
Review report

Niels Henrik Pontoppidan(nhp@imm.dtu.dk)

Intelligent Signal Processing, Informatics and Mathematical Modelling

Technical University of Denmark, Richard Petersens Plads 321

DK-2800 Kgs. Lyngby, DENMARK

October 29, 2003;11:40

Overview

This report is organized so that a quick overview of some relevant work can
be obtained be reading the “Executive summary”. The following sections con-
tain more specific discussions of methods and individual resumes of the relevant
sources.
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1 Executive summary

The reviewed articles show that acoustic emission and machine learning is a powerful
combination in condition monitoring of machinery.
The systems in general consist of preprocessing followed by machine learning. Further-
more everybody seems to use the same methods: PCA for feature extraction, followed
by neural network classifiers (sometimes layered, or combined into ensembles.)

Fog[1998] andYpma[2001] describe numerous ways to extract features, and how
to build and train pattern recognizer’s with good generalization. This include simple
regularizationschemes, complicated resampling methods as bootstrapping, and adap-
tive structures.

Another way to increase generalization is ensembling.Sharkey et al.[2000] creates
an ensemble by combining neural networks into a majority voting system. Even though
their ensembles are created by random combination, the general idea is to combine
preciseand diverse neural networks in a controlled way. Diversity can be obtained
by (a) using information from different types of sensors and (b) reusing the data to
create neural networks that differ in various ways: bagging, boosting, resampling, etc.
Precision can be obtained by applying regularization etc.

Neill et al. [1998] show that AE is superior to pressure- and vibrationinformation
wrt. signal to noise ratio, and that the AE is sufficient in a more realistic industriallike
setting. This has also been reported byFog et al.[1999]. We note that experiments
where AE has been omitted, have been constrained to laboratory like settings.

It is not clear whether a conventional PC is able to record raw AE data for a longer
period. It depends on the true bandwidth of the observed signal, as it is likely to exceed
to transfer limits of a harddrive — this also determins wheter realtime processing is
possible on a PC.
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Figure 1: Overview and interpretation of a general AE-classification system

2 Methods

Figure1 show how we interpret the parts of a general AE-clasification system. The
discussed methods are grouped and compared according to this figure.

2.1 Analogue data acquisition

Acoustic Emission as well as vibration can be measured by mounting repectively PZT-
transducers and accelerometers on the surface of the machinery. Both measurements
are obtained non-intrusive. The pressure (and also temperature) can only be measured
inside the machine. AE can also be derived from accurate measures of the distance be-
tween source, object and reciver using laser and and advanced optics (an inferometer).

The AE signals are ultrasonics (appr. range 50 kHz. -10 MHz.). Some AE signals
have a more concentrated spectrum, for instanceChandroth and Sharkey[1999] find
that their data can be sampled at 2 MHz., whereReuben[1998] state that 10 MHz. is
necessary. The implication of this is that only some AE signals can be recorded and
processed using a PC. The frequencyrange of AE is also important, as tells whether a
narrow band - high sensitive or broad band - lower sensitivity PZT-transducer is most
appropiate.
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2.2 Feature extraction

Feature extraction is motivated by the idea that the classificationalgorithms can be more
efficient if it is presented with relevant features instead of raw data. In many cases it
is a matter af necessity since the amount of raw data is enormous — for instance with
AE.

The raw AE can be compressed by applying “Root Mean Square” (RMS), done
by Fog et al.[1999], Fog [1998], Neill et al. [1998], where its applied prior to AD-
conversion. The chosen time-constant should be chosen so that important features are
preserved and so that the AD-converter is capable of the new datarate.

Given a set of timeseries we can try to find a preferably sparse basis that express
most of the data. Principal Component Analysis (PCA) is a way to obtain such a basis.
Given a “sufficient” set of timeseries, PCA can propose a basis that is optimal for
this system — as opposed to Short Time Fourier Transformation (STFT) and wavelets
where the basisfunctions are defined in advance. Given the basisfunctions PCA and
time-frequency analysis works in the same way, as the new data is transformed into
coefficients corresponding to the basisfunctions.

2.3 Modelling and classification

Self organized maps (SOM) and unsupervised NN’s rely on the ability to correctly
group and separate equivalent and differing states. The learning phase needs to include
sufficient variants of the states that we want to classify.

The experiments with Neural Networks (NN) byChandroth et al.[1999a,b], Fog
et al. [1999], Neill et al. [1998], andSharkey et al.[2000] have beensupervised, i.e.
based on training with known labels. These labels can “only” be produced by an expert;
which is not all ways a feasible task.

The states presented to the algorithms during the learningprocedure (called the
training set) is a sampling in the true distribution of states, hence it doesn’t tell ev-
erything. If the model adapts very good to the training set it is also likely to adapt very
good to the observed noise, meaning that the ability to generalize decrease — this is
called overfit. Overfit is normally reduced by constraining the learningprocess so that
it cannot adapt fully to the training set. The can be done by resampling (bootstrapping),
regularization (weight decay), or optimization of architecture (pruning).

Generalization can also be achieved by combining networks in ensembles.Sharkey
et al.[2000] have tried to generate ensembles that differ by either

• Combining networks based on different sensors

• Randomizing the initial conditions (useful when you only have a limited number
of examples)

• Varying the architecture (pruning)

• Exposing the different networks to different examples (resampling)

Ensembles is not bound to work — for instance an ensemble of “experts” at our de-
partment predicted that France would win the football world cup this year.

3 Resumes

3.1 On Condition Monitoring of Exhaust Valves in Marine Diesel
Engines (Fog et al.[1999])

The paper show that acoustic emission (AE) data is superior to pressure, vibration and
temperature-data, leading to improved classification.
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The paper also addresses the fact that the AE-data obtained from the outside of the
combustionchamber, i.e. the method is non-intrusive.

The AE-data is preprocessed with PCA.
The obtained subspace, consisting of the selected principal components, is fed into

either neural networks or linear discriminators.
The Neural Networks are optimized aiming at improved generalization by Optimal

Braindamage (OBD) pruning.

3.2 Condition Monitoring And Fault Diagnosis in Marine Diesel
Engines (Fog [1998])

Methods used and briefly discussed in other papers is more deeply discussed here.
These extended discussions is on how to select the number of components in PCA, and
how to train and evaluate and optimize the performance of Neural Networks.

3.3 The Role of Acoustic Emission in Industrial Condition Moni-
toring (Reuben[1998])

As stated in the abstract “This paper offers a review of the role of acoustic emission in
engineering condition monitoring”.

First the fundamental sources that generate AE is listed: cracking, constricted flow,
and surface impacts; these as well as the secondary sources: cavitation, wear, friction,
and corrosion can all be related to some “degenerating” events.

It is also pointed out that the stress waves contain insufficient power to make sig-
nificant measures away from the body.

Yielding there is a relatively small amount of noise from other sources in the ultra-
sonic frequencies, since “background noise” from other machinery is damped.

Most commercial AE transducers is based on peizoelectric elements (just as some
condensermicrophones), that divided into two types, a) narrow band, high sensitivity,
or b) broad band, low(er) sensitivity.

The type, size and shape of the peizoelectric element influence the bandwidth and
sensitivity.

Another type of transducers is peizopolymer films that relatively inexpensive, and
it is easy to produce arrays of sensors.

Laseroptics can also be used to measure AE, which has been done using the “Sagnac
interferometer”.

The datarate of the raw AE is around 10 MHz, which (at the writing point) cannot
be written continuously to a hard disc. Off-line applications can obtain the raw AE-data
using an analogue videotape.

A common workaround for realtime applications (used byFog et al.[1999] and
Neill et al.[1998]) is to apply analogue averaging (i.e. RMS) before processing/recording.

Detection of fatigue cracks using AE may involve source locating techniques that
not only reveal the defect, but also reject noise from insignificant sources.

3.4 The relative merits of acoustic emission and acceleration mon-
itoring for detection of bearing faults (Neill et al. [1998])

This paper show that AE measurements are superior to acceleration measures wrt. sen-
sitivity and noise ratio.

The result is obtained by inducing errors into bearings, and measuring the AE and
the acceleration in two environments.

Moreover the results is compared to theoretical findings obtained by calculating
“defect frequencies”.
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It is also marked that “AE seems to be more sensitive to small defects and less
sensitive to contamination by periodic or aperiodic ambient noise.”

3.5 Utilising the rotational motion of machinery in a high resolu-
tion data acquisition system (Chandroth and Sharkey [1999])

This paper describe a system that obtain AE, pressure-, and vibrationdata, as well as
crank angle from rotating machinery.

Obtained data

The datasampling is triggered independently by time and crank angle (two datasets
obtained).

The events in a combustionprocess happen at specific “angular” positions,
that for instance locate the combustionzone independently of rotational speed. The

data obtained with the system is used inChandroth et al.[1999a,b], Sharkey et al.
[2000].

Datatype Samplerate (Time) Samplerate (Angle)
Vibration 50 kHZ 10 degrees−1

Pressure no data 10 degrees−1

Acoustic Emission 2 MHz 10 degrees−1

3.6 Cylinder Pressures and Vibration in Internal Combustion En-
gine Condition Monitoring ( Chandroth et al. [1999a])

In this paper datafusion and decision fusion is used classify engine condition.
Two sensors are used (a)pressure sensor and (b)vibration sensor.
The data from the AE-sensors are not used and discussed. The aim is to use as few

sensors as possible.
Various ways of datafusion (e.g. summing, multiplying, interleaving) is discussed,
ending up with fusing pressure and vibration by summing.
Decision fusion is done by training 3 independent neural networks, one net using

pressuredata,
one using vibrationdata and the last using the fused (summed) pressure- and vibra-

tiondata.
The three nets are combined into a majority voting system which outperforms all

of the individual nets.

Experimental setup

The data is crank anlge labbeled collected as described inChandroth and Sharkey
[1999] and consist of five classes.

Based on the crank angle only data from 180o to 200o is used (TDC + 20o, i.e.
where the combustion takes place).

The 200 datapoints from this angle area is by subsampling reduced to 50 points.

Operating conditions: The 4 defect conditions (E, I, B, and L) is constructed by
inducing artifical errors in the machinery.

N Normal condition

E Leaking exhaust valve

I Leaking air inlet valve
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B Blocked fuel injector (1 out of 4 holes)

L Poor fuel atomisation

Dataset: The examples are obtained after an initial period of running-in, and consist
of 12000 examples of pressure- and vibrationdata. The examples are divided into three
parts:

a trainingset with 7500 examples.

a testset with 3000 examples.

a validationset with 1500 examples.

3.7 Vibration signatures, wavelets and principal components anal-
ysis in diesel engine diagnostics (Chandroth et al. [1999b])

This paper focus on what we label aspreprocessing or feature extraction: wavelets,
PCA and “Domain expertise”.

The data are the same as inChandroth et al.[1999a], and again the AE-sensor data
is not used.

The waveletsection (2) is confusing due to the unpleasant fact,
that all references to tables and figures is missing (in the form:shown in figure ?? ).
The domain expertise is as inChandroth et al.[1999a], using only the data from

the combustionzone (180o to 200o).
The finding of this paper is that the wavelet preprocessing performs best,
but that theMajority voting system performs best when all three preprocessors train

a net.
A Majority voting system is briefly explained, but that aspect is further discussed

in Sharkey et al.[2000].

3.8 The “test and select” approach to ensemble combination(Sharkey
et al. [2000])

In this paper the pressure, vibrationdata as well as the fused pressure and vibrationdata
is fed into different neural networks.

In contrast toChandroth et al.[1999a,b] the datafusion is done by appending the
data, so that the pressure- and vibrationdata consist of 50 samples and the fused data
consist of 100 samples. Also the dataset is split into 4 parts, as individual testsets are
needed for the network- and ensemble-testing.

The outputs of these networks are combined to perform decision fusion, i.e. just
like in Chandroth et al.[1999a].

The ensemble creation consist of two layers of “ensembling”, the sensorlayer and
the networklayer, that gives two parameters:datatype andnetworktype that be paired
to generate different networks.

• Datatype

- Pressure

- Vibration

- Fused pressure and vibration
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• Networktype

- Randomized initial conditions

- Architecture (# of hidden units)

- Bootstrapping

Each pair of parameters is used to train 5 networks, giving a total of 45 networks.
The optimal ensemble is found by creating 100 random combinations of the 45

nets.
Three types of constraint is tested:

• None

• One from each datatype

• All from same datatype

The best ensemble comes from the unconstrained pool and consist of two “fused-
network“ and one pressurenetwork.

The contribution of this paper is that different combinations of networks is ex-
plored, so that an optimal combination can be found.

The ensembles are created by performance, and the authors find and claim that such
ensembles perform better wrt. generalization than ensembles constructed by following
“archtechtural” rules.

3.9 Learning methods for machine vibration analysis and health
monitoring (Ypma [2001])

This PhD-thesis describe several methods for feature extraction and machine learning.
The described methods for feature extraction is classical windowed Fourier analy-

sis (and wavelets), several parametric methods, and PCA.

Also several learning paradigms is discussed, including experiments and discus-
sions on Hidden Markov Models, Neural Networks, and Self Organized Maps.
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4 Groups

Figure2 outline some groups that have published relevent work on health monitoring
and AE. It is not intended to be complete (yet), but to give a quick overview of what
we have taken into account. The connected groups have published articles together.
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Figure 2: Some groups that work with health monitoring and AE

MUCID - MULTI UNIVERSITY CENTER FORINTEGRATED DIAGNOSTICS, consist of Georgia
Institute of Technology, Northwestern University, and University of Minnesota.
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