 3xFF loops)

* 20.20, 20.17, 20.11, 20.23, 20.28
* Ligger omkring 20.18 mA
* Max: 19.57, 20.57

* Kører igen.
* Ligger omkring 19.6 mA (dvs. 95.8 mW)
* Max/min: 19.51, 19.67

* Flere exp. liggger omkring de. 19.6 mA
* Køler lidt af og nu ligger vi på 18.38 mA
* Kølet helt af under frokost 18.89 mA, 10.10 mA

Prøver at bytte programming board (til Martins). Måler spænding til
3.273 V (er sikkert stillet med AVRStudio). Om igen....

======== add-mem
add-mem (med 3xFF loops), kører loop og tænder LED
12. nov 13:42

* Starter med højt strømforbrug og falder derefter.
* Ligger omkring 9.75 mA
* Min/max: 9.65, 9.74
* Slutter med 14.5

* Gentager exp.
* Ligger omkring 9.65 mA (dvs. 31.6 mW)
* min/max: 9.69
* Flere gentagelser giver samme resultat

======== add (med 3xFF loops)
* Starter med højt forbrug og falder derefter til stabilt:
* Ligger stabilt på 9.18 (og skifter til 9.19 med 5-10 s mellemrum)
* Min/max. 9.17/9.19
* Gentagne exp. giver samme res.

94 Measurements

======== power-mode-idle
* Starter højt og falder øjeblikkeligt
* 5.20 mA (gentagelser giver samme res.)

======== power-mode-powerDown
* starter højt og falder øjeblikkeligt
* 11.9 uA (gentagelser giver samme res.)

======== power-mode-powerSave
* starter højt og falder øjeblikkeligt
* 11.8 uA (gentagelser giver samme res.)

======== power-mode-Standby
* 9.53 mA (gentagelser giver samme res.)

======== power-mode-ExtStandby
* 0.71 mA (gentagelser giver samme res.)

======== timer_blink
Scale 7 == 1024 == TCCR0, Ticks == 128 == OCR0
Blinker med ca. 1 sekunds interval og driver en pin (driver den lav,
når den er slukket). Går "power-save" mellem interrupts

* 4.12 mA med LED tændt (stabil)
* 19.5 mA med LED slukket (stabil)

======== power-mode-Standby
Sun Nov 14. Fejl i bit-mønsteret for valg af standby power-mode.

* 0.71 mA (gent. giver samme res).

======== encoder_decoder
Sun Nov 14 15:53 Efter fedteri med den spændende "-c" option kører encoder_decoder nu =]

* 9.88 mA (omkring) varrierer 9.87 mA, 9.89 mA

APPENDIX D

Pictures

This appendix includes pictures of the different hardware components used in the
project.

D.1 BTnode mote

Figure D.1(a) and D.1(b) show experimental set-up for estimation of power consump-
tion for the BTnode not used in this project. On figure D.1(b) is it also possible to see the
programming board, which can be used to program a the ATmega128L on the BTnode
or the Hogthrob board.

(a) (b)

Figure D.1 Power estimation of a BTnode.

95

APPENDIX E
Modelsim: Compilation of Xilinx
library

• Make directory i.e. c:\temp_modelsim and go to the directory.

• Compile the modelsim liberies:
compxlib -s mti_se -f all -l all -o c:\Modeltech_5.8b\xilinx_lib

• Go to the Modelsim installation directory: c:\Modeltech_5.8b Open the file:
modelsim.ini

• Open the file c:\temp_modelsim\modelsim.ini and copy the the Libary path
from the file to the file in the Modelteck directory.

UNISIMS_VER = c:\Modeltech_5.8b\xilinx_lib\unisims_ver
SIMPRIMS_VER = c:\Modeltech_5.8b\xilinx_lib\simprims_ver
XILINXCORELIB_VER = c:\Modeltech_5.8b\xilinx_lib\XilinxCoreLib_ver
AIM_VER = c:\Modeltech_5.8b\xilinx_lib\abel_ver\aim_ver
CPLD_VER = c:\Modeltech_5.8b\xilinx_lib\cpld_ver
UNI9000_VER = c:\Modeltech_5.8b\xilinx_lib\uni9000_ver
UNISIM = c:\Modeltech_5.8b\xilinx_lib\unisim
SIMPRIM = c:\Modeltech_5.8b\xilinx_lib\simprim
XILINXCORELIB = c:\Modeltech_5.8b\xilinx_lib\XilinxCoreLib
AIM = c:\Modeltech_5.8b\xilinx_lib\abel\aim
PLS = c:\Modeltech_5.8b\xilinx_lib\abel\pls
CPLD = c:\Modeltech_5.8b\xilinx_lib\cpld

97

APPENDIX F

Waveforms of Nimbus

This appendix includes waveforms of Nimbus from simulations. There are waveforms
from back-annotated simulations using Modelsim and from the Xillinx tool, called
Chip-scope.

The reasons for showing many waveforms for the timer blink examples are because
they have a clear behaviour. Then the program is TinyOs Blink example and Timer
Blink example is turning the led on and off, it is to see it is working.

Normally en a specific program is tested the behaviour is closely monitor. Each
instruction has a one shot signal and with these signals is it easy to see if a specific
program is behaving correctly.

F.1 Back-annotated simulation

This section contains waveform from Modelsim. All the waveforms are med from back-
annotated simulation of the Nimbus, which have be synthesised for ASIC (see 3.5.

F.1.1 Timer blink example

Figure F.1 show a back-annotated simulation of the timer blink example. The interested
thing is that it is possible to see the internal clock and external clock is clocking but the
core clock and device clock is stop. It is also possible to see which sleep mode the
system is in.

F.1.2 TinyOs - Blink

Figure F.2 and F.3 shows the waveforms of back-annotated simulation of the blink ex-
ample. As shown on figure F.1 is it possible to how the clock in internal in the micro-
processor is stopped because the same instruction is there for long period. Figure F.2
shows only the a few signal, the instruction, the program counter, reset and the port,
which turns the led of and on. Figure F.3 show more signal like the sleep mode, the
core clock, the device clock and sleep modes.

99

100 Waveforms of Nimbus

9180 9180 9180 9180

0082 0082 0082 0082

0104 0104 0104 0104

000000 000000 000000 000000 000000

200 us 400 us

/tb_rtl/ireset

/tb_rtl/clk_int

/tb_rtl/clk_ext

/tb_rtl/inst 9180 9180 9180 9180

/tb_rtl/instaddr 0082 0082 0082 0082

/tb_rtl/instcode 0104 0104 0104 0104

/tb_rtl/portb(6)

/tb_rtl/top0/pw_ctrl/clk_core

/tb_rtl/top0/pw_ctrl/clk_dev

/tb_rtl/top0/pw_ctrl/sleep_enable

/tb_rtl/top0/pw_ctrl/irqlines 000000 000000 000000 000000 000000

/tb_rtl/top0/pw_ctrl/sleep_disable

/tb_rtl/top0/pw_ctrl/sleep_status

/tb_rtl/top0/pw_ctrl/sleep_help

/tb_rtl/top0/pw_ctrl/mode_idle

/tb_rtl/top0/pw_ctrl/mode_power_down

/tb_rtl/top0/pw_ctrl/mode_power_save

/tb_rtl/top0/pw_ctrl/clk_core_enable

/tb_rtl/top0/pw_ctrl/clk_dev_enable

Entity:tb_rtl Architecture:struct Date: Tue Nov 23 16:32:05 CET 2004 Row: 1 Page: 1

Figure F.1 Back-annotated simulation of Timer blink example.

Figure F.2 Back-annotated simulation of TinyOs blink example.

F.2 Chip-scope waveforms 101

Figure F.3 Back-annotated simulation of TinyOs blink example.

F.2 Chip-scope waveforms

This section includes waveform and screen shots of wave from in Chipscope.

F.2.1 Timer blink example

Figure F.4 and F.5 are waveform using chipscope. The figures show the timer blink
example running on the Hogthrob FPGA. pc is the program counter, inst is the in-
struction and port is the led turn on or off. In figure F.4 is the led turned on and figure
F.5 is the led turn of.

Figure F.4 Waveform of Timer blink expample.

F.2.2 TinyOs - Blink

On figure from F.6 to F.11 are waveforms of TinyOs running the Blink in the FPGA
on the Hogthrob board. In the waveforms is it possible to see the current program

102 Waveforms of Nimbus

Figure F.5 Waveform of Timer blink expample.

counter, the loaded instruction and whether the led is on or off, using port B. Chip-
scope starts the sampling 100 ns before the interrupt from the timer. The tricker signal
is the interrupt goes high.

Figures F.6 and F.9 shows waveforms from then TinyOs turns on and off the led.
Figure F.7 and F.10 show a close up of the waveforms, when the interrupt occur and
figures F.8 and F.11 show then the led is turn on or off.

Figure F.6 Waveform of TinyOs blink example.

Figure F.7 Waveform of TinyOs blink example.

Figure F.8 Waveform of TinyOs blink example.

Figure F.9 Waveform of TinyOs blink example.

Figure F.10 Waveform of TinyOs blink example.

F.2 Chip-scope waveforms 103

Figure F.11 Waveform of TinyOs blink example.

F.2.3 Hamming screen dump

In order to show that the hamming encode and decode was working on the Nimbus
microprocessor, chipscope were used. Figure F.12 show a screen dump of the hamming
algorithm running on the FPGA using chipscope. In order to get chipscope to sample
the activity in the FPGA, the program where set to write a port.

Figure F.12 Hamming encode and decode rounding on the Hogthrob FPGA

APPENDIX G
CD-rom

Overview of the CD-ROM:

G.1 General

• doc: Articles and Hardware documentation.
• rapport: The report.
• src: Source code.
• xilinx: Xilinx synthesis information

G.2 Documentation

• doc/ATmega103: Documentation of the ATmega103
• doc/ATmega128: Documentation of the ATmega103
• doc/articles: All the articles have been used which are available in a digital format.
• doc/ram_specification: Ram module specification.
• doc/spartan3: Documentation of the Spartan3.

G.3 Source Code

• src/asyn_avr_core: The Disa microprocessor.
• src/add_syn: The full-adder.
• src/asyn_comp: Asynchronous basic blocks used for de-synchronisation
• src/avr_core: The Nimbus microprocessor.

– src/avr_core/rom_binary: The VHDL test programs.
– src/avr_core/scr: Synopsys synthesis script.

• src/c-asm: The test programs.

105

106 CD-rom

• src/mini_aram: De-synchronous design study 1 and 2.
• src/mini_avr: De-synchronous design study 3 and 4.
• src/opencores: The original source code for microprocessor from opencores.

APPENDIX H

Source

The most of source code can only be found on the CD-ROM or this homepage: http://vadlorenten.dk/andreas/dtu/thesis/ .

H.1 Full-adder

The source code can be found on the homepage or on the CD-ROM in the following
directory: src/add_syn .

H.2 Nimbus Microprocessor

The source code can be found on the homepage or on the CD-ROM in the following
directories: src/avr_core and src/avr_core/rom_binary.

H.3 Asynchronous components

The source code can be found on the homepage or on the CD-ROM in the following
directory: src/asyn_comp.

H.4 De-synchronous design study

The source code can be found on the homepage or on the CD-ROM in the following
directories: src/mini_ram and src/mini_avr.

107

108 Source

H.5 Disa microprocessor

The source code can be found on the homepage or on the CD-ROM in the following
directory: src/asyn_avr_core.

H.6 Scripts

The source code can be found on the homepage or on the CD-ROM in the following
directories: src/avr_core/scr and src/c-asm.

H.7 C and Assembly programs

The source code can be found on the homepage or on the CD-ROM in the following
directory: src/c-asm. The source code of some of the programs are avaible here.

H.7.1 power-extstandby

c-asm/power-mode-ExtStandby.c
//
// A simple b l ink a p p l i c a t i o n .
//
// avr−gcc −mmcu=atmega128 bl ink . c −o bl ink
// avr−objcopy −−output−t a r g e t = s r e c b l ink bl ink . s r e c
// uisp −v=3 −dprog=stk500 −d s e r i a l =/dev/ttyUSB0 −dpart=ATmega128 −−erase −−upload i f =bl ink . s r e c

//# def ine __AVR_ATmega103__ 1
def ine __AVR_ATmega128__ 1
include <avr/io . h>

i n t main (void) {
MCUCR |= _BV(SE) // Sleep enable

| _BV(SM2) | _BV(SM1) | _BV(SM0) ;

/*
SM2 SM1 SM0
0 0 0 I d l e
0 0 1 ADC Noise reduct ion
0 1 0 Power−down
0 1 1 Power−save
1 0 0
1 0 1
1 0 0 Standby
1 1 1 Ext . standby

*/

H.7 C and Assembly programs 109

asm v o l a t i l e (" s leep ") ;
asm v o l a t i l e (" nop ") ;
asm v o l a t i l e (" nop ") ;
re turn 0 ;

}

H.7.2 idle

c-asm/power-mode-Idle.c
//
// A simple b l ink a p p l i c a t i o n .
//
// avr−gcc −mmcu=atmega128 bl ink . c −o bl ink
// avr−objcopy −−output−t a r g e t = s r e c b l ink bl ink . s r e c
// uisp −v=3 −dprog=stk500 −d s e r i a l =/dev/ttyUSB0 −dpart=ATmega128 −−erase −−upload i f =bl ink . s r e c

def ine __AVR_ATmega103__ 1
//# def ine __AVR_ATmega128__ 1
include <avr/io . h>

i n t main (void) {
MCUCR |= _BV(SE) ; // Sleep enable
//MCUCR &= ~_BV(SM2) & ~_BV(SM1) & ~_BV(SM0) ; // 128
MCUCR &= ~_BV(SM1) & ~_BV(SM0) ; // 103

/*
SM2 SM1 SM0
0 0 0 I d l e
0 0 1 ADC Noise reduct ion
0 1 0 Power−down
0 1 1 Power−save
1 0 0
1 0 1
1 1 0 Standby
1 1 1 Ext . standby
*/

asm v o l a t i l e (" s leep ") ;
asm v o l a t i l e (" nop ") ;
asm v o l a t i l e (" nop ") ;
re turn 0 ;

}

H.7.3 loop

c-asm/power-mode-NOPLoop.c
//
// A simple b l ink a p p l i c a t i o n .
//
// avr−gcc −mmcu=atmega128 bl ink . c −o bl ink
// avr−objcopy −−output−t a r g e t = s r e c b l ink bl ink . s r e c
// uisp −v=3 −dprog=stk500 −d s e r i a l =/dev/ttyUSB0 −dpart=ATmega128 −−erase −−upload i f =bl ink . s r e c

def ine __AVR_ATmega103__ 1

110 Source

//# def ine __AVR_ATmega128__ 1
include <avr/io . h>

i n t main (void) {
u i n t 1 6 _ t i , j , k , l ,m;

DDRB = _BV (6) ;
PORTB = _BV (6) ;
f o r (k=0 ; k<=0xFF ; k ++){

f o r (j =0 ; j <=0xFF ; j ++){
f o r (i =0 ; i <=0xFF ; i ++){
asm v o l a t i l e (" nop ") ;
} }

}
DDRB = _BV (7) ;
PORTB = _BV (7) ;

while (1) {
asm v o l a t i l e (" nop ") ;

}
re turn 0 ;

}

H.7.4 power-down

c-asm/power-mode-PowerDown.c
//
// A simple b l ink a p p l i c a t i o n .
//
// avr−gcc −mmcu=atmega128 bl ink . c −o bl ink
// avr−objcopy −−output−t a r g e t = s r e c b l ink bl ink . s r e c
// uisp −v=3 −dprog=stk500 −d s e r i a l =/dev/ttyUSB0 −dpart=ATmega128 −−erase −−upload i f =bl ink . s r e c

def ine __AVR_ATmega103__ 1
//# def ine __AVR_ATmega128__ 1
include <avr/io . h>

i n t main (void) {
MCUCR |= _BV(SE) // Sleep enable

| _BV(SM1) ;
//MCUCR &= ~_BV(SM2) & ~_BV(SM0) ; // 128
MCUCR &= ~_BV(SM0) ; // 103

/*
SM2 SM1 SM0
0 0 0 I d l e
0 0 1 ADC Noise reduct ion
0 1 0 Power−down
0 1 1 Power−save
1 0 0
1 0 1
1 0 0 Standby
1 1 1 Ext . standby

*/

asm v o l a t i l e (" s leep ") ;
asm v o l a t i l e (" nop ") ;

H.7 C and Assembly programs 111

asm v o l a t i l e (" nop ") ;
re turn 0 ;

}

H.7.5 power-save

c-asm/power-mode-PowerSave.c
//
// A simple b l ink a p p l i c a t i o n .
//
// avr−gcc −mmcu=atmega128 bl ink . c −o bl ink
// avr−objcopy −−output−t a r g e t = s r e c b l ink bl ink . s r e c
// uisp −v=3 −dprog=stk500 −d s e r i a l =/dev/ttyUSB0 −dpart=ATmega128 −−erase −−upload i f =bl ink . s r e c

def ine __AVR_ATmega103__ 1
//# def ine __AVR_ATmega128__ 1
include <avr/io . h>

i n t main (void) {
MCUCR |= _BV(SE) // Sleep enable

| _BV(SM1) | _BV(SM0) ;

/*
SM2 SM1 SM0
0 0 0 I d l e
0 0 1 ADC Noise reduct ion
0 1 0 Power−down
0 1 1 Power−save
1 0 0
1 0 1
1 0 0 Standby
1 1 1 Ext . standby

*/

asm v o l a t i l e (" s leep ") ;
asm v o l a t i l e (" nop ") ;
asm v o l a t i l e (" nop ") ;
re turn 0 ;

}

H.7.6 power-standby

c-asm/power-mode-Standby.c
//
// A simple b l ink a p p l i c a t i o n .
//
// avr−gcc −mmcu=atmega128 bl ink . c −o bl ink
// avr−objcopy −−output−t a r g e t = s r e c b l ink bl ink . s r e c
// uisp −v=3 −dprog=stk500 −d s e r i a l =/dev/ttyUSB0 −dpart=ATmega128 −−erase −−upload i f =bl ink . s r e c

//# def ine __AVR_ATmega103__ 1
def ine __AVR_ATmega128__ 1
include <avr/io . h>

112 Source

i n t main (void) {
MCUCR |= _BV(SE) | _BV(SM2) | _BV(SM1) ; // Sleep enable
MCUCR &= ~_BV(SM0) ;

/*
SM2 SM1 SM0
0 0 0 I d l e
0 0 1 ADC Noise reduct ion
0 1 0 Power−down
0 1 1 Power−save
1 0 0
1 0 1
1 1 0 Standby
1 1 1 Ext . standby

*/

asm v o l a t i l e (" s leep ") ;
asm v o l a t i l e (" nop ") ;
asm v o l a t i l e (" nop ") ;
re turn 0 ;

}

H.7.7 add-mem

c-asm/add-mem.c
// avr−gcc add−mem. c −o
// avr−objcopy −−output−t a r g e t = s r e c t e s t e r 2 t e s t e r 2 . s r e c
// uisp −v=3 −dprog=stk500 −d s e r i a l =/dev/ttyUSB0 −dpart=ATmega128 −−erase −−upload i f = t e s t e r 2 . s r e c

//# def ine __AVR_ATmega128__ 1
def ine __AVR_ATmega103__ 1

include < i n t t y p e s . h>

include <avr/io . h>

i n t main (void) {
u i n t 8 _ t r e g i s t e r aa , bb , cc , dd ;
u i n t 8 _ t ee ;
u i n t 8 _ t * p t r r ;

// Tænder LED, men dr iver e t output ben , som bruger strøm
//DDRB |= _BV (6) ;
//PORTB |= _BV (6) ;

// r e g i s t e r i , j ;
u i n t 8 _ t i i , j j , kk ;
ee = 0 x1334 ;
p t r r = &ee ;
asm v o l a t i l e (" l d i %[one] , 0x01 \n\ t " /* load constant */

" mov r26 , %[ptr] \n\ t "
" l d i %[k] , 0xFF \n\ t " /* outer loop counter */
" loop3 : l d i %[j] , 0xFF \n\ t " /* outer loop counter */
" loop2 : l d i %[i] , 0xFF \n\ t " /* inner loop counter */
" loop : ld %[re s] , X \n\ t " /* f e t c h stored value */
" add %[r e s] , %[i] \n\ t " /* add something */
" s t X , %[re s] \n\ t " /* s t o r e value */

H.7 C and Assembly programs 113

" ld %[r es] , X \n\ t " /* f e t c h stored value */
" add %[r es] , %[i] \n\ t " /* add something */
" s t X , %[r es] \n\ t " /* s t o r e value */
" ld %[r es] , X \n\ t " /* f e t c h stored value */
" add %[r es] , %[i] \n\ t " /* add something */
" s t X , %[r es] \n\ t " /* s t o r e value */
" ld %[r es] , X \n\ t " /* f e t c h stored value */
" add %[r es] , %[i] \n\ t " /* add something */
" s t X , %[r es] \n\ t " /* s t o r e value */
" ld %[r es] , X \n\ t " /* f e t c h stored value */
" add %[r es] , %[i] \n\ t " /* add something */
" s t X , %[r es] \n\ t " /* s t o r e value */
" ld %[r es] , X \n\ t " /* f e t c h stored value */
" add %[r es] , %[i] \n\ t " /* add something */
" s t X , %[r es] \n\ t " /* s t o r e value */
" ld %[r es] , X \n\ t " /* f e t c h stored value */
" add %[r es] , %[i] \n\ t " /* add something */
" s t X , %[r es] \n\ t " /* s t o r e value */
" ld %[r es] , X \n\ t " /* f e t c h stored value */
" add %[r es] , %[i] \n\ t " /* add something */
" s t X , %[r es] \n\ t " /* s t o r e value */
" ld %[r es] , X \n\ t " /* f e t c h stored value */
" add %[r es] , %[i] \n\ t " /* add something */
" s t X , %[r es] \n\ t " /* s t o r e value */
" ld %[r es] , X \n\ t " /* f e t c h stored value */
" add %[r es] , %[i] \n\ t " /* add something */
" s t X , %[r es] \n\ t " /* s t o r e value */
" ld %[r es] , X \n\ t " /* f e t c h stored value */
" add %[r es] , %[i] \n\ t " /* add something */
" s t X , %[r es] \n\ t " /* s t o r e value */

" sub %[i] , %[one] \n\ t " /* decriment loop counter */
" brne loop \n\ t "
" sub %[j] , %[one] \n\ t " /* decriment loop counter */
" brne loop2 \n\ t "
" sub %[k] , %[one] \n\ t " /* decriment loop counter */
" brne loop3 \n\ t "
: [re s] "= r " (i i) ,

[one] "= r " (aa) ,
[i] "= r " (cc) ,
[j] "= r " (dd) ,
[k] "= r " (kk)

: [pt r] " r " (p t r r)
) ;

DDRA = 0xFF ;
PORTA= 0x2 ; // Marker f o r s imulat ion

DDRB |= _BV (7) ;
PORTB |= _BV (7) ;

while (1) {
asm v o l a t i l e (" nop " : :) ;

}

re turn 0 ;
}

H.7.8 add

114 Source

c-asm/add.c

// avr−gcc t e s t e r 2 . c −o t e s t e r 2
// avr−objcopy −−output−t a r g e t = s r e c t e s t e r 2 t e s t e r 2 . s r e c
// uisp −v=3 −dprog=stk500 −d s e r i a l =/dev/ttyUSB0 −dpart=ATmega128 −−erase −−upload i f = t e s t e r 2 . s r e c
//# def ine __AVR_ATmega128__ 1
def ine __AVR_ATmega103__ 1

include < i n t t y p e s . h>

include <avr/io . h>

i n t main (void) {
u i n t 8 _ t a , b , c , d ;
r e g i s t e r i , j , k ;

// DDRA = 0x00 ; // Data d i r e c t i o n d e f a u l t s to input

//asm v o l a t i l e (" c l r r15 " : /* Inputs * / : /* output * / : " r15 ") ;
//asm v o l a t i l e (" l d i r16 , 1" : :) ;
// f o r (i =0 ; i <1000 ; i ++) {
// asm v o l a t i l e (" add r15 , r16 " : :) ;
//}

//asm v o l a t i l e (" c l r %0" : "= r " (a) :) ;
//asm v o l a t i l e (" l d i %0, 1" : "= r " (b) :) ;
// f o r (i =0 ; i <=10 ; i ++) {
// asm v o l a t i l e (" add %0, %1" : "= r " (a) : " r " (b)) ;
//}

asm v o l a t i l e (" l d i %[one] , 1\n\ t " /* load constant */
" l d i %[k] , 0xFF\n\ t " /* outer loop counter */
" loop3 : l d i %[j] , 0xFF\n\ t " /* outer loop counter */
" loop2 : l d i %[i] , 0xFF\n\ t " /* inner loop counter */
" loop : add %[re s] , %[one]\n\ t " /* add something */
" add %[r e s] , %[one]\n\ t " /* add something */
" add %[r e s] , %[one]\n\ t " /* add something */
" add %[r e s] , %[one]\n\ t " /* add something */
" add %[r e s] , %[one]\n\ t " /* add something */
" add %[r e s] , %[one]\n\ t " /* add something */
" add %[r e s] , %[one]\n\ t " /* add something */
" add %[r e s] , %[one]\n\ t " /* add something */
" add %[r e s] , %[one]\n\ t " /* add something */
" add %[r e s] , %[one]\n\ t " /* add something */
" add %[r e s] , %[one]\n\ t " /* add something */
" add %[r e s] , %[one]\n\ t " /* add something */
" add %[r e s] , %[one]\n\ t " /* add something */
" add %[r e s] , %[one]\n\ t " /* add something */
" add %[r e s] , %[one]\n\ t " /* add something */
" add %[r e s] , %[one]\n\ t " /* add something */
" add %[r e s] , %[one]\n\ t " /* add something */
" add %[r e s] , %[one]\n\ t " /* add something */
" add %[r e s] , %[one]\n\ t " /* add something */
" add %[r e s] , %[one]\n\ t " /* add something */
" add %[r e s] , %[one]\n\ t " /* add something */
" add %[r e s] , %[one]\n\ t " /* add something */
" add %[r e s] , %[one]\n\ t " /* add something */
" add %[r e s] , %[one]\n\ t " /* add something */
" add %[r e s] , %[one]\n\ t " /* add something */
" add %[r e s] , %[one]\n\ t " /* add something */
" add %[r e s] , %[one]\n\ t " /* add something */
" add %[r e s] , %[one]\n\ t " /* add something */

H.7 C and Assembly programs 115

" add %[r es] , %[one]\n\ t " /* add something */
" add %[r es] , %[one]\n\ t " /* add something */
" add %[r es] , %[one]\n\ t " /* add something */
" add %[r es] , %[one]\n\ t " /* add something */
" add %[r es] , %[one]\n\ t " /* add something */
" add %[r es] , %[one]\n\ t " /* add something */
" add %[r es] , %[one]\n\ t " /* add something */
" add %[r es] , %[one]\n\ t " /* add something */
" add %[r es] , %[one]\n\ t " /* add something */
" add %[r es] , %[one]\n\ t " /* add something */
" add %[r es] , %[one]\n\ t " /* add something */
" add %[r es] , %[one]\n\ t " /* add something */
" add %[r es] , %[one]\n\ t " /* add something */
" add %[r es] , %[one]\n\ t " /* add something */
" add %[r es] , %[one]\n\ t " /* add something */
" add %[r es] , %[one]\n\ t " /* add something */
" add %[r es] , %[one]\n\ t " /* add something */
" add %[r es] , %[one]\n\ t " /* add something */
" add %[r es] , %[one]\n\ t " /* add something */
" add %[r es] , %[one]\n\ t " /* add something */
" add %[r es] , %[one]\n\ t " /* add something */
" add %[r es] , %[one]\n\ t " /* add something */
" add %[r es] , %[one]\n\ t " /* add something */
" add %[r es] , %[one]\n\ t " /* add something */
" add %[r es] , %[one]\n\ t " /* add something */
" sub %[i] , %[one]\n\ t " /* decriment loop counter */
" brne loop\n\ t "
" sub %[j] , %[one]\n\ t " /* decriment loop counter */
" brne loop2\n\ t "
" sub %[k] , %[one] \n\ t " /* decriment loop counter */
" brne loop3 \n\ t "

: [re s] "= r " (i) ,
[one] "= r " (a) ,
[i] "= r " (c) ,
[j] "= r " (d) ,
[k] "= r " (k)

:) ;

DDRB |= _BV (7) ;
PORTB |= _BV (7) ;

DDRA = 0xFF ;
PORTA= 0x2 ; // Marker f o r s imulat ion

return 0 ;
}

H.7.9 hamming

c-asm/encoder_decoder.c
include < s t r i n g . h>
include < e l f . h>

define PC

/ / PC V e r s i o n

116 Source

i f d e f PC
include < s t d i o . h>
endif

/ / c o d e b l o c k * s i z e o f (u i n t 1 6 _ t) = 126
define CODESIZE 126

/ / d a t a b l o c k * s i z e o f (u i n t 1 6 _ t) = 114
define DATASIZE 114

define SIZE 456
char data [SIZE] = "\nFrom \"The Cathedral and the Bazaar \"\n\n" \

" Linux i s subvers ive . Who would have thought even f i v e years ago (1991)\n" \
" t h a t a world−c l a s s operat ing system could c o a l e s c e as i f by magic out\n" \
" of part−time hacking by s e v e r a l thousand developers s c a t t e r e d a l l over\n" \
" the planet , connected only by the tenuous strands of the I n t e r n e t ?\n\n"\
"\ t \ t −− ESR\n" ;

char edata [4 8 0] ; / / Temp d a t a
char rdata [SIZE] ; / / r e s u l t

/ * The encodeH t a k e s an in−b l o c k o f words (a row o f b i t s f o r a b i t s t r e a m
* in row major o r d e r) and p r o d u c e s a c o r r e s p o n d i n g out−b l o c k with N
* Hamming c o n t r o l words i n s e r t e d f o r c o r r e c t i o n o f s i n g l e b i t e r r o r s .
* A t o t a l o f N c o n t r o l words a r e i n s e r t e d , s o t h e i n p u t b l o c k must be
* 2 * *N −1 − N words l ong .
* /

void encodeH (u i n t 1 6 _ t in [] , u i n t 1 6 _ t out [] , u i n t 8 _ t N) {
u i n t 1 6 _ t

j =0 , / * The C i n d e x o f t h e nex t c o d e word t o be i n s e r t e d * /
i , / * The C i n d e x o f t h e ou t pu t word t o be f i l l e d * /
k , / * The v a l u e o f t h e l a s t d a t a word i n s e r t e d in out * /
q , / * The C i n d e x o f a c o d e word * /
p=0; / * Count o f c o d e words used * /

for (i =0 ; p<=N; i ++)
i f (i == j) { out [i] = 0 ; j += j +1 ; p++; } / * Add new c o d e word * /
else { / * Find c o n t r i b u t i o n s t o p r e v i o u s c o d e words * /

q = 0 ;
k = out [i] = in [i−p] ; / * A d a t a word * /
while (q<= j) {

i f ((q+1) & (i + 1)) out [q] ^= k ; / * Renew c o n t r o l word * /
q += q +1;

}
}

}

void encodeAndCopy (u i n t 8 _ t codeblock , u i n t 8 _ t datablock , u i n t 8 _ t N) {

u i n t 1 6 _ t i n b u f f e r [datablock] , / / d a t a t o be r e a d and e n c o d e d
temp [datablock] ,
outbuf fer [codeblock] ; / / e n c o d e d d a t a t o be w r i t t e n

char * dataptr = &data [0] ;
char * edataptr = &edata [0] ; / / p o i n t e r t o s a v e ou tp ut
u i n t 1 6 _ t i , s i z e = 4 ;

for (i =0 ; i < s i z e ; i ++){
memcpy ((char *) inbuf fer , dataptr , DATASIZE) ;

H.7 C and Assembly programs 117

dataptr += DATASIZE ;
encodeH (inbuf fer , outbuffer ,N) ;
memcpy(edataptr , (char *) outbuffer , CODESIZE) ;
edataptr += CODESIZE ;

i f d e f PC
p r i n t f ("%s " , outbuf fer) ;

endif

}
i f d e f PC

p r i n t f ("\nSizedata : %i \n" , dataptr−data) ;
endif
}

void decodeH (u i n t 1 6 _ t in [] , u i n t 1 6 _ t out [] , i n t N) {
u i n t 1 6 _ t

j =0 , / * The C i n d e x o f t h e nex t c o d e word * /
i , / * Index i n t o t h e b l o c k o f c o d e words * /
c [N+1] , / * The t a b l e o f c o n t r o l words * /
p=0 , / * The C i n d e x o f f i r s t f r e e c o n t r o l word , j =2^p−1 * /
q , / * Index i n t o t h e t a b l e o f computed c o n t r o l words * /
bi t , / * B i t p o s i t i o n in a c o d e word o f a p o s s i b l e e r r o r * /
marks=0 / * B i t p o s i t i o n s t o i n d i c a t e p r e s e n s e o f e r r o r s * /
;

for (i =0 ; p<=N; i ++) / * Find c o n t r o l words 0 . . p * /
i f (i == j) { c [p] = in [i] ; p++; j += j +1; } else

for (b i t =1 ,q =0;q<p ; b i t <<=1,q++)
i f (b i t & (i + 1)) c [q]^= in [i] ;

/ * Check f o r p r e s e n s e o f e r r o r s and f i n d t h e i r b i t p o s i t i o n s * /
for (q =0; q<N; q++) marks |= c [q] ;

i f (marks) { / * C o r r e c t e r r o r s in b i t p o s i t i o n s o f marks * /
for (b i t =1 ; marks ; marks>>=1, b i t <<=1)

i f (marks & 1) { / * On e r r o r : f i n d i t s i n d e x p o s i t i o n * /
i =0 ;
for (q=N; q ; q−−) i f (c [q−1] & b i t) i += i +1; else i += i ;
in [i −1] ^= b i t ; / * C o r r e c t t h e b i t in t h e r e c e i v e d word * /

}
}

/ * Move d a t a from in t o out * /
for (j =p= i =0; p<=N; i ++)

i f (i == j) { j += j +1; p++; } else out [i−p] = in [i] ;
}

void readAndDecode (u i n t 1 6 _ t codeblock , u i n t 1 6 _ t datablock , u i n t 1 6 _ t N) {

u i n t 1 6 _ t i n b u f f e r [codeblock] ; / / c o d e t o be d e c o d e
u i n t 1 6 _ t outbuf fer [datablock] ; / / d a t a

char * edataptr = &edata [0] ; / / p o i n t e r t o s a v e ou tp ut
char * r d a t a p t r = &rdata [0] ;
u i n t 1 6 _ t i , s i z e = 4 ;

for (i =0 ; i < s i z e ; i ++){
memcpy ((char *) inbuf fer , edataptr , CODESIZE) ;
edataptr += CODESIZE ;
decodeH (inbuf fer , outbuffer ,N) ;

118 Source

strncpy (rdataptr , (char *) outbuffer , DATASIZE) ;
r d a t a p t r += DATASIZE ;

i f d e f PC
p r i n t f ("%s " , outbuf fer) ;

endif
}

}

i n t main (void) {

u i n t 1 6 _ t
N, / / The number o f a u x i l i a r y b i t in a Hamming c o d e .
codeblock , / / The l e n g t h o f an e n c o d e d b l o c k
datablock ; / / The l e n g t h o f a b l o c k o f d a t a

N = 6 ;

codeblock = (1<<N) − 1 ;
datablock = codeblock − N;
encodeAndCopy (codeblock , datablock , N) ;
readAndDecode (codeblock , datablock ,N) ;

i f (0== strncmp (data , rdata , SIZE)) {
i f d e f PC

p r i n t f (" Succes\n") ;
e lse

while (1) ;
endif

} el se {
i f d e f Pc

p r i n t f (" Error\n") ;
e lse

while (1) ;
endif

}
/ / make compare

return 0 ;
}

H.7.10 Timer Blink

c-asm/timer_blink.c
/ /
/ / A s i m p l e b l i n k a p p l i c a t i o n .
/ /
/ / avr−gcc −mmcu=atmega128 b l i n k . c −o b l i n k
/ / avr−o b j c o p y −−output−t a r g e t = s r e c b l i n k b l i n k . s r e c
/ / u i s p −v=3 −dprog= s t k 5 0 0 −d s e r i a l =/ dev / ttyUSB0 −d p a r t =ATmega128 −−e r a s e −−up lo ad i f = b l i n k . s r e c

define __AVR_ATmega103__ 1
include <avr/io . h>

i n t main (void) {
/ / Turn on MB LED

DDRB = _BV (6) ;
PORTB = _BV (6) ;

H.7 C and Assembly programs 119

s b i (ASSR , AS0) ; / / Enab l e async t i m e r c l o c k
outp (0 , TCNT0) ; / / R e s e t t h e t i m e r 0 c o u n t e r
outp (7 , TCCR0) ; / / S c a l e t h e t i m e r by 1024
/ / outp (2 , TCCR0) ; / / S c a l e t h e t i m e r by 32

/ / Wait f o r t h e async c l o c k t o g e t go ing
while (ASSR & 0x07) ;

outp (1 2 8 , OCR0) ; / / S e t t h e t i m e r ou t pu t compare t o t r i g g e r a t 128
/ / t i c k s .

s b i (TIMSK , OCIE0) ; / / Enab l e t h e Output Compare i n t e r r u p t
asm v o l a t i l e (" s e i ") ; / / Enab l e i n t e r r u p t s

while (1) {
/ / S e t t h e MCUCR so t h a t we e n t e r power−s a v e mode (which w i l l
/ / l e a v e t h e async c l o c k go ing) .

MCUCR &= ~0x3C ;
MCUCR |= _BV(SE) | _BV(SM1) | _BV(SM0) ;
asm v o l a t i l e (" s leep ") ;
asm v o l a t i l e (" nop ") ;
while (ASSR & 0x07) ; / / Wait f o r t h e async c l o c k t o g e t go ing

/ / a g a i n .
}

return 0 ;
}

/ / i n t va lueB = 0 ;
void _ _ a t t r i b u t e ((s i g n a l)) SIG_OUTPUT_COMPARE0 ()
{

c b i (TIMSK , OCIE0) ; / / D i s a b l e t h e Output Compare I n t e r r u p t
/ / PORTB = ~ _BV (6) ;

/ * i f (va lueB = 1) { * /
/ * PORTB = ~ _BV (6) ; * /
/ * va lueB = 0 ; * /
/ * } e l s e { * /
/ * PORTB = _BV (6) ; * /
/ * va lueB = 1 ; * /
/ * } * /

/ / To gg l e t h e mb−l e d
PORTB = PORTB & _BV (6) ? PORTB & ~_BV (6) : PORTB | _BV (6) ;
outp (1 4 , TCNT0) ; / / R e s e t t h e t i m e r c o u n t e r
s b i (TIMSK , OCIE0) ; / / Enab l e t h e Output Compare I n t e r r u p t

}

H.7.11 TinyOS Blink

c-asm/tinyos/blinkM.nc
/ / $ Id : BlinkM . nc , v 1 . 1 2 0 0 4 / 1 1 / 1 1 1 3 : 4 4 : 0 8 a v l Exp $

/ * t a b : 4
* " C o p y r i g h t (c) 2000−2003 The Regent s o f t h e U n i v e r s i t y o f C a l i f o r n i a .
* A l l r i g h t s r e s e r v e d .
*
* P e r m i s s i o n t o use , copy , modi fy , and d i s t r i b u t e t h i s s o f t w a r e and i t s

120 Source

* d o c u m e n t a t i o n f o r any purpose , w i t h o u t f e e , and w i t h o u t w r i t t e n agre ement i s
* h e r e b y grant ed , p r o v i d e d t h a t t h e a b o v e c o p y r i g h t n o t i c e , t h e f o l l o w i n g
* two p a r a g r a p h s and t h e a u t h o r a p p e a r in a l l c o p i e s o f t h i s s o f t w a r e .
*
* IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR
* DIRECT , INDIRECT , SPECIAL , INCIDENTAL , OR CONSEQUENTIAL DAMAGES ARISING OUT
* OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF
* CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
* AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS
* ON AN "AS IS " BASIS , AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATION TO
* PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS. "
*
* C o p y r i g h t (c) 2002−2003 I n t e l C o r p o r a t i o n
* A l l r i g h t s r e s e r v e d .
*
* Th i s f i l e i s d i s t r i b u t e d under t h e t e rms in t h e a t t a c h e d INTEL−LICENSE
* f i l e . I f you do not f i n d t h e s e f i l e s , c o p i e s can be found by w r i t i n g t o
* I n t e l R e s e a r c h B e r k e l e y , 2150 S h a t t u c k Avenue , S u i t e 1300 , B e r k e l e y , CA,
* 94704 . A t t e n t i o n : I n t e l L i c e n s e I n q u i r y .
* /

/ * *
* I m p l e m e n t a t i o n f o r B l i n k a p p l i c a t i o n . To gg l e t h e r e d LED when a
* Timer f i r e s .
* * /

module BlinkM {
provides {

i n t e r f a c e StdControl ;
}
uses {

i n t e r f a c e Timer ;
i n t e r f a c e Leds ;

}
}
implementation {

/ * *
* I n i t i a l i z e t h e component .
*
* @return Always r e t u r n s <code >SUCCESS</ code >
* * /

command r e s u l t _ t StdControl . i n i t () {
c a l l Leds . i n i t () ;
return SUCCESS ;

}

/ * *
* S t a r t t h i n g s up . Th i s j u s t s e t s t h e r a t e f o r t h e c l o c k component .
*
* @return Always r e t u r n s <code >SUCCESS</ code >
* * /

command r e s u l t _ t StdControl . s t a r t () {
/ / S t a r t a r e p e a t i n g t i m e r t h a t f i r e s e v e r y 1000ms
/ / r e t u r n c a l l Timer . s t a r t (TIMER_REPEAT , 1 0 0 0) ;
return c a l l Timer . s t a r t (TIMER_REPEAT, 2 0) ;

}

/ * *

H.7 C and Assembly programs 121

* Hal t e x e c u t i o n o f t h e a p p l i c a t i o n .
* Th i s j u s t d i s a b l e s t h e c l o c k component .
*
* @return Always r e t u r n s <code >SUCCESS</ code >
* * /

command r e s u l t _ t StdControl . stop () {
return c a l l Timer . stop () ;

}

/ * *
* To gg l e t h e r e d LED in r e s p o n s e t o t h e <code >Timer . f i r e d </ code > e v e n t .
*
* @return Always r e t u r n s <code >SUCCESS</ code >
* * /

event r e s u l t _ t Timer . f i r e d ()
{

c a l l Leds . redToggle () ;
return SUCCESS ;

}
}

c-asm/tinyos/blink.nc
/ / $ Id : B l i n k . nc , v 1 . 1 2 0 0 4 / 1 1 / 1 1 1 3 : 4 4 : 0 8 a v l Exp $

/ * t a b : 4
* " C o p y r i g h t (c) 2000−2003 The Regent s o f t h e U n i v e r s i t y o f C a l i f o r n i a .
* A l l r i g h t s r e s e r v e d .
*
* P e r m i s s i o n t o use , copy , modi fy , and d i s t r i b u t e t h i s s o f t w a r e and i t s
* d o c u m e n t a t i o n f o r any purpose , w i t h o u t f e e , and w i t h o u t w r i t t e n agre ement i s
* h e r e b y grant ed , p r o v i d e d t h a t t h e a b o v e c o p y r i g h t n o t i c e , t h e f o l l o w i n g
* two p a r a g r a p h s and t h e a u t h o r a p p e a r in a l l c o p i e s o f t h i s s o f t w a r e .
*
* IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR
* DIRECT , INDIRECT , SPECIAL , INCIDENTAL , OR CONSEQUENTIAL DAMAGES ARISING OUT
* OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF
* CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
* AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS
* ON AN "AS IS " BASIS , AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATION TO
* PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS. "
*
* C o p y r i g h t (c) 2002−2003 I n t e l C o r p o r a t i o n
* A l l r i g h t s r e s e r v e d .
*
* Th i s f i l e i s d i s t r i b u t e d under t h e t e rms in t h e a t t a c h e d INTEL−LICENSE
* f i l e . I f you do not f i n d t h e s e f i l e s , c o p i e s can be found by w r i t i n g t o
* I n t e l R e s e a r c h B e r k e l e y , 2150 S h a t t u c k Avenue , S u i t e 1300 , B e r k e l e y , CA,
* 94704 . A t t e n t i o n : I n t e l L i c e n s e I n q u i r y .
* /

/ * *
* B l i n k i s a b a s i c a p p l i c a t i o n t h a t t o g g l e s t h e l e d s on t h e mote
* on e v e r y c l o c k i n t e r r u p t . The c l o c k i n t e r r u p t i s s c h e d u l e d t o
* o c c u r e v e r y s e c o n d . The i n i t i a l i z a t i o n o f t h e c l o c k can be s e e n
* in t h e B l i n k i n i t i a l i z a t i o n f u n c t i o n , S t d C o n t r o l . s t a r t () . < p>
*
* @author t i n y o s−he lp@mi l l ennium . b e r k e l e y . edu

122 Source

* * /
c o n f i g u r a t i o n Bl ink {
}
implementation {

components Main , BlinkM , SingleTimer , LedsC ;
Main . StdControl −> SingleTimer . StdControl ;
Main . StdControl −> BlinkM . StdControl ;
BlinkM . Timer −> SingleTimer . Timer ;
BlinkM . Leds −> LedsC ;

}

H.7.12 vhdl2init-ext2

c-asm/vhdl2init-ext2.cpp
//
// $Id : vhdl2 in i t−ext2 . cpp , v 1 . 9 2004/12/01 2 3 : 3 9 : 1 2 avl Exp $
//
include <iostream >
include < s t d i o . h>
include < s t d l i b . h>
include < s t r i n g >
include < f c n t l . h>
using namespace std ;

FILE * s t a r t w r i t e ; // output f i l e
FILE * fdwri te ;
char *memoryname ; // input f i lename

i n t s i z e ; //codesize
unsigned char * code ;

i n t binarycopy () ;
i n t c r e a t e f i l e () ;
i n t addmemory () ;
i n t c l o s e f i l e () ;

def ine RS_BIT 100000
def ine RS_BYTE RS_BIT/8
def ine RS_LINE RS_BIT/16

i n t main (i n t argc , char * argv [])
{

memoryname = argv [1] ;

binarycopy () ;
c r e a t e f i l e () ;
addmemory () ;
c l o s e f i l e () ;

re turn 0 ;
}

i n t binarycopy () {

//unsigned i n t codepos = 0 ;
unsigned char * buf ;

H.7 C and Assembly programs 123

// Set op array temp array (s t o r t nok)
buf = (unsigned char *) malloc (1 0 0 0 0 0) ;

// op f i l e
FILE * f i d = fopen (memoryname , " r ") ;
s i z e = fread (buf , 1 , RS_BYTE , f i d) ;
//codepos = s i z e ;

// c r e a t e i n s t r u c t i o n array
code = (unsigned char *) malloc (s i z e) ;

p r i n t f ("Mkram v . 1 .2\n ") ;
p r i n t f (" Code s i z e : %d\n " , s i z e) ;

// Set a l l 0 ’ s . . .
f o r (i n t i = 0 ; i < s i z e ; i ++)

code [i] = 0 ;

p r i n t f (" Moving Data\n ") ;

// F i l l ’ er up

f o r (i n t i =0 ; i < s i z e ;) { // 2000 l i n e s * 16 b i t = 32 kb = 4 kByte
code [i] = buf [i + 1] ;
code [i +1] = buf [i] ;
//code [i] = buf [i] ;
//code [i +1] = buf [i + 1] ;
i = i +2;

}

f r e e (buf) ;

}

i n t addmemory () {

// Write a l l the bytes as i n i t−s t r i n g s
// f o r (i n t i = 0 ; i <RS_BYTE ;) {
f o r (i n t i = 0 ; i < s i z e ;) {

f p r i n t f (fdwrite , " ") ;
f o r (i n t l =0 ; l <8 and i < s i z e ; l ++){ // 8 i n s t r u c t i o n s per l i n i e

f p r i n t f (fdwrite , " X\"%02X" , code [i + +]) ;
f p r i n t f (fdwrite ,"%02X\ " " , code [i + +]) ;
i f (i <s ize −1)

f p r i n t f (fdwrite , " , ") ;
}
f p r i n t f (fdwrite , " \ n ") ;

}
f p r i n t f (fdwrite , ") ; \ n ") ;

f r e e (code) ;

re turn 0 ;
}

def ine NAMESIZE 120
i n t c r e a t e f i l e () {

p r i n t f (" Create f i l e \n ") ;
char writename [NAMESIZE] ;

124 Source

char *wn = &writename [0] ;
i n t length = s t r l e n (memoryname) ;
i f (length >= NAMESIZE−4){

p r i n t f (" Buf fer to small\n ") ;
e x i t (0) ;

}

s p r i n t f (wn,"% s " , memoryname) ;
wn = &wn[length −3] ;
s p r i n t f (wn, " vhd ") ;

p r i n t f ("Name: %s\n " , writename) ;

fdwri te = s t a r t w r i t e = fopen (writename , "w") ;

f p r i n t f (fdwrite , " LIBRARY IEEE ;\n ") ;
f p r i n t f (fdwrite , " USE IEEE . STD_LOGIC_1164 .ALL;\n ") ;
f p r i n t f (fdwrite , " USE IEEE . STD_LOGIC_ARITH .ALL;\n ") ;
f p r i n t f (fdwrite , " USE IEEE . STD_LOGIC_MISC .ALL;\n ") ;

f p r i n t f (fdwrite , " USE IEEE . STD_LOGIC_UNSIGNED .ALL;\n ") ;
f p r i n t f (fdwrite , " \ n ") ;

// f p r i n t f (fdwrite , " LIBRARY UNISIM;\n ") ;
// f p r i n t f (fdwrite , " USE UNISIM . All ;\n ") ;
// f p r i n t f (fdwrite , " USE UNISIM .VPKG. a l l ;\n ") ;

f p r i n t f (fdwrite , " \ n ") ;
f p r i n t f (fdwrite , " e n t i t y ram16bit i s \n ") ;
f p r i n t f (fdwrite , " port (\n ") ;
f p r i n t f (fdwrite , " c l k : in STD_LOGIC;\n ") ;
f p r i n t f (fdwrite , " r s t : in STD_LOGIC;\n ") ;

// f p r i n t f (fdwrite , " memrw: in STD_LOGIC;\n ") ;
f p r i n t f (fdwrite , " memaddr : in s t d _ l o g i c _ v e c t o r (15 DOWNTO 0) ; \ n ") ;
f p r i n t f (fdwrite , " memreq : in STD_LOGIC;\n ") ;

// f p r i n t f (fdwrite , " memdatawrite : in s t d _ l o g i c _ v e c t o r (15 DOWNTO 0) ; \ n ") ;
f p r i n t f (fdwrite , " memdataread : out s t d _ l o g i c _ v e c t o r (15 DOWNTO 0)) ; \ n ") ;
f p r i n t f (fdwrite , " end ram16bit ;\n ") ;
f p r i n t f (fdwrite , " \ n ") ;
f p r i n t f (fdwrite , " a r c h i t e c t u r e r t l of ram16bit i s \n ") ;
// f p r i n t f (fdwrite , " type rom_type i s array (0 to %i) of s t d _ l o g i c _ v e c t o r (15 downto 0) ; \ n " , RS_LINE−1) ;
f p r i n t f (fdwrite , " type rom_type i s array (0 to %i) of s t d _ l o g i c _ v e c t o r (15 downto 0) ; \ n " , (s i z e /2)−1) ;
f p r i n t f (fdwrite , " constant ROM : rom_type := (\n ") ;

}

i n t c l o s e f i l e () {

f p r i n t f (fdwrite , " s i g n a l c l k _ i : s t d _ l o g i c ;\n ") ;
f p r i n t f (fdwrite , " s i g n a l countread : s t d _ l o g i c _ v e c t o r (15 downto 0) := (o thers => ’ 0 ’) ; \ n ") ;
f p r i n t f (fdwrite , " begin\n ") ;
f p r i n t f (fdwrite , " \ n ") ;
f p r i n t f (fdwrite , " c l k _ i <= not c l k ; −− reading un down c l k s i g n a l \n ") ;
f p r i n t f (fdwrite , " \ n ") ;
f p r i n t f (fdwrite , " process (c l k _ i)\n ") ;
f p r i n t f (fdwrite , " begin\n ") ;
f p r i n t f (fdwrite , " i f (c l k _ i ’ event and c l k _ i = ’ 1 ’) then\n ") ;
f p r i n t f (fdwrite , " i f (memreq = ’ 1 ’) then\n ") ;
f p r i n t f (fdwrite , " countread <= unsigned (countread)+1 ;\ n ") ;
f p r i n t f (fdwrite , " memdataread <= ROM(conv_integer (memaddr)) ; \ n ") ;
f p r i n t f (fdwrite , " end i f ;\n ") ;
f p r i n t f (fdwrite , " end i f ;\n ") ;

H.7 C and Assembly programs 125

f p r i n t f (fdwrite , " end process ;\n ") ;
f p r i n t f (fdwrite , " \ n ") ;
f p r i n t f (fdwrite , " end r t l ;\n ") ;

f c l o s e (s t a r t w r i t e) ;

}

H.7.13 Makefile

c-asm/Makefile
#
Or ig ina l s c r i p t by Lars Munch Christensen
Modified to be used with AVR platform
$Id : Makefile , v 1 . 1 3 2004/12/01 2 3 : 3 9 : 1 2 avl Exp $
#

*
Programs to bui ld
*

PROGS = power−mode−NOPLoop \
power−mode−I d l e \
power−mode−PowerSave \
power−mode−PowerDown \
add \
add−mem \
t i m e r _ b l i n k _ s l e e p _ a l l \
t i m e r _ b l i n k _ s l e e p _ c o r e \
timer_blink_nop \
r e t _ t e s t \
s u b _ t e s t \
push_pop_test \
t imer_bl ink \
t i n y o s _ b l i n k \
s i m p l e _ t e s t 1 _ s \
p i n _ t e s t \
t e s t 1

*
Bootstrap o b j e c t f i l e
*

BOOTSTRAP = c r t 0 . o
BS_TIMER = c r t 1 . o

*
Compiler t o o l c h a i n
*

#CC = avr−gcc
CC = avr−gcc −mmcu=atmega103
#CC = avr−gcc −g −mmcu=atmega128
LD = avr−ld
OBJCOPY = avr−objcopy
OBJDUMP = avr−objdump
CONVERT = vhdl2 in i t−ext2

126 Source

*
Compiler and l i n k e r opt ions
*

LD_SCRIPT = l i n k . xn
LD_OPTS = −G 0 −s t a t i c −T $ (LD_SCRIPT)
CC_OPTS = −c

*
Rules
*

%.o : %.c
$ (CC) $ (W_OPTS) $ (CC_OPTS) −o $@ $<

%.o : %.S
$ (CC) $ (W_OPTS_A) $ (CC_OPTS) −o $@ $<

%.o : %.s
$ (CC) $ (W_OPTS_A) $ (CC_OPTS_A) −o $@ $<

% : %.c
$ (CC) $ (W_OPTS) −o $@ $<

%. s r e c : %
avr−objcopy −−output−t a r g e t = s r e c $< $@

%. i n s t a l l : %. s r e c
uisp −v=3 −dprog=stk500 −d s e r i a l =/dev/ttyUSB0 −dpart=ATmega128 −−erase −−upload i f =$<

a l l : $ (PROGS)

$ (CONVERT) : $ (CONVERT) . cpp
c++ −O3 −o $ (CONVERT) $ (CONVERT) . cpp

encoder_decoder : $ (CONVERT) encoder_decoder . c
$ (CC) $@ . c −o $@
$ (OBJCOPY) −O binary $@ ram16bit_$@ . bin
./ $ (CONVERT) ram16bit_$@ . bin
mv ram16bit_$@ . bin binary
mv ram16bit_$@ . vhd . . / avr_core/rom_binary/

power−mode−NOPLoop : $ (CONVERT) power−mode−NOPLoop . c
$ (CC) $@ . c −o $@
$ (OBJCOPY) −O binary $@ ram16bit_$@ . bin
./ $ (CONVERT) ram16bit_$@ . bin
mv ram16bit_$@ . bin binary
mv ram16bit_$@ . vhd . . / avr_core/rom_binary/

power−mode−I d l e : $ (CONVERT) power−mode−I d l e . c
$ (CC) $@ . c −o $@
$ (OBJCOPY) −O binary $@ ram16bit_$@ . bin
./ $ (CONVERT) ram16bit_$@ . bin
mv ram16bit_$@ . bin binary
mv ram16bit_$@ . vhd . . / avr_core/rom_binary/

power−mode−PowerSave : $ (CONVERT) power−mode−PowerSave . c
$ (CC) $@ . c −o $@
$ (OBJCOPY) −O binary $@ ram16bit_$@ . bin
./ $ (CONVERT) ram16bit_$@ . bin

H.7 C and Assembly programs 127

mv ram16bit_$@ . bin binary
mv ram16bit_$@ . vhd . . / avr_core/rom_binary/

power−mode−PowerDown : $ (CONVERT) power−mode−PowerDown . c
$ (CC) $@ . c −o $@
$ (OBJCOPY) −O binary $@ ram16bit_$@ . bin
./ $ (CONVERT) ram16bit_$@ . bin
mv ram16bit_$@ . bin binary
mv ram16bit_$@ . vhd . . / avr_core/rom_binary/

encoder_decoder1 : $ (CONVERT) encoder_decoder1 . c
$ (CC) $@ . c −o $@
$ (OBJCOPY) −O binary $@ ram16bit_$@ . bin
./ $ (CONVERT) ram16bit_$@ . bin
mv ram16bit_$@ . bin binary
mv ram16bit_$@ . vhd . . / avr_core/rom_binary/

encoder_decoder2 : $ (CONVERT) encoder_decoder2 . c
$ (CC) $@ . c −o $@
$ (OBJCOPY) −O binary $@ ram16bit_$@ . bin
./ $ (CONVERT) ram16bit_$@ . bin
mv ram16bit_$@ . bin binary
mv ram16bit_$@ . vhd . . / avr_core/rom_binary/

add−mem: $ (CONVERT) add−mem. c
$ (CC) $@ . c −o $@
$ (OBJCOPY) −O binary $@ ram16bit_$@ . bin
./ $ (CONVERT) ram16bit_$@ . bin
mv ram16bit_$@ . bin binary
mv ram16bit_$@ . vhd . . / avr_core/rom_binary/

add : $ (CONVERT) add . c
$ (CC) $@ . c −o $@
$ (OBJCOPY) −O binary $@ ram16bit_$@ . bin
./ $ (CONVERT) ram16bit_$@ . bin
mv ram16bit_$@ . bin binary
mv ram16bit_$@ . vhd . . / avr_core/rom_binary/

t i m e r _ b l i n k _ s l e e p _ a l l : $ (CONVERT) t i m e r _ b l i n k _ s l e e p _ a l l . c
$ (CC) $@ . c −o $@
$ (OBJCOPY) −O binary $@ ram16bit_$@ . bin
./ $ (CONVERT) ram16bit_$@ . bin
mv ram16bit_$@ . bin binary
mv ram16bit_$@ . vhd . . / avr_core/rom_binary/

t i m e r _ b l i n k _ s l e e p _ c o r e : $ (CONVERT) t i m e r _ b l i n k _ s l e e p _ c o r e . c
$ (CC) $@ . c −o $@
$ (OBJCOPY) −O binary $@ ram16bit_$@ . bin
./ $ (CONVERT) ram16bit_$@ . bin
mv ram16bit_$@ . bin binary
mv ram16bit_$@ . vhd . . / avr_core/rom_binary/

timer_blink_nop : $ (CONVERT) timer_blink_nop . c
$ (CC) $@ . c −o $@
$ (OBJCOPY) −O binary $@ ram16bit_$@ . bin
./ $ (CONVERT) ram16bit_$@ . bin
mv ram16bit_$@ . bin binary
mv ram16bit_$@ . vhd . . / avr_core/rom_binary/

128 Source

r e t _ t e s t : $ (CONVERT) r e t _ t e s t . c
$ (CC) $@ . c −o $@
$ (OBJCOPY) −O binary $@ ram16bit_$@ . bin
./ $ (CONVERT) ram16bit_$@ . bin
mv ram16bit_$@ . bin binary
mv ram16bit_$@ . vhd . . / avr_core/rom_binary/

s u b _ t e s t : $ (CONVERT) s u b _ t e s t . c
$ (CC) $@ . c −o $@
$ (OBJCOPY) −O binary $@ ram16bit_$@ . bin
./ $ (CONVERT) ram16bit_$@ . bin
mv ram16bit_$@ . bin binary
mv ram16bit_$@ . vhd . . / avr_core/rom_binary/

push_pop_test : $ (CONVERT) push_pop_test . c
$ (CC) $@ . c −o $@
$ (OBJCOPY) −O binary $@ ram16bit_$@ . bin
./ $ (CONVERT) ram16bit_$@ . bin
mv ram16bit_$@ . bin binary
mv ram16bit_$@ . vhd . . / avr_core/rom_binary/

t imer_bl ink : $ (CONVERT) t imer_bl ink . c
$ (CC) $@ . c −o $@
$ (OBJCOPY) −O binary $@ ram16bit_$@ . bin
./ $ (CONVERT) ram16bit_$@ . bin
mv ram16bit_$@ . bin binary
mv ram16bit_$@ . vhd . . / avr_core/rom_binary/

t i m e r _ t e s t : $ (CONVERT) $ (BS_TIMER) t i m e r _ t e s t . o
$ (LD) $ (LD_OPTS) −o $@ $@ . o $ (BS_TIMER)
$ (OBJCOPY) −O binary $@ ram16bit_$@ . bin
./ $ (CONVERT) ram16bit_$@ . bin
mv ram16bit_$@ . bin binary
mv ram16bit_$@ . vhd . . / avr_core/rom_binary/

t i n y o s _ b l i n k : $ (CONVERT)
./ run_t inyos . sh
$ (OBJCOPY) −O binary ram16bit_$@ . exe ram16bit_$@ . bin
./ $ (CONVERT) ram16bit_$@ . bin
mv ram16bit_$@ . bin binary
mv ram16bit_$@ . vhd . . / avr_core/rom_binary/

s i m p l e _ t e s t 1 _ s : $ (CONVERT) $ (BOOTSTRAP) s i m p l e _ t e s t 1 _ s . o
$ (LD) $ (LD_OPTS) −o $@ $@ . o $ (BOOTSTRAP)
$ (OBJCOPY) −O binary $@ ram16bit_$@ . bin
./ $ (CONVERT) ram16bit_$@ . bin
mv ram16bit_$@ . bin binary
mv ram16bit_$@ . vhd . . / avr_core/rom_binary/

p i n _ t e s t : $ (CONVERT) $ (BOOTSTRAP) p i n _ t e s t . o
$ (LD) $ (LD_OPTS) −o $@ $@ . o $ (BOOTSTRAP)
$ (OBJCOPY) −O binary $@ ram16bit_$@ . bin
./ $ (CONVERT) ram16bit_$@ . bin
mv ram16bit_$@ . bin binary
mv ram16bit_$@ . vhd . . / avr_core/rom_binary/

t e s t 1 : $ (CONVERT) $ (BOOTSTRAP) t e s t 1 . o
$ (LD) $ (LD_OPTS) −o $@ $@ . o $ (BOOTSTRAP)
$ (OBJCOPY) −O binary $@ ram16bit_$@ . bin

H.7 C and Assembly programs 129

./ $ (CONVERT) ram16bit_$@ . bin
mv ram16bit_$@ . bin binary
mv ram16bit_$@ . vhd . . / avr_core/rom_binary/

clean :
rm −f $ (PROGS) * . bin * . o
rm −f *~

