Combining Logical and Physical
Access Control for Smart Environments

Kristine Frank
Ida C. Willemoes-Wissing

Lyngby, August 2004
M.Sc. Thesis

IMM

Computer Science and Technology
Informatics and Mathematical Modelling
Technical University of Denmark

Trykt af IMM, DTU

iii

Abstract

Traditional access control models only protect logical entities within the computer (such
as files and memory) and not information displayed on a computer monitor. Furthermore,
it is processes that are granted or denied access to resources, not the persons who are
physically present in front of the computer. Logical access control models are inadequate
if the environment is physically unprotected and an intruder uses coercion to obtain access
to otherwise classified information. The coercion could include weapons, leaving the user
with no option but to grant access to the computer.

The theoretical contribution of this thesis is an access control model that not only
takes files and process into consideration when making access control decisions, but also
the persons physically present in the environment and the information displayed on a
computer monitor. The model is a multilevel security model where files, processes, windows
and unauthorized persons are associated with security levels. These levels are used as the
basis for mandatory access control decisions. If a person in the environment is denied
viewing access to a window, the window will disappear from the computer monitor so that
it no longer is human-readable.

The technical contributions fall in three modules. Firstly, a stackable file system has
been extended so that it can enforce mandatory access control. Secondly, a simple move-
ment sensor based on two web-cameras can detect whether unauthorized persons enter or
leave the environment. Finally, a module combines the logical and physical access control
and ensures that windows on the computer monitor are made invisible when the data re-
ceived from the sensor indicates that unauthorized persons are present. The system has
been developed so that it can be integrated with a Unix operating system.

The security policy enforced by the system is set by parameters during startup. These
parameters can, for instance, specify that the system should conform to the Bell-LaPadula
model or the Biba model and thus address confidentiality or integrity, respectively.

Keywords: access control, multilevel security models, sensors, motion detection, op-
erating systems, and stackable file systems.

v

Abstract

Resumé

Adgangskontrolmodeller beskytter normalt kun logiske objekter i en computer (s& som filer
og hukommelse) og ikke information, der bliver vist pa en computerskaerm. Desuden er det
processer, som kan fa tildelt adgang til ressourcer, og ikke personerne der er fysisk tilstede
foran computeren. Logiske adgangskontrolmodeller er utilstraekkelige, hvis miljget er fy-
sisk ubeskyttet og en uautoriseret person bruger tvang til at opna adgang til klassificeret
information. Tvangen kan inkludere viben, hvilket resulterer i at brugeren ikke har andre
muligheder end at give adgang til computeren.

Det teoretiske bidrag i denne afhandling er en adgangskontrolmodel, som ikke kun
betragter filer og processor, nar beslutninger om adgangskontrol skal tages, men ogsa de
personer der er fysisk til stede i miljget og den information der bliver vist pa computer-
skeermen. Modellen er en fler-niveaus sikkerhedsmodel, hvor filer, processer, vinduer og
uautoriserede personer er associeret med sikkerhedsniveauer. Disse niveauer udger funda-
mentet for beslutninger om obligatorisk adgangskontrol. Hvis en person i miljpet ikke ma
se et vindue vil det forsvinde fra computersksermen, séledes at det ikke laengere er muligt
at se det.

De tekniske bidrag kan inddeles i tre moduler: Det fgrste modul er et stakbart filsystem,
der er blevet udvidet saledes, at det kan handhave obligatorisk adgangskontrol. Det andet
modul er en simpel bevaegelsessensor, der er baseret pa to web-kameraer, og som kan opdage
om uautoriserede personer indtraeder i eller forlader miljget. Det tredje modul kombinerer
den logiske og fysiske adgangskontrol samt sikrer, at vinduer pa computerskaermen bliver
usynlige, nar data modtaget fra sensorerne indikerer, at uautoriserede personer er til stede.
Systemet er udviklet saledes, at det kan integreres med et Unix operativsystem.

Den sikkerhed, der patvinges af systemet, er sat vha. parametre som en del af sys-
temopstarten. Disse parametre kan for eksempel specificere, at systemet skal rette sig
efter Bell-LaPadula modellen eller Biba modellen og derved hhv. adressere fortrolighed og
integritet.

vi

Abstract

vil

Preface

This M.Sc. thesis is the result of our work carried out in the period from January 2004 to
August 2004. The thesis was developed at the Computer Science and Engineering (CSE)
division of the Department of Informatics and Mathematical Modelling (IMM) at the
Technical University of Denmark (DTU). The work was supervised by associate professor
Christian Damsgaard Jensen.

We would like to thank Christian Damsgaard Jensen for his feedback and helpful sug-
gestions. Furthermore, we would like to thank our family for their support, Susan Rabbe for
proofreading parts of the thesis, and the PhD students in the Safe and Secure I'T-Systems
group at IMM for good company while writing this thesis.

Lyngby, August 2004.

Kristine Frank Ida C. Willemoes-Wissing

viii Abstract

Contents

4.1
4.2

1 Introduction
1.1 Motivation L
1.2 Sensor Enhanced Access Control Model
1.3 The Developed Prototype L oL
1.4 Contributions
1.5 Thesis Organization
2 Security and Access Control
2.1 Computer Security e
2.2 Access Control
2.2.1 Physical Access Control
2.2.2 Logical Access Controlo
2.3 SUmMmMAary e e e
3 Sensors and Motion Detection
3.1 Sensors ... e
3.2 Motion Detection
3.2.1 Infrared Sensorso
3.2.2 Radio Wave Frequency Sensors
3.2.3 Digital Images
3.3 Summary e e e

Unix Background Information

The X Window System
File Systems
4.2.1 'The Virtual File System 0.
4.2.2 Stackable File Systems o o oo

ix

10
17

19
19
20
20
20
21
22

CONTENTS

5 Sensor Enhanced Access Control Model

5.1 Logical Access Control
511 Fileso
5.1.2 Users

5.2 Physical Access Control
521 Windows o oo
522 Persons

5.3 Combining Logical and Physical Access Control

5.3.1 Reference Monitors
5.3.2 Security Policy
6 Design
6.1 Software Architecture Overview
6.1.1 The Subsystems
6.1.2 Processes and Message Passing
6.2 The Security Policy Parameters
6.3 The Stackable File System
6.4 File Level Management
6.5 User Level Management
6.6 Window Management
6.7 Motion Detection using Sensors
6.7.1 Choice of Sensors
6.7.2 Motion Detection Programs
6.7.3 Design of Physical Premises
6.8 CSP Specification
6.8.1 Processes, Channels, and Users
6.82 DataTypes
6.8.3 Functions
6.8.4 The Communication Protocol

7 Implementation

7.1 The Stackable File System
7.1.1 Storage of Levels
712 FiSTInput File

7.2 Window Management

7.2.1 The Visibility Manager.

CONTENTS xi
7.2.2 Intercepting Window Creation and Destruction 71

7.2.3 Intercepting File Open L. 72

7.2.4 Handling of Backup Files 72

7.2.5 The Sensor Server e 74

7.2.6 Printing Subject and Window Status Information 74

7.3 Sensors 75
7.3.1 Web-cameras 75

7.3.2 Motion, a Motion Detection Program 75

7.3.3 Motion Detection Programs 78

7.3.4 Known Limitations in the Camera System 83

7.4 The Security Manager GUL 84
7.4.1 The GUI Functionality 84

7.4.2 Interfacing between Java and C Programs 86

743 The GUI Classes o v ittt it e e 86

8 Evaluation 87
9 Further Developments 89
9.1 Porting the System to Other Unix Versions 89
9.2 Exportation of Classified Data.. 89
9.3 Using other Access Control Models 90
9.4 Extending or Replacing the Sensor Subsystem 90

10 Conclusion 93
10.1 Summary of Contributions L oL 93
10.2 Future Work 94
Bibliography 99
A CSP and VDM-SL Notation 101
A.1 CSP Process Expressions 101
A2 VDM-SL Symbols 101

B Installation Guide 105
B.1 Installation of the Access Control Part 106
B.1.1 Changes made to the Stackable File System Templates 107

B.2 Installation of the Web-cameras and Motion Detection Programs 107

xil

CONTENTS

C User’s Guide

C.1 System Startup and Shutdown

C.1.1 Guide to the Super User
C.1.2 Guide to a Non-Privileged User
The Web-Camera Sensor

C.2

C.3 The Command Line Programs

C.4 The Security Manager GUI

C.3.1
C.3.2
C.3.3
C.34

D Testing

D.1
D.2
D.3
D4
D.5
D.6
D.7

Stackable File System Test
File Level Management Test
User Level Management Test
Mandatory Access Control Test
Window Management Test
Editor Test

Web-camera Sensor Test

File Level Management
User Level Management
Window Management

Sensors

E GUI Screen-shots

F Source Code

F.1 Common Files

F.2

F.11
F.1.2
F.1.3
F.1.4
F.1.5

The Stackable File System Files

F.21
F.2.2
F.2.3
F.24
F.2.5

mount _point.h
seac_ipch.00,
seac_IpC.C
security policy parameters.h

sensor.h L.

macfs.fist

security policy.c

file levels.c
user_levels.c

seac init.c

109

CONTENTS xiii

F.3

F4

F.5

F.6

F.7

F.8

F.2.6 initclic . . . oo oo 156
F.2.7 seac_destroy.c 157
File Level Management Files 158
F3.1 getflic0 oo e 158
F3.2 setflic oo 159
F3.3 listfle ... o0 oo 160
User Level Management Files, 162
FA41l getulc oo e 162
Fi42 setulc o e 163
F43 listule . .. o000 e 164
Window Management Files L. 166
F.5.1 wvisibility manager.c o o 166
F.5.2 file_open monitor.c L o o 180
F.5.3 Sensor Server.C e 181
Fb4 listwle . . . o0 oo e 183
F5.5 listsle . .. o0 o oo e 184
F5.6 getclie . . . oo oo 185
Editor Files e 186
F.6.1 x_create_window_interceptor.c 186
F.6.2 backup interceptor.c. L 188
Sensor Files L 189
F.7.1 SWSensor.C o e 189
F.72 motion _handler.c. o o o 190
F.7.3 camera_client.c. L o 195
F.r4 eventl.c o . o o 199
F.7.5 event2.c e 200
For6 pipe2h .. oo e 201
F.7.7 start_motion.c 201
GUIL Files o 202
F.81 Execjava e 202
F.8.2 SecurityManagerGUlLjava 206
F.8.3 BasicPaneljava 209
F.84 InitPaneljava 210
F.85 MessagePaneljava o 210

F.8.6 FileLevelPaneljava oo 211

xiv CONTENTS
F.8.7 FileLevelTableModel.java 214
F.8.8 SimpleTableModel.java 215
F.8.9 UserLevelPanel.java, 215
F.8.10 UserLevelTableModel.java 217
F.8.11 WindowPanel.java o 217
F.8.12 WindowTableModel.java 220
F.8.13 SubjectLevelPaneljava 220

F.9 System Administration Scripts 221
F.9.1 reset.sh o o 221
F.9.2 startup.sh 222

F.9.3 shutdown.sh o 222

XV

List of Figures

1.1

2.1
2.2
2.3
24
2.5

4.1
4.2
4.3
4.4

5.1
5.2

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

7.1
7.2
7.3
7.4

Sensor deployment L 2
The Onion Model 9
The Garlic Clove Model o 9
Fundamental Access Control Model 10
An Example Security Lattice 12
The Bell-LaPadula Model 13
The X Window System 26
The virtual file system L o 28
Stackable file systems 29
Stackable file system development using FiST 29
Mediation of access toafile oo Lo o Lo 36
Mediation of access to a window L. 37
Layered Architecture with subsystems. 42
User space process interaction. L oL 43
CSP processes and channels in the system. 52
CSP specification of the visibility manager process. 60
CSP specification of the visibility manager process, continued. 61
CSP specification of the MAP _ WINDOWS process. 62
CSP specification of the UNMAP _ WINDOWS process 62
CSP specification of the client processes 63
FiST grammar outline o 66
Sample window status information 00000, 76
The Camera Software Architecture 79

Pseudo-code for the main motion_handler loop 81

xvi LIST OF FIGURES
E.1 GUI Screen-shot: File Level Management 126
E.2 GUI Screen-shot: File Level Management, including browse dialog window . 127
E.3 GUI Screen-shot: User Level Management, non-privileged user view 128
E.4 GUI Screen-shot: User Level Management, super user view 129
E.5 GUI Screen-shot: Unmapped Windows 130
E.6 GUI Screen-shot: Unmapped Windows, names of open files shown 131
E.7 GUI Screen-shot: Mapped Windows 132
E.8 GUI Screen-shot: Current Subject Levels. 133

xvil

List of Tables

5.1 Sensor enhanced access control model terminology 34
A.1 CSP notation for processes and process expressions. 102
A2 VDM-SL data types. 102
A3 VDM-SL operators. L 103
D.1 Default Users and Files 117
D.2 Policies used in testing L e 117
D.3 Test of the Stackable File System by the Super User 118
D.4 Test of the Stackable File System by a User 118
D.5 Test of the File Level Management 119
D.6 Test of User Level Management 119
D.7 Test of the Mandatory Access Control 120
D.8 Test of Window Management Tools 121
D.9 Test of the Window Management 122
D.10 Editor and Viewer Test Cases oo i it 122
D.11 Test of Editors and Viewers 122

D.12 Test of the Camera Sensor 123

xviii LIST OF TABLES

Chapter 1

Introduction

1.1 Motivation

Access control is traditionally restricted to logical access control where access only is
granted to authorized users in authorized locations. The authorization of a user is usually
determined after the user is identified and authenticated by the system, using for example
a user name and corresponding password. After such a login procedure, a user ID will
be associated with every process the user starts. The user ID will be used to determine
which resources the process is permitted to access. This form of access control is logical
because it is a process and not a person in front of the computer that accesses a given
resource in the system. After a user has logged in, an unauthorized person may also be
able to obtain physical access to the computer. This could, for instance, occur if the user
temporarily leaves his computer unattended. Another more severe scenario could be that
an intruder uses a weapon to threaten the authorized user to provide access to the resource;
the access would then be obtained despite the user’s physical presence. In any case, the
processes that are started on the computer cannot determine who are currently present in
the environment. They only know the user ID of the person who is currently logged in. In
a military or commercial setting, it can have severe implications if an unauthorized person
obtains access to classified information by circumventing the logical access control.

1.2 Sensor Enhanced Access Control Model

The logical access control limitations of traditional computers can be evaded in an envi-
ronment where a sensor is used to detect the presence of unauthorized persons. A sensor
can detect when an unauthorized person enters or leaves the surveyed environment. De-
pending on the capabilities of the sensor, it may detect an ID that uniquely identifies the
unauthorized person, or it may be very basic and only detect whether someone is present
or not. To provide a more fine-grained detection method, more than one type of sensor
can be deployed in an environment. Regardless of the sophistication of a sensor, it must as
a minimum be able to detect whether a person enters or leaves the environment so that a
list of all the currently present persons can be maintained. A possible sensor deployment
is shown in Figure 1.1.

In the logical access control part of our system, the term user will be used to denote the
authorized person who is identified by the system using a login procedure. A user obtains

2 Chapter 1. Introduction

Sensor

Computer

Sensor

Figure 1.1: A possible deployment of two sensors in an environment. The sensors will
detect whether the person enters or leaves the environment.

logical access to a file via a process. There are many possible access operations available
for processes, but our model only encompasses read and write access to files. If the logical
access control denies a process read or write access to a file, the operating system will
generate an appropriate error message.

In the physical access control part of our system, the term person will be used to
denote anyone who is detected by the sensor. If the user has an editor open and it contains
classified data, the physical access control may deny the person access to view this data.
In case the access is denied, the editor will disappear from the display so that it no longer
is possible for humans to physically see it.

The rules that determine whether an access operation should be successful or not are
defined by the access control model. There exist many possible access control models that
meet different security requirements. We have chosen to use multilevel security models at
the core of our Sensor Enhanced Access Control Model since these are frequently used in
environments where classified data are processed. In our model, each subject and object
should be assigned a level by a central authority.

The combination of logical and physical access control is modeled by the clearance level.
The clearance level denotes the combined subject level for all the unauthorized persons and
the user in a given environment, and it will be equal to the minimum of all the detected
subject levels. A security policy must be stated by a trusted authority and it is used to
determine whether an editor that contains classified data should be visible or not. Our
model does not enforce a particular security policy since we have developed a flexible model
where parameters are used to specify the security policy. This is in line with the general
Unix design philosophy of providing mechanism, not policy.

1.3 The Developed Prototype 3

1.3 The Developed Prototype

A prototype that conforms to the Sensor Enhanced Access Control Model has been devel-
oped. The system is designed so that it can be integrated with an existing Unix system.
The files and users can therefore be uniquely identified by an inode number and user ID,
respectively. The core of the system provides logical access control using file and user levels
associated with inode numbers and user IDs.

The part of the system that stores and retrieves file and user levels and mediates the
access to files by users is a stackable file system. A stackable file system is a layer that
resides in the kernel above a native file system and below the Virtual File System. It is
very important from a security perspective that the access mediation part of the system
(a.k.a. the reference monitor) is implemented in the kernel since it then is protected from
non-privileged users via the operating system user/kernel modes. Furthermore, including
the access control mechanism in the kernel gives better performance because fewer context
switches have to be made.

The sensor part of the system has been implemented using two web-cameras and a
motion detection program. The program cannot differentiate the detected persons and a
common level must therefore be assigned to all persons. This level should depend on what
other physical access control measures are deployed in the environment. In addition to the
web-camera sensor, a very simple software sensor simulator has been implemented so that
it is possible to test the system without the deployment of web-cameras.

The part of the system that manages the visibility of the windows is based on the
standardized protocol, which is used in the X Window System. The X Window System is
a network-based graphics windowing system that is commonly used on Unix systems. It
assigns a window ID to each created window and provides functions for making a window
visible or invisible. Our system associates a window level with each window ID, and by
using this level and the environment level received from the sensor, the system can make
access control decisions about whether a window should be visible or not.

Finally, many command-line programs have been implemented for managing the sys-
tem. Most users will, however, probably prefer a GUI for managing the system and pro-
viding an overview of the stored data. For this purpose, a GUI has been developed which
constitute a presentation layer for the system.

1.4 Contributions

The conceptual contribution of our work is a Sensor Enhanced Access Control Model that
combines logical and physical access control. The model uses information from physical
sensors to determine a combined security level for all the persons currently present near
the computer. By monitoring whether or not unauthorized persons are near the computer,
a system based on this model can determine what information should be visible on the
computer display. The consequence of this is that computers with sensitive information can
be placed in unprotected environments where unauthorized persons have physical access
to the premise of the computer.

The technical contributions can be divided into three modules:

A kernel module that conforms to a multilevel security model where levels are assigned
to users and files. The access control decisions made by the module are determined

4 Chapter 1. Introduction

by security policy parameters. These parameters can, for instance, be set so that the
system enforces the Bell-LaPadula model or the Biba model and thus addresses con-
fidentiality or integrity, respectively. The design decision regarding the parameters
has been made so that the system, to the extend possible, provides mechanism and
not policy. Furthermore, the module can be used independently of the other modules
to form a system that only provides logical and not physical access control.

A simple movement sensor based on two web-cameras. The web-cameras are only
used to determine whether someone enters or leaves the environment and a common
level will therefore be assigned to all the detected persons.

A window management module that combines the logical access control implemented
by the kernel module with the physical access control information received from the
sensor module. The main responsibility of this module is to ensure that unauthorized
persons cannot view classified data on a computer display.

1.5 Thesis Organization

The problem that we are set to solve in this thesis is that of combining logical and physical
access control using input from sensors. The organization of the main chapters of the
thesis can briefly be summarized as follows: Chapter 2 to Chapter 4 will lead the reader
into our problem area by reviewing the state of the art and presenting some background
information. Chapter 5 to Chapter 7 describe how we solved the problem, and Chapter 8
to Chapter 10 evaluates our solution and provides guidelines for future work.

A more detailed overview of the thesis is presented in the following. In Chapter 2, a
brief description of some basic security concepts is provided. The main purpose of this
chapter is to provide a survey of the state of the art within logical and physical access
control. The logical access control models are for instance the Bell and LaPadula model
and the Biba model, and the physical access control models are the Onion model, and the
Garlic Clove Model.

Chapter 3 describes different sensors and motion detection technologies. This includes
a review of the main services provided by sensors and some examples of current devices
that are used as sensors. Furthermore, the mathematical foundation of motion detection,
based on image analysis, is described briefly.

Chapter 4 provides a brief overview of some Linux technologies which the reader should
be familiar with in order to understand the description of the implementation in Chapter 7.
The focus will be on technologies such as the X Window System, shared libraries, system
calls, kernel modules and stackable file systems.

In Chapter 5, the Sensor Enhanced Access Control Model is described in detail. In
particular, the different types of subjects and objects are described along with the available
access operations. A special type of user, the super user, is also introduced; this user is
special because it is fully trusted and its access to objects is therefore not restricted by any
of the access control mechanisms in our model. The chapter ends with a description of the
security parameters that can be used to create a security policy for a given deployment of
the system.

In Chapter 6, the system design is described in terms of a number of subsystems.
The file level management and user level management sub-systems provide programs

1.5 Thesis Organization 5

for setting and retrieving file and user levels, respectively. The stackable file system
provides storage for the file and user levels and enforces the access control policy set by
the system administrator. The window management subsystem ensures that windows are
made visible or invisible, depending on the input received from the sensor subsystem.
The subsystems consist of many processes that must communicate in order to provide the
required functionality. The chapter ends with a CSP-specification of this inter-process
communication.

In Chapter 7, it is described how the different subsystems are implemented. In partic-
ular, it is described and motivated which technologies have been used. Some issues that
were not foreseeable during the design phase are also described; this is, for instance, the
issue of handling backup files created by an editor. The GUI subsystem is also introduced.
It is only a presentation layer and does not add any new essential functionality to the
system.

In Chapter 8, we evaluate the system. More precisely, we describe how the system was
tested by first testing the individual sub-systems and finally testing the entire system.

In Chapter 9, the further development possibilities are described. This will in particular
revolve around the sensor part of the system, which can provide a more usable system if
the sensors are capable of detecting the level of the persons.

Finally, in Chapter 10 we review the contributions of this thesis and give directions for
future work.

We follow with several appendices. In Appendix A, the CSP and VDM-SL notation
used in the specification in Section 6.8 is described briefly.

In Appendix B, directions for installing the system is provided. Most of this require
super user privileges.

In Appendix C, a user’s guide describes how the system can be used. This will first
include a description of how the super user and a non-privileged user can initialize and
shutdown the system. It is followed by a reference guide for all the created command line
programs. Some of these programs will require super user privileges.

In Appendix D, all the test cases and expected results used in our test are listed,
followed by the test results. In the tests where program output where available, this is
listed too.

In Appendix E, some screenshots from the Security Manager GUI can be seen. The
GUI, and the screen-shots of it, gives an overview of the system since one can easily see
how file and user levels are managed, the information stored about visible and invisible
windows, and the subject levels of detected persons and the user.

In Appendix F, all the source code is listed. To the extend possible, the code is listed
according to which subsystem it belongs to.

Chapter 1. Introduction

Chapter 2

Security and Access Control

Computer security is a widely investigated topic, as computers in any organization often
contain or are valuable resources. A general background of important topics in computer
security is given in Section 2.1. Access control is one way to protect the assets in a computer
system and is described in Section 2.2. Models and mechanisms grant or deny access to
resources. Access control can be both physical and logical. Physical access control protects
physical valuables using physical means, for example a locked door restricting access to
a printer. Logical access control protects logical resources using logical means, such as a
password restricting access to a file.

2.1 Computer Security

Computer Security deals with securing assets in a computer system. This implies that
the computer system contains something valuable that requires protection. This could
be information, processing power and the like. Usually, computer security deals with the
following three aspects [21]:

Confidentiality: Unauthorized disclosure of data should be prevented. Confidentiality is
also known as secrecy, and this is what normally comes to mind when people think
about security.

Integrity: Unauthorized modification of data should be prevented. Accidental modifica-
tion of data should also be prevented.

Availability: Denial of authorized access should be prevented.

When dealing with computer security it is important to consider what should be pro-
tected and from whom. It is also necessary to conduct a cost-benefit analysis to determine
the level of security to implement. When doing this, it is important to keep in mind that
cost is not only the monetary cost of implementing a security system, but also the cost in
inconvenience and ineffectiveness to the users of the system.

To achieve the goals of confidentiality, integrity and availability, several methods have
been developed, as well as attacks to circumvent those methods. Computer security topics
cover a wide area of different models, technologies and methodologies. Methods exist to
keep communication secret, e.g. cryptography, and to prevent or detect unauthorized access

8 Chapter 2. Security and Access Control

to resources using technologies like firewalls and intrusion detection systems. Availability
might also determine how to set up a mail-server so that it will not be used to relay
foreign mails, showing the breadth of the computer security subject. Methods dealing
with restricting access to information are called access control. These will be the main
focus of this security discussion, and will be described in depth in the following.

While access control governs immediate access to objects, information flow models
take implicit information flow into account. The concept of information flow control was
developed by Denning [19]. An information flow model seeks to consider every kind of
information flow, including flow through so-called covert channels. This is implicit infor-
mation, such as the information you can get from being denied access to a resource. The
advantage of an information flow model is that it takes every kind of information flow into
account, while access control models might only consider the explicit information flow. It
is on the other hand more difficult to design a secure system based on information flow
models than on access control models [21].

At the most basic level of computer security, we have identification and authentication.
Identification is concerned with stating who a user is, usually done by the user himself.
Authentication means proving who you are to the system, and the system’s verification
of your claimed identity. This is most frequently done with a password, only the user
knows the password to her account. It could also be done with more advanced methods,
for example fingerprint scanning. Knowing the identity of users is important when making
access control decisions. It is also important when the system needs to keep track of its
users, for instance to log behavior. It should be noted that there exists a number of threats
to password authentications, where social engineering is not the least effective.

2.2 Access Control

Access control revolves around granting or denying access to resources, and it deals with
what information may be accessed by which users. Normally, access control cannot take
place unless the user is properly identified and authorized, as the system usually exercises
access rights based on user identity.

Access control consists of two components, physical and logical access control. Physical
access control protects physical assets such as hardware, and printed files. It deals with
access that is denied or granted in the physical world, and it takes place outside the system
via physical means. This could be guards restricting access to a building or magnetic cards
restricting access to a room. Logical access control protects logical assets such as informa-
tion, (computer) resources and etc. It concerns how a computer system internally grants
or denies access to the logical assets and takes place within the system. Logical access
control is usually based on constraints placed on users of the system and the information
they seek to obtain.

There is an important overlap of logical and physical access controls when logical assets
get embodied in physical assets. This is for example when a file is printed or displayed on
a computer monitor. In this case a logical asset become physical one, and requires more
than logical access control to protect it.

2.2 Access Control 9

2.2.1 Physical Access Control

Physical access control is normally used to grant or deny access to physical assets using
physical means. It deals with restricting access to physical premises, such as persons
entering a building. The physical access control can for instance be guards allowing or
disallowing access or cameras recognizing a person to determine whether to open a specific
door or not.

Physical access control creates levels of protection, where each level protects some
sensitive assets, and persons trying to access these must undergo access control. One
model for physical security is the onion model, illustrated in Figure 2.1. Tt is a layered
security model that describes the existence of transitions from outer layer to the innermost
one. The inner layer contains the most sensitive assets, and to get there you must pass
through the outer layers. The transitions could be guarded by receptionists, guards, badge
readers etc. Once a person is allowed into one layer, he is allowed to go anywhere within
it. A person cannot go between layers without being subjected to control [40].

Least secure

Figure 2.1: The Onion Model

The onion model is very simple. A more realistic model is the garlic clove model shown
in Figure 2.2. It takes into account that not all layers are consecutively more and more
sensitive, and that different classes of people can be restricted from some assets, while
having access to others [40].

O
©O

Figure 2.2: The Garlic Clove Model

When designing physical facilities one needs to make sure that a person can only

10 Chapter 2. Security and Access Control

move between layers in the ways explicit permitted. This includes limiting the risk of
unauthorized access through various ’back doors’. The ’back doors’ includes behavior such
as entering a building through a window, or closely following a trusted person and entering
a door which was opened by that person. While it might not be feasible to prevent all
unauthorized access, it is still worth considering how problematic it is for an intruder to
gain access. It might not be difficult to break in a door or smash a thin wall, but it is
obvious if it is done as it is noisy. If the door is left unlocked, the intrusion will be noiseless
[40].

2.2.2 Logical Access Control

In most cases, logical access control governs admission to logical assets such as information
and an important part of it is the policies or mechanisms the system uses to grant or deny
the access.

The basic entities of the access control model are subjects and objects. Subjects are
active, operating on objects. Objects are passive, being operated upon. Subjects try
to access objects, and can e.g. be users or processes. Objects are resources that can be
accessed or used, and are usually files, printers etc. When a subject tries to operate on an
object, a reference monitor decides if access will be granted or denied. This is shown in
Figure 2.3, and this is a basic model of access control [21].

Subject Refergnce Object
Monitor

Figure 2.3: Fundamental Access Control Model

Access control models usually define a number of possible, or allowed access operations
on files. At the most basic level we can define two modes; observe and alter. Many
systems uses 3-4 modes. The well-known Bell-LaPadula model has the operations read,
write, append and execute. To read is to observe, write is to observe and alter, while
append is to alter without observing. Execute is hard to describe in terms of observe and
alter, as it can be neither, but in reality it is often difficult to implement execution without
observation [21].

Access control systems can either be mandatory or discretionary. Mandatory access
control (MAC) is a system wide policy that decides which users should have access to
what files. Discretionary access control (DAC) is where the owner, or a trusted individual,
decides access control over a file. This means that the owner of the file has discretion over
who should have what accesses to the file. Thus it is up to the user to decide ’how secret’
he considers the file [21], |24].

In some systems, mandatory and discretionary access control are used simultaneously.
For a user to access information he needs to be allowed to access it in relation to the global,
mandatory rules, and the owner of the file needs to have made it possible for him to do so.
If either of the two mechanisms fails to grant access, it will be denied [36].

When a system has any kind of access control, it needs to have some way to maintain
and determine which access rights have been given. This is generally modeled by an access

2.2 Access Control 11

matrix.

An access matrix consists of the set of access operations a given subject can perform on
a given object. The matrix is usually a m X n matrix, where m is the number of subjects
and n is the number of objects. The element at (i,7) then lists the access operations
subject 4 can preform on object j.

Usually, an access matrix is very sparse, making it ineffective to store. Therefore the
information is stored in capability and/or access control lists. A capability list is a list for
each user, showing what that particular user has access to. This corresponds to storing the
rows of the access matrix. An access control list is a list for each file, stating which users
can do what access operations on the file. An access control list is equivalent to storing
the columns of the access matrix. The concept of an access matrix, as well as the idea to
store it as lists are presented in Lampson’s Protection [23].

In military access control the system usually operates with security levels or labels. A
piece of information is assigned a security label, defining the level of that information. A
user or process is assigned a clearance, which is also a security label. The labels are then
arranged hierarchically, and a user may only access files with level up to and including
his clearance. An access control model that makes use of levels belongs to the class of
multilevel security models. A security level is said to dominate another if the level is above
the other. The level that dominates all other levels is normally called system high, while the
level dominated by all other levels is known as system low |21]. Security levels are partially
ordered, meaning that the ordering relation is reflective, transitive and antisymmetric, and
that two levels do not have to be comparable.

An important concept in multilevel security models is security lattices. A security lat-
tice emerges when you not only have levels, but also departments subjects and objects can
belong to. This means that even though a user is cleared to see very sensitive material in
one department, he might not be cleared to view any information from the other depart-
ments. The department and level pair gives the security label of the file. This gives a lattice
of paired levels and departments with a partial ordering. The partial ordering of security
labels is important here, as two files of information can belong to different departments,
and their security label will then be incomparable.

As an example of a multilevel security lattice we can have the security levels high ad low
and the departments MARINE and NAVY. The security labels would consist of a security
level and one or two departments. The following relations would hold in the lattice:

(low {MARINE}) < (high, {MARINE})
(low, {MARINE}) < (low, {MARINE, NAVY})
(low, {MARINE}) £ (low, {NAVY})

The lattice this forms can be seen in Figure 2.4. This shows that (high, {MARINE,
NAVY}) is system high and dominates all other levels, while (low, @) is the system low.
This system will ensure that while a user might be cleared for high level information in
MARINE, he will not have access to information in NAVY. It gives a more flexible way of
restricting and giving access to information.

The Bell and LaPadula Model

One of the best known multilevel security models is the one proposed by Bell and LaPadula
in Secure Computer Systems: Mathematical Foundations |15] and Secure Computer Sys-

12 Chapter 2. Security and Access Control

high , {MARINE, NAVY}

/\

high , {NAVY} high , {MARINE}

'\ . /‘

1

low , {MARINE, NAVY}

low , {NAVY} low , {MARINE}

’\/‘

Figure 2.4: An Example Security Lattice

low , @

tems: A Mathematical Model |25]. In this text we have used the slightly more modern
and informal way of describing it given in Dieter Gollmann’s Computer Security [21].

The security model can be described by a state machine model, where the system is
in a state which is either secure or insecure. A change (i.e. transition) in the system will
then lead to another state. The main idea is to avoid transitions out of a secure state and
into an insecure state.

The system consists of a set of subjects, objects, access operations and partially ordered
security levels. The states of the systems are rather complicated. The state set is defined
as B x M x F where B is the set of current accesses, M is the access permission matrix and
F is the set of security level assignments. The last part has three parts, the classification
of objects, as well as both the maximal and current security level of the subjects.

The Bell-LaPadula model uses four different access operations: Read, write, append
and execute. In the original interpretation, to write is to alter the text while viewing it,
so it implies both reading and writing. On the other hand, append is writing without
reading. In some descriptions of the Bell-LaPadula model the append operation is not
used. Usually, the write operation then means to write without reading. In the following
write will be used in this meaning, as a operation with no observation.

The model defines two security properties which should be satisfied for a state to be
secure, the simple security property (ss-property) and the star property (*-property).

ss-property: This property defines that there can be no read up. This means that
for read access operations on all subject/object combinations in b, the security level of the
object will not be higher than the (maximal) level of the subject accessing it for read.

The ss-property is not necessarily sufficient to prevent a low level subject from reading
a high level object. This is because a high level subject (which could be a program) could
write the content of the high level object in a low level object, which the low level subject
then can access. The low level subject could be the one to create the high level subject, thus
compromising the security of the system. To get around this, the *-property is defined.

*_property: This property defines a no write down policy. It states that for each
element in b, where the access operation is write, the (current) security level of the subject
should be lower than or equal to the object.

2.2 Access Control 13

The following example will show the importance of the *-property. A user A who is
cleared to high level information creates a file a with sensitive information. It will have
the security level high. Another user, B, only cleared to low level information, creates
low level file, b. He also creates a program, smart_program and convinces user A to use
it. smart_program will now be run by user A, thus the program’s executing process will
have the level high. smart_program can then read the secret file a, as it has the correct
security level. smart_program is written so it will take the information stored in a and
write it to the low level file b. Thus user B has gained access to the information in the
secret file a, violating the security of the system by creating a so-called Trojan program.
The *-property ensures that this cannot happen, as smart_program would not be allowed
to write in a file with a lower security level |38].

The information flow in the Bell-LaPadula system can be seen in Figure 2.5 [39]. When
a subject reads an object the information flows from the object to the subject. When a
subject writes an object, the information flows from the subject to the object. As seen
in the figure, the rules of the Bell-LaPadula model ensures that information can only flow
from a lower level to a higher, not the other way around.

This means that a high level subject can read a low level object, but only write objects
on its own level and above (using an appending write operation). It cannot alter those on
a higher level, due to the ss-property. To make a higher level subject access a lower level
object for write or append, you must either temporarily downgrade the subject, or you
must define a set of trusted subjects that can violate the *-property.

If the subjects are processes, the first way is feasible, as they would be able to forget’
what they know at a higher level, as their security level indicates which files they can read
and that is what they know. This approach does not hold if the subjects are humans. Then
the system would need to have a number of trusted users that may violate the security
policy.

= — -
A 7y
Level 4 I |
] |
read 'y 'y T
Level 3 | \
! I
|
write - |
- < |]
A A '
Level 2 | P
Subject Object T /
/
[— g
Level 1

Figure 2.5: The Bell-LaPadula Model

The Bell-LaPadula model has a number of assumptions, one of them being that the

14 Chapter 2. Security and Access Control

classifications do not change in normal operation. This is an aspect of the model that the
developers decided on from their systems analysis [25].

In their papers, the authors define and prove a lot of properties of the system that they
have modeled. This is important because a system that is built using their model will be
known to satisfy certain security properties.

The Biba Integrity Model

Biba [21]! developed a Bell-LaPadula-like model to contain integrity, as the original Bell-
LaPadula model did not include this aspect. The model is interesting because of this focus
on integrity, it shows that an access control model also can be used to obtain this security
goal.

The need for integrity in a system can be seen when considering the needs of the
organization the system should support. In a military system focused on confidentiality
the important part is that the secret code to the rocket launcher can only be read by the
General and not by the Captain. In a business cooperation the opposite might be true -
while the overall business strategies that the CEO has written should be known by every
employee in the company, a secretary should not overwrite them with his own ideas. Thus,
the important thing is not who can read the information, but who has access to write it.
The system should be able to guarantee a certain level of integrity.

The main idea in the Biba model is that low integrity information should not be allowed
to flow to high integrity objects, but the opposite is permitted [35]. Thus, the information
flow is from high to low, the opposite of a confidentiality system like the Bell-LaPadula
model. The Biba model also has rules corresponding to the Bell-LaPadula rules:

simple-integrity property: This defines that there can be no write up. Subject s
can write object o only if the integrity level of s is higher than or equal to the integrity
level of o.

integrity *-property: This defines that there can be no read down. A subject s can
read object o only if the integrity level of s is less than or equal to the integrity level of o.

If the Bell-LaPadula and the Biba models are combined, they can be enforced using the
same mechanism. However, if the integrity level and the security level have the same label,
this results in conflicting restrictions. This will simply mean that a subject can only read
and write information at their own security level, and this will result in a trivial system

[35].

If, instead, different labels can be used for confidentiality and integrity, we will obtain
a useful system. The following rules can be defined in terms of subject s and object o:

1. s can read o only if the confidentiality level of s is greater than or equal to the
confidentiality of o, and if the integrity level of s is less than or equal to the integrity
level of o.

2. s can only write o if the confidentiality level of s is less than or equal to the con-
fidentiality level of o, and if the integrity level of s is greater than or equal to the
integrity level of o.

!First described in Integrity Considerations for Secure Computer Systems by K.J. Biba, Technical
Report ESD-TR76 -372, MITRE Corp., 1977. The document was unavailable.

2.2 Access Control 15

This model is described in Ravi S. Sandhu’s Lattice-Based Access Control Models [35]
and called the composite model.

The Chinese Wall Model

The Chinese Wall security model was first described by Brewer and Nash in The Chinese
Wall Security Policy [17]. They showed that in the financial world the Bell-LaPadula
model could not fulfill the sector’s specific needs, and other security models were needed.

In a consultant business or similar, a specific consultant will probably possess insider
knowledge about his clients to fulfill his job. The company itself might have several clients
in the same market, and thus if consultants worked for multiple clients in the same field,
it would lead to conflicts of interests. A consultant should not have insider knowledge of
two clients with conflicts of interest, but he may have it on two or more clients with no
conflicts. The basic rule of the Chinese Wall model is that there must be no information
flow that causes a conflict of interests [21].

The wall metaphor is that no subject can access an object on the wrong side of the wall.
Information that the consultant has access to is inside the wall, while information belonging
to clients with conflicts of interests, with respect to the information the consultant already
has access to, is outside the wall [17].

The model is described in Computer Security |21] by:

e A set of companies C and a set of objects O, with each object belonging to a company
in C.

e A set of subjects S that consists of the analysts/consultants that the company has
employed.

e All objects relating to one company are collected in a company dataset. The function
y: O — C gives the company dataset of each object.

e Conflict of interest classes are defined and each conflict of interest class covers com-
panies that are in competition. The function z: O — P(C) gives the conflict class
for each object, i.e. the set of all companies that should not learn about the content
of the object.

e The security label of an object o is (z(0), y(0)).

e Sanitized information has been cleaned for sensitive information, and access to it
need not be restricted. For a sanitized object o, we set z(0) = 0.

The main idea of this model is that we need to keep track of history. A subject must
not previously have had access to a company with an interest conflict with the one he tries
to access. The rule to ensure this is the following:

ss-property A subject may only have access to an object o, if he previously not has
had access to an object in o’s conflict of interest class or if the objects belong to the same
company as o.

Note that this gives the consultant a freedom of choice, when he has not yet accessed
anything in a conflict class. He can freely choose an object from any company.

16 Chapter 2. Security and Access Control

There will still be a problem if two different companies with conflicts use the same
external resource, i.e. a bank. If an analyst dealing with one of the companies writes some
sensitive information about that company in an object belonging to the bank, another
analyst might read it when accessing the bank’s files. Thus, an insecure indirect information
flow has occurred. To prevent this, a *-property is defined to govern write access:

*_property Subject s can only write object o if s has no read access to an object 0o
where 0 and o belong to different companies and o' is not sanitized.

An important aspect of the Chinese wall model is that each actual user (each person)
only can have one user account on the system, as a person will store knowledge in his
brain [35]. Another important aspect of the Chinese wall model is that the access rights
are dynamic and change over time.

Other Access Control Models

There are other access control models, some of which will be briefly mentioned here. They
are different in their approach than the ones presented above.

User Groups A different way of keeping track of permissions is to have user groups on
the system. A user is a member of one or more groups, and a group has permissions to some
files. Single users can also have negative permissions, excluding them from accessing a file
a group they are a member of can access. Thus the group system can be very complicated
in theory. When it is used on Unix systems it is simple, with users only belonging to one
group and no negative permissions. It is important to notice that this system does not use
security levels. It is not designed for a hierarchical military system, but for a multi-user
environment where users naturally belong to information-sharing groups.

Protection Rings When referring to subjects as processes rather than users, protection
rings can be used as access control. The protection rings are a very simple mechanism that
has processes running at different levels. Usually, the most important processes are the
kernel processes and the least important are the user processes. Objects are numbered in
the same way as the subjects, and access is granted or denied by comparing levels. The
protection ring model is much closer to the system than the other approaches discussed

Role Based Access Control Another form of access control is role based access control.
It gives access based on the role of the users of the system, meaning the job a certain user
is supposed to preform. Each user can have more than one role, and each role can be
assigned to more than one user. Role based access control models are a different approach,
where the user’s actual needs while he is using the systems are the basis for what he can
access.

Orange Book Security

The United States Department of Defense (DoD) have spent resources and research effort
on secure systems. In 1985 they published the DoD standard DoD 5200.28, called The
Orange Book [13]. It divides operating systems into categories depending on their security

2.3 Summary 17

properties. The standard has been replaced by a more complex one, but it is still a guide
to security properties [39].

The Orange Book has 4 major divisions for operating systems, from A to D. C is
split up into C1 and C2, and B into B1 to B3. The Orange Book describes in detail what
requirements a system must meet to be assigned to a certain division. The requirements are
very elaborate covering everything from policies and mechanisms to testing, verification and
user guides. The following is a brief overview of the divisions and their main requirements

[13, 39]:

Division D: Minimal protection, no requirements at all. Windows 95/98/Me falls into
this category.

Division C: Discretionary protection for systems with cooperation users. C1 requires
discretionary security protection and a separation of users and data. C2 requires
some more finely specified user controls. The Unix rwx scheme meets C1, but not
C2.

Division B: Mandatory protection. The system must be capable of enforcing the Bell-
LaPadula model. Bl requires labeled security protection, B2 structured protection
and B3 security domains. All of this is in addition to the requirements of C2.

Division A: Verified protection. Al systems must meet B3 requirements and have a more
formal design specification and verification. Covert channels must also be analyzed.
Beyond A1 is for systems with an even more rigorous analysis, design and verification,
as well as room for the inclusion of future properties.

2.3 Summary

Computer security seeks to protect assets on a computer. The goals are confidentiality,
integrity and availability, and many different methods and technologies exist to obtain
these goals. One of these is access control. This revolves around granting or denying
access to resources. This can involve both physical access control, where physical assets
are protected for instance with guards or locked doors, and logical access control, where
logical assets like information on a computer is protected.

The basic entities of logical access control are subjects and objects. Subjects can use
different access operations to gain access to objects, like read or write. It is important to
know exactly what the different operations encompass, for instance if to write also includes
reading the modified data.

One basic distinguishing feature of access control models is the difference between
mandatory and discretionary access control. In discretionary systems the access control
is at the discretion of the users. In mandatory access control a system-wide policy exists.
This means that for every resource there will be a policy on who can access it or not and
this control is beyond the decisions of the single user.

Mandatory military access control systems levels are often multilevel security models.
Files and users have levels, and rules are made to govern how subjects can access objects
depending on their levels.

An important model is the Bell-LaPadula model. The main rules and center of the
model is that there can be no read up, i.e. a user cannot read a file with a higher level than

18 Chapter 2. Security and Access Control

himself, and there can be no write down, i.e. a user cannot write to a process or file that
has a lower security level than himself. Information can flow from a lower to a higher, but
not the other way around.

An interesting modification of the Bell-LaPadula model is the Biba integrity model.
It uses the same type of rules, but governs integrity instead of confidentiality. The rules
specify that there can be no read down and no write up. Thus information can flow from
a higher level to lower.

There are also many other access control models to cover different needs. A very well
known model is the concept of groups, as this is used in the Unix operating system. The
Chinese wall is a security model for professional companies. It does not have levels, but
rather classes of conflict of interests. Information in the same conflict of interests class
should be obtained by the same subject. Due to this, it also keeps track of history so the
information a subject previously has accessed is known.

This chapter has described some general subjects in computer security, in particular
access control. Both physical and logical access control were discussed, and some different
models were described. When designing a system with access control, it is important to
chose the right model, as they have different purposes, for instance they might seek to
ensure integrity or confidentiality.

19

Chapter 3

Sensors and Motion Detection

Sensors are used to produce data for a system, an overview of which is given in Section 3.1.
The main use of sensors is to transform physical properties into data a system can use.
One of the things that sensors can be used for is to provide data for motion detection.
This can be done in different ways depending on the sensor used and the sophistication of
the algorithm used. Some motion detection methods are presented in Section 3.2.

3.1 Sensors

Sensors are devices that gather data and pass it on to a system. A sensor might be a
physical device, or it might be a logical entity that produces data for the system. Physical
sensors transform information about the physical world into data understandable by a
computer [42]. Examples of physical sensors are cameras, infrared sensors, thermometers,
barometers, RFID tags (Radio Frequency Identification tags) and pressure sensitive floors.
Logical sensors can be things like event timers or load indicators.

In this context, sensors are devices that are used to detect things about their environ-
ment and pass it on to the system. The system will then process the information gathered
by the sensors to present an impression of the environment that is needed on the system
or to the user.

Sensor outputs are rarely useful unless the system has a direct connection to the sensed
input, so there is a simple mapping between the system and the sensed input. If this is
not present, the data the sensor produces must be processed using more or less advanced
algorithms [42].

Sensor systems can be either active or passive. Active sensor systems are systems that
interact with their environment and sense how their actions affect it. The sensors actively
probe into the environment to sense a change. An example of an active sensor is a touch
sensor. Passive systems sense ambient radiation or signals, passively receiving information.
An example of a passive sensor system is a Global Positioning System [42].

When deploying several sensors to gather information, it will be necessary to fuse their
views to form a unified image of the world. Each sensor can return errors, and the fusion
engine should take this into account to develop a unified view with the least possible errors.
There are several advanced methods for dealing with this problem [42].

Sensors can be used for a wide variety of purposes. Simple tasks such as to learn
the state of a system, like the temperature in a chemical process, or complicated tasks

20 Chapter 3. Sensors and Motion Detection

like asserting the location of an object in an office environment. When trying to gain
information about persons in an environment, the data the sensors deliver should often
have the ability to reveal the presence or absence of motion. Sensors such as cameras, light
detectors or infrared sensors are often used detect motion.

3.2 Motion Detection

Motion can be detected with a variety of sensors. An example of simple motion detection
is a light sensor in a doorway. When someone or something passes through, the motion is
detected and a signal can be emitted. A more sophisticated example would be a security
camera that not only detects the motion, but attempts to track it as well. Machine vision
also uses motion detection when a robot tries to navigate in real time.

Motion can be detected with many different sensors, ranging from a simple light de-
tector to a sophisticated pressure sensitive device installed in a floor. Some of the simple
sensors are infrared sensors and cameras. Alternatively, motion can be detected with radio
frequency sensors. They are often active sensors, so it is not pure motion detection, but
rather the detection of presence of an emitter in the area thus leading to indirect motion
detection. When motion detection discovers human beings it can be used to aid in access
control decisions.

3.2.1 Infrared Sensors

Infrared sensors are sensors that detect infrared radiation, i.e., electromagnetic waves with
a wavelength longer than visible light. All objects that generate heat will also generate
infrared radiation. Special materials such as germanium and silicon can be used to detect
infrared radiation|1].

The human body has a skin temperature around 33°C, which emits infrared radiation
at a specific wavelength (9 and 10 micrometers). Passive infrared sensors are typically
designed to sense radiation in this spectrum or a little wider. The data from the sensors
can then be used to detect motion, as the amount of infrared energy changes rapidly when
a human body enters the field it is measuring. These types of sensors have widespread use
as burglar alarms and similar.

3.2.2 Radio Wave Frequency Sensors

Radio waves are, like light and infrared radiation, electromagnetic waves. They have a
wavelength longer than infrared and microwaves. Radio waves have different frequencies,
and a radio receiver can be tuned to listen on a specific frequency. Radio waves are used
for many different things, not only common radios, but everything from baby alarms and
garage door openers to mobile phones, satellite communications and electronic warfare.

When using radio wave frequency sensors to detect motion they are sensing it indirectly,
so to speak. The sensor would be a receiver waiting for a signal to be emitted. If it is
known that the signal comes from a person that has moved into the area, the sensor will
then have detected motion.

An interesting sensor in this respect is the Radio Frequency Identification (RFID)
system. It consists of tags and a reader, which is an active sensor. The reader will send

3.2 Motion Detection 21

a request of identification to the tag, and the tag will send back data. RFID tags are
often used for warehousing, where they replace bar-codes or other systems for keeping
inventory. In a motion detection context, they would of course be placed on a person, so
that when person enters a room the system would not only notice his presence, but also
gain additional data. This could for instance be data to base access control decisions on.

Another interesting radio wave frequency technology is Bluetooth. Bluetooth is a short
range data transmission standard. It is developed to feature wireless plug and play connec-
tions, for instance between a computer and peripherals such as a PDA or printer. It could
be used to detect motion much in the same way as the RFID tags. The data communication
between the client and the sensor could be more extensive, but even with motion detection
for access control purposes data in a RFID tag might be sufficient. The interesting part is
that the emitter would not have to be made for a specific purpose, but could be a general
device such as a mobile phone or a PDA.

3.2.3 Digital Images

Motion detection with cameras uses digital images to determine motion, as this what the
cameras will output. Cameras are very useful sensors, as the digital images can be used
for many different kinds of analysis. Some background about digital images will briefly be
described here.

A digital image is a representation of visual information by digital numbers. Often
the picture is represented as a two dimensional matrix, and each element is called a pixel
(picture element). The value of a pixel represents a measurement that is connected to the
position of the pixel. In a black and white picture the pixel values will be measurements
of the light intensity. In a colour picture more than one measurement per pixel is needed,
usually 3, corresponding to the colour scheme chosen. Pictures have two kinds of resolu-
tions. The spatial resolution is the number of pixels per picture,i.e. how finely grained the
picture is. The gray resolution is the number of gray levels in the picture [18].

A monochrome picture of the dimension N x M can be described as:

f={0,))0<i<M-1,0<j < N-1}

Thus, a single pixel in picture f will be referred to by its position as f(3,j).

An important concept in digital images is noise. Noise is the term for imperfections
of image sensors, i.e. cameras. They are incorrect measurements and will appear on the
image as discrepancies from the real world scenery.

When analyzing images to detect motion there will usually be more pictures to be
analyzed than in regular image analysis. Knowledge about the problem, like whether the
camera is moving or not, time between images taken, etc., will help to reduce the data
analysis. When detecting motion there is no foolproof technique, no general algorithm for
all purposes. It depends on the circumstances and goal [30].

Motion detection objectives can be split into three major groups [30]:

1. Motion detection of any motion. This is usually for security purposes, and is done
using a single static camera.

22 Chapter 3. Sensors and Motion Detection

2. Moving object and location detection. This is done with a static camera and a
moving object, or with a moving camera and a static object. The objective is to not
only detect motion, but to detect the movement and location of an object. This can
include the detection of the trajectory of the object’s motion, and a prediction of the
future trajectory. This is a more difficult task than the problem in the first group.

3. The determination of 3D object properties from 2D projections obtained at different
time instants of object movement.

Motion analysis deals with consecutive static images, where image analysis is taking
place on each individual image. The motion is usually analyzed by looking for correspond-
ing pairs of interest in sequential pictures.

When looking at simple motion detection, one method is to use the difference between
snapshots taken at different points in time. This is called differential motion analysis. It
is a simple subtraction of two pictures, fi and fo, to obtain the difference image d [30]:

1 otherwise

d(i,j) = { 0 if |A(,5)-R(i,])|<e

where ¢ is a small positive number.

An element d(i,j) may have value 1 due to the following reasons [30]:

1. fi(i,7) is a pixel on a moving object and f5(,7) is a pixel on static background (or
the other way around).

2. fi(i,7) is a pixel a moving object and fa(4,) is a pixel on another moving object.

3. fi(i,7) is a pixel on a moving object and f(i,7) is a pixel on a different part of the
same moving object.

4. noise and other inaccuracies.

The first three reasons will correctly identify that movement have occurred. The last
will be a false positive, as no motion has occurred. To eliminate this, one solution is to
ignore any region smaller than a certain threshold, although this may prevent slow motion
and small objects from being detected. The success of differential motion analysis depends
on background to object contrast -if there is almost none, the movement will be much
harder to detect [30]. Differential motion detection does not reveal direction, but for pure
detection of movement by objects of a reasonable size and speed it is adequate.

3.3 Summary

In this chapter an overview of sensors has been provided, and motion detection with more
specific sensors have been discussed. Sensors are in the most general term data producers
as they give input to a system. They can be split into two groups, active sensors that
probe the environment and passive sensors that observe the environment.

Motion detection can be used to detect the presence of persons in an environment.
There are many sensors that can detect motion Here we have discussed infrared sensors,

3.3 Summary 23

sensors using radio wave frequencies and cameras. Infrared sensors use the heat of a
human body to detect the presence of a person. Radio wave frequencies are used for
many purposes, but in a motion sensing capability technologies such as RFID tags and
Bluetooth are of interest. They are both examples of active sensors, where the receiver
polls an emitter for data, and the fact that an emitter provides data signifies that motion
has taken place in the area of the receiver.

Cameras produce images which in digital form can be processed by a computer. Image
analysis is a very wide topic, and many different forms of motion detection can be done.
The simplest form is differential motion detection, where the pixel-wise difference between
two images taken at different points in time is used to determine if motion has occurred.

24

Chapter 3. Sensors and Motion Detection

25

Chapter 4

Unix Background Information

Unix is a widely used operating system that was originally developed by Ken Thompson
of Bell Laboratories in 1969. Many Unix variations have since been developed, such as
Linux that was initiated by Linus Torvalds in 1991. Unix has a modular construction that
allows it to be easily modified. Two important modular components are the X Window
system and file systems. In this chapter, we will review some theory within these areas,
which we later in this thesis will assume that the reader is familiar with. The references
in this chapter can be used as a starting point for further reading. Most of the references
are for resources that are freely available on the Internet.

Before we start our review of X Window System and file system theory, we will point out
an important difference between the two technologies, at least from a security perspective.
Although they both are part of the operating system, a file system will (usually) run in
kernel space whereas the X Window System runs in user space. This separation is enforced
because system software must be protected from unauthorized access by applications|33].
This access control is enforced by the CPU, which has different privilege levels correspond-
ing to different roles. Unix uses two such levels: the kernel executes in the highest level
and is not restricted by any access control, whereas applications execute in the lowest level
where the access is regulated. Whenever an application invokes a system call, the execution
is transferred from user space to kernel space. When the kernel executes the system call,
it works in the context of the process and has access to the data in the process’s address
space. The process’s context can be used to enforce additional access control based on, for
example, the user ID associated with the process.

4.1 The X Window System

The X Window System (or simply X) is a graphical windowing environment for UNIX. Tt
consists of a collection of programs, protocols and routines for organizing and maintaining a
graphical user interface. Originally, it came into existence at MIT as part of project Athena
in 1984. Its main purpose was to provide a platform independent graphics system that
could link together the heterogeneous systems that were deployed at MIT. Version 10 (X10)
was the first version of the X Window System that achieved widespread deployment, and it
was shortly thereafter replaced by version 11 (X11) in 1987[2]. Since then there have been
many further releases, which have added extra functionality while attempting to remain
largely backwards compatible. The current release is the sixth one and is known as X11R6.
The X.Org Foundation is a consortium that handles the development of the X Window

26 Chapter 4. Unix Background Information

System technology and standards|3]. XFree86 is an open source implementation of the X
Window System, which is included in all modern Linux distributions[4].

The X Window System is a network based windowing system. This means that a
network terminal, denoted the X terminal, is used to connect a user to a remote computer
over a network. The network can either be a local area network or a wide area network.
The X protocol specifies the message types that can be transferred over the network. The
network architecture is illustrated in Figure 4.1.

Remote host

r Window Application X terminal
manager program
Motif ~e— Window
User L
space Intrinsics
Xlib
X client X server
Kernel UNIX UNIX
space
Hardware Hardware

X protocol

Network

Figure 4.1: Clients and servers in the X Window System|39]. The X Window System
consists of the X protocol, X server, X clients, Xlib, and Intrinsics.

The X Window System makes it possible to run programs on remote computers and
redirect their output to the display on a local computer. The X display server (or X server
for short) runs on the local computer and listens for network connections on a specified
port. The X clients are applications that sends commands to the X server. They may run
on remote computers, but can also run on the same computer as the X server.

The X server offers graphics display services to the X clients. An X client can, for
example, be an editor that sends drawing requests to the X server, specifying that some
text should be displayed. It is the responsibility of the X server to display the appropriate
bits. Besides rendering graphics on the display, the X server is also in charge of sending
input events from the keyboard and mouse to the X clients.

Everything that can be drawn on the screen by the X clients appears in windows, and
each window is associated with a specific X client. When a user for example presses and
releases a mouse button, the X server will send an input event to the X client that created
the window containing the cursor.

X clients are usually programmed in C using the library Xlib[5]. Xlib is a low level
interface to the X protocol, and it contains, for instance, functions for creating, mapping
and unmapping windows. A higher level interface is provided by Intrinsic. It is a toolkit
that can be used to build GUI components, such as buttons and scrollbars. To create a GUI
interface with a uniform look and feel, an even higher level toolkit is required. The Motif

4.2 File Systems 27

toolkit was widely used in the 1980’s and early 1990’s. Today the most popular toolkits
are Gtk and Qt, which are used in the GNOME and KDE projects, respectively[28].

The X Window System is designed to provide mechanism, not policy. In particular,
the X protocol only specifies the basic tasks that the X server performs, whereas the user
interface policy is determined by the X clients. One important X client that manages the
layout of windows on the screen is the window manager. 1t controls the creation, deletion,
and movement of windows on the screen and sends commands to the X server, informing it
about what it should display. Furthermore, it will generally provide standard components
for the other X clients, such as title bars, menus and frames. Many window managers have
been developed (for example Metacity, Enlightenment, and Sawfish) and they provide a
range of different appearances and behaviors|6].

A desktop environment provides a uniform looking desktop interface which uses the
services of a window manager. It offers a more complete interface to the operating system
and provides its own range of integrated utilities and applications. Currently, the most
popular desktop environments are GNOME and KDE.

X clients should adhere to the Inter-Client Communication Conventions Manual Manual
(ICCCM) which specifies a protocol for communication between X clients|32]|. Because the
X Window System is designed to provide mechanism, not policy, the X clients does not have
to adhere to ICCCM. However, they should do so in order to coexists properly with other X
clients, especially the window manager. The ICCCM specifies the X client interactions at a
low level. The KDE and GNOME projects originally developed their own extensions to the
ICCCM in order to support special features in their desktop environment. The Extended
Window Manager Hints (EWMH) is an extension to ICCCM that has been developed to
replace these custom extensions[14]. It is developed by freedesktop.org which is a is a free
software project that currently is not a formal standards organization.

4.2 File Systems

A file is an abstraction for a data container that supports sequential and random access.
A file system is software that permits organizing, manipulating, and accessing files. In a
Unix file system, an inode is a data structure that holds information about a file, such
as the type of file, the number of links to the file, the owner’s user and group ids, and
the number of bytes in the file. A file is uniquely identified by the file system on which
it resides and its inode number on that system. A directory is a file that stores (inode
number, file name) pairs.

4.2.1 The Virtual File System

Most Unix systems can be modeled using a layered architecture; in Figure 4.2, some layers
related to file systems are shown. The top layer is the system call layer. It handles system
calls such as open, read, write, and close. After a system call has been parsed and the
arguments have been checked, it invokes the Virtual File System (VFS) layer.

The VFS resides in the kernel and implements the most abstract part of the kernel’s
file handling infrastructure. It provides a set of standard internal file-system interfaces
for file handling functionality, which are independent of the actual implementation of the
file. The VFS can therefore provide support for many different types of lower file systems.

28 Chapter 4. Unix Background Information

System calls

b

vnode interface

%\

UFS | |NFS HSFS | |PCFEFS /proc

¥ r ¥ 3

disk cdrom | | diskette | | process

address
space

Figure 4.2: The vnode interface in the VFS permits that many different types of file systems
can be supported when an application, via a system call, uses a file.

Because of the high abstraction level, the VFS can also work on entities are not true files,
but have pathnames, such as character devices, pipes and sockets.

Like the inode is used to store data about a file on a given device, the vnode (virtual
inode) is a data structure in the VFS layer that is associated with an open file. A system
call has a user space and a kernel space part, and when the kernel space part is invoked a
vnode operation is called, which in turn calls a function in a lower file system. The lower
file system can, for example, be a Unix File System (UFS), Network File System (NFS),
High-Sierra File System (HSFS - found on CDROMs), MSDOS File System (PCFS), or
the /proc file system (resides only in memory). For further reading on file systems, see for
example |16, 29, 39|

4.2.2 Stackable File Systems

The development of a new file system is a difficult, long, and non-portable process that
requires skilled programmers who understand kernel internals. A stackable file system,
however, is easier to develop because it uses existing file systems and interfaces. The
interfaces used are vnode interfaces. A stackable file system does neither change the system
call interface nor the vnode interface. There are many ways in which vnode interfaces can
be stacked; one (simple) possibility is shown in Figure 4.3.

The FiST (File System Translator) system enables programmers to write stackable file
system for many different Unix systems [44, 45]. It consists of three parts as shown in
Figure 4.4. Firstly, a set of stackable file system templates for several versions of Linux,
Solaris, and FreeBSD makes it possible to write file systems for many platforms. Secondly,
the FiST input file is written in the high-level FiST language, which can describe stackable
file systems in a portable manner. Thirdly, the code generation program fistgen can
compile a FiST input file into loadable kernel modules for several Unix systems, depending
on the templates used. The performance overhead when using FiST generated stackable
file system is only 1-2%.

4.2 File Systems 29

System calls

vnode interface

%

stackable file system | | NFS HSFS | | PCFS /proc

r ¥
vnode interface cdrom | | diskette | | process
address
space
UFS :
r
disk

Figure 4.3: A stackable file system is a layer that resides in the kernel below the vnode
interface layer. It mediates access to one or more lower file systems.

FiST input file

Templates — | fistgen

Stackable file system source code

Figure 4.4: Stackable file system development using FiST

30 Chapter 4. Unix Background Information

The code generated by fistgen constitute a kernel module. A kernel module is a
piece of kernel code which usually implements a file system or device driver. Its main
advantage compared to static kernel code is that it can be loaded and unloaded from
memory separately from the main body of the kernel. It is therefore not necessary to
rebuild and reboot the kernel every time new functionality should be added|[34, 33|.

31

Chapter 5

Sensor Enhanced Access Control
Model

In organizations with high security requirements, mandatory access control (MAC) is often
used to ensure that information does not leak to unauthorized persons. These organiza-
tions can, for instance, be the military, hospitals, and corporate patent departments. An
authority within the organization states rules about who can see what, and these rules can-
not be changed by the individual users as it is possible with discretionary access control
(DAC).

The most widely used models are multilevel security models where each subject and
object is associated with a security level. However, these models are inadequate when
logical resources obtain physical form. In particular, they do not encompass information
on a computer screen that is visible to all the persons who are present in the environment.
In this chapter, we describe a model that extends traditional multilevel security models
with subjects and objects that are physical entities. The model consists of a logical access
control model (see Section 5.1) where only users and files are considered to be subjects and
objects, respectively. Furthermore, the model consists of a physical access control model
(see Section 5.2) where persons in the environment and windows on computer displays
are considered to be subjects and objects, respectively. The core of our model is the
combination of these two access control models (see Section 5.3).

The system we are set to develop will be integrated with an existing Unix system. The
terminology used in our model will reflect this: we will use the terms user ID, process
ID, inode number, and window ID to denote a uniquely identified user, process, file, and
window, respectively. A consequence of using a Unix system is that the Unix provided
DAC (in the form of rwx mode bits) can be used by the individual users to add an extra
layer of access control. The MAC will, however, take precedence over the DAC.

5.1 Logical Access Control

Our logical access control model is concerned with mediating access to files by users.

32 Chapter 5. Sensor Enhanced Access Control Model

5.1.1 Files

A file is a passive entity that stores information on a computer. It is uniquely identified
by an inode number. There exists many types of files, such as regular files, directories, or
symbolic links.

A file system is a collection of files along with the operations that can be performed on
these files. In a file system where MAC is enforced, the only operations that are subject
to access control restrictions are read and write. A file level is associated with each inode
number and is used by the reference monitor to determine whether access to the file with
the given inode number should be granted or denied.

5.1.2 Users

A user is an active entity that can access files. In most deployments of our system, a user
account will exists for each user, and a user must identify himself and be authenticated as
part of a login procedure. When a file is accessed by a user, it is actually not the user who
directly accesses the file, but a process that runs on behalf of the user. The logical subject
is therefore a user-started process, whereas the user is the physically present person who
has logged in to the system. A user must be uniquely identified by a user ID, and this
user ID must be associated with each process that is started by the user. A user level will
be associated with each user 1D, and it will constitute the basis for deciding what files a
given user has access to.

The system has a special user, the super user (root in Unix), which is completely
trusted. The actions of the super user are not restricted by any access control. Furthermore,
only the super user will be permitted access to modifying file levels, assigning user levels
to users, and starting and shutting down the system. A special user ID is associated with
the super user so that it can be distinguished from the non-privileged users. A level can
be associated with the super user, but it will not be used in any access control operations.
The person who is able to log in as the super user should use some form of physical access
control, such as locking the door, before using the system. Otherwise, an unauthorized
person might enter the environment and force the person to misuse the super user privileges,
bypassing all logical access control mechanisms.

5.2 Physical Access Control

Our physical access control model is concerned with mediating access to data displayed in
computer windows by persons.

5.2.1 Windows

A window is an area of screen space that is used to represent a computing function graph-
ically. Windows are created by running a GUI application, such as a text editor or an
Internet browser. Each window must be uniquely identified by a window ID. Most appli-
cations will open one top-level window and possibly some sub-windows inside this special
window. A sub-window can, for instance, be a button, menu, or scrollbar. Our model
will only use the first top-level window created by an application and ignore any further

5.2 Physical Access Control 33

created top-level windows as well as all the sub-windows of top-level windows. This ensures
that an application can be uniquely identified by a window ID. When a window is closed,
usually when the corresponding application is killed, the system should notice this.

A window will be considered to be a physical entity since it constitutes human-readable
output that is physically present on a computer monitor. The access operation for a window
is viewing. If access to viewing a window is denied, the window will be unmapped so that
it no longer is visible on a computer monitor. Otherwise, if access to a window is granted
and it currently is unmapped, the window will be mapped.

The rules that determine whether access to a window should be granted or denied
depends on the window level. A window level is the maximum file level of all the files that
are or have been open by the application associated with the window. The model does not
encompass closing of files by applications, so a window level can never decrease. Initially,
before any files are opened, the window level will have the lowest possible value, and it
will remain unchanged or increase as new files are opened by the application. This implies
that if the window level should be decreased because the application no longer has files
with high file levels open, the application must be restarted.

Close operations are omitted in our model because it is very difficult to determine
when a file no longer is in use by the editor: when an editor has opened a file, it will store
its content in memory and close the file immediately after. Furthermore, it would be a
vulnerability in the system, if the window level could decrease: when a file no longer is
used by an editor, the memory where it had been stored will most likely not be zeroed out.
The window level should therefore rather be associated with the address space of the editor
process than the window which appears on the screen. The system will be more secure
if the window level cannot decrease, and this is more important than the inconvenience
experienced by the users.

5.2.2 Persons

Our model will not only deal with users who are directly identified by the computer during
some login procedure, but also with any principal who is physically present in the envi-
ronment. These unauthorized principals will be denoted persons. Furthermore, the term
environment will denote the area around the computer where the persons may be detected.

The physical access control is based on sensors that detect persons in a given environ-
ment. To provide a more fine-grained detection method, several sensors can be used and
they can even be constructed using different technologies. The only requirement is that
they communicate using the same protocol so that they present information about the
persons using the same format. A sensor must as a minimum be able to detect whether
a person enters or leaves the environment since a list of all the currently present persons
must be maintained. The term direction will denote the walking direction of the per-
son. A direction can either be ‘i’ or ‘0’ which models that the person enter or leaves the
environment, respectively.

If a sensor can identify and authenticate persons, a level can be associated with the
persons. This could, for example, be done using a smart card and corresponding smart card
reader which should be used before physical access is granted. If the sensor is not capable
of distinguishing between the detected persons, the same level must be associated with all
persons. This level must depend on other security measures taken in the environment, such

34 Chapter 5. Sensor Enhanced Access Control Model

as physical access control using locks or guards. The term enwvironment level will denote
the level of a person as it is detected by a sensor.

Whether persons should be recognized as individuals may not only depend on the
sophistication of the sensor(s), but also on privacy concerns. In some situations, it may be
preferred that some sensors can identify persons, but only when explicit consent has been
given. A possible scenario is a company where the employees are recognized with magnetic
cards, whereas guests are detected by infrared sensors and thus remain anonymous.

5.3 Combining Logical and Physical Access Control

To summarize our logical and physical access control models, subjects are either processes
or persons, and objects are either files or windows. These logical and physical subjects
and objects have to be combined to form a coherent access control model. In this model,
a subject level will denote either a user level or an environment level, and an object level
will denote either a file level or a window level. The minimum of all the subject levels
that are currently registered by the system is denoted the clearance level. It models the
combined subject level and it will be used in all access control operations by the system.
The clearance level will change as persons enter or leave the environment. A summary of
the introduced concepts related to physical and logical access control is listed in Table 5.1.

Access Control Concept

Physical Access Control

Logical Access Control

Subject

Person

Process

Subject level Environment level User level

Subject detection method Sensor Login procedure
Object Window File

Object level Window level File level

Access operation View data Read or write data

Table 5.1: Sensor enhanced access control model terminology

To ensure that the model is consist, a user is also regarded as an person after he has
logged in. If no one else is present during log in and the user subsequently leaves the
environment, the sensors will detect this and it will be registered that a person with the
level of the user has left the environment. No one is then present, but when the user
reenters the environment, the clearance level will again be set to the original value. If it
is not the user, but an unauthorized person who enters the environment before the user,
this will be detected, and the clearance level will set accordingly.

When the sensors cannot detect the level of persons, the system will not be fully
functional if the user leaves the environment. The environment level will most likely be
lower than the user level, and when the user leaves the sensors will report that a person
has left the environment. If no one is in the environment other than the user, the system
will believe that an error has occurred since it had not detected the entrance of the person.
The clearance level will therefore be unchanged, but when the user reenters the clearance
level will be reduced to the environment level and the user cannot continue to work on his
classified files. If persons are present when the user leaves, the system will believe that it
is one of them who leaves. When the user later enters the environment, the sensors will
report that a person has entered, and even when all real persons have left, the clearance
level will still be equal to the environment level.

5.3 Combining Logical and Physical Access Control 35

5.3.1 Reference Monitors

A reference monitor mediates accesses to objects by subjects. Our system uses two reference
monitors, corresponding to the logical and physical access control mediation. Firstly,
a stackable file system acts as a reference monitor when it mediates access to files by
processes. The stackable file system will be denoted macfs (mandatory access control file
system). Secondly, the visibility_manager process will act as a reference monitor when
it mediates access to windows by persons.

The macfs and visibility_manager are not reference monitors in the sense described
in the orange book[13] since they do not meet its requirements regarding complete medi-
ation, isolation, and verifiability. In our model, a reference monitor will only denote an
entity that mediates access to resources and is protected with the security mechanisms
available in Unix systems.

Figure 5.1 illustrates how the macfs mediates access to files by processes. The figure
also includes a person and a window to illustrate how the physical and logical entities in
our model interact. The process displays some output to the user in a window on the
screen. It could for example run an editor that reads in a file. If the access operation is
write, no output is displayed, except possibly an error message.

The steps when data in the file system is accessed are as follows: Initially, a person
starts a process and instructs it to read or write the data (Step 1). In an editor, the person
may for instance open a file or save a file, respectively. The process then makes an access
request to the reference monitor macfs (Step 2). This is done when a read or write system
call is invoked. The macfs must then determine whether the access should be granted or
denied. This is done using the clearance level and the file level associated with the file. If
the access is granted, the file is accessed on the hard disk (Step 3). If the access operation
is read, data will be read from the hard disk and returned (Step 4). If the access operation
is write, only some status information is returned. When data is read, the macfs will next
copy the data into memory in user space where it can be accessed by the process (Step
5). The process is now ready to display some output to the person. The X Server is in
charge of displaying graphics, so the process (which is an X Client) will relay the data to
this process (Step 6). The X Server uses its knowledge about the computer hardware to
display the appropriate bits on the monitor (Step 7). Finally, the output of the access
operation is visible to the person (Step 8).

If the macfs prohibits the access request, a “permission denied” error message is sent
back to the process, which in turn will instruct the X Server to display an error message.
In this case, Step 3 and 4 are skipped.

Figure 5.2 illustrates how the visibility_manager mediates access to windows by
persons. Initially, the deployed sensor will detect that an unauthorized person enters
the monitored environment (Step 1). It will notify the visibility_manager about this
event by sending it the walking direction and environment level of the person (Step 2).
If the environment level is less than the current clearance level, the clearance level must
be set to the newly detected environment level. This decrease in clearance level implies
that access should be denied to some classified data that could be accessed before the
person’s entrance in the environment. Since the system has two reference monitors that
both uses the clearance level when making access control decisions, the macfs must also
be notified about the new clearance level (Step 3). Besides ensuring that the logical access
control part of the system still mediates access correctly, the visibility_manager has
the responsibility of mediating access to windows. The window management knows which

36 Chapter 5. Sensor Enhanced Access Control Model

Environment
Person
8
Computer
Monitor
1 Window
Operating system
7
Y
Pro@—> X Server
6
A
2 5
User space
Kernel space :
Operating system kernel Y

macfs

A
3 4
Hard disk v

Figure 5.1: The stackable file system macfs acts as a reference monitor when it mediates
access to a file by a person. The person can either be the authorized user or an unauthorized
person.

5.3 Combining Logical and Physical Access Control 37

User space

Environment .
6
Computer
2 Monitor
Window
Operating system Y 5
Visibility
Manager

X Server

Kernel space

Operating system kernel \

Hard disk

Figure 5.2: The Visibility Manager process acts as a reference monitor when it mediates
access to a window by a person.

38 Chapter 5. Sensor Enhanced Access Control Model

windows are created by the running processes and the corresponding window levels. It
uses the window levels and the clearance level to determine which windows should be
made invisible. The visibility_manager will send its decisions to the X Server so that
they can be enforced (Step 4). The X Server will obey the orders and remove all the
windows in question from the display (Step 5). The windows (if any) that must not be
seen by the newly entered person will therefore be invisible (Step 6).

When a person leaves the environment, the sensor will also detect this and notify the
visibility_manager about it so that the windows can be mapped again. Special cases
arise when a person enters the environment and no one was present beforehand. These
cases will be described in the next chapter, along with a more detailed description of the
visibility_manager and its interaction with the other parts of the system

5.3.2 Security Policy

Adhering to the general Unix philosophy, the system provides mechanism and not policy
to the extend possible. Therefore, as much as possible can be specified using parameters,
and together they will specify a security policy. The parameters should be set by a trusted
authority. Since there must also be a trusted super user, these two roles can be managed
by the same person.

There are six parameters that can be set when defining the security policy. The most
important parameters are the no read up, no_read down, no write_up, no_read_down
parameters. These four parameters specify the rules that are used by access operations to
determine whether access to a file or window should be granted or denied. They can, for
example, be used to specify a security policy that enforces the Bell-LaPadula model or the
Biba model and thus addresses confidentiality or integrity, respectively. The fifth parame-
ter, hide non-readable_files, should be set if the files that are non-readable, according to
the no_read_wup and no_read_ down parameters, should be hidden by the stackable file
system. The purpose of this parameter is to avoid information flow via file names. The
final parameter, permit lower level login, can be set if the users should be permitted to
log in at a level below their user level.

All types of levels in our model will be modeled as non-negative integers, so we do
not impose an upper limit for a level and the lowest possible level is zero. This decision
has mainly been made in order to provide a model that is as policy free as possible. An
organization will probably have an upper limit on the number of levels. For instance,
the military might have four levels, corresponding to unclassified, confidential, secret and
top secret, but another organization might need more or fewer levels. Therefore, the only
constraint that we enforce on the levels is that they cannot be negative; the upper limit
will be machine dependent. The super user in an organization must ensure that the levels
does not exceed the limit set by the organization.

Although we have attempted to make a system that is as policy free as possible, the
design does contain some policy decisions as described in the next chapter. These decisions
are especially related to what information users are permitted to retrieve about the system
state. When in doubt about whether an access restriction should be imposed on the usage
of a program, we omitted the restriction. This was the case for the programs that are
used to retrieve subject levels, window levels and the clearance level. We have therefore
disobeyed the least privilege principle. The main reason for this is that the Unix DAC can
be used by the super user to impose access restrictions on the usage of certain programs.

5.3 Combining Logical and Physical Access Control 39

This points out that our model is not designed for a stand-alone system, but for a system
that is tightly integrated with a Unix operating system which also provides (policy free)
access control mechanisms on its own.

40

Chapter 5. Sensor Enhanced Access Control Model

41

Chapter 6

Design

The system that we are set to develop must encompass many different types of functionality,
ranging from storing file and user levels to detecting when persons enters or leaves a given
environment. In order to make the system more comprehensible, it has been divided into
a number of subsystems that provide services to each other. These subsystems will be
described in this chapter along with how the different parts interact with each other. In
Section 6.1, an overview of the system architecture is provided. Section 6.2 describes the
security parameters that can be used to specify which security policy should be enforced in
a given deployment of the system. Each of the subsystems that the system has been divided
into are then described in Section 6.3 to Section 3.1. One of the developed subsystems,
the security management gui, will not be described until Chapter 7 since it is only an
insignificant part of the system as a whole. The system will be denoted SEAC (Sensor
Enhanced Access Control).

Each subsystem contains between one and six programs. The services provided by
each of these programs will be described in the section corresponding to the subsystem
where the program resides. Many of the programs send messages to each other when they
run. Some of these processes only provide services to other processes and therefore act as
servers, some of them only use services provided by others and therefore act as clients, and
finally some act both as clients and servers. To provide an overview of all these programs
and their interaction, a CSP specification is listed in Section 6.8. It describes the developed
protocol at a high abstraction level.

6.1 Software Architecture Overview

6.1.1 The Subsystems

The system has been divided into a number of subsystems, where each subsystem focuses
on a different aspect of the functionality of the system as a whole, see Figure 6.1. These
subsystems can be organized in a layered architecture where each layer represents different
levels of abstraction. Some of the layers have been partitioned further into subsystems
because the subsystems have different focus of functionality.

The lowest layer is a native file system where all the classified files will be stored.
Our design is not dependent on the type of used file system so this layer will not be
described further. For each file in the system that should be protected by access control, the

42 Chapter 6. Design

Security Management GUI ‘ Sensors ‘

File Level Management ‘ User Level Management ‘ Window Management
Stackable File System
Lower File System

Figure 6.1: Layered architecture for the system.

stackable file system subsystem stores a file level corresponding to the classification of
the file. Furthermore, the stackable file system stores a user level corresponding to the
clearance level of each user in the system. The file level management and user level
management subsystems provide programs for storing and retrieving file and user levels,
respectively. The visibility_manager subsystem manages the Window visibility; its main
purpose is to provide a service to the sensor subsystem so that windows are (in)visible
dependent on who are present in the environment. Finally, a security management gui
subsystem is included in order to make the system more user-friendly. It does not add any
new functionality to the system and is primarily developed because many users prefer a
GUI over command line tools.

The layered architecture is closed in the sense that each layer only uses the services
provided by the layer(s) immediately below it. For instance, the file level management
uses the services provided by the stackable file system, and the security management
gui uses the services provided by the file level management, user level management,
and window management.

The two lower layers reside in the kernel of the operating system since non-privileged
users must not have access to these parts. The two upper layers reside in user space and
use the system call interface of the operating system to interact with the stackable file
system.

Altogether, the stackable file system, file level management, and user level
management provides a MAC that is dependent on the security policy chosen when the
system is initialized. These three subsystems can be used independently of the other
subsystems, which may for example be useful in a setting where only logical and not
physical access control is required. The GUI part of the system will still be available in
this setting, although with restricted functionality. The window management and sensor
subsystems are not usable on their own.

6.1.2 Processes and Message Passing

In the user space part of the system, a number of processes must run all the time as
daemon processes so that they can provide services to other processes that are only invoked
occasionally by the user of the system. Many of the processes communicate using message
passing as indicated in Figure 6.2.

The system has a trusted super user who can use all the programs without any restric-
tions imposed by the access control mechanism. This user is named root in Figure 6.2. All
the other users in the system are non-privileged, and they are denoted user in the figure.
The root user can of course also act as a non-privileged user.

The editor and window manager processes shown in the figure have not been developed
as part of this project and they are therefore not included in one of the subsystems. The

6.1 Software Architecture Overview 43

sensor_client

Sensor

window_manager

sensor_server

User

file_open_monitor

visibility_manager

seac_destroy

Figure 6.2: Message passing between processes in user space. The ovals illustrate processes,
the arrows illustrate the message flow, and the boxes denote an entity that interacts with
the system.

44 Chapter 6. Design

assumptions that we have made about the behavior of these processes will be described
briefly in the reminder of this subsection. The remaining processes will be described in
the following sections along with the subsystems where they reside. The interactions
between the processes are described in the final section, and the description of parts of
their functionality will therefore be postponed to this section. A reference guide for the
programs are provided in C.

The term editor will be used to denote any application that can be used to view
and/or modify a file. It can, for example, be a text editor, a web browser or the Unix
output redirection operator ‘>’ which is used to write to a file. In most cases, a user who
is editing a file will use a text editor that both reads and writes the file contents. Only
one such editor has been shown in Figure 6.2, and it is denoted editor. After having
experimented with the emacs and gedit editors that were included in the Fedora Core 1
Linux distribution, we have decided to make a few assumptions about how the editors to
be used in the system works in general. First of all, when a file is opened in an editor
it will be closed immediately afterwards and then stored in a buffer for internal usage by
the editor. Because the file is stored in a buffer, it will be very hard to discover when the
user "closes” the file by killing its buffer. We have therefore chosen to simply refrain from
considering when a file is closed in the editor. This implies that the user must restart the
editor if the fact that a given file has been opened should no longer be stored by the system.
Furthermore, this approach is also preferable from a security perspective, as mentioned in
Section 5.2.1.

The window manager process shown in Figure 6.2 must maintain the state of each
created window. This should be done so that it is consistent with what is actually displayed
on the computer display by the X server.

6.2 The Security Policy Parameters

Six parameters are available for specifying a security policy. Two of the parameters restrict
read access for both files and windows. We will consider a window to be readable if it is
visible on the computer monitor, and the window will be unmapped if read access to the
window is denied. The security parameters are as follows:

no_read_up Read access to a file is denied, if the file level is greater than the clearance
level. Likewise, view access to a window is denied, if the window level is greater
than the clearance level. This parameter enforces the Bell-LaPadula simple security

property.
no_read_ down Read access to a file is denied, if the file level is less than the clearance

level. Likewise, view access to a window is denied, if the window level is less than
the clearance level. This parameter enforces the Biba integrity * property.

no_write_ down Write access to a file is denied, if the file level is less than the clearance
level. This parameter enforces the Bell-LaPadula * property.

no_write_ up Write access to a file is denied, if the file level is greater than the clearance
level. This parameter enforces the Biba simple integrity principle.

hide non-readable_ files The file names of non-readable files will be hidden. A file is
considered to be non-readable if read access is denied according to the no read up

6.3 The Stackable File System 45

or no_read_ down parameters. The file names of non-readable files will be omitted
when entries in a directory are read, so they will for instance be omitted in a directory
listing.

The purpose of this parameter is to prevent information flow via file names, since
this constitutes a covert channel. For example, if the no read up policy is chosen,
a low level subject should be denied access to both the content of a high level file
and the name of the file.

permit_lower level login The clearance level will normally be initialized to the level
of the user who logged in. In some situations, however, it may be desirable if the
clearance level is initialized to a level below the user’s user level. For example, if
the Bell-LaPadula model is enforced a high-level user will be denied access to send
a message to a low-level user via a file. If it should be possible for users to escape
from this restriction, the permit lower level login policy should be chosen. A user
is then allowed to specify the level that the clearance level should be initialized to,
as long as it is not greater than the user’s user level.

If only the no_read wup and no_write_ down policies are chosen, the security policy will
enforce the Bell-LaPadula model. If only the no read down and no_write_ up policies are
chosen, the security policy will enforce the Biba model. For both models, the hide non-
readable_ files policy should also be chosen to avoid information flow via file names.

6.3 The Stackable File System

The users of the system must not have direct access to the files containing classified in-
formation. Instead, some mechanism must be established that can mediate all accesses
to files by users. One candidate for providing this type of functionality is a stackable file
system that stores a level corresponding to each file in the underlying native file system.
In order to provide MAC, the stackable file system must also store a level corresponding
to each user who has access to the system. Using these levels, the stackable file system can
mediate all accesses to files by users. If sensors are deployed in the environment, the levels
of persons will also be used in access control decisions. The main reason for including the
MAC in a stackable file system is that it will then reside in kernel space and therefore be
protected from non-privileged users via the operating system user/kernel modes.

Two programs are provided for initializing the system, and one for shutting it down:

seac_init initializes the stackable file system. First of all, the security policy should be
specified, i.e., the no_read up, no_read down, no_write_ up, no_write_down, and
hide_non-readable_files parameters should be set. Secondly, the system parameters
that specify where the user levels and file levels should be stored persistently are set.
If the system has been used previously, it retrieves the previously stored user and file
levels. Finally, the part of the stackable file system that must discover when a file
is opened is initialized; this part is used by the file_open_monitor program. Only
the super user is permitted to use this program.

initcl The user level of the user invoking this program will be used to initialize the
clearance level. Before the initcl is invoked, the clearance level will have the lowest
possible level. The user will therefore not have access to any files in the stackable

46 Chapter 6. Design

file system until the level is increased. The program will thus function as a login
program. It will not involve any identification and authentication since we assume
that this has already been done by the operating system, since the user ID of the user
will otherwise not be associated with the process that executes the initcl program.

If the permit _lower level login policy option is chosen, the user can specify a level
below his user level which the clearance level should be initialized to. If the specified
level is above the user’s user level, the clearance level will be initialized to the user
level. A logout operation will not be supported, so the system must be restarted if
the user subsequently wants to log in with another level.

The clearance level can only be initialized once, so after the initcl program has
been invoked, any further invocations will be ignored by the stackable file system. If
the visibility_manager is running, it will be notified about the clearance level and
use it to determine whether window should be visible or not.

seac_destroy destroys the stackable file system and terminates the visibility_manager
and file_open_monitor process. Furthermore, it ensures that all file levels and user
levels are stored persistently. Only the super user is permitted to use this program.

6.4 File Level Management

A file level is associated with each inode number in the stackable file system. The file
level management subsystem provide three programs that can be used to set and retrieve
these file levels:

setfl sets the level for a file. The level can be any positive integer. If the visibility_manager
is running and a user has the file open in an editor, the visibility_manager will be
notified about the change of level and if the new level implies that the visibility of
the window should change it will map or unmap the window accordingly. Only the
super user is allowed to change the file level.

getfl retrieves the file level for a given file. If the hide non-readable_files security policy
has been chosen, it will not be possible to retrieve this level if the file is non-readable
according to the no_read wup or no_read down security policies.

listfl lists the file name and corresponding file level for every file in a given directory. If
no directory is specified, the file level for the current working directory will be printed.
If the hide_non-readable files security policy has been chosen, all the names of non-
readable files will be skipped in the listing. Whether a file is readable depends on
the current clearance level and the no read wup or no read down parameters. The
stackable file system can therefore also provide filtering by hiding file names; the
purpose is that information flow via file names must be prevented.

6.5 User Level Management

The user level management subsystem provides three programs that can be used to set
and retrieve user levels. A user level is associated with each user ID in the stackable file
system. The default user level will be the lowest possible level, which is zero.

6.6 Window Management 47

setul sets the level for a user. The level can be any positive integer and it will be
associated with the user ID of the user. If no user level is explicitly associated with a
user ID, the default value zero will be used. Only the super user is allowed to change
the user level.

getul retrieves the user level for a given user. A user can retrieve his own level, but not
the level of another user. The super user can retrieve the level of any user.

listul lists the user name and corresponding user level for every user who has a valid
login account in the system. An account is considered to be valid if it belongs to a
normal user and not a system process such as an FTP demon.

Only the super user is allowed to list the user levels. This is because of the principle
of least privilege. A malicious user who has a low level could abuse this information
to determine which account he should try to break into in order to obtain a higher
security level.

6.6 Window Management

The main responsibility of the window management subsystem is to ensure that a person
is prohibited from viewing sensitive information in windows on the screen. This task is
accomplished by means of a sensor client along with the following three programs:

visibility_manager The visibility_manager acts as a server for all the programs in
the window management subsystem, except getcl. Its main task is to manage the
visibility of windows and ensure that they are mapped or unmapped according to
the window levels and the current clearance level.

It is also the responsibility of the visibility_manager to ensure that the clearance
level in the stackable file system is updated. The clearance level should be set to the
environment level when a person enters the environment and the detected environ-
ment level is less than the current clearance level. The clearance level should also
be updated when an subject who currently has the lowest subject level leaves the
environment. If all subjects leaves the environment, including the user, the clearance
level should be set to the lowest possible clearance level.

file_open_monitor Whenever a file is opened in the stackable file system, the file_open_monitor
will notify the visibility_manager about this by sending a message to the visibility_manager.
This message will contain information about the process ID of the editor that opened
the file, the inode number, file level, and file name. The visibility_manager can
use the file level to determine the window level since it equals the maximum file level
among all the open files in the editor.

file_open_monitor will only report/discover when regular files or links are opened,
not directories.

sensor_server The sensor_server receives information about a person form a sensor_client
and relays it to the visibility_manager. The information includes the level of the
person and the direction. The direction can be either ”in” or "out”, depending on
whether the person is entering or leaving the environment.

48 Chapter 6. Design

These programs must either be started by the super user or be started automatically as
part of the operating system startup. This will prohibit that a non-privileged user simply
terminates a process by sending it a kill signal since a user will not have access to do so in
a Unix system.

The system also provides a few programs that can be used by any user to retrieve status
information about the system:

listwl list the window levels for all the current windows along with other status infor-
mation.

The file names of secret files will be replaced by "unavailable”.

listsl list the subject levels for every subject in the environment. If no person is in the
environment, the list will only contain the level of the user who has currently logged
in.

getcl retrieves the current clearance level from the stackable file system. This level equals
the minimum level in the list returned by listsl.

6.7 Motion Detection using Sensors

The sensor subsystem should provide information about persons on the physical premises
to the logical part of the system. To achieve this we need to collect data with some sensors
and use some software to interpret the data. When designing the sensor subsystem it
should be possible to use different kinds of sensors and also several at once. Thus the
sensor subsystem will be disjoint form the rest of system and have a simple interface to it.

The important thing in this sensor subsystem is that we can show the integration of the
physical world with the logical access control. Since it is only a prototype it is not important
that complete coverage of the physical environment is achieved or that every sensor type
is tested. We want to detect when someone enters the office through a designated way.
We do not want to attempt to gather more information about the person, but the system
should be able to handle possible additional information, such as a different level based on
some form of recognition.

The sensors will provide simple motion detection. We will be able to tell if motion
is present or absent, and whether the motion was caused by persons. Furthermore, we
need to determine in what direction the person is moving, if he is entering or leaving the
physical environment. We want to find an easy way to achieve the desired information
about the motion without the use of complicated motion analysis. This means that we are
not interested in tracking the motion, recognizing people or similarly complicated tasks.
The system will use a simple analysis to reduce the complexity of calculations in the system,
and furthermore, the analysis is not the main focus of the project as this is not our area
of expertise. It should, however, be possible to use more complicated analysis or sensors if
so desired.

6.7.1 Choice of Sensors

We chose to use web-cameras as example sensors. They have the advantage that they are
cheap and widely available. Web-cameras also have an interface to computer systems that
is straight forward, drivers already exists and they connect to the system via USB cables.

6.7 Motion Detection using Sensors 49

The pictures taken by web-cameras can be used to preform simple motion detection
analysis on, such as differential motion analysis. This does not reveal anything about
the direction of the movement, but we do need to know which way people move, if they
entering or exiting the office. To solve this problem while still using differential analysis,
we can use two cameras, and note the time difference between the motion in front of them.
Additional issues we need to know to obtain enough information about the motion will
be done by indirect analysis, e.g. using the number of pictures taken between two points
in time. Using two cameras and differential motion detection will result in a cheap and
simple setup, where the analysis is straight forward.

A web-camera is a simple passive sensor that only gives information about the presence
or absence of motion. Other passive sensors that could have been used includes infrared
sensors. They are also very cheap, and would simply detect someone passing through a
doorway. The problem with infrared sensors would be the interface to the computer, a
driver and special cables might be needed. More advanced passive sensors would be noise
sensors or touch sensitive floor. These are more expensive, not to mention more advanced
to install or interpret data from.

The system could also use active sensors such as RFID tags. Employees could wear
RFID tags or similar that are read when entering a room, and on the basis of this infor-
mation determine more accurately what information can be accessed. This is much more
elaborate and expensive than web-cameras, but the system should be prepared to handle
this sort of information from the physical world.

6.7.2 Motion Detection Programs

The sensor subsystem is designed to communicate with the rest of the system through
a client-server architecture. This should be replaceable if there was a need for using
e.g. an event bus architecture. A sensor acts as a client that sends information about
the environment to the sensor_server. A sensor can be either a virtual entity or an
actual sensor system.

A sensor client should provide the following functionality:

sensor client whenever a person enters or leaves the office/environment being monitored,
an event should be sent to the sensor_server. The event should include the subject
level and the direction of the person. The direction must either indicate that the
person enters the room or leaves the room. We have provided the swsensor program
with this functionality.

As mentioned above, we have chosen to implement a sensor client that uses web-cameras
as sensors. To accomplish the motion detection we want, we need some software system.
It consists of two parts, one part that detects motion based on raw input from the camera
by differential motion detection. The second part analyzes the results of this to determine
if the motion was caused by a person and the direction of the person. For the first part,
the differential motion analysis, we use an existing piece of software called Motion[7].

The second part consists of a number of programs providing the following functionality:

eventl/event2 are auxiliary programs that are needed due to the way Motion is func-
tioning.

50 Chapter 6. Design

motion_handler does further analysis to determine whether or not the motion detected
was a person passing the camera. One instance is needed for each camera.

camera_client will collect the data from the two motion handlers and determine if the
person moved in or out, and pass this information on the sensor_server. The
communication variables as well as the level for a default person is passed to the
program on start.

6.7.3 Design of Physical Premises

When designing the sensor subsystem an important part of it is the physical premises.
We try to gather information about the physical world, and for this information to be as
accurate as possible we need to lay out the physical environment carefully.

The cameras need to placed so they will detect any persons entering the room. They
should be placed so there will be a distinct time difference between the passing in front of
one camera to passing in front of another, so we can determine the direction of movement.
It is also important to consider what the surface the camera is placed on. It must be placed
so a random push or jump on the floor does not jar the camera too much, as this will of
course be considered as motion, since it would generate a large pixel wise difference. A
possible way to prevent this is to screw the cameras into the ceiling or wall.

The computer placement is also important. Firstly, it should be placed so that you
cannot look at the screen without passing in front of the cameras, for example by standing
in a doorway. It has to be impossible to look at the computer screen without being detected
by the sensors. Secondly, the computer should be far enough from the sensors to allow the
software to process the information, so that sensitive information will already be removed
from the screen when a person arrives in front of it.

Furthermore the general design of the room and building need to be considered. It
should not be possible to circumvent the system by, for example, crawling through a
window or just looking through it. Our system has not directly taken such things into
account, but it can be expanded by adding sensors that detect persons in these locations.

6.8 CSP Specification

In this section, the interactions between the user level processes will be described at a high
level using a formal specification. The protocols will be described using the notation in [37].
This implies that Communicating Sequential Processes (CSP) will be used to describe
the message passing between the communicating processes, and the Vienna Development
Method Specification Language (VDM-SL) will be used to describe the data types.

CSP can be used to model a system which encompasses multiple concurrent activities
using as a sequence of sequential processes. Each process can be constructed from simpler
processes which describes a subset of the entire process’s behavior. Furthermore, processes
can synchronize their activity by sending and receiving messages via channels. A channel
provides a one-way path from a sending process to a receiving process. When CSP is
used to model message passing between processes, the messages transmitted are denoted
communication events. A channel is in this case a FIFO queue of pending communication
events. To initiate a communication, a process can output an expression e to a channel
¢ using the output expression cle — P, which behaves like P when another process has

6.8 CSP Specification 51

acquired e by receiving from c. The other process can assign e to a variable z of type
M by using the input expression c?z : M — P. e and z must have the same type M,
and the process expressions are then said to match. Execution of matching input and
output expressions can be viewed as a distributed assignment that transfers a value from
one process to a variable in another.

VDM is a collection of techniques for the formal specification and development of
computing systems. One of its components is the model-oriented specification language
VDM-SL. A specification in VDM-SL consists of a mathematical model built from simple
data types like sets, lists and mappings, along with operations which change the state of
the model.

The syntax that we will use differs from the one used in [37] in two respects. Firstly, a
let expressions has been included for introducing new variables since this makes it easier
to read the specification. Secondly, the map construct from VDM-SL has been included
so that the map type k — v defines a mapping from a key of type k to an information
value of type v. The subset of CSP and VDM-SL that we have used is described briefly in
Appendix A.

The focus in our specification will be the message passing part of the system and not the
details about the functionality of individual processes, since this was described informally
in the previous sections. Furthermore, the specification will only describe the important
parts of the system. We will for instance use CSP to specify how windows are mapped
and unmapped, but CSP will not be used to specify how window status information is
presented to the user and how backup files are handled. The description of these details is
deferred to the next chapter.

6.8.1 Processes, Channels, and Users

All the user space processes that interact using message passing are shown in Figure 6.3.
Only one instance of each type of process is shown, although multiple instances of some
of the processes may run simultaneously without affecting the system behavior. These
processes are editor, sensor_client, setfl, 1istwl, 1istsl. The visibility_manager,
file_open_monitor, and sensor_server must run as daemon processes, and initcl and
seac_destroy are used to initialize and shutdown the system. Only one instance of these
processes must run at a time, and any subsequent activations should be rejected since the
system behavior otherwise will be unpredictable. How this is handled is an implementation
issue and will therefore be described in the next chapter.

The channels that connect processes are named left or right. The visibility_manager
acts as a server that communicates directly with all of the other processes, except the
sensor_client. An index has therefore also been included in the channel names for these
channels so that messages that pass through left[i] reach right[i] and vice-versa.

Two types of users are shown in Figure 6.3: root denotes the privileged super user,
and user denotes any non-privileged user or the super user. A user or root interacts
with the system via a Service Access Point (SAP) which may, for instance, be bound to
standard input or output in a terminal. Each SAP will be modelled as a channel in CSP.
A channel that connect a user with a process is named SAPx, where x is an integer. The
two channels that can only be used by root are denoted SAPR1 and SAPR2.

92 Chapter 6. Design

SAP4

sensor_client Sensor

Sensor_server window_manager

right[1]

file_open_monitor |_right[3]

left[10]

left[6]

visibility_manager

left[5]
left[7]

left[1]
right[5]

right[7]

right[1]

SAPR2 right[9]

seac_destroy

Figure 6.3: CSP processes and channels in the system.

6.8 CSP Specification 53

6.8.2 Data Types

The specification uses a few new types, which are defined as follows:

subject level = Np;
object level = Ny;

PID = Ny;
WID = Ny;
inode = Ng;

string = char*

FileInfo = string x object level X inode;

WindowTable = PID -2 (WID x string x FileInfo* x B);
Error = {INVALID MESSAGEY;

A level is is associated with each subject (i.e. a user, the super user or a person) and
each object (i.e. a file or a window). An upper limit is not impose on these levels, so they
are just modeled as non-negative integers.

A process, a window, or an inode number is uniquely identified by a non-negative
integer; the PID, WID, and inode types represent process IDs, window IDs, and inode
numbers, respectively.

Each value of type FileInfo represents a file which is open in an editor, and the elements
in the tuple denote a file name, a file level, and an inode number, respectively. Only an
inode, and not a file name, can be used to uniquely identfy a file. The file name is only
used when status information is presented to a user, whereas the inode will be used to
determine whether two files are identical.

A value of type WindowTable contains mappings from process IDs of editors to tuples.
Each entry in the table represents an editor that has created a window and possibly opened
one or more files. The elements in the tuple denotes a window ID, an application name, a
sequence containing elements of type Filelnfo, and a boolean value that is true if and only
if the window is mapped. The FileInfo sequence is sorted in decreasing order, according
to the file level in the FileInfo tuple. The window level for the editor is the maximum file
level of all the files opened by the editor. Since the sequence is sorted, the window level
will be equal to the file level in the first FileInfo element of the sequence.

To keep the specification simple and maintain the focus on the core functionality of the
system, only three types of errors have been included. These are used to model when a
the system is used before a user has logged in, a sensor client sends an invalid direction to
the sensor server, and a file level could not be set, respectively. Other erroneous situations
may of course arise, but the handling of these is postponed to the implementation phase
of the system development.

6.8.3 Functions

Since the main purpose of the specification is to describe the message passing between pro-
cesses, some details regarding the functionality of individual processes will not be described
formally. Furthermore, for some parts of the functionality it will not even be possible to
express the desired behavoiur using the available notation. In these cases, a function will

54 Chapter 6. Design

called in the specification and the behaviour of the function will only be described infor-
mally. The type of the return value, function name, and argument(s) of these functions
are as follows:

string get _application _name(window : WID) returns the name of the application that
has created the window.

B contains _inode(file list : FileInfo*,inode : N1) returns true if and only if the file list
contains the ¢node.

FileInfo* insert _sorted _decr(file_list: FileInfo*, file _info:FileInfo) inserts the file info
element into the file list sequence so that the resulting sequence is sorted in decreas-
ing order. The new sequence is returned.

subject _level® insert sorted _incr(subject list :subject level*, env_level : subject level) in-
serts the env_level element into the subject list sequence so that the resulting se-
quence is sorted in increasing order. The new sequence is returned.

subject level® remove _env_level(subject list : subject level*, env_level : subject level) re-
moves env_level from subject list and returns the resulting sequence.

WindowTable remove _window(table : WindowTable, window : WID) removes the mapping
from table where the information value contains window. The resulting table is
returned.

S* set_to_seq(s: S-set) returns a sequence containing the elements from the set s in an
arbitrary order.

WindowTable update _file levels(table : WindowTable, inode : Ny, level : object _level) up-
dates the table entries in table. Firstly, all the FileInfo tuples which contains inode
are updated so that the level in the tuple is replaced by level. Secondly, the FileInfo
sequences are sorted in decreasing order.

subject _level get clearance level() returns the current clearance level.
B set_file level(inode : Ny, level : object level) sets the file level for inode to level.

string table to string(table : WindowTable) returns a string representation of the table.
It uses the hide non-readable files parameter to determine whether file names of
non-readable files should be hidden.

string list _to_string(subject list : subject level®) returns a string representation of the
sequence subject list.

WID z_ create _window() creates a new unmapped window and returns its window ID.
PID getpid() returns the process ID of the process that called this functions.

(PID, object level, Ny, string) block _until _file opened() blocks until a file is opened and
then returns the process ID of the program that opened the file, the file level associ-
ated with the file, the inode number of the file, and the file name, respectively.

6.8 CSP Specification 55

6.8.4 The Communication Protocol

The system consists of many processes that must interact according to a specified protocol
so that the desired system behaviour is obtained. The most essiential behaviour arises when
a sensor_client process discovers a person in the environment, sends a message to the
sensor_server process, which relayes the message to the visibility_manager process.
The visibility_manager process knows the file levels of all the open files because the
file_open_monitor process has informed it about these. It can then use these file levels
to determine which windows should be visible, when the message about the person is
received from the sensor_server process.

The visibility_manager, file_open_monitor, sensor_server, and sensor_client
are among the most important processes, but the system also consists of other important
processes, and some less important utility processes that are only used to retrieve infor-
mation about the system state. The interactions between all the processes are specified
formally, as shown in Figure 6.4 to Figure 6.8. In the reminder of this section, an informal
description of this specification is provided. This is done by using the process expressions
as a starting point and then describing which messages are send to or received from the
channels.

visibility manager

The visibility_manager process is the central server in the system that controls the
visibility of windows. In order to perform this task, it must know the security param-
eters no_read up and no_read down which, along with the clearance level and win-
dow level, determines whether a window should be mapped or not. In Figure 6.4, the
visibility_manager process will initially receive the values from root which are used to
set the no_read_ wup and no_read down parameters.

The visibility_manager process must also control the visibility of file names of open
files. This is done using the hide non-readable_files security parameter which must also
be set initially. The parameter will, however, only be used when the listwl is invoked
in order to present status information to the user. Since the specification will focus on
the communication protocol, and not on how status information is presented, we will not
specify how hide mnon-readable files is used in listwl. The parameter will therefore be
omitted from the specification since it would not be used and only reduce the readability
of the specification.

The visibility_manager acts as a server for many different types of clients and it
can therefore receive many different types of messages. To separate the messages from the
different clients, it uses many choice expressions of the form

cl?z1: M1 — P1| ¢2722: M2 — P2

which describes the messages 1 and z2 of type M1 and M2 that it is willing to ac-
cept from the clients via channels c1 and c2, respectively. The messages received by the
visibility_manager will always contain at least one input value which indicate the type
of the message. This will always be the first input value, and it will be bound to the
the variable op. When an input value is irrelevant, the underscore character is used as a
wildcard to indicate this.

The visibility_manager process uses three choice operators to distinguish between
possible client messages. Messages from left channels with index 2, 3, 4, 5 or 8 will be

56 Chapter 6. Design

ignored. Messages from left[6] or left[7] will result in a reply containing an error message
since the clients that use these channels (i.e. 1listsl and listwl) expect a reply. Finally,
messages from left[9] will terminate the process.

initcl

The visibility_manager receives an INIT CLEARANCE LEVEL message from the
left[1] channel when a user has invoked initcl (see Figure 6.8). If the permit_lower level login
parameter is set, the user can specify a level below the level assigned to him, which the
clearance level should be initialized to. This possibility has, however, not been included in

the specification.

VM

Once a user has “logged in” by running the initcl program, the visibility_manager
process behaves like the VM process, see Figure 6.5. Four variables in VM are initialized
when this transition takes place. First of all, a mapping of type WindowTable is initialized
to the empty mapping. Secondly, the sequence subject_list is initialized so that it only
contains the clearance level. The sequence subject list will be used to store all subject
levels: Whenever a person enters or leaves the environment, the corresponding environment
level will be inserted into or removed from the list, respectively. The user level is not
distinguished from the environment levels in the sequence, so it will also be noted if the
user leaves the environment. The sequence is sorted in ascending order so that the current
clearance level equals the first element in the list. It is assumed that only one subject,
namely the user, is present initially and the sequence will therefore only contain one level.
If the subject list becommes empty, the clearance level will be set to zero.

Finally, the no read wup and no read down variables are initialised and the VM process
is now ready to receive messeages from its clients.

window manager

Because the window manager plays such an important role in our system, we have chosen
to include it in the specification even though we have not developed a window manager
ourself. Many different window managers exists, ranging from the very basic ones with
only the essential functionality to the very complex ones with many (more or less useful)
extra features. All those which adhere to the Inter-Client Communication Conventions
Manual[32] will, however, maintain the state of a window. The state can either be normal,
iconic or withdrawn. Only the normal and withdrawn states are interesting in our system,
so we have modeled a very simple wm that only maintains the state of windows as a
boolean value: when the wm is notified about a window that is mapped, it will associate
the value true with the window ID of the window that is mapped. Likewise, when a window
is unmapped, it will associate the value false with the ID of the window that is unmapped.

The window manager process in Figure 6.8 is used to initialize the window manager,
and WM is a non-terminating process that models how the state of windows is maintained.
It is assumed that the state of a window is consistent with what is actually displayed on
the screen.

6.8 CSP Specification 57

editor

When a user wants to edit a file, he will initially start an editor process. As for the window
manager, we have not created a editor ourself, but we will make some basic assumptions
about how it works so that it can be included in the specification. First of all, it is
assumed that the editor has a GUI that is build from a top-level window and possibly
some subordinate windows that are contained within the top-level window. Only the top-
level window is of interest for the system, and it is assumed that it is created using the
function x_create_window(). Whenever an editor is started and the top-level window has
been created, the VM should be notified about this so that it can add an entry to the table
mapping. The editordoes this by sending an XCRFEATE WINDOW message containing
the window ID and process ID of the editorto the VM. A window is not visible until it
is mapped, so the next step is to map the vindow and notify the window manager about
this event. The editorsends an XMAP WINDOW message to the window manager
which then updates its map, winmap, so that it reflects the change in window visibility.
Afterwards, the editoris ready to be used by the user, who may for instance use it to
open, read, write, and close files. This has not been modeled in the specification. Instead,
the editor will just block until the user kills it by sending an XDESTROY WINDOW
message. When it is killed, it should first of all notify the window manager about the state
change. Secondly, the visibility_manager should be notified about the event so that it
can remove the entry corresponding to the window ID from the table mapping.

file open monitor

The main concern for the VM is not which windows are created by an editor, but rather
which files are opened by editor. The sole purpose of the file_open_monitor process is
to discover when files are opened by an editor and reporting this event to the VM. How
the file_open_monitor can detect which files have been opened depends on how the sfs
is implemented. To keep the specification at a high abstraction level, we have modeled
this part by the function block until file opened(),which simply blocks until the user
opens a file. Whenever a new file is opened, the process ID, file level, inode number,
and file name is returned. If the file level is negative, it indicates that the seac_destroy
program has been called and that the file_open_monitor therefore should terminate.
Otherwise, file_open_monitor will just act as a relay in the sense that whenever the
block _until _file opened() function returns a tuple, this tuple is relayed to the VM.

When VM receives a FILE _OPEN _MONITOR message, it will retrieve the entry from
the table mapping that contains the process ID of the editor. If the file is not already
open by the editor, the entry will be updated so that it is registered that the file is now
opened in the editor. As noted previously, it will not be registered when the file is closed
since this is not possible to discover in practice.

sensor client and sensor server

The sensor_client should detect when a person or the user enters or leaves the environ-
ment. It will not distingush between persons and the users, so the term subject will be
used in the following description, since it covers both.

When a subject enters the environment, the sensor_client should detect the level of
the subject along with his direction. The sensor_client should not interpret these data;

58 Chapter 6. Design

instead, it should relay them to the sensor_server. The sensor_server is a server for
all the different sensor types that may be deployed in the environment. First of all, it
checks that the direction is valid, i.e. it must be either ‘i’ or ‘o’. If it is not valid, the level
and direction is ignored since an error has occurred. Otherwise, if the environment level
is non-negative, it will relay the received data to the visibility_manager. As for the
file_open_monitor, a negative level is used to indicate that the process should terminate.

When VM receives a SENSOR_SERVER message, it will initially check the direction.
If it indicates that a subject entered the environment, the VM will examine the subject list
sequence. If this sequence is empty, no one was present in the environment when the
person entered. The clearance level will always be zero when no one is present, and when
the person enters it will most likely be increased. This person could of course just be
the user who had left the environment temporarily. Because the clearance level is set to
zero when the last person leaves the environment, all windows that show classified files are
unmapped. When a person subsequently is detected and the clearance level is updated,
some windows may have to be mapped.

The mapping of windows is managed by the MAP process (see Figure 6.6). This is done
by examining the entries in the table mapping and use the stored information to determine
whether the visibility of a window should be changed. The process IDs of the running
editors are used as keys in the table mapping. The MAP process iterates though all these
by creating a sequence of process IDs and then extracting and processing one process 1D
at a time. Firstly, the information value in the table mapping is extracted; it is a tuple
containing the window ID, the application name of the editor, a sequence file list of open
files, and a boolean value is _mapped that is true if and only if the window currently is
mapped. If is mapped is true, the window is already mapped, so the MAP process can
skip this window and proceed to the next process ID. Likewise, if the editor has no open
files the window level is zero and the MAP process can skip this window. If the window
is currently unmapped and has open files, the first element of the file list sequence is
extracted. Since the file list sequence is sorted in descending order, the file level in this
FileInfo element is equal to the window level. This window level, the clearance level and the
security parameters no_read up and no_read down are then used to determine whether
the window should be unmapped or not. If the window is mapped, the s mapped will be
set to true and the window manager will be notified about the state change of the window
via the left[10] channel. The MAP process is then ready to extract and process the next
process ID, if any is left in the sequence of process IDs.

If a person enters the environment and at least one other subject is present, the window
visibility will possibly have to be changed, if the environment level is greater than or
equal to the clearance level. The process used to determine this is the UNMAP process (see
Figure 6.7), which resembles the MAP process. It will also process one pid at a time and
then contemplate the information value which is extracted from the the table mapping.
If it indicates that the window is already unmapped or the editor has no open files, the
window will be skipped. Otherwise, the window level, clearance level, no read up, and
no_read_ down are then used to determine whether the window should be unmapped or
not. If the window is unmapped the is mapped is set to false before the next process
ID, if any, is extracted from the list of available process IDs. Regardless of whether the
window visibility should be changed, the environment level will be inserted into subject list
sequence at the proper place, reflecting that a subject is now in the environment.

Another case arises when the SENSOR__ SERVER message received by the VM indicates
that a subject leaves the environment. First of all, the environment level will be removed

6.8 CSP Specification 59

from the subject list regardless of whether the window visibility should change. If it is the
last person in the environment who leaves, all windows with a window level greater than
zero will be unmapped. This is managed by the UNMAP process. If it is the person with
the lowest level who leaves, i.e. the detected environment level equals the clearance level,
some windows will possibly have to be mapped. This is managed by the MAP process.

setfl

When a new file is created by a user, the file level is set to the clearance level. In some
situations it may, however, be desired to change this level afterward to another value.
Only the super user is allowed to perform this change using the setfl program. In gen-
eral, the super user should not be working on classified files. A special situation arises
if a non-privileged user is capable to log in as the super user, using for example the su
program. He may then for example have some open windows showing classified files, and
the visibility_manager program will then have stored the levels of these files. If the
user then uses the setfl program to change some file levels in the sfs, this will result in
inconsistency if these files are open in an editor. To avoid such inconsistency, the setfl
program will send a message to the visibility_manager, informing it about the file level
change. (If the visibility_manager is not running, such a message will just be discarded
by the system.) The subject list sequence cannot be empty when setfl is called, since
someone must be present in the environment in order for it to be invoked.

The visibility_manager will update the table mapping so that the file levels are
updated. Furthermore, if the file level is less than the current clearance level some windows
will now possibly have to be mapped, depending on whether the file level change resulted
in a change in the some window levels. If the file level is greater than the current clearance
level some windows will now possibly have to be unmapped.

In practice, this scenario should only take place if the user uses some form of physical
access control, such as locking the door. Otherwise, a person might enter the environment
and force the user to misuse the super user privileges. He could for instance force the user
to change the levels of some files, or even worse, he could force him to unmount the sfs so
that all files are freely available in the underlying native file system.

The described file level notification part of the system has only been included because
we will not make any assumption about whether a user is also capable of logging in as
the super user while he has one or more editors open with classified files. This part is,
however, a vulnerable part of the system and the system will in general only be secure if
the users are not capable of logging in as the super user.

listwl and listsl

The listwl and lists] programs can be used to retrive status information about the currently
existing windows and the levels of subjects in the environment, respectively. When the VM
receives a message from one of these programs, it will create a string representation of the
requested inforamtion and return it.

destroy

A program has been provided that should be used to shut down the system. First of all,
it should send a DESTROY message to the VM, indicating that it should terminate. Fur-

60 Chapter 6. Design

thermore, it should ensure that the block until _file opened() stops blocking and returns
a negative level so that the file_open_monitor also will terminate, cf. Figure 6.8.

visibility manager dof (SAPR1?(no_read _up :B,no_read down :B) —
(left[1]?(op : {INIT CLEARANCE LEVEL},user level :subject level) —
VM[{—},[user_ level],no read up,no_read down]
lleft]i € {2,3,4,5,8}]7 — wisibility manager
lleftli € {6,7}]7 — left[i|\INVALID MESSAGE — wvisibility _manager
lleft[9])?(op : {DESTROY }) — STOP)

Figure 6.4: CSP specification of the visibility manager process. The visibility manager
initializes the system by means of input from the super user and a non-privileged user.

6.8 CSP Specification 61

VM [table : WindowTable, subject _list : subject level*, no _read wup:B,no_read down : B|

def

(left[2]?(op : {XCREATE WINDOW }, pid : PID, win : WID) —
VM [table T {pid — (win, get _application _name(window), [], true)}, subject _list]
lleft[3]?(op : { FILE _OPEN _MONITOR}, file _name : string, pid : PID, level : object _level,
inode : inode) —
let (win : WID, app _name : string, file _list : FileInfo*, is _mapped : B) = table(pid)
in if (- contains _inode(file list, inode))
then VM table T {pid — (win, application _name,
insert _sorted _decr(file_list, (file_name, level, inode)),is _mapped)},
subject _list,no_read up,no_read _down)
else VM [table, subject list,no_read up,no_read down]
lleft[4]?(op : {SENSOR _SERVER}, env_level : subject level, direction : char) —
if (direction = 1")
then if (subject list =[])
then MAP _WINDOWS|[set_to_seq(dom table), table, [env_level],
no_read _up,no_read _down]
elseif (env_level < hd subject _list)
then UNMAP _WINDOWS|[set to seq(dom table), table,
[env_level] subject list,no_read up,no_read down]
else VM|table,insert sorted incr(subject list, env_level),
no_read _up,no_read _down]
elseif (direction = ‘0’)
then if (len subject list == 1)
then UNMAP _WINDOWS]|set to seq(dom table), table, [],
no_read _up,no_read _down]
elseif (env_level = hd subject _list)
then MAP WINDOWS|[set _to seq(dom table), table,
remove _env_level(subject _list, env_level),no_read up,no_read _down]
else VM |table, remove _env_level(subject list, env _level),
no_read _up,no_read _down]
else VM|table, subject list,no_read up,no_read down]
lleft[5)?(op : {SET _FILE LEVEL},inode : inode, level : object level) —
if (level < hd subject list)
then MAP WINDOWS|[set_to_seq(dom table),
update _file _levels(table, inode, level), subject _list,no _read _up,no_read _down)|
else UNMAP _WINDOWS]|set to_seq(dom table),
update _file levels(table, inode, level), subject _list,no _read _up,no_read _down)|
lieft[6)? (op : {LIST _WINDOW _LEVELSY}) —
left[6]!table _to string(table) —
VM [table, subject list,no _read _up,no_read down]
lleft[7)?(op : {LIST _SUBJECT LEVELS}) —
left[T)\list _to _string(subject list) —
VM [table, subject list,no _read _up,no_read down]
Jleft[8]7(op : {XDESTROY WINDOW }, window : WID) —
VM [remove _window(table, window), subject _list,no _read up,no_read _down]
[left[9]7(op : {DESTROY }) — STOP)

Figure 6.5: CSP specification of the VM process, which acts as a server for many types of

clients.

62 Chapter 6. Design

MAP _WINDOWS|pid_list : PID*, table : Window _Table, subject _list : subject level*
no_read _up:B,no_read down : B]
©GF (pid_list =)
then VM |table, subject list,no_read up,no_read down]
else let pid : PID = hd pid list,
(window : WID, app__name : string, file _list : FileInfo*,is _mapped : B) = table(pid)
in if (is_mapped V file_list == [])
then MAP WINDOWSI|tl pid _list, table,
subject _list,no_read up,no_read down]
else let (_, window level : object level,) = hd file list,
clearance level : subject level = hd subject list
in if (= (no_read up A window _level > clearance level V
no_read __down A window _level < clearance _level))
then left[10]/(XMAP _WINDOW , wid) —
MAP _WINDOWS|tl pid_list, tablet
{pid — (window, app _name, file_list,true)},
subject _list,no_read _up,no_read _down]
else MAP WINDOWSItl pid _list, table,
subject _list,no_read up,no_read _down])

Figure 6.6: CSP specification of the MAP _WINDOWS process.

UNMAP _WINDOWS|[pid_list : PID*, table : Window _Table, subject list : subject _level*
no_read _up:B,no_read down : B]
©Gf (pid_list =)
then VM |[table, subject list,no_read up,no_read down]
else let pid : PID = hd pid list,
(window : WID, app__name : string, file _list : FileInfo*,is _mapped : B) = table(pid)
in if (—is_mapped V file list == [])
then UNMAP _WINDOWS|tl pid_list, table,
subject _list,no_read _up,no_read _down]
else let (_,window level : object level,) = hd file list
clearance _level : subject level = hd subject list
in if (no_read _up A window _level > clearance level V
no_read _down A window _level < clearance level)
then left[10]/(XUNMAP _WINDOW , wid) —
UNMAP _WINDOWSI|tl pid_list, tablet
{pid — (window, app name, file_ list, false)},
subject _list,no_read up,no_read _down]
else UNMAP _WINDOWSI|tl pid_list, table,
subject list,no_read up,no_read _down))

Figure 6.7: CSP specification of the UNMAP WINDOWS process. The process unmaps
all windows according to the read-security policy.

6.8 CSP Specification 63

initcl e (right[1]/(INIT _CLEARANCE _LEVEL, get_ clearance _level()) —
STOP)
window _manager & WM[{—}]
WM [winmap : WID -2 B]) aof (rightlj € {1,2}|?(XMAP_WINDOW , window : WID) —
(WM [winmap T {window — true}|
|right[j € {1,2}]7(XUNMAP_WINDOW , window : WID) —
WM [winmap T {window + false}]))
editor def (let wid : WID = z__create_window()

in (right[2](XCREATE _WINDOW , getpid(), wid) —
left\(XMAP_WINDOW , wid) —
SAP2?(op : {XDESTROY _WINDOWY}) —
left(XUNMAP _WINDOW , wid) —
right[8]!(XDESTROY _WINDOW) — STOP))

file_open__monitor = (let (file_name : string, pid : PID, level : object _level, inode : inode) =
block _until _file opened()
in if (level >=0)
then right[3]/(FILE _OPEN _MONITOR, file _name,
pid, level, inode) — file _open__monitor

else STOP)

sensor_client = (SAP47(level : subject_level, direction : char) —
right!(level, direction) — STOP)

Sensor _server = (left?(level : subject level, direction : char) —
if ((direction # ‘' A direction # ‘0’))
then sensor_server
elseif (level >=0)
then right[4]/(SENSOR _SERVER, level, direction) — sensor _server
else STOP)
setfl = (SAPR2?(inode : inode, level : object level) —
if (—set_file level(inode, level))
then STOP
else right[5|!(SET _FILE LEVEL, inode, level) — STOP)
listwl X (right[6]\LIST _WINDOW _LEVELS —
right[6]?(window _info : string) —
SAP6!window _info — STOP)
listsl X (right[7]\LIST_SUBJECT _LEVELS —
right[7]?(subject _list : string) —
SAPT!\subject_list — STOP)
seac__destroy = (right]9]!DESTROY — STOP)

Figure 6.8: CSP specification of the client processes. The sensor_serveris both a client
and a server.

64

Chapter 6. Design

65

Chapter 7

Implementation

A system that conforms to the model described in Chapter 5 and the design described
in Chapter 6 has been implemented. Many different technologies have been used for this
implementation, ranging from a file system description using the FiST language at the
lowest layer to GUI programming in Java at the highest layer. In this chapter, the imple-
mentation of the SEAC system is described, starting at the lowest abstraction layer and
ending at the highest. The focus will be on how the system is implemented, and not on
how it should be used since these details are described in the user’s guide in Appendix C.
For instance, all the programs that were described at a high level in Chapter 6 are reviewed
in the user’s guide, where we also introduce the command line arguments.

In Section 7.1, we will describe how a stackable file system can be used to store and
retrieve file levels and user levels and provide logical access control based on these levels
and a security policy. The combination of the logical and physical access control is handled
by the window management subsystem. In Section 7.2, we will describe how this part is
implemented, using the CSP specification developed during the design phase as a starting
point. Furthermore, some issues regarding the handling of backup files that were not fore-
seeable during the design phase are also described. The detection of persons is performed
using two web-cameras, a motion detection program, and programs that analyze the mo-
tion detection output and use parameters to determine whether persons have entered or
left the environment (see Section 7.3). Finally, the implementation of the Security Man-
agement GUI, which can be used to indirectly run command-line programs, is presented
in Section 7.4.

7.1 The Stackable File System

A stackable file system that must enforce logical access control has been implemented
using a FiST input file and C kernel code when the FiST language did not suffice. More
precisely, the code related to the storage of the file and user levels and the reading of
the security policy parameters have been written in three separate C files. The functions
provided by these files are invoked in the FiST input file, for example when a user level
has to be retrieved from the user level file. The three files where the file levels, user levels,
and security policy are stored must be specified when the SEAC system is started up and
the seac_init program is run. File levels should not be associated with these files, and
they should therefore not be stored in macfs; instead, they should preferably be stored in

66 Chapter 7. Implementation

a directory where only the super user has write access to them. For further details about
the system startup, see Appendix C.1.

7.1.1 Storage of Levels

In order for the stackable file system to provide MAC, it must associate a file level with
each inode number in the file system. This is implemented using a hashtable, where the
key is the inode number and the information value is the file level (see Appendix F.2.3).
When the SEAC system is in use, this hashtable is stored in memory; when the system is
shut down, the hashtable will be stored in a regular file which is specified by the super user
at system startup. The main reason for storing all the file levels in memory is that this
yields better performance when the file levels must be retrieved frequently. Furthermore,
the memory requirements by the system are relatively low: each entry in the hashtable
requires 8 B (4B for the user level and 4B for the user ID). Unless many millions of files
are created, this approach should not course memory consumption problems.

The users obtains access to objects via processes, and it is the user ID associated with
the process that is used to determine whether the access should be granted or denied. To
enforce a MAC policy, the stackable file system must therefore store a user level for each
user in the system. This is done by the super user with the setfl program, which will
store the user level in a file along with the user ID. Unlike the file levels, the user levels
are not cached in memory, so when a user level should be retrieved, it is read directly from
this file (see Appendix F.2.4).

7.1.2 FiST Input File

In this section, we will describe the macfs file system using the FiST input file shown in
Appendix F.2.1 as a starting point. The details regarding the FiST language will not be
described in this thesis; instead, we refer to [44]. We will, however, describe the parts of
the language that we have used.

The FiST input file specifies the functionality required by our stackable file system. It
is divided into four sections as shown in Figure 7.1. The first section is enclosed between
%{ and %}, and it contains C declarations for the used variables (e.g. for the the security
policy parameters) and function prototypes.

7{

C Declarations

%}

FiST Declarations
%%

FiST Rules

%%

Additional C Code

Figure 7.1: FiST grammar outline

The second section contains FiST declarations, which are declarations that globally
affect the behavior of the code produced by the FiST generator. Initially, this section
specifies which other files contain C kernel code, and which files contain user space code

7.1 The Stackable File System 67

that should use the functionality provided by the stackable file system. Most importantly,
it defines special data structures that are used by the rest of the stackable file system code.

The third section contains FiST Rules, which describe rules for controlling the behavior
of file system functions. The rules can also specify the actions taken by the stackable file
system when an ioctl system call is invoked.

The fourth section contains Additional C code, and its main purpose is to provide a
flexible extension mechanism that enables the integration of C and FiST code. The section
may contain arbitrary C code that can be called from anywhere. For example, it contains
the function that is invoked whenever the access permissions for a given inode is checked
in the VFS layer.

Defining New I/O Controls

The FiST declarations are mainly data structures that are used for declaring new ioctl
requests. Ioctls (I/O controls) are used in the FiST system as an operating extension
since they can be used to pass arbitrary data between user space and the kernel. Each
FiST declaration of an ioctl specifies the variables that should be passed between user
space and kernel space. When the FiST generator fistgen is run on the FiST input
file, it will generate a C struct definition that contains the required variables and a code
that can be used to identify the ioctl. For example, the GET_FILE_LEVEL ioctl decla-
ration specifies a level and an inode variable, and fistgen will generate the C struct
_fist_ioctl_GET_FILE_LEVEL which can hold these two variables, and an ioctl code stored
in the variable FIST_IOCTL_GET_FILE_LEVEL of type int.

For each of the FiST ioctl declarations, the FiST rules section contains a correspond-
ing FiST rule. For example, when the getfl program invokes an ioctl system call to
retrieve a file level, it will initially set the inode number of the file in the C struct.
When the operating system makes a context switch and transfers control to macfs, the
hop:ioctl:SET_FILE_LEVEL FiST rules is used. This rule will extract the inode from the
C struct, find the corresponding file level and store this in the C struct. When control is
transferred back to the getfl program, it can extract the file level from the C struct and
print it to standard output, making it visible to the user who initially started the program.

The ability to define new ioctl codes and implement their associated actions is the
functionality provided by FiST that we have used most extensively: For each of the user
space programs that must pass data to or receive data from macfs, a FiST ioctl declara-
tion and corresponding rule has been implemented. There are 12 such programs: getul,
setul, listul, getfl, setfl, listfl, visibility_manager, getcl, initcl, seac_init,
seac_destroy, file_open_monitor. When a user space program needs to interact with
the stackable file system via an ioctl system call, it must first of all open a file and thereby
retrieve a file descriptor to the file system. When the ioctl system call is invoked, this
file descriptor is used as argument in addition to the C struct and ioctl code generated by
fistgen. An arbitrary file in macfs can be used, since all the MAC is implemented in the
kernel, independently of which file was opened. The only requirement is that the programs
will be granted access to opening the file. One file (or rather directory) that exists and
should be readable by all is the mount point, and the 12 mentioned programs will all use
the mount point when they need to retrieve a file descriptor to macfs.

The mount point is defined to be “/mnt/macs/” in the header file mount_point.h
(see Appendix F.1.1), and this file should be modified if another mount point should be

68 Chapter 7. Implementation

used. This inflexible approach to specifying a constant has been used because there are
12 programs that must know the mount point, and it would make the programs less user-
friendly if the mount point should be specified as a command line argument for each of
them. Another approach could be to store the mount point in shared memory, but then
all the programs should know the shared memory ID. We have taken the rather inflexible
approach because we believe that the mount point rarely will need to be changed, if ever.

Extending File System Functions

Besides the rules for all the ioctl declarations, the FiST rules section specifies rules for
altering the behavior of some system calls related to files and directories. First of all, the
behavior of the file operations create and unlink are slightly modified after the corre-
sponding operations are called in the lower file system:

%op:create:postcall When a new file is created, its file level will be initialized to the
clearance level. The inode number of the file is associated with this file level by
inserting an entry into the hashtable. If a hard link subsequently is created to the
file, the files will have the same file level since they have the same inode number.

%op:unlink:postcall When the unlink operation is invoked, the number of hard links
associated with a given inode is reduced by one. If the number of hard links is zero
after the unlink operation has been invoked in the lower file system, the entry in the
hashtable that contains the inode is deleted.

The behavior of the directory operations mkdir, rmdir and readdir have been extended
by three FiST rules:

%op:mkdir:postcall When a new directory is created, its file level will be initialized to
the clearance level. The rule is identical to the %op:create:postcall, except that
it works on directories.

%op:rmdir:postcall When a new directory is deleted and the number of hard links
becomes zero, its entry in the hashtable is deleted. The rule is identical to the
%op:unlink:postcall, except that it works on directories.

%op:readdir:call If the security policy hide non-readable_ files has been chosen and the
caller is not the super user, all the non-readable files will be skipped in when the
readdir system call is invoked. The effect of this can be seen when a user, for
example, calls the 1s or 1istfl programs and they read a directory entry: all the
names of non-readable files will be omitted in the generated file list.

File Open Detection

The program file_open_monitor is used to notify the visibility_manager about files
that are opened in macfs, ensuring that the window levels maintained by visibility_manager
remain updated. The kernel space part of the file_open_monitor program is implemented
using the %op:ioctl:0PEN rule, which blocks on the semaphore open_sem until a file is
opened. This rule interacts with the file_open_intercepted() function in the fourth sec-
tion of the FiST input file via open_sem. file_open_intercepted() is invoked whenever a

7.1 The Stackable File System 69

file is opened, i.e. whenever the open system call is invoked by an editor. If the opened file
is a regular file, file_open_intercepted() will copy the editor’s process ID, the file level,
the inode number and the file name into global variables. file_open_intercepted()
will subsequently increment the value of the open_sem semaphore, indicating that the
global variables contain information about a newly opened file. The %op:ioctl:0PEN
rule will then stop blocking on open_sem and copy the values of the global variables into
buffers which can be read by the user space part of the file_open_monitor process.
The file_open_monitor will subsequently send a message containing these values to the
visibility_manager. Afterwards, it will block again until a new file is opened, repeating
the described steps until seac_destroy is invoked and kills it.

The FiST language cannot be used to add code that should be executed whenever the
open system call is invoked. Since it is essential for our system that it is detected whenever
a file is opened, we added an invocation of file_open_intercepted() to the function
wrapfs_open in the templates. wrapfs_open is invoked whenever the system call open is
invoked. The changes made to the templates are described in detail in Appendix B.1.1.

The global variables, which contain information about an opened file, are read by a
single process (file_open_monitor) and written by all processes that open a file in macfs.
This use of global variables in the kernel should not cause concurrency issues, if the used
kernel is non-preemptive and the computer only has one processor. The Linux 2.4 kernel
which our system is developed for is non-preemptive[27], but SMP (symmetric multipro-
cessing) issues will arise on computers with multiple processors. On a single processor
computer, a process that invokes the open system call will not be interrupted while it is
assigning new values to the global variables.

Mandatory Access Control

The MAC enforced by the system is implemented in the inode_permission() function
in the fourth section of the FiST input file. This function should be invoked when-
ever a process attempts to access a file or directory in the macfs. One way to ensure
that it is invoked is by modifying the stackable file system templates slightly so that our
inode_permission() function is invoked whenever the operating system performs access
checks. More precisely, the function wrapfs_permission() in the templates is invoked
whenever a Unix permission check is performed. wrapfs_permission() takes a mask of
type int as argument, and when read access to a file is checked the mask is 4, and when
write access is checked the mask is 2. The inode_permission() function uses the same
mask to determine whether read or write access should be granted. Furthermore, it will
use the no_read up, no_write_ down, no_read_down, and no_write_ down parameters,
the file level associated with the inode, and the clearance level to determine whether the
access should be granted. If not, the error code EPERM is returned and the user space
program will therefore see the error message ‘permission denied’. If the user ID associated
with the process is zero, i.e. it is the super user, the access will always be granted.

Besides the access control that is determined by the security policy parameters, many
of the FiST ioctl rules also enforces access control: for those user space programs that
must only be invoked by the super user, it is checked that the user ID associated with the
process is zero. It is essential for the security of the system that the user ID is checked in
the kernel and not in the user space programs. If the checks were made in a user space
programs, a malicious user could easily circumvent the access control by writing his own
program where no access control is enforced. The program should use the ioctl system

70 Chapter 7. Implementation

call to obtain access to the file system, and with no access control he could, for example,
change file levels and user levels.

Auditing

The macfs provides a primitive audit mechanism: if an erroneous situation occurs, an entry
is written in the system log using the printk function. This could for example be an ‘out
of memory’ error or that a file level was unexpectedly not associated with an inode. On
most Linux systems, the system log is stored in /var/log/messages and only the super
user has read and write access to this file. Whenever an entry is written to the log, it is
automatically preceded by the date and time.

If set DEBUG macro is set, additional debugging information is written to the system
log. The macfs will record many types of events, such as the creation or deletion of
files or directories, the setting of a file or user level and the retrieval of a file or user
level. By default, DEBUG is turned of, but it can be set at compile time as explained in
Appendix B.1.

7.2 Window Management

The window management subsystem involves many processes that send messages to each
other; as shown in the CSP specification in Section 6.8. This message passing has been
implemented using many different types of IPC mechanism, as described in this section.
The IPC mechanisms are XEvents, sockets, semaphores, shared memory, and named pipes.
The reasons for choosing these mechanisms will be motivated as the processes that uses
them are described.

Three of the programs in the window management subsystem (visibility_manager,
file_open_monitor, and sensor_server) must be started by the super user and subse-
quently run as demon processes. It is very important from a security perspective that they
are started by the super user, since they then will be protected by the Unix security mech-
anisms. In particular, a non-privileged user must not be allowed to kill them by sending
them a signal, regardless of whether this is done deliberately or not.

7.2.1 The Visibility Manager

The most important program in the window management subsystem is the visibility_manager
(see Appendix F.5.1): it acts as a server for many other processes and is responsible for
changing the visibility of editors. In the CSP specification for the visibility_manager
process, the two data structures table and subject list are used to maintain the state of
the window management subsystem. The fable stores the window related data and is im-
plemented using a hashtable. The subject list stores the detected subject levels and is
implemented using a singly linked list. We have not implemented these data structures
ourselves, but have used the GHashTable and GSList provided by the glib library|8]. This
library is developed as part of the GNOME project, and we have used it extensively in
the user space part of our code since it provides many general purpose functions and data
structures.

In the CSP specification, we used a choice expression to separate the different messages
that are received from the different types of clients. This part is implemented using an

7.2 Window Management 71

event loop, where a queue of pending events is maintained. The visibility_manager
will repeatedly extract one event from the queue, process it according to its type, and
then possibly block until a new event is added to the queue. By using an event loop, the
visibility_manager acts as a single threaded server that processes one client request at
at time.

One IPC mechanism that can provide a queue of pending events is the Unix message
queue. Another, more unconventional, mechanism is to use XEvents. An XEvent is a data
structure that is included in the X1ib library. It can contain many different types of data
because it is the principal method by which clients get information from the X server or
other X clients. We have chosen to use XEvents because the visibility_manager has to
receive events from the X server whenever a window in its table is destroyed. A single
event loop can therefore only be implemented using XEvents.

An XEvent can only be sent to an X client, i.e. an application that has created win-
dow. As part of its initialization, the visibility_manager becomes an X client when
it creates a window. The window is not mapped so it is invisible. The other processes
must know the window ID of this invisible window before they can send XEvents to the
visibility_manager. The window ID is written to shared memory, and all the clients of
the visibility_manager will subsequently read it there.

7.2.2 Intercepting Window Creation and Destruction

The system has been designed to work with editors that only use one top-level window,
since there then is no ambiguity about which window should be mapped or unmapped.
However, not all editors works this way, and there exists no standard which specifies that
all applications should use the same window hierarchy. In fact, the ICCCM warns that
“clients must be aware that some window managers will reparent their top-level windows
so that a window that was created as a child of the root will be displayed as a child of
some window belonging to the window manager”. The system can therefore not be used
with all editors, and a user must therefore check that his editor can be unmapped before
he opens classified files in it. Our tests of the system (see Appendix D.6) showed that the
system works with emacs, nedit, and mozilla, but not with gedit. We used the GNOME
desktop environment during the test with the default window manger, which currently
is metacity. The gedit editor created many top-level windows, and it its behavior was
highly unpredictable. emacs, on the other hand, was very simple in this respect since it
only uses one top-level window. We think that the main reason why the behavior of gedit
is unpredictable is that it is tightly integrated with the GNOME desktop environment and
therefore can use a custom protocol when it communicates with metacity. After all, this
unspecified behavior is permitted since the X Window System provides mechanism, not
policy.

Whenever a new top-level window is created, the visibility_manager process must
be informed about its window ID and the process ID of the application that created the
window. The window ID can be received from the X server since any X client can request
to be notified about window creation events'. The process ID cannot be retrieved from the
X server, but if both the editor and the window manager adheres to EWMH, the process
ID can be retrieved from the window manager. Our experiments showed that a process

'In fact, an X client can select to be notified about all events for any window. If keystroke events are
selected, the X client can eavesdrop a password from any other client on an accessible display[31].

72 Chapter 7. Implementation

ID for a gedit process could be received from metacity, but a process ID could not be
received for emacs. We do not want to make our system depended on a protocol which (at
the time of writing) only is supported by applications that are tightly integrated with a
desktop environment. Another means of detecting the process ID of a newly started editor
process has therefore been used.

The behavior of an editor can be modified by using a preloaded shared library. A
preloaded shared library is a shared library that is loaded before any other shared library
when a dynamically linked program is executed. By creating a preloaded shared library,
one can easily overload functions that belong to the real shared libraries. We have used this
approach to modify the XCreateWindow and XCreateSimpleWindow functions in the library
1ibX11 (see Appendix F.6.1). Whenever a top-level window is created, these functions will
send a message containing the process ID and window ID to the visibility_manager.
The preloaded shared library will only be used if the environment variable LD_PRELOAD is
set. The details regarding the use of preloaded shared library are described in the SEAC
user’s guide in Appendix C.1.2. For further reading on shared libraries, see [20, 41].

When the visibility_manager receives information from the preloaded shared library
about a newly created top-level window, it will add a corresponding entry to its table.
Furthermore, it will requests that the X server sends an XEvent when the window is
deleted. When this occurs, a message of type DestroyNotify is received in the event
loop. It contains the window ID of the destructed window, and the entry in the table that
contains this window ID is subsequently removed.

7.2.3 Intercepting File Open

An XEvent can only be used to send up to 20B of data. This is sufficient for all the mes-
sages, except when the file_open_monitor programs has to send a process ID, application
name, inode number and file name to the visibility_manager (see Appendix F.5.2). An-
other IPC mechanism is therefore required, and we have chosen to use shared memory,
which is the fastest form of IPC|[29]. The file name is written to shared memory, whereas
the remaining data are sent in an XEvent. To avoid synchronization issues when files are
opened rapidly one after another, a binary semaphore is used to protect the shared memory
(see Appendix F.1.3). Whenever file_open_monitor detects that a file is opened, it will
first wait on the semaphore until the semaphore value is positive. Then it decrements the
semaphore value by one, writes the shared memory, and sends the XEvent that contains
the remaining data to the visibility_manager. When the visibility_manager receives
the XEvent, it will first read the shared memory and then increment the semaphore value
by one. The shared memory can then again be written by file_open_monitor.

7.2.4 Handling of Backup Files

The handling of backup files depends highly on the editor: some editors create no backup
files, whereas others create more than one. The editor that we primarily have used during
the development and test of the system is emacs. The system is only a prototype, and
since the handling of backup file is not an essential part of its functionality, we have chosen
to implement it so that it can handle the backup files created by emacs. Our experiments
with some of the available editors in the Fedora Core 1 Linux distribution showed that
nedit does not create any backup file; this is probably due to that it is a very simple

7.2 Window Management 73

editor, at least when compared with emacs. The other editor we tested was gedit, and
our experiments showed that it uses the same backup formats as emacs.

The behavior of an editor can be examined using the strace program. strace inter-
cepts and records the system calls which are invoked by a process and the signals it receives.
Using strace, one can observe how backup files are handled by an editor. We will describe
how emacs handles backup files by using an example. The file test_file.txt will be
used in the example. Initially, the stat program was used to retrieve its inode number as
follows:

localhost(s973732) $ stat --format "%n %i" test_file.txt
test_file.txt 340726

The creation of backup files involves open and rename system calls, so strace was used to
intercept these calls as follows:

strace -etrace=open,rename -e signal=none emacs test_file.txt

Each line printed by strace contains the system call name, followed by its arguments in
parentheses and its return value:

open("/mnt/macfs/test_file.txt", O_RDONLY|O_LARGEFILE) = 3
rename ("/mnt/macfs/test_file.txt", "/mnt/macfs/test_file.txt™") = 0

open("/mnt/macfs/test_file.txt", O_WRONLY|O_CREAT|O_TRUNC|O_LARGEFILE, 0666)

Most of the system calls have been deleted, as denoted by the dots. This output shows that
emacs creates a backup file be renaming the original file so that a tilde character is appended
to the end of the file name. A new file is subsequently created with the same name as the
original file. In other words, the inode that was originally associated with test_file.txt
will after the creation of the backup file be associated with test_file.txt , and a new
inode is associated with test_file.txt. This can be verified using the stat program:

localhost(root) $ stat --format "%n %i" test_file.txt
test_file.txt 340728

/mnt/macfs

localhost(root) $ stat --format "¥n %i" test_file.txt”
test_file.txt™ 340726

/mnt/macfs

A file level is associated with an inode number, and a newly created file will acquire a file
level equal to the clearance level. If the file level of the edited file and the clearance level
are identical, this will course no problems. If, however, they are different the file level of
the edited file will become the clearance level. Our model specifies that only the super
used is allowed to change the file levels, so it is definitely not desirable that a user started
editor can change these. Furthermore, since the visibility_manager stores the file level
along with the file name, this file level will no longer be consistent with the file level stored
by macfs.

74 Chapter 7. Implementation

To solve this issue, we have developed a preloaded shared library that will intercept
whenever a rename system call is made (see Appendix F.6.2). It will compare the two file
names, and if this comparison indicates that a backup file is being created, it will send
a message to the visibility_manager. This message will include the process ID and
application name of the editor and the inode number of the file that is being renamed.
If the visibility_manager can find an entry in its table that contains these data, it
will know that a backup file has been created. Since the inode number after the rename
operation will belong to the backup file, it will be marked in the table by setting it to
a negative value. As the example using strace illustrated, the newly created file will
be opened immediately after it is created. The file_open_monitor process will discover
this and send a message containing the process ID, file level, inode number and file name
to the visibility_manager. The visibility_manager will find the entry in its table
corresponding to the edited file and replace the negative inode number with the new inode
number. Finally, the file level is updated in the macfs. Although the handling of backup
files turned out to be a bit complicated, it succeeded: both the edited file and its backup
file will get the correct file levels.

In the message that is send from the preloaded shared library to the visibility_manager,
we have included a constant EMACS_BACKUP. This information is used to ensure that a file
is only marked as a backup file when the application name is “emacs”. In a further devel-
opment of the system, new constants can be added if new backup file formats should be
handled.

As a final note about the handling of backup files, the temporary files created by emacs
of the form #test_file.txt# will also be handled by the system. The visibility_manager
will discover that this format is used and set the file level of #test_file.txt# to the file
level of test_file.txt.

7.2.5 The Sensor Server

The sensor_server is implemented using basic socket programming (see Appendix F.5.3).
It creates a server socket that listens on the port that was given as command line argu-
ment or the default port if none was specified. Whenever a sensor_client connection is
accepted, it creates a socket that is used for receiving a level and direction and sending
back an error code. The socket is then closed, and the server is then ready to accept a
new connection. It will loop until a negative level is received, at which point it closes the
server socket and terminates.

Because the sensor_server only uses basic socket programming, it is very insecure:
anyone who knows the host and port number can send fake directions and levels to the
server and thus completely compromise the access control provided by our system. One
solution would be to use SSL to provide confidentiality, integrity, and authentication. We
have not secured the communication due to lack of time, but it will properly not be difficult
using for example the OpenSSL|9] implementation of SSL.

7.2.6 Printing Subject and Window Status Information

When the listwl program or the listsl program are started, they send an XEvent
to the visibility_manager, requesting data that subsequently will be printed to stan-
dard output. This scenario is unlike the other clients that did not receive data from the

7.3 Sensors 75

visibility_manager, except possibly an error code. In addition, the size of the returned
data is not easy to determine since the table and subject_list in visibility_manager
process changes frequently. This makes it impractical to use an IPC mechanism that only
provides storage for fixed-sized messages, such as shared memory or message queues. A
FIFO special file (or a named pipe) does not impose limits on the size of the transmitted
data. This IPC mechanism is therefore used when the visibility_manager communicates
with either a 1istwl or listsl process. Another possible IPC mechanism that could have
been used is sockets.

The code for the 1istwl and 1listsl are listed in Appendix F.5.4 and Appendix F.5.5,
respectively. The listwl program prints all the data which are stored in the hashtable
maintained by the visibility_manager. The output is formatted so that it easily can be
processed by the Security Manager GUI. In figure Figure 7.2, the output corresponding to
the screen-shots in Figure E.5 to E.7 are listed. The output printed by the 1istsl program
is rather simple: it is a list of non-negative integers, corresponding to the subject levels
stored by the visibility_manager.

7.3 Sensors

The sensor subsystem consists of the cameras themselves as well as some programs to
analyze the input from the cameras. A number of constants based on empirical determined
data is used.

7.3.1 Web-cameras

We are using two simple web-cameras: a Logitech Quickcam Express (old model) and a
Logitech Quickcam Web that works with the qce-usb driver|10].

We need to have two cameras to determine the direction of movement. If we only
had one, it would be required that only one person could be in the office at any time, as
two consecutive detections of motion would be seen as an enter/leave pair. This would
probably be a very unrealistic requirement. When using two web-cameras we can use the
time difference between the motion detected in front of each to determine which direction
the person is moving. When doing this the placement of the cameras is important. We
need the two cameras to be placed so the motion detection in front of each of them has
a time difference when people walk by. In our empirical tests we can detect most persons
entering at a normal pace with 40-50 cm between the cameras. To detect running persons
they should be further apart. It is important to note that the distance between the cameras
partly determines some constant values in the programs.

7.3.2 Motion, a Motion Detection Program

Motion is motion detection software for Linux licensed under the GNU general public license
(GPL). It grabs images from a web-camera and/or video4linux device and uses them to
detect motion.

We chose to use this program as it mostly covers our needs. Our system is modular, so
other motion detection software could replace it if needed. For our use, the main feature of
Motion is the ability to detect movement and take snapshots of it, as well as the ability to

76

Chapter 7. Implementation

Table content:

Application Name

emacs
gedit
gedit
mozilla-bin
emacs
nedit

Open files
File Name
filed.txt
file3.txt
file2.txt
filel.txt

Open files
File Name
file4d.txt
file3.txt

Open files
File Name
filed.txt
file3.txt
filel.txt

Open files
File Name
file2.txt

Open files
File Name
’unavailabl
fileb.txt
file4d.txt
file3.txt
file2.txt
filel.txt

Open files
File Name

fileb.txt

Figure 7.2:

in

in

in

in

in

e,

in

PID Window ID

3636 54526168
3637 60817454
3638 56623150
3573 46137393
3639 58720472
3574 44040197

window

window

window

window

window

window

54526168
Level
4

3
2
1

60817454 :
Level

4

3

56623150:
Level

4

3

1

46137393:
Level
2

58720472:

44040197:
Level
5

Security Level Is mapped

4

g o N DD

[= R e

Sample window status information as it is printed by the 1istwl program.

The clearance level was 5 when this was printed, and the Bell-LaPadula access control
model was used.

7.3 Sensors 77

control more than one camera. The software also has many other features, such as creation
of mpeg videos, live web-cam, ability to save images directly into a database and much
more.

Motion captures a picture every time there is a pixel wise change with respect to a
reference picture. The reference picture is updated when a new picture is taken. After N
pictures has been taken the reference picture will consist of[11]:

N
Reference Picture = Z

n=1

SN ¥ Picture (n)

This means that several snapshots are taken while one person enters the room. This
will result in the need for some additional processing before we can acquire the knowledge
we need, namely the determination of when one person enters or exits the office. Motion
has the capability to start a program or script any time a snapshot is taken, and this how
we will get data from Motion.

Configuration files

Motion uses configuration files to initialize the processing of each camera output, and the
use of these is described in the Motion Guide [26]. Different configuration files will be used
for each camera. The configuration files contain a lot of different options that can be set,
for instance commands to make mpeg movies from the snapshots taken. In the following,
we will go through the options and values we have changed or used. Our configuration
files, motion.conf and threadl.conf, are very long and have therefore not been included
in this report; instead, they can be found along with the code for the motion programs.
We are using two cameras so two configuration files are needed. This tells Motion to use
two cameras and will set the options that should be different for the different cameras.

videodevice: The device associated with this configuration thread. We use /dev/video0
and /dev/videol for the two threads.

framerate: This is the maximum number of images that Motion will save per second. The
default is 100, we have set to 20, as we do not need any more.

threshold: This is the threshold for pixel wise changes needed to declare motion. The
default value is 1500, we use 3000 to eliminate smaller movement. It might be possible
to set it even higher.

noise level: This is to filter random noise from the motion detection. It operates on
pixel level and specifies how many intensities the pixel must change to be taken into
consideration. We have kept at the default at 32.

lightswitch: A light switch filter that should prevent Motion form classifying sudden light
differences as motion. We have set is to on, but it does not work perfectly.

quiet: Specifies that Motion should be quiet and not emit a beep every time it is detecting
motion. We have no use for an auditive indication of motion, so this is set to yes.

onsave: This tells Motion to execute a program when an image is saved. We use it to
execute either eventl or event2 depending on the thread/camera.

78 Chapter 7. Implementation

snapshot overwrite: Specifies that all snapshots should be saved as lastsnap.[jpg/ppm]|
instead of a path and name determined by the time. This would be a nice feature to
use as we then would not have to clean up after all the pictures saved, but it does
unfortunately not seem to work.

target dir: The directory to save images in. We have two different paths depending on
which camera it is.

thread: This is for management of more than one camera. Each thread threadname
option starts a separate thread for the second or 3rd camera. This one uses the
options set in the new thread. It is important to note that the first camera gets
all its options from motion.conf, and the second one gets them from the additional
thread. Also note that in newer versions of Motion this have changed, please refer to
the documentation if using a newer version of Motion.

Considerations when using Motion

There are some general issues we need to consider when using Motion. Firstly, it seems
that in the upstart phase, Motion will detect a lot of changes. This is of because of the
update of the reference picture, it needs to be established. The way around this is to start
Motion before the rest of the system.

Another problem is that Motion takes snapshots of the persons, and we do not wish
to make the persons recognizable on them due to privacy concerns. It does seem like
Motion has no control over the resolution of the snapshots taken. We need to make use of
the onsave option to start a program when motion is detected, so images of the persons
entering and leaving the environment will be taken. It might be possible to reduce the
resolution of the pictures in the driver software, but that will be beyond the scope of this
project.

Even with these limitations, it is still an advantage using Motion. It does what is needed,
and detects motion based on differential motion analysis, while having many configuration
options. There is no point in making our own program when one that meet our needs
already exists.

7.3.3 Motion Detection Programs

Some programs are needed to handle the output from Motion, the output we use is the
fact that a snapshot was taken, signifying motion has been detected, and the time this
happened.

The overview of the software architecture for the camera sensor can be seen in Fig-
ure 7.3. Motion reads data from the web-cameras through the driver, and it then uses the
functionality of executing a command every time an image is saved. Depending on which
camera the image came from it executes either eventl or event2. The ’event’ programs
then communicate through a pipe with the motion_handler, which runs in one instance for
each camera. The motion_handler will then process the fact that Motion have detected
some motion at this point in time. When it has affirmed that person have passed the
camera, it will pass this information on to the camera_client. The camera_client deter-
mines the direction of the movement based on the data sent from the two motion_handler
instances. It will then pass information about the person and the direction on to the

7.3 Sensors

79

sensor_server. In a addition to these programs, the program start_motion will be used
to start the two motion_handler instances.

&

Web-camera 1

reads data

starts

Motion

&

Web-camera 2

reads data

eventl

data passes
through pipe

A 4

motion_handler
(instance 1)

starts

event2

data passes
through pipe

A 4

data passes
through pipe

motion_handler
(instance 2)

data passes
through pipe

camera_client

A 4

data passes
through socket

Sensor_server

Figure 7.3: The Camera Software Architecture

The programs mainly communicate via named pipes. We have chosen the named pipes

80 Chapter 7. Implementation

since they are easy to implement and they require synchronization of the reading and
writing programs. In this way the motion_handler and the camera_client can wait for
the data they need in an orderly fashion.

In the following we will describe the programs in more detail, especially the motion_handler,
as this has the most interesting logic.

The Motion Handler Program

The main purpose the motion_handler is to receive an event each time snapshot is taken,
and from that determine whether or not a person have passed the camera. The result is
then passed on to the camera_client. The source code for the motion_handler can be
seen in Appendix F.7.2.

The program uses two threads, one to receive events and one to process the data and
pass the results on. Because of this the main data structures need to be globally declared.
The program takes two arguments, namely the names of the pipes used. The first argument
is the name of the pipe via events are received, the second is the one via data to the
camera_client is sent. The pipe names are needed as arguments as the motion_handler
is run in two instances. The user will not need to be concerned with the arguments as the
motion_handler instances are started by start_motion which provides the correct names.

The main data structure of the program is a list in which to store the events received.
Each received event signifies that a snapshot was taken by Motion from the associated
camera, and the list contains the time the event was received. The list used is a singly
linked list, and we have used the GSList from the glib library. We use this as there is no
reason to code something that already exists, and the whole system already uses the glib
libraries. The oldest snapshots are stored last. The program also contains an auxiliary
print function used to print the contents of the list for debugging purposes.

The program uses two threads so we can process events while we receive them. Threads
are preferred over using other means of concurrent execution, for instance fork, as the
threads have access to shared variables. This is desirable when the different parts of the
program needs to communicate. We make of use POSIX threads, using the pthread in-
terface. As the program will be a background process and run until forcibly quit it uses
detached threads. Detached threads are non-joinable, and therefore the system automati-
cally frees the thread’s resources when the thread is terminated.

Both threads will access the linked list, so to prevent race conditions a mutex is used
to protect the list. To ensure that the event receiving thread has access to the list with as
little delay as possible, the other thread should try to keep the mutex locked for as short
time as possible. To indicate when a snapshot is received a semaphore is used. In this way
the processing thread can do a non-busy wait until there are some data to process.

The thread that receives events is started from the main thread. The only purpose of
this thread is to wait for an event to occur that signifies that a snapshot have been taken.
The thread opens a pipe and waits for eventl or event2 to run and send a token through
the pipe. When it has received the token, the system time will be noted, and this will
be saved in the linked list. The linked list is of course mutex-locked while the new time
is saved. After an event have been saved, the thread signals to the other thread with a
semaphore post operation.

In the main thread, after initialization and the start of the event receiving thread, the
loop containing the main algorithm starts. The pseudo-code of this loop can be seen in

7.3 Sensors 81

Figure 7.4. The purpose of the loop is to determine the presence or absence of movement
based on the data received in the other thread. The loop first blocks with a semaphore
wait until an event has been received. Due to light changes sometimes being detected as
motion, we need to make sure the snapshots taken are of a person entering. Rather than
try to recognize something in the pictures that classifies a person, we found a more simple
way to determine this. In empirical tests we found that usually at least 10 snapshots are
taken while a person passes the camera. The first thing the program does is to check the
number of snapshots taken. The constant MIN_MOTION_NO governs how many snapshots
there needs to be taken before the program considers the motion detected originating from
a person.

while (1)
wait for a snapshot to be taken
find the no of snapshots
if (no of snapshots > MIN_MOTION_NO) then
find the start and the end times
find the difference
if (difference > MAX_MOTION_DIFF) then
find the gap between this and the last motion sequence
if (gap > NEW_MOTION_DIFF) then
open pipe
send time
close pipe
set new last time
remove all
else
remove all parts of the previous motion sequence
else
remove the oldest and try again
end (while)

Figure 7.4: Pseudo-code for the main motion_handler loop

Even though the number of snapshots is high enough, it might not signify motion if
the snapshots are taken at different points in time. To figure out if this is the case, we find
the difference between the first and the last picture, using the time data stored when the
snapshot event was received. If the time gap is too large we will remove the oldest time
from the list and test again. The time it takes to pass a camera we have considered to be
maximum 5 seconds. This is of course depending on the pace a person has. The important
part is that motion detected that does not originate from a person almost always will
result in Motion taking less than 10 snapshots in a 5 second period. The maximum time
difference is set in the constant MAX_MOTION_DIFF.

If the time difference between the oldest and newest is small enough, we need to test
one more thing before we can establish that a person have moved past the camera. The
sequence of pictures might belong to the former movement, as a camera passing might
generate 20 snapshots or more. The time of the last (oldest) snapshot in the list is found
and is compared to the time of the last snapshot in the previous sequence. If the difference
between them is too small, the last snapshot is removed from the list as it is deemed part
of the previous sequence. The time gap between this picture, which is now considered
the last of the previous sequence, and the next is then calculated. This will continue

82 Chapter 7. Implementation

until the the list is empty, or the time gap is big enough to signify that a new motion
sequence has begun. The minimum time difference between two sequences of motion is set
by the constant NEW_MOTION_DIFF, and we have chosen to set this to 4 seconds. This value
is problematic to set, as there can be virtually no time difference between two different
motions, e.g. when two persons enters next to each other. However, we need to set is
at some value, and not mistake the normal difference between snapshots from the same
motion, with two different persons. This means that our system has a limitation on how
close after another two persons can pass the camera. When it has been determined that a
person have passed the camera, the information is sent to the camera_client via a pipe.
The times of this motion sequence is then removed and deallocated form the list. When
this have taken place, the main loop stars over again, checking the number of snapshots
taken.

To remove elements on the list the program uses the function supplied with the GSList
in the glib package, the g_slist_delete_link.

The program is ended with an explicit ki1l command or a ctrl+c interrupt. To
ensure that the list is deallocated, a termination function is provided, using the sigaction
interface.

The Camera Client Program

The main purpose of the camera_client is to receive information about motion detected
from the two cameras, and decide in which direction the motion have taken place (entry
or exit). Motion detected by only one of the cameras should be disregarded. The source
code for this program can be seen in Appendix F.7.3.

The camera_client is called with 3 arguments. The first is the default environment
level, as this sensor cannot distinguish between different persons so it must assign the same
level to them all. The second and third arguments are the hostname and the port where
the sensor_server is listening.

The program tries to read from the pipes connected to the two motion_handler in-
stances. When motion have been detected in front of both cameras the time between the
two occurrences in found. This time is compared to the constant MAX_PASSING_TIME to
make sure that they originate from the same person. The pipe from which the oldest time
was received is read until the difference is small enough. In this way it is ensured that a
false detection of motion that only takes place in from of one camera does not lead to wrong
conclusions about the direction. We have set the MAX_PASSING_TIME to 15 seconds, but
it might be possible to set it lower. It is dependent on the distance between the cameras
and the pace of the person. When the direction has been established, this information is
passed on the sensor_servers via a socket. It sends the direction, >i’ or 2o’ for in and
out, and the default security level of the person.

As themotion_handler this program also has a termination function using the sigaction
interface. This one closes possible open sockets.

Auxiliary Programs and Header File

pipe2.h This header file contains the names of the pipes used in the subsystem. Since
the named pipes are used to communicate between several programs, the names are stored

7.3 Sensors 83

in this header file. The header file is listed in Appendix F.7.6. The names are stored in
the constants PIPE_NAME_x and PIPE_CAM_x where x is 1 or 2 for the two cameras. Fur-
thermore, the constant PIPE_NAME_LENGTH gives the maximum length of the pipe names.
This is needed so the variable to hold the names in the motion_handler can be globally
declared.

eventl and event2 These programs are identical, except which pipe name they use
to communicate. Their source code can be seen in Appendix F.7.4 and Appendix F.7.5.
The programs are run each time Motion saves an image, which corresponds to each time
Motion detects a large enough pixel-wise difference between the scene and the reference
picture. They send the information of this fact through a pipe to the motion_handler.
Pictures taken from each camera starts a different event which in turn uses different pipes
to communicate with the different instances of the motion_handler.

start_motion To ensure that the two instances of motion_handler are initialized with
the correct pipe names, both for reading and writing, they are executed from start_motion
using execlp. The pipe names are taken from the header file pipe2.h. This program is
listed in Appendix F.7.7.

7.3.4 Known Limitations in the Camera System

The camera system has several limitations that need to be kept in mind when using the
system. Some of these has to do with the limitations in the cameras themselves other
with Motion and the implementation of the motion detection programs. Some stems from
design decisions.

The cameras do not recognize the persons. The do not do this partly because of
limitations in the cameras resolution, and partly because we did not want to recognize
people due to privacy concerns. A camera would have no way of recognizing a security
level without recognizing a person, unlike other sensor systems like smart cards. The
main limitation this imposes is that if the user leaves the computer, and the user’s level is
different from the default level, the system will not know that it is the user that has left.
When the user returns, he will be considered a default person. Right now this can only
be corrected by the use of the swsensor by letting a proxy person with the default level
leave, and let a person with the user’s level enter. The system and the reality will then be
in agreement, only the user will be present in front of the computer.

Another problem has to do with the way motion detected by Motion is considered
coming from a person or not. If a person enters and then exits the environment immediately
thereafter the system will not discover the exit. This is because the passing of the camera
will generate motion that is considered part of the entry. The same problem will arise if
two persons enters closely after one another, they will be considered as one person by the
system. There might be some optimizing possible in changing the values of the constants
in the motion_handler governing this, but the problem could be solved by using sensors
that could more easily determine the direction of movement or more accurately distinguish
a person. e.

A related limitation is that two or more persons cannot enter at once, as the cameras
only detect motion, the system does not interpret the pictures to see if there is more than
one person. If additional analysis were done on the pictures this might be solved, but then

84 Chapter 7. Implementation

a problem might arise in differentiating between two small persons and one big person.
This problem will probably most easily be solved by using another type of sensor.

If a person enters too fast the camera will not be in position to take enough snapshots
to trigger the condition for an camera passing to be declared by the motion_handler. An
solution for this, besides implementing another type of sensor, could be to increase the
number of snapshots taken by the camera per second, or to lower the required number
of snapshots to be taken before motion is declared to originate in a person. The last
solution might lead to other problems such as light changes and similar being detected as
persons. In general the limitations in the camera sensor might be most effectively solved
by implementing a different type of sensor, as the limitations have to do with the simplicity
of the camera. Some problem might be solved by optimizing the constants in the motion
detection programs, but in most cases this will probably make other problems arise.

In summary, when using the camera system, care must be taken that people enters at a
reasonably slow pace, that more than one person does not enter at the same time and that
there is a time difference between each camera passing. Furthermore, it must be noted
that manual configuration of the subjects present most likely have to take place if the user
leaves his computer and then comes back.

7.4 The Security Manager GUI

User-friendliness is very important within computer security since if the users find it trou-
blesome so use some security feature, they will just avoid using it. As an example, the
employees in a company may not bother to use the access control mechanisms if they find
it annoying that they have to use many command-line tools to get an overview of which
files exists, which windows are mapped or unmapped, and what the current subject levels
are. The consequence may be that they store classified files in other file systems than
macfs.

7.4.1 The GUI Functionality

A GUI program, SecurityManagerGUI, has therefore been developed that can perform
the same tasks as the command-line tools, but it presents a more user-friendly view of
the system. The SecurityManagerGUI program is only a presentation layer above the
file level management, user level management, and window management sub-systems
(as shown in Figure 6.1). It does therefore not add any new essential functionality to the
system; in fact, it is merely a program that calls the developed command-line programs.
Because mandatory access control in the stackable file system restricts who are allowed to
call certain programs, the functionality provided by the SecurityManagerGUI depends on
whether it is the super user or a regular user who runs it. For instance, only when the
super user runs the program is it possible to modify the file levels. Furthermore, what is
shown depends on the security policy. For instance, if the no_read_up policy is chosen all
files with a file level greater than the clearance level will be hidden.

The GUI has been organized so that a menu is presented to the left of the window, and
a panel to the right displays corresponding system information. Some screen-shots of the
GUI can be seen in Appendix E. The menu items are as follows:

7.4 The Security Manager GUI 85

File Level Management is a graphical presentation of the file level management sub-
system. It contains a text field where the user can enter a file or directory name.
If a file name is entered, the getfl program is called and the file level of the file is
retrieved. If a directory name is entered, the 1istfl program is called and the file
levels of all the files in the directory is listed. A Browse button is also included, and
it can be used to select a file or directory instead of entering it in the text field.

Since the getfl and 1listfl programs skips non-readable files if the hide non-
readable_ files security policy is chosen, the SecurityManagerGUI program will also
skip these files. For example, if all the files in a directory should be hidden, the
message “No files exists.” will be displayed.

The file names and corresponding file levels are listed in two columns. If the user who
runs the SecurityManagerGUI is the super user, the second column with the file levels
will be editable: when a new number is entered, the setfl program is called and the
file level of the file in the first column is updated in the macfs file system. The second
column is not editable when a non-privileged user runs the SecurityManagerGUI
program, since he will always get an ‘access denied’ error message when he calls
setfl.

User Level Management is a graphical presentation of the user level management
subsystem. The appearance of the GUI depends on whether the super user started
the user level management program or a non-privileged user. When the super user
runs the program, the listul is called and the user names and corresponding user
levels are listed in two columns, respectively. The second column is editable, and
when a user level is modified the setul program is called so that the modifications
are stored persistently.

When a non-privileged user runs the SecurityManagerGUI, the program will only
display the user’s own user level. The getul program with no argument is used to
retrieve this level; all other user level management operations are prohibited.

Unmapped Windows displays information about all the invisible windows. It is pre-
sented in a table where the columns show the application name of the application
that created the window, the corresponding process ID, the Window ID, the Window
level, and the number of files that are or have been opened by the application. When
a row in the table is selected, further information about the files that have been open
are shown: a table in a dialog window is displayed, and it contains two columns with
the file name and file level, respectively. The maximum of all the shown file levels is
equal to the window level. If the hide non-readable files policy is chosen, the file
names of non-readable files are replaced by ‘unavailable’. The listwl program is
used to retrieve all this information.

Mapped Windows is similar to the Unmapped Windows, except that only information
about visible windows is shown.

Current Subject Levels The GUI displays two lines. The first line list all the subject
levels for all the currently present persons and the user. The 1listsl program is
used to retrieve these levels, and they are sorted in ascending order. The second line
contains the current clearance level, which is retrieved by the getcl program.

The SecurityManagerGUI contains a Reset button in the lower right corner, and when-
ever it is pressed, the appropriate C programs are called so that the GUI can be updated.

86 Chapter 7. Implementation

If the hide non-readable_ files security policy is to chosen by the system administrator, it
is important that the user presses Reset whenever the clearance level decreases. Other-
wise, a person may get access to viewing which files exist if the File Level Management
or Mapped Management menu item was selected prior to the person’s entrance.

7.4.2 Interfacing between Java and C Programs

The SecurityManagerGUI is implemented in Java, but it calls the C command-line pro-
grams. It consists of 12 classes that manages the GUI, and one class that manages the
interface between the C programs and the GUI classes. The latter class is denoted Exec
(see Appendix F.8.1) and it uses an instance of the java.lang.Runtime class to provide an
interface with the environment in which SecurityManagerGUI program runs. Whenever
one of the C programs should be executed, the java.lang.Runtime instance is used to
create a java.lang.Process instance which executes the C program in a separate subpro-
cess. No environment variables are set before a C program is executed, so the execution
will only be successful if the user has set the global PATH environment variable to include
all the C programs.

The standard input, output, and error of the subprocess will be redirected to the parent
process through a Java output stream, input stream, and error stream, respectively. The
SecurityManagerGUI process only needs the standard output from the subprocesses, and it
will therefore only use the java.io.InputStream class to retrieve the output. In the Exec
class, output from the subprocesses are processed and possibly inserted into appropriate
Java data structures before it is returned to the GUI classes.

7.4.3 The GUI Classes

The GUI part of SecurityManagerGUI is primarily implemented using javax.swing classes.

It consists of 12 classes which are listed in Appendix F.8.2 to F.8.13. The SecurityManagerGUI
class contains the main method, which must be given the macfs mount point as argument.
The SecurityManagerGUI class creates the left-side menu and is responsible for displaying

a panel corresponding to the selected menu item. Six different types of panels can be
displayed (InitPanel, MessagePanel, FileLevelPanel, UserLevelPanel, WindowPanel,
SubjectLevelPanel), and a java.awt.CardLayout object is used to switch between the
different panels. All the panels are subclasses of the abstract class BasicPanel and they
therefore have the same basic appearance. For example, they all have a Reset button in
the lower left corner and a title at the top.

Many of the panels use a table, and the javax.swing.JTable is used for this pur-
pose. The functionality required by the table depends on the panel that uses it since
some of the only uses it to present information whereas others requires a editable table.
Different table models are therefore used, but some common functionality could be col-
lected in a single class, which is denoted SimpleTableModel. The other table model classes
(FileLevelTableModel, UserLevelTableModel, and WindowTableModel) are subclasses of
this class. All the tables that are displayed in the panels uses a TableSorter object, which
can be used to sort the content of the table when the user clicks on one of the columns.

87

Chapter 8

Evaluation

The system was run and tested on two computers where the Linux distribution Fedora Core
1 was installed. We have conducted several functional tests to cover the most important
aspects of the system’s functionality, but it is not a comprehensive test. We do, however,
feel we have covered most normal use as well as some extreme cases. We have tested the
different subsystems to see if they provide the service required of them. The test cases and
results can be seen in Appendix D.

Firstly, the MAC file system was tested, mostly to reveal if it could provide the same
services as a normal file system while maintaining the MAC. This consisted of testing
things like copying or linking files. The tests can be seen in Appendix D.1. It is important
to note that while the super user has access to all possible operations, a normal user should
not. The super user can unmount the file system and thereby render the MAC useless.
The user should not have all these privileges.

Tests of the user and file level management were conducted to make sure only the correct
programs could be executed. This entails testing things like changing the file or user levels
by both a normal user and the super user. These tests can be seen in Appendix D.2 for
the file level management tests and Appendix D.3 for the user level management tests.

The system can be initialized with different policies, and it needs to be tested with
respect to the those. This means testing a user’s ability to read or write to files at different
levels. The tests conducted to verify correct operation under a specific policy can be seen
in Appendix D.4. It should, in particular, be noted that when using a policy originating
in the Bell-LaPadula or Biba model, a file that the user can write to is not necessarily one
he can read and vice versa. The reading and writing were tested using the command line
programs cat and echo. It should be noted that we have only tested the MAC, as this is
in addition to the DAC included in the Linux operation system, and we assume that this
works.

The above test concluded the test of the logical access control part of the system. An
important part of the system is the window management, where the system keeps track
of which files are open in which windows, and takes steps to unmap the windows if the
physical access control determines that a person has entered the environment. The window
management system tests can be seen in Appendix D.5. The tests consist both of testing
auxiliary programs to list window and subject levels, as well as tests to confirm that the
right windows are unmapped when a person enters. The important part of this test is
to reveal if the system can keep track of the persons present and determine the correct

88 Chapter 8. Evaluation

clearance level. The system should also keep track of open files in windows and maintain
the correct window level for each window.

The system is designed to function with different editors or file viewers. The extend
to which various applications can be used with the system depends on the way they uti-
lize the X Window System. We have tested the system with different editors as seen in
Appendix D.6. Unfortunately, not all editors or viewers function in the same way, so full
functionality cannot be guaranteed for every editor or viewer. Our tests conclude that
at least emacs, nedit and mozilla fully integrates with our system, i.e., windows will be
unmapped if they contain files that should not be viewable to an entering person.

We have created a motion detection sensor that uses two web-cameras. The ability of
this subsystem to detect motion and correctly pass it on to the window management has
been tested as shown in Appendix D.7. The web-camera sensor has a number of limitations
as described in Section 7.3.4, but the cases where the camera sensor is expected to detect
motion have been tested. It has also been an important part of the test to see if the
windows are correctly unmapped when a person enters. These tests also entails testing
the whole system, as every part of it must be functioning correctly for the behavior of the
system to be as expected.

The GUI has been tested by both normal users and the super user. We have noted
that the information provided is in accordance with the information from the command line
programs. We have also tested that buttons and other GUI components work as expected.

To summarize, we have functionally tested the different parts of the system and during
this executed tests that have required incremental parts of the system to be functional.
The tests of the web-camera sensor has also tested the whole system. We believe that
we have tested the system to the best of our ability and with a reasonable thoroughness
considering the use of the system. We will therefore conclude that it functions as expected.

89

Chapter 9

Further Developments

9.1 Porting the System to Other Unix Versions

The choice of technologies for the implementation of the SEAC system should make it feasi-
ble to port it to another Unix system. Firstly, the FiST system contains templates for many
version of Linux, Solaris, and FreeBSD. We have only tested the system using the templates
for Linux-2.4, and we had to modify them slightly as described in Appendix B.1.1. If the
same changes are made in other templates, the stackable file system should be portable.
Furthermore, the stackable file system can (relatively) easy be extended or modified if, for
instance, support for encryption or a size-changing file system turns out to be desired.

The window management part of the system is also portable since most Unix systems
have a graphical user interface based on the X Window System. Our C programs should
also be portable, if the required libraries are available. Finally, the motion detection
software is platform independent.

9.2 Exportation of Classified Data

The SEAC system cannot prevent that classified data is copied from the stackable file
system to another file system. A user can therefore, for example, use the command line
program cp to copy a file to another file system managed by the operating system. It might
even be possible that the user is unaware of this information flow, since the file systems
are organized in a hierarchy and the user might not know where the stackable file system
is mounted. One way to prevent this information flow is to mount our stackable file system
on top of every file system where the non-privileged users have write access.

Another, more severe, vulnerability in the system is that classified data can be exported
to external devices that are beyond the boundaries of our system. For example, a user
can compose an email, copy classified data into it, and send the it out on the Internet in
clear-text. Another example is the use of printers that are located outside the monitored
environment.

An easy solution to these vulnerabilities is to disable access to any external devices
and disconnect the computer from all networks. A more user-friendly solution could be to
extend the SEAC system to utilizes the fact that many types of resources are accessed via
special files in the Unix file system. For example, the /dev directory will (usually) contain

90 Chapter 9. Further Developments

files for accessing hard disks, modems, printers, terminals on remote computers, etc. If
access control should be applied to a printer, which often is accessed via the file /dev/1p0,
a file level should be associated with this file. This file level should depend on the physical
access control that protects the printer. The security policy determines which users are
allowed to use the printer. If it specifies a 'no write down’ rule, a file with a high level
cannot be printed by a printer with a low level. This usage will prevent that a classified file
is printed in a physically unprotected printer room where an unauthorized person might
be waiting for some interesting output.

We have tried to mount a stackable file system on top of the /dev directory, and when
we used the 1istfl program we saw that all the files in the directory had the default file
level, as expected. Unfortunately, the FiST system is not implemented to be to stackable
on top of directories containing special files. Although it was possible to perform the mount
operation, Linux did not function properly afterwards. For example, the terminal did not
work any longer, and we had to restart the computer to undo the unfortunate mount.

9.3 Using other Access Control Models

Our system is based on a multilevel access control model, but the idea of combining a
logical access control system with a physical one can be extended to other types of access
control models.

One interesting access control model is the Chinese Wall. To use this instead it would be
necessary to implement classes of conflicts of interests and company groups. A procedure
for how a user selects from the companies depending on which classes of conflicts of interests
he has had access to should be designed and implemented. A history function related to
the user would also be needed for this. Furthermore, a way of sanitising information or
determining who can decide when it has been sanitised needs to be developed. For the
physical access control part, either some smart sensors that could uniquely identify the
person and which classes of interests he has access to should could be used. Another
approach would be to only let sanitised information be shown when a person is present.

Another interesting access control model that can be considered is role based access
control. This usually entails not only traditional access operations but actions of the user
as such. It could, however, be implemented by saying a person has a certain role, and then
the system should only display information availably to that role.

9.4 Extending or Replacing the Sensor Subsystem

As the sensor subsystem communicates with the rest of the system by simple messages via
a socket, it is very easy to replace. The only requirements is that it can deliver a direction
and a security level to the sensor_server. Before any changes are made to the sensor
subsystem, it is very important that the sockets are secured as described in Section 7.2.5;
otherwise, the physical access control provided by the system can easily be circumvented
by a person who knows the host name and port number where the sensor_server listens.

The web-camera solution has many limitations, and some advantages would therefore
be gained by replacing the sensor subsystem. If the subsystem is not replaced, it could be
extended to include more or different types of sensors. The information they gather could
be used to enhance the cameras so the motion detection would be more precise.

9.4 Extending or Replacing the Sensor Subsystem 91

If the system is replaced it would be very nice to deploy some sensors that could reveal
information about the security level of the person. To do so either the person must be
fully identified or the system should be able to retrieve the security information without
the need for the uniquely identifying the person.

A very interesting sensor system to use would be a RFID system. All users could be
equipped with an emitter, and an receiver could be placed so that it could be determined
when the person carrying the emitter enters the environment. The emitter can even carry
information about the level of the person, in this way making it possible to have high level
persons. The system could also be part of a more comprehensive one. Many companies
today have physical access control, most use magnetic cards to let employees but not casual
bypassed gain access to their building. A system like this could also be used for the SEAC
system, but then the magnetic card would have to be swiped every time the user enters
an office. It would make more sense to use RFID as it can happen ubiquitously and be
integrated into an existing system. A RFID system or one with similar capabilities can
stand alone if it can be ensured that all possible persons carry a tag with a security level on.
This can for example be done by requiring all visitors to carry guest tags on the premises.
It could also be used in combination with a simple sensor such as the camera, so when a
person is detected by the camera the default security level is overridden if the person also
is detected by the RFID system.

92

Chapter 9. Further Developments

93

Chapter 10

Conclusion

The main objective of this MSc project was to develop a system which demonstrates that
logical and physical access control can be combined to form a smart environment. The
system is developed using Linux 2.4, but it should be possible to port it to another Linux
version or a Solaris or FreeBSD version. This portability is mainly due to the use of a
stackable file system generated with the FiST (File System Translator) system.

The system turned out to be rather comprehensive, and to make it more manageable
it was partitioned into a number of subsystems that handle different parts of the system’s
functionality. These subsystems are stackable file system, file level management,
user level management, window management, sensor, and security management gui.
Each sub-system consists of between one and six programs. Many of the corresponding
processes communicate using various message passing technologies in order to provide the
required system functionality.

During the test of the system, the individual subsystems were tested to the extend
possible, followed by a test of the interaction between the subsystems. The test showed
that the emacs, nedit, and mozilla editors fully integrates with our system, i.e., windows
are mapped or unmapped according to the sensitivity of the displayed data and the persons
who are present. The system could, however, not unmap the gedit editor because the
communication between gedit and the window manager metacity was very unpredictable.
Otherwise, the test did not disclose any errors; however, the test was not exhaustive and
it is a complex system so we cannot guarantee that no further errors exists.

The security provided by the system depends on the trustworthiness of the super user.
The super user must be a trusted authority that enforces a specified security policy and,
for instance, sets user and file levels in accordance with this policy. It is essential that this
user can be trusted since he will have access to all the files, regardless of their file levels.

10.1 Summary of Contributions

The main contribution of our work is the development of a system which extends traditional
mandatory access control (MAC) so that it encompasses subjects and objects that are both
logical and physical. A subject in our model can either be a process (i.e. a logical entity)
or a physically present person. Likewise, an object can either be a file (i.e. a logical entity)
or a window which is physically present on a computer display. Our system mediates the
access to objects by subjects and it will thus combine logical and physical access control.

94 Chapter 10. Conclusion

The MAC implementation, the detection of unauthorized persons using sensors, and
the combination of the logical and physical access control are handled by different parts of
the system. These parts constitute our technical contributions and can be summarized as
follows:

A kernel module that is included in a stackable file system so that it can both store
files and mediate the access by processes to files. Thus, it implements a simplified
reference monitor. The MAC policy enforced by the system can be specified by
the system administrator before system startup using security policy parameters.
Furthermore, because the system is integrated with a Unix system, the access control
can also include the discretionary access control (DAC) that is part of Unix systems
via the rwx mode bits. The MAC will, however, take precedence over the DAC.
Altogether, the implemented MAC and the Unix DAC provide mechanisms for a
wide range of access control policies.

A simple movement sensor that relays information about the physical presence of a
person to the computer containing classified data. The sensor is implemented using
both hardware and software. The hardware is two web-cameras, and the software is
a client /server system where the server resides on the computer containing classified
data. The images taken by the web-cameras are used by a motion detection program,
which sends a direction and level to the server whenever an person enters or leaves
the environment.

The use of the client/server paradigm implies that more than one type of sensor can
be used simultaneously; the server will not distinguish between the sensors since it
is only concerned with receiving a level and direction. This design decision makes it
easy to replace the sensor or even use many different types of sensors simultaneously,
if a very fine-grained detection method is required.

A window management module which ensures that the logical access control provided
by the kernel module is combined with the physical access control provided by the
sensor and the graphical windowing system. More specifically, it uses library func-
tions from the X Window System to ensure that the visibility of windows change
according to the data received from the sensor and the level of the displayed infor-
mation.

The system works with both text editors and pure file readers, such as Internet
browsers, provided that the files opened are stored in the stackable file system. The
system will also detect which files are opened by a given editor or file viewer. It can,
however, not detect which files are closed by the application since this turned out to
be very difficult to determine due to the use of file buffers.

10.2 Future Work

Future work on the system will primarily be related to the sensor. First of all, the commu-
nication between a sensor_client and the sensor_server must be secured, for instance
by establishing an SSL connection between them. The current implementation is very
insecure in this respect since anyone who knows the host address and the used port num-
ber can spoof the system by sending a level and direction of a fictitious person to the
sensor_server. Two malicious persons can exploit this as follows: one of them enters the

10.2 Future Work 95

environment and is of course detected by the sensor. The other person will then send data
to the sensor_server which imitate that all persons and the user leave the environment
and that a person with a very high level subsequently enters the environment. The person
in the environment will then have direct access to classified data, possibly after having
coerced the user.

Another, more interesting, further development is related to the sensor itself. In prac-
tice, a system would have to implement a sensor that can identify and authenticate the
persons so that a level can be assigned to each person. In some situations, however, privacy
may be a concern if people do not want to be monitored. A solution could be a sensor
that only detects which security class a given person belongs to, and not his identity. An
obvious choice would be to use a radio frequency identification (RFID) system. The RFID
tags would have the ability to transmit information about the person’s level and nothing
more. The tags could easily be used for the physical access control most companies already
have and be integrated in a comprehensive system.

To summarize our work, a fully functioning prototype has been developed. The physical
access control part can provide a more usable system if more advanced technologies are
deployed for detecting persons. This part of the system leaves an open door for future
work on our project, which hopefully will result in a system that one day can be widely
used in practice.

96

Chapter 10. Conclusion

97

Bibliography

[1]

2]

3]
4]
5]

[6]
7]
18]
9]
[10]
[11]
[12]

[13]

[14]

[15]

[16]

[17]

How Infrared motion detector components work, http://www.glolab.com/pirparts/
infrared.html. 20

X Window System, article in reference library available at http://wuw.
campusprogram.com/reference/en/wikipedia/x/x_/x_window_system.html. 25

The X.Org Foundation home page, http://www.x.org. 26
The XFree86 Project home page, http://www.xfree86.org. 26

Xlib programming manual. Available at http://tronche.com/gui/x/x1ib/
xlib-manual.tar.gz. 26

Window Managers for X home page, http://xwinman.org/intro.html. 27
Motion home page, http://motion.sourceforge.net/. 49

GTK+ toolkit home page, http://www.gtk.org. 70

The OpenSSL Project home page, http://www.openssl.org. 74

Quickcam Express home page, http://qce-ga.sourceforge.net/. 75, 107
Motion Technology , http://motion.sourceforge.net/tech/. 77

FiST: Stackable File System Language and Templates home page, http://www.
filesystems.org/. 107, 139

Department of defence trusted computer system evaluation criteria. Avaliable at
http://www.radium.ncsc.mil/tpep/library/rainbow/5200.28-STD.html, Decem-
ber 1985. The Orange Book. 16, 17, 35

Extended Window Manager Hints. Avaliable at http://freedesktop.org/
Standards/wm-spec/1.3/, 2003. Draft version 1.3. 27

D. Elliot Bell and Leonard LaPadula. Secure Computer Systems: Mathematical Foun-
dations. MITRE Technical Report 2547, 1, March 1973. An electronic reconstruction
by Len LaPadula, November 1996. 11

Kevin Boone. File handling in the linux kernel, 2004. Avaliable at http://www.
kevinboone.com/linux_kernel_file_0.html. 28

D. Brewer and M. Nash. The chinese wall security policy. In Proceedings of the 1989
IEEE Symposium on Security and Privacy, pages 206-214. IEEE Computer Society
Press, May 1989. 15

http://www.glolab.com/pirparts/infrared.html
http://www.glolab.com/pirparts/infrared.html
http://www.campusprogram.com/reference/en/wikipedia/x/x_/x_window_system.html
http://www.campusprogram.com/reference/en/wikipedia/x/x_/x_window_system.html
http://www.x.org
http://www.xfree86.org
http://tronche.com/gui/x/xlib/xlib-manual.tar.gz
http://tronche.com/gui/x/xlib/xlib-manual.tar.gz
http://xwinman.org/intro.html
http://motion.sourceforge.net/
http://www.gtk.org
http://www.openssl.org
http://qce-ga.sourceforge.net/
http://motion.sourceforge.net/tech/
http://www.filesystems.org/
http://www.filesystems.org/
http://www.radium.ncsc.mil/tpep/library/rainbow/5200.28-STD.html
http://freedesktop.org/Standards/wm-spec/1.3/
http://freedesktop.org/Standards/wm-spec/1.3/
http://www.kevinboone.com/linux_kernel_file_0.html
http://www.kevinboone.com/linux_kernel_file_0.html

98

BIBLIOGRAPHY

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

Jens Micheal Carstensen, editor. Image Analysis, Vision and Computer Graphics.
IMM, Technical University of Denmark, first edition, 2001. 21

Dorothy E. Denning. A lattice model of secure information flow. Communincations
of the ACM, 19(5):236-243, May 1976. 8

Marius Aamodt Eriksen. Introduction to snoopy. Avaliable at http://linux.
omnipotent.net/article.php?article_id=11528, 2001. 72

Dieter Gollmann. Computer Security. Wiley, first edition, 1999. 7, 8, 10, 11, 12, 14,
15

IFAD. VDMTools — The IFAD VDM-SL Language, 2000. 101

Butler W. Lampson. Protection. In Proc. Fith Princeton Symposium on Information
Sciences and Systems, pages 437-443. Princeton University, March 1971. Reprinted
in Operating Systems Review, 8,1, January 1974, pages 18 - 24. 11

Carl E. Landwehr. Formal models for computer security. ACM Computing Serveys,
13(3):247-278, September 1981. 10

Leonard LaPadula and D. Elliot Bell. Secure computer systems: A mathematical
model. MITRE Technical Report 2547, 11, May 1973. An electronic reconstruction by
Len LaPadula, November 1996. 12, 14

Kenneth Lavrsen. Motion Guide, 1.49 edition, February 2004. Avaliable at http:
//www.lavrsen.dk/sources/webcam/motion_guide.htm. 77

Robert Love. Kernel korner: Kernel locking techniques. Avaliable at http://www.
linuxjournal.com/article.php?sid=5833, 2002. 69

Daniel Manrique. X window system architecture overview howto. Avaliable at http://
www.linux.org/docs/ldp/howto/XWindow-0verview-HOWTO/index.html, 2001. 27

Jeffrey Oldham Mark Mitchell and Alex Samuel. Advanced Linuz Programming. New
Riders Publishing, 2001. Avaliable at http://www.advancedlinuxprogramming.com.
28, 72

Vaclav Hlavac Milan Sonka and Roger Boyle. Image Processing, Analysis and Machine
Vision. Chapman & Hall, 1993. 21, 22

National Institute of Standards and Technology. Security in open systems. Avaliable
at http://csrc.nist.gov/publications/nistpubs/800-7/main.html, 1994. 71

David Rosenthal. Inter-Client Communication Conventions Manual. Sun Microsys-
tems, Inc., version 2.0 edition, 1994. Avaliable at ftp://ftp.x.org/pub/R6.6/xc/
doc/hardcopy/ICCCM/iccem.PS.gz. 27, 56

Alessandro Rubini and Jonathan Corbet. Linuz Device Drivers. 2nd edition, 2001.
Avaliable at http://www.xml.com/1dd/chapter/book. 25, 30

Peter Jay Salzman and Ori Pomerantz. The Linux Kernel Module Programming Guide.
2001. Avaliable at http://www.tldp.org/LDP/1lkmpg/2.4/html/1lkmpg.html. 30

Ravi S. Sandhu. Lattice-based access contol models. IEEE Computer, 26(11):9-19,
November 1993. 14, 15, 16

http://linux.omnipotent.net/article.php?article_id=11528
http://linux.omnipotent.net/article.php?article_id=11528
http://www.lavrsen.dk/sources/webcam/motion_guide.htm
http://www.lavrsen.dk/sources/webcam/motion_guide.htm
http://www.linuxjournal.com/article.php?sid=5833
http://www.linuxjournal.com/article.php?sid=5833
http://www.linux.org/docs/ldp/howto/XWindow-Overview-HOWTO/index.html
http://www.linux.org/docs/ldp/howto/XWindow-Overview-HOWTO/index.html
http://www.advancedlinuxprogramming.com
http://csrc.nist.gov/publications/nistpubs/800-7/main.html
ftp://ftp.x.org/pub/R6.6/xc/doc/hardcopy/ICCCM/icccm.PS.gz
ftp://ftp.x.org/pub/R6.6/xc/doc/hardcopy/ICCCM/icccm.PS.gz
http://www.xml.com/ldd/chapter/book
http://www.tldp.org/LDP/lkmpg/2.4/html/lkmpg.html

BIBLIOGRAPHY 99

[36]

[37]
[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Ravi S. Sandhu and Pierrangela Samarati. Access control: Principles and practice.
IEEE Communications Magazine, 32(9):40-48, 1994. 10

Robin Sharp. Principles of Protocol Design. 2002. Draft second edition. 50, 51

William Stallings. Cyptography and Network Security — Principles and Practices.
Prentice Hall, third edition, 2003. International Edition. 13

Andrew S. Tanenbaum. Modern Operating Systems. Prentice Hall, 2nd edition, 2001.
13, 17, 26, 28

Thomas A. Wadlow. The Process of Network Security. Addison-Wesley, first edition,
2000. 9, 10

David A. Wheeler. Program library howto. Avaliable at http://www.tldp.org/
HOWTO/Program-Library-HOWTO/, 2003. 72

Billibon Yoshimi. On sensor frameworks for pervasive systems. Avaliable at citeseer.
ist.psu.edu/285279.html. 19

E. Zadok. Stackable file systems as a security tool. Technical Report CUCS-036-99,
Computer Science Department, Columbia University, December 1999. http://www.
cs.columbia.edu/"library. 110

E. Zadok. FiST: A System for Stackable File System Code Generation. PhD thesis,
Computer Science Department, Columbia University, May 2001. www.cs.columbia.
edu/~ezk/research/thesis. 28, 66

E. Zadok and J. Nieh. Fist: A language for stackable file systems. In Proceedings of
the Annual USENIX Technical Conference, pages 55—77, June 2000. 28

http://www.tldp.org/HOWTO/Program-Library-HOWTO/
http://www.tldp.org/HOWTO/Program-Library-HOWTO/
citeseer.ist.psu.edu/285279.html
citeseer.ist.psu.edu/285279.html
http://www.cs.columbia.edu/~library
http://www.cs.columbia.edu/~library
www.cs.columbia.edu/~ezk/research/thesis
www.cs.columbia.edu/~ezk/research/thesis

100 BIBLIOGRAPHY

101

Appendix A

CSP and VDM-SL Notation

This chapter is intended to give a short description of the various symbols present in
the CSP and VDM-SL modeling language that may not be easily recognized. The basic
mathematical operations concerning sets and logical statements have been left out.

A.1 CSP Process Expressions

There are two possibilities for defining new processes in CSP:

p € P
pli:D] ¥ p

In the first notation, p is a process identifier that is defined by the process expression P.
The second notation defines p as a parametrized process with one or more parameters, 1,
in some domain D. The process expression P may depend on p and i. The syntactic class
of process expressions, P, is defined by the grammar:

P::=S8TOP |p|ple]|cle—Pl|cle:M — P|P]| P|(if b then P else P) |
(letz:M=e{, 2: M =e}in P)

It is assumed that — has higher precedence than | so that for example (cle — P | @)
should be read as ((cle — P) | Q) .
In Table A.1, the CSP notation that has been used in the specification is listed.

The notation left[i € D]?a : M is used as a shorthand for the processes that accepts
input of a value in the domain M on any of the channels left[i] for i € D. Furthermore,
the underscore character is used as a wild-card when the input value is discarded.

A.2 VDM-SL Symbols

In Table A.2, the used data types are listed, and in Table A.3 the used operators are listed.
For further details, see [22].

(if b then P else Q)

(let z1: M1

e2} in P)

el {, z2: M2 = | The let process expression is used to assign the

102 Appendix A. CSP and VDM-SL Notation

Ezpression Description

STOP The simplest CSP process is STOP, which halts
without communicating.

cle - P This process expression will initially take part
in a communication event by outputting the ex-
pression e on the channel ¢, and then it will
behave like P.

clt:M — P This process expression will initially take part in
a communication event by inputting any value of
type M to the variable x from the channel ¢, and
then it will behave like P.

PQ A process which behaves like either P or Q. It is

the environment that determines which process
expression is chosen, depending on which events
are received.

If the boolean expression b is true, the process
behaves like P; otherwise, it behaves like .

expression el of type M1 to the variable z1 and
optionally assign the expression e2 of type M2
to the variable z2, etc. After the assignment(s),
the behavior of the process is as specified by P.

Table A.1: CSP notation for processes and process expressions.

Data Type Description

B The boolean values {true, false}.

No The non-negative integers: {0,1,2,...}.

Ny The positive integers: {1,2,...}.

char An arbitrary character.

token A countably infinite set of distinct values whose structure is in-
significant in the specification.

S-set A set with elements of type S.

S* A possibly empty sequence of values of type S.

i A mapping from elements of type S to elements of type T. The
value of type S is denoted the key and the value of type T', which
is associated with it, is denoted the information value.

SxTx... The product type whose values are denoted tuples. A tuple is a

fixed length list where the first element is of type S, the second of
type T, etc.

Table A.2: VDM-SL data types.

A2 VDM-SL Symbols

103

Operator Name Description

len [Length Yields the number of elements in the sequence {.

hd [Head Yields the first element in the non-empty sequence .

tl/ Tail Yields the subsequence of the non-empty sequence [
where the first element is removed.

11712 Concatenation The sequence [1 is concatenated with the sequence [2,
i.e., it yields a sequence that consists of the elements
in 1 followed by those in [2, in order.

dom m Domain Yields the domain (i.e., the set of keys) of the map m.

g m Range Yields the range (i.e., the set of information values) of
the map m.

mltm2 Override The map m1 is overridden by the map m2, i.e., it yields
a map combined by m1 and m2 where the elements of
dom ml are mapped as by ml, and the elements of
dom m2 are mapped as by m2. Any common elements
are mapped as by m2.

m(d) Map apply Yields the information value whose key is d. d must

be in the domain of the map m.

Table A.3: VDM-SL operators.

104 Appendix A. CSP and VDM-SL Notation

105

Appendix B

Installation Guide

The Sensor Enhanced Access Control (SEAC) system is packed in the seac.zip file. When
this file is unzipped the following directory structure is created:

templates out macfs gui test webcam report
I I
I I
Linux-2.4 Linux-2.4
I
I

macfs

templates/Linux-2.4 contains the FiST stackable templates for Linux 2.4. These files
will only be needed if the stackable file system should be modified (see Appendix B.1.1).

out/Linux-2.4/macfs contains all the source code for the SEAC system, except the web-
camera sensor part. This code includes the stackable file system code for the macfs,
the code for the window management subsystem, and scripts for startup and shut-
down. The stackable file system code can only be on Linux 2.4, and new code must
be generated if another Unix version is used.

macfs contains the FiST input file, macfs.fist, and all the C code for the stackable file
system and window management part of the system. When the fistgen is run with
macfs.fist as argument, it will use the templates in templates/Linux-2.4 and the
code in macfs to produce file system code, which are stored in out/Linux-2.4/macfs.
To avoid having to set the PATH environment variable to include more directories than
necessary, the Makefile we have created will copy the remaining code from macfs
to out/Linux-2.4/macfs and create the binaries and shared libraries in this output
directory as well.

gui contains the Java source code for the security management gui and the file seac. jar
which contains the compiled class files.

106 Appendix B. Installation Guide

test contains the scripts that were used during the test of the system. Furthermore, it
contains a sample security policy file policy.txt.

webcam contains the source code to the motion detection programs, as well as the config-
uration files for Motion.

report contains the latex files for this thesis as well as versions in pdf-format and ps-
format.

The SEAC system will possibly have to be installed on two different computers where
one stores the classified files and is used by a regular user, and the other runs the motion
detection program and has web-cameras attached. The installation guide has therefore
been divided in two sections, reflecting this deployment of the system.

B.1 Installation of the Access Control Part

If no changes to the stackable file system is required and the Unix version used is Linux 2.4,
the stackable file system code that we have generated using fistgen can be used. The
following steps should then be performed when installing the system.

1. Set macro definitions (Optional)

A number of macros in the source code can be set at compile time using the -D
preprocessor option. The kernel space part of the code contains two macros: the
HASH_TABLE_SIZE denotes the size of the hashtable (the default is 10), and DEBUG
can be used to turn on or off debug output to the system log (the default is off).
These macros should be set in the SEAC_KERNEL_DEFINITIONS variable in the makefile
out/Linux-2.4/ macfs/Makefile.

The user space part of the code contains the following macros that can be set:
MOUNT_POINT denotes the mount point for macfs (the default is /mnt/macfs); DEBUG
can be used to turn on or off debug output to standard error (the default is 0);
1ibX11_PATH is the path to the X11 library (the default is /usr/X11R6/1ib/1ibX11.80);
libc_PATH is the path to the c library (the default is /1ib/tls/libc.so0.6); and
SHELL_PATH is the path to the valid login shells (the default is /etc/shells, cf. the
man page 'shells’, section 5). These macros should be set in the SEAC_DEFINITIONS
variable in the makefile out/Linux-2.4/ macfs/Makefile.

2. Compile the code
The code is compiled by changing to the SEAC directory and running

make seac

This will compile the code in the out/Linux-2.4/macfs and gui directories.

3. Update the PATH variable (Optional)
The PATH environment variable should be set so that it includes all the command
line programs. If the seac.zip file is unzipped in the user’s home directory, this can
be done with the command:

B.2 Installation of the Web-cameras and Motion Detection Programs 107

export PATH=$PATH:$HOME/seac/out/Linux-2.4/macfs:$HOME/seac/test:

Additionally, the super user should set the PATH variable so that it includes the path
to the programs for loading (insmod) and unloading (rmmod) kernel modules; this is
typically /sbin. Instead of setting the PATH variables each time the operating system
is started, it can be set automatically if the export command is added to a startup
script, such as .bashrc (if the bash shell is used).

B.1.1 Changes made to the Stackable File System Templates

If the the stackable file system should be modified as part of a further development of our
system, or if it should be ported to another Unix version than Linux 2.4, some changes

will have to be made to the templates. First of all, the latest version of the FiST system
should be downloaded from the FiST home page[12]|. Depending on the functionality that
should be provided by the new file system, the following should be inserted in the tem-
plates. In the file templates/Linux-2.4/inode.c, the tags FIST_0P_CREATE_POSTCALL,
FIST_OP_UNLINK_POSTCALL, FIST_OP_MKDIR_POSTCALL, and FIST_OP_RMDIR_POSTCALL must

be inserted near the end of the functions wrapfs_create (), wrapfs_unlink(), wrapfs_mkdir(),
and wrapfs_rmdir (), respectively. Furthermore, the statements

err = inode_permission(inode->i_ino, mask);
if (err) goto out;

must be inserted at the beginning of the function wrapfs_permission(). In the file
templates/Linux-2.4/file.c, the statement

file_open_intercepted(inode->i_ino, inode->i_mode, file->f_dentry->d_name.name)

must be inserted at the beginning of the function wrapfs_open().

Finally, the file templates/Linux-2.4/Makefile should be changed. We will not de-
scribe our changes in details here; instead, we recommend looking in our makefile and
making corresponding changes in the new make file where required. If the Linux 2.4 tem-
plates are used, our makefile can just be used. The main changes that we have made is
that the variables SEAC_KERNEL_DEFINITIONS and SEAC_DEFINITIONS are added, and the
variables CFLAGS and UCFLAGS are changed so that they make use of these variables.

B.2 Installation of the Web-cameras and Motion Detection
Programs

Installation of the Web-cameras

The web-cameras should be placed next to the area that needs to be monitored. They
should be placed on a stable surface or fixed to the ceiling or wall to prevent shaking.
The cameras should be placed approximately 30-50 cm apart. After being connected to
the computer, the drivers for the cameras should be installed. Use the driver supplied
with the cameras or a general Linux driver, such as the gce-usb driver|[10], and follow
the instructions given. The cameras will most likely be installed as /dev/video0 and
/dev/videol, but note the exact location for your specific installation.

108 Appendix B. Installation Guide

Installation of Motion

The Motion program, version 3.0.7-1, has been provided in an archive file on the attached
CD. This version can be used, or a newer version can be downloaded from http://motion.
sourceforge.net. Extract the files and follow the instructions given in the INSTALL file.
When Motion has been installed, the configuration files should be set up as explained in
Section 7.3.2. The configuration files are stored in the webcam directory. If using these
files, you will have to change the target dir where the snapshots are saved to a directory
valid on your system. The onsave needs to be the correct path to the event1 and event2
programs, most likely ~/seac/webcam/eventl and ~/seac/webcam/event2. Also make
sure that the vidoedevice option is correct.

If using a newer version of Motion be aware that the configurations files have a slightly
different layout and way of handling two cameras. Be sure to read the documentation to
set up the program.

Installation of Motion Detection Programs

1. Update the pipe paths (Optional)
The file pipe.h (Appendix F.7.6) specifies where the pipes used for communication
will be created. This can be changed if needed.

2. Compile the code
Enter the webcam directory and run make.

3. Update the PATH variable
The PATH environment variable should be set so that includes the path to the motion
detection programs.

export PATH=$PATH:$HOME/seac/webcam:

The path to the webcam directory might be different.

http://motion.sourceforge.net
http://motion.sourceforge.net

109

Appendix C

User’s Guide

In this appendix, a user’s guide for both the super user and a non-privileged user is pro-
vided. First of all, it is described how the core of the system consisting of the stackable
file system and window management part is started up and shutdown (see Appendix C.1).
Since the motion detection program will possibly be running on a different machine than
the one containing the classified files, the startup and shutdown of this part of the system
is described in a separate section (see Appendix C.2).

The SEAC system consists of many command-line programs, and their functionality
were described in Chapter 6. A regular user will, however, not be interested in these
details, but rather in how the programs should be used, so a user’s guide is provided in
Appendix C.3. The users can of course also use the Security Manager GUI instead of the
command line programs (see Appendix C.4).

C.1 System Startup and Shutdown

In a secure deployment of the system, a regular user should not be able to login as the
super user since an unauthorized person then can use physical coercion to circumvent all
the mandatory access control provided by the system. Furthermore, the principal who has
super user privileges should not present near the environment since he then is susceptible to
kidnapping. If an unauthorized person in some way is able to login as the super user, he can
unmount the stackable file system and obtain unrestricted access to all the classified files
in the underlying files system. To avoid that the principal who has super user privileges
is present, the startup and shutdown of the system should preferably be made part of
the Linux startup and shutdown procedure. This can be done by inserting the required
commands in scripts that are run automatically at startup and shutdown.

C.1.1 Guide to the Super User

Initializing the system will on most systems require root privileges since a non-privileged
user is not allowed to mount file systems and load kernel modules. As motivated in Sec-
tion 7.1.2, the mount point is specified in the header file mount_point.h, and if a non-
default mount point should be used, the code must be recompiled after the modification.

The stackable file system comes in the form of a loadable kernel module, macfs, and
the first task for the super user is to install it in the running kernel. This is done with the
command:

110 Appendix C. User’s Guide

insmod macfs.o

provided that the file macfs.o is in the current working directory (after the installation,
this file is in /out/Linux-2.4/macfs).

The next step is to mount the file system. The most secure mount style is an overlay
mount where the mount point and the underlying file system have the same absolute
path[43]. User processes must pass through macfs before they can access files, and the
lower file system is therefore hidden from user processes. macfs should be mounted with
the command:

mount -t macfs -o dir=MOUNT_POINT MOUNT_POINT MOUNT_POINT

Because the underlying file system can be used before the macfs is mounted on it, there
can possibly exists some files where no associated file level exists. In this case, the lowest
level will be returned by the programs listsl and getfl, ensuring that the system works
even if files already exist below the stackable file system.

The insecure mount style is a regular mount where two paths (LOWERDIR and
MOUNT _POINT) are specified, and the mount command is used as follows:

mount -t macfs -o dir=LOWERDIR LOWERDIR MOUNT_POINT

This mount style should only be used when testing the system since it makes all the security
mechanisms provided by the stackable file system worthless: a unauthorized person will
have direct access to all the files in LOWERDIR, regardless of their file level, and he can use
any editor he wishes to open the files, since the system will not unmap a window unless it
has opened files from the stackable file system.

The command 1smod lists information about all loaded modules and should include
the macfs module. If the command mount is used without any command line arguments,
it should include the macfs file system. The stackable file system uses the system log for
auditing, and its content can be seen in the file /var/log/messages or using a special
application such as redhat-logviewer (see the menu item system log).

After the mount, the stackable file system must be initialized by running the seac_init
program:

seac_init POLICY_FILE FILE_LEVELS_FILE USER_LEVELS_FILE - initialize file system
The super user must use this program to initialize the file system. All the command
line arguments are files. The file POLICY_FILE must contain the security policy that
should be used by the system. The format must be as follows:

Hide non-readable file names: x
No read up: x

No read down: x

No write down: x

No write up: x

Permit lower level login: x

C.1 System Startup and Shutdown 111

where x is either y or n, indicating that the policy is chosen or not, respectively.

The file FILE_LEVELS_FILE must either be an empty file or it must store inodes and
corresponding file levels in the binary format that is used when the seac_destroy
stores the system state. Similarly, the file USER_LEVELS_FILE must be empty or store
user IDs and corresponding user levels.

To avoid that non-privileged users corrupt the files, they should be protected using
the security mechanisms provided by Unix so that only the super user can modify the
files. The directory containing them should also be protected so that the files are not
simply removed; this can be done using sticky bits or by forbidding write access to
the directory. The non-privileged user should have read access to the POLICY_FILE
so that they can see which security policy is enforced by the system.

The program will fail if any of the files does not exists or the format in a file is invalid.
It will also fail if it is not the super user that runs the program, or if it has already
been run previously.

If the system should make windows visible or invisible according to the detected persons,
the visibility_manager, file_open_monitor, and sensor_server programs must sub-
sequently be started. However, this step is optional since the stackable file system part of
the system can be used independently of the window management and sensor part, if only
logical mandatory access control is required.

When the system should be shutdown, the seac_destroy program must be run:

seac_destroy - terminate system
stores all the file and user levels, terminates the stackable file system so that it
no longer can be used and Kkills the visibility_manager and file_open_monitor
process.

If the sensor_server was started previously, it is terminated by sending it a negative file
level. Furthermore, the stackable file system must be unmounted and the kernel module
must be unloaded. This is done as follows:

swsensor -1 i
umount MOUNT_POINT
rmmod macfs

To easing the job of the system administrator, the script startup.sh can be used
to startup the system (see Appendix F.9.2), and the script shutdown.sh can be used
to shutdown the system (see Appendix F.9.3). Furthermore, the script reset.sh (see
Appendix F.9.1) should be called before the system is used the first time: it will create
the mount point if it does not exists and the required empty files for the file levels and
user levels. If it is called subsequently, it will delete all the files created in the stackable
file system and delete all file levels and user levels; it is of course only the intention that it
should be used for testing purpose.

C.1.2 Guide to a Non-Privileged User

A user must first log in to the system using the initcl program:

112 Appendix C. User’s Guide

initcl [LOGIN_LEVEL] - initialize clearance level
Initializes the clearance level to the user level of the user who runs this program. If the
security policy permits it, the user can use the command line argument LOGIN_LEVEL
to specify a level below the user’s level that the clearance level should be initialized to.
Whether this is permitted can be read in the security policy file, which is maintained
by the super user.

The system will only detect created windows if the LD_PRELOAD environment variables
is set to the directory containing the shared libraries x_create_window_interceptor.so
and backup_interceptor.so. If only logical access control should be provided by the
system, this variable should not be set. If the shared libraries are stored in the directory
~/seac/macfs, this can be done with the command

export LD_PRELOAD="/seac/out/Linux-2.4/macfs/x_create_window_interceptor.so:
~/seac/out/Linux-2.4/macfs/backup_interceptor.so

in a terminal, and then subsequently starting the editor from that terminal. If the stackable
file system is mounted on /mnt/macfs the user can open an editor with the command

cd /mnt/macfs
emacs file.txt

or, alternatively:
emacs /mnt/macfs/file.txt

If the system should be notified about all the created windows, and not just those started
from a terminal, the LD_PRELOAD variable can be set in a startup script such as .bashrc
(if the bash shell is used). The system will then be notified about all the created windows,
and not just those that are used to edit classified files. For testing purposes, a script (such
as test/usertest.sh) can be used to set LD_PRELOAD, call initcl and start one or more
editors. By setting LD_PRELQOAD in a script, it is avoided that all rename, XCreateWindow
and XCreateSimpleWindow calls made from the terminal are intercepted by the shared
libraries. This approach may be preferred if many GUI programs are started from the
terminal and only a few of them will be used to open classified files; the user can then
easily determine which window the SEAC system should be notified about.

C.2 The Web-Camera Sensor

Startup

The camera sensor can be started by any user, but for the system to be effective it should
be started by root. This is to prevent unauthorized termination of the sensors.

The system is started using the following the steps:

1. Run Motion with the command motion -D.

2. Run start_motion. This starts the two motion_handler instances.

C.3 The Command Line Programs 113

3. Run camera_client ENVIRONMENT-LEVEL HOST-NAME PORT. ENVIRONMENT-LEVEL is
the level a default person detected by the camera should be assigned. HOST-NAME
and PORT is the host name and the port where the server_client is listening.

Alternatively, the camera system can be started with the script startcam.sh found
in the webcam directory. This executes all the above steps, but the variables for the
camera_client must be changed to reflect the actual system.

Shutdown

If the system should be terminated ps -ef | grep motion and ps -ef | grep camera
can be used to obtain the process IDs of the programs started (motion, camera_client and
two instances of motion_handler), and they can be terminated using the kill command.

Since the snapshot_overwrite option for Motion does not function as expected, Mo-
tion will take a lot of snapshots during operation and save them in the directory set in
target dir. These images should be removed at regular intervals.

C.3 The Command Line Programs

Several command line programs have been developed, as described in this section. Where
not specified otherwise, they can be used by all users.

C.3.1 File Level Management

The file level management sub-system provides three command line programs. They
all take a file or directory as command line argument, which must exist in the stackable
file system; otherwise, an error message is returned.

setfl FILE FILE_LEVEL - set file level
Sets the file level associated with FILE to FILE_LEVEL. If the visibility_manager is
running and a user has the file open in an editor, the visibility of the editor’s window
will change if the new level implies that the window should be mapped or unmapped.
Only the super user can use this program.

getfl FILE - get file level
Retrieves the file level associated with FILE. If the hide non-readable files security
policy is chosen and the file is not readable according to the security policy, no file
level can be retrieved and an error message will indicate that the file does not exist.

listfl [DIR] - list file levels
Lists the file name and corresponding file level for every file in DIR. If no direc-
tory is specified, the file level for the current working directory will be printed. If
the hide non-readable_ files security policy is chosen, the non-readable files will be
skipped in this listing.

114 Appendix C. User’s Guide

C.3.2 User Level Management

The user level management sub-system provides three command line programs:

setul USER_NAME USER_LEVEL - set user level
sets the user level for the user with the user name USER_NAME to USER_LEVEL. The
level can be any positive integer. Only the super user is allowed to change the user
level.

getul [USER_NAME] - get user level
Retrieves the user level for a given user. A user can retrieve his own level, but not
the level of another user.

listul - list user levels
lists the user name and corresponding user level for every user in the system. Only
the super user is allowed to list the user levels.

C.3.3 Window Management

The window management sub-system provides three command line programs that require
super user privileges. They should all run as a demon processes.

visibility_manager POLICY_FILE
Starts the visibility manager which is responsible for changing the visibility of win-
dows whenever an unauthorized person enters the environment. The security policy
that should be enforced is read from the text file POLICY_FILE.

file_open_monitor
Starts the file open monitor. Whenever a regular file or a link to a file is opened, it
will notify the visibility_manager about this.

sensor_server [PORT]
Starts the sensor server. If a non-default port should be used, it must be specified
as the command line argument PORT. The default port number is 33333.

The window management sub-system provides three command line programs that can be
used by all users:

listwl - list window levels
List all the window levels for all the current windows along with other status infor-
mation.

listsl - list subject levels
List the subject levels for every subject in the environment.

getcl - get clearance level
Retrieves the current clearance level.

C.4 The Security Manager GUI 115

C.3.4 Sensors

swsensor LEVEL DIRECTION [HOST] [PORT] - software sensor client

The software sensor client can be used to simulate that a person enters or leaves an
environment. The first command line argument (LEVEL) is the environment level of
a person. If the level is negative, it will shut down the sensor_server. The second
(DIRECTION) is the direction of the person which must be either ‘i’ or ‘o’, indicating
that the person enters or leaves the environment, respectively. The third argument
(HOST) is the host where the sensor_server runs. If no host is specified the default
host localhost will be used, and the sensor_client can then only be used on the
host where the sensor_server runs. Finally, the fourth argument (PORT) is the port
number used by the sensor_server. If no port is specified, the default port 33333
will be used.

C.4 The Security Manager GUI

Many of the developed command line programs can be used indirectly via the Security
Manager GUIL. The GUI contains five menu items (as can be seen in Appendix E), and
they can be used to run the following programs: getfl, setfl, listfl, getul, setul,
listul, listwl, getcl, listsl. If the mount point is /mnt/macfs, the GUI can be
started as follows:

java -jar seacGUI.jar /mnt/macfs &

If a command line program can only be used by the super user, it cannot be used in the
GUI either. It will, for instance, only be possible to modify user or file levels and see the
levels of all the users, when the super user runs the GUI.

116 Appendix C. User’s Guide

Appendix D

Testing

117

We have tested the different part of the system for various cases on the Linux distribution
Fedora Core 1. The tests are managed and executed a bit differently depending on which
subsystem we are testing. Table D.1 shows the users and files that constitute the default
state of the system before any tests are started. The files all contain a text string, and
are readable and write-able by all users with respect to the Linux DAC permissions. No
persons are assumed to be present when the tests start. In Table D.2, a set of policies are
shown, in each test or case a specific one will be used. The policies are the ones from the
security policy file loaded when the system is started.

user level file level

alice | 3 a.txt | 1

bob 20 b.txt | 5

root | superuser c.txt | 20

Table D.1: Default Users and Files

Policy | read up | read down | write up | write down | file names | lower level login
A no yes yes no hidden yes
B yes no no yes hidden no
C no yes yes no shown no

Table D.2: Policies used in testing

D.1 Stackable File System Test

The stackable file system is tested to disclose whether normal file operations can take place
while still maintaining the properties of a MAC file system. The tests made by the super
user can be seen in Table D.3. Furthermore, movement and copying was tested with an
unprivileged user; these tests can be seen in Table D.4.

118

Appendix D. Testing

Command

Test Case

Expected Result

link c.txt c2.txt
unlink c2.txt
mkdir test

mv a.txt test/a.txt

cp b.txt test/b2.txt

rm b2.txt
rmdir test

Link a file to another
Unlink a file

Create a directory
Move a file

Copy a file

Remove a file

c2.txt has the same level as
c.txt

c2.txt is removed

Directory test created

a.txt is in the directory test
with its level intact

b2.txt is created and assigned
the clearance level

b2.txt is removed

Remove a directory

test is removed

D U U N N ﬁ%

Table D.3: Test of the Stackable File System by the Super User

Command

Test Case

Expected Result

mv a.txt
/home/alice/a.txt
mv c.txt
/home/alice/c.txt
cp a.txt
/home/alice/a.txt
cp c.txt
/home/alice/c.txt
cp c.txt c2.txt

cp a.txt a2.txt

Move a file with a lower level than
the user outside the file system
Move a file with a higher level than
the user outside the file system
Copy a file with a lower level than
the user to outside the file system
Copy a file with a higher level than
the user to outside the file system
Copy a file with a higher level than
the user

Copy a file with a lower level than
the user

Not permitted
Not permitted
Permitted

Not permitted

Not permitted

QQQQQQ%

Permitted

Table D.4: Test of the Stackable File System by a User

D.2 File Level Management Test

119

D.2 File Level Management Test

The file level management programs setfl, getfl, 1istfl are tested both with a normal
user and super used logged in, as well as with different security policies. The test cases
can be seen in Table D.5.

User | Policy | Command Test Case Expected Output OK

alice | A setfl a.txt 6 | Change a file level Not permitted v

alice | A listfl List the files List shows only the file | /

a.txt

alice | A getfl a.txt Get the level of a file be- | The level of a.txt is |4/
low the users level shown (3)

alice | A getfl c.txt Get the level of a file | Not permitted vV
above the users level

alice | C listfl List the files List shows all filenames V

root | A listfl List the files List shows all filenames V

root | A setfl a.txt 6 | Set a file to a new level | a.txt is assigned level 6 | /

root | A getfl c.txt Get a file’s level The level of c.txt is |4/

shown (20)

Table D.5: Test of the File Level Management

D.3 User Level Management Test

The user level management programs setul, getul, listul are tested both with a normal
user and super used logged in while using policy A. The test cases can be seen in Table D.6.

User | Command Test Case Expected Result OK
alice | setul alice 5 | Change users own level Not permitted vV
alice | setul bob 21 | Change another users level Not permitted vV
alice | getul Get the users own level alice’s level is shown (3) vV
alice | getul bob Get the level of another users | Not permitted vV
alice | listul List all user levels Not permitted vV
root | listul List all user levels A list of the user levels is shown | /
root | getul bob Get the user level of a user bob’s user level is shown (20) Vv
root | setul alice 5 | Change a users level alice’s user level is 5 vV

Table D.6: Test of User Level Management

D.4 Mandatory Access Control Test

The Mandatory Access Control is tested by attempting to read and write different files
under different policies, all with the user alice (level 3). The tests can be seen in Table D.7.

120 Appendix D. Testing
Command Policy | Test Case Expected Result OK
cat a.txt A Read a file below the users | Permitted Vv
level

cat b.txt A Read a file above the users | Not permitted Vv
level

echo x > a.txt 123 | A Write to a file below the users | Not permitted V
level

echo x > b.txt 123 | A Write to a file above the users | Permitted vV
level

touch d.txt A Create a file d.txt created with | \/

level 3

rm d.txt A Remove a file d.txt is removed V

cat a.txt B Read a file below the users | Not permitted v
level

cat b.txt B Read a file above the users | Permitted vV
level

echo x > a.txt 123 | B Write to a file below the users | Permitted v
level

echo x > b.txt 123 | B Write to a file above the users | Not permitted v
level

echo x > a.txt 123 | A Write to a file below the users | Permitted V

level while logged in at a lower
level

Table D.7: Test of the Mandatory Access Control

D.5 Window Management Test 121

D.5 Window Management Test

The window management subsystem needs to be tested in two ways. The programs getcl,
listwl and listsl need to be tested, and these tests can be seen in Table D.8. The
mapping and unmapping of windows depending on the clearance level need to be tested
as well, this is done using the swsensor. These tests can be seen in Table D.9. All tests
were conducted using policy A.

In this test is is assumed that the swsensor functions as expected, it is assumed that
it can send the correct value and direction via the socket communication. This is not an
unrealistic requirement, as it is a very simple program, and the correct transmission of data
was tested during development. It is necessary to use this to test the window management
system, as changes in the environment level needs to be tested.

Command | Test Case Expected Result OK

getcl Only the user in the room Returns the user’s level Vv

getcl A person in the room Returns the lowest of the person’s | /
and user’s levels

listsl Only the user in the room Returns the user’s level vV

listsl A person in the room Lists the user’s and the person’s | /
level

listwl No open windows Notes that no windows are open V

listwl Files in a mapped window Lists the level of the window as the | /
maximum of the open files

listwl Files in an unmapped window Lists the level of the window as the | /

maximum of the files open, and lists
the high level file names as 'unavail-

able’
listwl Multiple windows, both mapped | Lists the levels of the windows as | v/
and unmapped the maximum of the files open in

that window, and the high level file
names as ‘unavailable’

Table D.8: Test of Window Management Tools

D.6 Editor Test

We have tested the system with different editors and viewers. In Table D.10 it can be seen
which cases were tested with each, and in Table D.11 the results for each editor or viewer
can be seen. The editors were the standard versions included in Fedora.

D.7 Web-camera Sensor Test

At last we test the web-camera sensor to see if the persons passing by are registered
correctly and windows are mapped or unmapped correspondingly. The tests can be seen
in Table D.12.

122

Appendix D. Testing

Event

Test Case

Expected Output

A person enters
A person enters

A person enters

A person enters

The person leaves

Two persons en-
ters after one an-

No open files

Open files with higher level
than the person

Open files with lower level
than the person

Open files with both higher
and lower level than the per-
son

For all of the above

Files open with higher level

than one of the persons

other

One person | Clearance level rises above
leaves, one stays | some of the files

One person | The clearance level stays the

leaves, one stays

Same

Nothing

The window(s) containing the
files is unmapped

Nothing

)
&&in

All windows containing files
with higher level than the per-
son are unmapped

The system is reverted to its
previous state

Windows containing the files | /
are unmapped

<

Windows containing the files
becomes mapped
Nothing V

Table D.9: Test of the Window Management

Test Case | Description Expected Result
A Open a file with write and read per- | Permitted
mitted to the user
B Open file with read only permitted to | Should only open in a viewer or in a
the user non-editable mode
C Open a file with read not permitted | Not permitted
to user
D Create a file The file should be assigned the clear-
ance level
E Clearance level is lowered due to a | Window should disappear
person
F Clearance level is raised due to a per- | Window should be remapped
son leaving
G Open a backup of a file with read not | Not permitted
permitted to the user
Table D.10: Editor and Viewer Test Cases
Editor/Viewer | case A | case B | case C | case D | case E | case F | case G
emacs Vv v Vv Vv v Vv Vv
gedit vi vi Vv v + ? Vv
nedit Vv v v Vv Vv v v
mozilla vV Vv v N/A Vv vV vV

Table D.11: Test of Editors and Viewers

D.7 Web-camera Sensor Test

123

Event

Test Case

Expected Output

A person enters
A person enters

A person enters

A person enters

The person leaves

Two persons en-
ters close to an-
other

A person enters

No open files

Open files with higher level
than the person

Open files with lower level
than the person

Open files with both higher
and lower level than the per-
son

For all of the above

The time difference between
two persons is low

The person moves at a fast
(not running) pace

Nothing

The window(s) containing the
files is unmapped

Nothing

All windows containing files
with higher level than the per-
son are unmapped

The system is reverted to its
previous state

listsl should list both per-
sons

The web-cameras detect the
person

)
QQ&QW

<

Table D.12: Test of the Camera Sensor

124 Appendix D. Testing

125

Appendix E

GUI Screen-shots

A few screen-shots have been taken of the SecurityManagerGUI, and they are shown in
Figure E.1 to E.8. The Bell-LaPadula access control model was used during this test.
Furthermore, the non-readable files were hidden i.e., the name of a file where the file level
is greater than the clearance level is hidden by the file system and visibility_manager
process. The content of the security policy file was therefore as follows:

Hide non-readable files: y
No read up: y

No read down: n

No write down: n

No write up: n

Permit lower level login: y

When the file level management menu item is selected (see Figure E.1), the user can
select to view the file level of an individual file by writing its name in the text field or
clicking on the Browse button and selecting the file (see Figure E.2). If a directory is
selected, the file levels for all the files and directories in the selected directory is listed.
When the super user runs the SecurityManagerGUI application, the file levels in the File
Level column can be modified to any positive integer. When a non-privileged user runs
the application, the file levels are not editable.

The user who initially logged in by calling the initcl program was s973732. This user
has clearance level 10, and when the User Level Management menu item is selected, only
this user level is shown (see Figure E.4). When the super user runs the application, he will
have access to all the user levels for all the normal users in the system (see Figure E.3).

Two persons with levels 5 and 9 have been detected in the environment and the clearance
level is therefore decreased from 10 to 5 (see Figure E.8). (The detection of persons can
be simulated with the sensor_client program.)

Ounly one file (/mnt/macfs/dirl/file6.txt) has a file level that is greater than the
clearance level. It is open in an emacs editor, which is invisible (see Figure E.5). The file
name is replaced by 'unavailable’ in the dialog window that displays information about the
open files in the invisible window (see Figure E.6).

Four editors and a single Internet browser have files open, but none of the files contain
information that should be hidden, so the windows are visible (see Figure E.7). An overview
of all the information maintained about the visible and invisible windows can be obtained
using the listwl program; its output after this test is listed in Figure 7.2.

126

Appendix E. GUI Screen-shots

File Level Management

secunity Manager GUI
File Level Management

|,fmnt,fmacfs

File Marme

File Lewel

file 1.txt

file2 1xt

filed tut

filed 1xt

dirl

dirz

Pl | | o |t P |

B EE

|

Figure E.1: The File Level Management menu item is selected, and all the file levels of
the files and directories in /mnt/macfs are listed.

127

File Level Management
User Level Management
Unmapped Windows
Mapped Windows
Current Subject Levels

Security Manager GU

File Level Management

|,fmnt,fmacfs

Select

Look In: |ﬁ macfs

|
pEEEES

I dir1
3 dir2
[fileLvat
[filez.xt

0 file3.i§

[filed.xt

File Name: [file3.tu

Files of Type: |All Files

|v|

Select

|| Cancel |

e |

Figure E.2: When the Browse button is clicked, the user can select a file or directory. If
a file is selected, the corresponding file level is displayed. If a directory is selected, all the
file levels of the files and directories in the directory are listed.

128

Appendix E.

GUI Screen-shots

File Level Management
|User Level Management|
Unmapped Windows
Mapped Windows
Current Subject Levels

User Level Management

User Marme

User Lewal

root

Sysd

S9¥373

=

SaF1Vay

kf

alice

hob

LS E=] k=] =)

Figure E.3: When the User Level Management menu item is selected and the super user
runs the application, all the users and corresponding user levels are listed. The user levels

are editable, and any changes are stored persistently.

129

User Level Management

Security Manager GUI

The user s973732 has user level 10.

[=](= (]

Figure E.4: When the User Level Management menu item is selected and a non-privileged
user runs the application, only the user level of the user is displayed.

130 Appendix E. GUI Screen-shots

File Level Management Unmapped Windows

User Level Management

|Unmapped Windows |
Mapped Windows
Current Subject Levels

Click on a row to see the open files and associated file levels:

[&pplication Mame| FID | window 1D [Window Level [No. of Open Files|
|emars | 3639 55720472 &/ &

Figure E.5: One window was unmapped when this screen-shot was taken. The clearance
level was 5 and the window was unmapped because its window level was 6 and the Bell
LaPadula model should be enforced.

131

Security Manager GUI
File Level Management Unmapped Windows

User Level Management
Unmapped Windows
Mapped Windows
Current Subject Levels

File Mame

'unavailakhle' &
files txt 5
filed.txt 4
E)
2
1

filed. tut
file2. txt
file 1.1t

bf Open FiIesH
&

Figure E.6: The file names and corresponding file levels of the open files in the unmapped
window. Because the hide non-readable files policy is chosen, the file name of the file
with file level 6 is replaced by ‘unavailable’.

132 Appendix E. GUI Screen-shots

. Securiby Manager GUJ
File Level Management]\f[apped Windows

User Level Management
Unmapped Windows

|Mapped Windows |
Current Subject Levels

Click on a row to see the open files and associated file levels:

Application Mame PIC Window 1D Window Lewvel | Mo, of Open Files
2Imacs 3636 54526168 4 4
gedit 36EY EOE17454 4 2
gedit 3638 56623150 4]
mozilla-hin 3573 46137353 2 1
nedit 2574 44040187) 1

Figure E.7: When the Mapped Windows menu item is selected, information about the five
visible windows are listed.

133

File Level Management
User Level Management
Unmapped Windows
Mapped Windows

|Current Subject Levels |

Current subject levels: 5 9 10

The clearance level: 5

Figure E.8: When the Current Subject Levels menu item is selected, the subject levels
of all the subjects who are currently present are listed. This list is always sorted in
increasing order, and the first element is therefore equal to the clearance level.

134 Appendix E. GUI Screen-shots

Appendix F

Source Code

135

In this appendix, all the source code for our system is listed. This includes mainly C Code,
but also FiST code and Java code. The files are listed according to which subsystem they

belong to, starting at the lowest layer in our layered architecture.

F.1 Common Files

F.1.1 mount point.h

#ifndef MOUNT POINT
#define MOUNT_POINT " /mnt/macfs"

Hendif

F.1.2 seac ipc.h

#ifndef SEAC_IPC_H
#define SEAC_IPC_H

s

/ X11 declarations //

/.
i aaaia

##include <X11/Xlib .h>
#define CLIENT_ MESSAGE "CLIENT MESSAGE"

enum message types {INIT CLEARANCE LEVEL = 0,
XCREATE_WINDOW _INTERCEPTOR,
FILE_OPEN_MONITOR,
BACKUP_INTERCEPTOR,
SET_FILE_LEVEL,
SENSOR,_ SERVER,
LIST WINDOW _INFO,
LIST SUBJECT LEVELS,
DESTROY };

136 Appendix F. Source Code

// Sends the message ’'data’ to the wvisibility manager.
int send xclient event(long data[]|, Displayx* display , Window target window);

enum backup types {EMACS BACKUP};

A adas
// Named pipe declaration //

a4

#define FIFO_FILE "/tmp /. fifo%i"

e aas
// Shared memory declarations //

/11
#define SHARED MEMORY KEY 123

enum shared memory offsets {

SECURITY MANAGER, SHM_OFFSET — 0,

FILE OPEN_ MONITOR,_SHM OFFSET = sizeof(Window) ,
};

L1111

/ Semaphore declarations //

a4

#if defined (_ _GNU LIBRARY) && !defined (_SEM SEMUN UNDEFINED)
/* union semun is defined by including <sys/sem.h> x/

#else
/* according to X/OPEN we have to define it ourselves x/

union semun {

int val; /x wvalue for SETVAL x/
struct semid ds xbuf; /x buffer for IPC_STAT, IPC_SET x/
unsigned short xarray; /% array for GETALL, SETALL x/
/+ Linux specific part: x/
struct seminfo *x__ buf; /+ buffer for IPC INFO x/
}3
#Hendif

#define FILE_OPEN_MONITOR_SEM_NUM 0
#define SEMAPHORE KEY 1234
#define NO_OF SEMAPHORES 1

int semaphore down(int sem id, unsigned short sem num);
int semaphore up(int sem id, unsigned short sem num);

Hendif

F.1 Common Files 137

F.1.3 seac ipc.c

#include "seac ipc.h"

#include <X11/Xlib.h>
#include <X11/Xatom.h>
#include <errno.h>
#include <sys/shm.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

/+* Wait on a binary semaphore. Block wuntil the semaphore value is
positive , then decrement it by one.

*/
int semaphore down(int sem id, unsigned short sem num){
struct sembuf operations[1];

operations [0].sem_num = sem_num;

// Decrement by one
operations [0].sem _op = -1;

// Permit undo ’ing
operations [0].sem_flg = SEM_UNDO;

return semop (sem id, operations, 1);

/* Post to a binary semaphore: increment its value by one. The
function returns immediately.

*/
int semaphore up(int sem id, unsigned short sem num){
struct sembuf operations|[1];

operations [0].sem_num = sem_num;

// Increment by one
operations [0].sem_op = 1;

// Permit undo ’ing
operations [0].sem flg = SEM UNDO;

return semop (sem id, operations, 1);

s

// Xevent IPC //
iaisa

int send xclient event(long data[], Displayx* display , Window target window){

138 Appendix F. Source Code

int created display = 0;

if (!display)

// Use default display

if (!(display = XOpenDisplay (NULL))) {
printf ("Error opening display [%s]\n", XDisplayName (NULL)) ;
return -1;

}

else
created display = 1;

if (!target window){
// Initialize security manager shared memory
int shm_ id = shmget (SHARED MEMORY KEY, sizeof(Window) , 0) ;

if (shm id == -1)
return -1;

void xshm = shmat(shm _id, 0, 0);
if (!shm){

perror ("shmat") ;

return -1;

}
memcpy (&target window , shm+SECURITY MANAGER _SHM OFFSET, sizeof(Window)) ;

shmdt (shm) ;
if (!target window)
return -1;

}
Atom client message = XInternAtom (display , "CLIENT MESSAGE" , False);

if (client message == None)
return -1;

Window root = RootWindow (display , DefaultScreen (display));
XEvent event ;

event .type = ClientMessage;

event . xclient .display = display;

event . xclient .window = target window;
event.xclient . message type = client message;
event . xclient .format = 32;

event.xclient.data.1[0] = data[0];
event . xclient .data.l[1] = data[l];
event.xclient .data.1[2] = data[2];
event.xclient.data.1[3] = data[3];
event.xclient.data.1[4] = data[4];

int status = XSendEvent(display , target window, False, 0, (XEvent %) &event)

)

if(created display){
XFlush(display);
XCloseDisplay (display);

F.2 The Stackable File System Files 139

}

return status;

}

F.1.4 security policy parameters.h

#ifndef SECURITY POLICY PARAMETERS H
#define SECURITY POLICY PARAMETERS H

#define HIDE NON READABLE FILES "Hide non-readable files:"
#define PERMIT LOWER LEVEL LOGIN "Permit lower level login:"

#define NO READ UP "No read up:"
#define NO WRITE DOWN "No write down:"

#define NO RFAD DOWN "No read down:"
#define NO WRITE UP "No write up:"

Hendif

F.1.5 sensor.h

#ifndef SENSOR _H
#define SENSOR _H

#define DEFAULT HOST "localhost"
#define DEFAULT PORT 33333

Hendif

F.2 The Stackable File System Files

The files listed in Appendix F.2.1 to Appendix F.2.4 contains kernel space code that
make up our part stackable file system. The reaming code is available with the stackable
file systems software package (fistgen), see [12]. The files listed in Appendix F.2.5 to
Appendix F.2.7 contain user space code, which are used when the system is initialized or
shut down.

F.2.1 macfs.fist

74
// The global clearance level. It is updated when an unauthorised
// person enter or leave the environment.
extern int clearance level;

140 Appendix F. Source Code

// Is mon-zero if the system either has not been initialised or it
// has been destroyed.
extern int is_ done;

// If non-zero, permits the user to specify a level below his wuser
// level , which should be used to initialise the clearance level.
extern int permit lower level login;

// If non-zero, file names of files that are non-readable according
// to the security policy will be hidden.
extern int hide non readable files;

// Bell-La Padula rules:
extern int no read up;
extern int no write down;

// Biba rules:
extern int no_write up;
extern int no_read down;

// The file names of the file levels file , user level file, and
// security policy file, respectively:

extern char file levels[256];

extern char user levels[256];

extern char security policy[256];

// Used when the open system call is invoked:
extern struct semaphore open_ sem;

extern char file_name[256];

extern int level;

extern int pid;

extern long file inode;

// Is invoked whenever a file is opened in the file system.
extern void file open intercepted (long inode, int mode, const char xname);

// Is invoked whenever the permissions of file is checked by the
// file system.

extern int inode permission(long inode, int mask);

// DEBUG is set, debugging information is written to the system log.
#ifndef DEBUG

#define DEBUG 0

#endif

%}

// By filtering on the file names, the files that should be hidden can
// be skipped in a directory reading; this is only used when

// hide _mnon_readable files = 0.

filter name;

// Source code that should be compiled and linked with the file system.
mod_src file levels.c security policy.c user levels.c;

// Source code for stand-alone user space programs that use the file
// system wvia ioctl system calls.

F.2 The Stackable File System Files 141

user _src initcl.c seac init.c seac_destroy.c setfl.c getfl.c listfl.c setul.c
getul.c listul.c getcl.c visibility manager.c file _open_ monitor.c
seac_ipc.h mount point.h security policy parameters.h;

add mk macfs mk;
// Initialisation and shutdown operations:

ioctl INIT {
char security policy[256];
char file levels[256];
char user levels[256];

}s

ioct] INIT CLEARANCE LEVEL {
int level;

}s

ioctl:fromuser DESTROY {
int op;

}s

// File level operations:

ioctl SET FILE LEVEL {
int level;
long inode;

}s

ioct]l GET FILE LEVEL {
int level;
long inode;

}s

// User level operations:

ioctl SET USER_LEVEL{
int uid;
int level;

}s

ioctl GET USER,_LEVEL {
int uid;
int level;

}s

// Clearance level operations:

ioct]l SET CLEARANCE IEVEL {
int level;

}s
ioct] GET CLEARANCE LEVEL {

142 Appendix F. Source Code

int level;

}s

// Open intercept operation:

ioctl OPEN {
char name[256];
int pid;
int level;
long inode;

}s

// File formats that are used when file and user levels are stored in

// files.

fileformat FILE LEVEL{
long inode;
int level;

}s

fileformat USER_LEVEL{
int uid;
int level;

}s
%%

?//

/ Initialization and shutdown functions //

N A A aa

Y%op:ioctl : INIT{
if (current->euid)
return -EPERM;

fistGetIoctlData (INIT, user_levels, user_levels)
!is_domne)
return -EFAULT;

if (fistGetloctlData (INIT, security policy , security policy) < 0 ||
fistGetloctlData (INIT, file levels , file levels) < 0 ||
< 0 |

is _done = 0;

if (read hashtable() || read policy())
return -EFAULT;

sema _init(&open_ sem, 0) ;

}

%op:ioctl :INIT CLEARANCE LEVEL{
int login _ level;

F.2 The Stackable File System Files 143

if (fistGetloctlData (INIT CLEARANCE LEVEL, level, &login_ level) < 0)
return -EFAULT;

if(clearance level == -1){// The clearance level has not been initialised.
clearance level = get user level(current->uid);
if (permit_lower level login && login level != -1 &&
login _level < clearance level)
clearance level = login level;
}

fistSetTIoctlData (INIT CLEARANCE LEVEL, level, &clearance level);
}

%op : ioct]l :DESTROY {
int op;

if (current->euid)
return -EPERM;

if (fistGetIoctlData (DESTROY, op, &op) || is_done)
return -EFAULT;

write hashtable () ;
free _hashtable () ;
is_done = -1; // Denotes that the file open_ monitor should stop running.

up(&open_sem) ;

if (DEBUG) printk ("SEAC: the system is destroyed.\n");

L1111
// File level functions //

A

%op:ioctl :SET_FILE LEVEL {
long ino;
int level;

// Only root is allowed to change the file level.
if (current->euid)
return -EPERM;

if (fistGetloctlData (SET FILE LEVEL, level, &level) < 0 ||
fistGetloctlData (SET_FILE LEVEL, inode, &ino) < 0 ||
is_done)
return -EFAULT;

level = set file level(ino, level);

fistSetloctlData (SET FILE LEVEL, level, &level);

%op:ioctl :GET _FILE LEVEL {
long ino;

144 Appendix F. Source Code

int level;

if(fistGetloctlData (GET FILE LEVEL, inode, &ino) < 0 ||
is_done)
return -EFAULT;

level = get file level(ino);
if(level == -1) // A level is not associated with the inode.
level = 0;

if (hide_non_readable_files && inode_permission(ino, 4)) // Permission denied
return -ENOENT;

fistSetIoctlData (GET _FILE LEVEL, level, &level);

s
// User level functions //

s

%op:ioctl :SET USER,_LEVEL {
int uid;
int level;

// Only root is allowed to change the user level.
if (current->euid)
return -EPERM;

if (fistGetloctlData (SET _USER_LEVEL, level, &level) < 0 |[]
fistGetloctlData (SET_USER_LEVEL, uid, &uid) < 0)
return -EFAULT;

if (DEBUG) printk ("SEAC Set user level: uid = %i, user level = %i\n", uid,
level);
level = set user level(uid, level);

fistSetloctlData (SET_USER_LEVEL, level, &level);

%op:ioctl :GET _USER_LEVEL {
int uid;
int level;

if (fistGetloctlData (GET USER_LEVEL, uid, &uid) < 0)
return -EFAULT;

if(current->euid && current->euid != uid)
return -EPERM;

level = get user level(uid);
if (DEBUG) printk ("SEAC Get user level: uid = %i, user level = %i\n", uid,
level);

F.2 The Stackable File System Files 145

fistSetloctlData (GET USER_LEVEL, level, &level);
}

s

/ Clearance level functions //

i ida

%op:ioctl :SET CLEARANCE LEVEL {
int level;

// Only root is allowed to change the clearance level.
if (current->euid)
return -EPERM;

if (fistGetloctlData (SET CLEARANCE ILEVEL, level , &level) < 0)
return -EFAULT;

if (DEBUG) printk ("SEAC Set clearance level: level = %i\n", level);

memcpy (& clearance level , &level , sizeof(int));

%op:ioct]l :GET CLEARANCE IEVEL {
fistSetIoctlData (GET CLEARANCE LEVEL, level, &clearance level);
if (DEBUG) printk ("SEAC Get clearance level: level = %i\n", clearance level);

}

L1110

// Open intercept function //
s

Y%op:ioctl :OPEN {
err = down _interruptible(&open sem) ;
// down_interruptible returns 0 if you got the lock, or -EINTR if
// the process was interrupted with a signal.
if (lerr){
if (is_done)
fistSetloctlData (OPEN, level, &is done);
else{
fistSetloctlData (OPEN, name, file name);
fistSetIoctlData (OPEN, pid, &pid);
fistSetloctlData (OPEN, level, &level);
fistSetIoctlData (OPEN, inode, &file inode);

s

/ File operations //

e

146 Appendix F. Source Code

%op: create: postcall {
if (DEBUG) printk ("SEAC create: file name = %s, inode = %i, level = %i\n",
dentry->d_ name.name, dentry->d_ inode->i ino, clearance level);

if (lerr)
insert (dentry->d_inode->i_ ino, clearance level);

%op :unlink : postcall {
if (DEBUG) printk ("SEAC unlink: file name = %s, inode = %i, link count = %i\n
", dentry->d_name.name, dentry->d_inode->i_ ino, dentry->d_inode->i_ nlink

)3

if (lerr && dentry->d_inode->i_ nlink == 0)
delete (dentry->d _inode->i_ ino);

i as

/ Directory operations //

/.
s

%op : mkdir: postcall {
if (DEBUG) printk ("SEAC mkdir: directory name = %s, inode = %i, file level
= %i\n", dentry->d name.name, dentry->d_inode->i ino, clearance level);

if (lerr)
insert (dentry->d_inode->i_ ino, clearance level);

%op : rmdir: postcall {
if (DEBUG) printk ("SEAC rmdir: directory name = %s, inode = %i, link count
= %i\n", dentry->d name.name, dentry->d inode->i ino, dentry->d_inode->
i nlink);

if (lerr && dentry->d_inode->i_ nlink == 0)
delete (dentry->d_inode->i_ino);
}

Y%op:readdir: call {
if(current->euid && hide non readable files && inode permission(ino, 4)){
if (DEBUG) printk ("SEAC readdir: skipping file %s\n", decoded_name);
fistSkipName (decoded _name) ;
}
}

Oz
int clearance level = -1;
int is done = 1;

// Security policy parameters:

int permit lower level login = 0;

F.2 The Stackable File System Files 147

int hide non readable files = 0;

// Bell-La Padula:
int no _read up = 0;
int no_ write down — 0;

// Biba:
int no_write _up = 0;
int no read down = 0;

char security policy[256];
char file levels[256];
char user levels[256];

// File open monitor variables:
struct semaphore open sem;

int pid;

int level;

char file name[256];

long file inode;

// Taken from base2fs. fist

int macfs encode filename(const char sxname, int length , char *xencoded name,
int skip dots, const vnode t xvp, comnst vfs t xvfsp){
int encoded length = length + 1;

xencoded name — fistMalloc (encoded length);
fistMemCpy (*xencoded name, name, length);
(*encoded _name) [length] = *\0’;

return encoded length;

}

// returns length of decoded string, or -1 if error
int macfs decode filename(const char sxname, int length , char xxdecoded name,
int skip dots, const vnode t xvp, const vfs t xvfsp){
int error = 0;
xdecoded name = fistMalloc (length);
fistMemCpy (xdecoded name, name, length);
error = length;
return error;

void file open intercepted(long ino, int mode, const char xname){

if (!S_ISREG(mode) && !S_ ISLNK (mode))

return;
int new level = get file level(ino);
if (new level == -1){

printk ("SEAC file open intercepted() error: the inode %i was not found\n")

)
return;

}

148 Appendix F. Source Code

if (DEBUG) printk ("SEAC file open intercepted: file name — %s, inode — %i,
file level = %i, PID = %i\n", name, ino, new level, current->pid);

memcpy (&pid, & current->pid, sizeof(pid));

memcpy(&level , &new level , sizeof(level));

memcpy(&file inode, &ino, sizeof(ino));

memcpy (file _name , name, 256) ;

if (DEBUG) printk ("SEAC file open intercepted: file name = %s\n", file_name);

up(&open _sem) ;

}

// Security policy function. Returns 0 if the inode can be accessed
// with the provided mask.
int inode permission(long inode, int mask){

int file level = get file level(inode);
if(file level == -1)
return 0; // A level has not been associated with the file.

if (current->uid && // Only the access for mnon-root users is
// restricted.
(// Bell-La Padula rules:
no_read up && mask & 4 && file level > clearance level ||
no_write down && mask & 2 && file level < clearance level ||
// Biba rules:
no_write up && mask & 2 && file level > clearance level ||
no_read down && mask & 4 && file level < clearance level)){
if (DEBUG) printk ("Permission denied for inode %i\n", inode);
return -EPERM;

}

return 0;

F.2.2 security policy.c

#ifdef FISTGEN
#include "fist macfs.h"

#endif
#include "fist .h"

#include "security policy parameters.h"

// Reads a line from the policy file
int read line(file t xfilp , char xoption, int xchoice){
char buf[40];
int bytes = filp->f op->read(filp , buf, strlen(option)+2, &filp->f pos);

if (!'strncmp (buf, option, strlen(option))){
xchoice = buf|strlen (option)+1];

if (xchoice != (int) 'y’ && xchoice != (int) ’'n’){
printk ("SEAC error: invalid format i security policy file. The format
must be \"%s x\" where x is either y or n\n", option);

return -1;

F.2 The Stackable File System Files 149

}
xchoice -= ’'n’;
}
while(bytes > 0 && buf[0] = ’\n’)

bytes = filp->f op->read(filp , buf, 1, &filp->f pos);

return 0;

}

int read policy (){
file _t «filp;
mm_segment_t oldfs;
int err = 0;

if (DEBUG) printk ("SEAC security policy:\n");
filp = filp open(security policy , O RDONLY, 0) ;

if (!filp || IS_ERR(filp))

return -1;

if (!filp->f op->read)
return -2; // file(system) doesn’t allow reads

filp->f pos = 0; // start offset
oldfs = get fs();
set fs (KERNEL_DS) ;

if(err = read line(filp , HIDE NON_READABLE FILES, & hide non_ readable files)
< 0)
goto out;
else
if (DEBUG) printk (" hide non readable files = %i\n",
hide non readable files != 0);

if(err = read line(filp , NO_READ UP, &no read up) < 0)
goto out;
else

if (DEBUG) printk (" no_read up = %i\n", no_read up != 0);

if(err = read line(filp , NO READ DOWN &no read down) < 0)
goto out;
else

if (DEBUG) printk (" no_read down = %i\n", no_read down != 0);

if(err = read line(filp , NO _WRITE DOWN, &no_write down) < 0)
goto out;
else
if (DEBUG) printk (" no_write_down = %i\n", no_write_down != 0);

if(err = read line(filp , NO WRITE UP, &no_write_up) < 0)
goto out;
else
if (DEBUG) printk (" no_write_up = %i\n", no_write_up != 0);

150 Appendix F. Source Code

if(err — read line(filp , PERMIT LOWER_ ILEVEL LOGIN, & permit_ lower level login

) < 0)
goto out;
else
if (DEBUG) printk (" permit_ lower level login = %i\n",
permit_lower level login != 0);

out:
set fs(oldfs);
fput (filp); // close the file

return err;

}

F.2.3 file levels.c

#ifdef FISTGEN
#include "fist macfs.h"

#endif
#include "fist .h"

// Hashtable node
typedef struct node xnode t;
struct node{
long inode;
int level; // file level
node_t next; // Pointer to the next element.

}s

#ifndef HASH TABLE SIZE
#define HASH TABLE SIZE 10

#endif
static node t hashtable [HASH TABLE SIZE];

static int size = 0; // The number of elements in the hashtable.

?/////////////////////////

/ Hash table functions //

s

static unsigned int hash(int key) { return key % HASH TABLE SIZE; }

// Prints the content of the hash table.
static void print (){

if (!size)
printk ("\nThe hash table is empty.\n");
return;

}

int i;
for(i = 0; i < HASH TABLE SIZE; i++){
node t x;

F.2 The Stackable File System Files

151

printk ("\ni = %i: ", i);
for (x = hashtable[i]; x; x = x->next)
printk ("(%u, %i) ", x->inode, x->level);
}
printk ("\n");

}

static node t search(int k) {
node_t x = hashtable[hash (k)];

while (x && x->inode != k)

X — X->next;

return x;

}

int insert (long inode, int level) {

if(inode < 0 || level < 0)
return -1;

node_t x = hashtable[hash(inode) |;

while (x && x->inode != inode)
X — X->next;

if(x) // Update the node
if(x->level != level)
x->level =level;

else{ // Insert a new node
node t y;
y = kmalloc(sizeof(struct node) , GFP_KERNEL) ;
if (1y){
printk ("SEAC Error: Out of memory.");
return -1;

}

size++;

int index = hash(inode);

// Create a new node ’’y’’ with key wvalue inode
y->inode = inode;

y->level = level;
y->next = hashtable[index];
hashtable[index] = y;

}

if (DEBUG) {
printk ("SEAC hashtable after insert:");
print () ;

}

return 0;

152 Appendix F. Source Code

void delete (long inode) {
node t x = hashtable[hash(inode)], y = 0;

for (; x && x->inode != inode; x = x->next)
y = x5

if(1x){ // inode does not ezist in table
printk ("SEAC delete error: inode %i was not found.\n", inode);
return;

}
size - -;

if (y) // The inode was not the first element in the list.
y->next — x->next;

else // Delete the first element in the list
hashtable[hash(inode)] = x->next;

kfree(x);

i f (DEBUG) {
printk ("SEAC hashtable after delete:");
print () ;
}
}

// Read the content of a hash table from a file and store it in table
int read hashtable(){

struct _fist fileformat FILE LEVEL buf;

int len = sizeof(struct _fist fileformat FILE LEVEL);

file t «xfilp;
mm_segment t oldfs;
int bytes = 1;

filp = filp open(file levels , O RDONLY, 0) ;

if (!filp || IS_ERR(filp))

return -1;

if (!filp->f op->read)
return -2;

filp->f pos = 0; // start offset
oldfs = get fs();
set _fs (KERNEL_DS) ;

// Read an inode and a corresponding level from the file and
// insert it into the hashtable.
bytes = filp->f op->read(filp , (void *) &buf, len, & filp ->f pos);

while (bytes > 0){

F.2 The Stackable File System Files 153

insert (buf.inode, buf.level);
bytes = filp->f op->read(filp , (void x) &buf, len, &filp->f pos);
}

set fs(oldfs);
fput (filp); // close the file

return 0;

}

// Store the content of table in a file.
int write hashtable (){

struct _fist fileformat FILE LEVEL buf;

int len = sizeof(struct _fist fileformat FILE LEVEL);
file t = filp;

mm_segment t oldfs;

int bytes, i;

filp = filp open(file levels , O WRONLY, 0) ;

if (!filp || IS_ERR(filp))
return -1;

if (!filp->f op->write)
return -2;

filp->f pos = 0; // start offset
oldfs = get fs();
set _fs (KERNEL_DS) ;

for(i = 0; i < HASH TABLE SIZE; i++){
node_t x = hashtable[i];

for (;x; x = x->next){

memcpy(&buf.inode, &x->inode, sizeof(x->inode));

memcpy(&buf.level ; &x->level , sizeof(x->level));

bytes = filp ->f op->write(filp , (void x) &buf, len, &filp ->f pos);
}

}
set fs(oldfs);

fput (filp); // close the file

return 0;

void free hashtable (){
int i;
for(i = 0; i < HASH_TABLE SIZE; i-++){

node t x, y;

for (

x = hashtable[i];;){
if(x)
y =

X->next ;

154 Appendix F. Source Code

else
break;
if (DEBUG) printk("kfree (%u, %i)\n", x->inode, x->level);
kfree (x);
X =Y

// Returns the file level for the file or directory with the given
// inode, or -1 if no level has been associated with the inode.
int get file level(long inode){

node_t x = search(inode);

if(x)
// inode was in the hashtable.
return x->level;
else
return -1;
}

int set file level(long inode, int new level){

if(new_level < 0)
return -1;

return insert (inode, new level);

}

F.2.4 wuser levels.c

#ifdef FISTGEN
#include "fist macfs.h"

#endif

#include "fist .h"

Var

x Sets the wuser level for the user with the ID uid.
*/

int set user level(int uid, int level){
struct _fist fileformat USER LEVEL buf;
int len = sizeof(struct _fist fileformat USER_ LEVEL);
file t =« filp;
mm_segment t oldfs;
int uid found = 0; // Is 0 iff the wid was found in the file

// open the file
filp = filp _open(user levels , O WRONLY, 0) ;

if (1filp || IS_ERR(filp))
return -1;

if (!filp->f op->write || !filp->f_ op->read)

F.2 The Stackable File System Files 155

return -2;

filp->f pos = 0; // start offset
oldfs = get fs();
set fs (KERNEL_DS) ;

while (filp ->f op->read(filp , (void *) &buf, len, &filp->f pos) > 0)
if (buf.uid == uid){
// The wid already ezxists in the file , so the old level is
// overwritten by the new level.
memcpy(&buf.level , &level , sizeof(level));
uid_found = 1;
filp ->f pos = filp->f pos - len;
filp->f op->write(filp , (void %) &buf, len, &filp->f pos);
break ;
}

if ('uid found){
// The wid was not found in the file , so the wuid and corresponding
// level is appended to the file.
memcpy(&buf.uid, &uid, sizeof(uid));
memcpy(&buf.level , &level , sizeof(level));
filp ->f op->write(filp , (void %) &buf, len, & filp ->f pos);
}

set fs(oldfs);
fput (filp); // close the file

return 0;
}
Vit
x Gets the wuser level for the user with the ID uid.
*/

int get user level(int uid){

struct _fist fileformat USER LEVEL buf;

int len = sizeof(struct _fist fileformat USER_LEVEL);
file t = filp;

mm_segment_t oldfs;

int level = 0;

filp = filp open(user levels, O RDONLY, 0) ;

if (!filp || IS_ERR(filp))
return -1;

if (!filp->f op->read)
return -2; // file system does not allow reads

filp->f pos = 0; // start offset
oldfs = get fs();
set fs (KERNEL_DS) ;

while (filp ->f op->read (filp , (void) &buf, len, &filp->f pos) > 0)
if (buf.uid == uid){
// The wid was found in the file.

156 Appendix F. Source Code

memcpy(&level , &buf.level , sizeof(level));
break ;

}

set fs(oldfs);
fput (filp); // close the file
return level;

F.2.5 seac init.c

#include <sys/types.h>
#include <sys/ioctl.h>
#include <fcntl . h>
#include <stdio .h>

#include "mount point.h"
#include <wrapfs.h>

int main(int argc, char xargv[]){
struct _fist _ioctl INIT wval;

if (arge < 4) {
fprintf(stderr , "Usage: %s POLICY FILE FILE LEVELS FILE USER_LEVELS_ FILE\n
", argv[0]);
exit (1) ;

}

strepy (val.security policy , argv[1]);
strepy (val . file levels , argv([2]);
strepy (val . user _levels , argv([3]);

int fd = open(MOUNT POINT, O RDONLY) ;
if (fd < 0) {

perror ("open");

exit (1) ;

}

// Set the clearance level in the file system.
int status = ioctl(fd, FIST IOCTL_INIT, & val);

if (status < 0)
perror ("Could not access file system");

close (fd);
exit (status);

F.2.6 initcl.c

#include <sys/types.h>
#include <sys/ioctl.h>

F.2 The Stackable File System Files

157

#include <fcntl . h>
#include <unistd .h>
#include <stdio.h>

#include "mount point.h"
#include "seac ipc.h"
#include <wrapfs.h>

int main(int argc, char xargv|[]){

if (arge > 2) {
fprintf(stderr , "Usage: %s [LOGIN_LEVEL|\n", argv[0]) ;

exit (1) ;
}
struct _fist_ioctl INIT CLEARANCE LEVEL val;
if (arge == 2)
val.level = atoi(argv[l]);
else
val.level = -1; // The level will be set in the kernel to the

// user’s user level

int fd = open (MOUNT POINT, O RDONLY) ;
if (fd < 0) {

perror ("open") ;

exit (1) ;

}

int res = ioctl(fd, FIST IOCTL INIT CLEARANCE LEVEL, & val);
close (fd);
if (res < 0) {

perror ("Could not access file system");

exit (res);

}

long data[] = {INIT_CLEARANCE LEVEL, val.level, 0, 0, 0};
send xclient event(data, 0, 0);

F.2.7 seac destroy.c

#include <sys/types.h>
#include <sys/stat.h>
#include <sys/ioctl.h>
#include <fcntl . h>
#include <unistd .h>
#include <stdio.h>

#include "mount point.h"
#include "seac ipc.h"

#include <wrapfs.h>

158 Appendix F. Source Code

int main(){
struct _fist ioctl DESTROY val;

int fd = open (MOUNT POINT, O RDONLY) ;
if (fd < 0) {

perror ("open");

exit (1) ;

}

// Store the file system state and stop the file _open_ monitor process
int status = ioctl(fd, FIST IOCTL DESTROY, & val);
if (status < 0)

perror ("Could not access file system");

close (fd);

// Shut down the wvisibility manager
long data|[] = {DESTROY, 0, 0, 0, 0};
return send xclient event(data, 0, 0);

F.3 File Level Management Files

F.3.1 getfl.c

#include <sys/types.h>
#include <sys/stat.h>
#include <sys/ioctl.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdio .h>

#include "mount point.h"
#include <wrapfs.h>

int main(int argc, char xargv|[]){

struct fist ioctl GET FILE LEVEL val;
struct stat stat_buf;

if (arge < 2) {
fprintf(stderr, "Usage: %s FILE\n", argv[0]) ;
exit (1) ;

}

char xcwd = getcwd (0,0);
if (strncmp (MOUNT POINT, cwd, strlen (MOUNT POINT)) &&

(argc == 1 || strncmp (MOUNT_POINT, argv[1l], strlen (MOUNT POINT)))) {
printf ("Error: %s is not supported in this directory.\n", argv[0]);
free (cwd) ;

exit (1) ;

}

F.3 File Level Management Files 159

free (cwd) ;

int status = stat (argv[l], &stat_buf);
if (status < 0) {

perror ("stat");

exit (1) ;
}

val.inode = stat_buf.st ino;

int fd = open (MOUNT POINT, O RDONLY) ;
if (fd < 0) {
perror ("open");

exit (1) ;
}
status = ioctl(fd, FIST IOCTL GET FILE LEVEL, & val);
if(status == -1){
if(val.level == -1)
printf("No file level has been set.\n");
else
perror ("Could not access file system");
}
else
printf ("%u\n", val.level);
close (fd);

F.3.2 setfl.c

#include <sys/types.h>
#include <sys/stat .h>
#include <sys/ioctl.h>
#include <fcntl . h>
#include <unistd .h>
#include <stdio .h>
#include <dirent .h>

#include "seac ipc.h"
#include "mount point.h"

#include <wrapfs.h>
int main(int argc, char xargv[]){

struct fist ioctl SET FILE LEVEL val;
struct stat stat_ buf;

if (arge < 3) {
fprintf(stderr, "Usage: %s FILE FILE LEVEL\n", argv[0]);
exit (1) ;

}

char xfile name = argv|[1l];

160 Appendix F. Source Code

char xcwd = getcwd (0,0);
// Check that the path to the file is walid.
if (strncmp (MOUNT POINT, cwd, strlen (MOUNT POINT)) &&

(argc == 1 || strncmp (MOUNT_POINT, file name, strlen (MOUNT POINT)))) {
printf ("Error: %s is not supported in this directory.\n", argv[0]);
free (cwd) ;

exit (1) ;

}

free (cwd);

// Get the inode number corresponding to the file.
int status = stat (file_name, &stat_buf);
if (status < 0) {

perror ("stat");

exit (1) ;
}
val.inode = stat_buf.st ino;
val.level = atoi(argv[2]);

long data[] = {SET_FILE LEVEL, val.inode, val.level, 0, 0};

int fd = open (MOUNT POINT, O RDONLY) ;
if (fd < 0) {

perror ("open");

exit (1) ;

}

// Set the file level in the stackable file system.
status = ioctl(fd, FIST_IOCTL_SET FILE LEVEL, & val);
if (status < 0){

perror ("Could not access file system");

close (fd);

exit (1) ;
}
close (fd);

if(val.level < 0){
perror ("setfl");
exit (1) ;

}

// Notify the wvisibility manager about the level change.
send xclient event(data, 0, 0);

F.3.3 listfl.c

#include <sys/types.h>
#include <sys/stat.h>
#include <sys/ioctl.h>
#include <fcntl . h>
#include <unistd .h>
#include <stdio.h>
#include <dirent .h>

F.3 File Level Management Files 161

#include "mount point.h"
#include <wrapfs.h>

int main(int argc, char xargv[]){

struct fist ioctl GET FILE LEVEL val;
struct stat stat_ buf;

if (arge > 2) {
fprintf(stderr, "Usage: %s [DIR]\n", argv[0]);
exit (1) ;

}

char xcwd = getcwd (0,0);
if (strncmp (MOUNT POINT, cwd, strlen (MOUNT POINT)) &&

(argc == 1 || strncmp (MOUNT_POINT, argv[l], strlen (MOUNT POINT)))) {
printf ("Error: listfl is not supported in this directory.\n");
free (cwd) ;
exit (1) ;
}
free (cwd) ;
char *dir_name = (arge < 2) 7 "." : argv[l];
DIR *dir = opendir (dir name);
if (1dir){
perror ("opendir") ;
exit (1) ;
}
if (chdir(dir_name) == -1){
perror ("chdir");
exit (1) ;
}
struct dirent sxdirent = readdir(dir);

if (!dirent) {
perror ("readdir");
exit (1) ;
}
dirent = readdir(dir); // .
dirent = readdir(dir); // ..

int fd = open (MOUNT POINT, O RDONLY) ;
if (fd < 0) {

perror ("open");

exit (fd);
}

for (;dirent; dirent = readdir(dir)){
char x*name = dirent->d_name;

int status = stat (name, &stat buf);
if (status < 0)
continue;

162 Appendix F. Source Code

val.inode = stat_buf.st ino;

status = ioctl (fd, FIST IOCTL GET FILE LEVEL, & val);
if (status < 0) {

perror ("Could not access file system");

break ;

}

printf ("%-15s %10u\n" , name, val.level);

}

close (fd);
closedir (dir);

F.4 User Level Management Files

F.4.1 getul.c

#include <sys/types.h>
#include <sys/stat .h>
#include <sys/ioctl.h>
#include <fcntl . h>
#include <unistd .h>
#include <stdio.h>
#include <pwd.h>
#include <sys/types.h>

#include "mount point.h"
#include <wrapfs.h>
int main(int argc, char xargv[]){

struct fist ioctl GET USER_ LEVEL val;
struct passwd xp_entry;

if (arge > 2) {
fprintf(stderr, "Usage: %s [USER_NAME|\n", argv[0]);
exit (1) ;

}

if(arge == 1)
// If no argument is supplied , the user ID of the current wuser is
// retrieved.
val . uid = getuid () ;
else{
p_entry = getpwnam (argv|[1]); // get password entry

if (Ip_entry) {
printf ("The user level could not be retrieved.\n");
exit (1);

}

F.4 User Level Management Files

163

val.uid = p_entry->pw_uid;

}

int fd = open (MOUNT POINT, O RDONLY) ;
if (fd < 0) {

perror ("open");

exit (1) ;

}

// Get the wuser level is from the stackable file system.
int status = ioctl(fd, FIST IOCTL_ GET USER_LEVEL, & val);

if (status < 0) {
perror ("ioctl");

close (fd);

if(val.level < 0){
printf ("The user level could not be retrieved.\n");
perror ("ioctl");

}

else
printf ("%i\n", val.level);

F.4.2 setul.c

#include <sys/types.h>
#include <sys/stat.h>
#include <sys/ioctl.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdio .h>
#include <pwd.h>
#include <sys/types.h>

#include "mount point.h"
#include <wrapfs.h>

int main(int argc, char xargv[]){

struct fist ioctl SET USER LEVEL val;
struct passwd xp_entry;

if (arge < 3) {
fprintf(stderr, "Usage: %s USER_NAME USER_LEVEL\n"
exit (1) ;

}

int fd = open (MOUNT POINT, O RDONLY) ;
if (fd < 0) {

perror (argv[1]);

exit (1) ;

}

, argv[0]);

164

p_entry = getpwnam (argv|[1]); // get password entry

if (!p_entry) {
printf("The user level could not be set.\n");

exit (1) ;
}
val .uid = p_entry->pw_uid;
val.level = atoi(argv[2]);

int res = ioctl(fd, FIST IOCTL_ SET USER_LEVEL, & val);
if (res < 0) {
perror ("Could not access file system");

}

if(val.level == -1){
printf ("The user level could not be set.\n");
perror ("setul");

}

close (fd);
exit (res);

F.4.3 listul.c

#include <sys/types.h>
#include <sys/stat.h>
#include <sys/ioctl.h>

Appendix F. Source Code

#include
#include
#include
#include
#include

#include
##include

#include
#include

<fentl .h>

<unistd .h>

<stdio .h>
<pwd.h>

<sys/types.h>

"mount__point.h"
<sys /mman. h>

<wrapfs.h>

<glib .h>

#define MAX PATH IENGTH 50

4ifndef SHELL PATH
#define SHELL PATH "/etc/shells"

Hendif

static gint compare strings(gconstpointer a, gconstpointer b){

}

return strcmp(a, b);

int main(){

F.4 User Level Management Files 165

FILE «fp — fopen (SHELL PATH, "r");
i (1fp) 1

perror ("fopen");

exit (1) ;

}

// The /etc/shells file is (usually) list of all of the wvalid
// ’login’ shells on the system -- see the man page ’'shells ’,
// section 5. A linked list with these valid shells is created
// initially.
GSList xlogin_ shells list = NULL;
char buf[MAX PATH IENGTH];
while (! feof (fp) && !ferror (fp) && fscanf (fp, "%s\n", buf))

login shells list = g_slist append(login_ shells list

g _memdup(buf, strlen (buf)+1));

if(fclose (fp)){
perror ("fclose");
exit (1) ;

}

struct fist ioctl GET USER_ LEVEL val;
struct passwd xp_entry;

int fd = open (MOUNT POINT, O RDONLY) ;
if (fd < 0) {

perror ("open");

exit (1) ;

}

// The password file is scanned, and all user IDs corresponding to
// walid login shells are printed to standard output along with the
// user level of the user.
for (p_entry = getpwent(); // get a password entry

p_entry; p_entry = getpwent()){

if (g slist find custom(login_ shells list , p_ entry->pw_shell, &
compare_strings) || !stremp("/sbin/nologin", p_entry->pw_shell))
continue;

val.uid = p_entry->pw_uid;

// The user level is retrieved from the stackable file system.
int res = ioctl(fd, FIST IOCTL GET USER LEVEL, &val);
if (res < 0) {

perror ("Could not access file system");

break ;

}

if(val.level < 0){
printf("Could not read the user levels.\n");
break ;

}

// The user name and corresponding user level is printed.

166

Appendix F. Source Code

printf ("%-15s %10u\n" , p_entry->pw_name,

}

g slist free(login_ shells list);

endpwent () ;
close (fd);

F.5

F.5.1

#include
#include
#include
#include
#include
#include
#include
##include
#include
#include
#include
#include

#include
#include
#include

Window Management Files

visibility manager.c

<sys/ipc.h>
<sys/shm.h>
<sys/sem.h>
<stdio.h>
<glib .h>
<sys/types.h>
<sys/stat .h>
<sys/ioctl.h>
<sys/fentl . h>
<fecntl .h>
<wrapfs.h>
<X11/Xatom . h>

"security policy parameters.h"
"seac ipc.h"
"mount point.h"

#ifndef DEBUG
#define DEBUG 0

Hendif

#define error(str) fprintf(stderr, str);

#define error2(str, arg)

// Security policy parameters:

static
static
static

static

static

GSList *xsubject list = NULL;
so that the clerance

int hide non readable files;
int no_read up;
int no_read down;

val.level);

fprintf(stderr , str, arg);

GHashTable xtable; // A hash table where the key is a process

// ID of type int, and the information value
// is an element of type Windowlnfo.

// The list
level

typedef struct {
char xfile name;
int file level;
unsigned long inode;

1s sorted in
is the first element in the

list.

increasing order

F.5 Window Management Files 167

} Filelnfo;

typedef struct {
Window window _id;
char xapp name;
GSList xfile list; // A list where the elements are Filelnfo structures. The
list is sorted in decreasing order (according to the file level) so
that the window level is the file level in the first element of the list

int is _mapped; // is 1 if and only if the window is mapped.
} WindowlInfo;

static int x_error handler(Display xdisplay , XErrorEvent xerror){
char error msg[80];
XGetErrorText (display , error->error code, error msg, sizeof(error msg));
error2 ("XError: %s\n", error_msg);
return 0;

}

// Reads a line from the security policy file.
int read line(int fd, char *xoption, int xchoice){
char buf[40];
int bytes = read(fd, buf, strlen(option)+2);

if (!'strncmp (buf, option, strlen (option))){
xchoice = buf[strlen (option) +1];

if (xchoice != (int) ’y’ && xchoice != (int) 'n’){
error2 ("Invalid format. The format must be \"%s x\" where x is either y
or n\n", option);
return -1;

}))

xchoice -= ’'n’;

}

while(bytes > 0 && buf[0] != ’\n’)
bytes = read(fd, buf, 1);

return 0;

// GHashTable functions
s

static gboolean equalFunc(gconstpointer a, gconstpointer b){
return *((const pid t %) a) == x((const pid_t x) b);

}

static guint hashFunc(gconstpointer key){
return *((const pid t *) key);

}

168 Appendix F. Source Code

// GSList functions
i

// Used when elements are inserted in subject list

static gint compare incr(gconstpointer a, gconstpointer b){
return *((const int *) a) - *x((comst int x) b);

}

// Used by file list (in a WindowInfo struct) to compare the Filelnfo
// elements; its usage ensures that the list is sorted in decreasing
// order.
static gint compare decr(gconstpointer a, gconstpointer b){
return ((const FileInfo %) b)->file level - ((const FileInfo %) a)->
file level;

// Compares the inodes in a file list (which is an element in a
// WindowInfo struct).
gint compare inodes(gconstpointer a, gconstpointer b){
return (((const FileInfo %) b)->inode) != (((const FileInfo %) a)->inode);
}

// FILE_OPEN_MONITOR functions
A

gint is_backup file(gconstpointer a, gconstpointer b){
char *fl = ((const FileInfo %) a)->file name;
char *f2 = ((const Filelnfo %) b)->file name;

if (Istrncmp (f2+1, f1, strlen (f1)) &&
I(strlen(f2) <= 2 || f2[0] !'= ’# || f2[strlen(f2)-1] '= "#’)){
// An emacs backup file of the form #file.tzxt# was found.
((FileInfo x) b)->file_level = ((FileInfo x) a)->file_level;

return 0;

}

// returns 0 if an emacs backup file of the form file.txt ™ was found.

return !(!strcmp (((const FileInfo %) b)->file name, ((const Filelnfo *) a)->

file_name) &&
((FileInfo %) a)->inode == -1);

// SET FILE LEVEL functions
s

// Augziliary function for update_ file levels
static void set file level(gpointer d, gpointer user data){
FileInfo xfd = d;
long xdata = ((long *) user data);
if (x(data+1) == fd->inode)
memcpy(&fd->file level , data+2, sizeof(fd->file level));

F.5 Window Management Files 169

static void update file levels(gpointer key, gpointer value, gpointer
user data){
WindowlInfo #window info = value;
if (window info->file list){
g slist foreach (window info->file list , & set file level , user data);
window info->file list = g slist sort(window info->file list , &
compare _decr);

// SENSOR_SERVER and SET FILE LEVEL function
A s

static void unmap_ windows(gpointer key, gpointer value, gpointer user data){
WindowlInfo #window info = value;
Display *display = user_ data;

if (window info->is mapped && window info->file list){
int window level = ((FileInfo *) window info->file list->data)->file level
int clearance level = (subject list) ? x((int %) subject list->data) : 0;
if (no_read up && window level > clearance level ||
no_read down && window level < clearance level){
window _info->is mapped = 0;
XUnmapWindow (display , window info->window id);
}
}
}

static void map windows(gpointer key, gpointer value, gpointer user data){
WindowlInfo swindow info = value;
Display xdisplay = user_ data;

if (!window info->is mapped && window info->file list){
int window level = ((FileInfo *) window info->file list->data)->file level
int clearance level = x((int %) subject list->data);

if (!(no_read_up && window _level > clearance_level ||
no_read down && window level < clearance level)){
window info->is mapped = 1;
XMapWindow (display , window info->window id);
}
}
}

// LIST WINDOW_INFO functions
s

static void print_ file details(gpointer data, gpointer user data){
FileInfo xfd = data;
int clearance level = (subject list) ? x((int %) subject list->data) : 0;

170 Appendix F. Source Code

if (hide non_ readable files &&
((no_read_up && fd->file_level > clearance_level) ||
((no_read_down && fd->file_level < clearance_level))))
fprintf ((FILE %) user data, "\’ ’unavailable’ %10u\n", fd->file level);
else
fprintf ((FILE %) user_ data, "%-15s %10u\n", fd->file name, fd->file level)

Y

}

static void print file info(gpointer key, gpointer value, gpointer user data){
WindowlInfo #window info = value;
if (window_info->file _list){
fprintf ((FILE %) user_data, "\nOpen files in window %i:\n", window_info->
window id);
fprintf ((FILE %) user_data, "%-15s %10s\n", "File Name", "Level");
g slist foreach (window info->file list , & print_file details , user_ data);
}
}

static void print_ window info(gpointer key, gpointer value, gpointer user data
){ pid_t *xpid = key;

WindowlInfo swindow info = value;

int win_ level = 0;

if (window _info->file _list)
win_ level = ((Filelnfo *) window info->file list->data)->file level;

fprintf ((FILE %) user_data, "%-16s %61 %10i %18i %10i\n", window_info->
app_name, xpid, window info->window id, win level , window info->is mapped

)3

// LIST SUBJECT LEVELS function
i aa

void print_ subject list(gpointer data, gpointer user data){
fprintf ((FILE %) user data, "%i ", x((int x) data));
}

// DestroyNotify functions
s

static gboolean rm_ win(gpointer key, gpointer value, gpointer user data){
Window *window id = user data;
WindowInfo #window info = value;
return window info->window id == xwindow id;

}

// DESTROY functions
A aida

void key destroy func(gpointer data){
g free(data);

}

F.5 Window Management Files 171

void value destroy func(gpointer data){
WindowlInfo #window info = data;
g free(window info->app name);
g slist free(window info->file list);
g free(window info);

}

int main(int argc, char xargv[]){

// X11 initialisation
s

Display =display ;

if (!(display = XOpenDisplay (NULL))) {
error2 ("ERROR opening display [%s]\n", XDisplayName (NULL)) ;
goto out;

}

XSetErrorHandler (x_error handler);

// Create the target window that the clients should send XEvents
// to. This window is never mapped and the dimensions and other
// arguments to XCreateSimple Window are arbitrary legal values.
Window target window = XCreateSimpleWindow (display , RootWindow (display ,

DefaultScreen (display)), 0,0,10,10,1,1, 1);

if (target _window == (Window) None) {
error ("Error opening window.\n");
XCloseDisplay (display) ;
goto out;

}

Atom client message = XlInternAtom (display , "CLIENT MESSAGE" , False);
Atom wm_name = XlInternAtom (display , "WM NAME" | True) ;

Atom net wm_ name = XInternAtom (display , " NEI WM NAME" , True) ;

Atom utf8 string = XInternAtom (display , "UTF8 STRING" , True);

// Initialize shared memory

s

int shm id = shmget (SHARED MEMORY KEY, getpagesize (),
IPC_CREAT // | IPC_EXCL

| 0666) ;
if(shm id == -1){
perror ("shmget") ;
goto out;

}

void #shm = shmat(shm id, 0, 0);
if (!shm){

perror ("shmat") ;

goto out;

}

172 Appendix F. Source Code

// Store the target window id in the shared memory
memcpy (shm+SECURITY MANAGER,_SHM OFFSET, & target window , sizeof(Window));

// Initialize semaphore set

A

int sem id = semget (SEMAPHORE KEY, NO_OF SEMAPHORES, IPC_CREAT | 0666); //
| IPC_EXCL
if(sem_id == -1){
perror ("semid");
goto out;

}

// Initialise all semaphore values to 1.
unsigned short values[NO_ OF SEMAPHORES];

int i = 0;
for (; i < NO_OF SEMAPHORES; i++)
values[i] = 1;

union semun sem union;

sem union.array = values;

if(semctl(sem_id, 0, SETALL, sem_union) == -1){
perror ("semctl");
goto out;

}

// Read security policy options

a4

if (arge !'= 2) {
error2 ("Usage: %s POLICY FILE\n", argv[0]);
goto out;

}

int fd = open(argv|[1], O RDONLY) ;
if(fd == -1){

perror ("open");

goto out;

}

if(read line(fd, HIDE NON_ READABLE FILES, & hide non_ readable files) < 0){
perror ("read");
goto out;

}

if(read line(fd, NO_READ UP, &no_read up) < 0){
perror ("read");
goto out;

}

if(read line(fd, NO READ DOWN, &no read down) < 0){
perror ("read");
goto out;

}

F.5 Window Management Files 173

close (fd);

// Wait until a user has logged in
XEvent event;
int not done = 1;
while (not_done){
XNextEvent (display , &event); // Get the next event from the X Server.
switch(event.xany.type){
case ClientMessage:
if (event.xclient .message type —= client message)
switch(event.xclient .data.1[0]) {

case INIT CLEARANCE LEVEL:{

int cl_level = event.xclient.data.1[1];

subject list = g slist prepend (subject list, &cl level);
not done = 0;

break;

}

case LIST WINDOW _ INFO:
case LIST SUBJECT LEVELS:{
char file_name[256];
sprintf(file_name, FIFO_FILE, event.xclient.data.l[1]);

FILE xfifo file = fopen(file name, "w");
if (I fifo file){

perror ("fopen");

break;

}

fprintf (fifo file, "Error: No one has logged in yet.\n");

if (fclose(fifo file))
perror ("fclose");
break ;

}
case DESTROY:
goto out;

default :
error ("Error: No one has logged in yet.\n");
}

}
}

// Initialize the hash table
table = g hash table mnew full(hashFunc, equalFunc, key destroy func,
value destroy func);

// Open a file descriptor to the stackable file system.
fd = open (MOUNT POINT, O RDONLY) :
if (fd < 0) {

perror ("open");

goto out;

174

Appendix F. Source Code

}

not done = 1;
// A user has now logged in, so other events can now be received.

XSelectInput (display , RootWindow(display , DefaultScreen (display)) ,
SubstructureNotifyMask) ;

while (not_done){
XNextEvent (display , &event); // Get the next event from the X Server.
switch(event.xany.type){
case ClientMessage:
if (event.xclient .message type == client message)
switch(event.xclient .data.1[0]) {

case INIT CLEARANCE LEVEL:

error ("Error: A user has already logged in.\n");
break;

case XCREATE WINDOW_INTERCEPTOR: {

}

Window window = event.xclient.data.l[2];
unsigned char xdata;

Atom real type;

int real format;

unsigned long items read, items left;

pid_t xpid = g memdup(&event.xclient.data.1[1], sizeof(pid t));
WindowInfo *window info = g hash table lookup(table, pid);
if ((!window _info ||
window info && !strcmp ("nedit" ,window info->app name)) &&
XGetWindowProperty (display , window, wm _name,
0, OxT7fffffff | False, XA STRING,
&real type, &real format, &
items read,
&items _left , & data) == Success
&& items _read >= 1){
if (DEBUG) printf ("CREATE WINDOW _ INTERCEPTOR: pid = %i, window = %u
\n", event.xclient.data.1[1], window);

// A WindowInfo struct for the newly created window is
// inserted into table.

window info = g new(WindowlInfo, 1) ;

window info->window id = window;

window info->app name — g memdup(data, strlen (data)-+1);
window info->file list = NULL;

window _info->is mapped = 1;

g hash table insert(table, pid, window info);

// Notify the X server that we would like to receive an
// ’DestroyNotify ° XEvent when the window is destroyed.
XSelectInput (display , window info->window id, StructureNotifyMask)

)

}
break;

F.5 Window Management Files 175

case FILE OPEN_ MONITOR: {
if (DEBUG) printf("FILE OPEN MONITOR: pid = %i, level = %i, inode =%
ul\n", event.xclient.data.1[1], event.xclient.data.l[2], event.
xclient .data.1[3]) ;

WindowInfo *window info = g hash table lookup(table, &event.xclient.
data.l[1]);

if (window info){
// An editor has opened a file.

FileInfo xf = g new(FileInfo, 1);

f->file name = g memdup(shm+FILE OPEN MONITOR_ SHM OFFSET, 256) ;
f->file level = event.xclient.data.1[2];

f->inode = event.xclient.data.l[3];

GSList *e = g_slist find custom (window info->file list , f,
is_backup file);

if(e){ // A backfile was created
struct fist ioctl SET FILE LEVEL val;
struct stat stat_ buf;

val.inode = f->inode;

if (((FileInfo) e->data)->inode == -1){
val.level = ((Filelnfo *) e->data)->file level;
((FileInfo %) e->data)->inode = f->inode;

}

else
val.level = ((Filelnfo *) e->data)->file level;

// The file level of the backup file is updated in the
// file system.
if (ioctl (fd, FIST IOCTL SET FILE LEVEL, &val) < 0) {
perror ("ioctl");
close (fd);
break ;

}
g free(f);

if(val.level == -1)
error ("The level could not be set.\n");
}
else if(!g slist find custom(window info->file list , f,
compare _inodes)){
// The file is mnot already open in the editor.
// Furthermore, the file is not a backup file, so it is
// inserted in the list of open files.
window info->file list = g slist insert sorted (window info->
file list , f, &compare decr);
}
}

if (semaphore up(sem id, FILE OPEN MONITOR SEM NUM) == -1)
perror ("semop") ;

176 Appendix F. Source Code

break;
}

case BACKUP_ INTERCEPTOR:{
if (DEBUG) printf("BACKUP INTERCEPTOR: pid= %i, inode= %i ,
application ID = %i\n", event.xclient.data.l[1], event.xclient.
data.l[2], event.xclient.data.l[3]);

FileInfo #f = g new(FileInfo, 1);
f->inode = event.xclient.data.l[2];

WindowInfo *window info = g hash table lookup(table, &event.xclient.
data.l[1]);
if (window info && window info->file list)
if(event.xclient.data.l[3] == EMACS BACKUP &&
(!'strcmp (window _info->app name, "emacs") ||
I'stremp (window _info->app_name, "gedit"))){
// Only backup files created by emacs and gedit can be handled.
GSList xe = g _slist find custom (window info->file list , f,
&compare inodes) ;
if(e)//Marking backup file
((FileInfo *) e->data)->inode = -1;
}
break;

}
case SENSOR_SERVER:{

int env_level = event.xclient.data.l[1];
char direction = event.xclient.data.l[2];
struct _fist ioctl SET CLEARANCE LEVEL val;

if (DEBUG) printf ("SENSOR_SIMULATOR: environment level = %i,
direction = %c\n", env_level, direction);

if (direction == ’i’){ // A subject has entered the office

if (!subject list){ // No one was previously present in the
// environment.

// The clearance level in the file system has to be set.
val.level = env_ level;
if(ioctl (fd, FIST IOCTL_SET CLEARANCE LEVEL, & val) < 0)

perror ("ioctl");

// The level is inserted in the subject list list.
subject list = g slist prepend(subject list ,
g memdup(&env_level ; sizeof(
env_level)));
// Some windows will possibly have to be mapped.
g hash table foreach(table, map windows, display);
}
else if(env_level < x((int *)subject list->data)){
// Someone was already present in the environment.

// The clearance level in the file system must be updated.

F.5 Window Management Files 177

val.level = env_level;

if(ioctl (fd, FIST _IOCTL_SET_CLEARANCE_ LEVEL, & val) < 0)
perror ("ioctl");

subject list g slist prepend(subject list ,
g memdup(&env _level ; sizeof(
env_level)));
g hash table foreach(table, unmap windows, display);

}

else
subject list

g slist insert sorted (subject list ,
g _memdup(&env_level , sizeof
(env_level)),
compare _incr);

else if(direction == ’0’){// A subject has left the office
if (!'subject list){
error ("Error: No subjects are present.\n");
break ;

}

GSList *e = g_slist find custom (subject list, &env level,
compare _incr);

if (le){

error2 ("Error: there is no subject in the room with the

clearance level %i.\n", env_level);
break ;
}
if(g_slist_length(subject list) == 1){
// No one is in the office now
val.level = 0;

if(ioctl (fd, FIST IOCTL_SET CLEARANCE LEVEL, & val) < 0)
perror ("ioctl");

// Removes the single element in the list.
subject list g slist _remove link(subject list, e);
g slist free 1(e);

g hash table foreach(table , unmap windows, display);

else{
// At least one person is still present in the environment.
int old clearance level = x((int *)subject list->data);

subject list g slist _remove_ link(subject list, e);
g slist free 1(e);

if(env_level == old_clearance level){
// The lowest level is to be removed.
// The clearance level in the kernel must be updated.
val.level = x((int %) subject list->data);

if (ioctl (fd, FIST IOCTL_SET CLEARANCE LEVEL, & val) < 0)
perror("ioctl");

g hash table foreach(table, map windows, display);

178 Appendix F. Source Code

}
}
}

else error ("Error: Invalid direction.\n");

break ;
}

case SET_FILE LEVEL:{
if (DEBUG) printf("SET FILE LEVEL: inode = %i, level = %i\n", event.
xclient .data.l[1], event.xclient.data.1[2]);

g hash table foreach(table, &update file levels, event.xclient.data.

1)

if (!'subject list)
break ;

// Change the wvisibility of windows, if required.

if (event.xclient.data.l[2] <= x((int *)subject list->data))
g hash table foreach(table , map windows, display);

else
g hash table foreach(table , unmap windows, display);

break;

case LIST WINDOW_INFO:{
if (DEBUG) printf ("LIST WINDOW_ INFO\n") ;

char file_name[256];
sprintf(file_name, FIFO_FILE, event.xclient.data.l[1]);

FILE «fifo file = fopen(file name, "w");
if (1 fifo file){

perror ("fopen");

break ;
}

// Return the contents of the table to the client process
// via a named pipe.
if (g _hash table size(table)){
fprintf(fifo file , "Table content:\n\n");
fprintf(fifo file , "%-16s %6s %10s %18s %10s\n", "Application
Name" , "PID" , "Window ID", "Security Level", "Is mapped");
g hash table foreach(table, &print window info, fifo file);
g hash table foreach(table, &print_file info, fifo file);
}
else
fprintf(fifo file , "No windows are mapped.\n");

if (fclose(fifo file))
perror ("fclose");
break;

F.5 Window Management Files 179

case LIST SUBJECT LEVELS:{
if (DEBUG) printf("LIST_SUBJECT LEVELS\n");
char file name[256];
sprintf(file_name, FIFO_FILE, event.xclient.data.l[1]);

FILE «fifo file = fopen(file name, "w");
if (Ififo file){

perror ("fopen");

break ;

}

// Return the contents of the subject_list to the client

// process via a named pipe.

if (subject list){
g slist foreach(subject list, &print subject list , fifo file);
fprintf (fifo file , "\n");

}

else
fprintf(fifo_ file, "No subjects are in the room.\n");

if (fclose (fifo file))
perror ("fclose");
break;

}

case DESTROY: {
not_done = 0; // Breaks the loop.
break;

}

default :
error ("Unknown client message.\n");
}

break;

case DestroyNotify:
if (event.xdestroywindow.event == event.xdestroywindow . window) {
if (DEBUG) printf("DestroyNotify: window = %u\n", event.xdestroywindow .
event , event.xdestroywindow .send event);

g hash table foreach remove(table, rm_ win, &event.xdestroywindow.
window) ;
}

break;

}
}

out:

if (DEBUG) printf("Closing the visibility manager.\n");
close (fd);

semctl (sem_id, 0, TPC_RMID) ;

shmdt (shm) ;
shmctl (shm _id, IPC_RMID, 0) ;

180 Appendix F. Source Code

XDestroyWindow (display , target window);
XCloseDisplay (display) ;

}

F.5.2 file open monitor.c

#include <sys/ipc.h>
#include <sys/shm.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/ioctl.h>
#include <fcntl . h>
#include <stdio .h>

#include "seac ipc.h"
#include "mount point.h"
#include <wrapfs.h>

int main(){

struct _fist ioctl OPEN wval;
int status = 0;

// Initialize semaphore
int sem id = semget (SEMAPHORE KEY, 0, 0);

if(sem_id == -1){
perror ("semid");
exit (1) ;

}

// Initialize security manager shared memory
int shm id = shmget (SHARED MEMORY KEY, getpagesize (), 0);

if (shm_id == -1){
perror ("shmget") ;
exit (1) ;
}
void #shm = shmat(shm id, 0, 0);
if (!shm){
perror ("shmat") ;
exit (1) ;
}

// Get a file descriptor to the stackable file system.
int fd — open(MOUNT POINT, O RDONLY):

if(fd < 0) {
perror ("open");
exit (1) ;

Window target window;
memcpy (&target window , shm+SECURITY MANAGER, SHM OFFSET, sizeof(Window));
long data|[] = {FILE OPEN_MONITOR, 0, 0, 0, 0};

F.5 Window Management Files 181

if (ltarget window){
printf("Error: the target window has not been initialized.\n");
exit (1) ;

}

while (1) {
// Block until a new file is opened.
status = ioctl (fd, FIST IOCTL OPEN, & val);

if(status < 0) {
perror ("Could not access file system");
break ;

}

if(val.level < 0)
break; // The destroy program has been invoked, so the file open
// monitor should stop running.

// Wait until the shared memory can be written, i.e. when the
// consumer (the wvisibility manager) is ready to read the shared
// memory.
status = semaphore down(sem id, FILE OPEN MONITOR SEM NUM) ;
if (status == -1){

perror ("semop") ;

break ;

}

// Write to the shared memory.

strepy (shm+FILE OPEN_ MONITOR_SHM_ OFFSET, val.name) ;
data[l] = val.pid;

data[2] = val.level;

data[3] = val.inode;

// Notify the wvisibility manager that the memory can be read.
if (send_xclient _event (data, 0, target_window) < 0)
fprintf(stderr , "Error: file open monitor could not send message to
visibility manager.\n");

}

shmdt (shm) ;
close (status);
exit (0);

F.5.3 sensor server.c

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb .h>
#include <string.h>
#include <unistd .h>
#include <stdio.h>
#include <sys/shm.h>

182 Appendix F. Source Code

#include "seac ipc.h"
#include "sensor.h"

#define QUEUE_SIZE 5
int main(int argc, charx argv|[]){

int hSocket, hServerSocket; // handle to socket
struct hostentx pHostInfo; // holds info about a machine
struct sockaddr in Address; // Internet socket address stuct

int nAddressSize=sizeof(struct sockaddr_in);
int nHostPort = DEFAULT PORT;,

if (arge > 2) {
fprintf(stderr, "Usage: %s [PORT]\n", argv[0]);
exit (1) ;

}

if(argec == 2)
nHostPort = atoi(argv[1l]);

hServerSocket=socket (AF_INET,SOCK_ STREAM,0) ;
if (hServerSocket == -1){

perror ("socket") ;

exit (1) ;

}

// fill address struct
Address.sin_addr.s_ addr=INADDR_ ANY;
Address.sin_port=htons(nHostPort) ;
Address.sin_ family=AF INET;

if (bind (hServerSocket ,(struct sockaddrx)&Address,sizeof(Address)) == -1){
perror ("bind");
exit (1) ;

}

// get port number
getsockname (hServerSocket , (struct sockaddr *) &Address,(socklen_t)&
nAddressSize) ;

if(listen (hServerSocket ,QUEUE_SIZE) == -1){
perror ("listen");
exit (1) ;

// Initialize security manager shared memory
int shm_ id = shmget (SHARED MEMORY KEY, getpagesize (), 0);

if (shm_id == -1){
perror ("shmget") ;
exit (1) ;

}

F.5 Window Management Files 183

void xshm — shmat(shm_id, 0, SHM RDONLY) ;
if (!shm){

perror ("shmat") ;

exit (1) ;

}

Window target window;
memcpy (&target window , shm+SECURITY MANAGER SHM OFFSET, sizeof(Window)) ;
shmdt (shm) ;

if (target window){
printf ("Error: the target window has not been initialized.\n");
close (hServerSocket) ;
exit (1) ;

}

int err = 0;
while (lerr){
int env_level;
char direction;

hSocket=accept (hServerSocket ,(struct sockaddr*)&Address,(socklen t x)&
nAddressSize) ;

read (hSocket, &env_level , sizeof(env_level));
read (hSocket, & direction , sizeof(direction));

if(env_level < 0){

err = 1;
}
else
if (direction != i’ && direction != ’07)
err = -1;
else

long data[] = {SENSOR_SERVER, env_level, direction, 0, 0};
send xclient event(data, 0, target window);

}

write (hSocket, &err, sizeof(err));
if(close (hSocket) == -1)
perror ("close");

}

if(close(hServerSocket) == -1){
perror ("close");
exit (1) ;

}

exit (0);

}

F.5.4 listwl.c

#include <sys/ipc.h>

184 Appendix F. Source Code

#include <sys/shm.h>
#include <fcntl.h>
#include <dirent .h>
#include <stdio .h>
#include "seac ipc.h"

int main(){

char file name [MAXNAMIEN+1];
sprintf (file name , FIFO_FILE, getpid());

if (mkfifo(file name, 0600 | O CREAT | O_EXCL) == -1){
perror ("mkfifo");
exit (1) ;
}
// Notify the sm that it can write to the new fifo.
long data[] = {LIST WINDOW_INFO, getpid(), 0, 0, 0};

send xclient event(data, 0, 0);

// Read the data from the fifo
FILE xfifo file = fopen(file name, "r");
if (1fifo file){

perror ("fopen");

exit (1) ;

}

char buf[MAXNAMIEN+1];
while (! feof (fifo _file) && !ferror (fifo_file) && fgets(buf, sizeof(buf),
fifo file))
fputs (buf, stdout);

if(fclose(fifo file)){
perror ("fclose");
exit (1) ;

}

remove (file name);

F.5.5 listsl.c

#include <sys/ipc.h>
#include <sys/shm.h>
#include <stdio .h>
#include <dirent .h>
#include <fcntl.h>

#include "seac ipc.h"

int main(){

char file name [MAXNAMIEN+1];
sprintf (file name, FIFO_FILE, getpid());

F.5 Window Management Files 185

if (mkfifo(file name, 0600 | O CREAT | O_EXCL) == -1){
perror ("mkfifo");
exit (1) ;

}

// Notify the sm that it can write to the new fifo.
long data[] = {LIST SUBJECT LEVELS, getpid(), 0, 0, 0};
send xclient event(data, 0, 0);

// Read the data from the fifo
FILE «fifo file = fopen(file _name, "r");
if (!fifo file){

perror ("fopen");

exit (1) ;

}

char buf[MAXNAMIEN+1];
while (! feof (fifo _file) && !ferror (fifo_file) && fgets(buf, sizeof(buf),
fifo file))
fputs (buf, stdout);

if(fclose(fifo file)){
perror ("fclose");
exit (1) ;

}

remove (file _name) ;

F.5.6 getcl.c

#include <sys/ioctl.h>
#include <fcntl . h>

#include "mount point.h"
#include "seac ipc.h"

#include <wrapfs.h>

int main(){
struct _fist ioctl GET CLEARANCE LEVEL val;

int fd = open (MOUNT POINT, O RDONLY) ;
if (fd < 0) {

perror ("open");

exit (1) ;

}

// Get the clearance level from the file system.
int status = ioctl(fd, FIST IOCTL GET CLEARANCE LEVEL, & val);
if (status < 0)

perror ("Could not access file system");

186 Appendix F. Source Code

else
printf ("%i\n", wval.level);

close (fd);
exit (status);

}

F.6 Editor Files

F.6.1 x create window interceptor.c

#include <sys/types.h>
#include <unistd .h>
#include <stdio.h>
#include <dlfcn .h>
#include "seac ipc.h"

#ifndef 1ibX11 PATH
#define 1ibX11_PATH "/usr/X11R6/1ib /libX11.so"

Hendif

//XCreateWindow creates an unmapped subwindow for the specified parent

//window and returns the window ID of the created window.

static Window (xoriginal XCreateWindow) (Display *display , Window parent, int
x, int y, unsigned int width, unsigned int height , unsigned int
border width , int depth, unsigned int class , Visual xvisual , unsigned long
valuemask , XSetWindowAttributes *attributes);

static Window (xoriginal XCreateSimpleWindow) (Display xdisplay , Window parent
, int x, int y, unsigned int width, unsigned int height , unsigned int
border width , unsigned long border , unsigned long background);

Window XCreateWindow (Display =display ,
Window parent ,
int x,
int y,
unsigned int width,
unsigned int height |
unsigned int border width ,
int depth,
unsigned int class ,
Visual #visual ,
unsigned long valuemask,
XSetWindowAttributes *attributes){

void xhandle = dlopen (1ibX11 PATH, RTLD LAZY);
if (!handle) {

fputs(dlerror (), stderr);

return 0;

}

char xerror;

F.6 Editor Files 187

original XCreateWindow — dlsym (handle, "XCreateWindow") ;
if ((error = dlerror()) != NULL) {

fputs (error , stderr);

return 0;

}

Window window = (xoriginal XCreateWindow) (display , parent, x, y,
width , height ,
border width , depth,
class , visual,
valuemask , attributes);

if (parent == RootWindow (display , DefaultScreen (display))){
long data|[] = {XCREATE WINDOW_INTERCEPTOR, getpid () , window, 0, 0};
send xclient event(data, display, 0);

}

return window;

Window XCreateSimpleWindow (Display =display ,
Window parent ,
int x,
int y,
unsigned int width,
unsigned int height ,
unsigned int border width ,
unsigned long border,
unsigned long background){

void xhandle = dlopen(libX11 PATH, RTLD LAZY);
if (!handle) {

fputs (dlerror (), stderr);

return 0;

}

char xerror;
original XCreateSimpleWindow = dlsym (handle, "XCreateSimpleWindow") ;
if ((error = dlerror()) != NULL) {

fputs (error , stderr);

return 0;

}

Window window = (xoriginal XCreateSimpleWindow) (display , parent, x, y,
width , height ,
border width, border,
background) ;

if (parent == RootWindow (display , DefaultScreen(display))){
long data[] = {XCREATE WINDOW_INTERCEPTOR, getpid () , window, 0, 0};
send xclient event(data, display, 0);

}

return window;

188 Appendix F. Source Code

F.6.2 backup interceptor.c

#include <sys/types.h>
#include <sys/stat .h>

#include <stdio .h>
#include <dlfcn .h>
#include "seac ipc.h"
#include "mount point.h"

#ifndef libc_ PATH
#define libc PATH "/lib/tls/libc.so.6"

#endif
static int (xoriginal rename) (const char xoldpath, const char xnewpath);
int rename(const char xoldpath, const char xnewpath){

char xerror;
void xhandle = dlopen (libc_ PATH, RTLD LAZY);

if (!handle) {
fputs (dlerror (), stderr);
return -1;

}

original rename = dlsym (handle, "rename");
if ((error = dlerror()) != NULL) {

fputs (error , stderr);

return -1;

}

long data[] = {BACKUP_INTERCEPTOR, getpid(), 0, 0, 0};
struct stat stat_ buf;

if(stat (oldpath, &stat _buf) < 0){
perror ("stat");
return 0;

}

data[2] = stat_buf.st ino;
int status = (xoriginal rename) (oldpath, newpath);

if (loldpath || strncmp (MOUNT POINT, oldpath , strlen (MOUNT POINT)))

return 0;

size _t old_ size = strlen (oldpath);

size _t new_size = strlen (newpath);

if(old size + 1 == new_size &&
I'strncmp (oldpath , newpath, old size) &&
newpath [new size-1] == *77){
data[3] = EMACS_BACKUP;

send xclient event(data, 0, 0);

F.7 Sensor Files 189

}

return 0;

}

F.7 Sensor Files

F.7.1 swsensor.c

#include <sys/types.h>
#include <sys/socket .h>
#include <netinet/in.h>
#include <netdb.h>
#include <string.h>
#include <unistd.h>
#include <stdio .h>

#include "sensor.h"

#define HOST NAME SIZE 255
int main(int argc, charx argv[]){
int hSocket ; // handle to socket
struct hostent* pHostInfo; // holds info about a machine

struct sockaddr in Address; // Internet socket address stuct
long nHostAddress;

unsigned nReadAmount;

char strHostName [HOST NAME SIZE];

int nHostPort = DEFAULT PORT;

if (arge < 3 || arge > 5) {
fprintf(stderr, "Usage: %s LEVEL DIRECTION [HOST] [PORT]\n", argv[0]);
exit (1) ;

}

int env_level = atoi(argv[1l]);
char direction = argv|[2][0];

if(arge == 4)
if (sizeof(argv[3]) >= sizeof(strHostName)){
fprintf(stderr , "Error: the host name must be less than %i characters.\n
", sizeof(strHostName));
exit (1) ;
}
else
strcpy (strHostName , argv[3]) ;
else

strcpy (strHostName , DEFAULT HOST) ;

if (arge == 5)
nHostPort = atoi(argv[4]);

hSocket=socket (AF_INET,SOCK STREAM,IPPROTO_TCP) ;

190 Appendix F. Source Code

if (hSocket —= -1){
perror ("socket");
printf("\nCould not make a socket\n");
exit (1) ;

}

// get IP address from name
pHostInfo=gethostbyname (strHostName) ;
memcpy (&nHostAddress , pHostInfo->h addr,pHostInfo->h length) ;

// fill address struct
Address.sin_addr.s_addr=nHostAddress;
Address.sin_port=htons(nHostPort) ;
Address.sin_family=AF INET;

if (connect (hSocket ,(struct sockaddrx*)&Address,sizeof(Address)) == -1){
perror ("connect");
exit (1) ;

}

write (hSocket, &env_level , sizeof(env_level));
write (hSocket, & direction , sizeof(direction));

int status;
read (hSocket, &status , sizeof(status));

if(status == -1)
fprintf(stderr, "Error: \'%c\’ is an invalid direction.\n", direction);
if(close (hSocket) == -1){

perror ("close");
printf ("\nCould not close socket\n");

}

exit (0);

F.7.2 motion handler.c

/* motion_handler.c x/

/+ Date: 04/05-2004 x/

/* Author: Ida x/

/* last modified: 04/08-2004 */

/+ This is the program that collects events (pictures taken) from Motion x/
/* It recieve mnotification when a snapshot has been taken =/

/% It will then determine if motion have been detected or mnot, x/

/* based on how many snapshots have been taken x/

/+ this includes communication of results. x/

#include <stdio .h>

#include <unistd .h>

#include <stdlib .h>

#include <fcntl.h> //for pipes

F.7 Sensor Files 191

#include <sys/types.h> //for pipes

#include <sys/stat .h> //for pipes

#include <pthread.h> //for threads

#include <semaphore.h> //for threads

#include <time.h> // for timestamps mv

#include <glib .h> //for linked list

#include <signal .h> //for termination handeling.

#include "pipe2.h" //length of pipes

#define MIN. MOTION NO 10 // no of pics needed for motion to be detected

#define MAX MOTION DIFF 5 //sec of difference for motion - for all. ie
dependent on above wvalue.

#define NEW_MOTION_DIFF 4 //sec between old a new motion. - from newest/!

//NB the headtime then becomes last time

void xeventReciever(void xarg); //the function the thread will call.
// Prototype. Takes a void pointer as arg, and returns a pointer to wvoid.

GSList xeventList; //The list of events

pthread mutex t listMutex = PTHREAD MUTEX INITIALIZER; //mutex to protect the
list.

sem_t listSem; //semaphore for the list

char xpipename [PIPE NAME LENGTH];

char xcampipe [PIPE NAME LENGTH];

//auz function to print the GSList
static void printElement(gpointer value, gpointer user data)

{
time t xtime = value;
printf("Timestamp = %i \n", xtime);

}

//function that prints the GSList.
void print ()
{

if (g _ slist _length(eventList) > 0)

{

printf("---------"omme \n");
printf("List content:\n");

printf("--------mmem o \n");

g slist foreach (eventList, &printElement , NULL) ;
printf (" -cccmm o \n");

}

else
printf("The List is empty.\n");
}

//termination function
void end(int sig)
{
printf("Terminating the motion handler: %s\n", xpipename) ;
int no = g_slist length(eventList);
int j;
for(j = 0; j < no; j++)

{

192 Appendix F. Source Code

eventList — g slist delete link(eventList , eventList);
// removes & deallocates the first element.
}
exit (0);

}

//MAIN
int main(int argc, char xargv([])

{

if (arge < 3)
//argu[0] = prog mame, argv[1 to argc-1] = arguments
{
printf("Usage: %s PIPE-NAME PIPE-CAM-NAME\n", argv[0]) ;
exit (1) ;

}

//for civilized termination:
struct sigaction act;
act.sa_handler = end;
sigemptyset(&act .sa_mask) ;
act.sa_flags = 0;

sigaction (SIGINT, &act , NULL) ;
sigaction (SIGTERM, & act , NULL) ;

int res;
pthread t event recieving thread;
pthread attr t attr; //attributes of the thread

xpipename = argv [1];
xcampipe = argv|[2];

printf("motion handler starting: %s\n", spipename);

int no = 0;

int j; //counter

time t lasttime = 0; //the time for the last pic in the last mostion
detected sequence.

time t xpStarttime — g new(time t, 1);

time t xpEndtime = g new(time t, 1);

int diff = 0; //difference between first and last pic
int gap = 0; //difference between last sequence of pics and new seq

struct tm xpNow=NULL; //for nice printing of time
char Buffer[100]; //for nice printing of time

sem _init(&listSem , 0, 0); //init the semaphore.

//initialising the atitributes with default

pthread _attr_init(&attr);

//setting the specialised attribute

pthread attr setdetachstate(&attr , PTHREAD CREATE DETACHED) ;

//creating thread

res — pthread create(&event recieving thread, &attr, eventReciever , NULL);
if(res !'=0)

F.7 Sensor Files

193

{

perror ("MOTION_HANDLER: thread could not be created");
return -1;

}

//destroying thread attribute object.
pthread attr destroy(&attr);

Jxxksokskkkx MAIN LOOP sk 5k % /
//waiting for a sequence of events to begin

while (1)

{

sem wait(&listSem); //waiting for soemthng to happen
pthread _mutex_lock(&listMutex) ;
no = g slist length(eventList);

if (no > MIN_MOTION NO) //if there is enough pictures

{

pStarttime = g slist nth data(eventList, 0)
pEndtime = g_slist _nth data(eventList , no-1
pthread

);

mutex unlock(&listMutex) ;

diff = difftime (xpEndtime,* pStarttime);

if(diff
{

gap

< MAX MOTION DIFF) //if they are taken close enough

= xpStarttime - lasttime;

if (gap > NEW_MOTION DIFF) //if they are far enough from the last

{

motion detected .

/x

// Printing of detection

pNow = localtime (pStarttime);

strftime (Buffer , sizeof(Buffer),"Motion detected on %d %m %Y
at %H.%M.%S" ,pNow) ;

PrATES (s stk sk s stk ok stk ok otk ok KR ok KR R K SRR KSR KK SR KK R KK R KRR KRR |
n'");

printf("%s:%s\n", Buffer, xpipename);

DAL (s sk otk ok s otk o stk o otk ok Kok o Kok ok K oK SR H K R K SR R KK ok KR R KR R KRR |
n');

*/

//open the pipe
int camp = open(*campipe, O WRONLY) ;
//send the time
write (camp, pStarttime , sizeof(pStarttime));
//close the pipe
if (camp != -1)
(void) close (camp) ;

lasttime = xpEndtime;
//remove all from 0 to no-1:

for(j = 0; j < no; j++)

{

194 Appendix F. Source Code

pthread _mutex_lock(&listMutex) ;

eventList = g slist delete link(eventList , eventList);
pthread _mutex_unlock(&listMutex) ;

// removesé deallocates the first element.

NB: as we already know the original No,
we do mot want to remowve items put on the list after that
but as we do not update nN, we do not remove new items.

here we just make sure they can be added to the list
while remmouving.
*/

else //if they are part of the previouse motion sequence

//remove all that are part of the previous seq.
while ((gap <= NEW_MOTION DIFF) && (g _slist length(eventList)
> 0))
{

//setting a new last time

pthread mutex lock(&listMutex);

pEndtime = g slist nth data(eventList, 0);

lasttime = sxpEndtime;

//removing & deallocating

eventList = g slist delete link(eventList , eventList);

//calculating next gap
if(g _slist_length(eventList) > 0)
{

pStarttime = g slist nth data(eventList, 0);
gap = xpStarttime - lasttime;
}

pthread mutex unlock(&listMutex);
}

else //not close enough

{
pthread _mutex_lock(&listMutex) ;
//remove oldest and try again

eventList = g slist delete link(eventList, eventList);
pthread mutex unlock(&listMutex);

}

else

{

pthread mutex unlock(&listMutex); //as we locked it to read no.
}//er}zd while (1)
return 0;
}//end main ()

//the second thread of ezxecution
//the event listener

F.7 Sensor Files 195

void xeventReciever(void xarg)
{
int comm; //the pipe
char event = ’'0’; //the event recieved over the pipe.

//check if the pipe exists.
if (access (xpipename, F OK)==-1)

{
//create the pipe
comm = mkfifo (xpipename, 0777);
//checking to see if the pipe could be created...
if (comm != 0)
{
fprintf(stderr , "MOTION HANDLER: Could not create fifo");
return ((voidx) -1); //this is moot, since thread is detached

}
}

time t xpTime;

while (1)
{
comm = open (xpipename , O RDONLY) ;
read (comm, &event, 1) ;

if (comm != -1)
{

pTime = g new(time t, 1);
*pTime = time (NULL) ;
(void) close (comm) ;
pthread mutex lock(&listMutex);
eventList = g slist append(eventList , pTime);
sem post(&listSem); //post that a new event was recieved.
pthread _mutex_unlock(&listMutex) ;

}

return NULL; //detached thread. will never be used.

}//end eventReciever.

F.7.3 camera_client.c

/* camera_client.c */

/x Date: 28/04-2004 */

/* Author: Ida =%/

/* last modified: 29/08-2004 */

/x This is the program that communicates with the sensor_server x/
/+ It will pick up information from the motion_ handler, x/

/+ and determine if the office was entered or left =/

/* Then it will send that information to the sensor_serverx/

196

Appendix F. Source Code

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb .h>

#include <string.h>

#include <unistd .h>

#include <time.h>

#include <stdio.h>

#include <fcntl.h> //for pipes
#include <glib.h> //for g new
#include "pipe2.h"

#include <signal .h> //for termination signal handeling

#define SOCKET_ERROR -1

#define MAX PASSING TIME 15 //the time it takes to pass by the 2 cams

int hSocket; //handle to socket

int createPipe(char pipename]|])

{

if(access(pipename, F OK)==-1) //check if the pipe exists.

//create the pipe
int comm = mkfifo (pipename, 0777);

//checking to see if the pipe could be created...

if (comm != 0)

{

fprintf(stderr , "CAMERA CLIENT: Could not create fifo:%s\n",

pipename) ;
return -1;
}
}
return 0;

}

void readPipe(char pipename[], time t xptime)
{

int comm = open (pipename, O RDONLY) ;

read (comm, ptime, sizeof(ptime));

if (comm != -1)

(void) close (comm) ;
}
}

//termination function

void end(int sig)

{
printf (" Terminating the camera client\n");
//closing socket
if(close (hSocket) == SOCKET ERROR)

fprintf(stderr ,"\nCAMERA CLIENT: Socket already closed\n");

}
exit (0);

F.7 Sensor Files 197

}

int main(int argc, char xargv|[])
{
if (arge < 4)
//argv[0] = prog mame, argv[1 to argc-1] = arguments
{
fprintf(stderr ,"Usage: %s INTURDER-LEVEL HOST-NAME PORT\n" , argv|[0]) ;
exit (1) ;

}

int res; //pipe creating result

time t xptimel = g new(time t, 1);

time t xptime2 = g new(time t, 1);

struct tm *xpNow=NULL; //for nice printing of the time
char Buffer[100]; //for mnice printing of the time

char xhost name = argv|[2]; //host name for delivering results

int port = atoi(argv[3]); //socket name for delivering results
//int hSocket; //handle to socket

struct hostent* pHostInfo; /* holds info about a machine x/
struct sockaddr in Address; /x Internet socket address struct x/
long nHostAddress;

int intruder = atoi(argv[l]); //the level a intruder detected by the
cameras will be assigned.
char direction; //entered="i

b 2’

or exited="o

//for civilized termination:
struct sigaction act;
act.sa_handler = end;
sigemptyset(&act .sa_mask) ;
act.sa_ flags = 0;

sigaction (SIGINT, & act , NULL) ;
sigaction (SIGTERM, & act , NULL) ;

//get IP address from name

pHostInfo=gethostbyname (host name) ;

// copy address into long

memcpy(&nHostAddress ,pHostInfo->h addr,pHostInfo->h length);
//fill address struct

Address.sin_addr.s addr=nHostAddress;
Address.sin_port=htons(port);

Address.sin_ family=AF INET;

//creating pipes
printf("------- \ncamera_client starting.\nIntruder level: %i.\nHostname: %s
A\ nPort no: %i\n------- \n", intruder , host name, port);

if (res = createPipe (PIPE_CAM_1) != 0)
return res;

198 Appendix F. Source Code

if (res — createPipe (PIPE_CAM_2) !-= 0)
return res;

while (1)
{

readPipe (PIPE_CAM 1, ptimel);
readPipe (PIPE_CAM 2, ptime2);
int diff = difftime (xptimel ,*ptime2) ;

while (diff > MAX PASSING TIME)
{
if (+ptimel < xptime2)
{
readPipe (PIPE_CAM 1, ptimel);
diff = difftime (xptimel ,*ptime2);

else
{
readPipe (PIPE_CAM_ 2, ptime2);
diff = difftime (xptimel ,*ptime2);
}
}

if (xptime2 > xptimel)

//someone entered

direction = ’i’;

//print to screen:

pNow = localtime (ptimel);

strftime (Buffer , sizeof(Buffer) ,"CAMERA CLIENT: Someone entered on %
d %m %Y at %H.%M.%S" ,pNow) ;

printf ("%s\n", Buffer);

}
else //timel > time2
//set exit
direction = ’0’;

)

//print to screen
pNow = localtime (ptime2);

strftime (Buffer , sizeof(Buffer),"CAMERA_CLIENT: Someone exited on %d
%m %Y at %H.%M.%S" ;pNow) ;
printf ("%s\n", Buffer);
}

//make the socket
hSocket=socket (AF_INET,SOCK STREAM,IPPROTO_ TCP) ;

if (hSocket == SOCKET ERROR)

fprintf(stderr ,"\nCAMERA CLIENT: Could not create a socket\n");

el

e

(
{
}
{

F.7 Sensor Files 199

}

return

}

// connect to host
if (connect (hSocket ,(struct sockaddr*)&Address,sizeof(Address)) ==
SOCKET_ERROR)

{
fprintf(stderr , "\nCAMERA CLIENT: Could not connect to host %s\n

" host name) ;

else

//write to socket
write (hSocket, &intruder , sizeof(intruder));
write (hSocket, & direction , sizeof(direction));

//umm close the socket, ya?
if (close (hSocket) == SOCKET ERROR)

{
fprintf(stderr ,"\nCAMERA_CLIENT: Could not close socket on

host %s\n" ,host _name) ;

0;

F.7.4 eventl.c

/* eventl.c x/

/* Date: 21/04-2004 */

/+ Author: Ida x/

/+ last modified: 21/08-2004 x/

/+* This is a small program that should run every time Motion takes a pic */
/% It will then send the events to the eventhandelr x/
/* So far, named pipes are used for communication */

#include
#include
#include
##include

#include

<stdio .h>
<sys/types.h>
<sys/stat .h>
<fentl . h>

"pipe2.h"

int main(char xargv([])

{

char flag = ’17;
char xpflag = &flag;

//open the pipe
J/printf("event opening pipe|n'");

200 Appendix F. Source Code

int comm — open(PIPE_ NAME 1, O WRONLY) ;

//send the flag
J/printf("event writing %c to pipe \n", flag);
write (comm, pflag, 1);

//close the pipe
if (comm != -1)
(void) close (comm) ;

return 0;

F.7.5 event2.c

/* event2.c %/

/+ Date: 21/04-2004 x/

/* Author: Ida x/

/* last modified: 21/03-2004 */

/+ This is a small program that should run every time Motion takes a pic */
/% It will then send the events to the eventhandelr x/
/+* So far, named pipes are used for communication x/

#include <stdio .h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

include "pipe2.h"
pip

int main(char xargv|[])

{

char flag = ’17;
char xpflag = &flag;

//open the pipe
J/printf("event opening pipe|n'");
int comm = open(PIPE NAME 2, O WRONLY) ;

//send the flag
J/printf("event writing %c to pipe \n", flag);
write (comm, pflag, 1);

//close the pipe
if (comm != -1)

(void) close (comm) ;

return 0;

F.7 Sensor Files 201

F.7.6 pipe2.h

/* pipe2.h %/

/* Date: 21/04-2004 */

/+ Author: Ida x/

/+ last modified: 21/04-2004 x/

/* contains the pipe names used for communicating */

#define PIPE NAME 1 "/tmp/test1"
#define PIPE NAME 2 " /tmp/test2"
#define PIPE CAM 1 " /tmp/caml"
#define PIPE_CAM_2 " /tmp/cam2"
#define PIPE_ NAME IENGTH 15

F.7.7 start motion.c

/% start_motion.c x/

/x Date: 21/04-2004 */

/x Author: Ida =%/

/+ last modified: 04/08-2004 x/

/+* This is a program that starts the two different motionhandlers, =/
/* one for each camera. x/

/+ uses fork x/

#include <stdlib .h>
#include <stdio.h>

include "pipe2.h"
#H pip

int main ()

{

pid _t pid;

pid = fork();

if(pid !'= 0)
execlp ("motion handler" ,"motion handler" ,PIPE NAME 1,PIPE CAM 1, 0);
fprintf(stderr , "START MOTION: an error occcured in parent\n");

}
else

execlp ("motion handler" ,"motion handler" ,PIPE NAME 2, PIPE CAM 2, 0) ;
fprintf(stderr , "START MOTION: an error occcured in child\n");

}

return 0;

202 Appendix F. Source Code

F.8 GUI Files

F.8.1 Exec.java

import java.util .x;
import java.io.x;

class Exec{
static Runtime rt = Runtime.getRuntime () ;

static void getWindowInfo(Vector data, Hashtable details , boolean mapped){

try{
Process p = rt.exec("listwl");

BufferedReader in =
new BufferedReader (new InputStreamReader (p.getInputStream()));
StringTokenizer st;

String line = in.readLine();
if(line == null)

return;

line = in.readLine () ;
line = in.readLine () ;

// Read window data

for (line = in.readLine(); line != null && !line.equals(""); line
= in.readLine()){
st = new StringTokenizer (line);

Object [] s = {st.nextToken (), new Integer(st.nextToken()),
new Integer (st.nextToken()), new Integer (st.
nextToken ()) , new Integer(0) };
boolean isMapped = (Integer.parselnt(st.nextToken()) == 1);
if (isMapped == mapped)
data.add(s);
}

for(line — in.readLine(); line != null; line — in.readLine()){
int idxl = line.lastIndexOf(’ ’);
int idx2 = line.lastIndexOf(’:");
Integer windowID = new Integer(line.substring (idx1+1, idx2));
Vector v = new Vector () ;
// Read file data
line = in.readLine () ;
for(line = in.readLine(); line != null && !line.equals("");
line = in.readLine()){
st = new StringTokenizer(line);
v.add (new Object[]{ st .nextToken (), new Integer (st.
nextToken ()) });
}

details.put(windowID, v);

F.8 GUI Files 203

}

// Read window data
for (Enumeration e = data.elements(); e.hasMoreElements() ;) {
Object [] s = (Object[]) e.nextElement();
Object files = details.get(s[2]);
if(files !'= null){
int noOfOpenFiles = ((Vector) files).size();
if (noOfOpenFiles > 0)
s[4] = new Integer (noOfOpenFiles);
}
}
p.destroy () ;
}
catch(Exception e){
System . err.println (e);
}

}
static int getClearanceLevel (){
try{
Process p = rt.exec("getcl");
BufferedReader in =
new BufferedReader (new InputStreamReader (p.getInputStream()));
String line = in.readLine();
p.destroy () ;
return Integer.parselnt(line);
}
catch(Exception e){
System . err.println (e);
}
return -1;
}
static Integer getFileLevel(String filename){
String line = null;
try{
Process p = rt.exec("getfl "+filename);

BufferedReader in =
new BufferedReader (new InputStreamReader (p.getInputStream ()));

line = in.readLine () ;
p.destroy () ;
return new Integer(line);

}

catch(NumberFormatException e){
System . err.println (e);
return new Integer (-1);

catch(Exception e){
System . err.println (e);
}

return null;

204 Appendix F. Source Code

}

static String setFileLevel (String filename , Integer level){

try{
Process p = rt.exec("setfl "+filename+" "+level);

BufferedReader in =
new BufferedReader (new InputStreamReader (p.getInputStream()));
String line = in.readLine();
p.destroy () ;
return line;
}
catch(Exception e){
System.err.println (e);
}

return null;

static String getFileLevels(Vector data, String dirname){
String line = null;
try{
Process p = rt.exec("listfl "+dirname);
BufferedReader in =
new BufferedReader (new InputStreamReader (p.getInputStream()));
StringTokenizer st;
for (line = in.readLine(); line != null; line = in.readLine()){
st = new StringTokenizer (line);
Object [] s = {st.nextToken (), new Integer (st.nextToken())};
data.add(s);
}

p.destroy () ;

catch(NumberFormatException e){
System.err.println (e);
return "Error: file selection is not supported in this directory."

)

catch(Exception e){
System.err.println (e);
}

return null;

static String setUserLevel (String uid, Integer level)({

try{
Process p = rt.exec("setul "4+uid+" "+level);

BufferedReader in =
new BufferedReader (new InputStreamReader (p.getInputStream()));
String line = in.readLine();
p.destroy () ;
return line;

}

catch(Exception e){

F.8 GUI Files 205

System.err.println (e);

}

return null;

static Integer getUserLevel(){

tryq{
Process p = rt.exec("getul");

BufferedReader in =
new BufferedReader (new InputStreamReader (p.getInputStream ()));

String line = in.readLine();
p.destroy () ;
return new Integer (line);

}

catch(Exception e){
System.err.println (e);
}

return new Integer(-1);

}

static String getSubjectLevel (){

try{
Process p = rt.exec("listsl");

BufferedReader in =
new BufferedReader (new InputStreamReader (p.getInputStream()));

String line = in.readLine();
p.destroy () ;
return line;

}

catch(Exception e){
System.err.println (e);
}

return null;

}

static String getUserName ()

try{
Process p = rt.exec("whoami");

BufferedReader in =
new BufferedReader (new InputStreamReader (p.getInputStream()));

String line = in.readLine();
p.destroy () ;

return line;

catch(Exception e){
System .err.println (e);
}

return null;

206 Appendix F. Source Code

static boolean isRootProcess(){

try{
Process p = rt.exec("id -u");

BufferedReader in —
new BufferedReader (new InputStreamReader (p.getInputStream ()));

String line = in.readLine();
p.destroy () ;
return line.equals("0");

}

catch(Exception e){
System.err.println (e);
}

return false;

static void getUserLevels(Vector data){

try{
Process p = rt.exec("listul ");

BufferedReader in =
new BufferedReader (new InputStreamReader (p.getInputStream ()));
StringTokenizer st;

for (String line = in.readLine(); line != null; line = in.readLine
()4
st = new StringTokenizer (line);

Object [] s = {st.nextToken (), new Integer (st.nextToken())};
data.add(s);
}

p.destroy () ;
}
catch(Exception e){

System . err.println ("Error:"+e);
}

F.8.2 SecurityManagerGUI.java

import javax.swing.*;
import java.awt.sx;

import javax.swing.event.ListSelectionListener;
import javax.swing.event . ListSelectionEvent;
import java.util.x;

import java.io.x;

import java.awt.event .sx;

public class SecurityManagerGUI extends JFrame implements
ListSelectionListener{
final JPanel menu = new JPanel();

F.8 GUI Files 207

Vit
x The index of the selected menu item.
*/

private int selectedIndex;

Vit

* The list that contains the available menu items.
*/

final JList list;

final CardLayout cardLayout = mew CardLayout () ;
final JPanel panel — new JPanel(cardLayout);

final private InitPanel initPanel = new InitPanel();

private FileLevelPanel fileLevelPanel;

private UserLevelPanel userLevelPanel = new UserLevelPanel (this);

final MessagePanel messagePanel = new MessagePanel (this);

final SubjectLevelPanel subjectLevelPanel = new SubjectLevelPanel(this);

final private WindowPanel unmappedWindowsPanel = new WindowPanel (this ,
false) ;

final private WindowPanel mappedWindowsPanel = new WindowPanel(this , true)

final static int width = 700;

final static int height = 400;

public SecurityManagerGUI(File mountPoint) {
super("Security Manager GUI");
setSize (width, height);
setBounds (100,100, width+100, height+100);

Container contents = getContentPane();
contents.setLayout (new BorderLayout());
contents.add(panel , BorderLayout.CENTER) ;
panel.add(initPanel , InitPanel.id);

fileLevelPanel = new FileLevelPanel(this, mountPoint);
panel.add(fileLevelPanel , FileLevelPanel.id);

panel.add (userLevelPanel , UserLevelPanel.id);

panel .add (unmappedWindowsPanel , "UnmappedWindowsPanel") ;
panel.add (mappedWindowsPanel , "MappedWindowsPanel") ;
panel.add (messagePanel , MessagePanel.id);
panel.add(subjectLevelPanel , SubjectLevelPanel.id);

addWindowListener (new WindowAdapter () {
public void windowClosing (WindowEvent e) {
System . exit (0) ;
}

1)

setFocusCycleRoot (true) ;
setFocusTraversalPolicy (new LayoutFocusTraversalPolicy());

// Create the menu

String [] menultems = new String[]{"File Level Management",
"User Level Management"
"Unmapped Windows" ,
"Mapped Windows" ,

208

Appendix F. Source Code

"Current Subject Levels"};
list = new JList (menultems);
list .setSelectionMode (ListSelectionModel .SINGLE_SELECTION) ;
//list.setBackground (new Color (204, 204, 255));
list .setBackground (new Color (204, 153, 255));
list .setFont (new Font("Helvetica", Font.BOLD, 14));
list .addListSelectionListener (this);

menu.add(list);
menu. setBackground (list . getBackground()) ;
contents.add (menu, "West"); // Add the menu

cardLayout .show(panel , InitPanel.id);

/%%
* This method is called whenever a new item is selected in the menu.
v/
public void valueChanged(ListSelectionEvent e){
if (e.getValuelsAdjusting())
return;
updatePanel () ;

}

void updatePanel () {

selectedIndex = list .getSelectedIndex () ;

switch(selectedIndex){

case 0: // File Level Management
fileLevelPanel.refresh.doClick();
break ;

case 1: // User Level Management
userLevelPanel.refresh.doClick () ;
break ;

case 2: // Unmapped Windows
unmappedWindowsPanel. refresh . doClick () ;
break ;

case 3: // Mapped Windows
mappedWindowsPanel . refresh . doClick () ;
break ;

case 4: // Current Subject Levels
subjectLevelPanel.refresh.doClick();
break;

default:
cardLayout .show (panel , InitPanel.id);

public static void main(String[] args){

if (args.length < 1){
System.err.println ("Usage: java SecurityManagerGUI MOUNT POINT\n")

)

System . exit (1) ;

F.8 GUI Files 209

File mountPoint — new File (args[0]);
if (!mountPoint.isDirectory ()){
System . err.println ("\nInvalid mount point: \""+mountPoint+"\" does
not exist or is not a directory.\n");
System . exit (1) ;

}

SecurityManagerGUI smGUI = new SecurityManagerGUI(mountPoint) ;
smGUI. setVisible (true);

F.8.3 BasicPanel.java

import javax.swing.x;

import java.awt.sx;

import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;

Vit

x The BasicPanel is the abstract super class of all the panel classes
x that are used in the SEAC System.

*/

abstract class BasicPanel extends JPanel implements ActionListener{

final JPanel instructionPanel = new JPanel(),
inputPanel = new JPanel (),
buttonPanel = new JPanel () ;

final JLabel instr = mew JLabel();

final JButton refresh = new JButton (" Refresh ")
final JButton cancel = new JButton (" Cancel "y

final static Font instrFont = new Font("TimesRoman" , Font.BOLD, 20) ;
final static Color panelColor = new Color (255, 255, 153);

BasicPanel () {
super (new BorderLayout());

// setup of the instructionPanel
instr.setFont (instrFont);
instructionPanel.setBackground (panelColor);
instructionPanel . .add(instr);
add(instructionPanel , "North");

// setup of the inputPanel
inputPanel .setBackground (panelColor) ;
add (inputPanel , "Center");

// setup of the buttonPanel
buttonPanel .setBackground (panelColor);
buttonPanel.setLayout (new FlowLayout(FlowLayout .RIGHT, 15, 10));

210

Appendix F. Source Code

buttonPanel.add(refresh);
add (buttonPanel , "South");

// Setup of button
refresh.addActionListener (this);
refresh .setMnemonic(’r’);

}

void setInstruction (String instruction){
instr.setText(instruction);
}

F.8.4 InitPanel.java

import java.awt.event.ActionEvent;
import java.awt.Font;

class InitPanel extends BasicPanel{
final static String id = "Init";
InitPanel () {

buttonPanel.remove(refresh);
buttonPanel.remove(cancel);

setInstruction ("Sensor Enhanced Access Control System");

}

public void actionPerformed (ActionEvent e){}

F.8.5 MessagePanel.java

import java.awt.event.ActionEvent;
import java.awt.GridBagLayout;
import javax.swing.JLabel;

class MessagePanel extends BasicPanel{
final static String id = "Message";
private JLabel label = new JLabel();

final private SecurityManagerGUI frame;

MessagePanel (SecurityManagerGUI frame) {
this.frame = frame;

inputPanel .setLayout (new GridBagLayout());

inputPanel .add(label);

public void setText(String text){
label.setText (text);

F.8 GUI Files 211

}

public void actionPerformed (ActionEvent e){
frame.updatePanel () ;
}

}

F.8.6 FileLevelPanel.java

import java.io.File;

import java.awt.event.ActionEvent;
import java.awt.sx;

import javax.swing.*;

import java.util.Vector;

public class FileLevelPanel extends BasicPanel{
final static String id = "File Level";

final private SecurityManagerGUI frame;

final private FileLevelTableModel tableModel = new FileLevelTableModel () ;
final private TableSorter sorter = mew TableSorter(tableModel);
final JTable table = new JTable(sorter);

static File file;

)

final private JFileChooser fc;

final private JTextField fileTextField = new JTextField (25);
final JButton browse = new JButton (" Browse "y

final private int tableWidth = 340;
final private int tableHeight = 100;

FileLevelPanel (SecurityManagerGUI frame, File mountPoint){
this. file = mountPoint;
this.frame = frame;
setInstruction ("File Level Management") ;

fc = new JFileChooser(file);
fc.setFileSelectionMode (JFileChooser .FILES AND DIRECTORIES) ;

// Table Setup

sorter .setTableHeader (table.getTableHeader ());
table.setSelectionMode (ListSelectionModel .SINGLE SELECTION) ;
table.getTableHeader () .setReorderingAllowed (false) ;
table.setCellSelectionEnabled (true);

// Setup of the inputPanel
GridBagLayout layout = new GridBagLayout () ;

// Textfield
GridBagConstraints ¢ = new GridBagConstraints() ;
c.gridx = 0;
c.gridy = 0;

212 Appendix F. Source Code

instructionPanel .remove(instr);
instructionPanel.setLayout (layout);
layout.setConstraints (instr , c¢);
instructionPanel .add(instr);

cgridy ++;

.gridwidth = GridBagConstraints .RELATIVE;
.insets.right = 20;

.insets.bottom = 20;

.insets.top = 20;

o o o oo

fileTextField .setText (file.toString())
layout.setConstraints (fileTextField , ¢
instructionPanel.add(fileTextField);

);

// ’’Browse’’ Button

c.gridx—++;

c.gridwidth = GridBagConstraints .REMAINDER;
c.insets.right = 0;

browse .setMnemonic(’b’) ;
layout.setConstraints (browse, c¢);
instructionPanel .add (browse);

// (File Name, Security Level) Table
inputPanel .setLayout (layout);
c.anchor = GridBagConstraints .CENTER;
c.gridx = 0;

c.gridy++;

JScrollPane scrollPane = new JScrollPane (table);
layout.setConstraints (scrollPane , c);
inputPanel .add(scrollPane);

browse.addActionListener (this);
fileTextField .addActionListener (this);

boolean updateTable () {

tableModel . data.removeAllElements () ;
if (! file.exists ()){
JOptionPane.showMessageDialog (null,
"No such file or directory: "+file ,
"File Selection Error",
JOptionPane .ERROR_MESSAGE) ;

return false;

}

if(file.isFile()){
Integer res = Exec.getFileLevel(file.toString());

if(res.equals(new Integer(-1))){
JOptionPane.showMessageDialog(null,

F.8 GUI Files 213

"Error: file selection is not
supported in this directory.

n
?

"File Selection Error",
JOptionPane .ERROR,_ MESSAGE) ;

return false;

}
tableModel .data.add (new Object[]{ file .getName() , res});
}
else{ // file.isDirectiory() == true
String res = Exec.getFileLevels(tableModel.data, file.toString());
if(res !'= null){
JOptionPane.showMessageDialog(null,
res
"File Selection Error",
JOptionPane .ERROR_MESSAGE) ;
return false;
}
}
fileTextField .setText (file.toString());
/x

if(table.getRowCount() == 0){
frame.messagePanel. setText("No files exists.");
frame.cardLayout. show(frame.panel, MessagePanel.id);
return true;

Fx/
// Setup of the table size

int height = table.getRowHeight ()*table.getRowCount () ;
int width = table.getColumnModel () . getColumn (0) . getWidth () +
table .getColumnModel () . getColumn (1) . get Width () ;

Dimension tableDimension = new Dimension (tableWidth , height);

if (height > SecurityManagerGUI. height /2)
tableDimension . height = SecurityManagerGUI. height /2;

table.setPreferredScrollableViewportSize (tableDimension) ;
tableModel . fireTableStructureChanged () ;
tableModel . fireTableDataChanged () ;

frame.panel.revalidate () ;

frame. panel.repaint () ;

frame.cardLayout .show(frame.panel , FileLevelPanel.id);
return true;

}

public void actionPerformed (ActionEvent e){
File curFile = file;
Object source = e.getSource();
if (source == refresh){
if (lupdateTable()){
file = curFile;
refresh.doClick () ;

214 Appendix F. Source Code

}
}
else if(source == browse){
int returnVal = fc.showDialog(this, "Select");
if(returnVal == JFileChooser .APPROVE_OPTION) {
file = fc.getSelectedFile().getAbsoluteFile () ;
if (lupdateTable()){
file = curFile;
refresh.doClick () ;
}
}
}

else if(source == fileTextField){
file = new File(fileTextField.getText());
if (lupdateTable()){
file = curFile;
refresh .doClick () ;

F.8.7 FileLevelTableModel.java

import javax.swing.JOptionPane;

import java.util.Vector;

public class FileLevelTableModel extends SimpleTableModel {
FileLevelTableModel (){

super (new String[]{"File Name", "File Level"});
}

public boolean isCellEditable (int row, int col) {

return Exec.isRootProcess () && col == 1;
}
public void setValueAt(Object value, int row, int col) {
Object [] s = (Object[]) data.elementAt(row);
String errMessage = Exec.setFileLevel (FileLevelPanel. file.
getAbsolutePath ()+"/"+s[0], (Integer) value);
if (errMessage != null)
JOptionPane.showMessageDialog(null , errMessage ,
"Set File Level Error",
JOptionPane .ERROR_MESSAGE) ;
else
s[col] = value;
data.setElementAt (s, row);
fireTableCellUpdated (row, col);
}

F.8 GUI Files 215

F.8.8 SimpleTableModel.java

import javax.swing.table.AbstractTableModel;
import java.util.Vector;

class SimpleTableModel extends AbstractTableModel {
Vector data = new Vector();
String [] columnNames;

SimpleTableModel (String [] columnNames) {
this.columnNames = columnNames;
}

public String getColumnName (int col) {
return columnNames|col |;
}

public int getColumnCount () {
return columnNames.length ;
}

public int getRowCount () {
return (data == null) ? 0 : data.size ();
}

public Object getValueAt(int row, int col) {
return ((Object[]) data.elementAt(row))[col];
}

public Class getColumnClass(int c¢) {
return getValueAt (0, c).getClass();
}

F.8.9 UserLevelPanel.java

import java.awt.event.ActionEvent;
import java.awt.x*;

import javax.swing.x;

import java.util. Vector;

public class UserLevelPanel extends BasicPanel{
final static String id = "User Level";

final private SecurityManagerGUI frame;

final private UserLevelTableModel tableModel = new UserLevelTableModel () ;
final private TableSorter sorter = new TableSorter(tableModel);

final JTable table = new JTable(sorter);

final private int tableWidth = 340;

216 Appendix F. Source Code

final private int tableHeight = 100;

UserLevelPanel (SecurityManagerGUI frame){
this.frame = frame;
setInstruction ("User Level Management") ;

// Table Setup

sorter .setTableHeader (table.getTableHeader ());
table.setSelectionMode (ListSelectionModel .SINGLE _SELECTION) ;
table.getTableHeader () . setReorderingAllowed (false) ;
table.setCellSelectionEnabled (true);

table . getColumnModel () . getColumn (0) . setPreferredWidth (tableWidth /2) ;
table . getColumnModel () . getColumn (1) . setPreferredWidth (tableWidth/2);

// Setup of the inputPanel
GridBagLayout layout = new GridBagLayout () ;

// Textfield

GridBagConstraints ¢ = new GridBagConstraints () ;
c.gridx = 0;

c.gridy = 0;

instructionPanel .remove(instr);
instructionPanel.setLayout (layout);
layout.setConstraints (instr , c¢);
instructionPanel.add(instr);

.insets .bottom = 20;

.insets.top = 20;

.gridwidth = GridBagConstraints .REMAINDER;
.insets.right = 0;

a o oo

// (User ID, User Level) Table

inputPanel .setLayout (layout);

c.anchor = GridBagConstraints .CENTER;
JScrollPane scrollPane = new JScrollPane(table);

layout.setConstraints (scrollPane , c);
inputPanel .add(scrollPane);

}

void updateTable () {
if (!Exec.isRootProcess()){
frame . messagePanel . setText ("The user "+Exec.getUserName ()+" has
user level "+Exec.getUserLevel ()4+".");
frame.cardLayout .show(frame.panel , MessagePanel.id);
return;

tableModel.data.removeAllElements () ;
Exec.getUserLevels(tableModel.data);

// Setup of the table size

int height = table.getRowHeight ()*table.getRowCount () ;
Dimension tableDimension = (height < SecurityManagerGUI.height /2) 7

F.8 GUI Files 217

new Dimension (tableWidth , height)
new Dimension (tableWidth , SecurityManagerGUI. height /2);

table.setPreferredScrollableViewportSize (tableDimension) ;
tableModel . fireTableStructureChanged () ;
frame.cardLayout .show (frame.panel , UserLevelPanel.id);

}
public void actionPerformed (ActionEvent e){
Object source = e.getSource();
if (source == refresh)
updateTable () ;
}

F.8.10 UserLevelTableModel.java

import javax.swing.JOptionPane;
import java.util.Vector;

public class UserLevelTableModel extends SimpleTableModel {
UserLevelTableModel () {

super (new String[]{"User Name", "User Level"});
}

public boolean isCellEditable (int row, int col) {
return col == 1;
}

public void setValueAt(Object value, int row, int col) {

if (value == null)
return;
Object[] s = (Object[]) data.elementAt(row);

String errMessage — Exec.setUserLevel ((String) getValueAt(row, 0) , (
Integer) value);
if (errMessage != null)
JOptionPane.showMessageDialog(null , errMessage ,
"Set user level error",
JOptionPane .ERROR_MESSAGE) ;
else
s[col] = value;
data.setElementAt (s, row);

fireTableCellUpdated (row, col);

F.8.11 WindowPanel.java

import javax.swing.event.ListSelectionListener;

218 Appendix F. Source Code

import javax.swing.event.ListSelectionEvent;
import java.io.File;

import java.awt.event.ActionEvent;

import java.awt.sx;

import javax.swing.*;

import java.util.Hashtable;

import java.util.Vector;

public class WindowPanel extends BasicPanel implements
ListSelectionListener{
String id;

final private SecurityManagerGUI frame;
final WindowTableModel tableModel = new WindowTableModel () ;

final private TableSorter sorter = new TableSorter(tableModel);
final JTable table = new JTable(sorter);
final private int tableWidth = 520;

final private SimpleTableModel dialogModel = new SimpleTableModel (new
String [|{"File Name", "File Level"});

// final private TableSorter dialogSorter = new TableSorter(dialogModel);

//final private JTable dialogTable = new JTable(dialogSorter);

final private JTable dialogTable = new JTable(dialogModel);

final private JDialog dialog = new JDialog();

final private Hashtable details = new Hashtable () ;

private boolean mappedWindows = false;

WindowPanel (SecurityManagerGUI frame, boolean mappedWindows) {
id = (mappedWindows) ? "Mapped Windows" : "Unmapped Windows" ;
setInstruction (id);
this . mappedWindows = mappedWindows;
this.frame = frame;

// Setup dialog

dialogTable.getTableHeader () .setReorderingAllowed (false) ;
dialog.setSize (new Dimension (430, 250));
dialog.setDefaultCloseOperation (JDialog .HIDE ON_ CLOSE) ;
dialog.getContentPane () .add (new JScrollPane (dialogTable));

// Table Setup

sorter .setTableHeader (table.getTableHeader ());
table.setSelectionMode (ListSelectionModel .SINGLE_SELECTION) ;
table.setRowSelectionAllowed (true) ;

table.getTableHeader () .setReorderingAllowed (false) ;
table.getSelectionModel () .addListSelectionListener (this);

instructionPanel.add(instr);

GridBagLayout layout = new GridBagLayout () ;
inputPanel .setLayout (layout);

GridBagConstraints ¢ = new GridBagConstraints() ;

F.8 GUI Files 219

c.anchor = GridBagConstraints .WEST;

c.gridwidth = GridBagConstraints .REMAINDER;

c.insets.bottom = 15;

JLabel 1b = new JLabel("Click on a row to see the open files and
associated file levels:");

layout.setConstraints (1b, c¢);

inputPanel.add(1b);

JScrollPane scrollPane = new JScrollPane(table);
layout.setConstraints (scrollPane , c);
inputPanel .add(scrollPane);

}

void updateTable () {
tableModel . data.removeAllElements () ;
Exec.getWindowlInfo (tableModel.data, details , mappedWindows) ;

if (table.getRowCount () == 0){

if (mappedWindows) {
frame . messagePanel . set Text ("No windows are mapped.");
frame.cardLayout .show (frame.panel , MessagePanel.id);

}

else{
frame.messagePanel .setText ("No windows are unmapped.");
frame.cardLayout .show (frame.panel , MessagePanel.id);

}

return;
}
int height = table.getRowHeight ()*table.getRowCount () ;
Dimension tableDimension = (height < SecurityManagerGUI.height /2) ?

new Dimension (tableWidth , height)

new Dimension (tableWidth , SecurityManagerGUI. height /2);
table.setPreferredScrollableViewportSize (tableDimension) ;
tableModel . fireTableStructureChanged () ;

if (mappedWindows)

frame.cardLayout .show(frame.panel , "MappedWindowsPanel") ;
else

frame.cardLayout .show(frame.panel , "UnmappedWindowsPanel") ;

revalidate () ;
repaint () ;

}

public void actionPerformed (ActionEvent e){
updateTable () ;
}

public void valueChanged(ListSelectionEvent e) {
//Ignore extra messages.
if (e.getValuelsAdjusting()) return;

ListSelectionModel lsm = (ListSelectionModel) e.getSource () ;
if (!lsm.isSelectionEmpty ()){
Exec.getWindowInfo (tableModel .data, details , mappedWindows) ;

220 Appendix F. Source Code

int row = lsm.getMinSelectionIndex

()
Object winID = tableModel.getValueAt

(row, 2);
dialogModel .data = (Vector) details.get(winID);
dialogTable. clearSelection () ;

dialogTable.revalidate () ;
dialogTable.repaint () ;

dialog.setTitle ("The files that have been open in window "+winID);
dialog.setLocationRelativeTo (frame);
dialog.setVisible (true);

F.8.12 WindowTableModel.java

import javax.swing.*;
import javax.swing.table.AbstractTableModel;
import java.util.Vector;

class WindowTableModel extends SimpleTableModel {
WindowTableModel () {
super (new String[] {"Application Name", "PID", "Window ID", "Window
Level"™, "No. of Open Files"});

F.8.13 SubjectLevelPanel.java

import java.awt.event.ActionEvent;
import java.awt.sx;
import javax.swing.JLabel;

class SubjectLevelPanel extends BasicPanel{
final static String id = "SubjectLevel";
private JLabel label = new JLabel();
private JLabel label2 = new JLabel();

final private SecurityManagerGUI frame;

SubjectLevelPanel (SecurityManagerGUI frame){
this.frame = frame;

// Setup of the inputPanel
GridBagLayout layout = new GridBagLayout () ;
inputPanel .setLayout (layout);

// Textfield

GridBagConstraints ¢ = new GridBagConstraints () ;
c.anchor = GridBagConstraints .WEST;

c.gridx = 0;

F.9 System Administration Scripts 221

c.gridy = 0;
c.insets.bottom = 10;

layout.setConstraints (label, ¢);
inputPanel .add(label);

c.gridy++;
layout.setConstraints (label2 , ¢);
inputPanel.add(label2);

public void setText(String text){
label.setText (text);
label2 .setText ("");

}

public void setText2(String text){
label2 .setText (text);

}
public void actionPerformed (ActionEvent e){
int clearanceLevel = Exec.getClearanceLevel () ;
if (clearanceLevel == -1)
setText ("The clearance level has not been initialised.");
else

setText ("Current subject levels: "+Exec.getSubjectLevel());
setText2 ("The clearance level: "4clearanceLevel);

}

frame.cardLayout .show (frame.panel, SubjectLevelPanel.id);

F.9 System Administration Scripts

F.9.1 reset.sh

#!/bin/bash -norc

set -x

MOUNT_POINT=/mnt/macfs
FILE_LEVELS="/root /.file _levels"
USER_LEVELS="/root /. user _levels"

Remove old files
rm -rf ${FILE_LEVELS} ${USER_LEVELS} /mnt/macfs/x

if [! -f "${MOUNT_POINT}" |
then mkdir "${MOUNT_POINT}"

chmod a+twrx /mnt/macfs
fi

if [! -f "${FILE LEVELS}" |
then touch ${FILE LEVELS}
chmod u=rw,go= ${FILE LEVELS}

222 Appendix F. Source Code

fi

if [! -f "${USER_LEVELS}" |
then touch ${USER_LEVELS}

chmod u=rw, go= ${USER_LEVELS}
fi

F.9.2 startup.sh

#!/bin/bash -norc
set -x

POLICY="/home/s973732 /seac/test /policy . txt"
FILE_LEVELS="/root /.file _levels"
USER_LEVELS="/root /. user _levels"

MOUNT_POINT=/mnt/macfs
LOWERDIR=$ {MOUNT _POINT}

A regular user will be permitted access to retrieving his own user level
chmod +s getul
chown 0:0 getul

if ! access x "${USER_LEVELS}"
then chmod +s initcl

chown 0:0 initcl
fi

file system init

insmod /home/s973732/seac/out/Linux-2.4/ macfs/macfs.o || exit

mount -t macfs -o dir=${LOWERDIR} ${LOWERDIR} ${MOUNT POINT} || exit
seac_init ${POLICY} ${FILE_LEVELS} ${USER_LEVELS} || exit

User space level init
visibility _manager ${POLICY} &
file open monitor &

sensor server &

F.9.3 shutdown.sh

#!/bin/bash -norc
set -x

MOUNT_POINT=/mnt / macfs

seac _destroy

swsensor -1 i

umount ${MOUNT_POINT}
rmmod macfs

	Introduction
	Motivation
	Sensor Enhanced Access Control Model
	The Developed Prototype
	Contributions
	Thesis Organization

	Security and Access Control
	Computer Security
	Access Control
	Physical Access Control
	Logical Access Control

	Summary

	Sensors and Motion Detection
	Sensors
	Motion Detection
	Infrared Sensors
	Radio Wave Frequency Sensors
	Digital Images

	Summary

	Unix Background Information
	The X Window System
	File Systems
	The Virtual File System
	Stackable File Systems

	Sensor Enhanced Access Control Model
	Logical Access Control
	Files
	Users

	Physical Access Control
	Windows
	Persons

	Combining Logical and Physical Access Control
	Reference Monitors
	Security Policy

	Design
	Software Architecture Overview
	The Subsystems
	Processes and Message Passing

	The Security Policy Parameters
	The Stackable File System
	File Level Management
	User Level Management
	Window Management
	Motion Detection using Sensors
	Choice of Sensors
	Motion Detection Programs
	Design of Physical Premises

	CSP Specification
	Processes, Channels, and Users
	Data Types
	Functions
	The Communication Protocol

	Implementation
	The Stackable File System
	Storage of Levels
	FiST Input File

	Window Management
	The Visibility Manager
	Intercepting Window Creation and Destruction
	Intercepting File Open
	Handling of Backup Files
	The Sensor Server
	Printing Subject and Window Status Information

	Sensors
	Web-cameras
	Motion, a Motion Detection Program
	Motion Detection Programs
	Known Limitations in the Camera System

	The Security Manager GUI
	The GUI Functionality
	Interfacing between Java and C Programs
	The GUI Classes

	Evaluation
	Further Developments
	Porting the System to Other Unix Versions
	Exportation of Classified Data
	Using other Access Control Models
	Extending or Replacing the Sensor Subsystem

	Conclusion
	Summary of Contributions
	Future Work

	Bibliography
	CSP and VDM-SL Notation
	CSP Process Expressions
	VDM-SL Symbols

	Installation Guide
	Installation of the Access Control Part
	Changes made to the Stackable File System Templates

	Installation of the Web-cameras and Motion Detection Programs

	User's Guide
	System Startup and Shutdown
	Guide to the Super User
	Guide to a Non-Privileged User

	The Web-Camera Sensor
	The Command Line Programs
	File Level Management
	User Level Management
	Window Management
	Sensors

	The Security Manager GUI

	Testing
	Stackable File System Test
	File Level Management Test
	User Level Management Test
	Mandatory Access Control Test
	Window Management Test
	Editor Test
	Web-camera Sensor Test

	GUI Screen-shots
	Source Code
	Common Files
	mount_point.h
	seac_ipc.h
	seac_ipc.c
	security_policy_parameters.h
	sensor.h

	The Stackable File System Files
	macfs.fist
	security_policy.c
	file_levels.c
	user_levels.c
	seac_init.c
	initcl.c
	seac_destroy.c

	File Level Management Files
	getfl.c
	setfl.c
	listfl.c

	User Level Management Files
	getul.c
	setul.c
	listul.c

	Window Management Files
	visibility_manager.c
	file_open_monitor.c
	sensor_server.c
	listwl.c
	listsl.c
	getcl.c

	Editor Files
	x_create_window_interceptor.c
	backup_interceptor.c

	Sensor Files
	swsensor.c
	motion_handler.c
	camera_client.c
	event1.c
	event2.c
	pipe2.h
	start_motion.c

	GUI Files
	Exec.java
	SecurityManagerGUI.java
	BasicPanel.java
	InitPanel.java
	MessagePanel.java
	FileLevelPanel.java
	FileLevelTableModel.java
	SimpleTableModel.java
	UserLevelPanel.java
	UserLevelTableModel.java
	WindowPanel.java
	WindowTableModel.java
	SubjectLevelPanel.java

	System Administration Scripts
	reset.sh
	startup.sh
	shutdown.sh

