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Grey-box pharmacokinetic/pharmacodynamic (PK/PD) modelling is presented as a promising
way of modelling PK/PD systems. The concept behind grey-box modelling is based on combin-
ing physiological knowledge along with information from data in the estimation of model para-
meters. Grey-box modelling consists of using stochastic differential equations (SDEs) where the
stochastic term in the differential equations represents unknown or incorrectly modelled
dynamics of the system. The methodology behind the grey-box PK/PD modelling framework for
systematic model improvement is illustrated using simulated data and furthermore applied to
Bergman’s minimal model of glucose kinetics using clinical data from an intravenous glucose
tolerance test (IVGTT). The grey-box estimates of the stochastic system noise parameters indi-
cate that the glucose minimal model is too simple and should preferably be revised in order to
describe the complicated in vivo system of insulin and glucose following an IVGTT.

KEY WORDS: grey-box PK/PD modelling; stochastic differential equations; systematic
model improvement; glucose minimal model; IVGTT.

INTRODUCTION

Grey-box pharmacokinetic/pharmacodynamic (PK/PD) modelling
combines a known or proposed model structure with a stochastic term in
the differential equations representing disturbances, inputs to the system
which are not measured, and unmodelled dynamics of the system. This
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setup facilitates a more rigorous statistical approach for parameter
estimation where the residual error is decomposed into measurement and
system error (1). The advantage of using grey-box PK/PD models is that
physiological knowledge is combined with information from data. This
feature makes it a very attractive tool for modelling PK/PD systems
where the system is not fully understood or cannot be explicitly modelled.
The setup can furthermore be used as a suitable framework for systematic
model improvement (2) illustrated by a simulated example of an indirect
response model (3) and by Bergman’s minimal model of glucose kinetics
(GMM) (4, 5) using clinical data from an intravenous glucose tolerance
test (IVGTT).

THEORY

Stochastic Differential Equations

Grey-box models are stochastic state space models consisting of sto-
chastic differential equations (SDEs) describing the dynamics of the states
of the system and discrete time measurement equations describing the
observations as a function of the states. Grey-box models thereby accom-
modate random effects by decomposing the noise into a stochastic system
or process noise term representing unknown or incorrectly modelled
dynamics of the system and a stochastic measurement noise term account-
ing for uncorrelated errors such as assay error (1).

The relationship between input and output signals in a dynamical
system is conveniently described by a state space model. A state space
model is an internal parametric representation between input and output
which in a continuous time formulation enables a direct physiological
meaning of the parameters. Since the structural information of the system
is formulated in continuous time and the data is observed at discrete time
points, the continuous-discrete time stochastic state space model consist-
ing of a continuous time system equation and a discrete time observation
equation is defined as

dx ¼ gðh;x; dÞdtþ rwðh; dÞdwt; ð1Þ

yj ¼ fðh; x; dÞ þ ej; ð2Þ

where x is the state vector, the vector d contains the inputs to the system,
h is the parameter vector, and t is the time variable. The deterministic
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function gð�Þ is called the drift term, rwð�Þ is the diffusion term while wt is
a standard Wiener process also referred to as Brownian motion (6). The
standard Wiener process wt is a non-stationary stochastic process with
mutually independent (orthogonal) increments which are normally distrib-
uted with mean and variance

E½wt2 � wt1 � ¼ 0; ð3Þ

V½wt2 � wt1 � ¼ jt2 � t1jI; ð4Þ

where I is the identity matrix.
By setting the diffusion term rwð�Þ in (1) equal to zero, an ordinary

differential equation (ODE) is obtained. The transformation from ordin-
ary to stochastic differential equations does therefore not affect the drift
term gð�Þ and the physiological interpretation of the parameters is pre-
served.

The vector of measurements at time tj, denoted by yj, is modelled as
a function of states and inputs as described by fð�Þ while the measurement
error terms ej are independent and identically distributed (iid) with
mean zero and variance R ¼ rrT. Finally, we assume that wt and ej are
independent.

Maximum Likelihood Estimation in SDEs

The maximum likelihood (ML) method used for estimating the para-
meters in grey-box models is described in the following (see (7–9) for
further details). Maximum likelihood estimation is based on maximizing
the likelihood function in term of the joint distribution of the observa-
tions yN ¼ ½yN; yN�1; . . . ; y0� given the parameter vector h (9).

Lðh;yNÞ ¼ pðyNjhÞ ¼
YN
j¼1

pðyjjYj�1; hÞ
 !

pðy0jhÞ ð5Þ

where the Markov property PðA \ BÞ ¼ PðAjBÞPðBÞ has been applied to
express the likelihood function as a product of marginal conditional prob-
ability densities. Under the assumption that the conditional density func-
tion is Gaussian (which is true for linear models), the following equations
entirely characterize the one-step conditional density pðyjjyj�1; hÞ in (5),
i.e.,
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ŷjjj�1 ¼ E½yjjYj�1; h� ð6Þ

Rjjj�1 ¼ V½yjjYj�1; h� ð7Þ

By introducing the one-step prediction error �j

�j ¼ yj � ŷjjj�1 ð8Þ

the likelihood function can then be written as

Lðh;yNÞ ¼
YN
j¼1

exp ð� 1
2 �

T
j R

�1
jjj�1�jÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detðRjjj�1Þ
p

ð
ffiffiffiffiffiffi
2p

p
Þl

 !
pðy0jhÞ; ð9Þ

where l is the dimension of yj.
If the likelihood function is further conditioned on y0 and by taking

the logarithm of (9), the following log-likelihood function is obtained.

ln
�
Lðh;yNjy0Þ

�
¼ � 1

2
Nl lnð2pÞ � 1

2

XN
j¼1

�
lnðdetðRjjj�1Þ

�
þ �Tj R

�1
jjj�1�j

�
ð10Þ

The one-step prediction error �j and the conditional covariance Rjjj�1 can
be calculated for given parameters h and initial conditions x0 by the use
of the Kalman filter (KF) or the extended Kalman filter (EKF) for linear
and non-linear models, respectively. The ML estimate of the parameters h
is now obtained as

ĥ ¼ arg min
h‰H

f� lnðLðh;yNjy0ÞÞg ð11Þ

The maximum likelihood estimates are asymptotically normally distribu-
ted with mean h and covariance matrix D found from the Fisher informa-
tion matrix (9). An approximation of D can be found by

DðĥÞ ’ H�1; ð12Þ
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where H is the Hessian calculated as the second derivative of the log-like-
lihood function in (10) at the obtained parameter estimates.

State Filtering

The ML estimation of parameters in SDEs involves the use of state
filtering. The EKF is a set of mathematical equations that provides an
efficient recursive approach to approximate the conditional densities with
Gaussian distributions (6). The conditional densities are thus completely
characterized by the one-step prediction error �j and the associated one-
step prediction covariance matrix Rjjj�1:

Given the parameters h, initial states x̂tjt0 ¼ x0, and initial state cov-
ariance P̂tjt0 , the prediction equations of the EKF are the optimal (mini-
mum variance) prediction of the state mean and state covariance, i.e.,

dx̂tjj�1

dt
¼ gðh; x̂tjj�1; dÞ; ð13Þ

dPtjj�1

dt
¼ APtjj�1 þ Ptjj�1A

T þ rwr
T
w; ð14Þ

where x̂tjj�1 is the one-step state prediction and Ptjj�1 is the associated
state covariance. If the drift term gð�Þ is a non-linear function in x, a local
first-order Taylor expansion of gð�Þ at each sampling time is used to
describe the dynamics of the system. The matrix A is thus approximated
by

A ¼ @g

@x

����
x¼x̂tjj�1:

ð15Þ

The output prediction equations of the observation ŷjjj�1 and the associated
covariance Rjjj�1 are calculated by

ŷjjj�1 ¼ Cx̂jjj�1; ð16Þ

Rjjj�1 ¼ CPjjj�1C
T þ rrT; ð17Þ
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where r is the standard deviation of the measurement error and C is the
linearization of the measurement equation, i.e.,

C ¼ @f

@x

����
x¼x̂jjj�1

: ð18Þ

Finally, the update equations of the EKF are

x̂jjj ¼ x̂jjj�1 þ Kjðyj � ŷjjj�1Þ; ð19Þ

Pjjj ¼ Pjjj�1 � KjRjjj�1K
T
j ; ð20Þ

Kj ¼ Pjjj�1C
TR�1

jjj�1; ð21Þ

where x̂jjj is the updated state prediction, Pjjj is the associated covariance,
and Kj is the Kalman gain.

A more detailed description of the theory behind stochastic differential
equations can be found in (6, 10) while their application to pharmacokinetic/
pharmacodynamic (PK/PD) modelling is further discussed in (7, 11, 12, 13).

EXPERIMENT

Intravenous Glucose Tolerance Test

The IVGTT experiment consists of injecting a bolus of glucose into
the bloodstream thus inducing an increase of the plasma insulin concen-
tration secreted by the pancreas. The IVGTT was performed on the off-
spring and spouses of 70 verified type II diabetes mellitus subjects. Prior
to the participation in the study informed consent was obtained from all
subjects. The study was performed at Steno Diabetic Center and approved
by the Ethical Committee of Copenhagen and was in accordance with the
principles of the Declaration of Helsinki.

About 219 normal glucose tolerant (NGT) and 25 impaired glucose
tolerant (IGT) subjects underwent a tolbutamide modified, frequently
sampled IVGTT. After 12 hr of fasting, venous blood samples were drawn
in triplicate at �10, �5, and 0 min before the IVGTT and at 2, 3, 4, 5, 6,
7, 8, 10, 12, 14, 16, 19, 22, 23, 24, 25, 27, 30, 35, 40, 50, 60, 70, 80, 90,
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100, 120, 140, 160, and 180 min after the IV bolus for analysis of plasma
insulin, glucose, and C-peptide concentrations. At t ¼ 0 min, glucose was
injected intravenously in the contralateral antecubital vein over a period
of 1 min (0.3 g/(kg BW) of 50% glucose). At t ¼ 20 min, a bolus of 3 mg
tolbutamide/(kg BW) was injected over 5 s to elicit a secondary pancreatic
beta-cell response, i.e., an insulin burst. This ensures that as much of the
dynamics of the insulin/glucose system as possible is present in the mea-
sured data. For IGT subjects, tolbutamide is specifically injected to raise
the plasma insulin level above the baseline value.

RESULTS AND DISCUSSION

Simulated Example

Let us first use a simulated example to illustrate the methodology
behind the grey-box PK/PD modelling framework for uncovering model
deficiencies through iterative model development.

The PK data is generated by a one-compartment model with an IV
constant infusion of 400 mg given over 1 hr. The PD data is simulated
from an indirect response model (3) where the plasma drug concentration
stimulated the loss of response, i.e.,

dA

dt
¼ �CL

V
A; ð22Þ

dR

dt
¼ Kin � kout 1þ EmaxðA=VÞc

ECc
50 þ ðA=VÞc

� �
R; ð23Þ

where A is the state variable for the amount of drug in the plasma and R
is the state variable for the PD response. The data is simulated using the
following parameter values: clearance CL = 1 l/h, volume of distribution
V ¼ 25 l, rate-constant for production of response Kin ¼ 1 mg/l/hr,
first-order rate-constant for loss of response kout ¼ 0:1 hr�1 maximal
stimulating effect Emax ¼ 2, drug concentration causing 50% of maximal
stimulation EC50 ¼ 5 mg/l, and sigmoidicity factor c ¼ 5:

By assuming stationarity before drug administration, the initial con-
ditions for the system of differential equations in (22)–(23) can be specified
by

A0 ¼ 0; ð24Þ

R0 ¼
Kin

kout
; ð25Þ
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where A0 is the amount of drug in the plasma at t ¼ 0 hr while R0 is the
baseline response concentration at t ¼ 0 hr.

The measurement error models used to simulate the PK/PD data are

logPKj ¼ log
Aj

V
þ ePKj ; ð26Þ

PDj ¼ Rj þ ePDj ; ð27Þ

where PK and PD are the observed plasma drug and response concentra-
tions, respectively, observed at discrete time instants tj. The measurement
error terms ePKj and ePDj are obtained by sampling from two normal densi-
ties with zero mean and variance r2PK ¼ 0:152 and r2PD ¼ 0:32:

The methodology described in (2) for using a grey-box modelling
cycle for systematic model improvement is used in the following. The first
step in the modelling cycle is to use prior physiological knowledge to
derive an initial model structure in the form of an ordinary differential
equation (ODE) model and translate it into a stochastic state-space model
by adding a diffusion term. Assuming that the initial model structure cor-
responding to (22)–(23) is correct except for the functional relationship
between the PK and PD data, the first grey-box PK/PD modelling cycle
iteration model is

dA
dR

� �
¼

� CL
V A

Kin � kout 1þ A=V
EC50þA=V

	 

R

" #
dtþ rA 0

0 rR

� �
dwt; ð28Þ

where the functional relation between the plasma drug concentration and
the PD response is an Emax model since the true structure is assumed
unknown. A diagonal parameterization of the diffusion term in the system
equation is used to allow model deficiencies to be located if the model is
insufficient. By fully conditioning on the initial response observation, the
baseline response concentration R0 is fixed at the observed concentration
at t=0 while disregarding the observation at t ¼ 0. The rate-constant for
production of response Kin can thereby be substituted with koutR0. The
measurement equations used throughout the iterative model development
are the same as those used for simulating the data, i.e., (26)–(27).

The unknown parameters in the first model iteration described by
(28) are estimated using maximum likelihood (ML) estimation
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(see Table I). On a 5% significance level, the only diffusion parameter
which is insignificant is rA. Since rR is significant, it indicates that the PD
system equation in (28) is incorrectly specified since no diffusion term was
included in the simulated data. In practice, a significant or large value of
the diffusion term points to a state variable where there is potential room
for model improvement.

The predicted concentration–time profiles are shown in Fig. 1 along
with the observed concentrations. The PK model fits the observed data
nicely while the suggested PD model clearly does not capture the true
dynamics of the PD system when comparing the observed and predicted
concentrations.
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Fig. 1. Plot of observed (circles) and predicted (solid lines) concentrations from the first grey-
box model iteration. PK (Left) and PD (Right).

Table I. Parameter estimates for the three grey-box PK/PD modelling cycle iterations

Iteration 1 2 3

Parameter Unit True Estimate

RSE

(%) Estimate

RSE

(%) Estimate

RSE

(%)

E0 [mg/L] – – – 2.68 40.4 – –

CL [L/hr] 1.0 1.04 3.58 1.04 3.52 1.04 3.71

V [L] 25.0 25.8 4.36 25.9 6.18 25.9 4.96

kout [1/hr] 0.1 0.0736 51.3 0.0527 41.9 0.0846 9.80

Emax [–] 2.0 – – – – 2.09 6.50

EC50 [mg/L] 5.0 3.49 59.8 – – 4.82 7.21

c [–] 5.0 – – – – 6.92 27.6

rA [mg/
ffiffiffiffiffi
hr

p
] 0.0 0.00 193 0.00 139 0.00 766

rR [mg/L
ffiffiffiffiffi
hr

p
] 0.0 0.759 22.0 0.00 >1000 0.00 >1000

rE [1/
ffiffiffiffiffi
hr

p
] 0.0 – – 0.239 42.6 – –

rPK [%] 15.0 13.5 18.6 13.5 18.2 13.5 18.1

rPD [mg/L] 0.30 0.00 >1000 0.326 25.6 0.244 18.7
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Instead of trying every possible combination for the functional rela-
tionship between the PK and PD data, the second step in the grey-box
PK/PD modelling cycle iteration consists of re-formulating the model in
(28) with an additional state variable E representing the effect model. The
drift term in the state equation for E is set equal to zero in dE=dt thereby
assuming that E is a constant while any variations is adopted by the diffu-
sion term parameterized by rE. The system equations for the second
model iteration can thereby be written as

dA
dR
dE

2
4

3
5 ¼

� CL
V A

Kin � koutð1þ EÞR
0

2
4

3
5dtþ rA 0 0

0 rR 0
0 0 rE

2
4

3
5dwt; ð29Þ

where the initial state of E is denoted by E0.
The parameter estimates of the second model iteration in (29) are

shown in Table I. rE is the only diffusion term which is significant while
both rA and rR are insignificant on a 5% significance level. The signifi-
cant diffusion term rE confirms the suspicion that E is deficiently
described by a constant.

In order to deconvolve the functional structure of E, the next step in
the second grey-box PK/PD modelling iteration is to use the EKF filter
estimates together with non-parametric modelling (2). The filter estimates
Âjjj, R̂jjj, and Êjjj at each time instant tj are obtained by using the para-
meter estimates of the re-formulated model in (29) along with the mea-
surements until time tj by means of the EKF. The partial dependence
plots of Êjjj vs. Âjjj=V and R̂jjj are shown in Fig. 2 together with a fitted
local regression model. The plots clearly indicate that Êjjj is highly depen-
dent on Âjjj=V and the functional relationship seems to be a sigmoidal

Filter estimates

E
j|j

0 5 10 15

0

1

2

3
Aj|j V

4 6 8 10

Rj|j

Fig. 2. Partial dependence plots of Êjjj vs. Âjjj=V (Left) and Êjjj vs. R̂jjj (Right). Filter
estimates (circles) and fitted local regression model (solid lines).
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Emax model. Since Êjjj does not seem to depend on R̂jjj, the dependency of
R on E is disregarded in the next model iteration.

The assumption about E being constant should therefore be replaced
in the next re-formulated model with an assumption about E being a
sigmoidal Emax function of the PK concentration, i.e., A=V. The re-formu-
lated system equations in the third (and last) model iteration in the grey-
box PK/PD modelling cycle iteration are therefore

dA
dR

� �
¼

� CL
V A

Kin � koutð1þ EmaxðA=VÞc
ECc

50
þðA=VÞcÞR

" #
dtþ rA 0

0 rR

� �
dwt: ð30Þ

The estimated parameters of the third model iteration in (30) are shown
in Table I. The estimated system noise parameters are both insignificant
on a 5% significance level indicating that the system model is adequate.
The remaining PK/PD parameter estimates are all reasonably close to
their simulated values. The predicted PK/PD concentration–time profiles
are shown in Fig. 3 and model (30) seems to capture the true dynamics of
the simulated PK/PD system in (28). The grey-box PK/PD modelling
cycle iteration is thus terminated and the grey-box PK/PD modelling fra-
mework has shown its usefulness in uncovering the true model structure
through iterative model development.

Glucose Minimal Model

The glucose minimal model (GMM) initially proposed by
Dr. Richard N. Bergman et al., (4,5) is used to model the clinical data
from an IVGTT. The model was initially introduced for the interpretation
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Fig. 3. Plot of observed (circles) and predicted (solid lines) concentrations from the third
grey-box model iteration. PK (Left) and PD (Right).
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of the plasma glucose and insulin concentrations following an IVGTT in
order to assess metabolic indices of subjects likely to develop diabetes.

The GMM consists of two compartments, i.e., a glucose and remote
insulin compartment. The controlling action of insulin on hepatic glucose
production and utilization of glucose in the peripheral tissue is modelled
using the insulin in the remote compartment. The stochastic differential
equations governing the GMM are

dG
dX

� �
¼ SGGb � ðSG þ XÞG

�p2ðX� SIðI� IbÞÞ

� �
dtþ rG 0

0 rX

� �
dwt; ð31Þ

where G is the state vector for the plasma glucose concentration and X is
the insulin action which is proportional to the insulin in the remote com-
partment. Gb and Ib are the basal plasma glucose and insulin concentra-
tions, respectively, and typically measured as the mean of the glucose
measurements before the glucose bolus injection. I is the observed plasma
insulin concentration which is used as a forcing function in the GMM.
The parameters SG and SI are the insulin-independent and insulin-depen-
dent rate constants of glucose uptake commonly referred to as the glucose
effectiveness and the insulin sensitivity index, respectively. The parameter
p2 corresponds to the spontaneous decrease of tissue glucose uptake abil-
ity (14). The diffusion term in (31) is parameterized as a diagonal matrix
since the system noise is assumed independent between the glucose and
insulin action states. This will furthermore help pinpoint model deficien-
cies as in the simulated grey-box PK/PD example. The glucose concentra-
tion at t ¼ 0 min is estimated as the parameter G0 while the insulin action
at t ¼ 0 min per definition is zero.

In order to obtain homogeneity of the measurement error variance, it
is modelled using an additive error model on the log-scale corresponding
to a constant coefficient of variation (CV) model on the untransformed
scale, i.e.,

logGobs; j ¼ logGj þ ej; ej 2 Nð0; r2Þ; ð32Þ

where Gobs; j and Gj are the observed and predicted glucose concentrations,
respectively, at time instants tj. The measurement error terms ej are nor-
mal distributed with mean zero and variance r2. The first 7 min of
observed glucose concentrations were set as missing for the parameter
estimation because of the single compartment assumption of the glucose
distribution (15).
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The unknown parameters in (31) are estimated using ML estimation.
A standard two-stage approach (16) was used to obtain the two first
moments of the population distribution by calculating the empirical mean
and variance of all the individual parameter estimates. The empirical
mean and relative standard deviation (RSD) estimates of the 244 subjects
from the IVGTT are shown in Table II. The grey-box estimates using
SDEs are compared to estimates using ODEs, i.e., where the diffusion
term rw is set to zero in the SDEs. The main difference between the SDE
and ODE parameter estimates is in the insulin sensitivity index where the
empirical mean and RSD estimates for the SDE and ODE approach are
1:94� 10�4 (150%) and 3:31� 10�4 min�2 pM�1 (358%), respectively.
The estimated measurement error is furthermore deflated from 5.94%
using ODEs to 2.88% using SDEs since residual error due to model mis-
specification is accounted for in the system noise parameters. The system
noise parameter rG is significant for almost all subjects while rX is
insignificant. This indicates that the GMM does not fully capture the
dynamics of the IVGTT. The GMM has been reassessed in (17–20) but
these models are not considered in this work since they require the
injected glucose to be labelled to be able to estimate yet another unobser-
vable state.

The predicted glucose concentration–time profiles using SDEs and
ODEs are shown in Fig. 4 along with the observed glucose concentrations
for the 244 subjects. The SDE and ODE predictions seem very similar but
the drop in the glucose concentrations below the basal glucose level is not
so significant in the SDE predictions. The goodness-of-fit graphs of
observed versus predicted glucose concentrations are displayed in Fig. 5
for the SDE and ODE approach.

Table II. Empirical mean and relative standard deviation (RSD) estimates for 244 subjects.

Comparison of standard two-stage GMM parameter estimates using stochastic (SDE) and

ordinary (ODE) differential equations.

Method SDE ODE

Parameter Unit Mean RSD (%) Mean RSD (%)

G0 [mM] 14.7 10.2 14.9 10.0

SG [min�1 ] 0.0181 35.7 0.0170 34.0

SI [min�2 pM�1 ] 0.000194 150 0.000331 356

P2 [min�1] 0.0336 183 0.0324 118

rG [mM min�1=2 ] 0.0457 90.8 – –

rX [min�3=2 ] 0.000196 271 – –

r [%] 2.88 197 5.94 127
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The estimates of SG from the GMM are generally less precise than
those of SI. This is partially because of the model assumption concerning
the self-production of glucose which is assumed to be negligible. The glu-
cose effectiveness SG does not only reflect the glucose effect on glucose
uptake and production but also the rapid exchange of glucose between
accessible and non-accessible glucose pools in the early part of the IVGTT
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Fig. 4. Plot of observed and predicted glucose concentrations with each line representing data
from one individual. Observed data (Left), SDE predictions (Middle), and ODE predictions

(Right).
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The solid lines are the lines of identity.
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according to Caumo et al. (18). As mentioned previously, the system noise
parameter rG is significant for almost all subjects in the IVGTT which
indicates a potential model deficiency. The assumption about SG being
constant is therefore examined by including SG as an additional state vari-
able with the drift term set equal to zero since it is considered to be a con-
stant plus a diffusion parameter rSG

, i.e.,

dG
dX
dSG

2
4

3
5 ¼

SGGb � ðSG þ XÞG
�p2ðX� SIðI� IbÞÞ

0

2
4

3
5dtþ rG 0 0

0 rX 0
0 0 rSG

2
4

3
5dwt: ð33Þ

The parameter estimates of the diffusion term rSG
in the system equation

for SG is significant while the diffusion term parameters rG and rX now
both are insignificant on a 5% significance level (not shown). The partial
dependency plots of ŜG;jjj vs. X̂jjj and Ĝjjj for a representative subject from
the study are shown in Fig. 6.

There does not seem to be a relationship between ŜG;jjj and X̂jjj in
Fig. 6. ŜG;jjj seems to depend more strongly on Ĝjjj where ŜG;jjj assume
values around 0.06 min�1 at glucose concentrations around 5 mM while
ŜG;jjj is around 0.02 min�1 at glucose concentrations above 8 mM. The
observed pattern in the partial dependency plot of ŜG;jjj vs. Ĝjjj in Fig. 6
might be a result of SG being a composite parameter reflecting the inabil-
ity of the single-compartment approximation in the GMM. The functional
relationship between ŜG;jjj and Ĝjjj is however not easily seen in Fig. 6 and
the next step in the grey-box PK/PD modelling cycle iteration is not
obvious. However, it may be concluded that the simplifying assumption
about SG being constant seems to be wrong.

Filter estimates
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Fig. 6. Partial dependence plots of ŜG;jjj vs. Ĝjjj (left) and ŜG;jjj vs. X̂jjj (right) for a
representative subject.
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CONCLUSION

Simulated data of a one-compartment PK model with IV infusion
and an indirect response PD model with stimulation of kout has success-
fully been used to illustrate the methodology behind the grey-box PK/PD
modelling framework for uncovering model deficiencies through iterative
model development. It was furthermore shown how to use the grey-box
PK/PD modelling framework for deconvolution of the functional relation-
ship between PK and PD data.

The glucose minimal model was used to model clinical data from an
IVGTT where the obtained estimate of the insulin sensitivity index SI was
significantly different between the SDE and ODE approach. The estimated
diffusion parameters rG and rX indicated that the GMM is too simple
and not fully adequate for describing the complicated dynamic in vivo sys-
tem of insulin and glucose following an IVGTT. In the attempt to test the
assumption about the glucose effectiveness SG being constant, SG was
included as another state variable with the drift term set equal to zero
plus a diffusion term. The partial dependence plot of ŜG;jjj vs. Ĝjjj clearly
showed that the assumption about SG being constant is not valid.
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