
Online Shopping System based on WAP

Tao Zhou

Kgs. Lyngby 2004

IMM-THESIS-2004-90

Technical University of Denmark

Informatics and Mathematical Modelling

Building 321, DK-2800 Lyngby, Denmark

Phone +45 45253351, Fax +45 45882673

reception@imm.dtu.dk

www.imm.dtu.dk

IMM-THESIS: ISSN 1601-233X

Table of Content

1 Introduction..- 4 -

1.1 Definitions and key words ..- 4 -
1.2 Motivation and Goals..- 6 -

1.2.1 Motivation, WAP overview...- 6 -
1.2.2 Goals ..- 8 -

1.3 Correlated Work..- 8 -
1.4 About this thesis..- 9 -

2 Problem Domain ..- 11 -
2.1 Problem...- 11 -
2.2 Users classes ...- 12 -
2.3 Functional Requirements ..- 13 -

2.3.1 The expectative layout of WAP shop (Visualization functionalities)- 13 -
2.3.2 The expectative customer shopping process (Ordering functionalities)......- 15 -
2.3.3 The expectative layout of Administrative Module (Visualization

functionalities) ..- 16 -
2.3.4 The expectative management process (Editing functionalities)- 17 -
2.3.5 Functional requirements of Database system ..- 18 -

2.4 Introduction of correlation between functionalities and system’s files- 19 -
2.5 Correlated work and conclusion ...- 20 -

3 Development Tools..- 21 -
3.1 Introduction of development tools used in WOSS system- 21 -
3.2 Using WML ..- 23 -
3.3 Using MySQL...- 25 -
3.4 Using Orion Application server ..- 28 -

3.4.1 JavaBeans overview...- 28 -
3.4.2 Orion Application server..- 29 -

3.5 Using JSP..- 32 -
3.5.1 JSP overview..- 32 -
3.5.2 JSP configuration ...- 32 -
3.5.3 JSP syntax and simple examples of WOSS ...- 33 -

3.6 Using JDBC ..- 35 -
3.7 Using JavaScript and HTML ..- 39 -

3.7.1 HTML DOM event ..- 39 -
3.7.2 Create a table..- 40 -
3.7.3 DOM checkbox..- 40 -
3.7.4 HTML input form ..- 40 -
3.7.5 Dropdown list in a form...- 41 -

3.8 Selecting Operating System..- 41 -
3.9 Conclusion ..- 41 -

4 System Design ...- 42 -
4.1 Overview...- 42 -
4.2 WOSS system structure ..- 42 -
4.3 Design of Administrative module (Web server)...- 45 -
4.4 Design of Customer Interface ...- 46 -

 - 1 -

4.5 Design of Database management system..- 49 -
4.6 Conclusion ..- 53 -

5 System Implementation ...- 54 -
5.1 Implementation of Administrative module (Web server)...................................- 54 -

5.1.1 Implementation of ExtraWapImage.jsp (WAP SHOP EDIT)- 55 -
5.1.2 Implementation of PageEdit.jsp (Page Editor) ..- 58 -
5.1.3 Implementation of data query and retrieving the data to display by using

JavaScript and SQL...- 63 -
5.1.4 Implementation of JDBC ...- 65 -

5.2 Implementation of Customer interface ...- 67 -
5.2.1 Implementation of wapShop.jsp and extraview.jsp- 68 -
5.2.2 Implementation of Customer ordering...- 72 -

5.3 Implementation MySQL database ..- 74 -
5.4 Conclusion ..- 76 -

6 System Test..- 77 -
6.1 Component test ...- 77 -

6.1.1 Component test of Customer Interface ..- 77 -
6.1.2 Component Test of Administrative Module ..- 79 -

6.2 Integration test ..- 80 -
6.2.1 Integration test of editing functionalities ...- 81 -
6.2.2 Integration test of ordering functionalities and data saved in database- 84 -

6.3 Conclusion ..- 85 -
7 Conclusion and proposal..- 87 -

7.1 Achievements..- 87 -
7.2 Future possible improvements of WOSS system..- 88 -

8 Bibliography and Appendixes ...- 89 -
8.1 Bibliography ...- 89 -
8.2 Source code...- 90 -

8.2.1 ExtraWapImage.jsp..- 90 -
8.2.2 ewiupdate.jsp ...- 93 -
8.2.3 PageEdit.jsp ...- 95 -
8.2.4 ewidel.jsp ...- 100 -
8.2.5 ewipageupdate.jsp..- 101 -
8.2.6 picupload.jsp ..- 102 -
8.2.7 wapShop.jsp ...- 107 -
8.2.8 extraview.jsp ..- 107 -
8.2.9 order.jsp ...- 109 -
8.2.10 saveOrder.jsp ...- 110 -
8.2.11 orderDel.jsp..- 111 -
8.2.12 Connloader.java ...- 112 -

 - 2 -

List of Figures

Figure 1.1 UML model of WAP e-commerce ..- 8 -
Figure 2.1 Prototype of Online Shopping System based on WAP- 12 -
Figure 2.2 UML diagram of WAP shop layout ..- 14 -
Figure 2.3 Prototype of Administrative module ...- 17 -
Figure 3.1 WOSS system structure...- 22 -
Figure 3.2 Sketch of the Orion application server ..- 29 -
Figure 3.3 JSP Architecture ..- 33 -
Figure 3.4 Java.sql tree ...- 36 -
Figure 4.1 The arrangement of JSP files in Customer Interface...................................- 43 -
Figure 4.2 The arrangement of JSP files in Administrative Module- 43 -
Figure 4.3 WOSS system structure...- 44 -
Figure 4.4 Correlations of different JSP files ...- 48 -
Figure 4.5 E/R graphical analysis of data structures in WOSS system- 52 -
Figure 5.1 Screenshot of WAP SHOP EDIT homepage...- 55 -
Figure 5.2 Screenshot of Page Editor for product catalogs ..- 58 -
Figure 5.3 Screenshot of Page Editor for products ...- 60 -
Figure 5.4 Screenshot of Picture Uploading ...- 63 -
Figure 5.5 Screenshot of Customer shopping page ..- 68 -
Figure 5.6 Screenshot of the product catalog ‘Sports’..- 69 -
Figure 5.7 Screenshot of the product ‘Tent’ ...- 69 -
Figure 5.8 Screenshot of Customer Ordering ...- 73 -
Figure 6.1 Component Test of wapShop homepage by using OpenWave- 78 -
Figure 6.2 Component Test of product page by using OpenWave...............................- 78 -
Figure 6.3 Component Test of Customer Ordering by using OpenWave.....................- 79 -
Figure6.4 Test of uploading the picture (1) ..- 80 -
Figure 6.5 Test of uploading pictures (2)..- 80 -
Figure 6.6 Page Editor after adding ‘TEST’...- 81 -
Figure 6.7 Shopping page after adding ‘TEST’..- 82 -
Figure 6.8 Page Editor after adding ‘Girls Picture’ ..- 82 -
Figure 6.9 Page Editor after uploading the picture ...- 82 -
Figure 6.10 Shopping page after uploading the picture..- 83 -
Figure 6.11 Page Editor after adding the price ...- 83 -
Figure 6.12 Shopping page after adding the price ..- 84 -
Figure 6.13 Integration test of saving customer’s order ...- 85 -
Figure 6.14 Integration test of saving customer’s order in database- 85 -

 - 3 -

1 Introduction

In my thesis, I propose an Online Shopping System which is based on the 2.5G
wireless communication technology, WAP (Wireless Application Protocol). Not only
can it be implemented in office or home PCs, but also can it be compatible with cell
phones which support WAP (2.5G application).

A general approach of the prototype establishment, design and implementation, etc of
this Online Shopping System based on WAP is presented, by using software
engineering theories and telecommunication theories.

This chapter describes the key words, motivation, goals, correlated work and the
reading guide for readers. For the reason of essentiality and complexity of the
problem prototype of an Online Shopping System based on WAP, I will discuss the
problem domain in Chapter 2.

1.1 Definitions and key words

In the following chapters, to avoid the redundant repetition of the long terms, I use
the key words, for example I use WOSS, instead of giving the full name in all the
following chapters. Some key words are acronyms of names of system’s applications,
and some are definitions or explanations of technologies. If readers face a strange
acronym or development technology, please first refer to this section.

WOSS: Acronym of WAP based Online Shopping System. I use this acronym in the

context.

Customer Interface: the web pages for WAP customers to browse and buy products,

in other words, it is a virtual online WAP shop.

Administrative Module / Administrative Interface: the Web server of WOSS

system used by administrators to modify the information of WAP shop.

Item: the aggregation of all sorts of products sold in WAP shop. Furthermore, the

separate shopping items which may include several different product catalogs.

Product Catalog: the sort of different products, for instance, all the sport products

are classified as ‘sports’ that is named as a product catalog.

Products: the goods traded in WAP shop

wapShop: a simulated customer interface (login interface) for system demo, which

means WAP shopping item.

 - 4 -

 WAP SHOP EDIT: administrative interface, used for editing, modifying the
information of shopping items.

 Page Editor: administrative interface, used for editing, modifying the information of

product catalogs and products.

 gtom_wap: the database name that saves all the information of WOSS system in

MySQL server.

 WAP: Acronym of the wireless application protocol.

 J2SDK: The J2SE Software Development Kit (SDK)1 supports creating J2SE

applications. (By using version 1.4.2_04)

 JSP: Acronym of JavaServer Pages Technology.

 MySQL: the most popular open source2database in the world.

 JavaBeans: JavaBeans is a component architecture for defining reusable components
in Java 2 Platform for Java. It is reusable software programs that a
programmer can develop and assemble easily to create sophisticated
applications.

 Orion application server: A pure java full-featured application server which

supports Java 2. This application server is more or less similar as an
application container which makes data configuration system (Database) and
programming implementation (Java 2) compatible, and it’s easier for a
developer to run a simple Enterprise JavaBeans.

 JDBC: JDBC technology3 is an API (included in both J2SE and J2EE releases) that

provides cross-DBMS connectivity to a wide range of SQL databases and
accesses to other tabular data sources, such as spreadsheets or flat files. With a
JDBC technology-enabled driver, a developer can connect all corporate data
even in a heterogeneous environment.

 WML: stands for Wireless Markup Language which is mark-up language inherited

from HTML, and based on XML, designed for web pages that are displayed
on a WAP browser.

 ERP: Acronym of Enterprise Resource Planning.

1 J2SDK, http://java.sun.com/j2se/1.4.2/, Sun Microsystems, 1994-2004

2 MySQL, www.mysql.com/, MySQL AB, 1995-2004

3 JDBC, java.sun.com, Sun Microsystems, 2004

 - 5 -

CRM: Acronym of Customer Relationship Planning.

Opera navigator4: one of the most popular free- to- use web browser supporting

WAP up to dated.

OpenWave: A mobile simulator helps developers compelling applications and

services based on WAP (or other 3G wireless technologies), including
XHTML, and any animation of MMS (Multimedia Messaging Service).

1.2 Motivation and Goals

In this section I describe the development and prospect of WAP technology that
motivated me to develop an Online Shopping System based on WAP. I define the
model of WAP e-commerce in this section and this model is directly associated with
the prototype of Online Shopping System defined in next Chapter. In addition, the
goals of this thesis, in other words, the achievements, and knowledge I want to get
after WOSS system development are also presented in this section.

 1.2.1 Motivation, WAP overview

With the development of mobile phones, the services based on mobile
communication are becoming more attractive and promising than traditional Web
services. According to the statistics from Nokia, there are 1.5 billion people5 using
mobile phones in 2004, 241 million of them are 2.5G, and 48 million are 3G. Until
2007, the number of mobile phone users will hit 2 billion, and 40% of them will
subscribe mobile Internet services. This number is much more than PC users who
subscribe the online services.

WAP, as 2.5G mobile communication technology, stands as the interface supporting a
wireless device, such as cell phone, or PDA, to view Internet page. Earlier, users
could browse text only within the very simple black and white pictures. But with the
development of technology of mobile communications, for example by using WAP
over GPRS networks, users can enjoy more colorful contents, such as E-mail
services, online business services, E-game and entertainment, and MMS (Multimedia
Message Services), etc. Currently the transmission speed of WAP over GPRS hits
20kbps - 30kbps, and it towards 3G services which has been already launched in EU
countries since 1999. According to OECD.org6, in 1998, there were only 18 million
WAP users in the world, and in 2002, there were 12 million WAP subscribers in EU
which stand only 5.5% of 220 million mobile phone subscribers, but in 2004, 65% of
mobile users subscribed WAP services, which represent over 100 million users. In
Denmark, Sonofon was the first mobile operator which provided WAP services by

4 Opera Navigator, http://portal.opera com/, Opera Software ASA, 1995-2004
5 Nokia News, www.nokia.com/search/index.jsp?wsid=8&qt=news, Nokia, Finland, 2004
6 OECD: Organization for Economic Co-operation and Development, www.oecd.org/home/

 - 6 -

using Nokia Artus Messageing Platform. In 2003, there were10, 000 WAP
subscribers in Denmark and it was far more than the number of 3G subscribers, when
3.DK launched its services, in 2002.

A WAP user connects to Internet through what is known as the WAP gateway. Most
of mobile operators of EU have their own WAP gateways. When the WAP user
browses WAP web sites, this individual cell phone sends a request to the WAP
gateway, and then the request will be transferred to WAP site for the webpage a user
wants. If the WAP gateway has that copy of web site, it will be compressed and sent
back to the cell phone.

WAP supports most of wireless communication networks, such as GSM, CDMA,
TDMA, Mobiltex, and of course it is compatible with 3G networks, such as UMTS
and WCDMA. WAP is supported by most of Operating systems, such as OS/9,
JavaOS, EPOC, and especially Window CE which is PDA system supporting WML.

WAP is based on existing Internet standards, such as HTML, XML, IP, and HTTP
1.1. WML is specifically devised for micro-screen devices such as cell phones or
PDA with or without keyboards. This optimizes these wireless handheld devices with
tiny displays and low bandwidth.

WAP as the open standard of wireless Internet communication drives the
convergence of Internet services and mobile phone services. As the breakthrough of
mobile e-commerce, WAP has released a new mobile Internet market force. WAP
applications for mobile dispatching services improves response and efficiency, and it
makes e-commerce real-time and within less resources. For instance, in WAP online
shopping system, with the handsets supporting 2G (GSM), 2.5G or 3G, users can
order products at the place covered by operator’s services and it realizes the form,
real-time, everywhere, and anytime. Another outstanding example is, in EU, the
mobile devices with WAP subscription become the most common client devices for
B2B, B2C applications, and according to IDC’s statistics7, in the couple of years, the
number of subscribers of mobile e-commerce based on WAP are more than the wired
PC’s accessing to e-commerce.

WAP forms a new e-commerce model with the mobile access to Internet, which is the
convergence of ubiquitous clients including WAP cell phones, Web browsers,
WEB/WAP servers supported by XML; WML, application servers with multi-access
to database system and any GUI clients. This model actually is becoming the
ubiquitous model of 2.5G and 3G mobile e-commerce. The model is visualized as
Figure 1.1 by using UML8. First WAP clients connect to WEB/WAP servers that
provide difference WAP services, for instance, E-mail service, Online shopping, and
Information search service. Clients send data requests, for example, clients send the
news request, when a WEB/WAP server receives these requests, it firstly searches

7 Mobile eBusiness Magic White Paper, magic-SW.com, Magic, 2003, USA

8 Practical UML, http://bdn.borland.com/article/0,1410,31863,00.html#use-case-diagram

 - 7 -

these data locally, if it has these contents, WEB server will send them to client’s
WAP browsers otherwise it will apply for Application server (central server of
operators). All the WAP data are saved or backuped in database.

Figure 1.1 UML model of WAP e-commerce

1.2.2 Goals

 The goals of this thesis are:

1. Study and extend the programming skills such as WML, HTML, Java, JSP and
SQL syntax, etc.

2. Use Orion application server to run a typical enterprise JavaBeans and apply the

theories of ERP and CRM to idealize the system.

3. Use JDBC connectivity solving communication between the control layer and the
data layer.

4. Employ proper methods to implement Online shopping system, test and validate

the realized system after implementation.

1.3 Correlated Work

Authorization system of an online system is one of important features. Without an
effective authorization mechanism, the online shopping system will be vulnerable and
less secure.

 WEB/WAP
 Server

 WML
 XML

 Server ID
 Operator ID
 Implemetation

Crew…

 Ubiquitous
Clients

 Mobile
 Wired
 GUI

 Name
 Address
Telefon Nummer

 Authorized

Application
server with
multi-Access to
DB

 Backbone
Database

Server ID
Operator ID
Implemetation
crew…

Tables...

Services

Email
Shopping
Information

 - 8 -

Basic authorization infrastructure can be implemented by database system. For
example, to create a user table in database and authorize the users accessing to
shopping interfaces, meanwhile, an administrator has the power to edit customer
information and edit administrative interfaces. However, anyone who has the right to
access into database can gather and modify these sorts of information. It will become
a break-in point of the whole system.

As a result, the user interface encrypt implementation is necessary, especially WAP
interface encrypt, such as the encrypt implementation of WAP shopping interface and
the encrypt implementation of administrative interface. There are lots of encrypt
algorithms, such as Microsoft LSA/Shell, but unfortunately it doesn’t support WML
syntax. As a single developer responsible for developing the complete online
shopping system, I will only recommend these practical applications in this thesis, not
in the workload of implementations.

1.4 About this thesis

I organize this thesis by the following chapters: Problem domain; Development tools;
System design; System implementation; System test and Conclusion.

In Chapter 1, Section 1.1, I gave the most important key words of the whole thesis.
These key words stand for acronyms of specific phrases of WOSS system and
technologies; definitions used in system development. They will be repeatedly used in
the whole thesis and it’s very important for readers to read the context. Furthermore,
in order to make the readers have a better understanding of this thesis, I also describe
the theories and methods concerning Wireless communication technology, especially
in WAP, Wireless e-commerce, especially in 2.5G and 3G mobile communications.

In Chapter 2 Problem Domain, I give the introductions of the defined prototype of
Online Shopping System based on WAP, which are both in entity layouts and in
conducting processes. This prototype is the guideline of the system design and the
system implementation. Furthermore, to make readers easily understand the context, I
give the description of correlations between functionalities and system application
files, and corresponding sections in context as well, which might be, I hope, a helpful
guidance for readers to go through this thesis.

In Chapter 3 Development Tools, I describe the utility of WAP, Orion Application
Server, MySQL, etc in WOSS system. It includes the reason why I used these
software, comparison with other software and typical syntax introductions which are
only based on WOSS system development. These introductions are very important for
readers to understand how I employed these tools to realize the prototype defined in
Chapter 2, and to approach my goals. It is also necessary to the readers who haven’t
experiences with these development tools.

 - 9 -

In Chapter 4 System design, I present the designing details of Customer Interface,
WAP SHOP EDIT administrative module, and database design, such as alternatives
of data types, E/R analysis, and table structure.

In Chapter 5 System implementation, I describe the implementation of WOSS
system. The kernel implementations of Customer Interface, Administrative Module
and MySQL database management system are presented in this Chapter.

In Chapter 6 System test, I test WOSS system by using Component test and
Integration test, and a navigator of simulated WAP mobile phone, OpenWave is used.

In Chapter 7 Conclusion and proposal, I conclude on the achievements of developing
WOSS system and research on this thesis.

In Chapter 8 Appendix, I list all the bibliography of this thesis and source code of
WOSS system files.

 - 10 -

2 Problem Domain

Online shopping system based on WAP, as its name indicates, is to provide a virtual
Internet shop website to a customer who has WAP connection, mainly a WAP mobile
phone to buy products, and also to provide the shop’s administrator an interface to
control and manipulate this website. It should be fundamentally consisted by
shopping website, administrative interface and database management system.
However, according to ERP theory, a complete information system should also
include its CRM9 system, Logistic system, Financial audit center, etc. Since in the
development of WOSS system, I only focus on customer’s shopping functionalities,
Web server functionalities and database management functionalities, those other
components of ERP theory are not covered in this thesis.

In this chapter, I define the prototype of Online Shopping System based on WAP,
both in the system’s structure and in the functionalities that my system should provide
as well. First I give the description of the problem arising, followed by an
introduction of system’s user classes. Second I describe the functional requirements
of Online Shopping System based on WAP, and these functionalities defined will
coach the selection of development tools, system design and system implementation
through. I describe the layout of WAP shop, not the technical details of design or
implementation of WAP shop, but the physical layout, in other words, the
commercial structure of WAP shop. I also describe a complete customer’s shopping
process, and a complete management process of WAP shop administrator. In addition
a brief introduction of functional requirements of database system is presented. In the
end, an introduction of correlations between functionalities and system files,
correlated work and conclusion are presented.

The selection of development tools, system design, and system implementation
coming up in the following chapters are all based on the prototype defined in this
chapter.

2.1 Problem

Traditionally, customers are used to buy the products at the real, in other words,
factual shops or supermarkets. It needs the customers to show up in the shops in
person, and walk around different shopping shelves, and it also needs the owners of
shops to stock, exhibit, and transfer the products required by customers. It takes labor,
time and space to proceed these operations. Online shopping system based on WAP
provides a solution to reduce and optimize these expenses. Authorized Customers do
not need to go to the factual shops to choose, and bring the products they need by
hands. They simply browse their cell phone’s navigators that access to WAP shops,
and evaluate the products description, pictures on the screen to choose products. In
addition, the owner of WAP shops do not need to arrange, exhibit their stocked

9 CRM: Customer Relationship Management, www.crm2day.com, CRM Today, 2001-2004

 - 11 -

products. They just input the description, prices of products, and upload their pictures.
Simply, both customers and shop owners do not need to touch the real products in the
whole process of shopping, and management. In the end the logistic center will
distribute the products required by customers, or products ordered by shop’s owners
to their locations. The payment and products’ quantity will be saved in database
through the data flow. These shopping, management and distribution processes
greatly simplify and optimize the retail business.

According to WAP shopping process and WAP shop management process indicated
above, I developed customer’s shopping website (customer interface) corresponding
to shopping process and Web server (administrative module) corresponding to
management process. Undoubtedly, database management system is inevitable part
of the whole shopping system. This prototype of Online Shopping System based on
WAP can be visualized as the following figure. Since the distribution process/logistic
system has more complicated development methods, it is not covered in this thesis.

Figure 2.1 Prototype of Online Shopping System based on WAP

Customer Interface provides a virtual online shopping website for customers to buy
products. Administrative module provides an interface for administrators to
manipulate the customer interface, for example to modify the layout shopping
website, and to edit product information. Meanwhile, the customer’s data, for
example, customer identifications and shopping orders are saved in database system
through the connector provided by Administrative module. And edited product
information is saved in database as well.

In the following section, I present the definitions of system users, for example,
customers and administrators mentioned above.

2.2 Users classes

WOSS system is used by three kinds of users. They are users of WAP mobile phone
or PC users who have the navigators supporting WAP (named as Customers),
administrators of WOSS system (named as Administrators), and system maintenance
crew (named as Developer, Tao Zhou). Each user has his or her attributes and
privileges.

Customers’ attributes: ID, Name, Gender, Mobile phone number, Reserve
information, and Details.
Customers’ privileges: Access to shopping website, and buy products.

Administrators’ attributes: ID, Name, Gender, Mobile phone number, Reserve
information, and Details.

 Customer Interface Administrative Module Database System

 - 12 -

Administrators’ privileges: Access to the shopping website to check products’
information, access to administrative interface (WAP SHOP EDIT) to edit products’
information and customer’s data.

System maintenance crew: ID, Name, Gender, Mobile phone number, Reserve
information, and Details.
System maintenance crew’s privileges: Access to shopping website to check
products’ information, and modify the functionality of WOSS system required by
shop’s owners.

All these attributes are saved in database management system as the table’s fields,
and I will give the explanation of them in Chapter 4 System Design.

I create a user named as ‘Mike’ who has the customer’s privileges, and all
administrators’ privileges. This designated user is only for system trial and
simplifying the operation steps and ‘Mike’ is used not only in this chapter, but in the
following chapters.

2.3 Functional Requirements

In this section, according to the prototype defined above, I present the functionalities
and services my system should provide to customers and administrators. First, I
describe the functional requirements of Customer Interface, including visual layout of
WAP shop and expectative customer shopping process. Second, I describe functional
requirements of Administrative Module, including visual layout of Administrative
module and expectative management process. In the end I give a brief introduction of
functional requirements of database system.

2.3.1 The expectative layout of WAP shop (Visualization functionalities)

Although WAP shop is a virtual Internet shopping location, it does not exist
physically, customers are still used to go shopping following the traditional methods.
For instance, a housewife goes into a supermarket. First the product she will buy
might be beef, so she goes to butcher section, and select fresh beef. Second, she will
buy some bread for breakfast, so she goes to baker section, and bring a bag of rye
bread. Or for another example, Lyngby Storcenter is divided into several different
retail stores, such as sport store, clothing store, and video store, etc. A well-run WAP
shop should be arranged following these traditional methods, so customers can finish
their shopping operation conveniently, and quickly.

As the expectative functionalities of WAP shop indicated above, first Customer
Interface should provide a homepage of shopping place, for instance, a shopping
center like Lyngby Storcenter. I named this place as (shopping) ‘Item’. Second,
single item webpage should consist of different shopping catalogs, for example a
catalog including all sport products. These products catalogs are similar to different
stores in Lyngby Storcenter. Third, a single product catalog should have its own

 - 13 -

webpage to display the list of products. This is similar to the different sport products
sold in the sports store. Fourth, every product should have its own webpage to display
single product information including text description, pictures and price. Furthermore,
the customer check-out webpage that displays the check-out choices of shopping
orders should be displayed not only after product webpage but also in the item
homepage after a customer finishing products ordering.

The visualization functionalities of displaying the shopping item can be deduced as
the following process:

Shopping items (Homepage) --- products’ catalogs (such as sports, etc.) --- Products
of sports catalog (such as a water bottle) --- Details (pictures, or prices) --- Orders
(buy or not, Confirmation of Order).

This layout can be visualized as the following UML diagram:

Figure 2.2 UML diagram of WAP shop layout

2.4 Check-out

Buy or not
Confirmation

.......

4.1 Order

Buy or not
Confirmation

.......

4.1 Order

Buy or not
Confirmation

.......

4.1 Order

Buy or not
Confirmation

.......

4.1 Order

Buy or not
Confirmation

.......

.......
.......

3.3 The day after
 Tomorrow

Price

Pitures
Description

.......

3.1 Tent

 1. WAP shop

Sports
DVDs
Phones
Books
.......

Shopping Item

Price
Pitures

Description
.......

2.1 Sports

Tent
Water Bottle

.......

Product Catalog

2.2 DVDS

The day after
tomorrow

Water world
.......

Product Catalog

2.3 Phones

Moto E680
.......

Product Catalog

3.2 Water Bottle

Price
Pitures

Description
.......

....... 3.4 Water world

Price
Pitures

Description
.......

.......

.......

 - 14 -

Undoubtedly, an item of WAP shop consists of several different shopping catalogs
not only Sports, DVDs, Phones shown in figure above, Figure 2.5 is only the
prototype of expectative layout of WAP shop.

2.3.2 The expectative customer shopping process (Ordering functionalities)

The complete customer shopping process should begin from the customer login. It
needs Customer Interface provides the functionalities of customer authorization.
However, as Section 1.3 Correlated work indicated, the authorization function is not
realized in WOSS system, so this functional requirement is omitted in this thesis.

Now I use the simulated customer ‘Mike’ to introduce the functionalities Customer
interface should provide in customer shopping process. I assume Mike has been
validated in WAP shop. After he goes through the shopping information, following
the layout defined in previous section, Mike needs to order something for his son as
gifts in WAP shop. As a result, the customer interface should not only provide the
product’s information to customers, but also the price. Mike can compare the
different prices and decide to buy which products. Furthermore, Mike can buy more
than one product in different product catalogs. It needs the customer interface to
provide the functionalities of the total price calculation. And if Mike changes his
mind, for example originally, he decides to buy a water bottle and a tent to his son,
but finally, in the check-out webpage, he finds the total price is more than his budget.
He should delete something. It needs the customer interface to provide the
functionalities of orders deleting. At the end, after Mike submits his bills, it needs the
customer interface to provide the functionalities of ordering confirmation to remind
the customer that his bills have been recorded. All of these functionalities required
above can be concluded as ‘Ordering functionalities’ in WOSS system.

The shopping processes of Mike can be defined as a multi-process shopping, in other
words, Mike bought not only a single product. It is also possible for a customer to buy
only one product and check out in that product’s page

All in all, the complete customer’s shopping process should be:

1. Customer login
2. Choosing the products’ catalogs to enter
3. After entering a product catalog, the customer goes through the products’ list
4. Enter the product’s page he prefers
5. Click on ‘buy now’ to buy this product
6. After order saved, he can go back to homepage to reselect products
7. Repeat steps 2-6
8. Click on ‘take the bill’ to check out his orders, and decide if he take them all, or

delete something
9. Back to homepage, logout

 - 15 -

 2.3.3 The expectative layout of Administrative Module (Visualization functionalities)

Administrative module should provide a place for an administrator to modify the
information of WAP shop including text descriptions, uploading pictures and price
information, etc.

First, administrative module should display a homepage for an administrator to create
a shopping item and this administrative homepage should display a distinguished
name, for example I defined it as ‘WAP SHOP EDIT’ in this module. In this
homepage, it should display the item’s ID correctly and it should display the options
for an administrator to edit this shopping item, for instance, displaying the hyperlink
to go into editing webpage of the product catalogs of this item, displaying the options
if the administrator wants to edit the item’s text description or delete it and so on.

Second, administrative module should display a webpage for an administrator to
create product catalogs in selected shopping item and this administrative webpage
should display a distinguished name, for example I defined it as ‘Page Editor’ in this
module. In this page, it should display the ID of product catalogs and it should
display the options for an administrator to edit the information of a product catalog,
for instance, displaying the hyperlink to go into editing webpage of products of his
catalog, displaying the option if the administrator wants to edit the catalog’s
description or delete it. Furthermore in this page, it should also display the options of
editing the layout of product list of WAP shop.

Third, administrative module should display a webpage for an administrator to create
products in selected product catalog and this administrative page should display a
distinguished name as well, for example I also defined it as ‘Page Editor’ in this
module. In this page, it should display the ID of a product and it should display the
options for an administrator to edit the information of a product, for instance
displaying an option of description methods including text description, graphic
description and order price, displaying the option if the administrator wants to edit
these descriptions or delete them. Furthermore in this webpage it should also display
the options of editing the layout of the single product page.

Since the functionalities of uploading picture are specially required in administrative
module, it should display an individual webpage for picture uploading.

All in all, the visualization functionalities of administrative module should
correspond to the prototype of WAP shop defined in previous section. The layout of
administrative module can be visualized as the following figure:

 - 16 -

Figure 2.3 Prototype of Administrative module

Undoubtedly, since one item can consist of a number of different product catalogs,
the number of webpages of editing product catalogs should be equal to the number of
product catalogs, and this mechanism is similar to webpages of editing the
information of products. The Figure 2.3 is only the general prototype of
administrative module, which didn’t list all webpages of editing product catalog and
webpages of editing product information corresponding to Figure 2.2.

2.3.4 The expectative management process (Editing functionalities)

A complete management process should begin from the administrator login, but in
Section 1.3 Correlated work, I have already pointed out, the authorization
functionality is not realized in WOSS system, so I omit this functional requirement in
this thesis.

Administrative Module is to manipulate the contents displayed in the customer
interface. First, it should provide the functionalities of modifying the layout of WAP
shop, for instance, change the sequences of product catalogs, uploading the
advertisement pictures of WAP shop and editing the text descriptions of WAP shop,
etc.

Second, it should provide the functionalities of modifying the contents of items, for
example the text descriptions of items and the displaying status of these items. (For
instance, if the owner of the WAP shop does not want to display a specific item in

Page of editing the information of
products (Page Editor)

options

e.g. Create new product
……

Page of editing product catalogs
(Page Editor)

Homepage of administrative
module (WAP SHOP EDIT)

options

e.g. Create new item
……

options
e.g. Create new catalog

……

Page of Picture
Upload
options

Page of Picture
Upload

options

.......

.......

 - 17 -

the special time, administrative module should provide this functionality, but don’t
need to delete this item).

Third, administrative module should provide the functionalities of modifying the
contents of product catalogs, for instance, pointing the ID to a product catalog,
pointing the displaying page ID to a product catalog, allowing the administrator to
input the text description, allowing him to upload the advertisement picture, allow
him to edit existing information and the status of displaying a specific product catalog
that is same as the situation of items. In addition, it should also allow the
administrator to change the layout of product catalog webpages of WAP shop.

Fourth, it should provide the functionalities of modifying the contents of products, for
instance, pointing ID to a product, pointing the displaying page ID of a product,
allowing the administrator to edit the text description of this product, allowing him to
upload the picture of products, allowing him input or change the prices of products
and allowing him to determine the status of a specific product (the same situation as
items). Furthermore, it should provide the functionalities of changing the layout of
product webpages of WAP shop.

These functionalities mentioned above can be defined as the editing functionalities
required in WOSS system.

Now, I assume the administrator Mike is the user of Windows Internet Explorer, and
he is going to use administrative module to edit the information of WAP shop. As the
prototype of administrative module indicated above, Mike’s management process
should be the following steps:

1. Administrator login
2. Choose an item to edit, or create new items (Input description).
3. Click the item he wants to edit, link to another page editor.
4. Choose product’s catalogs to edit, or create new product’s catalogs (Input

description)
5. Choose a specific product to edit, or create new products (Input description)
6. Choose the type to enter of edit, for example the type of text description, graphic

description and price information.
7. Click on the buttons to add, edit, or delete
8. Finish product edit, back to step 3 to edit or add items, or back to step 4 to add or

edit catalogs.
9. Repeat step 5-7 to edit or add new products.
10. Back to WAP SHOP EDIT homepage, log out.

2.3.5 Functional requirements of Database system

Database system of Online Shopping System based on WAP will save all the data
concerned with customer interface and administrative module.

 - 18 -

First, it should record the data of customers, administrators, and system crew defined
in Section 2.2 correctly. Second, it should record the customer’s orders correctly.
Third, the database system should also save the data of product catalogs and products
correctly, for example, saving the advertisement pictures.

At the end, to make the database system to be connected to administrative module
and customer interface correctly, it needs a proper configuration of database
connector. In Chapter 4 and Chapter 5, I will give the detailed explanation of the
database design and implementation.

2.4 Introduction of correlation between functionalities and system’s files

From Section 2.1 to Section 2.3, I gave the descriptions of prototype of Online
shopping system based on WAP in details. Now, the readers may understand how a
WAP online shopping system runs, but I believe it is also necessary to give the very
brief introduction of system design information to make a soft transition to the
following chapters. This introduction is only focusing on the realization of
functionalities, some system files must be mentioned and it can be defined as
beforehand introduction of system structure. To get the detailed design information
and system application files referred in this section, please consult Section 4.3,
Section 4.4 and corresponding source from Appendix. In this introduction, I will use
Customer Interface instead of WAP shop, or Customer Shopping Page employed
above, and Administrative Module / Web server instead of Administrative interface.
These substitutions are corresponding to the terms used in Chapter 4 System Design.

Introduction of Customer Interface:

Functionalities Corresponding
System files

Realization
Methods

Corresponding
Sections (Design)

Corresponding
Sections
(Implementation)

Customer Login wapShop.jsp Servlet session Section 4.4 Section 5.2.1
Display extraView.jsp Java.sql; WML,

etc.
Section 4.4

Section 5.2.1

Customer Order order.jsp;
orderDel.jsp
saveOrder.jsp

Servlet session Section 4.4 Section 5.2.2

Table 2.1 Correlation of Customer Interface

Introduction of Administrative Module:
Functionalities Corresponding

System files
Realization Methods Corresponding

Sections
(Design)

Corresponding
Sections
(Implementation)

Administrator
Login

WapShopImage.jsp Servlet session Section 4.3 Section 5.1

Create, Edit
Items

WapShopImage.jsp;
ewiupdate.jsp;
ewidel.jsp

Java.sql;
JavaScript form, etc.

Section 4.3 Section 5.1.1

Create, Edit
Product
Catalogs

PageEdit.jsp;
ewidel.jsp

Java.sql; JavaScript form, tec. Section 4.3 Section 5.1.2
Section 5.1.3

 - 19 -

Create, Edit
Products

PageEdit.jsp
ewipageupdate.jsp

Java.sql; JavaScript form, etc. Section4.3 Section 5.1.2
Section 5.1.3

Picture
Upload

picupload.jsp com.jspsamrt.upload.SmartUpload Section 4.3 Section 5.1.2

Table 2.2 Correlation of Administrative Module

In Table 2.1 and Table 2.2, the realization methods are meaning the important
methods or data structures used to realize the functionalities of WOSS system. For
understanding the mechanism of Java.sql, readers can refer to Section 3.6.

Of course, in WOSS system development, there are more methods and programming
languages than I stated above. For instance, the display methods of WML pages,
HTML DOM, and JSP, etc. These tiny points of system development are introduced
in Chapter 3, Development Tools, such as Section 3.2 WML, Section 3.4 Web Server,
Section 3.5 JSP, and Section 3.7 JavaScript and HTML.

The correlations between Customer Interface and Administrative module are stated in
Figure 4.4. Readers can refer to that figure. All these two parts connect to database
through JDBC. Readers can refer to Section 3.6, and Section 5.1.4.

Undoubtedly, I cannot ignore the introduction of database management system.
However, the description of database management system should go deeply into
database development and database design that are discussed in Section 3.3 and
Section 4.5.

2.5 Correlated work and conclusion

After a customer submits his order, WOSS system records this in database
management system. The following tasks of a complete information management
system should be management and processing of customer’s orders (the tasks of so-
called Financial Center), delivering customer orders to Logistic Center, distribution
processes, and tracing the payment to Financial Center, etc. These include the
implementations of ERP, CRM systems. But as in the beginning of this chapter
indicated, those functionalities are not implemented in WOSS system. It needs the
interface between every module, for instance the interface between WAP SHOP
EDIT and Financial Center, the interface between Financial Center and Logistic
Center, and dataflow into database system, etc. I leave these developments as future
works which are not covered in this thesis.

All in all, in this chapter, I define the prototype of Online Shopping System based on
WAP, and this prototype including the user classes, visualization functionalities and
process functionalities both in customer interface and administration module and
functional requirements of database system. These functionalities instruct the
following selections of development tools, system design and system implementation.
Of course, these required functionalities are fundamental and in Chapter 5 System
Implementation I will give the detailed description of realized functionalities of
WOSS system.

 - 20 -

3 Development Tools

In this chapter, I introduce the development tools that are adopted to develop WOSS
system, including the reasons why I chose these software, comparisons of different
software and introduction of programming syntax, semantics briefly such as SQL,
JSP, HTML and JavaScript, etc. These introductions of programming syntax are only
corresponding to WOSS system functionalities. In other words, some parts of
programming syntax that are not employed in WOSS system are not covered in this
chapter.

The aim of giving these instruction of programming syntax is to provide readers a soft
approach to the following chapters, and to make the reader easily understand the code
quoted in the following chapters, system design and system implementation. In this
chapter, all the codes quoted are in italic.

3.1 Introduction of development tools used in WOSS system

How to develop a complicated Online Shopping System based on WAP that provides
the functionalities discussed in Chapter 2, what the proper development tools are for
this EJB10-level system and to realize those functionalities are a complicated and
cogitative research process.

In the beginning, I studied some existing online shopping systems, wireless e-
commerce documentations, and consulted some of the experts who are working on
the software development in wireless communications. In addition, I compared some
software which provide various functionalities.

According to the prototype defined in Chapter 2, and Figure 2.1, I concluded the
effective WOSS system should be divided into 3 parts, including customer interface,
web server and database management system. In the customer interface development
(in the theory of Software Engineering, we know it is defined as ‘Presentation
Layer’), I should adopt the development tools which are specific for designing WAP
web pages and this interface can be browsed by PC users as well. In web server
development (in the theory of Software Engineering, we know it is defined as
‘Process Layer’), I should adopt the development tools which can assemble the Java
applications, database connector, and any functionalities web server should provide.
In database system development (in the theory of Software Engineering, we know it
is defined as ‘Data Layer’), I should adopt the development tool which is fast, and
easy to connect to web server. Furthermore, since WOSS system is designed for
academic research, the software that needs to pay should be avoided.

10 EJB/J2EE: Enterprise JavaBeans, used at corporation level for large-scale web server programming,
http://java.sun.com/products/ejb/, Sun Microsystems,1994-2004

 - 21 -

As the discussion above, the basic structure of WOSS system can be visualized as the
following figure that indicates the functionalities and relations of these applications.
Mobile clients use their cell phones that support WAP to access to WAP gateway,
and PC users use their navigators to access WAP gateway. Therefore, customer’s
interface is developed by WML and HTML, and web server is developed by Orion
application server, JSP, etc, which connects to MySQL database management system
through JDBC.

WML Gateway Mobile

HTML

Figure 3.1 WOSS system structure

In web server development, both Orion application server and Tomcat are Java
assemble products, but I chose Orion application server rather than Tomcat as the
development tool of web server in WOSS system, not only because Orion application
server supports EJB/J2EE standard, but also because it has the excellent feature in the
compatibility with WAP applications. Although, Tomcat is developed by Apache
organization and it has the superior supports from SUN Microsystem that develops
J2EE, it still has the shortcoming of EJB applications. Microsoft Internet Explore is
the default Internet navigator for administrative interface which is the internal web
page only for WOSS system administrators to manipulate the contents shown to
customers. I used JSP, JavaScript, and HTML to develop this administrative interface
(WAP SHOP EDIT, Refer to Section1.1 key words) and it connects to database
system through JDBC.

In database system development, I chose MySQL as database management system of
WOSS system, not only because it’s fastest and multi-threads, but also because it is
open source software.

In customer interface development, I used WML and JSP to develop this part that can
be browsed by Opera navigator and OpenWave navigator.

Web, Application servers

Internet
PC

Database
 MySQL

 Orion Application server,

 JDBC

 JavaBeans
 JSP Servlet

 JDBC

 - 22 -

3.2 Using WML

Undoubtedly, HTML, to a software developer, is definitely familiar, because it is the
fundamental programming language to develop Web pages. However, WML, as a
specific mark-up language designed for WAP Web browsers, I guess not much many
developers are proficient in this language. As a result, in this section, I introduce
WML to the readers whereas very briefly.

WAP is the abbreviation of Wireless Application Protocol, which was found in
199711 by Ericcson, Motorola, Nokia, and Uwired Planet.

WML stands for Wireless markup Language, which is a mark-up language inherited
from HTML. Since WML is based on XML, it is regulated much more strictly than
HTML. For instance, <card> is not the same as <CARD>.

WML pages are displayed in a WAP browser, such as Opera, OpenWave, or cell
phone browser which supports 2.5G standard, or higher than 2.5G. The pages in
WML are called DECKS, which consists of a set of CARDS. Each card begins with
<card …> and ends with </card>, and different cards are related by links. When a
WML page is accessed with WAP browser, all the cards in the pages are downloaded
from the WAP server (see 1.2.1 WAP overview, WAP gateway and figure 1-1 WAP
e-commerce), and only one card will be displayed at a time. But WML decks include
several cards, in other words, a WML document or file can include a deck, and one
deck can be embedded with several cards, which will be displayed in WAP browsers.

All the WML documents begin with:

<?xml version="1.0" ?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"
"http://www.wapforum.org/DTD/wml_1.1.xml">

Doctype is defined as WML, and DTD is accessed at
www.wapforum.org/DTD/wml_1.1.xml. The WML content is inside the brackets,
<wml>……</wml> tags, and actual paragraphs are inside <p>……</p>.

To define a formal WML document (embedded with JSP), a developer should do like
this:

<?xml version="1.0" ?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"
"http://www.wapforum.org/DTD/wml_1.1.xml">
<wml>
<head>
<access/>
<meta ……/>

11 WAP, www.w3schools.com, W3Schools, Refsnes Data, 1999-2004

 - 23 -

</head>
<card>
<p>…… // contents in the paragraph.
</p>
<% …… // JSP scriptlet tag, including valid Java code
%>
</card>
</wml>

<head> …… </head> is adopted to define the related information of decks. For
example:

<head>
<meta http-equiv="Cache-Control" content="max-age=0" />
// the deck will always be loaded off the server

<meta http-equiv="Cache-control" content="no-cache" />
//the directive CACHE-CONTROL defined in HTTP1.1: NO-CACHE indicates
//cached information should not be used and instead requests should be forwarded
//to the origin server
</head>

Several <meta…> which is to specify the meta information of WML file, <access>
which defines the information about access control of WML files, are allowed
inserted inside <head>…</head>.

Card elements define the properties and including contents of WML card. For
example it can be defined as:

<card id= “ ” title= “ ” ……> // “ ” can be substituted by ‘’

id is to define the card name, which is used to locate the card, for example by using
<go href=”card name”> to navigate. (in WOSS system, most of the time I use <go
href="http://localhost/xxx.jsp" />)

title is to present the title of WML page and descriptions, of course it can be
combined with SQL query, for instance in extraview.jsp (Appendix 8.2.8):

<card id='welcome' title=' "+rs.getString("text").trim()+" '>

I use getString method of ResultSet to retrieve the text information and give it to card
title.

The syntax and semantics of WML are quite similar as HTML, but stricter. I give the
description of typical WML tags which are used in WOSS system.

 - 24 -

 defines a line break.
<p> … </p> defines a paragraph.
<table…> … </table> defines a table.
<td> … </td> defines a table cell.
<tr> … </tr> defines a table row.
<do type=”type”> ... task… </do> defines an activation of a task when cursor of
user’s mouse clicks on a word or phrase on screen.
<go href= “url”> … </go> defines a switching to another card.
<prev>… </prev> defines a returning to previous visited card.
… defines a bold sentence.
<i>… </i> defines an italic sentence.

3.3 Using MySQL

Microsoft Access, SQL server, and Oracle, etc are quite familiar to the readers. There
is another database management system which might be heard by readers at the first
time. MySQL is the database management system chosen in WOSS system
development. In this section, I give the description of MySQL and some important
configurations that were recorded in the process of development are also quoted from
WOSS system development, which can help readers to well understand the
mechanism and implementation of MySQL database.

In WOSS system, I chose MySQL version 1.4 (for Windows NT) as the database
tool. MySQL is the most popular SQL database management system in the global
market, not only because it delivers a very fast, multi-threaded, and multi-users
database services12, but also because developer can choose MySQL as an open source
database tool , in other word, it’s free to download and use by non-commercial users.

In WOSS system, MySQL is a database management system which is located in Data
Layer, and employed for saving all kinds of information of WapShop (Shopping
facilities, reference to 1.1 Key words, WapShop) and WAP SHOP EDIT
(Administrative facilities, reference to 1.1 Key words, WAP SHOP EDIT), such as
user information, products information, and order information, etc.

MySQL stands for SQL (Structured Query Language) which is most common, and
standardized database programming language. MySQL’s SQL is defined by the
ANS/ISO. In this thesis, the current version of standard, SQL 2003 has been referred

 MySQL database system can be downloaded from dev.mysql.com/tech-

resources/articles/4.1/installer.html, as a typical Windows installer packet. MySQL
should be installed just under the C:\ directory, with the default folder name ‘mysql’.

 WOSS system is developed in Windows system, in other words, MySQL database

server is installed in Microsoft OS. To using MySQL services, first of all, a user

12 MySQL reference manual version A4, MySQL AB, 1997-2004

 - 25 -

should have the authorization of Windows administrator, and launch the command
line, by using general DOS commands. Second, enter the directory C:\mysql\bin, by
typing ‘net start mysql’, a user can start MySQL services at the local machine, and
since MySQL employs TCP\IP protocol to connect client machine to MySQL server,
local machine should install the general Windows TCP\IP protocol.

Since MySQL database is employed for save all kinds information of WOSS, it has
critical authorization mechanism. The default username and password of MySQL
database server are ‘root’, which is saved in default database ‘mysql’ of the whole
database server, and without the prearranged password, in other words, anyone who
has Windows administrator account can enter MySQL database server.

By typing ‘mysql –u root’ after c:\mysql\bin, a user can enter mysql server. –u stands
for ‘user’; ‘root’ is default username of MySQL, and without password.

By typing > mysqladmin –u root -password, a user can create a password for default
root, and by typing > mysqladmin –u root –p old_password password new_password,
a user can modify the password of root. For instance:

 mysql > mysqladmin –u root –password 123 , which sets password 123 for root
 mysql > mysqladmin –u root –p 123 password 456, which change the password,

123 to 456 for root.

By using username ’root’, with the password ‘456’, the user has all the default
privileges for root, including:

privileges rows domains
select Select_priv Tables
insert Insert_priv Tables
update Update_priv Tables
delete Delete_priv Tables
index Index_priv Tables
alter Alter_priv Tables

create Create_priv Databases, tables, indexs
drop Drop_priv Databases, tables
grant Brant_priv Databases, tables

references References_priv Databases, tables
reload Reload_priv Database management

shutdown Showdown_priv Database management
process Process_priv Database management

file File_priv Database(files)management

 Table 3.1 MySQL privileges of ‘root’

Under the username ‘root’, administrator can test MySQL server, to check if it is
running in gear or not. For instance:

 - 26 -

>mysql –u root –p 456
>show databases;

 > +-----------+
 | Databases |
 +-----------+
 | mysql |
 +-----------+

mysql database is the default database of MySQL server. By typing ‘show tables’;
administrator can check the tables of MySQL database.

>mysql –u root –p 456
>use mysql
>show tables;

 > +--------------+
 | Tables |

 +--------------+
 | columns_priv |
 | db |
 | func |
 | host |
 | tables_priv |
 | user |
 +--------------+

MySQL database has six default tables. User table save the user’s privileges, such as
username and password. ‘Columns_priv’ and ‘tables_priv’ grant tables and columns
specific privileges. ‘db’ and ‘host’ tables grant databases specific privileges. ‘func’
save the name of function, type and sharing database name. For example, when the
users request shutdown, reload, insert, or update to MySQL server, the server will
firstly check user table and identify users. Host table saves the list of servers,
including all the authentic PCs on the local net.

Under the username ‘root’, administrator can install new users in MySQL database,
by using ‘insert’, for instance:

>mysql –u root –p 456
>use mysql; (which means select the default database of MySQL server.)
>insert into user (host, user, password) values (‘localhost’, ‘Mike’, password
(‘123’));

which means I installed Mike in localhost with the password’123’.By using ‘grant’,
administrator can set the privileges for users, for instance:

>mysql –u root –p 456
>grant all privileges on *.* to Mike identified by ‘123’ with grant option;

 - 27 -

which means I set ‘123’ as the password of Mike and installed this username into
server.

In MySQL, there are two table types which can be chosen, namely, MyISM and
HEAP. In WOSS system, I only employed MyISM which is default table type of
MySQL. For example, a user can update a new row of table without deleting previous
contents, and it supports varchar data type.

MySQL supports the interaction between Java programming and database by
providing Java Database Connectivity (JDBC) driver. It helps a programmer to build
a Java programming which connects to database data easily. I downloaded the latest
JDBC driver from MySQL official website.13 The technical details of Java
programming connecting to MySQL database through JDBC will be presented at
Chapter 4.

MySQL database server has a suit of complicated authorization and privileges
system. And this mechanism guarantees the functionality of connectivity between
remote access PC and local host, and convergence between users and the server. In
the real WAP e-commerce system, MySQL authorization system is tightly related to
interface encrypt mechanism. Since this functionality has no direct relationship with
realization of the prototype defined in Chapter 2, and it could be as complicated as the
development process of WOSS system, I will not present more detailed and future
researches on MySQL authorization system. From the introduction above, readers
may understand how I developed or operated the database management system in
WOSS system.

3.4 Using Orion Application server

Web server is the key subsystem of the whole WOSS system. Consequently, to
choose a proper applicable software is one of the important tasks in developing
WOSS system to me. In this section, firstly I describe one of the most popular J2EE
technologies, JavaBeans, and secondly I introduce Orion Application Server to
readers.

 3.4.1 JavaBeans overview.

Based on JavaBeans Application specification14, JavaBeans technology is the
component architecture for the Java 2 Platform, Standard Edition (J2SE).
Components (JavaBeans) are reusable software programs that programmer can
develop and assemble easily to create sophisticated applications.

13 JDBC driver of MySQL: http://dev.mysql.com/doc/mysql/en/Java_Connector.html, MySQL AB, 1997-
2004
14JavaBeans Application specification: http://java.sun.com/products/javabeans/, SUN Microsystem, 1994-
2004

 - 28 -

As I have written in the Chapter 1, SUN Microsystem has assemble a varieties of Java
technologies to create a Java web server, JavaBeans, and now it’s more or less like a
standard for these kinds of technology assembles, for example, Tomcat, Orion
application server, etc. can also facility a Java programmer to develop applications at
so-called Java assemble container which is more less like a vessel containing Java
applications, and some of programming juncture applications are existing.
Programmers may just save the applications, for example, JSP files into the default
directories of JavaBeans application server, and start the JavaBeans services in
command line. These act as a full-features Java web server instead of developing
every web application by programmers.

 3.4.2 Orion Application server

Orion Application Server is a complete and excellent application of JavaBeans
Technology. I downloaded the package for Windows OS of Orion application server
from Orion application official site15. Orion application server package is granted to
the licensee a non-exclusive, non-transferable and non-assignable right to use the
software on one license, and it’s not a shareware for commercial development which
means firms develop software applications for profits, except academic or non-profits
development and research.

A general Orion application server sketch can be visualized by UML Component and
deployment diagrams as fellow:

Orion server

Figure 3.2 Sketch of the Orion application server

JNDI stands for Java Naming and Directory Interface 16

15 Orion application official site: www.orionserver.com IronFlere
16 JNDI: http://java.sun.com/products/jndi/, SUN Microsystem, 1994-2004

 WapShop front page WAP Edit page

 WEB APPLICATION EJB APPLICATION

 JSP JSP

 <<Database>>
 WapShop DB

 (Enterpirse JavaBeans) JNDI

 JDBC

 - 29 -

EJB application stands for enterprises JavaBeans application

Web application including several web pages such as WAP pages developed by JSP
and WML, is connected to EJB application by JNDI, and EJB application
communicate the date with database system through JDBC. This is a general sketch
of Orion application server. Actually, in development of WOSS system, since there
are only two kinds of customers, WAP mobile customers and PC users owning WAP
connection, connect to Web server, JNDI applications are not applied and it is not
necessary to configure JNDI applications for a small scale of web application usage.
Furthermore, since EJB is designed for a large scale of JavaBeans server application,
I only employed part of EJB functionalities in development of WOSS system. The
rest of applications and functionalities shown in Figure 3.2 are fully employed in
WOSS system.

Installation of Orion application server is quite easy.
First, a user should unzip the package download to C:\, named a directory as orion.
Second, for enabling JSP or other applications which require to access to Java
compiler, a user should copy the file, tools.jar which is located in the JDK\lib root
from J2SK1.4.2_04, or other version installation to created orion directory.
In development of WOSS system, I have done as follows:

copy c:\jdk1.4.2_04\lib\tools.jar c:\orion200410082037, which might be different
copy commands and directory installed java runtime environment.

Orion application server was installed in my Windows XP professional C:\. And it
is using port 80 for web server part. In other words, for the developer who wants to
run the web server at local host, should enable port 80. And if port 80 has already
been occupied for another web server, such as Tomcat, developer should change
this configuration. In development of WOSS system, I have done as follows:

Enter the file config/default-web-site.xml, change <web-site display-name="Default
Orion WebSite"> to <web-site port="8080" display-name="Default Orion
WebSite">

So far, the installation of Orion application server at local host is completed. All the
JSP files deployed are saved at the directory C:\xxx\Orion\default-web-
app\ExtraWapImage. (‘xxx’ stands for a discretional directory name)

Datascource connect loader, for example JDBC, is saved at the directory
C:\xxx\Orion\default-web-app\WEB-INF\classes\com\gtom\wap.

Uploaded data in web server, for example the uploaded pictures are saved at the
directory C:\xxx\orion\default-web-app\wap\images\uploadpic.

 - 30 -

‘xxx’ stands for the folder named by developers as their favorites. To start the
services of Orion application server, I enter the directory by typing:

>c:\cd orion200410082037\orion
>c:\ orion200410082037\orion\c:\j2sdk1.4.2_04\bin\java -jar orion.jar

Afterwards, if the service has already been successfully started, ‘Orion/2.0.2
initialized’ should be appeared on the screen. And open the Internet Explorer which
is designed as the default browser of WAP SHOP EDIT, by typing http://localhost
into URL address, ‘Orion Application Server 2.0.2 initialized’ appears.

To make readers easily understand the mechanism of Orion application server, I
introduce some important component tools of Orion application server which are
adopted to realize some important functionalities of web server of WOSS system.
They are:

The main server tool: orion.jar, which is used for installing the server, activates the
admin account and rewrites text files to match the OS linefeed, compressing
standard output, enabling context lookup support from user-created threads,
launching the management console in process, reporting the error output, etc.

The graphical tool for assembling J2EE applications: earassembler.jar, which
deploys for optional path to J2EE application.

Orion management console: orionconsole.jar

The graphical tool for assembling tag extension libraries: taglibassembler.jar which
deploys optional path to taglib, such as JSP (taglib).

The graphical tool for assembling Web applications: webappassembler.jar, which
deploys optional paths web applications.

Load balancer and clustering application: loadbalancer.jar, which deploys HTTP
connections, such as listen the host port.

Administration tool for Orion application server: admin.jar, which deploys to
configure of username, password; shutdown the server; install the global applications;
restart the server and add name users, JDBC url, etc.

DataSource17 was introduced in JDBC, as an easier way of obtaining a JDBC
connection and shielding the developer from issues regarding configuration such as
database connection pooling. Orion application server provides a Datasource wrapper

17 DataSource: www.orionserver.com, , IronFlere

 - 31 -

which works as an emulator for JDBC connection drivers and optional connection
pooling. It is named as JDBC connection driver for MySQL database system: mysql-
connector-java-3.0.9-stable-bin.jar.

Uploading files for web server application: jspsmartupload.jar, which deploys to
realize the functionality of uploading files.

3.5 Using JSP

JSP is the universal programming language used in developing WOSS system, not
only all the application files of Web server (WAP SHOP EDIT), but also the
Customer Interface. In this section, I give the brief introduction of JSP mechanism
and syntax as the prerequisite information of system design and system
implementation. These also help the readers to understand the code files attached in
appendix. Some source code will be quoted from WOSS system for readers well
understanding the application JSP files listed in appendix.

 3.5.1 JSP overview

JSP stands for JavaServer pages which is developed by SUN Microsystem. It is a
technology based on Java language and enables the development of dynamic
websites. JSP enables server side development, and it mixes Java code, HTML with
special tags, and other mark-up languages, such as WML to provide dynamic
contents.

As a rule, JSP source code runs at the web server in a JSP servlet engine, which
dynamically generates HTML, WML, etc. and send them output to the client’s web
browsers. First, developer creates a JSP file named its extension as ‘.jsp’, including
Java code and HTML with special JSP tags. The JSP engine parses the .jsp file and
creates a Java servlet source file which means JSP servlet generates a special servlet
from JSP file and all the HTML, or WML required are converted to println
statements. It then compiles the source files into a class files, and all of these
processes are done at the first time. Afterwards, the servlet is instantiated. HTML or
WML from the servlet output are sent via the Internet, and displayed on the end
users’ screens. The architecture of JSP can be visualized as Figure 3.3. The
fundamental development tools of JSP of WOSS system are text editor J2SDK, and
web server, such as Orion application server, Tomcat, or any J2EE reference
implementation.

 3.5.2 JSP configuration

I download JDK and J2EE for Windows OS from the official SUN webpage:
http://java.sun.com/j2se/1.4.2/. One of the significant problems of configuration Java
environment is to set the Java Path and ClassPath. In Windows OS, the Java codes
should be saved at c:\j2sdk1.4.2_04\bin, and if developer wants to compile these Java

 - 32 -

files, he or she should enter the command line and under that directory to run ‘javac,
java, javah, etc’. It is quite redundant to type this entire path every time developer
compiles the java files.
As result, I change configure the Java path and ClassPath in autoexec.bat file, which
is located at C:\. Since c:\j2sdk1.4.2_04 is the installation path of Java program, so I
wrote:
‘SET PATH=%path%; C:\j2sdk1.4.2_04\bin;’

Since dt.jar and tool.jar are the classes referred by Java editor, which are located at
c:\j2sdk.1.4.2_04\lib, I wrote:

‘SET CLASSPATH=.; C:\j2sdk1.4.1\lib\tools.jar;
C:\j2sdk1.4.1\lib\htmlconverter.jar;C:\j2sdk1.4.1\lib\dt.jar;’ into Autoexec.bat file.

As I have introduced in Section 3.4.2 Orion application server, for Orion web server
and its free source JSP and servlet engine, I have set the default port of local PC for
web browser is 80. In other words, any applications which occupy this port should
have changed the port value.

 The architecture is shown as follows:

WAP Browser JSP requests Orion Web Server

Figure 3.3 JSP Architecture

3.5.3 JSP syntax and simple examples of WOSS

JSP programming language includes java code, HTML and special JSP tags. In the
beginning of development of WOSS system, I have written such a simple JSP file to
test my Orion application server and its JSP servlet engine:

<html>
<head>
<title> the test page for Orion application server configuration

 JSP file in JSP servlet engine

 Parse JSP files

 Create Servlet source code

Compile servlet source
code into a class

Instantiate servlet

MySQL database

Data in the tables WEB Browser JSP requests

HTML sent to EDIT browser

 WML sent to WAP browser

 - 33 -

</title> //ending title in HTML
</head> // ending head in HTML
<body>
<%@ page language = “java” %>
 // directive tag, to describe which language the file uses
<% system.out.println (“the test page of Orion application server”) ;%>
// scriptlet tag, the simple java code for print a sentence.
</body>
</html>

I saved this file into \orion\default-web-app, started the service of Orion application
server, and called it via my web browser, the sentence ‘the test page of Orion
application server’ appears on my web browser.

In the code above, I have referred the directive tag, scriptlet tag, and there are still
some other main tags in JSP language of WOSS system. They are: action tag,
declaration tag, expression tag, HTML comment tag, Hiding comment tag, and so on.

Declaration tag: <%! …. %>, which is the usage of the declaration of variables and
methods. For instance:

<%! int i=0; // defines ‘i’ as integer and from 0.
 String foo= "Hello";
 private void bar() {… }
%>

Action tag: <jsp: …. />, which is the usages of enabling server side JavaBeans,
calling one JSP page from another, invoking an applet on the client browser and
browser independent support for applets. For instance in picupload.jsp, (Appendix
8.2.6)

<jsp:useBean id="myUpload" scope="page"
Class="com.jspsmart.upload.SmartUpload" />

 // calling JavaBeans which includes picture upload method and id is myUpload,
with class name com.jspsamrt.upload.SmartUpload.

There are four types of JavaBeans scopes.
Scope=”page” means valid until page completes.
Scope=”request” means bean instance lasts for the client request.
Scope=”session” means bean lasts for the client session.
Scope=”application” means bean instance created and lasts until application ends.

 - 34 -

HTML comment tag: <! >, which is the usage of generating a comment and
sending to clients. For instance in wapShop.jsp (Appendix 8.2.7):

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"
"http://www.wapforum.org/DTD/wml_1.1.xml">

Directive tag: <%@....%>, which is usage of description of special information
about this JSP file to the JSP engine. For instance in ExtraWapImage.jsp (Appendix
8.2.1):

<%@ page language="java"%> // declaration of Java language being used
<%@ page import="java.sql.*" %> // load the JDBC driver
<%@ page import="com.gtom.wap.*" %>
<%@ page session="true" %>
 // the value of session is true, and the session object refers to the current or new
session.

There are several different attributes for page description18:

Language: which language the JSP file uses.
Extends: Superclass used by JSP engine for the translated Servlet.
Session: does the page make use of sessions, and whether the client must join an

HTTP session in order to use the JSP page
Buffer: control the usage of buffered output for JSP. In WOSS system, I use 8kb.
Info: to provide the information and document for JSP page. For instance: developer

name and version, etc.

Scriptlet tag: <%....%>, which is the usage of saving valid java, JavaScript code.
For instance, in wapShop.jsp (Appendix 8.2.7)

<%session.setAttribute("name","Mike"); // session attribute to Mike
 session.setAttribute("phone","13641366774");
 response.sendRedirect("extraview.jsp");
 // redirect current page to extraview.jsp.
%>

Hiding comment tag: <%-- …. --%>, which is usage of giving comment string or
reference in JSP file, and it’s not output to client.

3.6 Using JDBC

JDBC, as the communication connector between MySQL database and Web server, is
very important to be configured. In this section, I give the detailed instructions of

18 JSP attributes for page description: http://java.sun.com/products/jsp/docs.html, SUN Microsystem, 1994-
2002

 - 35 -

JDBC configuration and corresponding SQL syntax, for example the regular way to
construct JDBC connection and the methods of data retrieving. These instructions are
very important for readers to understand the source code and system design part. It
will be realized in WOSS system in Chapter 5 System Implementation. Now I begin
to introduce the basic concept of JDBC and the steps to use JDBC.

JDBC offers a standard library for accessing relational database. The primary JDBC
objects represent connections to a database and the statements performed using those
connections. The two basic kinds of statements used with a relational database are
queries and updates.

The meaning of a standard library which is JDBC API is exactly abided the Java
syntax. It doesn’t attempt to standardize the SQL syntax, although JDBC standardize
the mechanism for connecting to database, and the syntax for sending queries and
updates, even the acquired data structure. So the developers can use general SQL
syntax to construct their database system and JDBC allows them to change the
database hosts, ports by declaring at specific position and code, such as

jdbc:mysql://[hostname][:port]/dbname[?param1=value1][¶m2=value2]...

J2SE API defines the standard Java.sql package specially used in JDBC of WOSS
system including

interfaces, such as java.sql.resultset, java.sql.connection, java.sql.statement;
classes, such as java.sql.drivermanager, java.sql.time;
exceptions, such as java.sql.SQLexception.

The hierarchy of java.sql package can be shown as the following tree, and the
methods referred to the usages of context’s example.

3. Exception1.interface 2. classes

Java.sql

Figure 3.4 Java.sql tree

......
Java.sql.connction

Java.sql.driver

Java.sql.statement Java.sql.struct

Java.sql.resultset

Java.sql.drivermanager Java.sql.SQLexception

 - 36 -

The methods included in java.sql.xxx can be shown as following tables:

objects methods
Java.sql.connction createStatement(), close(), etc.
Java.sql.resultset getObject(), getString(), getInt(), getMetadata(), close() etc.
Java.sql.statement execute(), executeQuery(),etc.
Java.sql.driver connect(),etc.
Java.sql.struct getAttribute(), etc.
Java.sql.drivermanager getConnection(), etc.
Java.sql.SQLexception getErroCode(), SQLexception(), getNextException(),etc.

 Table 3.2 Java.sql Methods

The fundamental steps of using JDBC connection has been standardized by lots of
JDBC manual books and documentations. Now I just elicited the several important
steps corresponding to WOSS system developing.

The first step is to load the driver which makes the communication with databases. I
loaded a class with a static block. It makes a driver instance and registers19 it with
Driver manager, by using Class.forName. This method takes a string representing a
fully qualified class name, and it could throw a ClassNotFound Exception, so
try/catch blocks are inevitable. For instance:

try{
Class.forName("……");}
catch (Exception E){
System.err.println("Unable to load driver.");
E.printStackTrace(); }

The second step is to specify the location of database server, which can be named as
‘define the connection URL’, and establish the connection, by using getConnection
defined in java.sql.DriverManager, for instance:

connection conn = DriverManager.getConnection("jdbc: Database URL….");

The third step is to create a statement. It executes a static SQL statement that is the
object adopted to send queries and commands to database, and returns results it
produces. A statement can be created by:

Statement stat = Conn.createStatement() // it’s defined in java.sql.connection

And by using execute method to execute the given SQL statement. For instance: To
execute a query, by using executeQuery method that returns ResultSet object:

String sql=null;

19 Practical statistics, 10700 times of ‘load the driver’, 98200 times of ‘register the driver’ in
www.google.com, so I would like to use ‘register the driver’ in my thesis. Google Searching, 2004

 - 37 -

 ResultSet rs=null;
 ……
 if(pages==0)
 sql="select * from ExtraWapImage where type='top' order by orderid desc";
 else sql="select * from ExtraWapImage where pageid="+pages+" order by
orderid desc";
 rs=stat.executeQuery(sql); / /rs stands for ‘ResultSet’, stat stands for
‘Statement’

There are several other methods of statement object, such as clear (), setMaxRows(),
setMaxFieldSize(), etc. please consult J2SE API documentation20.

The fourth step is to process the results, by using ResultSet.next method. It is to
process the table a row at a time, and it provides different getXXX method21, (since
there are hundreds getXXX methods defined by Java.sql.ResultSet documentation, I
only give the important examples used in WOSS system) such as:

getString(), which retrieves the value of the designated column in the current row of
this ResultSet object as a String in the Java language;
getInt(), which retrieves the value of the designated column in the current row of this
ResultSet object as an int in the Java language;
getObject(), which acquires the value of the designated column in the current row of
this ResultSet object as an Object in the Java language.
getMetaData(), which Retrieves the number, types and properties of this ResultSet
object's columns, etc.

Another important method of java.sql.ResultSet is close(), which releases the
ResultSet object's database and JDBC resources immediately instead of waiting for
this to happen when it is automatically closed.

For instance:

<% while (rs.next ()) {%> // rs stands for ResultSet.
<tr>
<td align="center"><%=rs.getString("id")%></td>
// getString stands for displaying results regardless the column type.
// displays the retrieving ‘id’ in the table.
……
</tr>
……
<%
if(rs.getInt("status") == 1){
out.print("value='on'");

20 J2SE API documentation: http://java.sun.com/j2se/1.4.2/docs/api/, SUN Microsystem, 1994-2004
21 getXXX methods: Methods inherited from interface java.sql.ResultSet, java.sun.com/j2se/1.4.2/docs/api/.
SUN Microsystem, 1994-2004.

 - 38 -

http://java.sun.com/j2se/1.4.2/docs/api/java/sql/ResultSet.html

 // displays value=’on’ on the web browser
out.print("checked"); }
%>
<% if(rs!=null) rs.close(); %>

The fifth step is to close the connection, by using close () method (different from
java.sql.ResultSet.close() which is to free the resultset object’s database) defined in
java.sql.connection. It is to release the connection object's database and JDBC
resources immediately instead of waiting for them to be automatically released.
For instance:

if(rs!=null)rs.close();
conn.freeConnection();
Conn.close();

3.7 Using JavaScript and HTML

JavaScript and HTML are definitely not strange for a sophisticated Web developer.
But some parts of its syntax and semantics might be not familiar to specific readers,
so in this section I give the description of major JavaScript and HTML syntax used in
WOSS system. Similarly, some source code will be quoted from WOSS system for
readers well understanding the application JSP files listed in appendix.

JavaScript22 is a compact, object-based scripting language for programming client
and server Internet applications. Most of the Internet navigators presently are all
supporting JavaScript. For example, in WOSS system, Internet Explorer, as my
default administrative Internet navigator, interprets JavaScript statements embedded
in the HTML page. In other words, Client-side JavaScript is an interpreted language
which doesn’t need preliminary compilation.

Client-side JavaScript statements embedded in an HTML page can respond to user
events, for instance, mouse clicks, form input, or dropdown list and page navigation.

Since JavaScript embedded in HTML is one of the most popular scripting languages,
and its syntax and semantics are relatively easier than Java or C++, I only give some
examples which reflect WOSS system’s functionalities.

3.7.1 HTML DOM event

When a user moves the mouse to click on an object, it appears an alert box with some
contents, by using DOM event. For instance:

22 JavaScript Tutorial: www.w3schools.com, Refsnes Data, 1999-2004

 - 39 -

<img border="0" src="alert.gif" width="29" height="28" alt="this is an
example! ">
// when mouse’s cursor click on ‘alert.gif’ picture located at Explorer, ‘this is an
example’ appears.

3.7.2 Create a table

To design a table which has two rows and three columns as below:

100 200 300
400 500 600

Developer should input the HTML code as:

<table border="1">
<tr>
 < td height="27" align="center">100</td>
 < td height="27" align="center">200</td>
 < td height="27" align="center">300</td>
</tr>
<tr>
 < td height="27" align="center"> 400</td>
 < td height="27" align="center"> 500</td>
 < td height="27" align="center">600</td>
</tr>
</table>

3.7.3 DOM checkbox

The Checkbox object represents a checkbox in HTML form. It is created by:

<input type="checkbox" value="on">

// ‘value’ Sets or returns the value of the value attribute of the checkbox
// ‘onClick’ is an event that executes some code when the checkbox is clicked

3.7.4 HTML input form

A HTML form is an area that contains form elements. For example, users can input
data or information into a form. It is created by:

<form>
Input your ID

 - 40 -

<input type="text" name="ID">

Input your Name
<input type="text" name="full name">
</form>

3.7.5 Dropdown list in a form

Dropdown list is convenient for users to make options. It is created by:

<select name="postion" onchange="put()">
 <option>center</option>
 <option>left</option>
 <option>right</option>
// create a dropdown list with position options, center, left, and right.

The basic HTML and JavaScript syntax has been stated as above. The detailed
information about implement WAP SHOP EDIT page is presented at Chapter 5
System implementation.

3.8 Selecting Operating System

In fact, to make a choice of operating system which is employed to develop the
WOSS system is not a critical problem. Since all the software I chose to program
support Windows OS, and it has an excellent GUI interface, I decided to use it as my
programming platform.

But the most Open Source software are designed in UNIX, Linux systems, and mass
of sophisticated programmers choose these two as their programming platform.
Consequently, WOSS system can also be designed at UNIX and Linux systems. The
major difference is only the software versions which are compatible to UNIX, and
Linux, installation, and Database driver.

3.9 Conclusion

In this Chapter, I gave the description of system development tools, including, for
instance, the characteristics of development tools, their advantages, and comparison
with others. I also gave the general introduction of programming syntax and
semantics, such as SQL syntax. From these, readers can fundamentally understand the
reason why I chose these tools, and how I adopted these tools to realize the prototype
defined in Chapter 2. In next chapter, I will give the explanation of system design that
includes customer interface design, administrative module design and analysis and
design of MySQL database system.

 - 41 -

4 System Design

In this chapter, I present the designing information of WOSS system. First, I give the
description of system structure that includes three main modules of WOSS system
approached by system architecture and their functionalities. Consequently, I give the
designing plan for corresponding modules.

Second, according to the prototype defined in Chapter 2, and the discussion of
development tools in Chapter 3, I present the arrangement of system files, for
example, the plots of JSP files and their functionalities. Furthermore, the correlations
between these JSP files will be presented by a figure.

In the end, I present the design information of MySQL database management system
by using E/R graphic analysis and the details of table fields are also described in this
chapter.

4.1 Overview

According to the prototype defined in Chapter 2, Figure 2.1 indicated Online
Shopping System based on WAP should include three main parts, Customer
Interface, Administrative Module and Database management system. As a result, I
should follow this prototype to design WOSS system. In Chapter 3, Section 3.2 I have
already presented the draft structure of WOSS system and in this structure, different
modules are responsible for different functionalities described in Section 2.3. And in
single module, there should be more than one application file which is in responsible
for a specific task. So I designed five specific JSP files which serve Customer
Interface module to realize the visualization functionalities and ordering
functionalities defined in Section 2.3.1 and Section 2.3.2. In addition, I designed
seven specific JSP files which serve Administrative module to realize the
visualization functionalities and editing functionalities defined in Section 2.3.3 and
Section 2.3.4. In the end, one Java file was designed to realize the communication
between Orion application server and MySQL database system. The functionalities
and correlations between them are introduced in Table 4.1, Table 4.2 and Figure 4.4.
All the applicable JSP files are saved in orion\default-web-app which was introduced
in Section 3.4.2, and JDBC java file is saved at default-web-app\WEB-
INF\classes\com\gtom\wap.

4.2 WOSS system structure

To realize the prototype defined in Figure 2.1, WOSS system is designed separately
with three major modules, which can be visualized as Figure 4.3.

 - 42 -

User interface module is to simulate the customer login, present the online shopping
web pages to customers and submit customer’s shopping requests. This module is
designed for both mobile users and PC users. And designing information of this
module can be shown as:

Designed JSP files

Functionalities

 wapShop.jsp Display the customer login
page and WAP shop

Figure 4.1 The arrangement of JSP files in Customer Interface

Administrative module is to control the web server. It is designed to create, add, and
edit shopping items; create, add and edit product catalogs; create, add, and edit
product information; modify the layout of shopping pages and administrative
interface; and send the data corresponding to customers and WAP shop to database
through the database connector. The designing information of this module can be
shown as:

Figure 4.2 The arrangement of JSP files in Administrative Module

Display the homepage of administrative interface;
Create, add and edit shoping items

Modify the layout of the shopping item page

Create, add, and edit product catalogs;
Modify the layout of product catalog page

 Upload the pictures

ExtraWapImage.jsp
 ewiupdate.jsp
 ewidel.jsp

 PageEdit.jsp
ewipageupdate.jsp
 ewidel.jsp
 picupload.jsp

 ConnLoader.java

Functionalities Designed JSP files

Create, add, and edit products;
Modify the layout of product pages

 Web server connects to MySQL database

Display the shopping item
and product catalogs

Display the products

Submit customer’s orders;
Delete existing orders;

Confirmation of Customer’ orders

 extraview.jsp

 order.jsp
 orderDel.jsp
 saveOrder.jsp

 - 43 -

Database module is to save the product information, customer information, customer
orders and any data related to WOSS system. For instance, the product tables save
product’s title, price, and picture, etc; the userorder table save users submitted order
which distinguished by user’s telephone number. In development of WOSS system, I
designed 5 tables in MySQL database system and named this database as gtom_wap.
Every table has its distinguishing name, and the detailed designing information will
come out in Section 4.5.

The main functionalities of these major three modules have been realized in WOSS
system, and they are all instructionally designed by the prototype defined in Chapter
2. Some other extra functions like user authorization, customer feedback services are
only left for the future work.

For getting a visible structure of WOSS, the following figure is presented. An
administrator manipulates the administrative interface that designed in JSP files to
modify any information concerned with WAP shop. And web administrative module
sends this information to customer interface through Internet and WAP gateway.
Customers browse acquired information through their WAP navigators and feedback
the data to web server and save these data in MySQL database system through the
components provided by Orion application server and designed JDBC connector. In
MySQL database, all the data related to WAP shop are saved in the distinct tables.

WML Gateway Mobile

HTML

Figure 4.3 WOSS system structure

From the point of view of Software Engineering, WOSS system can also be divided
into three layers such as Presentation Layer, Process Layer, and Data Layer.

Web, Application servers

Internet
PC

Database
 MySQL

 Orion Application server,
 JavaBeans
 JSP Servlet

 JDBC

 JDBC

Customer Interface

Database Module

Administrative Module

 - 44 -

Presentation Layer (user interface): the interfaces of mobile phone users are
developed by WML and JSP. The interfaces of administrators are developed by
HTML, JSP and JavaScript.

Process Layer (Control Layer): the orders of Mobile phone users and PC users are
processed by Control Layer which designed by JSP, JavaBeans, Purchase Cart Model
(Shopping Cart). Process Layer is linked to Data Layer by JDBC.

Data Layer (Database): product information, customer information, customer orders
and any data concerned with WAP shop are saved in MySQL database. Data
communication with process layer is linked by JDBC.

 4.3 Design of Administrative module (Web server)

According to the visualization functionalities and editing functionalities defined in
Chapter 2, firstly, I appointed the functionalities of displaying, creating, editing
shopping items and modifying the layout of shopping pages to ExtraWapImage.jsp
which is to define the JavaScript form, table and some visual functionalities for an
administrator to input the data concerned with shopping items and layout; and
ewiupdate.jsp which is to retrieve the data input and execute SQL program to update
MySQL database and displaying information.

Secondly, I appointed the functionalities of displaying, creating, editing product
catalogs, product information and layout to PageEdit.jsp which is to define the
JavaScript forms, tables and some visual functionalities for an administrator to input
the data concerned with product catalogs, products and their layout; and
ewipageupdate.jsp which is to retrieve the data input and execute SQL program to
update MySQL database and displaying information.

Thirdly, for the developer to maintenance the system conveniently, I appointed the
functionalities of deleting items, product catalogs and products to ewidel.jsp which is
to retrieve the data input, delete chosen data and update the displaying information.
Furthermore, to make the administrator be able to upload advertisement pictures is
one of the important feathers of WOSS system, so I appointed the functionality of
uploading pictures to picupload.jsp by using the component tool ‘jspsmartupload.jar’
which has been introduced in Section 3.4.

In the end, I appointed the functionality of the connection between web server and
MySQL database to Connloader.java, as the loading file, or registration driver
manager file of JDBC, which is the kernel file of connection between MySQL
database and application server. It is not only used by web application server to
connect to database, but also used by customer interface to load the authorization of
shop users, etc.

All in all, Administrative Module (Web Server) includes seven JSP files that are able

 - 45 -

to realize all the functionalities defined in Section 2.3.3 and Section 2.3.4. The
detailed information of these JSP files can be shown as following table:

 File name Content Functionality Programming
language

ExtraWapImage.jsp Source code of WAP
SHOP EDIT page

Display WAP SHOP EDIT
homepage;
Show the existing items (s.t
wapShop); Allow the
administrator to input data.

HTML, JSP,
JavaScript, JDBC

ewiupdate.jsp Source code of
editing item of WAP
SHOP EDIT

Create,edit items (s.t wapShop);
Update displaying information
and the layout of WAP shop.

HTML, JSP,
JavaScript, JDBC

ewidel.jsp

Source code of delete
function

Delete the existing items,
product catalogs, and products;
Update the displaying
information.

HTML, JSP,
JavaScript, JDBC

PageEdit.jsp Source code of Page
Editor page

Display Page Editor which
shows the existing product
catalogs and products;
Allow the administrator to input
data concerned with existing
product catalogs and products.

HTML, JSP,
JavaScript, JDBC

ewipageupdate.jsp Source code editing
product catalogs and
products

Create, edit product catalogs
and products;
Update displaying information
and the layout of product pages.

HTML, JSP,
JavaScript, JDBC

picupload.jsp Source code of
picture upload page

Upload the advertisement
pictures.

HTML, JSP,
JavaScript, JDBC

Connloader.java Source code of
registration of JDBC
driver manager.

Load the JDBC driver and
register JDBC driver manager.
Create connection between web
server and database.

Java, JDBC

 Table 4.1 Code files of Web server

4.4 Design of Customer Interface

According to the visualization functionalities and ordering functionalities defined in
Chapter 2, Firstly, I appointed the functionality of simulated customer login to
wapShop.jsp which is to define the simulated customer’s information, but as Section
1.3 indicated, this simulation is not realized customer validation.

Secondly, I appointed the functionalities of displaying shopping items to
extraview.jsp that is to display the existing shopping items edited in WAP SHOP
EDIT. Furthermore, for a developer to maintenance the system conveniently, I also
appointed the functionalities of displaying product catalogs, and product lists to
extraview.jsp which is also reflecting the modification from Page Editor.

 - 46 -

Thirdly, I appointed the functionalities of saving customer single shopping order,
calculating the total shopping orders, sending them to the table of MySQL database
and deleting existing orders to order.jsp, saveOrder.jsp and orderDel.jsp

All in all, Customer interface module includes five JSP files that are able to realize all
the functionalities define in Section 2.3.1 and Section 2.3.2. The detailed information
of these JSP files can be shown as following table:

File name Content Functionality Programming

language
wapShop.jsp Source code of

WAP Shop
homepage

Customer login page;
Retrieve user information
from MySQL database.

JSP, WML

extraview.jsp Source code of
displaying product
catalog page, and
product list page

Display the existing
shopping item, product
catalogs, products and
submission of orders.

JSP, JDBC,
WML

order.jsp Source code of
customer shopping
orders

Retrieve customer’s order
request;
Confirm order submit.

JSP, JDBC,
WML

orderDel.jsp Source code of
customer deleting
orders

Retrieve customer’s
orders;
Delete request and
confirm order delete.

JSP, WML

saveOrder.jsp Source code of
customer orders
saving

Save and confirm
customer’s total orders;
Send data of orders to
MySQL database through
JDBC.

JSP, WML,
JDBC

Connloader.java
(belongs to web
server module,
but critical usage
in Customer
Interface)

Source code of
registration of
JDBC driver
manager.

Load the JDBC driver
and register JDBC driver
manager.
Create connection
between web server and
database.

Java, JDBC

Table 4.2 Code files of Customer interface

In Table 4.1 and Table 4.2, I listed all the JSP files designed in WOSS system.
However ‘content’ columns are only general description of the contents of JSP files.
Readers can refer to appendix to get more detailed information of each JSP file.
Readers might go through the tables associated with text description together to
understand the functionalities of each JSP file.

So far, I gave the explanation of all JSP files designed in WOSS system to realize the
prototype. To make the readers easily understand their correlations, it is necessary to
present the following data flow chart to indicate the relations of these JSP files in
different parts of WOSS system.

 - 47 -

Figure 4.4 Correlations of different JSP files

From the introduction above and Figure 4.4, we find out that ExtraWapImage.jsp is
responsible of displaying the existing shopping items and allowing an administrator

 extraview.jsp
Display all

information of
WAP shop

Web server (Administrative module)

 Database

JDBC

Connloader.java

 saveOrder.jsp

Save, calculate
total orders; Send
them to MySQL

database

 order.jsp
Retrieve

customer’s single
orders

 wapShop.jsp

 Customer login

Customer interface

 orderDel.jsp
Delete orders

 ewipageupdate.jsp
Update the data of

product catalogs and
products input in Page

Editor

 ewiupdate.jsp
Update the item data
input in WAP SHOP

EIDT

 PageEdit.jsp

 ExtraWapImage.jsp

Page Editor

 WAP SHOP EDIT

 ewidel.jsp
Delete items,
catalogs, or

products

 picupload.jsp

 Upload the pictures

 - 48 -

to edit item information and layout of WAP shop. When an administrator adds, edits,
or deletes the items, it links to ewiupdate.jsp and ewidel.jsp to update the displaying
information of chosen items. When an administrator wants to add, edit, or delete the
product catalogs and products, it is linked to PageEdit.jsp to input new data. After he
finishes information modification, it links to ewipageupdate.jsp or ewidel.jsp to
update edited information. In addition, the administrator can upload the pictures by
linking to picupload.jsp.

In addition, wapShop.jsp is responsible of customer identification. After a customer
log into the WAP shop, it links to extrview.jsp to display existing shopping items
product catalogs and product lists. When a customer wants to buy something, it links
to order.jsp to get the bills and calls saveOrder.jsp to calculate his total bills and send
to MySQL database. Furthermore, if a customer wants to remove his bills, it links to
orderDel.jsp.

Customer Interface and Web server are all connected to MySQL database by using
JDBC.

All in all, from Section 4.2 to Section 4.3, I presented the designed structure of
WOSS system, applicable JSP files including their functionalities and their
correlations. From these descriptions, readers may understand how I designed the
WOSS system, appointed and arranged these JSP files to realize the functionalities
defined in prototype. In Chapter 5 System Implementation, I will eventually present
the methods and programming syntax in implementing these JSP files to realize the
prototype defined in Chapter 2.

In the following section, I will introduce the design of MySQL database system by
using E/R graphic analysis and important table fields of database will be discussed as
well.

4.5 Design of Database management system

According to the prototype of Online Shopping System based on WAP defined in
Chapter 2 and Section 2.3.5 indicated, an effective MySQL database system of
WOSS system should firstly save customer data including customer personal
information, and customer orders correctly; secondly, save the administrator
information and system crew information including their name and ID correctly;
thirdly, save the product data including item’s information, the information of product
catalogs and product information correctly. All these data should be saved in
distinguishing tables of database individually instead of saving them in one table.

According to the mechanism of MySQL database system introduced in Section 3.3
and concept indicated above, I designed a MySQL database system of WOSS system,
named it as ‘gtom_wap’.

 - 49 -

To design an effective MySQL database system, foremost I should list the types of all
data adopted in WOSS system. This can be designed as following table. Entities
stands for the data groups that have several mandatory attributes in WOSS system;
Attributes (fields) stand for the different data fields appointed by MySQL database
management system to entities; Functionalities are to explain what these attributes
stand for.

Entities Attributes
(Table fields)

Functionalities

id Identify the customer by using his or her ID
name Customer’s name

gender Customer’s sex
mobile Customer’s mobile phone number
Details Customer’s personal information

Customer

Reserve Reserve for future development, for example system expansibility
id Identify the administrator by using his or her ID

name Administrator’s name
gender Administrator’s sex
mobile Administrator’s mobile phone number
Details Administrator’s personal information

Administrator

Reserve Reserve for future development, for example system expansibility
id Identify the system crew by using his or her ID

name The name of system crew
gender The sex of system crew
mobile The mobile phone number of system crew
Details The personal information of system crew

System crew

Reserve Reserve for future development, for example system expansibility
id Identify the data saved in shopping item group by using ID, for

example item’s ID
text The ID of text input for item’s description
type The ID of position displaying, for example the new item should be

displayed on ‘Top’ or ‘bottom’.
align The ID of position displaying, for example the new item should be

displayed on ‘left’ or ‘right’
url The hyperlink ID of this item

enter The ID of entering a new line before displaying this item
orderid The ID of displaying this item’s sequence, for example if

wapShop’s orderid is ‘1’, and wapShop2’s orderid is ‘2’, wapShop
will be displayed below wapShop2 as a descend sequence.

pageid The ID of this item’s page
status The displaying status of this item, for example, if status = 1, then

display this item.

(Shopping) Item

reserve Reserve for future development, for example system expansibility
id Identify the data saved in product catalog group by using ID, for

example catalog’s ID
text The ID of text input for catalog’s description

Product catalog

type The ID of displaying information, for example the new catalog
needs to input ‘text’ that displays text description on WAP shop
page and Page Editor page; ‘link’ that displays the editing
hyperlink to another Page Editor to modify this catalog; ‘picture’
that displays advertisement picture on WAP shop page and Page
Editor page.

 - 50 -

align The ID of position displaying, for example the new catalog should
be displayed on ‘left’ or ‘right’

url The hyperlink ID of this catalog
enter The ID of entering a new line before displaying this catalog

orderid The ID of displaying this catalog’s sequence, for example if
sport’s orderid is ‘1’, and DVD’s orderid is ‘2’, sport will be
displayed below DVD as a descend sequence.

pageid The ID of this catalog’s page
status The displaying status of this catalog, for example, if status = 1,

then display this catalog.
reserve Reserve for future development, for example system expansibility

id Identify the data saved in product group by using ID, for example
product’s ID

name Product’s name
price Product’s price
unit Product’s unit, for example, a DVD, or a pair of shoes

details The description of product information
image The advertisement picture of this product

Product

reserve Reserve for future development
id Identify customer’s order by using its ID

userMobile Customer’s mobile phone number is identified his or her shopping
order.

productID The ID of the product that customer wants to buy
productName The name of the product that customer wants to buy

Order

price The price of the product that customer wants to buy

Table 4.3 Data structures of MySQL database management system in WOSS

For designing an effective database system of WOSS system, all of these data should
be saved in MySQL database system correctly, but as the limitation of developing
time and the large workload of this thesis, some of the data fields are only reserved
for future development. For example, there is only one developer, me, who should be
put into system crew and the same as system administrators, so it is not necessary to
create a new table to save administrator’s information and system crew’s information
separately. As a result I only designed one table in gtom_wap database named as
‘users’ to save the data of customers, administrators and system crew. Furthermore,
from Table 4.3, readers can find out, the data fields of item and product catalog are
exactly same, so it’s not necessary to split them into two tables. I only designed one
table to save the data of items and product catalogs, named as ‘extrawapimage’ and
the effective method to distinguish items and product catalogs is to call the different
‘pageid’ of the page of items or catalogs in programs and display that page in the
navigator. However some of the attributes in product catalogs and items have the
same name, for example ‘type’, but they have different meaning and they realize the
different functionalities. This design can not only realize the information edit of WAP
shop, but also realize the modification of layout of WAP shop. For example, ‘align’,
‘orderid’ and ‘enter’ can be adopted to modify the layout. The only one configuration
I should do is to write different scripts in JSP file, and make them effective.

 - 51 -

Now readers can find out how many data groups, in other words, aggregations of data
employed in WOSS system and how I classify them. To make the readers easily
understand the attributes of entities list in Table 4.3 and the correlations between
these data aggregations, I introduce the E/R analysis algorithm which can be
visualized in Figure 4.5. In this figure, the rectangle stands for the data aggregations
or entities in WOSS system; the oval stands for the attributes, in other words, the
table fields of those data aggregations; and the lozenge stands for the decision or
active correlation between different entities.

Figure 4.5 E/R graphical analysis of data structures in WOSS system

Figure 4.5 lists the correlation between different entities and the attributes described
in Table 4.3. Firstly, I assume there is only one system crew in WOSS system, and
one system crew can manage the data of n administrators. In addition, one
administrator can manage the data of n customers. Secondly, one customer can own
n orders. But one order only requests by a product. Thirdly, one item can have n
product catalogs. Similarly a product catalog can have n products. In the end, both a
system crew and an administrator are able to manage the data of n items, a product
catalogs, and n products. This figure is adopted to guide the design of MySQL
database system of WOSS.

As the concept indicated above, I designed gtom_wap which has 5 different tables to
save different kinds of data corresponding Table 4.3. They are:

 CustomerAdministratorSystem Crew

Product
Product catalogItem

Order

 have

manage

 request

 own

 have

manage

manage
manage

manage manage
manage

 gender

 mobile details

 reserve

 name

 id

 id id

 type

 align

 url

 id

 pageid
 enter

 status

 text

 id text type align url pageid
reserve

orderid status enter

 id name
 reserve

 orderid

 itemID

userMobile

 id

 price

itemName

details

 price
unit

 reserve

image

 name

 gender mobile

 details

 reserve
 name

 gender mobile

 reserve

 details

n

1 n 1 1

n

1

1 n
1 n

1

n

1

1
1

n

n
n

n

1
1

manage

n

1

 - 52 -

extrawapimage: saving shopping item data, product catalog data and all the data
concerned with WOSS system demo
products: saving the data of products sold in WAP shop
users: saving the data of the customer personal data, the administrator personal data
and system crew personal data
userorder: saving the data of customer shopping orders
showwindows: saving extensive usage data of WOSS system for further
development, for example, the better displaying data of WOSS system.

The terms with underlines stand for the entities list in Table 4.3 and Figure 4.5. They
are classified into above designed tables. These five tables of gtom_wap are saving all
the data described in Table 4.3, and to find out the correlations between these five
tables, readers can refer to Figure 4.5.

So far I have introduced the design information of MySQL database in WOSS
system, including the data aggregations, data fields defined in tables and their
correlations. For detailed implementation information, in other word, if the readers
want to find out how I can create these tables in MySQL database management
system, readers can refer to Section 5.3 Implementation of MySQL database.

 4.6 Conclusion

In this Chapter, I explained the design details of WOSS system, for example web
server design, customer interface design and database design. To make readers easily
understand the structure, and mechanism of WOSS system, I gave the explanation of
correlations of JSP files data structure analysis of database system by using data
structure table and E/R analysis. After reading this chapter, readers might get an all-
sides comprehension how I organized WOSS system. In next chapter, I will present
the detailed implementation information including all three major modules of WOSS
system.

 - 53 -

5 System Implementation

In this chapter, the implementation of WOSS system is presented. In order to make
readers easily understand the implementation of WOSS system, I give the description
followed by the prototype defined in Chapter 2 and the system structure presented in
Chapter 4. The implementation details are presented in Customer Interface,
Administrative Module (Web server) and MySQL database system. Since the source
codes are listed in appendix and the installation of development tools has already
been stated at Chapter 3, I only quoted the most important part of JSP files to proceed
the description of system implementation and the installation processes are not
repeatedly discussed in this chapter.

According to the prototype defined in Chapter 2, the WOSS system should be
implemented with the visualization functionalities of both customer interface and
administrative module; the ordering functionalities of customer interface; editing
functionalities of administrative module and the functionalities of MySQL database
system. In section 5.1 I will present the implementation of administrative module, in
section 5.2 I will present the implementation of customer interface and in section 5.3 I
will present the implementation of MySQL database system. All these sections are
approached from the functionalities of the prototype. To give readers a visual and live
description, I will also adopt some system screenshots.

5.1 Implementation of Administrative module (Web server)

As Chapter 4 System Design indicated, administrative module (web server) is the
most important part of WOSS system. It governs the whole WOSS system, for
example, adding new products, edit products’ information and upload the pictures. So
I introduce the implementation of this module instead of giving the introduction of
implementation of customer interface first.

Foremost, it’s very important to implement this module easily to be used, and
understandable to the future system users. The combination of JSP, HTML,
JavaScript and SQL is one of the significant features in this module. I give the
explanations of typical JSP files of this module, instead of repeating the explanation
of all, because of syntax similarities.

As Chapter 2 indicated that administrative module should have the functionalities of
editing shopping items, product catalogs, products and the layouts of WAP shop.
According to these functionalities, in Chapter 4, I designed this module as two major
interfaces, WAP SHOP EIDT which is responsible for editing shopping items; and
Page Editor which is responsible for editing product catalogs, products, and the layout
of WAP shop. Since the functionalities of these two interfaces are almost same,
nothing but to create, add, edit and delete data of shopping items, product catalogs
and products, and modify the layouts of item’s webpage, catalog’s webpage and

 - 54 -

product’s webpage, I implemented the entire functionalities of data creating, editing,
deleting and layout modifying to both WAP SHOP EDIT and Page Editor. This is the
reason why the appearances of these two interfaces that will be shown in Figure 5.1
and Figure 5.2 are almost same. The detailed explanation of functional
implementation of Page Editor will come up in Section 5.1.2.

 5.1.1 Implementation of ExtraWapImage.jsp (WAP SHOP EDIT)

‘ExtraWapImage.jsp’ is the homepage of administrative module. After initiating the
services of Orion application server (to find out how to start it, please consult Section
3.4), administrators can input http://localhost/ExtraWapImage/ExtraWapImage.jsp to
enter this page which is named as ‘WAP SHOP EDIT’. Administrator should find
this webpage on screen:

Figure 5.1 Screenshot of WAP SHOP EDIT homepage

In WAP SHOP EDIT, ‘ID’ stands for the shopping item’s ID which is distributed by
MySQL database automatically. When an administrator input a new item, the
database system will assign a new ID to this item. This ID seems randomly. It is
because the ‘id’ defined in extrawapimage table of MySQL database does not only
stand for the item’s ID but also represent all the data’s ID saved in extrawapimage
table. And it’s defined as ‘auto_increment’ which means MySQL database will point
the ID to data in sequence. ‘ID’ can be modified in extraview.jsp to display this item

‘TYPE’ stands for the displaying position of created items on navigator. As Figure
5.1 shows, the create item wapShop that is for system demo is on top. ‘POSITION’
stands for displaying position of items as well, but it is to set the item to left or right.
‘ENTER NEW LINE’ stands for inserting a new enter (a blank row) between two
items, since the item should be displayed on WAP shop page individually, the default
value of this field is ‘NUL’. These three can accomplish the functionalities of editing
shopping item pages of WAP shop. ‘EDIT’ stands for the hyperlink to Page Editor for
editing the product catalogs of this item. For a number of shopping items, WOSS
system can allow the administrator to arrange priority sequence to them. This is the
functionality of ‘ARRANGE SEQUENCE’ and this sequence is implemented for
displaying the items in WAP SHOP EDIT, for example, if I set the sequence of ‘test’

 - 55 -

as 2, ‘test’ should be displayed above ‘wapShop’ as the higher priority than
‘wapShop’. This accomplishes the functionalities of editing the layout of WAP SHOP
EDIT. ‘PAGE NUMBER’ stands for the page ID of product catalogs of this shopping
item. Different product catalogs of one shopping item have the same ‘PAGE
NUMBER’ and this ‘PAGE NUMBER’ is not shown in WAP SHOP EDIT but only
displayed when an administrator go into the Page Editor to edit product catalogs. The
detailed information of ‘PAGE NUMBER’ will be given in next section. ‘STATUS’
stands for the displaying status of this item, as Section 2.3.4 indicated, if an
administrator tick this status off, it means this item will not be displayed in WAP
shop page. ‘EDIT DELETE’ stands for the option to an administrator. For example if
an administrator wants to change the name of this item, first he inputs new name
replaced the previous one under ‘ITEM TITLE’ and clicks on ‘EDIT’ to update this
item’s name, and if he wants to delete this item, he just simply clicks on ‘DELETE’
to remove this item.

If an administrator wants to add a new shopping item, first he should input the item’s
name in the blank located in the last row, right behind ‘CREATE NEW ITEM’ shown
in Figure 5.1, and clicks on ‘Add this ITEM’.

So far, I have given the description of elements of WAP SHOP EDIT. The
implementation of these elements can realize the prototype functionalities defined in
Chapter 2 for visualization of homepage of administrative module and functionalities
of editing shopping items. Afterwards, I give the description of my programming
implementation in creating the table in WAP SHOP EDIT, defining the JavaScript
forms, and hyperlink button to Page Editor. This introduction is following the
structure of Figure 5.1 step by step.

First, define the entire table in WAP SHOP EDIT:

<form name="sort"
…… // beginning of form definition, define the form name as ‘sort’

<table border="8" bgcolor="#F0F8FF" cellspacing="0" cellpadding="0" width="100%">
<tr>
<td height="42" colspan="10" valign="middle">
<div align="left">
WAP SHOP EDIT
</div>
 </td>
</tr>
// <div>…</div> is text alignment which stands for a block-level element, simply
// defines a block of content in the page

Second, define the table’s elements of first row including Text output:

tr>
<td height="27" align="center">ID</td>

 - 56 -

<td height="27" align="center">TYPE</td>
<td height="27" align="center">ITEM TITLE</td>
<td height="27" align="center">POSITION</td>
<td height="27" align="center">EDIT</td>
<td height="27" align="center">ENTER NEW LINE</td>
<td height="27" align="center">ARRANGE SEQUENCE</td>
<td height="27" align="center">PAGE NUMBER</td>
<td height="27" align="center">STATUS</td>
<td height="27" align="center"><nobr>EDIT
DELETE</nobr></td>
// All text between the start and end of the NOBR elements will not have line
// breaks inserted between them.
</tr>

Third, define an Input Form and a Display Form of second row:

<tr>
<td align="center"><%=rs.getString("id")%></td>

<td align="center"><%=rs.getString("type")%><input type=hidden
name=type<%=rs.getString("id")%>
value="<%=rs.getString("type")%>"></td>

<td align="center"><input type=text name=text<%=rs.getString("id")%>
value="<%=rs.getString("text")%>"></td>

<td align="center">NUL<input type=hidden
name=align<%=rs.getString("id")%> value="NUL"></td>
……

Fourth, define a hyperlink Button linking to PageEdit.jsp, which is displayed as
‘EDIT’ in fifth column in the Figure 5.1:

<td align="center">
<a href="PageEdit.jsp?PAGEID=<%=rs.getString("url")%>">EDIT<input
type=hidden
name=url<%=rs.getString("id")%>value="<%=rs.getString("url")%>"></td>
// send the page ID to Page Editor

Since some important programming implementations are also adopted in Page Editor,
for example, to define a checkbox in JavaScript form, create an alert box and so on, I
will give these descriptions in next section.

 - 57 -

5.1.2 Implementation of PageEdit.jsp (Page Editor)

As I mentioned in the beginning of Section 5.1, Page Editor is responsible for editing
the information of product catalogs and products. Readers may have the question that
why I combined these two functionalities, editing product catalogs and editing
products, together, and in the prototype defined in Chapter 2, administrative module
should have the separated functionalities of editing product catalogs and products.

Actually, the visualization of web page of WAP shop product catalogs is quite similar
as the page of product list. They all list some titles no matter what the titles are either
product catalogs or products. The displaying methods of them are exactly same. The
only one difference is in product page, it should display the price information and
order options. As a result, I implemented a general Page Editor which has the
functionalities of both editing product catalogs and products. An administrator can
simply proceed the process of editing product catalogs without choose some
functionalities reserved for editing products, for example the option of ‘order’. An
administrator doesn’t need to choose this option when he edits product catalogs.

After an administrator adds a new item, he click on ‘EDIT’ introduced in the last
section, the navigator should link to the following web page, named Page Editor:

Figure 5.2 Screenshot of Page Editor for product catalogs

As the Figure 5.2 displayed, ‘ID’ represents for all data ID saved in extrawapimage
table of MySQL database. ‘TYPE’ stands for the classification of input data in second
column, the last row of table. It has four options which can be chosen in the checkbox
of second column, the last row. The options are: ‘PICTURE’ which is for uploading
the advertisement pictures of product catalogs; ‘TEXT’ which is for labeling the text
description of product catalogs; ‘LINK’ which is for inputting product lists and
creating hyperlink to another Page Editor to edit this product. ‘ORDER’ as I
mentioned in the beginning of this section, it’s reserved for editing product’s price.

 - 58 -

‘LINK’ stands for the link to another Page Editor to edit the product information of
this product catalog.

‘ENTER NEW LINE’ stands for insert a new blank row between two product
catalogs. ‘ARRANGE SEQUENCE’ stands for displaying priority sequence of these
catalogs. If an administrator sets one catalog’s sequence as ‘2’, this catalog will be
displayed above another catalog whose sequence is ‘1’. ‘POSITION’ stands for
displaying position of this catalog on WAP Shop page. It has three options ‘center’;
‘left’; ‘right’. These three can accomplish the visualization functionalities defined for
product catalog pages.

‘PAGE NUMBER’ stands for the displaying the page ID of this catalog. All product
catalogs, including their contents, for instance the advertisement pictures and text
descriptions, etc of one shopping item have the same page ID or ‘PAGE NUMBER’.
‘PAGE NUMBER’ (page ID) is inherited from ‘ID’. For example, when an
administrator adds a new product catalog, database will appoint an ‘ID’ to this
product catalog, so the page ID of this catalog is identical to its ‘ID’ and all the data
including pictures and enclosed products of this catalog has the same page ID.
Furthermore, when an administrator adds a product to this catalog, database appoints
an ‘ID’ to this product which has the same page ID to its catalog’s, and the page ID
of this product’s contents is identical to its ‘ID’. This mechanism guarantees the
classified data of one item are displayed in the identical webpage, and the classified
catalogs or products are displayed in the identical webpage as well. Readers can
consult Figure 5.1, Figure 5.2, and Figure 5.3 to get a comprehensive understanding.
For example the ‘ID’ of ‘wapShop’ is ‘2’, so the pictures and all the catalogs of this
item has the same page ID ‘2’. Furthermore, the ‘ID’ of catalog ‘sports’ is ‘10’, so its
pictures and all the products will have the same page ID ‘10’

‘STATUS’ stands for the visual option of product catalogs. It’s same as in WAP
SHOP EDIT. If one doesn’t want display any catalog, just tick off the checkbox in
this catalog’s row. ‘EDIT DELETE’ has the same functionalities as in WAP SHOP
EDIT.

If an administrator wants to add a new product catalog, he should firstly input the title
of this catalog in the blank of ‘DESCRIPTION’ and choose ‘LINK’ as its type.
Secondly, he should press the hyperlink on ‘ADD THIS CONTENT’ and tick the
status on. As above introduction, he can use ‘ENTER NEW LINE’ and ‘ARRANGE
SEQUENCE’ to change the layout of this catalog page. If he wants to add some text
description or advertisement pictures, he simply input the words in the blank of
‘DESCRIPTION’ and chooses ‘TEXT’ as its type. Afterwards he can upload the
picture by choosing ‘PICTURE’ type.

So far I gave the complete description of Page Editor for editing product catalogs. In
the following I introduce the Page Editor for products. The screenshot of Page Editor
for product is shown as following figure:

 - 59 -

Figure 5.3 Screenshot of Page Editor for products

From Figure 5.3, we can find out the layouts, and functionalities of this page are
exactly the same as Page Editor for product catalogs and all products of one product
catalog have the same ‘PAGE NUMBER’ (page ID) which has the same functionality
as I explained above. So I will not repeat the description for this page again.

All in all the implementation of Page Editor can accomplish the prototype
functionalities defined in Chapter 2 both in visualization and editing. Afterwards, I
give the description of my programming implementation of Page Editor. This
introduction is following the structure of Figure 5.2, Figure 5.3 step by step.

First, define a Dropdown list which is displayed in seventh column in Figure 5.3
when an administrator needs to arrange the descending sequence to highlight
the displaying priority:

<td align="center">
<select name="orderid<%=rs.getInt("id")%>">
<option value="<%=rs.getString("orderid")%>"selected><%=rs.getString("orderid")%>
</option>
<%
for(int i = 1; i < 10 ;i++)
// create a 1 to 10 circle, instead of writing all the number from 1 to 10
……
</select></td>

Second, define a Checkbox which is displayed in ninth column in Figure 5.3 to
confirm the status of displaying a product catalog or a product. In other words
whether they will be displayed in customer shopping page or not:

<td align="center"><%=rs.getString("pageid")%></td>
<td align="center">
<input type="checkbox"
name="status<%=rs.getString("id")%>"onclick="changechecked(this)"
// call function changechecked (), which is explained later
<%
if (rs.getInt("status") == 1){
out.print("value='on'");
out.print("checked");

 - 60 -

}
// display the status of checkbox is ticked
%>
</td>

Third, define an Alert box which is displayed in the last column in Figure 5.3
when an administrator’s cursor of mouse clicks on ‘Edit’ or ‘Delete’:

<td align="center">
<a href = "#" onclick="quickmodify (<%=rs.getInt("id")%>)"><img
src="/WapAdmin/images/new/COMEDIT.GIF" width="15" height="19"
border="0" alt="CHANGE CONTENT">
// Picture saved at orion\default-web-app\WapAdmin\images\new
<a href = "ewidel.jsp?ID=<%=rs.getString("id")%>&FROM=EWI"><img
src="/WapAdmin/images/new/COMDEL.GIF" width="15" height="19"
border="0" alt="DELETE CONTENT">
</td>
</tr>
// ‘ ’23 is the entity used to represent a non-breaking space.

Fourth, define a Checkbox update button which is displayed as ‘ADD THIS
CONTENT’ in the last column in Figure 5.3, When an administrator creates a
product catalog or a product:

td align="center">
ADD THIS CONTENT
</td>
</tr>
// call the function ‘quickmodify ()’, which will be explained later.
</table>
</form>
// finishing form definition

Fifth, define the function changechecked(checkbut), to judge the status of
checkbox

function changechecked(checkbut){
var v =checkbut.checked;
if (v) { checkbut.checked = true; }
}

Sixth, define the function quickmodify (id), to check the data of whole form and
send the data to other JSP files and update the database.

23 : www.sightspecific.com/~mosh/WWW_FAQ/nbsp.html, LoneWolf, 1993-2003

 - 61 -

function quickmodify(id){
var f = document.forms["sort"];

 // corresponding defined form ‘sort’
var v =id;
document.forms ["sort"].elements ["id"].value=v;
document.forms["sort"].elements["type"].value=document.forms["sort"].element
s["type"+id].value;
document.forms["sort"].elements["text"].value=document.forms["sort"].elements
["text"+id].value;
document.forms["sort"].elements["align"].value=document.forms["sort"].elemen
ts["align"+id].value;
document.forms["sort"].elements["url"].value=document.forms["sort"].elements[
"url"+id].value;

if (document.forms["sort"].elements["enter"+id].checked)
 document.forms ["sort"].elements ["enter"].value=1;
 else
 document.forms ["sort"].elements ["enter"].value=0;

document.forms["sort"].elements["orderid"].value=document.forms["sort"].elem
ents["orderid"+id].value;

if (document.forms["sort"].elements["status"+id].checked)
 document.forms ["sort"].elements ["status"].value=1;
 else
 document.forms ["sort"].elements ["status"].value=0;

// check and retrieve the data of form

var surl =
"ewiupdate.jsp?ID="+v+"&TYPE="+document.forms["sort"].elements["type"].
value+"&TEXT="+document.forms["sort"].elements["text"].value+"&ALIGN="
+document.forms["sort"].elements["align"].value+"&URL="+document.forms["
sort"].elements["url"].value+"&ENTER="+document.forms["sort"].elements["e
nter"].value+"&ORDERID="+document.forms["sort"].elements["orderid"].valu
e+"&STATUS="+document.forms["sort"].elements["status"].value;
 window.open (surl,"_self");
 }
 // activate ewiupdate.jsp to send data to other JSP files and update database

Seventh, define the Picture Upload functionality to allow the administrator to
upload advertisement picture.

The screenshot of picture upload can be shown as following picture:

 - 62 -

Figure 5.4 Screenshot of Picture Uploading

I implemented the following script to realize this functionality.

if(rs.getString("type").equals("pic")){
 String ss="UPLOAD PICTURE";
……
href="picupload.jsp… // link to picupload.jsp

In Chapter 4 system design I introduced picupload.jsp is responsible for uploading
pictures, the kernel implementation of this JSP file is the component tool,
jspsmartupload.jar of Orion application server is adopted.

Now the readers might understand how I organized and implement WAP SHOP
EDIT and Page Editor. In the following, I give the description of partial SQL query
implementation in Administrative Module to let the readers understand how WAP
SHOP EDIT edits and retrieves the data.

5.1.3 Implementation of data query and retrieving the data to display by using
JavaScript and SQL

In WOSS system, all the data search, data modify, data insert or data update are
executed by SQL. They construct the functionalities of creating new products
catalogs, products information inputting, item, products information editing, etc.

As in Chapter 4 system design, I introduced that ewiupdate.jsp is responsible for
retrieving data input in WAP SHOP EDIT and update the data. The general
implementation of retrieving data is:

Define the methods of ‘ewiupdate.jsp’ retrieving the parameters influx from above:

 String id=request.getParameter ("ID");
 String type=request.getParameter ("TYPE");
 String text=request.getParameter ("TEXT");

 - 63 -

 String align=request.getParameter ("ALIGN");
 String url=request.getParameter ("URL");
 String enter=request.getParameter ("ENTER");
 String orderid=request.getParameter ("ORDERID");
 String pageid=request.getParameter ("PAGEID");
 String status=request.getParameter ("STATUS");

JSP should communicate each other by sending parameters. After retrieving the
parameters, one JSP file can correctly use the data from another JSP file to finish its
function. JSP file retrieves parameter influx, e.g page ‘ID’, and display this page, for
instance in ExtraWapImage.jsp:

String id=request.getParameter ("ID");
// Retrieve page ‘ID’ from database
String htmltitle="WAP SHOP EDIT";
String PAGES=request.getParameter ("PAGES");

Define the SQL insert program and update/edit program by using
stat.executeUpdate(sql) method:

if(!id.equals("0")){
 sql="UPDATE ExtraWapImage SET
type='"+type+"',text='"+text+"',align='"+align+"',url='"+url+"',enter="+ent
er+",orderid="+orderid+",status='"+status+"' WHERE ID="+id;

stat.executeUpdate(sql); // edit the data by using stat.executeUpdate(sql)
else {
 sql="insert into ExtraWapImage(type,text,align,enter,orderid,status)
values('top','"+text+"','NUL','NUL',"+orderid+","+status+")";
// insert data by using stat.executeUpdate(sql)
 stat.executeUpdate(sql);

According to retrieved parameters, define the SQL program, and execute the SQL
query by stat.executeQuery(sql), for instance in ExtraWapImage.jsp:

if (pages==0)
sql="select * from ExtraWapImage where type='top' order by orderid desc";
 else sql="select * from ExtraWapImage where pageid="+pages+" order by
orderid desc";
// execute SQL searching program by using stat.executeQuery(sql)
 rs=stat.executeQuery(sql);

The complete SQL query and insert program is, for instance in extraview.jsp:

sql="select * from ExtraWapImage where type='top' and text='"+text+"' and
orderid="+orderid;

 - 64 -

 ResultSet rs=stat.executeQuery(sql);
 rs.next();
 // search the data from ExtraWapImage table

sql="UPDATE ExtraWapImage SET url='"+rs.getString("id")+"',pageid=0
where id="+rs.getString("id");
 stat.executeUpdate(sql);
 }
// and insert the data into ‘url’

To get the query results, I use ‘rs.getString(), rs.getInt() or getDate()’ method.
Detailed information of getXXX() method, please consult Section 3.6.

Since SQL syntax is adopted in implementation of Administrative Module
comprehensively and they are located in JSP files dispersedly, I cannot present the
detailed description of every SQL query sentence in this section. I only quoted the
most typical and important parts of SQL. To get more information of implementation
of SQL query, readers can refer to appendix. In the next section, I will introduce
JDBC.

5.1.4 Implementation of JDBC

In Chapter 4 system design, I give the explanation of WOSS system structure. One of
the most important parts of Administrative Module is the connection between web
serve and database system. So how to implement the JDBC connector correctly is
very important to realize the prototype defined in Chapter 2. In Section 3.6 I
introduced the basic steps of construction of JDBC, in this section I present the steps
of implementing JDBC in WOSS system in details.

As a prerequisite to each, the first step is to load or register the database driver (in
WOSS system I have loaded the driver of MySQL) with DriverManager, by creating
the file named ConnLoader.java which is legally located at orion\default-web-
app\WEB-INF\classes\com\ in Orion application server, this directory is specifically
designed by Orion application for saving JDBC driver and will be called by
ExtraWapImage.jsp; extraview.jsp; wapShop.jsp; order.jsp; saveOrder.jsp, etc.

The DriverManager needs to be told which JDBC drivers it should try to make
connections with. And In ConnLoader.java, I used Class.forName() on the Class that
implements the java.sql.Driver interface. For instance in ConnLoader.java (Appendix
8.2.12):

package com.gtom.wap;
import java.sql.*;
……
Class.forName("org.gjt.mm.mysql.Driver").newInstance();

 - 65 -

 // newInstance() is Creates a new instance of the class.

And the documentation of MySQL JDBC driver states the Class name to use, which
is ‘org.gjt.mm.mysql.Driver’

Once the driver is registered, a connection should be established. Obtaining a
Connection requires a URL for the database. This URL is constructed using the
following syntax, where items contained in square brackets are optional:

jdbc:mysql://[hostname][:port]/dbname[?param1=value1][¶m2=value2]...

After statement of URL of database, it is passed to the
DriverManager.getConnection() method to obtain a Connection Object. In
ConnLoader.java of WOSS system, I wrote it as:

conn = DriverManager.getConnection(
"jdbc:mysql://127.0.0.1/gtom_wap?useUnicode=true&characterEncodeing=gb2
312&user=root&password=");

After above process, the DriverManager class, in other words, the connection to
database has been established. The second step is to call this DriverManager in JSP
file and establish the connection between JSP and MySQL database through JDBC.
For instance, in ExtraWapImage.jsp (Appendix 8.2.1), I wrote the following
declaration tag in the beginning:

<%@ page import="java.sql.*" %>
<%@ page import="com.gtom.wap.*" %>

// to call the DriverManager located at orion\default-web-app\WEB-
INF\classes\com\gtom\wap, and packed as com.gtom.wap.

Since the DriverManager, ConnLoader.java will be called by several JSP
applications; the code below should be inserted into JSP scriptlets every time.

Connection Conn = ConnLoader.getInstance().getConnection(this);
// to establish the connection to database by calling ConnLoader (the driver manager)

After the connection establishment, a JDBC statement object which sends the SQL
query to MySQL database management system. It takes an instance of active
connection to create a statement object, by writing ‘conn’ as the connection object
and ‘stat’ as the statement creation. For instance in ExtraWapImage.jsp (Appendix
8.2.1)

Statement stat = Conn.createStatement() ;

 - 66 -

This driver file is called every time when Web server applications need communicate
with MySQL database, by using:

<%@ page import="java.sql.*" %>
<%@ page import="java.util.*" %>
<%@ page import="com.gtom.wap.*" %>
 // load JDBC driver, defined in JSP scriptlet tag
……
<%Connection Conn = ConnLoader.getInstance().getConnection(this);
 Statement stat = Conn.createStatement(); %>

 // acquire JDBC connection

Close the MySQL database link in a JSP file which finishes data operation. Although
there is not only one database link, but after data operation in a single JSP file, one
should close it to save database resource. By using:

<% if(rs!=null)rs.close();
 //conn.freeConnection();
 Conn.close();
%>

To read the complete source code, readers can refer to Appendix 8.2.12.

5.2 Implementation of Customer interface

As the prototype defined in Chapter 2 indicated, Customer Interface is to display the
existing shopping item, product catalogs and product information; to save the
customer’s orders, and to record them in MySQL database through web server. In this
section, I will approach my description of implementation of Customer Interface from
visualization functionalities and ordering functionalities as those defined in Section
2.3.1 and Section 2.3.2.

I will discuss wapShop.jsp and extraview.jsp to present the implementation of
visualization functionalities, and I will discuss saveOrder.jsp to present the
implementation of ordering functionalities.

Since the WAP shop pages should be displayed on the navigator that supports WAP, I
use Opera navigator as my default shopping browser of WAP shop. Parts of source
code will be quoted in this section, but the complete JSP files will be listed in
appendix.

 - 67 -

5.2.1 Implementation of wapShop.jsp and extraview.jsp

‘wapShop.jsp’ is to simulate the WAP shop customers login page, as Section 1.3
Correlated Work indicated, the identity authorization functionality has not been
realized in WOSS system yet, so this page is only the simulation trail. I defined the
session object to save customer logging on information as following code shown
(complete source code referred to Appendix 8.2.7):

<card id='welcome' title='welcome'>
<p>
Welcome
</p>
<%
 session.setAttribute("name","Mike");
 session.setAttribute("phone","13641366774");
 session.setAttribute("address","2nd east street.");
 response.sendRedirect("extraview.jsp");
%>
<do type="options" label="home"><go
href="http://localhost/ExtraWapImage/extraview.jsp" /></do>
<do type="prev" label="back"><prev /></do>
</card>

After a customer finish his or her identity validation, the navigator will jump to
extraview.jsp that displays the shopping item WAP SHOP EDIT edited, for example
the shopping item, wapShop created in WAP SHOP EDIT, and it consists of product
catalogs. The screenshot of factual customer shopping is shown as following figure:

Figure 5.5 Screenshot of Customer shopping page

 - 68 -

After a customer chooses a product catalog, for instance ‘Sports’, he simply clicks on
the hyperlink of ‘Sports’. Afterwards, the navigator links to ‘Sports’ the product
catalog page. The screenshot is shown in following figure:

Figure 5.6 Screenshot of the product catalog ‘Sports’

From Figure 5.6, we can find out that there are two products in ‘Sports’ catalog. They
are tent and water bottle which added in Page Editor. Readers can refer Figure 5.3 to
understand the correlations between Page Editor and this catalog page. If the
customer chooses tent as his expected product to buy, he simply clicks on the
hyperlink of ‘tent’ and the navigator links to product page. The screenshot is shown
as following figure:

Figure 5.7 Screenshot of the product ‘Tent’

This implementation accomplishes the visualization functionalities defined in Chapter
2 and the hierarchy of these pages is perfectly identical to Figure 2.2. Now I introduce
the programming implementation of Customer Interface.

First, ‘extraview.jsp’ retrieves the parameter of the item’s ID, creates the JDBC
connection to MySQL database, and verifies this item’s ID to display this item in
navigator as Figure 5.5:

 String id = request.getParameter("ID");

 - 69 -

 if(id==null) id = "2";
 Connection Conn = ConnLoader.getInstance().getConnection(this);
 Statement stat = Conn.createStatement();
 String sql = "select * from ExtraWapImage where id="+id;
 ResultSet rs = stat.executeQuery(sql);
……

Second, the following code of extraview.jsp is to display the layout of shopping
contents, and judge if it needs to make a new paragraph in shopping webpage.

boolean p = false;
boolean pp = false;
sql = "select * from ExtraWapImage where pageid="+id+" and status=1 order
by orderid desc";
// retrieve the pageid (PAGE NUMBER) and orderid (SEQUENCE) from
//database and display the contents descendingly.

rs = stat.executeQuery(sql);
String align=null;
while(rs.next()){
 if(align==null||!align.equals(rs.getString("align")))p=true;
// adopt variable p to judge if it needs to modify the ‘align’ of contents
// adopt variable pp to judge if it needs to make a new paragraph
 if(p){
 if(pp)out.println("</p>"); // if pp == true, make a new paragraph
 out.println("<p align='"+rs.getString("align")+"'>");
 p=false;
 pp=true; }
 align=rs.getString("align");
……

As in Section 5.1.2, I have explained that ‘TYPE’ includes ‘PICTURE’ ‘LINK’
‘TEXT’ and ‘ORDER’. The methods adopted to display these contents in the
customer interface can be concluded as following:

Display graphic content, such as the picture of two mobile phones shown in
Figure 5.5:

if(rs.getString("type").equals("pic")){
// use graphic method to display this picture, url stands for picture location
out.println("<img src='"+rs.getString("url")+"'
alt='"+rs.getString("text").trim()+"'/>"; }
// When customers browse the picture contents, the WAP cell phone needs time to
//download the picture first. To optimize this delayed time, WAP cell phone will
//display this ‘text’ description first.

 - 70 -

Display text content, such as the text description ‘beautiful and warm’ shown in
Figure 5.7:

if(rs.getString("type").equals("text")){
//use text method to display text content
out.println(rs.getString("text").trim()); }

Display hyper link content, such as the hyperlink of ‘sports’ shown in Figure 5.5:

if(rs.getString("type").equals("link")){
//use hyperlink method to link to another page, ‘url’ stands for another page’s location
//the hyperlink is the text
out.println("");
…… }

Display the option of customer’s ordering, such as ‘buy now’ shown in Figure
5.7:

if(rs.getString("type").equals("order")){
out.println("buy
now"); }
if(rs.getInt("enter")==1)out.println("
"); }

Define the function of displaying the customer’s shopping orders in current page,
such ‘take the bill’ shown in Figure 5.6:

 out.println("client:"+session.getAttribute("name")+"
");
……
take the bill

</p>
<do type="options" label="home"><go
href="http://localhost/ExtraWapImage/extraview.jsp?ID=2" /></do>
<do type="prev" label="back"><prev /></do>
</card>
</wml>

Since the layout of product catalogs and product lists are exactly similar, as in section
5.1.2 indicated that the methods of editing layouts of catalogs and products are same,
I will not repeatedly introduce the programming implementation of product pages.
Readers can refer to appendix to find the complete source code. In next section I will
introduce the implementation of ordering functionalities.

 - 71 -

5.2.2 Implementation of Customer ordering

Before I begin to present the implementation of customer ordering functionalities, I
should give some background information of Servlet sessions which is the kernel
method to realize customer ordering functionalities, since I haven’t give the
introduction of Servlet sessions Chapter 3 Development Tools.

Servlet container provides a way to identify a user across more than one page request
or visit to a Web site and to store information about that user. This way is named as
‘session’. The servlet container uses HttpSession interface to create a session
between users and a Web server which maintain a session in several ways such as
using cookies, or rewriting URL.

When a user requests a JSP file that includes session, JSP servlet will send a session
identifier, named session ID, to client’s navigator. After the user finishes actions this
time, navigator will send the session ID to Web server, if this is the first time of
client’s session request, web server will create a session object for that user,
otherwise web server will check the ID of this time and previous ID to identity if they
are resemble, and create the correlation between HttpSession and the request of this
time.

Sessions’ objects are saved in computer’s memory, and they depend on navigators’
cookies. If a user disables navigators’ cookies, session can not be used. And session
might be expired in multi-web servers’ environment. For instance: Single Web
server1 creates the session ID for every session, and this identifier will be saved with
session in computer’s memory. In other words, if there are more than one Web
servers that create their own sessions’ identifiers, single Web server1 can not validate
its session ID.

In implementation of Customer Interface, I use setAttribute () method to save the data
in sessions, getAttribute () to get the data from sessions, and removeAttribute () to
erase the records of sessions.

In wapShop customer login simulation page, I use session to save the logging on user
information, for example, the name and mobile phone number which will be the
specific identifier of customer shopping orders, etc. (Appendix 8.2.7):

<%
session.setAttribute("name","Mike");
session.setAttribute("phone","13641366774");
 ……
%>

I also use session to save the customer shopping order, and in the end of customer’s
shopping action. ‘Take the bill’ function will get the order data from every single

 - 72 -

shopping action by using getAtrribute (), add them together, and save the orders’ data
in database. For instance, getting order (bill) in order.jsp (Appendix 8.2.9):

Vector vec = (Vector)session.getAttribute("Bill");
// Vector ‘vec’ is the shopping cart to save the customer ordering information
 if(vec == null){
 vec = new Vector();
 vec.add(1+";"+text+";"+rs.getString("id"));
// if vec is null, then create a new shopping cart
 }else{
 vec.add((vec.size()+1)+";"+text+";"+rs.getString("id"));
// if the shopping cart has already been existing, then save the new ordering
//information into this shopping cart
 }
session.setAttribute("Bill",vec);

Now we back to Section 5.2.1, when a customer chooses a product, for example ‘tent’
and he clicks on the hyperlink to tent webpage. He finds the price of tent is acceptable
so he decides to buy this product. The simple way to buy this product is to click on
‘buy now’ and submit his order as following figure indicates, however, this is only a
single product shopping. If he wants to buy more products, he should not click on
‘submit’ , back to other product pages and in the homepage click on ‘take the bill’ to
check out all his orders. Furthermore the Customer Interface will give the
confirmation of customer orders like red round shown.

Figure 5.8 Screenshot of Customer Ordering

As the WOSS structure introduced in Chapter 4, saveOrder.jsp is to calculate the total
customer orders and save them into MySQL database. Now I present the
implementation of saveOrder.jsp.

First, to retrieve the customer’s shopping orders by using sessions

String userMobile = (String)session.getAttribute("phone");
Vector vec = (Vector)session.getAttribute("Bill");
……

 - 73 -

Second, to save customer’s shopping orders in userOrder table of database by using
SQL, stat.executeUpdate(sql):

……
int total = 0;
 if(vec!=null){
 for(int i=(vec.size()-1);i>=0;i--){
 String text = (String)vec.get(i);
 String[] item = text.split("\\;");
 sql = "insert into userorder(userMobile,itemID,itemName,price)
values("+userMobile+",'"+item[3]+"','"+item[1]+"',"+item[2]+")";
 stat.executeUpdate(sql);
 out.println(item[1]+" ");
 out.println("price:"+item[2]+"$ del
");
 //out.println(text+"
");

// calculate the total price of Customer shopping:
try{
 total += Integer.parseInt(item[2]); bills
 } catch (Exception e) { } } }

All in all, Customer Interface realizes the functionalities defined in WAP shop
prototype both in visualization and ordering. Readers currently may understand how I
implemented these JSP files to realize the prototype. In next section, I will introduce
the implementation of MySQL database.

5.3 Implementation MySQL database

In Section 3.3, I presented the brief introduction of using MySQL, and the installation
of MySQL database has already been stated, so I will not repeat it.

First, implementation of extrawapimage table, in extrawapimage table, as Section 4.5
indicated, I define 10 table fields.

Field Type Null Key Default Extra
id int(8) PRI NULL auto_increment
type char(16) YES NULL
text char(255) YES NULL
align char(16) YES NULL
url char(255) YES NULL
enter int(1) YES NULL
orderid int(8) YES NULL
pageid int(8) YES NULL
status int(1) YES NULL
reserve char(255) YES NULL

 - 74 -

Created by code:

 CREATE TABLE extrawapimage (
 id int(8) NOT NULL auto_increment,
 type char(16) default NULL,
 text char(255) default NULL,
 align char(16) default NULL,
 url char(255) default NULL,
 enter int(1) default NULL,
 orderid int(8) default NULL,
 pageid int(8) default NULL,
 status int(1) default NULL,
 reserve char(255) default NULL,
 PRIMARY KEY (id)
) TYPE=MyISAM;

Second, implementation of products table, in products table, as Section 4.5 indicated,
I define 7 table fields.

Field Type Null Key Default Extra
id int(8) PRI NULL auto_increment
name varchar(16) YES NULL
price int(8) YES NULL
unit varchar(16) YES NULL
details varchar (255) YES NULL
image varchar (255) YES NULL
reserve varchar (255) YES NULL

 Created by code:

 CREATE TABLE products (
 id int(8) NOT NULL auto_increment,
 name varchar(16) default NULL,
 price char int(8) default NULL,
 unit varchar(16) default NULL,
 details varchar(255) default NULL,
 image varchar(255) default NULL,
 reserve varchar(255) default NULL,
 PRIMARY KEY (id)
) TYPE=MyISAM;

Third, implementation of userorder table, in userorder table, as Section 4.5 indicated,
I define 5 table fields.

Field Type Null Key Default Extra
id int(8) PRI NULL auto_increment

 - 75 -

userMobile char (20) YES NULL
itemID char (16) YES NULL
itemName char (255) YES NULL
price int(8) YES NULL

Created by code:

CREATE TABLE products (
 id int(8) NOT NULL auto_increment,
 userMobile int(8) default NULL,
 itemID char (16) default NULL,
 itemName char(255) default NULL,
 price int(8) default NULL,
 PRIMARY KEY (id)
) TYPE=MyISAM;

Since the method of implementation of users table and showwindows table are almost
same as these three tables, I will not repeat them.

After implementation of these tables, I should load the data including product pictures
or other data into tables of WOSS system. I will continue the implementation from
section 3.3. Under the username ‘Mike’ with password ‘123’, I adopted ‘load’
command to load the information required into tables. For instance:

>mysql –u Mike –p 123
>use gtom_wap;
> load data local infile “products.txt” into table products;

‘product.txt’ should be the normal text file. It should be written as the sequences of
table rows, and divided by key ‘TAB’. Since the method of loading other products is
exactly same as loading product.txt, I will not repeat them.

5.4 Conclusion

In this chapter I presented the implementation of three major modules defined in
Chapter 2 and the implementation processes are absolutely following the structure
designed in Chapter 4. By using implemented Customer Interface, Administrative
Module and MySQL database, WOSS system can realize the prototype defined in
Chapter 2 thoroughly.

After system implementation, I will proceed the system test to check whether WOSS
system is able to complete visualization functionalities of customer interface and
administrative module correctly, and whether it is able to complete ordering
functionalities and editing functionalities effectively. In next chapter, I will give the
details of the system test.

 - 76 -

6 System Test

I this Chapter, I present the system test after WOSS system is implemented. The
system test is approached from two directions: Component test and Integration test.
Since at the beginning of system development, I have already tested the Web server
(Orion Application Server) and MySQL database server, when they were installed, I
will not discuss the tests of these two systems. Some graphics of the visualization of
WOSS system were presented in Chapter 5 by using Opera navigator and Internet
Explorer. To avoid repetition in this chapter, here I mainly focus on testing the WOSS
system’s application by using OpenWave, such as customer shopping applications
and administrative module applications.

6.1 Component test

The component test is mainly to test the every JSP files of WOSS system, to check
whether they are working correctly or not. The visual web pages of WOSS system are
divided into Customer Interface and Administrative Module. For Customer Interface,
it includes homepage of wapShop (or any other items) listing product catalogs; single
product catalog; single product pages, and customer order pages. For Administrative
module it includes homepage of WAP SHOP EDIT and Page Editor that includes
product catalog editor; product editor; and picture uploading page.

Actually, in Chapter 5 System Implementation, I have already given the visualization
of Customer Interface and Administrative Module and they are followed by text
description that were stated the functionalities of these pages. Readers can find out
the correctness of displaying these interfaces. Those can be considered as the pre-test
of Component test.

In the following, to avoid repetition of graphic utilities and functional description, I
only discuss the partial test of Customer Interface and Administrative Module briefly,
and some figures are quoted from Chapter 5. Similarly, I use Opera navigator and
OpenWave navigator simulator of mobile phone (to retrieve technical documents and
operation manual, readers please refer to its homepage)24 to test Customer Interface,
and Internet Explorer to test Administrative Module.

6.1.1 Component test of Customer Interface

When a customer logs on wapShop, by typing:
http://localhost/ExtraWapImage/wapShop.jsp (local host can be replaced by
127.0.0.1), he or she can see the product catalogs in Opera navigator. System file,
wapShop.jsp is responsible or customer identification and extraview.jsp is responsible

24 OpenWave: http://www.openwave.com/us/, Openwave Systems Inc, 2000-2004

 - 77 -

for displaying this item. The visual graphic refers to Figure 5.5. By using OpenWave
to test displaying this item and product catalogs that can be displayed on cell phone’s
navigator, we can see the item from following figure:

Figure 6.1 Component Test of wapShop homepage by using OpenWave

One item should include several different product catalogs, for example, as Figure 6.1
showing, wapShop includes ‘sports’, ‘new DVD’ and so on. In addition, on product
catalog should include different products. For instance, ‘sports’ includes products
‘tent’ and ‘water bottle’. This visual page on Opera navigator is referred to Figure 5.6
Sports page. The OpenWave testing page of products is shown as following figure:

Figure 6.2 Component Test of product page by using OpenWave

 - 78 -

When a customer wants to buy the products shown on Figure 6.2, the customer
interface should show the price of products and feedback information of customer
ordering action. 'order.jsp, saveOrder.jsp and ordreDel.jsp’ are responsible for
customer’s ordering functionalities. The visual pages of customer ordering by using
Opera navigator can be referred to Figure 5.8. In addition, Testing of the visual pages
of shopping by using OpenWave is shown as following figure:

Figure 6.3 Component Test of Customer Ordering by using OpenWave

All in all, after the test of Customer Interface, I concluded that all the *.jsp files
related to Customer Interface are working correctly. Next step is to test the
Administrative Module.

6.1.2 Component Test of Administrative Module

An administrator logs on WAP SHOP EDIT, by typing
http://localhost/ExtraWapImage/ExtraWapImage.jsp, ‘localhost’ can be replaced by
127.0.0.1.

In the component test process of Administrative Module, all the visualization pages,
by using Internet Explorer, were listed as the graphics indicated in Chapter 5.
ExtraWapImage.jsp is responsible for visualizing WAP SHOP EDIT that is the
homepage. PageEdit.jsp is responsible for displaying the Page Editor and Product
Editor (the detailed information of the functionalities of JSP files, please refer to
Table 4.1 and Table 4.2). For instance, the visualization of homepage WAP SHOP
EDIT is referred to Figure 5.1; visualization of Page Editor for product catalogs is

 - 79 -

referred to Figure 5.2; visualization of Page Editor for products is referred to Figure
5.3.

I only give the test graphics of uploading picture. When an administrator decides to
upload the picture of a product, he or she clicks on ‘upload picture’ below ‘LINK’.
The Administrative Module should display the picture uploading webpage, as
following figure showing:

Figure6.4 Test of uploading the picture (1)

Consequently, the navigator display the picture uploading webpage, it is shown as
following figure:

Figure 6.5 Test of uploading pictures (2)

All in all, all the webpages of Administrative Module are displayed correctly. Finally,
I finished the Component test of WOSS system. In next section I will discuss the
Integration test of WOSS system, including the test of dataflow to MySQL database
system.

6.2 Integration test

After the component test of WOSS system, I can conclude that all the JSP files
display correctly. Then I will do the integration test to find out whether these JSP files
work together correctly or not.

 - 80 -

Integration test of WOSS system can be divided into three parts, e.g integration test of
Administrative editing process, integration test of Customer ordering process, and
data saved in MySQL database. In this section, I give the integration test of these
three processes by using OpenWave and test of customer order data recorded in
database system.

6.2.1 Integration test of editing functionalities

When an administrator logs on WAP SHOP EDIT, it shows the existing items in that
page. Now I assume Mike as the administrator of WOSS system. He wants to add a
new product catalog ‘test’ into this item. The integration test process of editing
functionalities should be as following steps.

Mike firstly inputs ‘TEST’ below ‘DESCRIPTION’, chooses the ‘TYPE’ as ‘Link’
which means ‘TEST’ is linked to products edit page that is for adding products and
editing their information. Second he ticks on the box status and ‘ENTER NEW LINE’
on, which means he wants to display ‘TEST’ in a new row, and finally clicks on
‘ADD THIS CATALOG’. It shows:

Figure 6.6 Page Editor after adding ‘TEST’

 So this new catalog is shown in customer shopping page, as following figure shows:

 - 81 -

Figure 6.7 Shopping page after adding ‘TEST’

But now, catalog ‘TEST’ is empty, Mike needs to add products to this catalog, so he
clicks on ‘TEST’ below ‘LINK’ and enter the catalog editing webpage. Mike needs to
add ‘Girls Picture’ to ‘TEST’ catalog as his new product. So he inputs ‘Girls Picture’
below ‘Description’, chooses the type as ‘Text’, ticks on the box ‘status’ on, and
clicks on ‘ADD THIS CONTENT’ to display ‘Girl’s Picture’ in ‘TEST’ shopping
page. The Page Editor shows:

Figure 6.8 Page Editor after adding ‘Girls Picture’

Obviously only this text description is not enough, so Mike chooses ‘PITURE’ below
‘TYPE’ and uploads the picture of ‘Girls Picture’. It shows:

Figure 6.9 Page Editor after uploading the picture

 - 82 -

In customer TEST shopping page it shows:

Figure 6.10 Shopping page after uploading the picture

The last step is to input the price information for this picture, so Mike chooses
‘Order’ below ‘TYPE’, inputs the price information ‘Girls Picture; 200’ ticks
‘ENTER NEW LINE’ and ‘status’ on, and clicks on ‘ADD THIS CONTENT’. The
page editor shows:

Figure 6.11 Page Editor after adding the price

And in this customer shopping page, it display ‘buy now’ option. If Mike clicks on
‘buy now’ it will appear the price is 200, as following figure shows:

 - 83 -

Figure 6.12 Shopping page after adding the price

From the integration test process of editing functionality and figures indicated above,
I can conclude the integration between Administrative module and Customer
Interface was correct. All the information edited or added in Page Editor can be
correctly reflected in Customer Interface. All in all, the integration test between
Customer Interface and Administrative module was successfully finished.

6.2.2 Integration test of ordering functionalities and data saved in database

From the above integration test, I can deduce the correctness of integration between
Customer Interface and Administrative Module. However, I should still check the
ordering functionalities; the data saved in the database and whether the data are
recorded correctly or not, for example, the customer orders are saved correctly or not.

The customer order process displayed by Opera navigator is referred from Figure 5.5
to Figure 5.8. Because the correctness of displaying the shopping item, product
catalogs and products, I can conclude the part of customer choosing products in the
whole ordering functionalities is correct, so I omit the integration test process from
customer logging on wapShop to the navigator links to Girl Picture ordering page
inherited from previous section. Similarly, the simulated customer is still Mr. Mike.
The following figures indicate the correctness of customer ordering confirmation by
using OpenWave:

 - 84 -

Figure 6.13 Integration test of saving customer’s order

Now to retrieve the customer order information, an administrator can query MySQL
database system of WOSS system. As Section 2.8 indicated, the functionality of
Financial Center is not realized in this thesis; to query the database is the only way for
an administrator to retrieve customer order information. The following figure shows
the correctness of saving Mike’s order in database:

Figure 6.14 Integration test of saving customer’s order in database

All in all, from the graphics indicated above, I conclude that the customer order data
are correctly saved in MySQL database management system. In other words, the
correctness of integration between Customer Interface and database system is proved.

6.3 Conclusion

Based on the results of component test and integration test stated in this chapter and
some visualization functionalities pre-adopted in Chapter 5, I can conclude WOSS
system works correctly. And it realized the functionalities define in the prototype of

 - 85 -

Online Shopping System based on WAP stated in Chapter 2 both in visualization
functionalities, ordering functionalities and editing functionalities.

Since WOSS system is a multi-access system, which means it definitely supports
remote access to Customer Interface (wapShop, the shopping page) and
Administrative Module (WAP SHOP EDID). I used a PC which has IP address:
192.38.79.107 as the Web server, and a laptop which has the IP address:
192.38.79.213 as the client to test the remote access to WOSS system. However, as
Section 1.3 indicated, since the user identification system is not realized in WOSS
system, readers might raise the problems of security. These points are left to future
work.

In the next chapter, I will conclude this whole thesis, present the achievements of this
project and suggest the future improvement of WOSS system.

 - 86 -

7 Conclusion and proposal

In this thesis, I have described the theoretical prototype of Online Shopping System
based on WAP, the tools to develop this system, system designs, implementations and
tests of WOSS system. In this chapter, I will conclude the achievements of this thesis
and present the improvement recommendations of the future work.

7.1 Achievements

The objective of this thesis was to realize the prototype of Online Shopping System
based WAP by using proper development tools. In the following part, I will discuss
what the degree I have succeeded in constructing a feasible and effective Online
Shopping System based on WAP.

The work carried out in this thesis can be divided into three major parts:

The first part was to present a theoretical foundation of the Online Shopping System
based on WAP. In this part, I analyzed the functional requirements of WOSS system
in details and presented the prototype of this system which guided the following
developing processes.

The second part was to present the practical design methods to construct the WOSS
system and the proper ways to implement this system. I presented the detailed design
information of WOSS system and analyzed the system data structure precisely. In
addition, in system implementation, I totally realized the prototype defined in the first
part.

The final part was to test WOSS system to validate the visualization functionalities
and processing functionalities defined are precisely realized and the correctness of
database functionalities.

The achievements of this thesis can be summarized as following:

Firstly, I studied the ERP, CRM theories and existing online shopping e-commerce
theories and retrieved enough academic and commercial information to define the
prototype of WOSS system.

Secondly, I researched the development tools which were adopted to develop some
existing online shopping systems and grasped the semantics and syntax of these tools.
By following the prototype defined in the first part, I applied these tools in my system
and correctly designed and implemented WOSS system.

Finally, by adopting the theories of software engineering, I successfully tested WOSS
system and concluded its correctness.

 - 87 -

All in all, in the process of development WOSS system, I accumulated the important
theories and experiences with developing a complicated management information
system and assimilated the most practical and useful suggestions from my supervisor
Jens Thyge Kristensen about the prototype definition, system design, system
implementation and software engineering theories. These are and will be significantly
benefit for my future studies and work.

7.2 Future possible improvements of WOSS system

Presently, the existing WOSS system has perfectly realized the prototype defined in
the Chapter 2. In other words, I accomplished the goals written in Section 1.2.2.
However, when I implemented WOSS system, I also faced some unexpected
problems.

First, the visualization functionalities could be improved in the future, for example, it
can be designed more vivid and convenient for customers. It should have the user
identification functionalities and so on.

Second, the data fields can be improved in the development of database system of
WOSS system, for example, to assign the unique ID for WAP shop data instead of
setting the universal id for any data concerned with WOSS system (in Figure 6.6 the
ID of pictures links and orders are auto_increment corresponding to the ‘id’ defined
in MySQL tables which might be confused to readers and users), and to record more
detailed information of customer ordering than only recording customer’s mobile
phone number (in Figure 6.14, when a customer orders a product, the system only
records his mobile phone number which is not enough for Financial Center or
Logistic Center to process his order, but since Financial Center or Logistic Center to
process his order are not realized in this thesis, the functionalities of recording more
information of customers will be improved in the future).

Third, the ERP system should consist of more modules mentioned in Section 2.5, for
instance, the Logistic system, Financial system and more useful interfaces, and these
modules should be developed separately.

Therefore, from the requirements analysis of Online Shopping System based on WAP
and development processes of this system, I feel WOSS system should be
consummated and improved to be realized as the genuine and multi format ERP
system in the future.

 - 88 -

8 Bibliography and Appendixes

8.1 Bibliography

1. J2SDK, http://java.sun.com/j2se/1.4.2/, Sun Microsystems,1994-2004
2. MySQL, www.mysql.com, MySQL AB,1995-2004
3. JDBC, http://java.sun.com, Sun Microsystems,1994-2004
4. Opera Navigator, http://portal.opera com/, Opera Software ASA,1995-2204
5. Nokia News, www.nokia.com/search/index.jsp?wsid=8&qt=news, Nokia Finland,

2004
6. Organization for Economic Co-operation and Development, www.oecd.org/home/
7. Mobile eBusiness Magic White Paper, magic-SW.com, Magic, 2003, USA
8. Practical UML, http://bdn.borland.com/article/0,1410,31863,00.html#use-case-

diagram
9. CRM: Customer Relationship Management, www.crm2day.com, CRM Today,

2001-2004
10. EJB/J2EE, http://java.sun.com/products/ejb/, Sun Microsystems,1994-2004
11. WAP, www.w3schools.com, W3Schools, Refsnes Data, 1999-2004
12. MySQL reference manual version A4, MySQL AB, 1997-2004
13. JDBC driver of MySQL:

http://dev.mysql.com/doc/mysql/en/Java_Connector.html, MySQL AB, 1997-
2004

14. JavaBeans Application specification: http://java.sun.com/products/javabeans/,
SUN Microsystem, 1994-2004

15. Orion application official site: www.orionserver.com, IronFlere
16. JNDI: http://java.sun.com/products/jndi/, SUN Microsystem, 1994-2004
17. DataSource: www.orionserver.com, , IronFlere
18. JSP attributes for page description: http://java.sun.com/products/jsp/docs.html,

SUN Microsystem, 1994-2002
19. Practical statistics, www.google.com, Google Searching, 2004
20. J2SE API documentation: http://java.sun.com/j2se/1.4.2/docs/api/, SUN

Microsystem, 1994-2004
21. getXXX methods: Methods inherited from interface java.sql.ResultSet,

java.sun.com/j2se/1.4.2/docs/api/. SUN Microsystem, 1994-2004
22. JavaScript Tutorial: www.w3schools.com, Refsnes Data, 1999-2004
23. : www.sightspecific.com/~mosh/WWW_FAQ/nbsp.html, LoneWolf,

1993-2003
24. OpenWave: http://www.openwave.com/us/, Openwave Systems Inc, 2000-2004

 - 89 -

http://java.sun.com/j2se/1.4.2/docs/api/java/sql/ResultSet.html

8.2 Source code

 8.2.1 ExtraWapImage.jsp

<%@ page language="java"%>
<%@ page import="java.sql.*" %>
<%@ page import="com.gtom.wap.*" %>
<%@ page session="true" %>
<%
request.setCharacterEncoding ("GBK");
String ch=request.getParameter ("CH");
String id=request.getParameter ("ID");
String htmltitle="WAP SHOP EDIT";
String PAGES=request.getParameter ("PAGES");
int pages=(PAGES!=null)?Integer.parseInt(PAGES):0;

String sql=null;
ResultSet rs=null;

Connection Conn = ConnLoader.getInstance ().getConnection (this);
Statement stat = Conn.createStatement ();

if(pages==0)
sql="select * from ExtraWapImage where type='top' order by orderid desc";
else sql="select * from ExtraWapImage where pageid="+pages+" order by orderid desc";
rs=stat.executeQuery(sql);
//if(rs.next()){
%>
<%@ include file="include/htmlhead.inc" %>
<script language=javascript>
<!--
function changechecked(checkbut){
var v =checkbut.checked;
if (v) {
checkbut.checked = true;
}
}
function quickmodify(id){
var f = document.forms["sort"];
var v =id;
document.forms["sort"].elements["id"].value=v;
document.forms["sort"].elements["type"].value=document.forms["sort"].elements["type"+id].value;
document.forms["sort"].elements["text"].value=document.forms["sort"].elements["text"+id].value;
document.forms["sort"].elements["align"].value=document.forms["sort"].elements["align"+id].value;
document.forms["sort"].elements["url"].value=document.forms["sort"].elements["url"+id].value;
if (document.forms["sort"].elements["enter"+id].checked)
document.forms["sort"].elements["enter"].value=1;
else

 - 90 -

document.forms["sort"].elements["enter"].value=0;
document.forms["sort"].elements["orderid"].value=document.forms["sort"].elements["orderid"+id].value;
if (document.forms["sort"].elements["status"+id].checked)
document.forms["sort"].elements["status"].value=1;
else
document.forms["sort"].elements["status"].value=0;
var surl =
"ewiupdate.jsp?ID="+v+"&TYPE="+document.forms["sort"].elements["type"].value+"&TE
XT="+document.forms["sort"].elements["text"].value+"&ALIGN="+document.forms["sort"]
.elements["align"].value+"&URL="+document.forms["sort"].elements["url"].value+"&ENTE
R="+document.forms["sort"].elements["enter"].value+"&ORDERID="+document.forms["sor
t"].elements["orderid"].value+"&STATUS="+document.forms["sort"].elements["status"].val
ue;
window.open(surl,"_self");
//document.forms["sort"].submit();
}
function selectall(v){
var f = document.forms["sort"];
for (i=0; i<f.elements.length;i++)
if (f.elements[i].value=="on") f.elements[i].checked = v;
}
-->
</script>
<BODY>
<form name="sort" method="post" action="ewiupdate.jsp">
<input type=hidden name=id>
<input type=hidden name=type value="top">
<input type=hidden name=text>
<input type=hidden name=align>
<input type=hidden name=url>
<input type=hidden name=enter>
<input type=hidden name=orderid>
<input type=hidden name=status value=0>
<table border="1" cellspacing="0" cellpadding="0" width="100%">
<tr>
<td height="42" colspan="10" valign="middle">
<div align="left">
WAP SHOP EDIT
</div>
</td>
</tr>
<tr>
<td height="27" align="center">ID</td>
<td height="27" align="center">TYPE</td>
<td height="27" align="center">TITLE</td>
<td height="27" align="center">POSITION</td>
<td height="27" align="center">EDIT</td>
<td height="27" align="center">ENTER NEW LINE</td>
<td height="27" align="center">ARRANGE SEQUENCE</td>
<td height="27" align="center">PAGE NUMBER</td>
<td height="27" align="center">STATUS</td>

 - 91 -

<td height="27" align="center"><nobr>EDIT DELETE</nobr></td>
</tr>
<%
while(rs.next()){
%>
<tr>
<td align="center"><%=rs.getString("id")%></td>
<td align="center"><%=rs.getString("type")%><input type=hidden name=type<%=rs.getString("id")%>
value="<%=rs.getString("type")%>"></td>
<td align="center">
<input type=text name=text<%=rs.getString("id")%> value="<%=rs.getString("text")%>">
</td>
<td align="center">NUL<input type=hidden name=align<%=rs.getString("id")%>
value="NUL"></td>
<td align="center"><a
href="PageEdit.jsp?PAGEID=<%=rs.getString("url")%>">EDIT<input type=hidden
name=url<%=rs.getString("id")%> value="<%=rs.getString("url")%>"></td>
<td align="center">NUL<input type=hidden name=enter<%=rs.getString("id")%> value="NUL"></td>
<td align="center">
<select name="orderid<%=rs.getInt("id")%>">
<option value="<%=rs.getString("orderid")%>" selected><%=rs.getString("orderid")%>
</option>
<%
for(int i = 1; i < 10 ;i++)
{
out.println("<option value=\"" + i + "\">" + i + "</option>");
}
%>
</select></td>
<td align="center"><%=rs.getString("pageid")%></td>
<td align="center">
<input type="checkbox" name="status<%=rs.getString("id")%>" onclick="changechecked(this)"
<%
if(rs.getInt("status") == 1){
out.print("value='on'");
out.print("checked");
}
%>>
</td>
<td align="center">
<a href = "#" onclick="quickmodify (<%=rs.getInt("id")%>)"><img
src="/WapAdmin/images/new/COMEDIT.GIF" width="15" height="19" border="0"
alt="CHANGE CONTENT">
<a href = "ewidel.jsp?ID=<%=rs.getString("id")%>&FROM=EWI"><img
src="/WapAdmin/images/new/COMDEL.GIF" width="15" height="19" border="0"
alt="DELETE CONTENT">
</td>
</tr>
<%
}// while
%>

 - 92 -

<tr>
<td align="center">CREATE NEW</td>
<td align="center">HOMEPAGE<input type=hidden name=type0 value="top"></td>
<td align="center">
<input type=text name=text0>
</td>
<td align="center">NUL<input type=hidden name=align0 value="nul"></td>
<td align="center">NUL<input type=hidden name=url0 value="0"></td>
<td align="center">NUL<input type=hidden name=enter0 value="nul"></td>
<td align="center">
<select name="orderid0">
<%
for(int i = 1; i < 300 ;i++)
{
out.println("<option value=\"" + i + "\">" + i + "</option>");
}
%>
</select>
</td>
<td align="center">Automatically Distribute</td>
<td align="center">
<input type="checkbox" name="status0" onclick="changechecked (this)">
</td>
<td align="center">
Add this Title
</td>
</tr>
</table>
</form>
</BODY>
</HTML>
<%
 //}
 if(rs!=null)rs.close();
//conn.freeConnection();
Conn.close();
%>

8.2.2 ewiupdate.jsp

<%@ page import="java.sql.*" %>
<html>
<head>
<title></title>
<SCRIPT LANGUAGE="JavaScript">
<!--
if (navigator.userAgent.indexOf("MSIE 5") != -1)
{
document.write("<LINK REL=STYLESHEET HREF=\"libraries/ows.css\" TYPE=\"text/css\">");

 - 93 -

document.write("<STYLE>");
document.write("<<!-->");
document.write("<A:hover {color:386BCC}>");
document.write("<//-->>");
document.write("</STYLE>");
}
else
{
if (navigator.appName == "Netscape")
{
document.write("<LINK REL=STYLESHEET HREF=\"libraries/owsns.css\" TYPE=\"text/css\">");
}
else
{
document.write("<LINK REL=STYLESHEET HREF=\"libraries/owsns.css\" TYPE=\"text/css\">");
}
}
//-->
</SCRIPT>
<SCRIPT language=JavaScript src="libraries/expcolla.js"></SCRIPT>
<meta http-equiv="Content-Type" content="text/html; charset=gb2312">
</head>
<body bgcolor="#5f8ac5" text="#000000" leftmargin="0" marginwidth="0">
<%
String id=request.getParameter("ID");
String type=request.getParameter("TYPE");
String text=request.getParameter("TEXT");
String align=request.getParameter("ALIGN");
String url=request.getParameter("URL");
String enter=request.getParameter("ENTER");
String orderid=request.getParameter("ORDERID");
String pageid=request.getParameter("PAGEID");
String status=request.getParameter("STATUS");
String sql="";

Connection Conn = com.gtom.wap.ConnLoader.getInstance().getConnection(this);
java.sql.Statement stat = Conn.createStatement();

if(!id.equals("0")){
sql="UPDATE ExtraWapImage SET
type='"+type+"',text='"+text+"',align='"+align+"',url='"+url+"',enter="+enter+",orderid="+or
derid+",status='"+status+"' WHERE ID="+id;
stat.executeUpdate(sql);
}else{
sql="insert into ExtraWapImage(type,text,align,enter,orderid,status)
values('top','"+text+"','nul','nul',"+orderid+","+status+")";
stat.executeUpdate(sql);
sql="select * from ExtraWapImage where type='top' and text='"+text+"' and
orderid="+orderid;
ResultSet rs=stat.executeQuery(sql);
rs.next();

 - 94 -

sql="UPDATE ExtraWapImage SET url='"+rs.getString("id")+"',pageid=0 where
id="+rs.getString("id");
stat.executeUpdate(sql);
}
out.println(sql);
stat.close();
Conn.close();
response.sendRedirect("ExtraWapImage.jsp");
%>
</body>
</html>

 8.2.3 PageEdit.jsp

<%@ page language="java"%>
<%@ page import="java.sql.*" %>
<%@ page import="com.gtom.wap.*" %>
<%@ page session="true" %>
<%
request.setCharacterEncoding("GBK");
String ch=request.getParameter("CH");
String id=request.getParameter("ID");
String pt=request.getParameter("PT");
String htmltitle="------Page Editor";
String PAGEID=request.getParameter("PAGEID");
int pageid=(PAGEID!=null)?Integer.parseInt(PAGEID):0;
if(pageid==0){
out.println("Enter new title and Edit later");
}else{
String sql=null;
ResultSet rs=null;

Connection Conn = ConnLoader.getInstance().getConnection(this);
Statement stat = Conn.createStatement() ;

sql="select * from ExtraWapImage where pageid="+pageid+" order by orderid desc";
rs=stat.executeQuery(sql);
//if(rs.next()){
%>
<%@ include file="include/htmlhead.inc" %>
<script language=javascript>
<!--
function changechecked(checkbut){
var v =checkbut.checked;
if (v) {
checkbut.checked = true;
}
}
function quickmodify(id,opt){

 - 95 -

var f = document.forms["sort"];
var v =id;
document.forms["sort"].elements["id"].value=v;
document.forms["sort"].elements["type"].value=document.forms["sort"].elements["type"+id].value;
document.forms["sort"].elements["text"].value=document.forms["sort"].elements["text"+id].value;
document.forms["sort"].elements["align"].value=document.forms["sort"].elements["align"+id].value;
document.forms["sort"].elements["url"].value=document.forms["sort"].elements["url"+id].value;
document.forms["sort"].elements["pageid"].value=document.forms["sort"].elements["pageid"+id].value;
if (document.forms["sort"].elements["enter"+id].checked)
document.forms["sort"].elements["enter"].value=1;
else
document.forms["sort"].elements["enter"].value=0;
document.forms["sort"].elements["orderid"].value=document.forms["sort"].elements["orderid"+id].value;
if (document.forms["sort"].elements["status"+id].checked)
document.forms["sort"].elements["status"].value=1;
else
document.forms["sort"].elements["status"].value=0;
var surl =
"ewipageupdate.jsp?ID="+v+"&TYPE="+document.forms["sort"].elements["type"].value+"
&TEXT="+document.forms["sort"].elements["text"].value+"&ALIGN="+document.forms["s
ort"].elements["align"].value+"&URL="+document.forms["sort"].elements["url"].value+"&E
NTER="+document.forms["sort"].elements["enter"].value+"&PAGEID="+document.forms["
sort"].elements["pageid"].value+"&ORDERID="+document.forms["sort"].elements["orderid
"].value+"&STATUS="+document.forms["sort"].elements["status"].value+"&OPT="+opt;
window.open(surl,"_self");
//document.forms["sort"].submit();
}
function selectall(v){
var f = document.forms["sort"];
for (i=0;i<f.elements.length;i++)
if (f.elements[i].value=="on") f.elements[i].checked = v;
}
-->
</script>
<BODY>
<form name="sort" method="post" action="ewipageupdate.jsp">
<input type=hidden name=id>
<input type=hidden name=type>
<input type=hidden name=text>
<input type=hidden name=align>
<input type=hidden name=url>
<input type=hidden name=enter>
<input type=hidden name=orderid>
<input type=hidden name=pageid>
<input type=hidden name=status value=0>
<table border="1" cellspacing="0" cellpadding="0" width="100%">
<tr>
<td height="42" colspan="10" valign="middle">
<div align="left">
------Page Editor
Back to Homepage

 - 96 -

</div>
</td>
</tr>
<tr>
<td height="27" align="center">ID</td>
<td height="27" align="center">TYPE</td>
<td height="27" align="center">DESCRIPTION</td>
<td height="27" align="center">POSITION</td>
<td height="27" align="center">LINK</td>
<td height="27" align="center">ENTER NEW LINE</td>
<td height="27" align="center">ARRANGE SEQUENCE</td>
<td height="27" align="center">PAGE NUMBER</td>
<td height="27" align="center">STATUS</td>
<td height="27" align="center"><nobr>EDIT DELETE</nobr></td>
</tr>
<%
while(rs.next()){
%>
<tr>
<td align="center"><%=rs.getString("id")%></td>
<td align="center"><%=rs.getString("type")%><input type=hidden
name=type<%=rs.getString("id")%> value="<%=rs.getString("type")%>"></td>
<td align="center">
<input type=text name=text<%=rs.getString("id")%> value="<%=rs.getString("text")%>">
</td>
<td align="center">
<select name="align<%=rs.getString("id")%>">
<option value="<%=rs.getString("align")%>" selected><%=rs.getString("align")%>
</option>
<option value="center">CENTER</option>
<option value="left">LEFT</option>
<option value="right">RIGHT</option>
</select>
</td>
<td align="<%=rs.getString("align")%>">
<%
if(rs.getString("type").equals("order"))out.println("<h4>"+rs.getString("text")+"<h4>");
if(rs.getString("type").equals("link"))out.println(""+(((rs.getString("text")!=null)&&(!
rs.getString("text").equals("")))?rs.getString("text"):"EDIT")+"<input type=hidden
name=url"+rs.getString("id")+" value=\""+rs.getString("url")+"\">");
if(rs.getString("type").equals("pic")){
String ss="UPLOAD PICTURE";
if(rs.getString("url")!=null&&rs.getString("url").startsWith("/wap/"))ss="<img
src=\""+rs.getString("url")+"\">";
%>
<a href="picupload.jsp?ID=<%=rs.getString("id")%>&PAGEID=<%=pageid%>"><%=ss%>
<input type=hidden name=url<%=rs.getString("id")%> value="<%=rs.getString("url")%>">
<%
}
if(rs.getString("type").equals("text"))out.println((((rs.getString("text")!=null)&&(!rs.getStrin

 - 97 -

g("text").equals("")))?rs.getString("text"):"You haven't input Text!")+"<input type=hidden
name=url"+rs.getString("id")+" value=\"\">");
%>
</td>
<td align="center"><input type="checkbox" name="enter<%=rs.getString("id")%>"
onclick="changechecked(this)"
<%
if(rs.getInt("enter") == 1){
out.print("value='on'");
out.print("checked");
}
%>>
</td>
<td align="center">
<select name="orderid<%=rs.getInt("id")%>">
<option value="<%=rs.getString("orderid")%>" selected><%=rs.getString("orderid")%>
</option>
<%
for(int i = 1; i < 300 ;i++)
{
out.println("<option value=\"" + i + "\">" + i + "</option>");
}
%>
</select>
</td>
<td align="center"><%=pageid%><input type=hidden name=pageid<%=rs.getString("id")%>
value="<%=pageid%>"></td>
<td align="center">
<input type="checkbox" name="status<%=rs.getString("id")%>" onclick="changechecked(this)"
<%
if(rs.getInt("status") == 1){
out.print("value='on'");
out.print("checked");
}
%>>
</td>
<td align="center">
<a href = "#" onclick="quickmodify (<%=rs.getInt("id")%>,'1')"><img
src="/WapAdmin/images/new/COMEDIT.GIF" width="15" height="19" border="0"
alt="EDIT CONTENT">
<a href = "ewidel.jsp?ID=<%=rs.getString("id")%>&PAGEID=<%=pageid%>"><img
src="/WapAdmin/images/new/COMDEL.GIF" width="15" height="19" border="0"
alt="DELETE CONTENT">
</td>
</tr>
<%
}// while
%>
<tr>
<td align="center">NEW CONTENT</td>
<td align="center">

 - 98 -

<select name="type<%=pageid%>">
<option value="pic">PICTURE</option>
<option value="text">TEXT</option>
<option value="link">LINK</option>
<option value="order">ORDER</option>
</select>
</td>
<td align="center">
<input type=text name=text<%=pageid%>>
</td>
<td align="center">
<select name="align<%=pageid%>">
<option value="center">CENTER</option>
<option value="left">LEFT</option>
<option value="right">RIGHT</option>
</select>
</td>
<td align="center">NUL<input type=hidden name=url<%=pageid%> value="0"></td>
<td align="center">
<input type="checkbox" name="enter<%=pageid%>" onclick="changechecked(this)">
</td>
<td align="center">
<select name="orderid<%=pageid%>">
<%
for(int i = 1; i < 300 ;i++)
{
out.println("<option value=\"" + i + "\">" + i + "</option>");
}
%>
</select>
</td>
<td align="center"><%=PAGEID %><input type=hidden name=pageid<%=pageid%>
value="<%=pageid%>"></td>
<td align="center">
<input type="checkbox" name="status<%=pageid %>" onclick="changechecked(this)">
</td>
<td align="center">
<a href = "#" onclick="quickmodify (<%=pageid %>,'0')">ADD NEW CONTENT
</td>
</tr>
</table>
</form>
</BODY>
</HTML>
<%
//}
if(rs!=null)rs.close();
//conn.freeConnection();
Conn.close();
 }//if(pageid==0);else{}
%>

 - 99 -

8.2.4 ewidel.jsp

<%@ page import="java.sql.*" %>
<html>
<head>
<title></title>
<SCRIPT LANGUAGE="JavaScript">
<!--
if (navigator.userAgent.indexOf("MSIE 5") != -1)
{
document.write("<LINK REL=STYLESHEET HREF=\"libraries/ows.css\" TYPE=\"text/css\">");
document.write("<STYLE>");
document.write("<<!-->");
document.write("<A:hover {color:386BCC}>");
document.write("<//-->>");
document.write("</STYLE>");
}
else
{
if (navigator.appName == "Netscape")
{
document.write("<LINK REL=STYLESHEET HREF=\"libraries/owsns.css\" TYPE=\"text/css\">");
}
else
{
document.write("<LINK REL=STYLESHEET HREF=\"libraries/owsns.css\" TYPE=\"text/css\">");
}
}
//-->
</SCRIPT>
<SCRIPT language=JavaScript src="libraries/expcolla.js"></SCRIPT>
<meta http-equiv="Content-Type" content="text/html; charset=gb2312">
</head>
<body bgcolor="#5f8ac5" text="#000000" leftmargin="0" marginwidth="0">
<%
 String id=request.getParameter("ID");
 String type=request.getParameter("TYPE");
 String text=request.getParameter("TEXT");
 String align=request.getParameter("ALIGN");
 String url=request.getParameter("URL");
 String enter=request.getParameter("ENTER");
 String orderid=request.getParameter("ORDERID");
 String pageid=request.getParameter("PAGEID");
 String status=request.getParameter("STATUS");
 String sql="";

if(id!=null){
Connection Conn = com.gtom.wap.ConnLoader.getInstance().getConnection(this);
java.sql.Statement stat = Conn.createStatement();
sql="delete from ExtraWapImage where id="+id;

 - 100 -

stat.executeUpdate(sql);
out.println(sql);
stat.close();
Conn.close();
}
String returnUrl="PageEdit.jsp?PAGEID="+pageid;
if(request.getParameter("FROM")!=null&&request.getParameter("FROM").equals("EWI"))
returnUrl="ExtraWapImage.jsp";
response.sendRedirect(returnUrl);
%>
</body>
</html>

 8.2.5 ewipageupdate.jsp

<%@ page import="java.sql.*" %>
<html>
<head>
<title></title>
<SCRIPT LANGUAGE="JavaScript">
<!--
if (navigator.userAgent.indexOf("MSIE 5") != -1)
{
document.write("<LINK REL=STYLESHEET HREF=\"libraries/ows.css\" TYPE=\"text/css\">");
document.write("<STYLE>");
document.write("<<!-->");
document.write("<A:hover {color:386BCC}>");
document.write("<//-->>");
document.write("</STYLE>");
}
else
{
if (navigator.appName == "Netscape")
{
document.write("<LINK REL=STYLESHEET HREF=\"libraries/owsns.css\" TYPE=\"text/css\">");
}
else
{
document.write("<LINK REL=STYLESHEET HREF=\"libraries/owsns.css\" TYPE=\"text/css\">");
}
}
//-->
</SCRIPT>
<SCRIPT language=JavaScript src="libraries/expcolla.js"></SCRIPT>
<meta http-equiv="Content-Type" content="text/html; charset=gb2312">
</head>
<body bgcolor="#5f8ac5" text="#000000" leftmargin="0" marginwidth="0">
<%
 String id=request.getParameter("ID");

 - 101 -

 String type=request.getParameter("TYPE");
 String text=request.getParameter("TEXT");
 String align=request.getParameter("ALIGN");
 String url=request.getParameter("URL");
 String enter=request.getParameter("ENTER");
 String orderid=request.getParameter("ORDERID");
 String pageid=request.getParameter("PAGEID");
 String status=request.getParameter("STATUS");
 String opt=request.getParameter("OPT");
 String sql="";

Connection Conn = com.gtom.wap.ConnLoader.getInstance().getConnection(this);
java.sql.Statement stat = Conn.createStatement();

if(!opt.equals("0")){
sql="UPDATE ExtraWapImage SET
type='"+type+"',text='"+text+"',align='"+align+"',url='"+url+"',enter="+enter+",orderid="+or
derid+",status='"+status+"' WHERE ID="+id;
stat.executeUpdate(sql);
}else{
sql="insert into ExtraWapImage(type,text,align,enter,orderid,pageid,status)
values('"+type+"','"+text+"','"+align+"',"+enter+","+orderid+","+pageid+","+status+")";
stat.executeUpdate(sql);
if(type.equals("link")){
sql="select * from ExtraWapImage where pageid="+pageid+" and type='link'";
ResultSet rs=stat.executeQuery(sql);
while(rs.next()){
sql="UPDATE ExtraWapImage SET url='"+rs.getString("id")+"' where id="+rs.getString("id");
stat.executeUpdate(sql);
}
}
}
out.println(sql);
stat.close();
Conn.close();
response.sendRedirect("PageEdit.jsp?PAGEID="+pageid);
%>
</body>
</html>

 8.2.6 picupload.jsp

<%@ page import="com.jspsmart.upload.*"%>
<%@ page import="java.sql.*" %>
<%
 String id=request.getParameter("ID");
 String pageid=request.getParameter("PAGEID");
%>
<html>

 - 102 -

<head>
<title></title>
<SCRIPT LANGUAGE="JavaScript">
<!--
if (navigator.userAgent.indexOf("MSIE 5") != -1)
{
document.write("<LINK REL=STYLESHEET HREF=\"libraries/ows.css\" TYPE=\"text/css\">");
document.write("<STYLE>");
document.write("<<!-->");
document.write("<A:hover {color:386BCC}>");
document.write("<//-->>");
document.write("</STYLE>");
}
else
{
if (navigator.appName == "Netscape")
{
document.write("<LINK REL=STYLESHEET HREF=\"libraries/owsns.css\" TYPE=\"text/css\">");
}
else
{
document.write("<LINK REL=STYLESHEET HREF=\"libraries/owsns.css\" TYPE=\"text/css\">");
}
}
//-->
</SCRIPT>
<SCRIPT language=JavaScript src="libraries/expcolla.js"></SCRIPT>
<meta http-equiv="Content-Type" content="text/html; charset=gb2312">
</head>
<jsp:useBean id="myUpload" scope="page" class="com.jspsmart.upload.SmartUpload" />
<jsp:setProperty name="myUpload" property="*" />
<style type="text/css">
A:link,A:active,A:visited{TEXT-DECORATION:none ;Color:#000000}
A:hover{TEXT-DECORATION: underline;Color:#4455aa}

BODY{
FONT-SIZE: 12px;
COLOR: #000000;
FONT-FAMILY: xxx;
background-color: #FFFFFF;
scrollbar-face-color: #DEE3E7;
scrollbar-highlight-color: #FFFFFF;
scrollbar-shadow-color: #DEE3E7;
scrollbar-3dlight-color: #D1D7DC;
scrollbar-arrow-color: #006699;
scrollbar-track-color: #EFEFEF;
scrollbar-darkshadow-color: #98AAB1;
}
TD{
font-family: xxx;
font-size: 12px;

 - 103 -

line-height: 15px;
}
th
{
background-color: #4455aa;
color: white;
font-size: 12px;
font-weight:bold;
}
td.TableTitle2
{
background-color: #E4E8EF;
}
td.TableBody1
{
background-color: #FFFFFF;
}
td.TableBody2
{
background-color: #E4E8EF;
}
td.TopLighNav2
{
background-color:#FFFFFF
}
.tableBorder1
{
width:97%;
border: 1px;
background-color: #6595D6;
}
.tableBorder2
{
width:97%;
border: 1px #DEDEDE solid;
background-color: #EFEFEF;
}

#TableTitleLink A:link, #TableTitleLink A:visited, #TableTitleLink A:active {
COLOR: #FFFFFF;
TEXT-DECORATION: none;
}
#TableTitleLink A:hover {
COLOR: #FFFFFF;
TEXT-DECORATION: underline;}

input,select,Textarea{
font-family:Tahoma,Verdana,xxx; font-size: 12px; line-height: 15px;}
}
.normalTextSmall
{

 - 104 -

font-size : 11px;
color : #000000;
font-family: Verdana, Arial, Helvetica, sans-serif;
}

</style>
</head>
<body bgcolor=background-color: #FFFFFF; text="#000000" leftmargin="0"
topmargin="0">
<table border="0" cellspacing="0" cellpadding="0" width=100%>
<tr>
<td class=tablebody1>
<%
String status = "";
int size = 30;
String filename = request.getParameter("filename");
String act = request.getParameter("act");
boolean upok = false;
if ((act!=null)&&(act.equals("upload"))){
upok =true;
myUpload.initialize(pageContext);
try{
myUpload.upload();
com.jspsmart.upload.File myFile = myUpload.getFiles().getFile(0);
String tail = myFile.getFileExt();
 if ((tail==null)||(tail.equals(""))){
 throw new NegativeArraySizeException();
 }
 else if (myFile.getSize() > 8192){
 upok = false;
 status = "FILE TOO LARGE > 8K";
 size = 18;
 }
 else if (!tail.toLowerCase().equals("png")){
 upok = false;
 status = "ONLY png FORMAT";
 size = 18;
 }else if ((filename==null)||(filename.equals(""))){
 upok = false;
 status = "REFRESH AND UPLOAD AGAIN";
 size = 18;
 }else{
 upok = false;
 size = 24;
 String filepath = "/wap/images/uploadpic/"+filename+".png";
 myFile.saveAs(filepath, 1);
 //out.println("");
 //out.println("<SCRIPT>parent.document.forms[0].content.value = '<img
src=\""+filepath+"\" alt=\"\" />
'+parent.document.forms[0].content.value</SCRIPT>");

 - 105 -

out.println("<SCRIPT>parent.document.images['conpic'].src='"+filepath+"';parent.document.
forms[0].conpicurl.value='http:/211.94.188.42/"+filepath+"'</SCRIPT>");
status = "SUCCESSFUL UPLOAD";

String sql="";
Connection Conn = com.gtom.wap.ConnLoader.getInstance().getConnection(this);
Statement stat = Conn.createStatement();
sql="update ExtraWapImage set url='"+filepath+"' where id="+id;
stat.executeUpdate(sql);
out.println(sql);
stat.close();
Conn.close();
}
}
catch (NegativeArraySizeException nae){
upok = false;
String upic ="/wap/images/uploadpic/"+filename+".png";
java.io.File picfile = new java.io.File(pageContext.getServletContext().getRealPath(upic));
if (picfile.exists()){
if(picfile.delete()){
out.println("<SCRIPT>parent.document.images['conpic'].src='/wap/images/uploadpic/nopic.g
if';parent.document.forms[0].conpicurl.value=''</SCRIPT>");
status = "SUCCESSFUL DELETE";
size = 24;
}else{
status = "PICTURE NOT EXIST";
size = 24;
}
}
}
}
if (!upok){
%>
<form name="form" method="post"
action="picupload.jsp?ID=<%=id%>&PAGEID=<%=pageid%>&act=upload&filename=<%
=pageid+"_"+id%>" enctype="multipart/form-data" >
<input type="file" name="file" size="<%=size%>">
<input type="submit" name="submit1" value="UPLOAD/DELETE"
onclick="document.form.submit1.disabled=true,document.form.submit()">
<%=status%>
</form>
<a href="PageEdit.jsp?PAGEID=<%=pageid%>">BACK TO EDITOR

<%
}
%>
</td>
</tr>
</table>
</body>
</html>

 - 106 -

8.2.7 wapShop.jsp

<%@ page language="java" contentType="text/vnd.wap.wml;charset=UTF-8" %>
<?xml version="1.0" ?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"
"http://www.wapforum.org/DTD/wml_1.1.xml">
<wml>
<head>
<meta http-equiv="Cache-Control" content="max-age=0" />
<meta http-equiv="Cache-control" content="no-cache" />
</head>
<%@ page import="java.sql.*" %>
<%@ page import="com.gtom.wap.*" %>
<card id='welcome' title='welcome'>
<p>
welcome
</p>
<%
session.setAttribute("name","Mike");
session.setAttribute("phone","13641366774");
session.setAttribute("address","2nd east street 1# building 204.");
response.sendRedirect("extraview.jsp");
%>
<do type="options" label="home"><go href="http://localhost/ExtraWapImage/extraview.jsp"
/></do>
<do type="prev" label="back"><prev /></do>
</card>
</wml>

8.2.8 extraview.jsp

<%@ page language="java" contentType="text/vnd.wap.wml;charset=UTF-8" %>
<?xml version="1.0" ?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"
"http://www.wapforum.org/DTD/wml_1.1.xml">
<wml>
<head>
<meta http-equiv="Cache-Control" content="max-age=0" />
<meta http-equiv="Cache-control" content="no-cache" />
</head>
<%@ page import="java.sql.*" %>
<%@ page import="com.gtom.wap.*" %>
<%
 String ch = request.getParameter("CH");
 String id = request.getParameter("ID");
 if(id==null) id = "2";
 Connection Conn = ConnLoader.getInstance().getConnection(this);
Statement stat = Conn.createStatement();
String sql = "select * from ExtraWapImage where id="+id;

 - 107 -

ResultSet rs = stat.executeQuery(sql);
if(rs.next())out.println("<card id='welcome'
title='"+rs.getString("text").trim()+"'>");//util.gb2u(rs.getString("text").trim())+"'>");
else out.println("<card id='welcome' title='特别策划'>");
boolean p = false;
boolean pp = false;
sql = "select * from ExtraWapImage where pageid="+id+" and status=1 order by orderid desc";
rs = stat.executeQuery(sql);
String align=null;
while(rs.next()){
if(align==null||!align.equals(rs.getString("align")))p=true;
if(p){
if(pp)out.println("</p>");
out.println("<p align='"+rs.getString("align")+"'>");
p=false;
pp=true;
}
align=rs.getString("align");
if(rs.getString("type").equals("pic")){
out.println("");
}
if(rs.getString("type").equals("text")){
out.println(rs.getString("text").trim());
}
if(rs.getString("type").equals("link")){
out.println(""+rs.getString("text").trim()+"");//util.gb2u(rs.getString("text").trim())+"");
}
if(rs.getString("type").equals("order")){
out.println("buy
now");
}
if(rs.getInt("enter")==1)out.println("
");
}
rs.close();
Conn.close();
out.println("
");
out.println("client:"+session.getAttribute("name")+"
");
//out.println("phone:"+session.getAttribute("phone")+"
");
//out.println("address:"+session.getAttribute("address")+"
");
%>
take the bill

</p>
<do type="options" label="home"><go
href="http://localhost/ExtraWapImage/extraview.jsp?ID=2" /></do>
<do type="prev" label="back"><prev /></do>
</card>
</wml>

 - 108 -

8.2.9 order.jsp

<%@ page language="java" contentType="text/vnd.wap.wml;charset=UTF-8" %>
<?xml version="1.0" ?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"
"http://www.wapforum.org/DTD/wml_1.1.xml">
<wml>
<head>
<meta http-equiv="Cache-Control" content="max-age=0" />
<meta http-equiv="Cache-control" content="no-cache" />
</head>
<%@ page import="java.sql.*" %>
<%@ page import="java.util.*" %>
<%@ page import="com.gtom.wap.*" %>
<card id='order' title='your bill'>
<p>
<%
String id = request.getParameter("ID");
Connection Conn = ConnLoader.getInstance().getConnection(this);
Statement stat = Conn.createStatement();
String sql = null;
ResultSet rs = null;
if(id!=null){
sql = "select * from ExtraWapImage where id="+id;
rs = stat.executeQuery(sql);
if(rs.next()){
String text = rs.getString("text").trim();
Vector vec = (Vector)session.getAttribute("Bill");
if(vec == null){
vec = new Vector();
vec.add(1+";"+text+";"+rs.getString("id"));
}else{
vec.add((vec.size()+1)+";"+text+";"+rs.getString("id"));
}
session.setAttribute("Bill",vec);
}
}
Vector vec = (Vector)session.getAttribute("Bill");
int total = 0;
if(vec!=null){
for(int i=(vec.size()-1);i>=0;i--){
String text = (String)vec.get(i);
String[] item = text.split("\\;");
out.println(item[1]+" ");
out.println("price:"+item[2]+"$ del
");
//out.println(text+"
");
try{
total += Integer.parseInt(item[2]);
}catch(Exception e){
}

 - 109 -

}
}
//rs.close();
Conn.close();
%>
total: <%=total%>$

submit
</p>
<do type="options" label="home"><go href="http://localhost/ExtraWapImage/extraview.jsp"
/></do>
<do type="prev" label="back"><prev /></do>
</card>
</wml>

8.2.10 saveOrder.jsp

<%@ page language="java" contentType="text/vnd.wap.wml;charset=UTF-8" %>
<?xml version="1.0" ?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"
"http://www.wapforum.org/DTD/wml_1.1.xml">
<wml>
<head>
<meta http-equiv="Cache-Control" content="max-age=0" />
<meta http-equiv="Cache-control" content="no-cache" />
</head>
<%@ page import="java.sql.*" %>
<%@ page import="java.util.*" %>
<%@ page import="com.gtom.wap.*" %>
<card id='order' title='your bill'>
<p>
<%
Connection Conn = ConnLoader.getInstance().getConnection(this);
Statement stat = Conn.createStatement();
String sql = null;
ResultSet rs = null;
sql = null;
//rs = stat.executeQuery(sql);
String userMobile = (String)session.getAttribute("phone");
Vector vec = (Vector)session.getAttribute("Bill");
int total = 0;
if(vec!=null){
for(int i=(vec.size()-1);i>=0;i--){
String text = (String)vec.get(i);
String[] item = text.split("\\;");
sql = "insert into userorder(userMobile,itemID,itemName,price)
values("+userMobile+",'"+item[3]+"','"+item[1]+"',"+item[2]+")";
stat.executeUpdate(sql);
out.println(item[1]+" ");

 - 110 -

out.println("price:"+item[2]+"$ del
");
//out.println(text+"
");
try{
total += Integer.parseInt(item[2]);
}catch(Exception e){
}
}
}
//rs.close();
Conn.close();
%>
total: <%=total%>$

the order saved!
</p>
<do type="options" label="home"><go href="http://localhost/ExtraWapImage/extraview.jsp"
/></do>
<do type="prev" label="back"><prev /></do>
</card>
</wml>

8.2.11 orderDel.jsp

<%@ page language="java" contentType="text/vnd.wap.wml;charset=UTF-8" %>
<?xml version="1.0" ?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"
"http://www.wapforum.org/DTD/wml_1.1.xml">
<wml>
<head>
<meta http-equiv="Cache-Control" content="max-age=0" />
<meta http-equiv="Cache-control" content="no-cache" />
</head>
<%@ page import="java.sql.*" %>
<%@ page import="java.util.*" %>
<%@ page import="com.gtom.wap.*" %>
<card id='orderDel' title='del'>
<p>
<%
try{
int setid = Integer.parseInt(request.getParameter("setID"));
Vector vec = (Vector)session.getAttribute("Bill");
for(int i=(vec.size()-1);i>=0;i--){
if(i==setid){
vec.remove(i);
}
}
}catch(Exception e){
}
response.sendRedirect("order.jsp");

 - 111 -

%>
</p>
<do type="options" label="home"><go href="http://localhost/ExtraWapImage/extraview.jsp"
/></do>
<do type="prev" label="back"><prev /></do>
</card>
</wml>

 8.2.12 Connloader.java

package com.gtom.wap;
import java.sql.*;
public class ConnLoader{
private static ConnLoader instance;
public Connection getConnection(Object obj){
Connection conn = null;
try{
Class.forName("org.gjt.mm.mysql.Driver").newInstance();
}
catch (Exception E){
System.err.println("Unable to load driver.");
E.printStackTrace();
}
try{
conn = DriverManager.getConnection(
"jdbc:mysql://127.0.0.1/gtom_wap?useUnicode=true&characterEncodeing=gb2312&user=ro
ot&password=");
}
catch (SQLException E){
System.out.println("SQLException: " + E.getMessage());
System.out.println("SQLState: " + E.getSQLState());
System.out.println("VendorError: " + E.getErrorCode());
}
return conn; }
public static ConnLoader getInstance(){
if(instance == null){
instance = new ConnLoader();
}
return instance;
}
private ConnLoader(){} }

 - 112 -

	1 Introduction
	1.1 Definitions and key words
	1.2 Motivation and Goals
	1.2.1 Motivation, WAP overview
	1.2.2 Goals

	1.3 Correlated Work
	1.4 About this thesis

	2 Problem Domain
	2.1 Problem
	2.2 Users classes
	2.3 Functional Requirements
	2.3.1 The expectative layout of WAP shop (Visualization func
	2.3.2 The expectative customer shopping process (Ordering fu
	2.3.3 The expectative layout of Administrative Module (Visua
	2.3.4 The expectative management process (Editing functional
	2.3.5 Functional requirements of Database system

	2.4 Introduction of correlation between functionalities and
	2.5 Correlated work and conclusion

	3 Development Tools
	3.1 Introduction of development tools used in WOSS system
	3.2 Using WML
	3.3 Using MySQL
	3.4 Using Orion Application server
	3.4.1 JavaBeans overview.
	3.4.2 Orion Application server

	3.5 Using JSP
	3.5.1 JSP overview
	3.5.2 JSP configuration
	3.5.3 JSP syntax and simple examples of WOSS

	3.6 Using JDBC
	3.7 Using JavaScript and HTML
	3.7.1 HTML DOM event
	3.7.2 Create a table
	3.7.3 DOM checkbox
	3.7.4 HTML input form
	3.7.5 Dropdown list in a form

	3.8 Selecting Operating System
	3.9 Conclusion

	4 System Design
	4.1 Overview
	4.2 WOSS system structure
	4.3 Design of Administrative module (Web server)
	4.4 Design of Customer Interface
	4.5 Design of Database management system
	4.6 Conclusion

	5 System Implementation
	5.1 Implementation of Administrative module (Web server)
	5.1.1 Implementation of ExtraWapImage.jsp (WAP SHOP EDIT)
	5.1.2 Implementation of PageEdit.jsp (Page Editor)
	5.1.3 Implementation of data query and retrieving the data t
	5.1.4 Implementation of JDBC

	5.2 Implementation of Customer interface
	5.2.1 Implementation of wapShop.jsp and extraview.jsp
	5.2.2 Implementation of Customer ordering

	5.3 Implementation MySQL database
	5.4 Conclusion

	6 System Test
	6.1 Component test
	6.1.1 Component test of Customer Interface
	6.1.2 Component Test of Administrative Module

	6.2 Integration test
	6.2.1 Integration test of editing functionalities
	6.2.2 Integration test of ordering functionalities and data

	6.3 Conclusion

	7 Conclusion and proposal
	7.1 Achievements
	7.2 Future possible improvements of WOSS system

	8 Bibliography and Appendixes
	8.1 Bibliography
	8.2 Source code
	8.2.1 ExtraWapImage.jsp
	8.2.2 ewiupdate.jsp
	8.2.3 PageEdit.jsp
	8.2.4 ewidel.jsp
	8.2.5 ewipageupdate.jsp
	8.2.6 picupload.jsp
	8.2.7 wapShop.jsp
	8.2.8 extraview.jsp
	8.2.9 order.jsp
	8.2.10 saveOrder.jsp
	8.2.11 orderDel.jsp
	8.2.12 Connloader.java

