
Combining Logical and Physical
Access Control for Smart Environments

Kristine Frank
Ida C. Willemoes-Wissing

Lyngby, August 2004
M.Sc. Thesis

IMM

Computer Science and Technology
Informatics and Mathematical Modelling

Technical University of Denmark

Trykt af IMM, DTU

iii

Abstract

Traditional access control models only protect logical entities within the computer (such
as �les and memory) and not information displayed on a computer monitor. Furthermore,
it is processes that are granted or denied access to resources, not the persons who are
physically present in front of the computer. Logical access control models are inadequate
if the environment is physically unprotected and an intruder uses coercion to obtain access
to otherwise classi�ed information. The coercion could include weapons, leaving the user
with no option but to grant access to the computer.

The theoretical contribution of this thesis is an access control model that not only
takes �les and process into consideration when making access control decisions, but also
the persons physically present in the environment and the information displayed on a
computer monitor. The model is a multilevel security model where �les, processes, windows
and unauthorized persons are associated with security levels. These levels are used as the
basis for mandatory access control decisions. If a person in the environment is denied
viewing access to a window, the window will disappear from the computer monitor so that
it no longer is human-readable.

The technical contributions fall in three modules. Firstly, a stackable �le system has
been extended so that it can enforce mandatory access control. Secondly, a simple move-
ment sensor based on two web-cameras can detect whether unauthorized persons enter or
leave the environment. Finally, a module combines the logical and physical access control
and ensures that windows on the computer monitor are made invisible when the data re-
ceived from the sensor indicates that unauthorized persons are present. The system has
been developed so that it can be integrated with a Unix operating system.

The security policy enforced by the system is set by parameters during startup. These
parameters can, for instance, specify that the system should conform to the Bell-LaPadula
model or the Biba model and thus address con�dentiality or integrity, respectively.

Keywords: access control, multilevel security models, sensors, motion detection, op-
erating systems, and stackable �le systems.

iv Abstract

v

Resumé

Adgangskontrolmodeller beskytter normalt kun logiske objekter i en computer (så som �ler
og hukommelse) og ikke information, der bliver vist på en computerskærm. Desuden er det
processer, som kan få tildelt adgang til ressourcer, og ikke personerne der er fysisk tilstede
foran computeren. Logiske adgangskontrolmodeller er utilstrækkelige, hvis miljøet er fy-
sisk ubeskyttet og en uautoriseret person bruger tvang til at opnå adgang til klassi�ceret
information. Tvangen kan inkludere våben, hvilket resulterer i at brugeren ikke har andre
muligheder end at give adgang til computeren.

Det teoretiske bidrag i denne afhandling er en adgangskontrolmodel, som ikke kun
betragter �ler og processor, når beslutninger om adgangskontrol skal tages, men også de
personer der er fysisk til stede i miljøet og den information der bliver vist på computer-
skærmen. Modellen er en �er-niveaus sikkerhedsmodel, hvor �ler, processer, vinduer og
uautoriserede personer er associeret med sikkerhedsniveauer. Disse niveauer udgør funda-
mentet for beslutninger om obligatorisk adgangskontrol. Hvis en person i miljøet ikke må
se et vindue vil det forsvinde fra computerskærmen, således at det ikke længere er muligt
at se det.

De tekniske bidrag kan inddeles i tre moduler: Det første modul er et stakbart �lsystem,
der er blevet udvidet således, at det kan håndhæve obligatorisk adgangskontrol. Det andet
modul er en simpel bevægelsessensor, der er baseret på to web-kameraer, og som kan opdage
om uautoriserede personer indtræder i eller forlader miljøet. Det tredje modul kombinerer
den logiske og fysiske adgangskontrol samt sikrer, at vinduer på computerskærmen bliver
usynlige, når data modtaget fra sensorerne indikerer, at uautoriserede personer er til stede.
Systemet er udviklet således, at det kan integreres med et Unix operativsystem.

Den sikkerhed, der påtvinges af systemet, er sat vha. parametre som en del af sys-
temopstarten. Disse parametre kan for eksempel speci�cere, at systemet skal rette sig
efter Bell-LaPadula modellen eller Biba modellen og derved hhv. adressere fortrolighed og
integritet.

vi Abstract

vii

Preface

This M.Sc. thesis is the result of our work carried out in the period from January 2004 to
August 2004. The thesis was developed at the Computer Science and Engineering (CSE)
division of the Department of Informatics and Mathematical Modelling (IMM) at the
Technical University of Denmark (DTU). The work was supervised by associate professor
Christian Damsgaard Jensen.

We would like to thank Christian Damsgaard Jensen for his feedback and helpful sug-
gestions. Furthermore, we would like to thank our family for their support, Susan Rabbe for
proofreading parts of the thesis, and the PhD students in the Safe and Secure IT-Systems
group at IMM for good company while writing this thesis.

Lyngby, August 2004.

Kristine Frank Ida C. Willemoes-Wissing

viii Abstract

ix

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Sensor Enhanced Access Control Model . 1
1.3 The Developed Prototype . 3
1.4 Contributions . 3
1.5 Thesis Organization . 4

2 Security and Access Control 7
2.1 Computer Security . 7
2.2 Access Control . 8

2.2.1 Physical Access Control . 9
2.2.2 Logical Access Control . 10

2.3 Summary . 17

3 Sensors and Motion Detection 19
3.1 Sensors . 19
3.2 Motion Detection . 20

3.2.1 Infrared Sensors . 20
3.2.2 Radio Wave Frequency Sensors . 20
3.2.3 Digital Images . 21

3.3 Summary . 22

4 Unix Background Information 25
4.1 The X Window System . 25
4.2 File Systems . 27

4.2.1 The Virtual File System . 27
4.2.2 Stackable File Systems . 28

x CONTENTS

5 Sensor Enhanced Access Control Model 31
5.1 Logical Access Control . 31

5.1.1 Files . 32
5.1.2 Users . 32

5.2 Physical Access Control . 32
5.2.1 Windows . 32
5.2.2 Persons . 33

5.3 Combining Logical and Physical Access Control 34
5.3.1 Reference Monitors . 35
5.3.2 Security Policy . 38

6 Design 41
6.1 Software Architecture Overview . 41

6.1.1 The Subsystems . 41
6.1.2 Processes and Message Passing . 42

6.2 The Security Policy Parameters . 44
6.3 The Stackable File System . 45
6.4 File Level Management . 46
6.5 User Level Management . 46
6.6 Window Management . 47
6.7 Motion Detection using Sensors . 48

6.7.1 Choice of Sensors . 48
6.7.2 Motion Detection Programs . 49
6.7.3 Design of Physical Premises . 50

6.8 CSP Speci�cation . 50
6.8.1 Processes, Channels, and Users . 51
6.8.2 Data Types . 53
6.8.3 Functions . 53
6.8.4 The Communication Protocol . 55

7 Implementation 65
7.1 The Stackable File System . 65

7.1.1 Storage of Levels . 66
7.1.2 FiST Input File . 66

7.2 Window Management . 70
7.2.1 The Visibility Manager . 70

CONTENTS xi

7.2.2 Intercepting Window Creation and Destruction 71
7.2.3 Intercepting File Open . 72
7.2.4 Handling of Backup Files . 72
7.2.5 The Sensor Server . 74
7.2.6 Printing Subject and Window Status Information 74

7.3 Sensors . 75
7.3.1 Web-cameras . 75
7.3.2 Motion, a Motion Detection Program 75
7.3.3 Motion Detection Programs . 78
7.3.4 Known Limitations in the Camera System 83

7.4 The Security Manager GUI . 84
7.4.1 The GUI Functionality . 84
7.4.2 Interfacing between Java and C Programs 86
7.4.3 The GUI Classes . 86

8 Evaluation 87

9 Further Developments 89
9.1 Porting the System to Other Unix Versions 89
9.2 Exportation of Classi�ed Data . 89
9.3 Using other Access Control Models . 90
9.4 Extending or Replacing the Sensor Subsystem 90

10 Conclusion 93
10.1 Summary of Contributions . 93
10.2 Future Work . 94

Bibliography 99

A CSP and VDM-SL Notation 101
A.1 CSP Process Expressions . 101
A.2 VDM-SL Symbols . 101

B Installation Guide 105
B.1 Installation of the Access Control Part . 106

B.1.1 Changes made to the Stackable File System Templates 107
B.2 Installation of the Web-cameras and Motion Detection Programs 107

xii CONTENTS

C User's Guide 109
C.1 System Startup and Shutdown . 109

C.1.1 Guide to the Super User . 109
C.1.2 Guide to a Non-Privileged User . 111

C.2 The Web-Camera Sensor . 112
C.3 The Command Line Programs . 113

C.3.1 File Level Management . 113
C.3.2 User Level Management . 114
C.3.3 Window Management . 114
C.3.4 Sensors . 115

C.4 The Security Manager GUI . 115

D Testing 117
D.1 Stackable File System Test . 117
D.2 File Level Management Test . 119
D.3 User Level Management Test . 119
D.4 Mandatory Access Control Test . 119
D.5 Window Management Test . 121
D.6 Editor Test . 121
D.7 Web-camera Sensor Test . 121

E GUI Screen-shots 125

F Source Code 135
F.1 Common Files . 135

F.1.1 mount_point.h . 135
F.1.2 seac_ipc.h . 135
F.1.3 seac_ipc.c . 137
F.1.4 security_policy_parameters.h . 139
F.1.5 sensor.h . 139

F.2 The Stackable File System Files . 139
F.2.1 macfs.�st . 139
F.2.2 security_policy.c . 148
F.2.3 �le_levels.c . 150
F.2.4 user_levels.c . 154
F.2.5 seac_init.c . 156

CONTENTS xiii

F.2.6 initcl.c . 156
F.2.7 seac_destroy.c . 157

F.3 File Level Management Files . 158
F.3.1 get�.c . 158
F.3.2 set�.c . 159
F.3.3 list�.c . 160

F.4 User Level Management Files . 162
F.4.1 getul.c . 162
F.4.2 setul.c . 163
F.4.3 listul.c . 164

F.5 Window Management Files . 166
F.5.1 visibility_manager.c . 166
F.5.2 �le_open_monitor.c . 180
F.5.3 sensor_server.c . 181
F.5.4 listwl.c . 183
F.5.5 listsl.c . 184
F.5.6 getcl.c . 185

F.6 Editor Files . 186
F.6.1 x_create_window_interceptor.c . 186
F.6.2 backup_interceptor.c . 188

F.7 Sensor Files . 189
F.7.1 swsensor.c . 189
F.7.2 motion_handler.c . 190
F.7.3 camera_client.c . 195
F.7.4 event1.c . 199
F.7.5 event2.c . 200
F.7.6 pipe2.h . 201
F.7.7 start_motion.c . 201

F.8 GUI Files . 202
F.8.1 Exec.java . 202
F.8.2 SecurityManagerGUI.java . 206
F.8.3 BasicPanel.java . 209
F.8.4 InitPanel.java . 210
F.8.5 MessagePanel.java . 210
F.8.6 FileLevelPanel.java . 211

xiv CONTENTS

F.8.7 FileLevelTableModel.java . 214
F.8.8 SimpleTableModel.java . 215
F.8.9 UserLevelPanel.java . 215
F.8.10 UserLevelTableModel.java . 217
F.8.11 WindowPanel.java . 217
F.8.12 WindowTableModel.java . 220
F.8.13 SubjectLevelPanel.java . 220

F.9 System Administration Scripts . 221
F.9.1 reset.sh . 221
F.9.2 startup.sh . 222
F.9.3 shutdown.sh . 222

xv

List of Figures

1.1 Sensor deployment . 2

2.1 The Onion Model . 9
2.2 The Garlic Clove Model . 9
2.3 Fundamental Access Control Model . 10
2.4 An Example Security Lattice . 12
2.5 The Bell-LaPadula Model . 13

4.1 The X Window System . 26
4.2 The virtual �le system . 28
4.3 Stackable �le systems . 29
4.4 Stackable �le system development using FiST 29

5.1 Mediation of access to a �le . 36
5.2 Mediation of access to a window . 37

6.1 Layered Architecture with subsystems. 42
6.2 User space process interaction. 43
6.3 CSP processes and channels in the system. 52
6.4 CSP speci�cation of the visibility manager process. 60
6.5 CSP speci�cation of the visibility manager process, continued. 61
6.6 CSP speci�cation of the MAP_WINDOWS process. 62
6.7 CSP speci�cation of the UNMAP_WINDOWS process 62
6.8 CSP speci�cation of the client processes . 63

7.1 FiST grammar outline . 66
7.2 Sample window status information . 76
7.3 The Camera Software Architecture . 79
7.4 Pseudo-code for the main motion_handler loop 81

xvi LIST OF FIGURES

E.1 GUI Screen-shot: File Level Management 126
E.2 GUI Screen-shot: File Level Management, including browse dialog window . 127
E.3 GUI Screen-shot: User Level Management, non-privileged user view 128
E.4 GUI Screen-shot: User Level Management, super user view 129
E.5 GUI Screen-shot: Unmapped Windows . 130
E.6 GUI Screen-shot: Unmapped Windows, names of open �les shown 131
E.7 GUI Screen-shot: Mapped Windows . 132
E.8 GUI Screen-shot: Current Subject Levels . 133

xvii

List of Tables

5.1 Sensor enhanced access control model terminology 34

A.1 CSP notation for processes and process expressions. 102
A.2 VDM-SL data types. 102
A.3 VDM-SL operators. 103

D.1 Default Users and Files . 117
D.2 Policies used in testing . 117
D.3 Test of the Stackable File System by the Super User 118
D.4 Test of the Stackable File System by a User 118
D.5 Test of the File Level Management . 119
D.6 Test of User Level Management . 119
D.7 Test of the Mandatory Access Control . 120
D.8 Test of Window Management Tools . 121
D.9 Test of the Window Management . 122
D.10 Editor and Viewer Test Cases . 122
D.11 Test of Editors and Viewers . 122
D.12 Test of the Camera Sensor . 123

xviii LIST OF TABLES

1

Chapter 1

Introduction

1.1 Motivation

Access control is traditionally restricted to logical access control where access only is
granted to authorized users in authorized locations. The authorization of a user is usually
determined after the user is identi�ed and authenticated by the system, using for example
a user name and corresponding password. After such a login procedure, a user ID will
be associated with every process the user starts. The user ID will be used to determine
which resources the process is permitted to access. This form of access control is logical
because it is a process and not a person in front of the computer that accesses a given
resource in the system. After a user has logged in, an unauthorized person may also be
able to obtain physical access to the computer. This could, for instance, occur if the user
temporarily leaves his computer unattended. Another more severe scenario could be that
an intruder uses a weapon to threaten the authorized user to provide access to the resource;
the access would then be obtained despite the user's physical presence. In any case, the
processes that are started on the computer cannot determine who are currently present in
the environment. They only know the user ID of the person who is currently logged in. In
a military or commercial setting, it can have severe implications if an unauthorized person
obtains access to classi�ed information by circumventing the logical access control.

1.2 Sensor Enhanced Access Control Model

The logical access control limitations of traditional computers can be evaded in an envi-
ronment where a sensor is used to detect the presence of unauthorized persons. A sensor
can detect when an unauthorized person enters or leaves the surveyed environment. De-
pending on the capabilities of the sensor, it may detect an ID that uniquely identi�es the
unauthorized person, or it may be very basic and only detect whether someone is present
or not. To provide a more �ne-grained detection method, more than one type of sensor
can be deployed in an environment. Regardless of the sophistication of a sensor, it must as
a minimum be able to detect whether a person enters or leaves the environment so that a
list of all the currently present persons can be maintained. A possible sensor deployment
is shown in Figure 1.1.

In the logical access control part of our system, the term user will be used to denote the
authorized person who is identi�ed by the system using a login procedure. A user obtains

2 Chapter 1. Introduction

Computer

Sensor

Sensor

Figure 1.1: A possible deployment of two sensors in an environment. The sensors will
detect whether the person enters or leaves the environment.

logical access to a �le via a process. There are many possible access operations available
for processes, but our model only encompasses read and write access to �les. If the logical
access control denies a process read or write access to a �le, the operating system will
generate an appropriate error message.

In the physical access control part of our system, the term person will be used to
denote anyone who is detected by the sensor. If the user has an editor open and it contains
classi�ed data, the physical access control may deny the person access to view this data.
In case the access is denied, the editor will disappear from the display so that it no longer
is possible for humans to physically see it.

The rules that determine whether an access operation should be successful or not are
de�ned by the access control model. There exist many possible access control models that
meet di�erent security requirements. We have chosen to use multilevel security models at
the core of our Sensor Enhanced Access Control Model since these are frequently used in
environments where classi�ed data are processed. In our model, each subject and object
should be assigned a level by a central authority.

The combination of logical and physical access control is modeled by the clearance level.
The clearance level denotes the combined subject level for all the unauthorized persons and
the user in a given environment, and it will be equal to the minimum of all the detected
subject levels. A security policy must be stated by a trusted authority and it is used to
determine whether an editor that contains classi�ed data should be visible or not. Our
model does not enforce a particular security policy since we have developed a �exible model
where parameters are used to specify the security policy. This is in line with the general
Unix design philosophy of providing mechanism, not policy.

1.3 The Developed Prototype 3

1.3 The Developed Prototype

A prototype that conforms to the Sensor Enhanced Access Control Model has been devel-
oped. The system is designed so that it can be integrated with an existing Unix system.
The �les and users can therefore be uniquely identi�ed by an inode number and user ID,
respectively. The core of the system provides logical access control using �le and user levels
associated with inode numbers and user IDs.

The part of the system that stores and retrieves �le and user levels and mediates the
access to �les by users is a stackable �le system. A stackable �le system is a layer that
resides in the kernel above a native �le system and below the Virtual File System. It is
very important from a security perspective that the access mediation part of the system
(a.k.a. the reference monitor) is implemented in the kernel since it then is protected from
non-privileged users via the operating system user/kernel modes. Furthermore, including
the access control mechanism in the kernel gives better performance because fewer context
switches have to be made.

The sensor part of the system has been implemented using two web-cameras and a
motion detection program. The program cannot di�erentiate the detected persons and a
common level must therefore be assigned to all persons. This level should depend on what
other physical access control measures are deployed in the environment. In addition to the
web-camera sensor, a very simple software sensor simulator has been implemented so that
it is possible to test the system without the deployment of web-cameras.

The part of the system that manages the visibility of the windows is based on the
standardized protocol, which is used in the X Window System. The X Window System is
a network-based graphics windowing system that is commonly used on Unix systems. It
assigns a window ID to each created window and provides functions for making a window
visible or invisible. Our system associates a window level with each window ID, and by
using this level and the environment level received from the sensor, the system can make
access control decisions about whether a window should be visible or not.

Finally, many command-line programs have been implemented for managing the sys-
tem. Most users will, however, probably prefer a GUI for managing the system and pro-
viding an overview of the stored data. For this purpose, a GUI has been developed which
constitute a presentation layer for the system.

1.4 Contributions

The conceptual contribution of our work is a Sensor Enhanced Access Control Model that
combines logical and physical access control. The model uses information from physical
sensors to determine a combined security level for all the persons currently present near
the computer. By monitoring whether or not unauthorized persons are near the computer,
a system based on this model can determine what information should be visible on the
computer display. The consequence of this is that computers with sensitive information can
be placed in unprotected environments where unauthorized persons have physical access
to the premise of the computer.

The technical contributions can be divided into three modules:
A kernel module that conforms to a multilevel security model where levels are assigned

to users and �les. The access control decisions made by the module are determined

4 Chapter 1. Introduction

by security policy parameters. These parameters can, for instance, be set so that the
system enforces the Bell-LaPadula model or the Biba model and thus addresses con-
�dentiality or integrity, respectively. The design decision regarding the parameters
has been made so that the system, to the extend possible, provides mechanism and
not policy. Furthermore, the module can be used independently of the other modules
to form a system that only provides logical and not physical access control.

A simple movement sensor based on two web-cameras. The web-cameras are only
used to determine whether someone enters or leaves the environment and a common
level will therefore be assigned to all the detected persons.

A window management module that combines the logical access control implemented
by the kernel module with the physical access control information received from the
sensor module. The main responsibility of this module is to ensure that unauthorized
persons cannot view classi�ed data on a computer display.

1.5 Thesis Organization

The problem that we are set to solve in this thesis is that of combining logical and physical
access control using input from sensors. The organization of the main chapters of the
thesis can brie�y be summarized as follows: Chapter 2 to Chapter 4 will lead the reader
into our problem area by reviewing the state of the art and presenting some background
information. Chapter 5 to Chapter 7 describe how we solved the problem, and Chapter 8
to Chapter 10 evaluates our solution and provides guidelines for future work.

A more detailed overview of the thesis is presented in the following. In Chapter 2, a
brief description of some basic security concepts is provided. The main purpose of this
chapter is to provide a survey of the state of the art within logical and physical access
control. The logical access control models are for instance the Bell and LaPadula model
and the Biba model, and the physical access control models are the Onion model, and the
Garlic Clove Model.

Chapter 3 describes di�erent sensors and motion detection technologies. This includes
a review of the main services provided by sensors and some examples of current devices
that are used as sensors. Furthermore, the mathematical foundation of motion detection,
based on image analysis, is described brie�y.

Chapter 4 provides a brief overview of some Linux technologies which the reader should
be familiar with in order to understand the description of the implementation in Chapter 7.
The focus will be on technologies such as the X Window System, shared libraries, system
calls, kernel modules and stackable �le systems.

In Chapter 5, the Sensor Enhanced Access Control Model is described in detail. In
particular, the di�erent types of subjects and objects are described along with the available
access operations. A special type of user, the super user, is also introduced; this user is
special because it is fully trusted and its access to objects is therefore not restricted by any
of the access control mechanisms in our model. The chapter ends with a description of the
security parameters that can be used to create a security policy for a given deployment of
the system.

In Chapter 6, the system design is described in terms of a number of subsystems.
The file level management and user level management sub-systems provide programs

1.5 Thesis Organization 5

for setting and retrieving �le and user levels, respectively. The stackable file system
provides storage for the �le and user levels and enforces the access control policy set by
the system administrator. The window management subsystem ensures that windows are
made visible or invisible, depending on the input received from the sensor subsystem.
The subsystems consist of many processes that must communicate in order to provide the
required functionality. The chapter ends with a CSP-speci�cation of this inter-process
communication.

In Chapter 7, it is described how the di�erent subsystems are implemented. In partic-
ular, it is described and motivated which technologies have been used. Some issues that
were not foreseeable during the design phase are also described; this is, for instance, the
issue of handling backup �les created by an editor. The GUI subsystem is also introduced.
It is only a presentation layer and does not add any new essential functionality to the
system.

In Chapter 8, we evaluate the system. More precisely, we describe how the system was
tested by �rst testing the individual sub-systems and �nally testing the entire system.

In Chapter 9, the further development possibilities are described. This will in particular
revolve around the sensor part of the system, which can provide a more usable system if
the sensors are capable of detecting the level of the persons.

Finally, in Chapter 10 we review the contributions of this thesis and give directions for
future work.

We follow with several appendices. In Appendix A, the CSP and VDM-SL notation
used in the speci�cation in Section 6.8 is described brie�y.

In Appendix B, directions for installing the system is provided. Most of this require
super user privileges.

In Appendix C, a user's guide describes how the system can be used. This will �rst
include a description of how the super user and a non-privileged user can initialize and
shutdown the system. It is followed by a reference guide for all the created command line
programs. Some of these programs will require super user privileges.

In Appendix D, all the test cases and expected results used in our test are listed,
followed by the test results. In the tests where program output where available, this is
listed too.

In Appendix E, some screenshots from the Security Manager GUI can be seen. The
GUI, and the screen-shots of it, gives an overview of the system since one can easily see
how �le and user levels are managed, the information stored about visible and invisible
windows, and the subject levels of detected persons and the user.

In Appendix F, all the source code is listed. To the extend possible, the code is listed
according to which subsystem it belongs to.

6 Chapter 1. Introduction

7

Chapter 2

Security and Access Control

Computer security is a widely investigated topic, as computers in any organization often
contain or are valuable resources. A general background of important topics in computer
security is given in Section 2.1. Access control is one way to protect the assets in a computer
system and is described in Section 2.2. Models and mechanisms grant or deny access to
resources. Access control can be both physical and logical. Physical access control protects
physical valuables using physical means, for example a locked door restricting access to
a printer. Logical access control protects logical resources using logical means, such as a
password restricting access to a �le.

2.1 Computer Security

Computer Security deals with securing assets in a computer system. This implies that
the computer system contains something valuable that requires protection. This could
be information, processing power and the like. Usually, computer security deals with the
following three aspects [21]:

Con�dentiality: Unauthorized disclosure of data should be prevented. Con�dentiality is
also known as secrecy, and this is what normally comes to mind when people think
about security.

Integrity: Unauthorized modi�cation of data should be prevented. Accidental modi�ca-
tion of data should also be prevented.

Availability: Denial of authorized access should be prevented.

When dealing with computer security it is important to consider what should be pro-
tected and from whom. It is also necessary to conduct a cost-bene�t analysis to determine
the level of security to implement. When doing this, it is important to keep in mind that
cost is not only the monetary cost of implementing a security system, but also the cost in
inconvenience and ine�ectiveness to the users of the system.

To achieve the goals of con�dentiality, integrity and availability, several methods have
been developed, as well as attacks to circumvent those methods. Computer security topics
cover a wide area of di�erent models, technologies and methodologies. Methods exist to
keep communication secret, e.g. cryptography, and to prevent or detect unauthorized access

8 Chapter 2. Security and Access Control

to resources using technologies like �rewalls and intrusion detection systems. Availability
might also determine how to set up a mail-server so that it will not be used to relay
foreign mails, showing the breadth of the computer security subject. Methods dealing
with restricting access to information are called access control. These will be the main
focus of this security discussion, and will be described in depth in the following.

While access control governs immediate access to objects, information �ow models
take implicit information �ow into account. The concept of information �ow control was
developed by Denning [19]. An information �ow model seeks to consider every kind of
information �ow, including �ow through so-called covert channels. This is implicit infor-
mation, such as the information you can get from being denied access to a resource. The
advantage of an information �ow model is that it takes every kind of information �ow into
account, while access control models might only consider the explicit information �ow. It
is on the other hand more di�cult to design a secure system based on information �ow
models than on access control models [21].

At the most basic level of computer security, we have identi�cation and authentication.
Identi�cation is concerned with stating who a user is, usually done by the user himself.
Authentication means proving who you are to the system, and the system's veri�cation
of your claimed identity. This is most frequently done with a password, only the user
knows the password to her account. It could also be done with more advanced methods,
for example �ngerprint scanning. Knowing the identity of users is important when making
access control decisions. It is also important when the system needs to keep track of its
users, for instance to log behavior. It should be noted that there exists a number of threats
to password authentications, where social engineering is not the least e�ective.

2.2 Access Control

Access control revolves around granting or denying access to resources, and it deals with
what information may be accessed by which users. Normally, access control cannot take
place unless the user is properly identi�ed and authorized, as the system usually exercises
access rights based on user identity.

Access control consists of two components, physical and logical access control. Physical
access control protects physical assets such as hardware, and printed �les. It deals with
access that is denied or granted in the physical world, and it takes place outside the system
via physical means. This could be guards restricting access to a building or magnetic cards
restricting access to a room. Logical access control protects logical assets such as informa-
tion, (computer) resources and etc. It concerns how a computer system internally grants
or denies access to the logical assets and takes place within the system. Logical access
control is usually based on constraints placed on users of the system and the information
they seek to obtain.

There is an important overlap of logical and physical access controls when logical assets
get embodied in physical assets. This is for example when a �le is printed or displayed on
a computer monitor. In this case a logical asset become physical one, and requires more
than logical access control to protect it.

2.2 Access Control 9

2.2.1 Physical Access Control

Physical access control is normally used to grant or deny access to physical assets using
physical means. It deals with restricting access to physical premises, such as persons
entering a building. The physical access control can for instance be guards allowing or
disallowing access or cameras recognizing a person to determine whether to open a speci�c
door or not.

Physical access control creates levels of protection, where each level protects some
sensitive assets, and persons trying to access these must undergo access control. One
model for physical security is the onion model, illustrated in Figure 2.1. It is a layered
security model that describes the existence of transitions from outer layer to the innermost
one. The inner layer contains the most sensitive assets, and to get there you must pass
through the outer layers. The transitions could be guarded by receptionists, guards, badge
readers etc. Once a person is allowed into one layer, he is allowed to go anywhere within
it. A person cannot go between layers without being subjected to control [40].

Least secure

Most secure

Figure 2.1: The Onion Model

The onion model is very simple. A more realistic model is the garlic clove model shown
in Figure 2.2. It takes into account that not all layers are consecutively more and more
sensitive, and that di�erent classes of people can be restricted from some assets, while
having access to others [40].

Figure 2.2: The Garlic Clove Model

When designing physical facilities one needs to make sure that a person can only

10 Chapter 2. Security and Access Control

move between layers in the ways explicit permitted. This includes limiting the risk of
unauthorized access through various 'back doors'. The 'back doors' includes behavior such
as entering a building through a window, or closely following a trusted person and entering
a door which was opened by that person. While it might not be feasible to prevent all
unauthorized access, it is still worth considering how problematic it is for an intruder to
gain access. It might not be di�cult to break in a door or smash a thin wall, but it is
obvious if it is done as it is noisy. If the door is left unlocked, the intrusion will be noiseless
[40].

2.2.2 Logical Access Control

In most cases, logical access control governs admission to logical assets such as information
and an important part of it is the policies or mechanisms the system uses to grant or deny
the access.

The basic entities of the access control model are subjects and objects. Subjects are
active, operating on objects. Objects are passive, being operated upon. Subjects try
to access objects, and can e.g. be users or processes. Objects are resources that can be
accessed or used, and are usually �les, printers etc. When a subject tries to operate on an
object, a reference monitor decides if access will be granted or denied. This is shown in
Figure 2.3, and this is a basic model of access control [21].

Reference
Monitor

Access requestSubject Object

Figure 2.3: Fundamental Access Control Model

Access control models usually de�ne a number of possible, or allowed access operations
on �les. At the most basic level we can de�ne two modes; observe and alter. Many
systems uses 3-4 modes. The well-known Bell-LaPadula model has the operations read,
write, append and execute. To read is to observe, write is to observe and alter, while
append is to alter without observing. Execute is hard to describe in terms of observe and
alter, as it can be neither, but in reality it is often di�cult to implement execution without
observation [21].

Access control systems can either be mandatory or discretionary. Mandatory access
control (MAC) is a system wide policy that decides which users should have access to
what �les. Discretionary access control (DAC) is where the owner, or a trusted individual,
decides access control over a �le. This means that the owner of the �le has discretion over
who should have what accesses to the �le. Thus it is up to the user to decide 'how secret'
he considers the �le [21], [24].

In some systems, mandatory and discretionary access control are used simultaneously.
For a user to access information he needs to be allowed to access it in relation to the global,
mandatory rules, and the owner of the �le needs to have made it possible for him to do so.
If either of the two mechanisms fails to grant access, it will be denied [36].

When a system has any kind of access control, it needs to have some way to maintain
and determine which access rights have been given. This is generally modeled by an access

2.2 Access Control 11

matrix.
An access matrix consists of the set of access operations a given subject can perform on

a given object. The matrix is usually a m × n matrix, where m is the number of subjects
and n is the number of objects. The element at (i , j) then lists the access operations
subject i can preform on object j .

Usually, an access matrix is very sparse, making it ine�ective to store. Therefore the
information is stored in capability and/or access control lists. A capability list is a list for
each user, showing what that particular user has access to. This corresponds to storing the
rows of the access matrix. An access control list is a list for each �le, stating which users
can do what access operations on the �le. An access control list is equivalent to storing
the columns of the access matrix. The concept of an access matrix, as well as the idea to
store it as lists are presented in Lampson's Protection [23].

In military access control the system usually operates with security levels or labels. A
piece of information is assigned a security label, de�ning the level of that information. A
user or process is assigned a clearance, which is also a security label. The labels are then
arranged hierarchically, and a user may only access �les with level up to and including
his clearance. An access control model that makes use of levels belongs to the class of
multilevel security models. A security level is said to dominate another if the level is above
the other. The level that dominates all other levels is normally called system high, while the
level dominated by all other levels is known as system low [21]. Security levels are partially
ordered, meaning that the ordering relation is re�ective, transitive and antisymmetric, and
that two levels do not have to be comparable.

An important concept in multilevel security models is security lattices. A security lat-
tice emerges when you not only have levels, but also departments subjects and objects can
belong to. This means that even though a user is cleared to see very sensitive material in
one department, he might not be cleared to view any information from the other depart-
ments. The department and level pair gives the security label of the �le. This gives a lattice
of paired levels and departments with a partial ordering. The partial ordering of security
labels is important here, as two �les of information can belong to di�erent departments,
and their security label will then be incomparable.

As an example of a multilevel security lattice we can have the security levels high ad low
and the departments MARINE and NAVY. The security labels would consist of a security
level and one or two departments. The following relations would hold in the lattice:

(low ,{MARINE}) ≤ (high, {MARINE})
(low , {MARINE}) ≤ (low , {MARINE, NAVY})
(low , {MARINE}) � (low , {NAVY})
The lattice this forms can be seen in Figure 2.4. This shows that (high, {MARINE,

NAVY}) is system high and dominates all other levels, while (low , ∅) is the system low.
This system will ensure that while a user might be cleared for high level information in
MARINE, he will not have access to information in NAVY. It gives a more �exible way of
restricting and giving access to information.

The Bell and LaPadula Model
One of the best known multilevel security models is the one proposed by Bell and LaPadula
in Secure Computer Systems: Mathematical Foundations [15] and Secure Computer Sys-

12 Chapter 2. Security and Access Control

low , {MARINE}

low , Ø

low , {NAVY}

low , {MARINE, NAVY}

high , Ø

high , {MARINE}high , {NAVY}

high , {MARINE, NAVY}

Figure 2.4: An Example Security Lattice

tems: A Mathematical Model [25]. In this text we have used the slightly more modern
and informal way of describing it given in Dieter Gollmann's Computer Security [21].

The security model can be described by a state machine model, where the system is
in a state which is either secure or insecure. A change (i.e. transition) in the system will
then lead to another state. The main idea is to avoid transitions out of a secure state and
into an insecure state.

The system consists of a set of subjects, objects, access operations and partially ordered
security levels. The states of the systems are rather complicated. The state set is de�ned
as B×M ×F where B is the set of current accesses, M is the access permission matrix and
F is the set of security level assignments. The last part has three parts, the classi�cation
of objects, as well as both the maximal and current security level of the subjects.

The Bell-LaPadula model uses four di�erent access operations: Read, write, append
and execute. In the original interpretation, to write is to alter the text while viewing it,
so it implies both reading and writing. On the other hand, append is writing without
reading. In some descriptions of the Bell-LaPadula model the append operation is not
used. Usually, the write operation then means to write without reading. In the following
write will be used in this meaning, as a operation with no observation.

The model de�nes two security properties which should be satis�ed for a state to be
secure, the simple security property (ss-property) and the star property (*-property).

ss-property: This property de�nes that there can be no read up. This means that
for read access operations on all subject/object combinations in b, the security level of the
object will not be higher than the (maximal) level of the subject accessing it for read.

The ss-property is not necessarily su�cient to prevent a low level subject from reading
a high level object. This is because a high level subject (which could be a program) could
write the content of the high level object in a low level object, which the low level subject
then can access. The low level subject could be the one to create the high level subject, thus
compromising the security of the system. To get around this, the *-property is de�ned.

*-property: This property de�nes a no write down policy. It states that for each
element in b, where the access operation is write, the (current) security level of the subject
should be lower than or equal to the object.

2.2 Access Control 13

The following example will show the importance of the *-property. A user A who is
cleared to high level information creates a �le a with sensitive information. It will have
the security level high. Another user, B, only cleared to low level information, creates
low level �le, b. He also creates a program, smart_program and convinces user A to use
it. smart_program will now be run by user A, thus the program's executing process will
have the level high. smart_program can then read the secret �le a, as it has the correct
security level. smart_program is written so it will take the information stored in a and
write it to the low level �le b. Thus user B has gained access to the information in the
secret �le a, violating the security of the system by creating a so-called Trojan program.
The *-property ensures that this cannot happen, as smart_program would not be allowed
to write in a �le with a lower security level [38].

The information �ow in the Bell-LaPadula system can be seen in Figure 2.5 [39]. When
a subject reads an object the information �ows from the object to the subject. When a
subject writes an object, the information �ows from the subject to the object. As seen
in the �gure, the rules of the Bell-LaPadula model ensures that information can only �ow
from a lower level to a higher, not the other way around.

This means that a high level subject can read a low level object, but only write objects
on its own level and above (using an appending write operation). It cannot alter those on
a higher level, due to the ss-property. To make a higher level subject access a lower level
object for write or append, you must either temporarily downgrade the subject, or you
must de�ne a set of trusted subjects that can violate the *-property.

If the subjects are processes, the �rst way is feasible, as they would be able to 'forget'
what they know at a higher level, as their security level indicates which �les they can read
and that is what they know. This approach does not hold if the subjects are humans. Then
the system would need to have a number of trusted users that may violate the security
policy.

Level 4

Level 3

Level 2

Level 1

write

read

Subject Object

Figure 2.5: The Bell-LaPadula Model

The Bell-LaPadula model has a number of assumptions, one of them being that the

14 Chapter 2. Security and Access Control

classi�cations do not change in normal operation. This is an aspect of the model that the
developers decided on from their systems analysis [25].

In their papers, the authors de�ne and prove a lot of properties of the system that they
have modeled. This is important because a system that is built using their model will be
known to satisfy certain security properties.

The Biba Integrity Model
Biba [21]1 developed a Bell-LaPadula-like model to contain integrity, as the original Bell-
LaPadula model did not include this aspect. The model is interesting because of this focus
on integrity, it shows that an access control model also can be used to obtain this security
goal.

The need for integrity in a system can be seen when considering the needs of the
organization the system should support. In a military system focused on con�dentiality
the important part is that the secret code to the rocket launcher can only be read by the
General and not by the Captain. In a business cooperation the opposite might be true -
while the overall business strategies that the CEO has written should be known by every
employee in the company, a secretary should not overwrite them with his own ideas. Thus,
the important thing is not who can read the information, but who has access to write it.
The system should be able to guarantee a certain level of integrity.

The main idea in the Biba model is that low integrity information should not be allowed
to �ow to high integrity objects, but the opposite is permitted [35]. Thus, the information
�ow is from high to low, the opposite of a con�dentiality system like the Bell-LaPadula
model. The Biba model also has rules corresponding to the Bell-LaPadula rules:

simple-integrity property: This de�nes that there can be no write up. Subject s
can write object o only if the integrity level of s is higher than or equal to the integrity
level of o.

integrity *-property: This de�nes that there can be no read down. A subject s can
read object o only if the integrity level of s is less than or equal to the integrity level of o.

If the Bell-LaPadula and the Biba models are combined, they can be enforced using the
same mechanism. However, if the integrity level and the security level have the same label,
this results in con�icting restrictions. This will simply mean that a subject can only read
and write information at their own security level, and this will result in a trivial system
[35].

If, instead, di�erent labels can be used for con�dentiality and integrity, we will obtain
a useful system. The following rules can be de�ned in terms of subject s and object o:

1. s can read o only if the con�dentiality level of s is greater than or equal to the
con�dentiality of o, and if the integrity level of s is less than or equal to the integrity
level of o.

2. s can only write o if the con�dentiality level of s is less than or equal to the con-
�dentiality level of o, and if the integrity level of s is greater than or equal to the
integrity level of o.

1First described in Integrity Considerations for Secure Computer Systems by K.J. Biba, Technical
Report ESD-TR76 -372, MITRE Corp., 1977. The document was unavailable.

2.2 Access Control 15

This model is described in Ravi S. Sandhu's Lattice-Based Access Control Models [35]
and called the composite model.

The Chinese Wall Model
The Chinese Wall security model was �rst described by Brewer and Nash in The Chinese
Wall Security Policy [17]. They showed that in the �nancial world the Bell-LaPadula
model could not ful�ll the sector's speci�c needs, and other security models were needed.

In a consultant business or similar, a speci�c consultant will probably possess insider
knowledge about his clients to ful�ll his job. The company itself might have several clients
in the same market, and thus if consultants worked for multiple clients in the same �eld,
it would lead to con�icts of interests. A consultant should not have insider knowledge of
two clients with con�icts of interest, but he may have it on two or more clients with no
con�icts. The basic rule of the Chinese Wall model is that there must be no information
�ow that causes a con�ict of interests [21].

The wall metaphor is that no subject can access an object on the wrong side of the wall.
Information that the consultant has access to is inside the wall, while information belonging
to clients with con�icts of interests, with respect to the information the consultant already
has access to, is outside the wall [17].

The model is described in Computer Security [21] by:

• A set of companies C and a set of objects O , with each object belonging to a company
in C .

• A set of subjects S that consists of the analysts/consultants that the company has
employed.

• All objects relating to one company are collected in a company dataset. The function
y : O → C gives the company dataset of each object.

• Con�ict of interest classes are de�ned and each con�ict of interest class covers com-
panies that are in competition. The function x : O → P(C) gives the con�ict class
for each object, i.e. the set of all companies that should not learn about the content
of the object.

• The security label of an object o is (x (o), y(o)).
• Sanitized information has been cleaned for sensitive information, and access to it
need not be restricted. For a sanitized object o, we set x (o) = ∅.

The main idea of this model is that we need to keep track of history. A subject must
not previously have had access to a company with an interest con�ict with the one he tries
to access. The rule to ensure this is the following:

ss-property A subject may only have access to an object o, if he previously not has
had access to an object in o's con�ict of interest class or if the objects belong to the same
company as o.

Note that this gives the consultant a freedom of choice, when he has not yet accessed
anything in a con�ict class. He can freely choose an object from any company.

16 Chapter 2. Security and Access Control

There will still be a problem if two di�erent companies with con�icts use the same
external resource, i.e. a bank. If an analyst dealing with one of the companies writes some
sensitive information about that company in an object belonging to the bank, another
analyst might read it when accessing the bank's �les. Thus, an insecure indirect information
�ow has occurred. To prevent this, a *-property is de�ned to govern write access:

*-property Subject s can only write object o if s has no read access to an object o
′

where o and o
′ belong to di�erent companies and o

′ is not sanitized.
An important aspect of the Chinese wall model is that each actual user (each person)

only can have one user account on the system, as a person will store knowledge in his
brain [35]. Another important aspect of the Chinese wall model is that the access rights
are dynamic and change over time.

Other Access Control Models
There are other access control models, some of which will be brie�y mentioned here. They
are di�erent in their approach than the ones presented above.

User Groups A di�erent way of keeping track of permissions is to have user groups on
the system. A user is a member of one or more groups, and a group has permissions to some
�les. Single users can also have negative permissions, excluding them from accessing a �le
a group they are a member of can access. Thus the group system can be very complicated
in theory. When it is used on Unix systems it is simple, with users only belonging to one
group and no negative permissions. It is important to notice that this system does not use
security levels. It is not designed for a hierarchical military system, but for a multi-user
environment where users naturally belong to information-sharing groups.

Protection Rings When referring to subjects as processes rather than users, protection
rings can be used as access control. The protection rings are a very simple mechanism that
has processes running at di�erent levels. Usually, the most important processes are the
kernel processes and the least important are the user processes. Objects are numbered in
the same way as the subjects, and access is granted or denied by comparing levels. The
protection ring model is much closer to the system than the other approaches discussed

Role Based Access Control Another form of access control is role based access control.
It gives access based on the role of the users of the system, meaning the job a certain user
is supposed to preform. Each user can have more than one role, and each role can be
assigned to more than one user. Role based access control models are a di�erent approach,
where the user's actual needs while he is using the systems are the basis for what he can
access.

Orange Book Security
The United States Department of Defense (DoD) have spent resources and research e�ort
on secure systems. In 1985 they published the DoD standard DoD 5200.28, called The
Orange Book [13]. It divides operating systems into categories depending on their security

2.3 Summary 17

properties. The standard has been replaced by a more complex one, but it is still a guide
to security properties [39].

The Orange Book has 4 major divisions for operating systems, from A to D. C is
split up into C1 and C2, and B into B1 to B3. The Orange Book describes in detail what
requirements a system must meet to be assigned to a certain division. The requirements are
very elaborate covering everything from policies and mechanisms to testing, veri�cation and
user guides. The following is a brief overview of the divisions and their main requirements
[13, 39]:
Division D: Minimal protection, no requirements at all. Windows 95/98/Me falls into

this category.
Division C: Discretionary protection for systems with cooperation users. C1 requires

discretionary security protection and a separation of users and data. C2 requires
some more �nely speci�ed user controls. The Unix rwx scheme meets C1, but not
C2.

Division B: Mandatory protection. The system must be capable of enforcing the Bell-
LaPadula model. B1 requires labeled security protection, B2 structured protection
and B3 security domains. All of this is in addition to the requirements of C2.

Division A: Veri�ed protection. A1 systems must meet B3 requirements and have a more
formal design speci�cation and veri�cation. Covert channels must also be analyzed.
Beyond A1 is for systems with an even more rigorous analysis, design and veri�cation,
as well as room for the inclusion of future properties.

2.3 Summary

Computer security seeks to protect assets on a computer. The goals are con�dentiality,
integrity and availability, and many di�erent methods and technologies exist to obtain
these goals. One of these is access control. This revolves around granting or denying
access to resources. This can involve both physical access control, where physical assets
are protected for instance with guards or locked doors, and logical access control, where
logical assets like information on a computer is protected.

The basic entities of logical access control are subjects and objects. Subjects can use
di�erent access operations to gain access to objects, like read or write. It is important to
know exactly what the di�erent operations encompass, for instance if to write also includes
reading the modi�ed data.

One basic distinguishing feature of access control models is the di�erence between
mandatory and discretionary access control. In discretionary systems the access control
is at the discretion of the users. In mandatory access control a system-wide policy exists.
This means that for every resource there will be a policy on who can access it or not and
this control is beyond the decisions of the single user.

Mandatory military access control systems levels are often multilevel security models.
Files and users have levels, and rules are made to govern how subjects can access objects
depending on their levels.

An important model is the Bell-LaPadula model. The main rules and center of the
model is that there can be no read up, i.e. a user cannot read a �le with a higher level than

18 Chapter 2. Security and Access Control

himself, and there can be no write down, i.e. a user cannot write to a process or �le that
has a lower security level than himself. Information can �ow from a lower to a higher, but
not the other way around.

An interesting modi�cation of the Bell-LaPadula model is the Biba integrity model.
It uses the same type of rules, but governs integrity instead of con�dentiality. The rules
specify that there can be no read down and no write up. Thus information can �ow from
a higher level to lower.

There are also many other access control models to cover di�erent needs. A very well
known model is the concept of groups, as this is used in the Unix operating system. The
Chinese wall is a security model for professional companies. It does not have levels, but
rather classes of con�ict of interests. Information in the same con�ict of interests class
should be obtained by the same subject. Due to this, it also keeps track of history so the
information a subject previously has accessed is known.

This chapter has described some general subjects in computer security, in particular
access control. Both physical and logical access control were discussed, and some di�erent
models were described. When designing a system with access control, it is important to
chose the right model, as they have di�erent purposes, for instance they might seek to
ensure integrity or con�dentiality.

19

Chapter 3

Sensors and Motion Detection

Sensors are used to produce data for a system, an overview of which is given in Section 3.1.
The main use of sensors is to transform physical properties into data a system can use.
One of the things that sensors can be used for is to provide data for motion detection.
This can be done in di�erent ways depending on the sensor used and the sophistication of
the algorithm used. Some motion detection methods are presented in Section 3.2.

3.1 Sensors

Sensors are devices that gather data and pass it on to a system. A sensor might be a
physical device, or it might be a logical entity that produces data for the system. Physical
sensors transform information about the physical world into data understandable by a
computer [42]. Examples of physical sensors are cameras, infrared sensors, thermometers,
barometers, RFID tags (Radio Frequency Identi�cation tags) and pressure sensitive �oors.
Logical sensors can be things like event timers or load indicators.

In this context, sensors are devices that are used to detect things about their environ-
ment and pass it on to the system. The system will then process the information gathered
by the sensors to present an impression of the environment that is needed on the system
or to the user.

Sensor outputs are rarely useful unless the system has a direct connection to the sensed
input, so there is a simple mapping between the system and the sensed input. If this is
not present, the data the sensor produces must be processed using more or less advanced
algorithms [42].

Sensor systems can be either active or passive. Active sensor systems are systems that
interact with their environment and sense how their actions a�ect it. The sensors actively
probe into the environment to sense a change. An example of an active sensor is a touch
sensor. Passive systems sense ambient radiation or signals, passively receiving information.
An example of a passive sensor system is a Global Positioning System [42].

When deploying several sensors to gather information, it will be necessary to fuse their
views to form a uni�ed image of the world. Each sensor can return errors, and the fusion
engine should take this into account to develop a uni�ed view with the least possible errors.
There are several advanced methods for dealing with this problem [42].

Sensors can be used for a wide variety of purposes. Simple tasks such as to learn
the state of a system, like the temperature in a chemical process, or complicated tasks

20 Chapter 3. Sensors and Motion Detection

like asserting the location of an object in an o�ce environment. When trying to gain
information about persons in an environment, the data the sensors deliver should often
have the ability to reveal the presence or absence of motion. Sensors such as cameras, light
detectors or infrared sensors are often used detect motion.

3.2 Motion Detection

Motion can be detected with a variety of sensors. An example of simple motion detection
is a light sensor in a doorway. When someone or something passes through, the motion is
detected and a signal can be emitted. A more sophisticated example would be a security
camera that not only detects the motion, but attempts to track it as well. Machine vision
also uses motion detection when a robot tries to navigate in real time.

Motion can be detected with many di�erent sensors, ranging from a simple light de-
tector to a sophisticated pressure sensitive device installed in a �oor. Some of the simple
sensors are infrared sensors and cameras. Alternatively, motion can be detected with radio
frequency sensors. They are often active sensors, so it is not pure motion detection, but
rather the detection of presence of an emitter in the area thus leading to indirect motion
detection. When motion detection discovers human beings it can be used to aid in access
control decisions.

3.2.1 Infrared Sensors

Infrared sensors are sensors that detect infrared radiation, i.e., electromagnetic waves with
a wavelength longer than visible light. All objects that generate heat will also generate
infrared radiation. Special materials such as germanium and silicon can be used to detect
infrared radiation[1].

The human body has a skin temperature around 33◦C, which emits infrared radiation
at a speci�c wavelength (9 and 10 micrometers). Passive infrared sensors are typically
designed to sense radiation in this spectrum or a little wider. The data from the sensors
can then be used to detect motion, as the amount of infrared energy changes rapidly when
a human body enters the �eld it is measuring. These types of sensors have widespread use
as burglar alarms and similar.

3.2.2 Radio Wave Frequency Sensors

Radio waves are, like light and infrared radiation, electromagnetic waves. They have a
wavelength longer than infrared and microwaves. Radio waves have di�erent frequencies,
and a radio receiver can be tuned to listen on a speci�c frequency. Radio waves are used
for many di�erent things, not only common radios, but everything from baby alarms and
garage door openers to mobile phones, satellite communications and electronic warfare.

When using radio wave frequency sensors to detect motion they are sensing it indirectly,
so to speak. The sensor would be a receiver waiting for a signal to be emitted. If it is
known that the signal comes from a person that has moved into the area, the sensor will
then have detected motion.

An interesting sensor in this respect is the Radio Frequency Identi�cation (RFID)
system. It consists of tags and a reader, which is an active sensor. The reader will send

3.2 Motion Detection 21

a request of identi�cation to the tag, and the tag will send back data. RFID tags are
often used for warehousing, where they replace bar-codes or other systems for keeping
inventory. In a motion detection context, they would of course be placed on a person, so
that when person enters a room the system would not only notice his presence, but also
gain additional data. This could for instance be data to base access control decisions on.

Another interesting radio wave frequency technology is Bluetooth. Bluetooth is a short
range data transmission standard. It is developed to feature wireless plug and play connec-
tions, for instance between a computer and peripherals such as a PDA or printer. It could
be used to detect motion much in the same way as the RFID tags. The data communication
between the client and the sensor could be more extensive, but even with motion detection
for access control purposes data in a RFID tag might be su�cient. The interesting part is
that the emitter would not have to be made for a speci�c purpose, but could be a general
device such as a mobile phone or a PDA.

3.2.3 Digital Images

Motion detection with cameras uses digital images to determine motion, as this what the
cameras will output. Cameras are very useful sensors, as the digital images can be used
for many di�erent kinds of analysis. Some background about digital images will brie�y be
described here.

A digital image is a representation of visual information by digital numbers. Often
the picture is represented as a two dimensional matrix, and each element is called a pixel
(picture element). The value of a pixel represents a measurement that is connected to the
position of the pixel. In a black and white picture the pixel values will be measurements
of the light intensity. In a colour picture more than one measurement per pixel is needed,
usually 3, corresponding to the colour scheme chosen. Pictures have two kinds of resolu-
tions. The spatial resolution is the number of pixels per picture,i.e. how �nely grained the
picture is. The gray resolution is the number of gray levels in the picture [18].

A monochrome picture of the dimension N ×M can be described as:
f = {f (i , j) | 0 ≤ i ≤ M –1, 0 ≤ j ≤ N –1}

Thus, a single pixel in picture f will be referred to by its position as f (i , j).
An important concept in digital images is noise. Noise is the term for imperfections

of image sensors, i.e. cameras. They are incorrect measurements and will appear on the
image as discrepancies from the real world scenery.

When analyzing images to detect motion there will usually be more pictures to be
analyzed than in regular image analysis. Knowledge about the problem, like whether the
camera is moving or not, time between images taken, etc., will help to reduce the data
analysis. When detecting motion there is no foolproof technique, no general algorithm for
all purposes. It depends on the circumstances and goal [30].

Motion detection objectives can be split into three major groups [30]:

1. Motion detection of any motion. This is usually for security purposes, and is done
using a single static camera.

22 Chapter 3. Sensors and Motion Detection

2. Moving object and location detection. This is done with a static camera and a
moving object, or with a moving camera and a static object. The objective is to not
only detect motion, but to detect the movement and location of an object. This can
include the detection of the trajectory of the object's motion, and a prediction of the
future trajectory. This is a more di�cult task than the problem in the �rst group.

3. The determination of 3D object properties from 2D projections obtained at di�erent
time instants of object movement.

Motion analysis deals with consecutive static images, where image analysis is taking
place on each individual image. The motion is usually analyzed by looking for correspond-
ing pairs of interest in sequential pictures.

When looking at simple motion detection, one method is to use the di�erence between
snapshots taken at di�erent points in time. This is called di�erential motion analysis. It
is a simple subtraction of two pictures, f1 and f2, to obtain the di�erence image d [30]:

d(i , j) =
{

0 if | f1(i , j)–f2(i , j) |≤ ε
1 otherwise

where ε is a small positive number.
An element d(i , j) may have value 1 due to the following reasons [30]:

1. f1(i , j) is a pixel on a moving object and f2(i , j) is a pixel on static background (or
the other way around).

2. f1(i , j) is a pixel a moving object and f2(i , j) is a pixel on another moving object.
3. f1(i , j) is a pixel on a moving object and f2(i , j) is a pixel on a di�erent part of the

same moving object.
4. noise and other inaccuracies.

The �rst three reasons will correctly identify that movement have occurred. The last
will be a false positive, as no motion has occurred. To eliminate this, one solution is to
ignore any region smaller than a certain threshold, although this may prevent slow motion
and small objects from being detected. The success of di�erential motion analysis depends
on background to object contrast -if there is almost none, the movement will be much
harder to detect [30]. Di�erential motion detection does not reveal direction, but for pure
detection of movement by objects of a reasonable size and speed it is adequate.

3.3 Summary

In this chapter an overview of sensors has been provided, and motion detection with more
speci�c sensors have been discussed. Sensors are in the most general term data producers
as they give input to a system. They can be split into two groups, active sensors that
probe the environment and passive sensors that observe the environment.

Motion detection can be used to detect the presence of persons in an environment.
There are many sensors that can detect motion Here we have discussed infrared sensors,

3.3 Summary 23

sensors using radio wave frequencies and cameras. Infrared sensors use the heat of a
human body to detect the presence of a person. Radio wave frequencies are used for
many purposes, but in a motion sensing capability technologies such as RFID tags and
Bluetooth are of interest. They are both examples of active sensors, where the receiver
polls an emitter for data, and the fact that an emitter provides data signi�es that motion
has taken place in the area of the receiver.

Cameras produce images which in digital form can be processed by a computer. Image
analysis is a very wide topic, and many di�erent forms of motion detection can be done.
The simplest form is di�erential motion detection, where the pixel-wise di�erence between
two images taken at di�erent points in time is used to determine if motion has occurred.

24 Chapter 3. Sensors and Motion Detection

25

Chapter 4

Unix Background Information

Unix is a widely used operating system that was originally developed by Ken Thompson
of Bell Laboratories in 1969. Many Unix variations have since been developed, such as
Linux that was initiated by Linus Torvalds in 1991. Unix has a modular construction that
allows it to be easily modi�ed. Two important modular components are the X Window
system and �le systems. In this chapter, we will review some theory within these areas,
which we later in this thesis will assume that the reader is familiar with. The references
in this chapter can be used as a starting point for further reading. Most of the references
are for resources that are freely available on the Internet.

Before we start our review of XWindow System and �le system theory, we will point out
an important di�erence between the two technologies, at least from a security perspective.
Although they both are part of the operating system, a �le system will (usually) run in
kernel space whereas the X Window System runs in user space. This separation is enforced
because system software must be protected from unauthorized access by applications[33].
This access control is enforced by the CPU, which has di�erent privilege levels correspond-
ing to di�erent roles. Unix uses two such levels: the kernel executes in the highest level
and is not restricted by any access control, whereas applications execute in the lowest level
where the access is regulated. Whenever an application invokes a system call, the execution
is transferred from user space to kernel space. When the kernel executes the system call,
it works in the context of the process and has access to the data in the process's address
space. The process's context can be used to enforce additional access control based on, for
example, the user ID associated with the process.

4.1 The X Window System

The X Window System (or simply X) is a graphical windowing environment for UNIX. It
consists of a collection of programs, protocols and routines for organizing and maintaining a
graphical user interface. Originally, it came into existence at MIT as part of project Athena
in 1984. Its main purpose was to provide a platform independent graphics system that
could link together the heterogeneous systems that were deployed at MIT. Version 10 (X10)
was the �rst version of the X Window System that achieved widespread deployment, and it
was shortly thereafter replaced by version 11 (X11) in 1987[2]. Since then there have been
many further releases, which have added extra functionality while attempting to remain
largely backwards compatible. The current release is the sixth one and is known as X11R6.
The X.Org Foundation is a consortium that handles the development of the X Window

26 Chapter 4. Unix Background Information

System technology and standards[3]. XFree86 is an open source implementation of the X
Window System, which is included in all modern Linux distributions[4].

The X Window System is a network based windowing system. This means that a
network terminal, denoted the X terminal, is used to connect a user to a remote computer
over a network. The network can either be a local area network or a wide area network.
The X protocol speci�es the message types that can be transferred over the network. The
network architecture is illustrated in Figure 4.1.

Remote host

Window
manager

Application
program

Motif

Intrinsics

Xlib

X client

UNIX

Hardware

X server

UNIX

Hardware

X terminal

Window

User
space

Kernel
space

X protocol

Network

Figure 4.1: Clients and servers in the X Window System[39]. The X Window System
consists of the X protocol, X server, X clients, Xlib, and Intrinsics.

The X Window System makes it possible to run programs on remote computers and
redirect their output to the display on a local computer. The X display server (or X server
for short) runs on the local computer and listens for network connections on a speci�ed
port. The X clients are applications that sends commands to the X server. They may run
on remote computers, but can also run on the same computer as the X server.

The X server o�ers graphics display services to the X clients. An X client can, for
example, be an editor that sends drawing requests to the X server, specifying that some
text should be displayed. It is the responsibility of the X server to display the appropriate
bits. Besides rendering graphics on the display, the X server is also in charge of sending
input events from the keyboard and mouse to the X clients.

Everything that can be drawn on the screen by the X clients appears in windows, and
each window is associated with a speci�c X client. When a user for example presses and
releases a mouse button, the X server will send an input event to the X client that created
the window containing the cursor.

X clients are usually programmed in C using the library Xlib[5]. Xlib is a low level
interface to the X protocol, and it contains, for instance, functions for creating, mapping
and unmapping windows. A higher level interface is provided by Intrinsic. It is a toolkit
that can be used to build GUI components, such as buttons and scrollbars. To create a GUI
interface with a uniform look and feel, an even higher level toolkit is required. The Motif

4.2 File Systems 27

toolkit was widely used in the 1980's and early 1990's. Today the most popular toolkits
are Gtk and Qt, which are used in the GNOME and KDE projects, respectively[28].

The X Window System is designed to provide mechanism, not policy. In particular,
the X protocol only speci�es the basic tasks that the X server performs, whereas the user
interface policy is determined by the X clients. One important X client that manages the
layout of windows on the screen is the window manager. It controls the creation, deletion,
and movement of windows on the screen and sends commands to the X server, informing it
about what it should display. Furthermore, it will generally provide standard components
for the other X clients, such as title bars, menus and frames. Many window managers have
been developed (for example Metacity, Enlightenment, and Saw�sh) and they provide a
range of di�erent appearances and behaviors[6].

A desktop environment provides a uniform looking desktop interface which uses the
services of a window manager. It o�ers a more complete interface to the operating system
and provides its own range of integrated utilities and applications. Currently, the most
popular desktop environments are GNOME and KDE.

X clients should adhere to the Inter-Client Communication Conventions Manual Manual
(ICCCM) which speci�es a protocol for communication between X clients[32]. Because the
XWindow System is designed to provide mechanism, not policy, the X clients does not have
to adhere to ICCCM. However, they should do so in order to coexists properly with other X
clients, especially the window manager. The ICCCM speci�es the X client interactions at a
low level. The KDE and GNOME projects originally developed their own extensions to the
ICCCM in order to support special features in their desktop environment. The Extended
Window Manager Hints (EWMH) is an extension to ICCCM that has been developed to
replace these custom extensions[14]. It is developed by freedesktop.org which is a is a free
software project that currently is not a formal standards organization.

4.2 File Systems

A �le is an abstraction for a data container that supports sequential and random access.
A �le system is software that permits organizing, manipulating, and accessing �les. In a
Unix �le system, an inode is a data structure that holds information about a �le, such
as the type of �le, the number of links to the �le, the owner's user and group ids, and
the number of bytes in the �le. A �le is uniquely identi�ed by the �le system on which
it resides and its inode number on that system. A directory is a �le that stores (inode
number, �le name) pairs.

4.2.1 The Virtual File System

Most Unix systems can be modeled using a layered architecture; in Figure 4.2, some layers
related to �le systems are shown. The top layer is the system call layer. It handles system
calls such as open, read, write, and close. After a system call has been parsed and the
arguments have been checked, it invokes the Virtual File System (VFS) layer.

The VFS resides in the kernel and implements the most abstract part of the kernel's
�le handling infrastructure. It provides a set of standard internal �le-system interfaces
for �le handling functionality, which are independent of the actual implementation of the
�le. The VFS can therefore provide support for many di�erent types of lower �le systems.

28 Chapter 4. Unix Background Information

Figure 4.2: The vnode interface in the VFS permits that many di�erent types of �le systems
can be supported when an application, via a system call, uses a �le.

Because of the high abstraction level, the VFS can also work on entities are not true �les,
but have pathnames, such as character devices, pipes and sockets.

Like the inode is used to store data about a �le on a given device, the vnode (virtual
inode) is a data structure in the VFS layer that is associated with an open �le. A system
call has a user space and a kernel space part, and when the kernel space part is invoked a
vnode operation is called, which in turn calls a function in a lower �le system. The lower
�le system can, for example, be a Unix File System (UFS), Network File System (NFS),
High-Sierra File System (HSFS - found on CDROMs), MSDOS File System (PCFS), or
the /proc �le system (resides only in memory). For further reading on �le systems, see for
example [16, 29, 39]

4.2.2 Stackable File Systems

The development of a new �le system is a di�cult, long, and non-portable process that
requires skilled programmers who understand kernel internals. A stackable �le system,
however, is easier to develop because it uses existing �le systems and interfaces. The
interfaces used are vnode interfaces. A stackable �le system does neither change the system
call interface nor the vnode interface. There are many ways in which vnode interfaces can
be stacked; one (simple) possibility is shown in Figure 4.3.

The FiST (File System Translator) system enables programmers to write stackable �le
system for many di�erent Unix systems [44, 45]. It consists of three parts as shown in
Figure 4.4. Firstly, a set of stackable �le system templates for several versions of Linux,
Solaris, and FreeBSD makes it possible to write �le systems for many platforms. Secondly,
the FiST input �le is written in the high-level FiST language, which can describe stackable
�le systems in a portable manner. Thirdly, the code generation program fistgen can
compile a FiST input �le into loadable kernel modules for several Unix systems, depending
on the templates used. The performance overhead when using FiST generated stackable
�le system is only 1-2%.

4.2 File Systems 29

Figure 4.3: A stackable �le system is a layer that resides in the kernel below the vnode
interface layer. It mediates access to one or more lower �le systems.

fistgen

FiST input file

Stackable file system source code

Templates

Figure 4.4: Stackable �le system development using FiST

30 Chapter 4. Unix Background Information

The code generated by fistgen constitute a kernel module. A kernel module is a
piece of kernel code which usually implements a �le system or device driver. Its main
advantage compared to static kernel code is that it can be loaded and unloaded from
memory separately from the main body of the kernel. It is therefore not necessary to
rebuild and reboot the kernel every time new functionality should be added[34, 33].

31

Chapter 5

Sensor Enhanced Access Control

Model

In organizations with high security requirements, mandatory access control (MAC) is often
used to ensure that information does not leak to unauthorized persons. These organiza-
tions can, for instance, be the military, hospitals, and corporate patent departments. An
authority within the organization states rules about who can see what, and these rules can-
not be changed by the individual users as it is possible with discretionary access control
(DAC).

The most widely used models are multilevel security models where each subject and
object is associated with a security level. However, these models are inadequate when
logical resources obtain physical form. In particular, they do not encompass information
on a computer screen that is visible to all the persons who are present in the environment.
In this chapter, we describe a model that extends traditional multilevel security models
with subjects and objects that are physical entities. The model consists of a logical access
control model (see Section 5.1) where only users and �les are considered to be subjects and
objects, respectively. Furthermore, the model consists of a physical access control model
(see Section 5.2) where persons in the environment and windows on computer displays
are considered to be subjects and objects, respectively. The core of our model is the
combination of these two access control models (see Section 5.3).

The system we are set to develop will be integrated with an existing Unix system. The
terminology used in our model will re�ect this: we will use the terms user ID, process
ID, inode number, and window ID to denote a uniquely identi�ed user, process, �le, and
window, respectively. A consequence of using a Unix system is that the Unix provided
DAC (in the form of rwx mode bits) can be used by the individual users to add an extra
layer of access control. The MAC will, however, take precedence over the DAC.

5.1 Logical Access Control

Our logical access control model is concerned with mediating access to �les by users.

32 Chapter 5. Sensor Enhanced Access Control Model

5.1.1 Files

A �le is a passive entity that stores information on a computer. It is uniquely identi�ed
by an inode number. There exists many types of �les, such as regular �les, directories, or
symbolic links.

A �le system is a collection of �les along with the operations that can be performed on
these �les. In a �le system where MAC is enforced, the only operations that are subject
to access control restrictions are read and write. A �le level is associated with each inode
number and is used by the reference monitor to determine whether access to the �le with
the given inode number should be granted or denied.

5.1.2 Users

A user is an active entity that can access �les. In most deployments of our system, a user
account will exists for each user, and a user must identify himself and be authenticated as
part of a login procedure. When a �le is accessed by a user, it is actually not the user who
directly accesses the �le, but a process that runs on behalf of the user. The logical subject
is therefore a user-started process, whereas the user is the physically present person who
has logged in to the system. A user must be uniquely identi�ed by a user ID, and this
user ID must be associated with each process that is started by the user. A user level will
be associated with each user ID, and it will constitute the basis for deciding what �les a
given user has access to.

The system has a special user, the super user (root in Unix), which is completely
trusted. The actions of the super user are not restricted by any access control. Furthermore,
only the super user will be permitted access to modifying �le levels, assigning user levels
to users, and starting and shutting down the system. A special user ID is associated with
the super user so that it can be distinguished from the non-privileged users. A level can
be associated with the super user, but it will not be used in any access control operations.
The person who is able to log in as the super user should use some form of physical access
control, such as locking the door, before using the system. Otherwise, an unauthorized
person might enter the environment and force the person to misuse the super user privileges,
bypassing all logical access control mechanisms.

5.2 Physical Access Control

Our physical access control model is concerned with mediating access to data displayed in
computer windows by persons.

5.2.1 Windows

A window is an area of screen space that is used to represent a computing function graph-
ically. Windows are created by running a GUI application, such as a text editor or an
Internet browser. Each window must be uniquely identi�ed by a window ID. Most appli-
cations will open one top-level window and possibly some sub-windows inside this special
window. A sub-window can, for instance, be a button, menu, or scrollbar. Our model
will only use the �rst top-level window created by an application and ignore any further

5.2 Physical Access Control 33

created top-level windows as well as all the sub-windows of top-level windows. This ensures
that an application can be uniquely identi�ed by a window ID. When a window is closed,
usually when the corresponding application is killed, the system should notice this.

A window will be considered to be a physical entity since it constitutes human-readable
output that is physically present on a computer monitor. The access operation for a window
is viewing. If access to viewing a window is denied, the window will be unmapped so that
it no longer is visible on a computer monitor. Otherwise, if access to a window is granted
and it currently is unmapped, the window will be mapped.

The rules that determine whether access to a window should be granted or denied
depends on the window level. A window level is the maximum �le level of all the �les that
are or have been open by the application associated with the window. The model does not
encompass closing of �les by applications, so a window level can never decrease. Initially,
before any �les are opened, the window level will have the lowest possible value, and it
will remain unchanged or increase as new �les are opened by the application. This implies
that if the window level should be decreased because the application no longer has �les
with high �le levels open, the application must be restarted.

Close operations are omitted in our model because it is very di�cult to determine
when a �le no longer is in use by the editor: when an editor has opened a �le, it will store
its content in memory and close the �le immediately after. Furthermore, it would be a
vulnerability in the system, if the window level could decrease: when a �le no longer is
used by an editor, the memory where it had been stored will most likely not be zeroed out.
The window level should therefore rather be associated with the address space of the editor
process than the window which appears on the screen. The system will be more secure
if the window level cannot decrease, and this is more important than the inconvenience
experienced by the users.

5.2.2 Persons

Our model will not only deal with users who are directly identi�ed by the computer during
some login procedure, but also with any principal who is physically present in the envi-
ronment. These unauthorized principals will be denoted persons. Furthermore, the term
environment will denote the area around the computer where the persons may be detected.

The physical access control is based on sensors that detect persons in a given environ-
ment. To provide a more �ne-grained detection method, several sensors can be used and
they can even be constructed using di�erent technologies. The only requirement is that
they communicate using the same protocol so that they present information about the
persons using the same format. A sensor must as a minimum be able to detect whether
a person enters or leaves the environment since a list of all the currently present persons
must be maintained. The term direction will denote the walking direction of the per-
son. A direction can either be `i' or `o' which models that the person enter or leaves the
environment, respectively.

If a sensor can identify and authenticate persons, a level can be associated with the
persons. This could, for example, be done using a smart card and corresponding smart card
reader which should be used before physical access is granted. If the sensor is not capable
of distinguishing between the detected persons, the same level must be associated with all
persons. This level must depend on other security measures taken in the environment, such

34 Chapter 5. Sensor Enhanced Access Control Model

as physical access control using locks or guards. The term environment level will denote
the level of a person as it is detected by a sensor.

Whether persons should be recognized as individuals may not only depend on the
sophistication of the sensor(s), but also on privacy concerns. In some situations, it may be
preferred that some sensors can identify persons, but only when explicit consent has been
given. A possible scenario is a company where the employees are recognized with magnetic
cards, whereas guests are detected by infrared sensors and thus remain anonymous.

5.3 Combining Logical and Physical Access Control

To summarize our logical and physical access control models, subjects are either processes
or persons, and objects are either �les or windows. These logical and physical subjects
and objects have to be combined to form a coherent access control model. In this model,
a subject level will denote either a user level or an environment level, and an object level
will denote either a �le level or a window level. The minimum of all the subject levels
that are currently registered by the system is denoted the clearance level. It models the
combined subject level and it will be used in all access control operations by the system.
The clearance level will change as persons enter or leave the environment. A summary of
the introduced concepts related to physical and logical access control is listed in Table 5.1.
Access Control Concept Physical Access Control Logical Access Control
Subject Person Process
Subject level Environment level User level
Subject detection method Sensor Login procedure
Object Window File
Object level Window level File level
Access operation View data Read or write data

Table 5.1: Sensor enhanced access control model terminology
To ensure that the model is consist, a user is also regarded as an person after he has

logged in. If no one else is present during log in and the user subsequently leaves the
environment, the sensors will detect this and it will be registered that a person with the
level of the user has left the environment. No one is then present, but when the user
reenters the environment, the clearance level will again be set to the original value. If it
is not the user, but an unauthorized person who enters the environment before the user,
this will be detected, and the clearance level will set accordingly.

When the sensors cannot detect the level of persons, the system will not be fully
functional if the user leaves the environment. The environment level will most likely be
lower than the user level, and when the user leaves the sensors will report that a person
has left the environment. If no one is in the environment other than the user, the system
will believe that an error has occurred since it had not detected the entrance of the person.
The clearance level will therefore be unchanged, but when the user reenters the clearance
level will be reduced to the environment level and the user cannot continue to work on his
classi�ed �les. If persons are present when the user leaves, the system will believe that it
is one of them who leaves. When the user later enters the environment, the sensors will
report that a person has entered, and even when all real persons have left, the clearance
level will still be equal to the environment level.

5.3 Combining Logical and Physical Access Control 35

5.3.1 Reference Monitors

A reference monitor mediates accesses to objects by subjects. Our system uses two reference
monitors, corresponding to the logical and physical access control mediation. Firstly,
a stackable �le system acts as a reference monitor when it mediates access to �les by
processes. The stackable �le system will be denoted macfs (mandatory access control �le
system). Secondly, the visibility_manager process will act as a reference monitor when
it mediates access to windows by persons.

The macfs and visibility_manager are not reference monitors in the sense described
in the orange book[13] since they do not meet its requirements regarding complete medi-
ation, isolation, and veri�ability. In our model, a reference monitor will only denote an
entity that mediates access to resources and is protected with the security mechanisms
available in Unix systems.

Figure 5.1 illustrates how the macfs mediates access to �les by processes. The �gure
also includes a person and a window to illustrate how the physical and logical entities in
our model interact. The process displays some output to the user in a window on the
screen. It could for example run an editor that reads in a �le. If the access operation is
write, no output is displayed, except possibly an error message.

The steps when data in the �le system is accessed are as follows: Initially, a person
starts a process and instructs it to read or write the data (Step 1). In an editor, the person
may for instance open a �le or save a �le, respectively. The process then makes an access
request to the reference monitor macfs (Step 2). This is done when a read or write system
call is invoked. The macfs must then determine whether the access should be granted or
denied. This is done using the clearance level and the �le level associated with the �le. If
the access is granted, the �le is accessed on the hard disk (Step 3). If the access operation
is read, data will be read from the hard disk and returned (Step 4). If the access operation
is write, only some status information is returned. When data is read, the macfs will next
copy the data into memory in user space where it can be accessed by the process (Step
5). The process is now ready to display some output to the person. The X Server is in
charge of displaying graphics, so the process (which is an X Client) will relay the data to
this process (Step 6). The X Server uses its knowledge about the computer hardware to
display the appropriate bits on the monitor (Step 7). Finally, the output of the access
operation is visible to the person (Step 8).

If the macfs prohibits the access request, a �permission denied� error message is sent
back to the process, which in turn will instruct the X Server to display an error message.
In this case, Step 3 and 4 are skipped.

Figure 5.2 illustrates how the visibility_manager mediates access to windows by
persons. Initially, the deployed sensor will detect that an unauthorized person enters
the monitored environment (Step 1). It will notify the visibility_manager about this
event by sending it the walking direction and environment level of the person (Step 2).
If the environment level is less than the current clearance level, the clearance level must
be set to the newly detected environment level. This decrease in clearance level implies
that access should be denied to some classi�ed data that could be accessed before the
person's entrance in the environment. Since the system has two reference monitors that
both uses the clearance level when making access control decisions, the macfs must also
be noti�ed about the new clearance level (Step 3). Besides ensuring that the logical access
control part of the system still mediates access correctly, the visibility_manager has
the responsibility of mediating access to windows. The window management knows which

36 Chapter 5. Sensor Enhanced Access Control Model

File

Person

Process

Window

Operating system kernel

Operating system

Computer

Environment

Hard disk

1

2

3 4

5

6

7

8

Monitor

X Server

User space

Kernel space

macfs

Figure 5.1: The stackable �le system macfs acts as a reference monitor when it mediates
access to a �le by a person. The person can either be the authorized user or an unauthorized
person.

5.3 Combining Logical and Physical Access Control 37

File

Person

Window

Manager
Visibility

Sensor

Process

Operating system kernel

Operating system

Computer

Environment

Hard disk

Monitor

X Server

Kernel space

macfs

1

2

3

4

5

6

User space

Figure 5.2: The Visibility Manager process acts as a reference monitor when it mediates
access to a window by a person.

38 Chapter 5. Sensor Enhanced Access Control Model

windows are created by the running processes and the corresponding window levels. It
uses the window levels and the clearance level to determine which windows should be
made invisible. The visibility_manager will send its decisions to the X Server so that
they can be enforced (Step 4). The X Server will obey the orders and remove all the
windows in question from the display (Step 5). The windows (if any) that must not be
seen by the newly entered person will therefore be invisible (Step 6).

When a person leaves the environment, the sensor will also detect this and notify the
visibility_manager about it so that the windows can be mapped again. Special cases
arise when a person enters the environment and no one was present beforehand. These
cases will be described in the next chapter, along with a more detailed description of the
visibility_manager and its interaction with the other parts of the system

5.3.2 Security Policy

Adhering to the general Unix philosophy, the system provides mechanism and not policy
to the extend possible. Therefore, as much as possible can be speci�ed using parameters,
and together they will specify a security policy. The parameters should be set by a trusted
authority. Since there must also be a trusted super user, these two roles can be managed
by the same person.

There are six parameters that can be set when de�ning the security policy. The most
important parameters are the no_read_up, no_read_down, no_write_up, no_read_down
parameters. These four parameters specify the rules that are used by access operations to
determine whether access to a �le or window should be granted or denied. They can, for
example, be used to specify a security policy that enforces the Bell-LaPadula model or the
Biba model and thus addresses con�dentiality or integrity, respectively. The �fth parame-
ter, hide_non-readable_�les, should be set if the �les that are non-readable, according to
the no_read_up and no_read_down parameters, should be hidden by the stackable �le
system. The purpose of this parameter is to avoid information �ow via �le names. The
�nal parameter, permit_lower_level_login, can be set if the users should be permitted to
log in at a level below their user level.

All types of levels in our model will be modeled as non-negative integers, so we do
not impose an upper limit for a level and the lowest possible level is zero. This decision
has mainly been made in order to provide a model that is as policy free as possible. An
organization will probably have an upper limit on the number of levels. For instance,
the military might have four levels, corresponding to unclassi�ed, con�dential, secret and
top secret, but another organization might need more or fewer levels. Therefore, the only
constraint that we enforce on the levels is that they cannot be negative; the upper limit
will be machine dependent. The super user in an organization must ensure that the levels
does not exceed the limit set by the organization.

Although we have attempted to make a system that is as policy free as possible, the
design does contain some policy decisions as described in the next chapter. These decisions
are especially related to what information users are permitted to retrieve about the system
state. When in doubt about whether an access restriction should be imposed on the usage
of a program, we omitted the restriction. This was the case for the programs that are
used to retrieve subject levels, window levels and the clearance level. We have therefore
disobeyed the least privilege principle. The main reason for this is that the Unix DAC can
be used by the super user to impose access restrictions on the usage of certain programs.

5.3 Combining Logical and Physical Access Control 39

This points out that our model is not designed for a stand-alone system, but for a system
that is tightly integrated with a Unix operating system which also provides (policy free)
access control mechanisms on its own.

40 Chapter 5. Sensor Enhanced Access Control Model

41

Chapter 6

Design

The system that we are set to develop must encompass many di�erent types of functionality,
ranging from storing �le and user levels to detecting when persons enters or leaves a given
environment. In order to make the system more comprehensible, it has been divided into
a number of subsystems that provide services to each other. These subsystems will be
described in this chapter along with how the di�erent parts interact with each other. In
Section 6.1, an overview of the system architecture is provided. Section 6.2 describes the
security parameters that can be used to specify which security policy should be enforced in
a given deployment of the system. Each of the subsystems that the system has been divided
into are then described in Section 6.3 to Section 3.1. One of the developed subsystems,
the security management gui, will not be described until Chapter 7 since it is only an
insigni�cant part of the system as a whole. The system will be denoted SEAC (Sensor
Enhanced Access Control).

Each subsystem contains between one and six programs. The services provided by
each of these programs will be described in the section corresponding to the subsystem
where the program resides. Many of the programs send messages to each other when they
run. Some of these processes only provide services to other processes and therefore act as
servers, some of them only use services provided by others and therefore act as clients, and
�nally some act both as clients and servers. To provide an overview of all these programs
and their interaction, a CSP speci�cation is listed in Section 6.8. It describes the developed
protocol at a high abstraction level.

6.1 Software Architecture Overview

6.1.1 The Subsystems

The system has been divided into a number of subsystems, where each subsystem focuses
on a di�erent aspect of the functionality of the system as a whole, see Figure 6.1. These
subsystems can be organized in a layered architecture where each layer represents di�erent
levels of abstraction. Some of the layers have been partitioned further into subsystems
because the subsystems have di�erent focus of functionality.

The lowest layer is a native �le system where all the classi�ed �les will be stored.
Our design is not dependent on the type of used �le system so this layer will not be
described further. For each �le in the system that should be protected by access control, the

42 Chapter 6. Design

Security Management GUI Sensors
File Level Management User Level Management Window Management

Stackable File System
Lower File System

Figure 6.1: Layered architecture for the system.

stackable file system subsystem stores a �le level corresponding to the classi�cation of
the �le. Furthermore, the stackable file system stores a user level corresponding to the
clearance level of each user in the system. The file level management and user level
management subsystems provide programs for storing and retrieving �le and user levels,
respectively. The visibility_manager subsystem manages the Window visibility; its main
purpose is to provide a service to the sensor subsystem so that windows are (in)visible
dependent on who are present in the environment. Finally, a security management gui
subsystem is included in order to make the system more user-friendly. It does not add any
new functionality to the system and is primarily developed because many users prefer a
GUI over command line tools.

The layered architecture is closed in the sense that each layer only uses the services
provided by the layer(s) immediately below it. For instance, the file level management
uses the services provided by the stackable file system, and the security management
gui uses the services provided by the file level management, user level management,
and window management.

The two lower layers reside in the kernel of the operating system since non-privileged
users must not have access to these parts. The two upper layers reside in user space and
use the system call interface of the operating system to interact with the stackable �le
system.

Altogether, the stackable file system, file level management, and user level
management provides a MAC that is dependent on the security policy chosen when the
system is initialized. These three subsystems can be used independently of the other
subsystems, which may for example be useful in a setting where only logical and not
physical access control is required. The GUI part of the system will still be available in
this setting, although with restricted functionality. The window management and sensor
subsystems are not usable on their own.

6.1.2 Processes and Message Passing

In the user space part of the system, a number of processes must run all the time as
daemon processes so that they can provide services to other processes that are only invoked
occasionally by the user of the system. Many of the processes communicate using message
passing as indicated in Figure 6.2.

The system has a trusted super user who can use all the programs without any restric-
tions imposed by the access control mechanism. This user is named root in Figure 6.2. All
the other users in the system are non-privileged, and they are denoted user in the �gure.
The root user can of course also act as a non-privileged user.

The editor and window manager processes shown in the �gure have not been developed
as part of this project and they are therefore not included in one of the subsystems. The

6.1 Software Architecture Overview 43

sensor_server

visibility_manager

setfl

listwl

listsl

initcl seac_destroy

window_manager

Root

editor

User

Root

Sensorsensor_client

User

User

file_open_monitor

Figure 6.2: Message passing between processes in user space. The ovals illustrate processes,
the arrows illustrate the message �ow, and the boxes denote an entity that interacts with
the system.

44 Chapter 6. Design

assumptions that we have made about the behavior of these processes will be described
brie�y in the reminder of this subsection. The remaining processes will be described in
the following sections along with the subsystems where they reside. The interactions
between the processes are described in the �nal section, and the description of parts of
their functionality will therefore be postponed to this section. A reference guide for the
programs are provided in C.

The term editor will be used to denote any application that can be used to view
and/or modify a �le. It can, for example, be a text editor, a web browser or the Unix
output redirection operator `>' which is used to write to a �le. In most cases, a user who
is editing a �le will use a text editor that both reads and writes the �le contents. Only
one such editor has been shown in Figure 6.2, and it is denoted editor. After having
experimented with the emacs and gedit editors that were included in the Fedora Core 1
Linux distribution, we have decided to make a few assumptions about how the editors to
be used in the system works in general. First of all, when a �le is opened in an editor
it will be closed immediately afterwards and then stored in a bu�er for internal usage by
the editor. Because the �le is stored in a bu�er, it will be very hard to discover when the
user �closes� the �le by killing its bu�er. We have therefore chosen to simply refrain from
considering when a �le is closed in the editor. This implies that the user must restart the
editor if the fact that a given �le has been opened should no longer be stored by the system.
Furthermore, this approach is also preferable from a security perspective, as mentioned in
Section 5.2.1.

The window manager process shown in Figure 6.2 must maintain the state of each
created window. This should be done so that it is consistent with what is actually displayed
on the computer display by the X server.

6.2 The Security Policy Parameters

Six parameters are available for specifying a security policy. Two of the parameters restrict
read access for both �les and windows. We will consider a window to be readable if it is
visible on the computer monitor, and the window will be unmapped if read access to the
window is denied. The security parameters are as follows:

no_read_up Read access to a �le is denied, if the �le level is greater than the clearance
level. Likewise, view access to a window is denied, if the window level is greater
than the clearance level. This parameter enforces the Bell-LaPadula simple security
property.

no_read_down Read access to a �le is denied, if the �le level is less than the clearance
level. Likewise, view access to a window is denied, if the window level is less than
the clearance level. This parameter enforces the Biba integrity * property.

no_write_down Write access to a �le is denied, if the �le level is less than the clearance
level. This parameter enforces the Bell-LaPadula * property.

no_write_up Write access to a �le is denied, if the �le level is greater than the clearance
level. This parameter enforces the Biba simple integrity principle.

hide_non-readable_�les The �le names of non-readable �les will be hidden. A �le is
considered to be non-readable if read access is denied according to the no_read_up

6.3 The Stackable File System 45

or no_read_down parameters. The �le names of non-readable �les will be omitted
when entries in a directory are read, so they will for instance be omitted in a directory
listing.
The purpose of this parameter is to prevent information �ow via �le names, since
this constitutes a covert channel. For example, if the no_read_up policy is chosen,
a low level subject should be denied access to both the content of a high level �le
and the name of the �le.

permit_lower_level_login The clearance level will normally be initialized to the level
of the user who logged in. In some situations, however, it may be desirable if the
clearance level is initialized to a level below the user's user level. For example, if
the Bell-LaPadula model is enforced a high-level user will be denied access to send
a message to a low-level user via a �le. If it should be possible for users to escape
from this restriction, the permit_lower_level_login policy should be chosen. A user
is then allowed to specify the level that the clearance level should be initialized to,
as long as it is not greater than the user's user level.

If only the no_read_up and no_write_down policies are chosen, the security policy will
enforce the Bell-LaPadula model. If only the no_read_down and no_write_up policies are
chosen, the security policy will enforce the Biba model. For both models, the hide_non-
readable_�les policy should also be chosen to avoid information �ow via �le names.

6.3 The Stackable File System

The users of the system must not have direct access to the �les containing classi�ed in-
formation. Instead, some mechanism must be established that can mediate all accesses
to �les by users. One candidate for providing this type of functionality is a stackable �le
system that stores a level corresponding to each �le in the underlying native �le system.
In order to provide MAC, the stackable �le system must also store a level corresponding
to each user who has access to the system. Using these levels, the stackable �le system can
mediate all accesses to �les by users. If sensors are deployed in the environment, the levels
of persons will also be used in access control decisions. The main reason for including the
MAC in a stackable �le system is that it will then reside in kernel space and therefore be
protected from non-privileged users via the operating system user/kernel modes.

Two programs are provided for initializing the system, and one for shutting it down:

seac_init initializes the stackable �le system. First of all, the security policy should be
speci�ed, i.e., the no_read_up, no_read_down, no_write_up, no_write_down, and
hide_non-readable_�les parameters should be set. Secondly, the system parameters
that specify where the user levels and �le levels should be stored persistently are set.
If the system has been used previously, it retrieves the previously stored user and �le
levels. Finally, the part of the stackable �le system that must discover when a �le
is opened is initialized; this part is used by the file_open_monitor program. Only
the super user is permitted to use this program.

initcl The user level of the user invoking this program will be used to initialize the
clearance level. Before the initcl is invoked, the clearance level will have the lowest
possible level. The user will therefore not have access to any �les in the stackable

46 Chapter 6. Design

�le system until the level is increased. The program will thus function as a login
program. It will not involve any identi�cation and authentication since we assume
that this has already been done by the operating system, since the user ID of the user
will otherwise not be associated with the process that executes the initcl program.
If the permit_lower_level_login policy option is chosen, the user can specify a level
below his user level which the clearance level should be initialized to. If the speci�ed
level is above the user's user level, the clearance level will be initialized to the user
level. A logout operation will not be supported, so the system must be restarted if
the user subsequently wants to log in with another level.
The clearance level can only be initialized once, so after the initcl program has
been invoked, any further invocations will be ignored by the stackable �le system. If
the visibility_manager is running, it will be noti�ed about the clearance level and
use it to determine whether window should be visible or not.

seac_destroy destroys the stackable �le system and terminates the visibility_manager
and file_open_monitor process. Furthermore, it ensures that all �le levels and user
levels are stored persistently. Only the super user is permitted to use this program.

6.4 File Level Management

A �le level is associated with each inode number in the stackable �le system. The file
level management subsystem provide three programs that can be used to set and retrieve
these �le levels:

setfl sets the level for a �le. The level can be any positive integer. If the visibility_manager
is running and a user has the �le open in an editor, the visibility_manager will be
noti�ed about the change of level and if the new level implies that the visibility of
the window should change it will map or unmap the window accordingly. Only the
super user is allowed to change the �le level.

getfl retrieves the �le level for a given �le. If the hide_non-readable_�les security policy
has been chosen, it will not be possible to retrieve this level if the �le is non-readable
according to the no_read_up or no_read_down security policies.

listfl lists the �le name and corresponding �le level for every �le in a given directory. If
no directory is speci�ed, the �le level for the current working directory will be printed.
If the hide_non-readable_�les security policy has been chosen, all the names of non-
readable �les will be skipped in the listing. Whether a �le is readable depends on
the current clearance level and the no_read_up or no_read_down parameters. The
stackable �le system can therefore also provide �ltering by hiding �le names; the
purpose is that information �ow via �le names must be prevented.

6.5 User Level Management

The user level management subsystem provides three programs that can be used to set
and retrieve user levels. A user level is associated with each user ID in the stackable �le
system. The default user level will be the lowest possible level, which is zero.

6.6 Window Management 47

setul sets the level for a user. The level can be any positive integer and it will be
associated with the user ID of the user. If no user level is explicitly associated with a
user ID, the default value zero will be used. Only the super user is allowed to change
the user level.

getul retrieves the user level for a given user. A user can retrieve his own level, but not
the level of another user. The super user can retrieve the level of any user.

listul lists the user name and corresponding user level for every user who has a valid
login account in the system. An account is considered to be valid if it belongs to a
normal user and not a system process such as an FTP demon.
Only the super user is allowed to list the user levels. This is because of the principle
of least privilege. A malicious user who has a low level could abuse this information
to determine which account he should try to break into in order to obtain a higher
security level.

6.6 Window Management

The main responsibility of the window management subsystem is to ensure that a person
is prohibited from viewing sensitive information in windows on the screen. This task is
accomplished by means of a sensor client along with the following three programs:

visibility_manager The visibility_manager acts as a server for all the programs in
the window management subsystem, except getcl. Its main task is to manage the
visibility of windows and ensure that they are mapped or unmapped according to
the window levels and the current clearance level.
It is also the responsibility of the visibility_manager to ensure that the clearance
level in the stackable �le system is updated. The clearance level should be set to the
environment level when a person enters the environment and the detected environ-
ment level is less than the current clearance level. The clearance level should also
be updated when an subject who currently has the lowest subject level leaves the
environment. If all subjects leaves the environment, including the user, the clearance
level should be set to the lowest possible clearance level.

file_open_monitorWhenever a �le is opened in the stackable �le system, the file_open_monitor
will notify the visibility_manager about this by sending a message to the visibility_manager.
This message will contain information about the process ID of the editor that opened
the �le, the inode number, �le level, and �le name. The visibility_manager can
use the �le level to determine the window level since it equals the maximum �le level
among all the open �les in the editor.
file_open_monitor will only report/discover when regular �les or links are opened,
not directories.

sensor_server The sensor_server receives information about a person form a sensor_client
and relays it to the visibility_manager. The information includes the level of the
person and the direction. The direction can be either �in� or �out�, depending on
whether the person is entering or leaving the environment.

48 Chapter 6. Design

These programs must either be started by the super user or be started automatically as
part of the operating system startup. This will prohibit that a non-privileged user simply
terminates a process by sending it a kill signal since a user will not have access to do so in
a Unix system.

The system also provides a few programs that can be used by any user to retrieve status
information about the system:
listwl list the window levels for all the current windows along with other status infor-

mation.
The �le names of secret �les will be replaced by �unavailable�.

listsl list the subject levels for every subject in the environment. If no person is in the
environment, the list will only contain the level of the user who has currently logged
in.

getcl retrieves the current clearance level from the stackable �le system. This level equals
the minimum level in the list returned by listsl.

6.7 Motion Detection using Sensors

The sensor subsystem should provide information about persons on the physical premises
to the logical part of the system. To achieve this we need to collect data with some sensors
and use some software to interpret the data. When designing the sensor subsystem it
should be possible to use di�erent kinds of sensors and also several at once. Thus the
sensor subsystem will be disjoint form the rest of system and have a simple interface to it.

The important thing in this sensor subsystem is that we can show the integration of the
physical world with the logical access control. Since it is only a prototype it is not important
that complete coverage of the physical environment is achieved or that every sensor type
is tested. We want to detect when someone enters the o�ce through a designated way.
We do not want to attempt to gather more information about the person, but the system
should be able to handle possible additional information, such as a di�erent level based on
some form of recognition.

The sensors will provide simple motion detection. We will be able to tell if motion
is present or absent, and whether the motion was caused by persons. Furthermore, we
need to determine in what direction the person is moving, if he is entering or leaving the
physical environment. We want to �nd an easy way to achieve the desired information
about the motion without the use of complicated motion analysis. This means that we are
not interested in tracking the motion, recognizing people or similarly complicated tasks.
The system will use a simple analysis to reduce the complexity of calculations in the system,
and furthermore, the analysis is not the main focus of the project as this is not our area
of expertise. It should, however, be possible to use more complicated analysis or sensors if
so desired.

6.7.1 Choice of Sensors

We chose to use web-cameras as example sensors. They have the advantage that they are
cheap and widely available. Web-cameras also have an interface to computer systems that
is straight forward, drivers already exists and they connect to the system via USB cables.

6.7 Motion Detection using Sensors 49

The pictures taken by web-cameras can be used to preform simple motion detection
analysis on, such as di�erential motion analysis. This does not reveal anything about
the direction of the movement, but we do need to know which way people move, if they
entering or exiting the o�ce. To solve this problem while still using di�erential analysis,
we can use two cameras, and note the time di�erence between the motion in front of them.
Additional issues we need to know to obtain enough information about the motion will
be done by indirect analysis, e.g. using the number of pictures taken between two points
in time. Using two cameras and di�erential motion detection will result in a cheap and
simple setup, where the analysis is straight forward.

A web-camera is a simple passive sensor that only gives information about the presence
or absence of motion. Other passive sensors that could have been used includes infrared
sensors. They are also very cheap, and would simply detect someone passing through a
doorway. The problem with infrared sensors would be the interface to the computer, a
driver and special cables might be needed. More advanced passive sensors would be noise
sensors or touch sensitive �oor. These are more expensive, not to mention more advanced
to install or interpret data from.

The system could also use active sensors such as RFID tags. Employees could wear
RFID tags or similar that are read when entering a room, and on the basis of this infor-
mation determine more accurately what information can be accessed. This is much more
elaborate and expensive than web-cameras, but the system should be prepared to handle
this sort of information from the physical world.

6.7.2 Motion Detection Programs

The sensor subsystem is designed to communicate with the rest of the system through
a client-server architecture. This should be replaceable if there was a need for using
e.g. an event bus architecture. A sensor acts as a client that sends information about
the environment to the sensor_server. A sensor can be either a virtual entity or an
actual sensor system.

A sensor client should provide the following functionality:

sensor client whenever a person enters or leaves the o�ce/environment being monitored,
an event should be sent to the sensor_server. The event should include the subject
level and the direction of the person. The direction must either indicate that the
person enters the room or leaves the room. We have provided the swsensor program
with this functionality.

As mentioned above, we have chosen to implement a sensor client that uses web-cameras
as sensors. To accomplish the motion detection we want, we need some software system.
It consists of two parts, one part that detects motion based on raw input from the camera
by di�erential motion detection. The second part analyzes the results of this to determine
if the motion was caused by a person and the direction of the person. For the �rst part,
the di�erential motion analysis, we use an existing piece of software called Motion[7].

The second part consists of a number of programs providing the following functionality:

event1/event2 are auxiliary programs that are needed due to the way Motion is func-
tioning.

50 Chapter 6. Design

motion_handler does further analysis to determine whether or not the motion detected
was a person passing the camera. One instance is needed for each camera.

camera_client will collect the data from the two motion handlers and determine if the
person moved in or out, and pass this information on the sensor_server. The
communication variables as well as the level for a default person is passed to the
program on start.

6.7.3 Design of Physical Premises

When designing the sensor subsystem an important part of it is the physical premises.
We try to gather information about the physical world, and for this information to be as
accurate as possible we need to lay out the physical environment carefully.

The cameras need to placed so they will detect any persons entering the room. They
should be placed so there will be a distinct time di�erence between the passing in front of
one camera to passing in front of another, so we can determine the direction of movement.
It is also important to consider what the surface the camera is placed on. It must be placed
so a random push or jump on the �oor does not jar the camera too much, as this will of
course be considered as motion, since it would generate a large pixel wise di�erence. A
possible way to prevent this is to screw the cameras into the ceiling or wall.

The computer placement is also important. Firstly, it should be placed so that you
cannot look at the screen without passing in front of the cameras, for example by standing
in a doorway. It has to be impossible to look at the computer screen without being detected
by the sensors. Secondly, the computer should be far enough from the sensors to allow the
software to process the information, so that sensitive information will already be removed
from the screen when a person arrives in front of it.

Furthermore the general design of the room and building need to be considered. It
should not be possible to circumvent the system by, for example, crawling through a
window or just looking through it. Our system has not directly taken such things into
account, but it can be expanded by adding sensors that detect persons in these locations.

6.8 CSP Speci�cation

In this section, the interactions between the user level processes will be described at a high
level using a formal speci�cation. The protocols will be described using the notation in [37].
This implies that Communicating Sequential Processes (CSP) will be used to describe
the message passing between the communicating processes, and the Vienna Development
Method Speci�cation Language (VDM-SL) will be used to describe the data types.

CSP can be used to model a system which encompasses multiple concurrent activities
using as a sequence of sequential processes. Each process can be constructed from simpler
processes which describes a subset of the entire process's behavior. Furthermore, processes
can synchronize their activity by sending and receiving messages via channels. A channel
provides a one-way path from a sending process to a receiving process. When CSP is
used to model message passing between processes, the messages transmitted are denoted
communication events. A channel is in this case a FIFO queue of pending communication
events. To initiate a communication, a process can output an expression e to a channel
c using the output expression c!e → P , which behaves like P when another process has

6.8 CSP Speci�cation 51

acquired e by receiving from c. The other process can assign e to a variable x of type
M by using the input expression c?x : M → P . e and x must have the same type M ,
and the process expressions are then said to match. Execution of matching input and
output expressions can be viewed as a distributed assignment that transfers a value from
one process to a variable in another.

VDM is a collection of techniques for the formal speci�cation and development of
computing systems. One of its components is the model-oriented speci�cation language
VDM-SL. A speci�cation in VDM-SL consists of a mathematical model built from simple
data types like sets, lists and mappings, along with operations which change the state of
the model.

The syntax that we will use di�ers from the one used in [37] in two respects. Firstly, a
let expressions has been included for introducing new variables since this makes it easier
to read the speci�cation. Secondly, the map construct from VDM-SL has been included
so that the map type k m-→ v de�nes a mapping from a key of type k to an information
value of type v . The subset of CSP and VDM-SL that we have used is described brie�y in
Appendix A.

The focus in our speci�cation will be the message passing part of the system and not the
details about the functionality of individual processes, since this was described informally
in the previous sections. Furthermore, the speci�cation will only describe the important
parts of the system. We will for instance use CSP to specify how windows are mapped
and unmapped, but CSP will not be used to specify how window status information is
presented to the user and how backup �les are handled. The description of these details is
deferred to the next chapter.

6.8.1 Processes, Channels, and Users

All the user space processes that interact using message passing are shown in Figure 6.3.
Only one instance of each type of process is shown, although multiple instances of some
of the processes may run simultaneously without a�ecting the system behavior. These
processes are editor, sensor_client, setfl, listwl, listsl. The visibility_manager,
file_open_monitor, and sensor_server must run as daemon processes, and initcl and
seac_destroy are used to initialize and shutdown the system. Only one instance of these
processes must run at a time, and any subsequent activations should be rejected since the
system behavior otherwise will be unpredictable. How this is handled is an implementation
issue and will therefore be described in the next chapter.

The channels that connect processes are named left or right. The visibility_manager
acts as a server that communicates directly with all of the other processes, except the
sensor_client. An index has therefore also been included in the channel names for these
channels so that messages that pass through left [i] reach right [i] and vice-versa.

Two types of users are shown in Figure 6.3: root denotes the privileged super user,
and user denotes any non-privileged user or the super user. A user or root interacts
with the system via a Service Access Point (SAP) which may, for instance, be bound to
standard input or output in a terminal. Each SAP will be modelled as a channel in CSP.
A channel that connect a user with a process is named SAPx, where x is an integer. The
two channels that can only be used by root are denoted SAPR1 and SAPR2.

52 Chapter 6. Design

sensor_server

visibility_manager

setfl

listwl

listsl

initcl seac_destroy

window_manager

Root

editor

Root

Sensorsensor_client

User

User

User

SAP4

right

left

right[3]

left[3]

left[4]

left[7]
left[1]

left[5]

SAP7

SAP6

SAP2

left[2]
left[8]

left

right[2]

right[8]

right[6]

right[7]

right[9]

right[5]

right[4]

right[1]

SAPR1

left[9]

left[6]

left[10]

SAPR2

right[1]

right[2]

file_open_monitor

Figure 6.3: CSP processes and channels in the system.

6.8 CSP Speci�cation 53

6.8.2 Data Types

The speci�cation uses a few new types, which are de�ned as follows:

subject_level = N0;
object_level = N0;
PID = N0;
WID = N0;
inode = N0;
string = char∗

FileInfo = string × object_level× inode;
WindowTable = PID

m-→ (WID× string × FileInfo∗ × B);
Error = {INVALID_MESSAGE};

A level is is associated with each subject (i.e. a user, the super user or a person) and
each object (i.e. a �le or a window). An upper limit is not impose on these levels, so they
are just modeled as non-negative integers.

A process, a window, or an inode number is uniquely identi�ed by a non-negative
integer; the PID, WID, and inode types represent process IDs, window IDs, and inode
numbers, respectively.

Each value of type FileInfo represents a �le which is open in an editor, and the elements
in the tuple denote a �le name, a �le level, and an inode number, respectively. Only an
inode, and not a �le name, can be used to uniquely identfy a �le. The �le name is only
used when status information is presented to a user, whereas the inode will be used to
determine whether two �les are identical.

A value of type WindowTable contains mappings from process IDs of editors to tuples.
Each entry in the table represents an editor that has created a window and possibly opened
one or more �les. The elements in the tuple denotes a window ID, an application name, a
sequence containing elements of type FileInfo, and a boolean value that is true if and only
if the window is mapped. The FileInfo sequence is sorted in decreasing order, according
to the �le level in the FileInfo tuple. The window level for the editor is the maximum �le
level of all the �les opened by the editor. Since the sequence is sorted, the window level
will be equal to the �le level in the �rst FileInfo element of the sequence.

To keep the speci�cation simple and maintain the focus on the core functionality of the
system, only three types of errors have been included. These are used to model when a
the system is used before a user has logged in, a sensor client sends an invalid direction to
the sensor server, and a �le level could not be set, respectively. Other erroneous situations
may of course arise, but the handling of these is postponed to the implementation phase
of the system development.

6.8.3 Functions

Since the main purpose of the speci�cation is to describe the message passing between pro-
cesses, some details regarding the functionality of individual processes will not be described
formally. Furthermore, for some parts of the functionality it will not even be possible to
express the desired behavoiur using the available notation. In these cases, a function will

54 Chapter 6. Design

called in the speci�cation and the behaviour of the function will only be described infor-
mally. The type of the return value, function name, and argument(s) of these functions
are as follows:

string get_application_name(window : WID) returns the name of the application that
has created the window .

B contains_inode(file_list : FileInfo∗, inode : N1) returns true if and only if the file_list
contains the inode.

FileInfo∗ insert_sorted_decr(file_list :FileInfo∗,file_info :FileInfo) inserts the file_info
element into the file_list sequence so that the resulting sequence is sorted in decreas-
ing order. The new sequence is returned.

subject_level∗ insert_sorted_incr(subject_list : subject_level∗, env_level : subject_level) in-
serts the env_level element into the subject_list sequence so that the resulting se-
quence is sorted in increasing order. The new sequence is returned.

subject_level∗ remove_env_level(subject_list : subject_level∗, env_level : subject_level) re-
moves env_level from subject_list and returns the resulting sequence.

WindowTable remove_window(table :WindowTable,window :WID) removes the mapping
from table where the information value contains window . The resulting table is
returned.

S ∗ set_to_seq(s : S -set) returns a sequence containing the elements from the set s in an
arbitrary order.

WindowTable update_file_levels(table : WindowTable, inode : N1, level : object_level) up-
dates the table entries in table. Firstly, all the FileInfo tuples which contains inode
are updated so that the level in the tuple is replaced by level . Secondly, the FileInfo
sequences are sorted in decreasing order.

subject_level get_clearance_level() returns the current clearance level.
B set_file_level(inode : N1, level : object_level) sets the �le level for inode to level .
string table_to_string(table : WindowTable) returns a string representation of the table.

It uses the hide_non-readable_�les parameter to determine whether �le names of
non-readable �les should be hidden.

string list_to_string(subject_list : subject_level∗) returns a string representation of the
sequence subject_list .

WID x_create_window() creates a new unmapped window and returns its window ID.
PID getpid() returns the process ID of the process that called this functions.
(PID, object_level, N1, string) block_until_file_opened() blocks until a �le is opened and

then returns the process ID of the program that opened the �le, the �le level associ-
ated with the �le, the inode number of the �le, and the �le name, respectively.

6.8 CSP Speci�cation 55

6.8.4 The Communication Protocol

The system consists of many processes that must interact according to a speci�ed protocol
so that the desired system behaviour is obtained. The most essiential behaviour arises when
a sensor_client process discovers a person in the environment, sends a message to the
sensor_server process, which relayes the message to the visibility_manager process.
The visibility_manager process knows the �le levels of all the open �les because the
file_open_monitor process has informed it about these. It can then use these �le levels
to determine which windows should be visible, when the message about the person is
received from the sensor_server process.

The visibility_manager, file_open_monitor, sensor_server, and sensor_client
are among the most important processes, but the system also consists of other important
processes, and some less important utility processes that are only used to retrieve infor-
mation about the system state. The interactions between all the processes are speci�ed
formally, as shown in Figure 6.4 to Figure 6.8. In the reminder of this section, an informal
description of this speci�cation is provided. This is done by using the process expressions
as a starting point and then describing which messages are send to or received from the
channels.

visibility_manager
The visibility_manager process is the central server in the system that controls the
visibility of windows. In order to perform this task, it must know the security param-
eters no_read_up and no_read_down which, along with the clearance level and win-
dow level, determines whether a window should be mapped or not. In Figure 6.4, the
visibility_manager process will initially receive the values from root which are used to
set the no_read_up and no_read_down parameters.

The visibility_manager process must also control the visibility of �le names of open
�les. This is done using the hide_non-readable_�les security parameter which must also
be set initially. The parameter will, however, only be used when the listwl is invoked
in order to present status information to the user. Since the speci�cation will focus on
the communication protocol, and not on how status information is presented, we will not
specify how hide_non-readable_�les is used in listwl. The parameter will therefore be
omitted from the speci�cation since it would not be used and only reduce the readability
of the speci�cation.

The visibility_manager acts as a server for many di�erent types of clients and it
can therefore receive many di�erent types of messages. To separate the messages from the
di�erent clients, it uses many choice expressions of the form

c1?x1 : M 1 → P1 [] c2?x2 : M 2 → P2

which describes the messages x1 and x2 of type M 1 and M 2 that it is willing to ac-
cept from the clients via channels c1 and c2, respectively. The messages received by the
visibility_manager will always contain at least one input value which indicate the type
of the message. This will always be the �rst input value, and it will be bound to the
the variable op. When an input value is irrelevant, the underscore character is used as a
wildcard to indicate this.

The visibility_manager process uses three choice operators to distinguish between
possible client messages. Messages from left channels with index 2, 3, 4, 5 or 8 will be

56 Chapter 6. Design

ignored. Messages from left [6] or left [7] will result in a reply containing an error message
since the clients that use these channels (i.e. listsl and listwl) expect a reply. Finally,
messages from left [9] will terminate the process.

initcl

The visibility_manager receives an INIT_CLEARANCE_LEVEL message from the
left [1] channel when a user has invoked initcl (see Figure 6.8). If the permit_lower_level_login
parameter is set, the user can specify a level below the level assigned to him, which the
clearance level should be initialized to. This possibility has, however, not been included in
the speci�cation.

VM

Once a user has �logged in� by running the initcl program, the visibility_manager
process behaves like the VM process, see Figure 6.5. Four variables in VM are initialized
when this transition takes place. First of all, a mapping of type WindowTable is initialized
to the empty mapping. Secondly, the sequence subject_list is initialized so that it only
contains the clearance level. The sequence subject_list will be used to store all subject
levels: Whenever a person enters or leaves the environment, the corresponding environment
level will be inserted into or removed from the list, respectively. The user level is not
distinguished from the environment levels in the sequence, so it will also be noted if the
user leaves the environment. The sequence is sorted in ascending order so that the current
clearance level equals the �rst element in the list. It is assumed that only one subject,
namely the user, is present initially and the sequence will therefore only contain one level.
If the subject_list becommes empty, the clearance level will be set to zero.

Finally, the no_read_up and no_read_down variables are initialised and the VM process
is now ready to receive messeages from its clients.

window_manager

Because the window manager plays such an important role in our system, we have chosen
to include it in the speci�cation even though we have not developed a window manager
ourself. Many di�erent window managers exists, ranging from the very basic ones with
only the essential functionality to the very complex ones with many (more or less useful)
extra features. All those which adhere to the Inter-Client Communication Conventions
Manual[32] will, however, maintain the state of a window. The state can either be normal,
iconic or withdrawn. Only the normal and withdrawn states are interesting in our system,
so we have modeled a very simple wm that only maintains the state of windows as a
boolean value: when the wm is noti�ed about a window that is mapped, it will associate
the value true with the window ID of the window that is mapped. Likewise, when a window
is unmapped, it will associate the value false with the ID of the window that is unmapped.

The window manager process in Figure 6.8 is used to initialize the window manager,
and WM is a non-terminating process that models how the state of windows is maintained.
It is assumed that the state of a window is consistent with what is actually displayed on
the screen.

6.8 CSP Speci�cation 57

editor
When a user wants to edit a �le, he will initially start an editor process. As for the window
manager, we have not created a editor ourself, but we will make some basic assumptions
about how it works so that it can be included in the speci�cation. First of all, it is
assumed that the editor has a GUI that is build from a top-level window and possibly
some subordinate windows that are contained within the top-level window. Only the top-
level window is of interest for the system, and it is assumed that it is created using the
function x_create_window(). Whenever an editor is started and the top-level window has
been created, the VM should be noti�ed about this so that it can add an entry to the table
mapping. The editordoes this by sending an XCREATE_WINDOW message containing
the window ID and process ID of the editorto the VM. A window is not visible until it
is mapped, so the next step is to map the vindow and notify the window manager about
this event. The editorsends an XMAP_WINDOW message to the window manager
which then updates its map, winmap, so that it re�ects the change in window visibility.
Afterwards, the editoris ready to be used by the user, who may for instance use it to
open, read, write, and close �les. This has not been modeled in the speci�cation. Instead,
the editor will just block until the user kills it by sending an XDESTROY_WINDOW
message. When it is killed, it should �rst of all notify the window manager about the state
change. Secondly, the visibility_manager should be noti�ed about the event so that it
can remove the entry corresponding to the window ID from the table mapping.

�le_ open_monitor
The main concern for the VM is not which windows are created by an editor, but rather
which �les are opened by editor. The sole purpose of the file_open_monitor process is
to discover when �les are opened by an editor and reporting this event to the VM. How
the file_open_monitor can detect which �les have been opened depends on how the sfs
is implemented. To keep the speci�cation at a high abstraction level, we have modeled
this part by the function block_until_file_opened(),which simply blocks until the user
opens a �le. Whenever a new �le is opened, the process ID, �le level, inode number,
and �le name is returned. If the �le level is negative, it indicates that the seac_destroy
program has been called and that the file_open_monitor therefore should terminate.
Otherwise, file_open_monitor will just act as a relay in the sense that whenever the
block_until_file_opened() function returns a tuple, this tuple is relayed to the VM.

When VM receives a FILE_OPEN_MONITOR message, it will retrieve the entry from
the table mapping that contains the process ID of the editor. If the �le is not already
open by the editor, the entry will be updated so that it is registered that the �le is now
opened in the editor. As noted previously, it will not be registered when the �le is closed
since this is not possible to discover in practice.

sensor_client and sensor_server
The sensor_client should detect when a person or the user enters or leaves the environ-
ment. It will not distingush between persons and the users, so the term subject will be
used in the following description, since it covers both.

When a subject enters the environment, the sensor_client should detect the level of
the subject along with his direction. The sensor_client should not interpret these data;

58 Chapter 6. Design

instead, it should relay them to the sensor_server. The sensor_server is a server for
all the di�erent sensor types that may be deployed in the environment. First of all, it
checks that the direction is valid, i.e. it must be either `i' or `o'. If it is not valid, the level
and direction is ignored since an error has occurred. Otherwise, if the environment level
is non-negative, it will relay the received data to the visibility_manager. As for the
file_open_monitor, a negative level is used to indicate that the process should terminate.

When VM receives a SENSOR_SERVER message, it will initially check the direction.
If it indicates that a subject entered the environment, the VM will examine the subject_list
sequence. If this sequence is empty, no one was present in the environment when the
person entered. The clearance level will always be zero when no one is present, and when
the person enters it will most likely be increased. This person could of course just be
the user who had left the environment temporarily. Because the clearance level is set to
zero when the last person leaves the environment, all windows that show classi�ed �les are
unmapped. When a person subsequently is detected and the clearance level is updated,
some windows may have to be mapped.

The mapping of windows is managed by the MAP process (see Figure 6.6). This is done
by examining the entries in the table mapping and use the stored information to determine
whether the visibility of a window should be changed. The process IDs of the running
editors are used as keys in the table mapping. The MAP process iterates though all these
by creating a sequence of process IDs and then extracting and processing one process ID
at a time. Firstly, the information value in the table mapping is extracted; it is a tuple
containing the window ID, the application name of the editor, a sequence file_list of open
�les, and a boolean value is_mapped that is true if and only if the window currently is
mapped. If is_mapped is true, the window is already mapped, so the MAP process can
skip this window and proceed to the next process ID. Likewise, if the editor has no open
�les the window level is zero and the MAP process can skip this window. If the window
is currently unmapped and has open �les, the �rst element of the file_list sequence is
extracted. Since the file_list sequence is sorted in descending order, the �le level in this
FileInfo element is equal to the window level. This window level, the clearance level and the
security parameters no_read_up and no_read_down are then used to determine whether
the window should be unmapped or not. If the window is mapped, the is_mapped will be
set to true and the window manager will be noti�ed about the state change of the window
via the left [10] channel. The MAP process is then ready to extract and process the next
process ID, if any is left in the sequence of process IDs.

If a person enters the environment and at least one other subject is present, the window
visibility will possibly have to be changed, if the environment level is greater than or
equal to the clearance level. The process used to determine this is the UNMAP process (see
Figure 6.7), which resembles the MAP process. It will also process one pid at a time and
then contemplate the information value which is extracted from the the table mapping.
If it indicates that the window is already unmapped or the editor has no open �les, the
window will be skipped. Otherwise, the window level, clearance level, no_read_up, and
no_read_down are then used to determine whether the window should be unmapped or
not. If the window is unmapped the is_mapped is set to false before the next process
ID, if any, is extracted from the list of available process IDs. Regardless of whether the
window visibility should be changed, the environment level will be inserted into subject_list
sequence at the proper place, re�ecting that a subject is now in the environment.

Another case arises when the SENSOR_SERVER message received by the VM indicates
that a subject leaves the environment. First of all, the environment level will be removed

6.8 CSP Speci�cation 59

from the subject_list regardless of whether the window visibility should change. If it is the
last person in the environment who leaves, all windows with a window level greater than
zero will be unmapped. This is managed by the UNMAP process. If it is the person with
the lowest level who leaves, i.e. the detected environment level equals the clearance level,
some windows will possibly have to be mapped. This is managed by the MAP process.

set�
When a new �le is created by a user, the �le level is set to the clearance level. In some
situations it may, however, be desired to change this level afterward to another value.
Only the super user is allowed to perform this change using the setfl program. In gen-
eral, the super user should not be working on classi�ed �les. A special situation arises
if a non-privileged user is capable to log in as the super user, using for example the su
program. He may then for example have some open windows showing classi�ed �les, and
the visibility_manager program will then have stored the levels of these �les. If the
user then uses the setfl program to change some �le levels in the sfs, this will result in
inconsistency if these �les are open in an editor. To avoid such inconsistency, the setfl
program will send a message to the visibility_manager, informing it about the �le level
change. (If the visibility_manager is not running, such a message will just be discarded
by the system.) The subject_list sequence cannot be empty when setfl is called, since
someone must be present in the environment in order for it to be invoked.

The visibility_manager will update the table mapping so that the �le levels are
updated. Furthermore, if the �le level is less than the current clearance level some windows
will now possibly have to be mapped, depending on whether the �le level change resulted
in a change in the some window levels. If the �le level is greater than the current clearance
level some windows will now possibly have to be unmapped.

In practice, this scenario should only take place if the user uses some form of physical
access control, such as locking the door. Otherwise, a person might enter the environment
and force the user to misuse the super user privileges. He could for instance force the user
to change the levels of some �les, or even worse, he could force him to unmount the sfs so
that all �les are freely available in the underlying native �le system.

The described �le level noti�cation part of the system has only been included because
we will not make any assumption about whether a user is also capable of logging in as
the super user while he has one or more editors open with classi�ed �les. This part is,
however, a vulnerable part of the system and the system will in general only be secure if
the users are not capable of logging in as the super user.

listwl and listsl
The listwl and listsl programs can be used to retrive status information about the currently
existing windows and the levels of subjects in the environment, respectively. When the VM
receives a message from one of these programs, it will create a string representation of the
requested inforamtion and return it.

destroy
A program has been provided that should be used to shut down the system. First of all,
it should send a DESTROY message to the VM, indicating that it should terminate. Fur-

60 Chapter 6. Design

thermore, it should ensure that the block_until_file_opened() stops blocking and returns
a negative level so that the file_open_monitor also will terminate, cf. Figure 6.8.

visibility_manager def= (SAPR1?(no_read_up : B,no_read_down : B) →
(left [1]?(op : {INIT_CLEARANCE_LEVEL}, user_level : subject_level) →

VM [{7→}, [user_level],no_read_up,no_read_down]
[]left [i ∈ {2, 3, 4, 5, 8}]?_→ visibility_manager
[]left [i ∈ {6, 7}]?_→ left [i]!INVALID_MESSAGE → visibility_manager
[]left [9]?(op : {DESTROY }) → STOP)

Figure 6.4: CSP speci�cation of the visibility manager process. The visibility_manager
initializes the system by means of input from the super user and a non-privileged user.

6.8 CSP Speci�cation 61

VM [table : WindowTable, subject_list : subject_level∗,no_read_up : B,no_read_down : B]
def= (left [2]?(op : {XCREATE_WINDOW }, pid : PID,win : WID) →

VM [table † {pid 7→ (win, get_application_name(window), [], true)}, subject_list]
[]left [3]?(op : {FILE_OPEN_MONITOR},file_name : string, pid : PID, level : object_level,

inode : inode) →
let (win : WID, app_name : string,file_list : FileInfo∗, is_mapped : B) = table(pid)
in if (¬ contains_inode(file_list , inode))

then VM [table † {pid 7→ (win, application_name,
insert_sorted_decr(file_list , (file_name, level , inode)), is_mapped)},

subject_list ,no_read_up,no_read_down]
else VM [table, subject_list ,no_read_up,no_read_down]

[]left [4]?(op : {SENSOR_SERVER}, env_level : subject_level, direction : char) →
if (direction = `i')
then if (subject_list = [])

then MAP_WINDOWS [set_to_seq(dom table), table, [env_level],
no_read_up,no_read_down]

elseif(env_level < hd subject_list)
then UNMAP_WINDOWS [set_to_seq(dom table), table,

[env_level]̂subject_list ,no_read_up,no_read_down]
else VM [table, insert_sorted_incr(subject_list , env_level),

no_read_up,no_read_down]
elseif(direction = `o')

then if (len subject_list == 1)
then UNMAP_WINDOWS [set_to_seq(dom table), table, [],

no_read_up,no_read_down]
elseif(env_level = hd subject_list)
then MAP_WINDOWS [set_to_seq(dom table), table,

remove_env_level(subject_list , env_level),no_read_up,no_read_down]
else VM [table, remove_env_level(subject_list , env_level),

no_read_up,no_read_down]
else VM [table, subject_list ,no_read_up,no_read_down]

[]left [5]?(op : {SET_FILE_LEVEL}, inode : inode, level : object_level) →
if (level < hd subject_list)
then MAP_WINDOWS [set_to_seq(dom table),

update_file_levels(table, inode, level), subject_list ,no_read_up,no_read_down]
else UNMAP_WINDOWS [set_to_seq(dom table),

update_file_levels(table, inode, level), subject_list ,no_read_up,no_read_down]
[]left [6]?(op : {LIST_WINDOW_LEVELS}) →

left [6]!table_to_string(table) →
VM [table, subject_list ,no_read_up,no_read_down]

[]left [7]?(op : {LIST_SUBJECT_LEVELS}) →
left [7]!list_to_string(subject_list) →
VM [table, subject_list ,no_read_up,no_read_down]

[]left [8]?(op : {XDESTROY_WINDOW },window : WID) →
VM [remove_window(table,window), subject_list ,no_read_up,no_read_down]

[]left [9]?(op : {DESTROY }) → STOP)

Figure 6.5: CSP speci�cation of the VM process, which acts as a server for many types of
clients.

62 Chapter 6. Design

MAP_WINDOWS [pid_list : PID∗, table : Window_Table, subject_list : subject_level∗

no_read_up : B,no_read_down : B]
def= (if (pid_list = [])

then VM [table, subject_list ,no_read_up,no_read_down]
else let pid : PID = hd pid_list ,

(window : WID, app_name : string,file_list : FileInfo∗, is_mapped : B) = table(pid)
in if (is_mapped ∨ file_list == [])

then MAP_WINDOWS [tl pid_list , table,
subject_list ,no_read_up,no_read_down]

else let (_,window_level : object_level,_) = hd file_list ,
clearance_level : subject_level = hd subject_list

in if (¬ (no_read_up ∧ window_level > clearance_level ∨
no_read_down ∧ window_level < clearance_level))

then left [10]!(XMAP_WINDOW ,wid) →
MAP_WINDOWS [tl pid_list , table†
{pid 7→ (window , app_name,file_list , true)},
subject_list ,no_read_up,no_read_down]

else MAP_WINDOWS [tl pid_list , table,
subject_list ,no_read_up,no_read_down])

Figure 6.6: CSP speci�cation of the MAP_WINDOWS process.

UNMAP_WINDOWS [pid_list : PID∗, table : Window_Table, subject_list : subject_level∗

no_read_up : B,no_read_down : B]
def= (if (pid_list = [])

then VM [table, subject_list ,no_read_up,no_read_down]
else let pid : PID = hd pid_list ,

(window : WID, app_name : string,file_list : FileInfo∗, is_mapped : B) = table(pid)
in if (¬ is_mapped ∨ file_list == [])

then UNMAP_WINDOWS [tl pid_list , table,
subject_list ,no_read_up,no_read_down]

else let (_,window_level : object_level,_) = hd file_list
clearance_level : subject_level = hd subject_list

in if (no_read_up ∧ window_level > clearance_level ∨
no_read_down ∧ window_level < clearance_level)

then left [10]!(XUNMAP_WINDOW ,wid) →
UNMAP_WINDOWS [tl pid_list , table†
{pid 7→ (window , app_name,file_list , false)},
subject_list ,no_read_up,no_read_down]

else UNMAP_WINDOWS [tl pid_list , table,
subject_list ,no_read_up,no_read_down])

Figure 6.7: CSP speci�cation of the UNMAP_WINDOWS process. The process unmaps
all windows according to the read-security policy.

6.8 CSP Speci�cation 63

initcl def= (right [1]!(INIT_CLEARANCE_LEVEL, get_clearance_level()) →
STOP)

window_manager def= WM [{7→}]
WM [winmap : WID

m-→ B]) def= (right [j ∈ {1, 2}]?(XMAP_WINDOW ,window : WID) →
(WM [winmap † {window 7→ true}]
[]right [j ∈ {1, 2}]?(XUNMAP_WINDOW ,window : WID) →
WM [winmap † {window 7→ false}]))

editor def= (let wid : WID = x_create_window()
in (right [2]!(XCREATE_WINDOW , getpid(),wid) →

left !(XMAP_WINDOW ,wid) →
SAP2?(op : {XDESTROY_WINDOW }) →
left !(XUNMAP_WINDOW ,wid) →
right [8]!(XDESTROY_WINDOW) → STOP))

file_open_monitor def= (let (file_name : string, pid : PID, level : object_level, inode : inode) =
block_until_file_opened()

in if (level >= 0)
then right [3]!(FILE_OPEN_MONITOR,file_name,

pid , level , inode) → file_open_monitor
else STOP)

sensor_client def= (SAP4?(level : subject_level, direction : char) →
right !(level , direction) → STOP)

sensor_server def= (left?(level : subject_level, direction : char) →
if ((direction 6= `i' ∧ direction 6= `o'))
then sensor_server
elseif(level >= 0)
then right [4]!(SENSOR_SERVER, level , direction) → sensor_server
else STOP)

setfl def= (SAPR2?(inode : inode, level : object_level) →
if (¬ set_file_level(inode, level))
then STOP
else right [5]!(SET_FILE_LEVEL, inode, level) → STOP)

listwl def= (right [6]!LIST_WINDOW_LEVELS →
right [6]?(window_info : string) →
SAP6!window_info → STOP)

listsl def= (right [7]!LIST_SUBJECT_LEVELS →
right [7]?(subject_list : string) →
SAP7!subject_list → STOP)

seac_destroy def= (right [9]!DESTROY → STOP)

Figure 6.8: CSP speci�cation of the client processes. The sensor_serveris both a client
and a server.

64 Chapter 6. Design

65

Chapter 7

Implementation

A system that conforms to the model described in Chapter 5 and the design described
in Chapter 6 has been implemented. Many di�erent technologies have been used for this
implementation, ranging from a �le system description using the FiST language at the
lowest layer to GUI programming in Java at the highest layer. In this chapter, the imple-
mentation of the SEAC system is described, starting at the lowest abstraction layer and
ending at the highest. The focus will be on how the system is implemented, and not on
how it should be used since these details are described in the user's guide in Appendix C.
For instance, all the programs that were described at a high level in Chapter 6 are reviewed
in the user's guide, where we also introduce the command line arguments.

In Section 7.1, we will describe how a stackable �le system can be used to store and
retrieve �le levels and user levels and provide logical access control based on these levels
and a security policy. The combination of the logical and physical access control is handled
by the window management subsystem. In Section 7.2, we will describe how this part is
implemented, using the CSP speci�cation developed during the design phase as a starting
point. Furthermore, some issues regarding the handling of backup �les that were not fore-
seeable during the design phase are also described. The detection of persons is performed
using two web-cameras, a motion detection program, and programs that analyze the mo-
tion detection output and use parameters to determine whether persons have entered or
left the environment (see Section 7.3). Finally, the implementation of the Security Man-
agement GUI, which can be used to indirectly run command-line programs, is presented
in Section 7.4.

7.1 The Stackable File System

A stackable �le system that must enforce logical access control has been implemented
using a FiST input �le and C kernel code when the FiST language did not su�ce. More
precisely, the code related to the storage of the �le and user levels and the reading of
the security policy parameters have been written in three separate C �les. The functions
provided by these �les are invoked in the FiST input �le, for example when a user level
has to be retrieved from the user level �le. The three �les where the �le levels, user levels,
and security policy are stored must be speci�ed when the SEAC system is started up and
the seac_init program is run. File levels should not be associated with these �les, and
they should therefore not be stored in macfs; instead, they should preferably be stored in

66 Chapter 7. Implementation

a directory where only the super user has write access to them. For further details about
the system startup, see Appendix C.1.

7.1.1 Storage of Levels

In order for the stackable �le system to provide MAC, it must associate a �le level with
each inode number in the �le system. This is implemented using a hashtable, where the
key is the inode number and the information value is the �le level (see Appendix F.2.3).
When the SEAC system is in use, this hashtable is stored in memory; when the system is
shut down, the hashtable will be stored in a regular �le which is speci�ed by the super user
at system startup. The main reason for storing all the �le levels in memory is that this
yields better performance when the �le levels must be retrieved frequently. Furthermore,
the memory requirements by the system are relatively low: each entry in the hashtable
requires 8 B (4B for the user level and 4B for the user ID). Unless many millions of �les
are created, this approach should not course memory consumption problems.

The users obtains access to objects via processes, and it is the user ID associated with
the process that is used to determine whether the access should be granted or denied. To
enforce a MAC policy, the stackable �le system must therefore store a user level for each
user in the system. This is done by the super user with the setfl program, which will
store the user level in a �le along with the user ID. Unlike the �le levels, the user levels
are not cached in memory, so when a user level should be retrieved, it is read directly from
this �le (see Appendix F.2.4).

7.1.2 FiST Input File

In this section, we will describe the macfs �le system using the FiST input �le shown in
Appendix F.2.1 as a starting point. The details regarding the FiST language will not be
described in this thesis; instead, we refer to [44]. We will, however, describe the parts of
the language that we have used.

The FiST input �le speci�es the functionality required by our stackable �le system. It
is divided into four sections as shown in Figure 7.1. The �rst section is enclosed between
%{ and %}, and it contains C declarations for the used variables (e.g. for the the security
policy parameters) and function prototypes.

%{
C Declarations
%}
FiST Declarations
%%
FiST Rules
%%
Additional C Code

Figure 7.1: FiST grammar outline

The second section contains FiST declarations, which are declarations that globally
a�ect the behavior of the code produced by the FiST generator. Initially, this section
speci�es which other �les contain C kernel code, and which �les contain user space code

7.1 The Stackable File System 67

that should use the functionality provided by the stackable �le system. Most importantly,
it de�nes special data structures that are used by the rest of the stackable �le system code.

The third section contains FiST Rules, which describe rules for controlling the behavior
of �le system functions. The rules can also specify the actions taken by the stackable �le
system when an ioctl system call is invoked.

The fourth section contains Additional C code, and its main purpose is to provide a
�exible extension mechanism that enables the integration of C and FiST code. The section
may contain arbitrary C code that can be called from anywhere. For example, it contains
the function that is invoked whenever the access permissions for a given inode is checked
in the VFS layer.

De�ning New I/O Controls
The FiST declarations are mainly data structures that are used for declaring new ioctl
requests. Ioctls (I/O controls) are used in the FiST system as an operating extension
since they can be used to pass arbitrary data between user space and the kernel. Each
FiST declaration of an ioctl speci�es the variables that should be passed between user
space and kernel space. When the FiST generator fistgen is run on the FiST input
�le, it will generate a C struct de�nition that contains the required variables and a code
that can be used to identify the ioctl. For example, the GET_FILE_LEVEL ioctl decla-
ration speci�es a level and an inode variable, and fistgen will generate the C struct
_fist_ioctl_GET_FILE_LEVEL which can hold these two variables, and an ioctl code stored
in the variable FIST_IOCTL_GET_FILE_LEVEL of type int.

For each of the FiST ioctl declarations, the FiST rules section contains a correspond-
ing FiST rule. For example, when the getfl program invokes an ioctl system call to
retrieve a �le level, it will initially set the inode number of the �le in the C struct.
When the operating system makes a context switch and transfers control to macfs, the
%op:ioctl:SET_FILE_LEVEL FiST rules is used. This rule will extract the inode from the
C struct, �nd the corresponding �le level and store this in the C struct. When control is
transferred back to the getfl program, it can extract the �le level from the C struct and
print it to standard output, making it visible to the user who initially started the program.

The ability to de�ne new ioctl codes and implement their associated actions is the
functionality provided by FiST that we have used most extensively: For each of the user
space programs that must pass data to or receive data from macfs, a FiST ioctl declara-
tion and corresponding rule has been implemented. There are 12 such programs: getul,
setul, listul, getfl, setfl, listfl, visibility_manager, getcl, initcl, seac_init,
seac_destroy, file_open_monitor. When a user space program needs to interact with
the stackable �le system via an ioctl system call, it must �rst of all open a �le and thereby
retrieve a �le descriptor to the �le system. When the ioctl system call is invoked, this
�le descriptor is used as argument in addition to the C struct and ioctl code generated by
fistgen. An arbitrary �le in macfs can be used, since all the MAC is implemented in the
kernel, independently of which �le was opened. The only requirement is that the programs
will be granted access to opening the �le. One �le (or rather directory) that exists and
should be readable by all is the mount point, and the 12 mentioned programs will all use
the mount point when they need to retrieve a �le descriptor to macfs.

The mount point is de�ned to be �/mnt/macs/� in the header �le mount_point.h
(see Appendix F.1.1), and this �le should be modi�ed if another mount point should be

68 Chapter 7. Implementation

used. This in�exible approach to specifying a constant has been used because there are
12 programs that must know the mount point, and it would make the programs less user-
friendly if the mount point should be speci�ed as a command line argument for each of
them. Another approach could be to store the mount point in shared memory, but then
all the programs should know the shared memory ID. We have taken the rather in�exible
approach because we believe that the mount point rarely will need to be changed, if ever.

Extending File System Functions
Besides the rules for all the ioctl declarations, the FiST rules section speci�es rules for
altering the behavior of some system calls related to �les and directories. First of all, the
behavior of the �le operations create and unlink are slightly modi�ed after the corre-
sponding operations are called in the lower �le system:

%op:create:postcall When a new �le is created, its �le level will be initialized to the
clearance level. The inode number of the �le is associated with this �le level by
inserting an entry into the hashtable. If a hard link subsequently is created to the
�le, the �les will have the same �le level since they have the same inode number.

%op:unlink:postcall When the unlink operation is invoked, the number of hard links
associated with a given inode is reduced by one. If the number of hard links is zero
after the unlink operation has been invoked in the lower �le system, the entry in the
hashtable that contains the inode is deleted.

The behavior of the directory operations mkdir, rmdir and readdir have been extended
by three FiST rules:

%op:mkdir:postcall When a new directory is created, its �le level will be initialized to
the clearance level. The rule is identical to the %op:create:postcall, except that
it works on directories.

%op:rmdir:postcall When a new directory is deleted and the number of hard links
becomes zero, its entry in the hashtable is deleted. The rule is identical to the
%op:unlink:postcall, except that it works on directories.

%op:readdir:call If the security policy hide_non-readable_�les has been chosen and the
caller is not the super user, all the non-readable �les will be skipped in when the
readdir system call is invoked. The e�ect of this can be seen when a user, for
example, calls the ls or listfl programs and they read a directory entry: all the
names of non-readable �les will be omitted in the generated �le list.

File Open Detection
The program file_open_monitor is used to notify the visibility_manager about �les
that are opened in macfs, ensuring that the window levels maintained by visibility_manager
remain updated. The kernel space part of the file_open_monitor program is implemented
using the %op:ioctl:OPEN rule, which blocks on the semaphore open_sem until a �le is
opened. This rule interacts with the file_open_intercepted() function in the fourth sec-
tion of the FiST input �le via open_sem. file_open_intercepted() is invoked whenever a

7.1 The Stackable File System 69

�le is opened, i.e. whenever the open system call is invoked by an editor. If the opened �le
is a regular �le, file_open_intercepted() will copy the editor's process ID, the �le level,
the inode number and the �le name into global variables. file_open_intercepted()
will subsequently increment the value of the open_sem semaphore, indicating that the
global variables contain information about a newly opened �le. The %op:ioctl:OPEN
rule will then stop blocking on open_sem and copy the values of the global variables into
bu�ers which can be read by the user space part of the file_open_monitor process.
The file_open_monitor will subsequently send a message containing these values to the
visibility_manager. Afterwards, it will block again until a new �le is opened, repeating
the described steps until seac_destroy is invoked and kills it.

The FiST language cannot be used to add code that should be executed whenever the
open system call is invoked. Since it is essential for our system that it is detected whenever
a �le is opened, we added an invocation of file_open_intercepted() to the function
wrapfs_open in the templates. wrapfs_open is invoked whenever the system call open is
invoked. The changes made to the templates are described in detail in Appendix B.1.1.

The global variables, which contain information about an opened �le, are read by a
single process (file_open_monitor) and written by all processes that open a �le in macfs.
This use of global variables in the kernel should not cause concurrency issues, if the used
kernel is non-preemptive and the computer only has one processor. The Linux 2.4 kernel
which our system is developed for is non-preemptive[27], but SMP (symmetric multipro-
cessing) issues will arise on computers with multiple processors. On a single processor
computer, a process that invokes the open system call will not be interrupted while it is
assigning new values to the global variables.

Mandatory Access Control
The MAC enforced by the system is implemented in the inode_permission() function
in the fourth section of the FiST input �le. This function should be invoked when-
ever a process attempts to access a �le or directory in the macfs. One way to ensure
that it is invoked is by modifying the stackable �le system templates slightly so that our
inode_permission() function is invoked whenever the operating system performs access
checks. More precisely, the function wrapfs_permission() in the templates is invoked
whenever a Unix permission check is performed. wrapfs_permission() takes a mask of
type int as argument, and when read access to a �le is checked the mask is 4, and when
write access is checked the mask is 2. The inode_permission() function uses the same
mask to determine whether read or write access should be granted. Furthermore, it will
use the no_read_up, no_write_down, no_read_down, and no_write_down parameters,
the �le level associated with the inode, and the clearance level to determine whether the
access should be granted. If not, the error code EPERM is returned and the user space
program will therefore see the error message `permission denied'. If the user ID associated
with the process is zero, i.e. it is the super user, the access will always be granted.

Besides the access control that is determined by the security policy parameters, many
of the FiST ioctl rules also enforces access control: for those user space programs that
must only be invoked by the super user, it is checked that the user ID associated with the
process is zero. It is essential for the security of the system that the user ID is checked in
the kernel and not in the user space programs. If the checks were made in a user space
programs, a malicious user could easily circumvent the access control by writing his own
program where no access control is enforced. The program should use the ioctl system

70 Chapter 7. Implementation

call to obtain access to the �le system, and with no access control he could, for example,
change �le levels and user levels.

Auditing
The macfs provides a primitive audit mechanism: if an erroneous situation occurs, an entry
is written in the system log using the printk function. This could for example be an `out
of memory' error or that a �le level was unexpectedly not associated with an inode. On
most Linux systems, the system log is stored in /var/log/messages and only the super
user has read and write access to this �le. Whenever an entry is written to the log, it is
automatically preceded by the date and time.

If set DEBUG macro is set, additional debugging information is written to the system
log. The macfs will record many types of events, such as the creation or deletion of
�les or directories, the setting of a �le or user level and the retrieval of a �le or user
level. By default, DEBUG is turned of, but it can be set at compile time as explained in
Appendix B.1.

7.2 Window Management

The window management subsystem involves many processes that send messages to each
other, as shown in the CSP speci�cation in Section 6.8. This message passing has been
implemented using many di�erent types of IPC mechanism, as described in this section.
The IPC mechanisms are XEvents, sockets, semaphores, shared memory, and named pipes.
The reasons for choosing these mechanisms will be motivated as the processes that uses
them are described.

Three of the programs in the window management subsystem (visibility_manager,
file_open_monitor, and sensor_server) must be started by the super user and subse-
quently run as demon processes. It is very important from a security perspective that they
are started by the super user, since they then will be protected by the Unix security mech-
anisms. In particular, a non-privileged user must not be allowed to kill them by sending
them a signal, regardless of whether this is done deliberately or not.

7.2.1 The Visibility Manager

The most important program in the window management subsystem is the visibility_manager
(see Appendix F.5.1): it acts as a server for many other processes and is responsible for
changing the visibility of editors. In the CSP speci�cation for the visibility_manager
process, the two data structures table and subject_list are used to maintain the state of
the window management subsystem. The table stores the window related data and is im-
plemented using a hashtable. The subject_list stores the detected subject levels and is
implemented using a singly linked list. We have not implemented these data structures
ourselves, but have used the GHashTable and GSList provided by the glib library[8]. This
library is developed as part of the GNOME project, and we have used it extensively in
the user space part of our code since it provides many general purpose functions and data
structures.

In the CSP speci�cation, we used a choice expression to separate the di�erent messages
that are received from the di�erent types of clients. This part is implemented using an

7.2 Window Management 71

event loop, where a queue of pending events is maintained. The visibility_manager
will repeatedly extract one event from the queue, process it according to its type, and
then possibly block until a new event is added to the queue. By using an event loop, the
visibility_manager acts as a single threaded server that processes one client request at
at time.

One IPC mechanism that can provide a queue of pending events is the Unix message
queue. Another, more unconventional, mechanism is to use XEvents. An XEvent is a data
structure that is included in the Xlib library. It can contain many di�erent types of data
because it is the principal method by which clients get information from the X server or
other X clients. We have chosen to use XEvents because the visibility_manager has to
receive events from the X server whenever a window in its table is destroyed. A single
event loop can therefore only be implemented using XEvents.

An XEvent can only be sent to an X client, i.e. an application that has created win-
dow. As part of its initialization, the visibility_manager becomes an X client when
it creates a window. The window is not mapped so it is invisible. The other processes
must know the window ID of this invisible window before they can send XEvents to the
visibility_manager. The window ID is written to shared memory, and all the clients of
the visibility_manager will subsequently read it there.

7.2.2 Intercepting Window Creation and Destruction

The system has been designed to work with editors that only use one top-level window,
since there then is no ambiguity about which window should be mapped or unmapped.
However, not all editors works this way, and there exists no standard which speci�es that
all applications should use the same window hierarchy. In fact, the ICCCM warns that
�clients must be aware that some window managers will reparent their top-level windows
so that a window that was created as a child of the root will be displayed as a child of
some window belonging to the window manager�. The system can therefore not be used
with all editors, and a user must therefore check that his editor can be unmapped before
he opens classi�ed �les in it. Our tests of the system (see Appendix D.6) showed that the
system works with emacs, nedit, and mozilla, but not with gedit. We used the GNOME
desktop environment during the test with the default window manger, which currently
is metacity. The gedit editor created many top-level windows, and it its behavior was
highly unpredictable. emacs, on the other hand, was very simple in this respect since it
only uses one top-level window. We think that the main reason why the behavior of gedit
is unpredictable is that it is tightly integrated with the GNOME desktop environment and
therefore can use a custom protocol when it communicates with metacity. After all, this
unspeci�ed behavior is permitted since the X Window System provides mechanism, not
policy.

Whenever a new top-level window is created, the visibility_manager process must
be informed about its window ID and the process ID of the application that created the
window. The window ID can be received from the X server since any X client can request
to be noti�ed about window creation events1. The process ID cannot be retrieved from the
X server, but if both the editor and the window manager adheres to EWMH, the process
ID can be retrieved from the window manager. Our experiments showed that a process

1In fact, an X client can select to be noti�ed about all events for any window. If keystroke events are
selected, the X client can eavesdrop a password from any other client on an accessible display[31].

72 Chapter 7. Implementation

ID for a gedit process could be received from metacity, but a process ID could not be
received for emacs. We do not want to make our system depended on a protocol which (at
the time of writing) only is supported by applications that are tightly integrated with a
desktop environment. Another means of detecting the process ID of a newly started editor
process has therefore been used.

The behavior of an editor can be modi�ed by using a preloaded shared library. A
preloaded shared library is a shared library that is loaded before any other shared library
when a dynamically linked program is executed. By creating a preloaded shared library,
one can easily overload functions that belong to the real shared libraries. We have used this
approach to modify the XCreateWindow and XCreateSimpleWindow functions in the library
libX11 (see Appendix F.6.1). Whenever a top-level window is created, these functions will
send a message containing the process ID and window ID to the visibility_manager.
The preloaded shared library will only be used if the environment variable LD_PRELOAD is
set. The details regarding the use of preloaded shared library are described in the SEAC
user's guide in Appendix C.1.2. For further reading on shared libraries, see [20, 41].

When the visibility_manager receives information from the preloaded shared library
about a newly created top-level window, it will add a corresponding entry to its table.
Furthermore, it will requests that the X server sends an XEvent when the window is
deleted. When this occurs, a message of type DestroyNotify is received in the event
loop. It contains the window ID of the destructed window, and the entry in the table that
contains this window ID is subsequently removed.

7.2.3 Intercepting File Open

An XEvent can only be used to send up to 20B of data. This is su�cient for all the mes-
sages, except when the file_open_monitor programs has to send a process ID, application
name, inode number and �le name to the visibility_manager (see Appendix F.5.2). An-
other IPC mechanism is therefore required, and we have chosen to use shared memory,
which is the fastest form of IPC[29]. The �le name is written to shared memory, whereas
the remaining data are sent in an XEvent. To avoid synchronization issues when �les are
opened rapidly one after another, a binary semaphore is used to protect the shared memory
(see Appendix F.1.3). Whenever file_open_monitor detects that a �le is opened, it will
�rst wait on the semaphore until the semaphore value is positive. Then it decrements the
semaphore value by one, writes the shared memory, and sends the XEvent that contains
the remaining data to the visibility_manager. When the visibility_manager receives
the XEvent, it will �rst read the shared memory and then increment the semaphore value
by one. The shared memory can then again be written by file_open_monitor.

7.2.4 Handling of Backup Files

The handling of backup �les depends highly on the editor: some editors create no backup
�les, whereas others create more than one. The editor that we primarily have used during
the development and test of the system is emacs. The system is only a prototype, and
since the handling of backup �le is not an essential part of its functionality, we have chosen
to implement it so that it can handle the backup �les created by emacs. Our experiments
with some of the available editors in the Fedora Core 1 Linux distribution showed that
nedit does not create any backup �le; this is probably due to that it is a very simple

7.2 Window Management 73

editor, at least when compared with emacs. The other editor we tested was gedit, and
our experiments showed that it uses the same backup formats as emacs.

The behavior of an editor can be examined using the strace program. strace inter-
cepts and records the system calls which are invoked by a process and the signals it receives.
Using strace, one can observe how backup �les are handled by an editor. We will describe
how emacs handles backup �les by using an example. The �le test_file.txt will be
used in the example. Initially, the stat program was used to retrieve its inode number as
follows:

localhost(s973732) $ stat --format "%n %i" test_file.txt
test_file.txt 340726

The creation of backup �les involves open and rename system calls, so strace was used to
intercept these calls as follows:

strace -etrace=open,rename -e signal=none emacs test_file.txt

Each line printed by strace contains the system call name, followed by its arguments in
parentheses and its return value:

open("/mnt/macfs/test_file.txt", O_RDONLY|O_LARGEFILE) = 3
...
rename("/mnt/macfs/test_file.txt", "/mnt/macfs/test_file.txt~") = 0
...
open("/mnt/macfs/test_file.txt", O_WRONLY|O_CREAT|O_TRUNC|O_LARGEFILE, 0666) = 3

Most of the system calls have been deleted, as denoted by the dots. This output shows that
emacs creates a backup �le be renaming the original �le so that a tilde character is appended
to the end of the �le name. A new �le is subsequently created with the same name as the
original �le. In other words, the inode that was originally associated with test_file.txt
will after the creation of the backup �le be associated with test_file.txt , and a new
inode is associated with test_file.txt. This can be veri�ed using the stat program:

localhost(root) $ stat --format "%n %i" test_file.txt
test_file.txt 340728
/mnt/macfs
localhost(root) $ stat --format "%n %i" test_file.txt~
test_file.txt~ 340726
/mnt/macfs

A �le level is associated with an inode number, and a newly created �le will acquire a �le
level equal to the clearance level. If the �le level of the edited �le and the clearance level
are identical, this will course no problems. If, however, they are di�erent the �le level of
the edited �le will become the clearance level. Our model speci�es that only the super
used is allowed to change the �le levels, so it is de�nitely not desirable that a user started
editor can change these. Furthermore, since the visibility_manager stores the �le level
along with the �le name, this �le level will no longer be consistent with the �le level stored
by macfs.

74 Chapter 7. Implementation

To solve this issue, we have developed a preloaded shared library that will intercept
whenever a rename system call is made (see Appendix F.6.2). It will compare the two �le
names, and if this comparison indicates that a backup �le is being created, it will send
a message to the visibility_manager. This message will include the process ID and
application name of the editor and the inode number of the �le that is being renamed.
If the visibility_manager can �nd an entry in its table that contains these data, it
will know that a backup �le has been created. Since the inode number after the rename
operation will belong to the backup �le, it will be marked in the table by setting it to
a negative value. As the example using strace illustrated, the newly created �le will
be opened immediately after it is created. The file_open_monitor process will discover
this and send a message containing the process ID, �le level, inode number and �le name
to the visibility_manager. The visibility_manager will �nd the entry in its table
corresponding to the edited �le and replace the negative inode number with the new inode
number. Finally, the �le level is updated in the macfs. Although the handling of backup
�les turned out to be a bit complicated, it succeeded: both the edited �le and its backup
�le will get the correct �le levels.

In the message that is send from the preloaded shared library to the visibility_manager,
we have included a constant EMACS_BACKUP. This information is used to ensure that a �le
is only marked as a backup �le when the application name is �emacs�. In a further devel-
opment of the system, new constants can be added if new backup �le formats should be
handled.

As a �nal note about the handling of backup �les, the temporary �les created by emacs
of the form #test_file.txt# will also be handled by the system. The visibility_manager
will discover that this format is used and set the �le level of #test_file.txt# to the �le
level of test_file.txt.

7.2.5 The Sensor Server

The sensor_server is implemented using basic socket programming (see Appendix F.5.3).
It creates a server socket that listens on the port that was given as command line argu-
ment or the default port if none was speci�ed. Whenever a sensor_client connection is
accepted, it creates a socket that is used for receiving a level and direction and sending
back an error code. The socket is then closed, and the server is then ready to accept a
new connection. It will loop until a negative level is received, at which point it closes the
server socket and terminates.

Because the sensor_server only uses basic socket programming, it is very insecure:
anyone who knows the host and port number can send fake directions and levels to the
server and thus completely compromise the access control provided by our system. One
solution would be to use SSL to provide con�dentiality, integrity, and authentication. We
have not secured the communication due to lack of time, but it will properly not be di�cult
using for example the OpenSSL[9] implementation of SSL.

7.2.6 Printing Subject and Window Status Information

When the listwl program or the listsl program are started, they send an XEvent
to the visibility_manager, requesting data that subsequently will be printed to stan-
dard output. This scenario is unlike the other clients that did not receive data from the

7.3 Sensors 75

visibility_manager, except possibly an error code. In addition, the size of the returned
data is not easy to determine since the table and subject_list in visibility_manager
process changes frequently. This makes it impractical to use an IPC mechanism that only
provides storage for �xed-sized messages, such as shared memory or message queues. A
FIFO special �le (or a named pipe) does not impose limits on the size of the transmitted
data. This IPC mechanism is therefore used when the visibility_manager communicates
with either a listwl or listsl process. Another possible IPC mechanism that could have
been used is sockets.

The code for the listwl and listsl are listed in Appendix F.5.4 and Appendix F.5.5,
respectively. The listwl program prints all the data which are stored in the hashtable
maintained by the visibility_manager. The output is formatted so that it easily can be
processed by the Security Manager GUI. In �gure Figure 7.2, the output corresponding to
the screen-shots in Figure E.5 to E.7 are listed. The output printed by the listsl program
is rather simple: it is a list of non-negative integers, corresponding to the subject levels
stored by the visibility_manager.

7.3 Sensors

The sensor subsystem consists of the cameras themselves as well as some programs to
analyze the input from the cameras. A number of constants based on empirical determined
data is used.

7.3.1 Web-cameras

We are using two simple web-cameras: a Logitech Quickcam Express (old model) and a
Logitech Quickcam Web that works with the qce-usb driver[10].

We need to have two cameras to determine the direction of movement. If we only
had one, it would be required that only one person could be in the o�ce at any time, as
two consecutive detections of motion would be seen as an enter/leave pair. This would
probably be a very unrealistic requirement. When using two web-cameras we can use the
time di�erence between the motion detected in front of each to determine which direction
the person is moving. When doing this the placement of the cameras is important. We
need the two cameras to be placed so the motion detection in front of each of them has
a time di�erence when people walk by. In our empirical tests we can detect most persons
entering at a normal pace with 40-50 cm between the cameras. To detect running persons
they should be further apart. It is important to note that the distance between the cameras
partly determines some constant values in the programs.

7.3.2 Motion, a Motion Detection Program

Motion is motion detection software for Linux licensed under the GNU general public license
(GPL). It grabs images from a web-camera and/or video4linux device and uses them to
detect motion.

We chose to use this program as it mostly covers our needs. Our system is modular, so
other motion detection software could replace it if needed. For our use, the main feature of
Motion is the ability to detect movement and take snapshots of it, as well as the ability to

76 Chapter 7. Implementation

Table content:

Application Name PID Window ID Security Level Is mapped
emacs 3636 54526168 4 1
gedit 3637 60817454 4 1
gedit 3638 56623150 4 1
mozilla-bin 3573 46137393 2 1
emacs 3639 58720472 6 0
nedit 3574 44040197 5 1

Open files in window 54526168:
File Name Level
file4.txt 4
file3.txt 3
file2.txt 2
file1.txt 1

Open files in window 60817454:
File Name Level
file4.txt 4
file3.txt 3

Open files in window 56623150:
File Name Level
file4.txt 4
file3.txt 3
file1.txt 1

Open files in window 46137393:
File Name Level
file2.txt 2

Open files in window 58720472:
File Name Level
'unavailable' 6
file5.txt 5
file4.txt 4
file3.txt 3
file2.txt 2
file1.txt 1

Open files in window 44040197:
File Name Level
file5.txt 5

Figure 7.2: Sample window status information as it is printed by the listwl program.
The clearance level was 5 when this was printed, and the Bell-LaPadula access control
model was used.

7.3 Sensors 77

control more than one camera. The software also has many other features, such as creation
of mpeg videos, live web-cam, ability to save images directly into a database and much
more.

Motion captures a picture every time there is a pixel wise change with respect to a
reference picture. The reference picture is updated when a new picture is taken. After N
pictures has been taken the reference picture will consist of[11]:

Reference Picture =
N∑

n=1

1
2N -n+1

∗ Picture (n)

This means that several snapshots are taken while one person enters the room. This
will result in the need for some additional processing before we can acquire the knowledge
we need, namely the determination of when one person enters or exits the o�ce. Motion
has the capability to start a program or script any time a snapshot is taken, and this how
we will get data from Motion.

Con�guration �les
Motion uses con�guration �les to initialize the processing of each camera output, and the
use of these is described in the Motion Guide [26]. Di�erent con�guration �les will be used
for each camera. The con�guration �les contain a lot of di�erent options that can be set,
for instance commands to make mpeg movies from the snapshots taken. In the following,
we will go through the options and values we have changed or used. Our con�guration
�les, motion.conf and thread1.conf, are very long and have therefore not been included
in this report; instead, they can be found along with the code for the motion programs.
We are using two cameras so two con�guration �les are needed. This tells Motion to use
two cameras and will set the options that should be di�erent for the di�erent cameras.

videodevice: The device associated with this con�guration thread. We use /dev/video0
and /dev/video1 for the two threads.

framerate: This is the maximum number of images that Motion will save per second. The
default is 100, we have set to 20, as we do not need any more.

threshold: This is the threshold for pixel wise changes needed to declare motion. The
default value is 1500, we use 3000 to eliminate smaller movement. It might be possible
to set it even higher.

noise_level: This is to �lter random noise from the motion detection. It operates on
pixel level and speci�es how many intensities the pixel must change to be taken into
consideration. We have kept at the default at 32.

lightswitch: A light switch �lter that should prevent Motion form classifying sudden light
di�erences as motion. We have set is to on, but it does not work perfectly.

quiet: Speci�es that Motion should be quiet and not emit a beep every time it is detecting
motion. We have no use for an auditive indication of motion, so this is set to yes.

onsave: This tells Motion to execute a program when an image is saved. We use it to
execute either event1 or event2 depending on the thread/camera.

78 Chapter 7. Implementation

snapshot_overwrite: Speci�es that all snapshots should be saved as lastsnap.[jpg/ppm]
instead of a path and name determined by the time. This would be a nice feature to
use as we then would not have to clean up after all the pictures saved, but it does
unfortunately not seem to work.

target_dir: The directory to save images in. We have two di�erent paths depending on
which camera it is.

thread: This is for management of more than one camera. Each thread threadname
option starts a separate thread for the second or 3rd camera. This one uses the
options set in the new thread. It is important to note that the �rst camera gets
all its options from motion.conf, and the second one gets them from the additional
thread. Also note that in newer versions of Motion this have changed, please refer to
the documentation if using a newer version of Motion.

Considerations when using Motion

There are some general issues we need to consider when using Motion. Firstly, it seems
that in the upstart phase, Motion will detect a lot of changes. This is of because of the
update of the reference picture, it needs to be established. The way around this is to start
Motion before the rest of the system.

Another problem is that Motion takes snapshots of the persons, and we do not wish
to make the persons recognizable on them due to privacy concerns. It does seem like
Motion has no control over the resolution of the snapshots taken. We need to make use of
the onsave option to start a program when motion is detected, so images of the persons
entering and leaving the environment will be taken. It might be possible to reduce the
resolution of the pictures in the driver software, but that will be beyond the scope of this
project.

Even with these limitations, it is still an advantage usingMotion. It does what is needed,
and detects motion based on di�erential motion analysis, while having many con�guration
options. There is no point in making our own program when one that meet our needs
already exists.

7.3.3 Motion Detection Programs

Some programs are needed to handle the output from Motion, the output we use is the
fact that a snapshot was taken, signifying motion has been detected, and the time this
happened.

The overview of the software architecture for the camera sensor can be seen in Fig-
ure 7.3. Motion reads data from the web-cameras through the driver, and it then uses the
functionality of executing a command every time an image is saved. Depending on which
camera the image came from it executes either event1 or event2. The 'event' programs
then communicate through a pipe with the motion_handler, which runs in one instance for
each camera. The motion_handler will then process the fact that Motion have detected
some motion at this point in time. When it has a�rmed that person have passed the
camera, it will pass this information on to the camera_client. The camera_client deter-
mines the direction of the movement based on the data sent from the two motion_handler
instances. It will then pass information about the person and the direction on to the

7.3 Sensors 79

sensor_server. In a addition to these programs, the program start_motion will be used
to start the two motion_handler instances.

event1 event2

motion_handler

(instance 1)

motion_handler

(instance 2)

camera_client

Sensor_server

Motion

Web-camera 1 Web-camera 2

reads data reads data

starts starts

data passes

through pipe

data passes

through pipe

data passes

through pipe

data passes

through pipe

data passes
through socket

Figure 7.3: The Camera Software Architecture

The programs mainly communicate via named pipes. We have chosen the named pipes

80 Chapter 7. Implementation

since they are easy to implement and they require synchronization of the reading and
writing programs. In this way the motion_handler and the camera_client can wait for
the data they need in an orderly fashion.

In the following we will describe the programs in more detail, especially the motion_handler,
as this has the most interesting logic.

The Motion Handler Program
The main purpose the motion_handler is to receive an event each time snapshot is taken,
and from that determine whether or not a person have passed the camera. The result is
then passed on to the camera_client. The source code for the motion_handler can be
seen in Appendix F.7.2.

The program uses two threads, one to receive events and one to process the data and
pass the results on. Because of this the main data structures need to be globally declared.
The program takes two arguments, namely the names of the pipes used. The �rst argument
is the name of the pipe via events are received, the second is the one via data to the
camera_client is sent. The pipe names are needed as arguments as the motion_handler
is run in two instances. The user will not need to be concerned with the arguments as the
motion_handler instances are started by start_motion which provides the correct names.

The main data structure of the program is a list in which to store the events received.
Each received event signi�es that a snapshot was taken by Motion from the associated
camera, and the list contains the time the event was received. The list used is a singly
linked list, and we have used the GSList from the glib library. We use this as there is no
reason to code something that already exists, and the whole system already uses the glib
libraries. The oldest snapshots are stored last. The program also contains an auxiliary
print function used to print the contents of the list for debugging purposes.

The program uses two threads so we can process events while we receive them. Threads
are preferred over using other means of concurrent execution, for instance fork, as the
threads have access to shared variables. This is desirable when the di�erent parts of the
program needs to communicate. We make of use POSIX threads, using the pthread in-
terface. As the program will be a background process and run until forcibly quit it uses
detached threads. Detached threads are non-joinable, and therefore the system automati-
cally frees the thread's resources when the thread is terminated.

Both threads will access the linked list, so to prevent race conditions a mutex is used
to protect the list. To ensure that the event receiving thread has access to the list with as
little delay as possible, the other thread should try to keep the mutex locked for as short
time as possible. To indicate when a snapshot is received a semaphore is used. In this way
the processing thread can do a non-busy wait until there are some data to process.

The thread that receives events is started from the main thread. The only purpose of
this thread is to wait for an event to occur that signi�es that a snapshot have been taken.
The thread opens a pipe and waits for event1 or event2 to run and send a token through
the pipe. When it has received the token, the system time will be noted, and this will
be saved in the linked list. The linked list is of course mutex-locked while the new time
is saved. After an event have been saved, the thread signals to the other thread with a
semaphore post operation.

In the main thread, after initialization and the start of the event receiving thread, the
loop containing the main algorithm starts. The pseudo-code of this loop can be seen in

7.3 Sensors 81

Figure 7.4. The purpose of the loop is to determine the presence or absence of movement
based on the data received in the other thread. The loop �rst blocks with a semaphore
wait until an event has been received. Due to light changes sometimes being detected as
motion, we need to make sure the snapshots taken are of a person entering. Rather than
try to recognize something in the pictures that classi�es a person, we found a more simple
way to determine this. In empirical tests we found that usually at least 10 snapshots are
taken while a person passes the camera. The �rst thing the program does is to check the
number of snapshots taken. The constant MIN_MOTION_NO governs how many snapshots
there needs to be taken before the program considers the motion detected originating from
a person.
while (1)
wait for a snapshot to be taken
�nd the no of snapshots
if (no of snapshots > MIN_MOTION_NO) then
�nd the start and the end times
�nd the di�erence
if (di�erence > MAX_MOTION_DIFF) then

�nd the gap between this and the last motion sequence
if (gap > NEW_MOTION_DIFF) then
open pipe
send time
close pipe
set new last time
remove all

else
remove all parts of the previous motion sequence

else
remove the oldest and try again

end (while)
Figure 7.4: Pseudo-code for the main motion_handler loop

Even though the number of snapshots is high enough, it might not signify motion if
the snapshots are taken at di�erent points in time. To �gure out if this is the case, we �nd
the di�erence between the �rst and the last picture, using the time data stored when the
snapshot event was received. If the time gap is too large we will remove the oldest time
from the list and test again. The time it takes to pass a camera we have considered to be
maximum 5 seconds. This is of course depending on the pace a person has. The important
part is that motion detected that does not originate from a person almost always will
result in Motion taking less than 10 snapshots in a 5 second period. The maximum time
di�erence is set in the constant MAX_MOTION_DIFF.

If the time di�erence between the oldest and newest is small enough, we need to test
one more thing before we can establish that a person have moved past the camera. The
sequence of pictures might belong to the former movement, as a camera passing might
generate 20 snapshots or more. The time of the last (oldest) snapshot in the list is found
and is compared to the time of the last snapshot in the previous sequence. If the di�erence
between them is too small, the last snapshot is removed from the list as it is deemed part
of the previous sequence. The time gap between this picture, which is now considered
the last of the previous sequence, and the next is then calculated. This will continue

82 Chapter 7. Implementation

until the the list is empty, or the time gap is big enough to signify that a new motion
sequence has begun. The minimum time di�erence between two sequences of motion is set
by the constant NEW_MOTION_DIFF, and we have chosen to set this to 4 seconds. This value
is problematic to set, as there can be virtually no time di�erence between two di�erent
motions, e.g. when two persons enters next to each other. However, we need to set is
at some value, and not mistake the normal di�erence between snapshots from the same
motion, with two di�erent persons. This means that our system has a limitation on how
close after another two persons can pass the camera. When it has been determined that a
person have passed the camera, the information is sent to the camera_client via a pipe.
The times of this motion sequence is then removed and deallocated form the list. When
this have taken place, the main loop stars over again, checking the number of snapshots
taken.

To remove elements on the list the program uses the function supplied with the GSList
in the glib package, the g_slist_delete_link.

The program is ended with an explicit kill command or a ctrl+c interrupt. To
ensure that the list is deallocated, a termination function is provided, using the sigaction
interface.

The Camera Client Program
The main purpose of the camera_client is to receive information about motion detected
from the two cameras, and decide in which direction the motion have taken place (entry
or exit). Motion detected by only one of the cameras should be disregarded. The source
code for this program can be seen in Appendix F.7.3.

The camera_client is called with 3 arguments. The �rst is the default environment
level, as this sensor cannot distinguish between di�erent persons so it must assign the same
level to them all. The second and third arguments are the hostname and the port where
the sensor_server is listening.

The program tries to read from the pipes connected to the two motion_handler in-
stances. When motion have been detected in front of both cameras the time between the
two occurrences in found. This time is compared to the constant MAX_PASSING_TIME to
make sure that they originate from the same person. The pipe from which the oldest time
was received is read until the di�erence is small enough. In this way it is ensured that a
false detection of motion that only takes place in from of one camera does not lead to wrong
conclusions about the direction. We have set the MAX_PASSING_TIME to 15 seconds, but
it might be possible to set it lower. It is dependent on the distance between the cameras
and the pace of the person. When the direction has been established, this information is
passed on the sensor_servers via a socket. It sends the direction, 'i' or 'o' for in and
out, and the default security level of the person.

As the motion_handler this program also has a termination function using the sigaction
interface. This one closes possible open sockets.

Auxiliary Programs and Header File
pipe2.h This header �le contains the names of the pipes used in the subsystem. Since
the named pipes are used to communicate between several programs, the names are stored

7.3 Sensors 83

in this header �le. The header �le is listed in Appendix F.7.6. The names are stored in
the constants PIPE_NAME_x and PIPE_CAM_x where x is 1 or 2 for the two cameras. Fur-
thermore, the constant PIPE_NAME_LENGTH gives the maximum length of the pipe names.
This is needed so the variable to hold the names in the motion_handler can be globally
declared.

event1 and event2 These programs are identical, except which pipe name they use
to communicate. Their source code can be seen in Appendix F.7.4 and Appendix F.7.5.
The programs are run each time Motion saves an image, which corresponds to each time
Motion detects a large enough pixel-wise di�erence between the scene and the reference
picture. They send the information of this fact through a pipe to the motion_handler.
Pictures taken from each camera starts a di�erent event which in turn uses di�erent pipes
to communicate with the di�erent instances of the motion_handler.

start_motion To ensure that the two instances of motion_handler are initialized with
the correct pipe names, both for reading and writing, they are executed from start_motion
using execlp. The pipe names are taken from the header �le pipe2.h. This program is
listed in Appendix F.7.7.

7.3.4 Known Limitations in the Camera System

The camera system has several limitations that need to be kept in mind when using the
system. Some of these has to do with the limitations in the cameras themselves other
with Motion and the implementation of the motion detection programs. Some stems from
design decisions.

The cameras do not recognize the persons. The do not do this partly because of
limitations in the cameras resolution, and partly because we did not want to recognize
people due to privacy concerns. A camera would have no way of recognizing a security
level without recognizing a person, unlike other sensor systems like smart cards. The
main limitation this imposes is that if the user leaves the computer, and the user's level is
di�erent from the default level, the system will not know that it is the user that has left.
When the user returns, he will be considered a default person. Right now this can only
be corrected by the use of the swsensor by letting a proxy person with the default level
leave, and let a person with the user's level enter. The system and the reality will then be
in agreement, only the user will be present in front of the computer.

Another problem has to do with the way motion detected by Motion is considered
coming from a person or not. If a person enters and then exits the environment immediately
thereafter the system will not discover the exit. This is because the passing of the camera
will generate motion that is considered part of the entry. The same problem will arise if
two persons enters closely after one another, they will be considered as one person by the
system. There might be some optimizing possible in changing the values of the constants
in the motion_handler governing this, but the problem could be solved by using sensors
that could more easily determine the direction of movement or more accurately distinguish
a person. e.

A related limitation is that two or more persons cannot enter at once, as the cameras
only detect motion, the system does not interpret the pictures to see if there is more than
one person. If additional analysis were done on the pictures this might be solved, but then

84 Chapter 7. Implementation

a problem might arise in di�erentiating between two small persons and one big person.
This problem will probably most easily be solved by using another type of sensor.

If a person enters too fast the camera will not be in position to take enough snapshots
to trigger the condition for an camera passing to be declared by the motion_handler. An
solution for this, besides implementing another type of sensor, could be to increase the
number of snapshots taken by the camera per second, or to lower the required number
of snapshots to be taken before motion is declared to originate in a person. The last
solution might lead to other problems such as light changes and similar being detected as
persons. In general the limitations in the camera sensor might be most e�ectively solved
by implementing a di�erent type of sensor, as the limitations have to do with the simplicity
of the camera. Some problem might be solved by optimizing the constants in the motion
detection programs, but in most cases this will probably make other problems arise.

In summary, when using the camera system, care must be taken that people enters at a
reasonably slow pace, that more than one person does not enter at the same time and that
there is a time di�erence between each camera passing. Furthermore, it must be noted
that manual con�guration of the subjects present most likely have to take place if the user
leaves his computer and then comes back.

7.4 The Security Manager GUI

User-friendliness is very important within computer security since if the users �nd it trou-
blesome so use some security feature, they will just avoid using it. As an example, the
employees in a company may not bother to use the access control mechanisms if they �nd
it annoying that they have to use many command-line tools to get an overview of which
�les exists, which windows are mapped or unmapped, and what the current subject levels
are. The consequence may be that they store classi�ed �les in other �le systems than
macfs.

7.4.1 The GUI Functionality

A GUI program, SecurityManagerGUI, has therefore been developed that can perform
the same tasks as the command-line tools, but it presents a more user-friendly view of
the system. The SecurityManagerGUI program is only a presentation layer above the
file level management, user level management, and window management sub-systems
(as shown in Figure 6.1). It does therefore not add any new essential functionality to the
system; in fact, it is merely a program that calls the developed command-line programs.
Because mandatory access control in the stackable �le system restricts who are allowed to
call certain programs, the functionality provided by the SecurityManagerGUI depends on
whether it is the super user or a regular user who runs it. For instance, only when the
super user runs the program is it possible to modify the �le levels. Furthermore, what is
shown depends on the security policy. For instance, if the no_read_up policy is chosen all
�les with a �le level greater than the clearance level will be hidden.

The GUI has been organized so that a menu is presented to the left of the window, and
a panel to the right displays corresponding system information. Some screen-shots of the
GUI can be seen in Appendix E. The menu items are as follows:

7.4 The Security Manager GUI 85

File Level Management is a graphical presentation of the file level management sub-
system. It contains a text �eld where the user can enter a �le or directory name.
If a �le name is entered, the getfl program is called and the �le level of the �le is
retrieved. If a directory name is entered, the listfl program is called and the �le
levels of all the �les in the directory is listed. A Browse button is also included, and
it can be used to select a �le or directory instead of entering it in the text �eld.
Since the getfl and listfl programs skips non-readable �les if the hide_non-
readable_�les security policy is chosen, the SecurityManagerGUI program will also
skip these �les. For example, if all the �les in a directory should be hidden, the
message �No �les exists.� will be displayed.
The �le names and corresponding �le levels are listed in two columns. If the user who
runs the SecurityManagerGUI is the super user, the second column with the �le levels
will be editable: when a new number is entered, the setfl program is called and the
�le level of the �le in the �rst column is updated in the macfs �le system. The second
column is not editable when a non-privileged user runs the SecurityManagerGUI
program, since he will always get an `access denied' error message when he calls
setfl.

User Level Management is a graphical presentation of the user level management
subsystem. The appearance of the GUI depends on whether the super user started
the user level management program or a non-privileged user. When the super user
runs the program, the listul is called and the user names and corresponding user
levels are listed in two columns, respectively. The second column is editable, and
when a user level is modi�ed the setul program is called so that the modi�cations
are stored persistently.
When a non-privileged user runs the SecurityManagerGUI, the program will only
display the user's own user level. The getul program with no argument is used to
retrieve this level; all other user level management operations are prohibited.

Unmapped Windows displays information about all the invisible windows. It is pre-
sented in a table where the columns show the application name of the application
that created the window, the corresponding process ID, the Window ID, the Window
level, and the number of �les that are or have been opened by the application. When
a row in the table is selected, further information about the �les that have been open
are shown: a table in a dialog window is displayed, and it contains two columns with
the �le name and �le level, respectively. The maximum of all the shown �le levels is
equal to the window level. If the hide_non-readable_�les policy is chosen, the �le
names of non-readable �les are replaced by `unavailable'. The listwl program is
used to retrieve all this information.

Mapped Windows is similar to the Unmapped Windows, except that only information
about visible windows is shown.

Current Subject Levels The GUI displays two lines. The �rst line list all the subject
levels for all the currently present persons and the user. The listsl program is
used to retrieve these levels, and they are sorted in ascending order. The second line
contains the current clearance level, which is retrieved by the getcl program.

The SecurityManagerGUI contains a Reset button in the lower right corner, and when-
ever it is pressed, the appropriate C programs are called so that the GUI can be updated.

86 Chapter 7. Implementation

If the hide_non-readable_�les security policy is to chosen by the system administrator, it
is important that the user presses Reset whenever the clearance level decreases. Other-
wise, a person may get access to viewing which �les exist if the File Level Management
or Mapped Management menu item was selected prior to the person's entrance.

7.4.2 Interfacing between Java and C Programs

The SecurityManagerGUI is implemented in Java, but it calls the C command-line pro-
grams. It consists of 12 classes that manages the GUI, and one class that manages the
interface between the C programs and the GUI classes. The latter class is denoted Exec
(see Appendix F.8.1) and it uses an instance of the java.lang.Runtime class to provide an
interface with the environment in which SecurityManagerGUI program runs. Whenever
one of the C programs should be executed, the java.lang.Runtime instance is used to
create a java.lang.Process instance which executes the C program in a separate subpro-
cess. No environment variables are set before a C program is executed, so the execution
will only be successful if the user has set the global PATH environment variable to include
all the C programs.

The standard input, output, and error of the subprocess will be redirected to the parent
process through a Java output stream, input stream, and error stream, respectively. The
SecurityManagerGUI process only needs the standard output from the subprocesses, and it
will therefore only use the java.io.InputStream class to retrieve the output. In the Exec
class, output from the subprocesses are processed and possibly inserted into appropriate
Java data structures before it is returned to the GUI classes.

7.4.3 The GUI Classes

The GUI part of SecurityManagerGUI is primarily implemented using javax.swing classes.
It consists of 12 classes which are listed in Appendix F.8.2 to F.8.13. The SecurityManagerGUI
class contains the main method, which must be given the macfs mount point as argument.
The SecurityManagerGUI class creates the left-side menu and is responsible for displaying
a panel corresponding to the selected menu item. Six di�erent types of panels can be
displayed (InitPanel, MessagePanel, FileLevelPanel, UserLevelPanel, WindowPanel,
SubjectLevelPanel), and a java.awt.CardLayout object is used to switch between the
di�erent panels. All the panels are subclasses of the abstract class BasicPanel and they
therefore have the same basic appearance. For example, they all have a Reset button in
the lower left corner and a title at the top.

Many of the panels use a table, and the javax.swing.JTable is used for this pur-
pose. The functionality required by the table depends on the panel that uses it since
some of the only uses it to present information whereas others requires a editable table.
Di�erent table models are therefore used, but some common functionality could be col-
lected in a single class, which is denoted SimpleTableModel. The other table model classes
(FileLevelTableModel, UserLevelTableModel, and WindowTableModel) are subclasses of
this class. All the tables that are displayed in the panels uses a TableSorter object, which
can be used to sort the content of the table when the user clicks on one of the columns.

87

Chapter 8

Evaluation

The system was run and tested on two computers where the Linux distribution Fedora Core
1 was installed. We have conducted several functional tests to cover the most important
aspects of the system's functionality, but it is not a comprehensive test. We do, however,
feel we have covered most normal use as well as some extreme cases. We have tested the
di�erent subsystems to see if they provide the service required of them. The test cases and
results can be seen in Appendix D.

Firstly, the MAC �le system was tested, mostly to reveal if it could provide the same
services as a normal �le system while maintaining the MAC. This consisted of testing
things like copying or linking �les. The tests can be seen in Appendix D.1. It is important
to note that while the super user has access to all possible operations, a normal user should
not. The super user can unmount the �le system and thereby render the MAC useless.
The user should not have all these privileges.

Tests of the user and �le level management were conducted to make sure only the correct
programs could be executed. This entails testing things like changing the �le or user levels
by both a normal user and the super user. These tests can be seen in Appendix D.2 for
the �le level management tests and Appendix D.3 for the user level management tests.

The system can be initialized with di�erent policies, and it needs to be tested with
respect to the those. This means testing a user's ability to read or write to �les at di�erent
levels. The tests conducted to verify correct operation under a speci�c policy can be seen
in Appendix D.4. It should, in particular, be noted that when using a policy originating
in the Bell-LaPadula or Biba model, a �le that the user can write to is not necessarily one
he can read and vice versa. The reading and writing were tested using the command line
programs cat and echo. It should be noted that we have only tested the MAC, as this is
in addition to the DAC included in the Linux operation system, and we assume that this
works.

The above test concluded the test of the logical access control part of the system. An
important part of the system is the window management, where the system keeps track
of which �les are open in which windows, and takes steps to unmap the windows if the
physical access control determines that a person has entered the environment. The window
management system tests can be seen in Appendix D.5. The tests consist both of testing
auxiliary programs to list window and subject levels, as well as tests to con�rm that the
right windows are unmapped when a person enters. The important part of this test is
to reveal if the system can keep track of the persons present and determine the correct

88 Chapter 8. Evaluation

clearance level. The system should also keep track of open �les in windows and maintain
the correct window level for each window.

The system is designed to function with di�erent editors or �le viewers. The extend
to which various applications can be used with the system depends on the way they uti-
lize the X Window System. We have tested the system with di�erent editors as seen in
Appendix D.6. Unfortunately, not all editors or viewers function in the same way, so full
functionality cannot be guaranteed for every editor or viewer. Our tests conclude that
at least emacs, nedit and mozilla fully integrates with our system, i.e., windows will be
unmapped if they contain �les that should not be viewable to an entering person.

We have created a motion detection sensor that uses two web-cameras. The ability of
this subsystem to detect motion and correctly pass it on to the window management has
been tested as shown in Appendix D.7. The web-camera sensor has a number of limitations
as described in Section 7.3.4, but the cases where the camera sensor is expected to detect
motion have been tested. It has also been an important part of the test to see if the
windows are correctly unmapped when a person enters. These tests also entails testing
the whole system, as every part of it must be functioning correctly for the behavior of the
system to be as expected.

The GUI has been tested by both normal users and the super user. We have noted
that the information provided is in accordance with the information from the command line
programs. We have also tested that buttons and other GUI components work as expected.

To summarize, we have functionally tested the di�erent parts of the system and during
this executed tests that have required incremental parts of the system to be functional.
The tests of the web-camera sensor has also tested the whole system. We believe that
we have tested the system to the best of our ability and with a reasonable thoroughness
considering the use of the system. We will therefore conclude that it functions as expected.

89

Chapter 9

Further Developments

9.1 Porting the System to Other Unix Versions

The choice of technologies for the implementation of the SEAC system should make it feasi-
ble to port it to another Unix system. Firstly, the FiST system contains templates for many
version of Linux, Solaris, and FreeBSD. We have only tested the system using the templates
for Linux-2.4, and we had to modify them slightly as described in Appendix B.1.1. If the
same changes are made in other templates, the stackable �le system should be portable.
Furthermore, the stackable �le system can (relatively) easy be extended or modi�ed if, for
instance, support for encryption or a size-changing �le system turns out to be desired.

The window management part of the system is also portable since most Unix systems
have a graphical user interface based on the X Window System. Our C programs should
also be portable, if the required libraries are available. Finally, the motion detection
software is platform independent.

9.2 Exportation of Classi�ed Data

The SEAC system cannot prevent that classi�ed data is copied from the stackable �le
system to another �le system. A user can therefore, for example, use the command line
program cp to copy a �le to another �le system managed by the operating system. It might
even be possible that the user is unaware of this information �ow, since the �le systems
are organized in a hierarchy and the user might not know where the stackable �le system
is mounted. One way to prevent this information �ow is to mount our stackable �le system
on top of every �le system where the non-privileged users have write access.

Another, more severe, vulnerability in the system is that classi�ed data can be exported
to external devices that are beyond the boundaries of our system. For example, a user
can compose an email, copy classi�ed data into it, and send the it out on the Internet in
clear-text. Another example is the use of printers that are located outside the monitored
environment.

An easy solution to these vulnerabilities is to disable access to any external devices
and disconnect the computer from all networks. A more user-friendly solution could be to
extend the SEAC system to utilizes the fact that many types of resources are accessed via
special �les in the Unix �le system. For example, the /dev directory will (usually) contain

90 Chapter 9. Further Developments

�les for accessing hard disks, modems, printers, terminals on remote computers, etc. If
access control should be applied to a printer, which often is accessed via the �le /dev/lp0,
a �le level should be associated with this �le. This �le level should depend on the physical
access control that protects the printer. The security policy determines which users are
allowed to use the printer. If it speci�es a 'no write down' rule, a �le with a high level
cannot be printed by a printer with a low level. This usage will prevent that a classi�ed �le
is printed in a physically unprotected printer room where an unauthorized person might
be waiting for some interesting output.

We have tried to mount a stackable �le system on top of the /dev directory, and when
we used the listfl program we saw that all the �les in the directory had the default �le
level, as expected. Unfortunately, the FiST system is not implemented to be to stackable
on top of directories containing special �les. Although it was possible to perform the mount
operation, Linux did not function properly afterwards. For example, the terminal did not
work any longer, and we had to restart the computer to undo the unfortunate mount.

9.3 Using other Access Control Models

Our system is based on a multilevel access control model, but the idea of combining a
logical access control system with a physical one can be extended to other types of access
control models.

One interesting access control model is the Chinese Wall. To use this instead it would be
necessary to implement classes of con�icts of interests and company groups. A procedure
for how a user selects from the companies depending on which classes of con�icts of interests
he has had access to should be designed and implemented. A history function related to
the user would also be needed for this. Furthermore, a way of sanitising information or
determining who can decide when it has been sanitised needs to be developed. For the
physical access control part, either some smart sensors that could uniquely identify the
person and which classes of interests he has access to should could be used. Another
approach would be to only let sanitised information be shown when a person is present.

Another interesting access control model that can be considered is role based access
control. This usually entails not only traditional access operations but actions of the user
as such. It could, however, be implemented by saying a person has a certain role, and then
the system should only display information availably to that role.

9.4 Extending or Replacing the Sensor Subsystem

As the sensor subsystem communicates with the rest of the system by simple messages via
a socket, it is very easy to replace. The only requirements is that it can deliver a direction
and a security level to the sensor_server. Before any changes are made to the sensor
subsystem, it is very important that the sockets are secured as described in Section 7.2.5;
otherwise, the physical access control provided by the system can easily be circumvented
by a person who knows the host name and port number where the sensor_server listens.

The web-camera solution has many limitations, and some advantages would therefore
be gained by replacing the sensor subsystem. If the subsystem is not replaced, it could be
extended to include more or di�erent types of sensors. The information they gather could
be used to enhance the cameras so the motion detection would be more precise.

9.4 Extending or Replacing the Sensor Subsystem 91

If the system is replaced it would be very nice to deploy some sensors that could reveal
information about the security level of the person. To do so either the person must be
fully identi�ed or the system should be able to retrieve the security information without
the need for the uniquely identifying the person.

A very interesting sensor system to use would be a RFID system. All users could be
equipped with an emitter, and an receiver could be placed so that it could be determined
when the person carrying the emitter enters the environment. The emitter can even carry
information about the level of the person, in this way making it possible to have high level
persons. The system could also be part of a more comprehensive one. Many companies
today have physical access control, most use magnetic cards to let employees but not casual
bypassed gain access to their building. A system like this could also be used for the SEAC
system, but then the magnetic card would have to be swiped every time the user enters
an o�ce. It would make more sense to use RFID as it can happen ubiquitously and be
integrated into an existing system. A RFID system or one with similar capabilities can
stand alone if it can be ensured that all possible persons carry a tag with a security level on.
This can for example be done by requiring all visitors to carry guest tags on the premises.
It could also be used in combination with a simple sensor such as the camera, so when a
person is detected by the camera the default security level is overridden if the person also
is detected by the RFID system.

92 Chapter 9. Further Developments

93

Chapter 10

Conclusion

The main objective of this MSc project was to develop a system which demonstrates that
logical and physical access control can be combined to form a smart environment. The
system is developed using Linux 2.4, but it should be possible to port it to another Linux
version or a Solaris or FreeBSD version. This portability is mainly due to the use of a
stackable �le system generated with the FiST (File System Translator) system.

The system turned out to be rather comprehensive, and to make it more manageable
it was partitioned into a number of subsystems that handle di�erent parts of the system's
functionality. These subsystems are stackable file system, file level management,
user level management, window management, sensor, and security management gui.
Each sub-system consists of between one and six programs. Many of the corresponding
processes communicate using various message passing technologies in order to provide the
required system functionality.

During the test of the system, the individual subsystems were tested to the extend
possible, followed by a test of the interaction between the subsystems. The test showed
that the emacs, nedit, and mozilla editors fully integrates with our system, i.e., windows
are mapped or unmapped according to the sensitivity of the displayed data and the persons
who are present. The system could, however, not unmap the gedit editor because the
communication between gedit and the window manager metacity was very unpredictable.
Otherwise, the test did not disclose any errors; however, the test was not exhaustive and
it is a complex system so we cannot guarantee that no further errors exists.

The security provided by the system depends on the trustworthiness of the super user.
The super user must be a trusted authority that enforces a speci�ed security policy and,
for instance, sets user and �le levels in accordance with this policy. It is essential that this
user can be trusted since he will have access to all the �les, regardless of their �le levels.

10.1 Summary of Contributions

The main contribution of our work is the development of a system which extends traditional
mandatory access control (MAC) so that it encompasses subjects and objects that are both
logical and physical. A subject in our model can either be a process (i.e. a logical entity)
or a physically present person. Likewise, an object can either be a �le (i.e. a logical entity)
or a window which is physically present on a computer display. Our system mediates the
access to objects by subjects and it will thus combine logical and physical access control.

94 Chapter 10. Conclusion

The MAC implementation, the detection of unauthorized persons using sensors, and
the combination of the logical and physical access control are handled by di�erent parts of
the system. These parts constitute our technical contributions and can be summarized as
follows:

A kernel module that is included in a stackable �le system so that it can both store
�les and mediate the access by processes to �les. Thus, it implements a simpli�ed
reference monitor. The MAC policy enforced by the system can be speci�ed by
the system administrator before system startup using security policy parameters.
Furthermore, because the system is integrated with a Unix system, the access control
can also include the discretionary access control (DAC) that is part of Unix systems
via the rwx mode bits. The MAC will, however, take precedence over the DAC.
Altogether, the implemented MAC and the Unix DAC provide mechanisms for a
wide range of access control policies.

A simple movement sensor that relays information about the physical presence of a
person to the computer containing classi�ed data. The sensor is implemented using
both hardware and software. The hardware is two web-cameras, and the software is
a client/server system where the server resides on the computer containing classi�ed
data. The images taken by the web-cameras are used by a motion detection program,
which sends a direction and level to the server whenever an person enters or leaves
the environment.
The use of the client/server paradigm implies that more than one type of sensor can
be used simultaneously; the server will not distinguish between the sensors since it
is only concerned with receiving a level and direction. This design decision makes it
easy to replace the sensor or even use many di�erent types of sensors simultaneously,
if a very �ne-grained detection method is required.

A window management module which ensures that the logical access control provided
by the kernel module is combined with the physical access control provided by the
sensor and the graphical windowing system. More speci�cally, it uses library func-
tions from the X Window System to ensure that the visibility of windows change
according to the data received from the sensor and the level of the displayed infor-
mation.
The system works with both text editors and pure �le readers, such as Internet
browsers, provided that the �les opened are stored in the stackable �le system. The
system will also detect which �les are opened by a given editor or �le viewer. It can,
however, not detect which �les are closed by the application since this turned out to
be very di�cult to determine due to the use of �le bu�ers.

10.2 Future Work

Future work on the system will primarily be related to the sensor. First of all, the commu-
nication between a sensor_client and the sensor_server must be secured, for instance
by establishing an SSL connection between them. The current implementation is very
insecure in this respect since anyone who knows the host address and the used port num-
ber can spoof the system by sending a level and direction of a �ctitious person to the
sensor_server. Two malicious persons can exploit this as follows: one of them enters the

10.2 Future Work 95

environment and is of course detected by the sensor. The other person will then send data
to the sensor_server which imitate that all persons and the user leave the environment
and that a person with a very high level subsequently enters the environment. The person
in the environment will then have direct access to classi�ed data, possibly after having
coerced the user.

Another, more interesting, further development is related to the sensor itself. In prac-
tice, a system would have to implement a sensor that can identify and authenticate the
persons so that a level can be assigned to each person. In some situations, however, privacy
may be a concern if people do not want to be monitored. A solution could be a sensor
that only detects which security class a given person belongs to, and not his identity. An
obvious choice would be to use a radio frequency identi�cation (RFID) system. The RFID
tags would have the ability to transmit information about the person's level and nothing
more. The tags could easily be used for the physical access control most companies already
have and be integrated in a comprehensive system.

To summarize our work, a fully functioning prototype has been developed. The physical
access control part can provide a more usable system if more advanced technologies are
deployed for detecting persons. This part of the system leaves an open door for future
work on our project, which hopefully will result in a system that one day can be widely
used in practice.

96 Chapter 10. Conclusion

97

Bibliography

[1] How Infrared motion detector components work, http://www.glolab.com/pirparts/
infrared.html. 20

[2] X Window System, article in reference library available at http://www.
campusprogram.com/reference/en/wikipedia/x/x_/x_window_system.html. 25

[3] The X.Org Foundation home page, http://www.x.org. 26
[4] The XFree86 Project home page, http://www.xfree86.org. 26
[5] Xlib programming manual. Available at http://tronche.com/gui/x/xlib/

xlib-manual.tar.gz. 26
[6] Window Managers for X home page, http://xwinman.org/intro.html. 27
[7] Motion home page, http://motion.sourceforge.net/. 49
[8] GTK+ toolkit home page, http://www.gtk.org. 70
[9] The OpenSSL Project home page, http://www.openssl.org. 74
[10] Quickcam Express home page, http://qce-ga.sourceforge.net/. 75, 107
[11] Motion Technology , http://motion.sourceforge.net/tech/. 77
[12] FiST: Stackable File System Language and Templates home page, http://www.

filesystems.org/. 107, 139
[13] Department of defence trusted computer system evaluation criteria. Avaliable at

http://www.radium.ncsc.mil/tpep/library/rainbow/5200.28-STD.html, Decem-
ber 1985. The Orange Book. 16, 17, 35

[14] Extended Window Manager Hints. Avaliable at http://freedesktop.org/
Standards/wm-spec/1.3/, 2003. Draft version 1.3. 27

[15] D. Elliot Bell and Leonard LaPadula. Secure Computer Systems: Mathematical Foun-
dations. MITRE Technical Report 2547, I, March 1973. An electronic reconstruction
by Len LaPadula, November 1996. 11

[16] Kevin Boone. File handling in the linux kernel, 2004. Avaliable at http://www.
kevinboone.com/linux_kernel_file_0.html. 28

[17] D. Brewer and M. Nash. The chinese wall security policy. In Proceedings of the 1989
IEEE Symposium on Security and Privacy, pages 206�214. IEEE Computer Society
Press, May 1989. 15

http://www.glolab.com/pirparts/infrared.html
http://www.glolab.com/pirparts/infrared.html
http://www.campusprogram.com/reference/en/wikipedia/x/x_/x_window_system.html
http://www.campusprogram.com/reference/en/wikipedia/x/x_/x_window_system.html
http://www.x.org
http://www.xfree86.org
http://tronche.com/gui/x/xlib/xlib-manual.tar.gz
http://tronche.com/gui/x/xlib/xlib-manual.tar.gz
http://xwinman.org/intro.html
http://motion.sourceforge.net/
http://www.gtk.org
http://www.openssl.org
http://qce-ga.sourceforge.net/
http://motion.sourceforge.net/tech/
http://www.filesystems.org/
http://www.filesystems.org/
http://www.radium.ncsc.mil/tpep/library/rainbow/5200.28-STD.html
http://freedesktop.org/Standards/wm-spec/1.3/
http://freedesktop.org/Standards/wm-spec/1.3/
http://www.kevinboone.com/linux_kernel_file_0.html
http://www.kevinboone.com/linux_kernel_file_0.html

98 BIBLIOGRAPHY

[18] Jens Micheal Carstensen, editor. Image Analysis, Vision and Computer Graphics.
IMM, Technical University of Denmark, �rst edition, 2001. 21

[19] Dorothy E. Denning. A lattice model of secure information �ow. Communincations
of the ACM, 19(5):236�243, May 1976. 8

[20] Marius Aamodt Eriksen. Introduction to snoopy. Avaliable at http://linux.
omnipotent.net/article.php?article_id=11528, 2001. 72

[21] Dieter Gollmann. Computer Security. Wiley, �rst edition, 1999. 7, 8, 10, 11, 12, 14,
15

[22] IFAD. VDMTools � The IFAD VDM-SL Language, 2000. 101
[23] Butler W. Lampson. Protection. In Proc. Fith Princeton Symposium on Information

Sciences and Systems, pages 437�443. Princeton University, March 1971. Reprinted
in Operating Systems Review, 8,1, January 1974, pages 18 - 24. 11

[24] Carl E. Landwehr. Formal models for computer security. ACM Computing Serveys,
13(3):247�278, September 1981. 10

[25] Leonard LaPadula and D. Elliot Bell. Secure computer systems: A mathematical
model. MITRE Technical Report 2547, II, May 1973. An electronic reconstruction by
Len LaPadula, November 1996. 12, 14

[26] Kenneth Lavrsen. Motion Guide, 1.49 edition, February 2004. Avaliable at http:
//www.lavrsen.dk/sources/webcam/motion_guide.htm. 77

[27] Robert Love. Kernel korner: Kernel locking techniques. Avaliable at http://www.
linuxjournal.com/article.php?sid=5833, 2002. 69

[28] Daniel Manrique. X window system architecture overview howto. Avaliable at http://
www.linux.org/docs/ldp/howto/XWindow-Overview-HOWTO/index.html, 2001. 27

[29] Je�rey Oldham Mark Mitchell and Alex Samuel. Advanced Linux Programming. New
Riders Publishing, 2001. Avaliable at http://www.advancedlinuxprogramming.com.
28, 72

[30] Vaclav Hlavac Milan Sonka and Roger Boyle. Image Processing, Analysis and Machine
Vision. Chapman & Hall, 1993. 21, 22

[31] National Institute of Standards and Technology. Security in open systems. Avaliable
at http://csrc.nist.gov/publications/nistpubs/800-7/main.html, 1994. 71

[32] David Rosenthal. Inter-Client Communication Conventions Manual. Sun Microsys-
tems, Inc., version 2.0 edition, 1994. Avaliable at ftp://ftp.x.org/pub/R6.6/xc/
doc/hardcopy/ICCCM/icccm.PS.gz. 27, 56

[33] Alessandro Rubini and Jonathan Corbet. Linux Device Drivers. 2nd edition, 2001.
Avaliable at http://www.xml.com/ldd/chapter/book. 25, 30

[34] Peter Jay Salzman and Ori Pomerantz. The Linux Kernel Module Programming Guide.
2001. Avaliable at http://www.tldp.org/LDP/lkmpg/2.4/html/lkmpg.html. 30

[35] Ravi S. Sandhu. Lattice-based access contol models. IEEE Computer, 26(11):9�19,
November 1993. 14, 15, 16

http://linux.omnipotent.net/article.php?article_id=11528
http://linux.omnipotent.net/article.php?article_id=11528
http://www.lavrsen.dk/sources/webcam/motion_guide.htm
http://www.lavrsen.dk/sources/webcam/motion_guide.htm
http://www.linuxjournal.com/article.php?sid=5833
http://www.linuxjournal.com/article.php?sid=5833
http://www.linux.org/docs/ldp/howto/XWindow-Overview-HOWTO/index.html
http://www.linux.org/docs/ldp/howto/XWindow-Overview-HOWTO/index.html
http://www.advancedlinuxprogramming.com
http://csrc.nist.gov/publications/nistpubs/800-7/main.html
ftp://ftp.x.org/pub/R6.6/xc/doc/hardcopy/ICCCM/icccm.PS.gz
ftp://ftp.x.org/pub/R6.6/xc/doc/hardcopy/ICCCM/icccm.PS.gz
http://www.xml.com/ldd/chapter/book
http://www.tldp.org/LDP/lkmpg/2.4/html/lkmpg.html

BIBLIOGRAPHY 99

[36] Ravi S. Sandhu and Pierrangela Samarati. Access control: Principles and practice.
IEEE Communications Magazine, 32(9):40�48, 1994. 10

[37] Robin Sharp. Principles of Protocol Design. 2002. Draft second edition. 50, 51
[38] William Stallings. Cyptography and Network Security � Principles and Practices.

Prentice Hall, third edition, 2003. International Edition. 13
[39] Andrew S. Tanenbaum. Modern Operating Systems. Prentice Hall, 2nd edition, 2001.

13, 17, 26, 28
[40] Thomas A. Wadlow. The Process of Network Security. Addison-Wesley, �rst edition,

2000. 9, 10
[41] David A. Wheeler. Program library howto. Avaliable at http://www.tldp.org/

HOWTO/Program-Library-HOWTO/, 2003. 72
[42] Billibon Yoshimi. On sensor frameworks for pervasive systems. Avaliable at citeseer.

ist.psu.edu/285279.html. 19
[43] E. Zadok. Stackable �le systems as a security tool. Technical Report CUCS-036-99,

Computer Science Department, Columbia University, December 1999. http://www.
cs.columbia.edu/~library. 110

[44] E. Zadok. FiST: A System for Stackable File System Code Generation. PhD thesis,
Computer Science Department, Columbia University, May 2001. www.cs.columbia.
edu/~ezk/research/thesis. 28, 66

[45] E. Zadok and J. Nieh. Fist: A language for stackable �le systems. In Proceedings of
the Annual USENIX Technical Conference, pages 55�77, June 2000. 28

http://www.tldp.org/HOWTO/Program-Library-HOWTO/
http://www.tldp.org/HOWTO/Program-Library-HOWTO/
citeseer.ist.psu.edu/285279.html
citeseer.ist.psu.edu/285279.html
http://www.cs.columbia.edu/~library
http://www.cs.columbia.edu/~library
www.cs.columbia.edu/~ezk/research/thesis
www.cs.columbia.edu/~ezk/research/thesis

100 BIBLIOGRAPHY

101

Appendix A

CSP and VDM-SL Notation

This chapter is intended to give a short description of the various symbols present in
the CSP and VDM-SL modeling language that may not be easily recognized. The basic
mathematical operations concerning sets and logical statements have been left out.

A.1 CSP Process Expressions

There are two possibilities for de�ning new processes in CSP:

p def= P

p[i : D] def= P

In the �rst notation, p is a process identi�er that is de�ned by the process expression P .
The second notation de�nes p as a parametrized process with one or more parameters, i ,
in some domain D . The process expression P may depend on p and i . The syntactic class
of process expressions, P , is de�ned by the grammar:

P : : = STOP | p | p[e] | c!e → P | c?x : M → P | P [] P | (if b then P else P) |
(let x : M = e {, x : M = e} in P)

It is assumed that → has higher precedence than [] so that for example (c!e → P [] Q)
should be read as ((c!e → P) [] Q) .

In Table A.1, the CSP notation that has been used in the speci�cation is listed.
The notation left [i ∈ D]?a : M is used as a shorthand for the processes that accepts

input of a value in the domain M on any of the channels left [i] for i ∈ D . Furthermore,
the underscore character is used as a wild-card when the input value is discarded.

A.2 VDM-SL Symbols

In Table A.2, the used data types are listed, and in Table A.3 the used operators are listed.
For further details, see [22].

102 Appendix A. CSP and VDM-SL Notation

Expression Description
STOP The simplest CSP process is STOP , which halts

without communicating.
c!e → P This process expression will initially take part

in a communication event by outputting the ex-
pression e on the channel c, and then it will
behave like P .

c?x : M → P This process expression will initially take part in
a communication event by inputting any value of
type M to the variable x from the channel c, and
then it will behave like P .

P []Q A process which behaves like either P or Q . It is
the environment that determines which process
expression is chosen, depending on which events
are received.

(if b then P else Q) If the boolean expression b is true, the process
behaves like P ; otherwise, it behaves like Q .

(let x1 : M 1 = e1 {, x2 : M 2 =
e2} in P)

The let process expression is used to assign the
expression e1 of type M 1 to the variable x1 and
optionally assign the expression e2 of type M 2
to the variable x2, etc. After the assignment(s),
the behavior of the process is as speci�ed by P .

Table A.1: CSP notation for processes and process expressions.

Data Type Description
B The boolean values {true, false}.
N0 The non-negative integers: {0, 1, 2, . . .}.
N1 The positive integers: {1, 2, . . .}.
char An arbitrary character.
token A countably in�nite set of distinct values whose structure is in-

signi�cant in the speci�cation.
S -set A set with elements of type S .
S ∗ A possibly empty sequence of values of type S .
S m-→ T A mapping from elements of type S to elements of type T . The

value of type S is denoted the key and the value of type T , which
is associated with it, is denoted the information value.

S × T × . . . The product type whose values are denoted tuples. A tuple is a
�xed length list where the �rst element is of type S , the second of
type T , etc.

Table A.2: VDM-SL data types.

A.2 VDM-SL Symbols 103

Operator Name Description
len l Length Yields the number of elements in the sequence l .
hd l Head Yields the �rst element in the non-empty sequence l .
tl l Tail Yields the subsequence of the non-empty sequence l

where the �rst element is removed.
l1̂l2 Concatenation The sequence l1 is concatenated with the sequence l2,

i.e., it yields a sequence that consists of the elements
in l1 followed by those in l2, in order.

dom m Domain Yields the domain (i.e., the set of keys) of the map m.
rng m Range Yields the range (i.e., the set of information values) of

the map m.
m1 †m2 Override The mapm1 is overridden by the mapm2, i.e., it yields

a map combined by m1 and m2 where the elements of
dom m1 are mapped as by m1, and the elements of
dom m2 are mapped as by m2. Any common elements
are mapped as by m2.

m(d) Map apply Yields the information value whose key is d . d must
be in the domain of the map m.

Table A.3: VDM-SL operators.

104 Appendix A. CSP and VDM-SL Notation

105

Appendix B

Installation Guide

The Sensor Enhanced Access Control (SEAC) system is packed in the seac.zip �le. When
this �le is unzipped the following directory structure is created:

seac
|

templates out macfs gui test webcam report
| |
| |

Linux-2.4 Linux-2.4
|
|

macfs

templates/Linux-2.4 contains the FiST stackable templates for Linux 2.4. These �les
will only be needed if the stackable �le system should be modi�ed (see Appendix B.1.1).

out/Linux-2.4/macfs contains all the source code for the SEAC system, except the web-
camera sensor part. This code includes the stackable �le system code for the macfs,
the code for the window management subsystem, and scripts for startup and shut-
down. The stackable �le system code can only be on Linux 2.4, and new code must
be generated if another Unix version is used.

macfs contains the FiST input �le, macfs.fist, and all the C code for the stackable �le
system and window management part of the system. When the fistgen is run with
macfs.fist as argument, it will use the templates in templates/Linux-2.4 and the
code in macfs to produce �le system code, which are stored in out/Linux-2.4/macfs.
To avoid having to set the PATH environment variable to include more directories than
necessary, the Makefile we have created will copy the remaining code from macfs
to out/Linux-2.4/macfs and create the binaries and shared libraries in this output
directory as well.

gui contains the Java source code for the security management gui and the �le seac.jar
which contains the compiled class �les.

106 Appendix B. Installation Guide

test contains the scripts that were used during the test of the system. Furthermore, it
contains a sample security policy �le policy.txt.

webcam contains the source code to the motion detection programs, as well as the con�g-
uration �les for Motion.

report contains the latex �les for this thesis as well as versions in pdf-format and ps-
format.

The SEAC system will possibly have to be installed on two di�erent computers where
one stores the classi�ed �les and is used by a regular user, and the other runs the motion
detection program and has web-cameras attached. The installation guide has therefore
been divided in two sections, re�ecting this deployment of the system.

B.1 Installation of the Access Control Part

If no changes to the stackable �le system is required and the Unix version used is Linux 2.4,
the stackable �le system code that we have generated using fistgen can be used. The
following steps should then be performed when installing the system.

1. Set macro de�nitions (Optional)

A number of macros in the source code can be set at compile time using the -D
preprocessor option. The kernel space part of the code contains two macros: the
HASH_TABLE_SIZE denotes the size of the hashtable (the default is 10), and DEBUG
can be used to turn on or o� debug output to the system log (the default is o�).
These macros should be set in the SEAC_KERNEL_DEFINITIONS variable in the make�le
out/Linux-2.4/ macfs/Makefile.
The user space part of the code contains the following macros that can be set:
MOUNT_POINT denotes the mount point for macfs (the default is /mnt/macfs); DEBUG
can be used to turn on or o� debug output to standard error (the default is 0);
libX11_PATH is the path to the X11 library (the default is /usr/X11R6/lib/libX11.so);
libc_PATH is the path to the c library (the default is /lib/tls/libc.so.6); and
SHELL_PATH is the path to the valid login shells (the default is /etc/shells, cf. the
man page 'shells', section 5). These macros should be set in the SEAC_DEFINITIONS
variable in the make�le out/Linux-2.4/ macfs/Makefile.

2. Compile the code
The code is compiled by changing to the SEAC directory and running
make seac

This will compile the code in the out/Linux-2.4/macfs and gui directories.
3. Update the PATH variable (Optional)

The PATH environment variable should be set so that it includes all the command
line programs. If the seac.zip �le is unzipped in the user's home directory, this can
be done with the command:

B.2 Installation of the Web-cameras and Motion Detection Programs 107

export PATH=$PATH:$HOME/seac/out/Linux-2.4/macfs:$HOME/seac/test:

Additionally, the super user should set the PATH variable so that it includes the path
to the programs for loading (insmod) and unloading (rmmod) kernel modules; this is
typically /sbin. Instead of setting the PATH variables each time the operating system
is started, it can be set automatically if the export command is added to a startup
script, such as .bashrc (if the bash shell is used).

B.1.1 Changes made to the Stackable File System Templates

If the the stackable �le system should be modi�ed as part of a further development of our
system, or if it should be ported to another Unix version than Linux 2.4, some changes
will have to be made to the templates. First of all, the latest version of the FiST system
should be downloaded from the FiST home page[12]. Depending on the functionality that
should be provided by the new �le system, the following should be inserted in the tem-
plates. In the �le templates/Linux-2.4/inode.c, the tags FIST_OP_CREATE_POSTCALL,
FIST_OP_UNLINK_POSTCALL, FIST_OP_MKDIR_POSTCALL, and FIST_OP_RMDIR_POSTCALLmust
be inserted near the end of the functions wrapfs_create(), wrapfs_unlink(), wrapfs_mkdir(),
and wrapfs_rmdir(), respectively. Furthermore, the statements
err = inode_permission(inode->i_ino, mask);
if(err) goto out;

must be inserted at the beginning of the function wrapfs_permission(). In the �le
templates/Linux-2.4/file.c, the statement

file_open_intercepted(inode->i_ino, inode->i_mode, file->f_dentry->d_name.name)

must be inserted at the beginning of the function wrapfs_open().
Finally, the �le templates/Linux-2.4/Makefile should be changed. We will not de-

scribe our changes in details here; instead, we recommend looking in our make�le and
making corresponding changes in the new make �le where required. If the Linux 2.4 tem-
plates are used, our make�le can just be used. The main changes that we have made is
that the variables SEAC_KERNEL_DEFINITIONS and SEAC_DEFINITIONS are added, and the
variables CFLAGS and UCFLAGS are changed so that they make use of these variables.

B.2 Installation of the Web-cameras and Motion Detection

Programs

Installation of the Web-cameras
The web-cameras should be placed next to the area that needs to be monitored. They
should be placed on a stable surface or �xed to the ceiling or wall to prevent shaking.
The cameras should be placed approximately 30-50 cm apart. After being connected to
the computer, the drivers for the cameras should be installed. Use the driver supplied
with the cameras or a general Linux driver, such as the qce-usb driver[10], and follow
the instructions given. The cameras will most likely be installed as /dev/video0 and
/dev/video1, but note the exact location for your speci�c installation.

108 Appendix B. Installation Guide

Installation of Motion

The Motion program, version 3.0.7-1, has been provided in an archive �le on the attached
CD. This version can be used, or a newer version can be downloaded from http://motion.
sourceforge.net. Extract the �les and follow the instructions given in the INSTALL �le.
When Motion has been installed, the con�guration �les should be set up as explained in
Section 7.3.2. The con�guration �les are stored in the webcam directory. If using these
�les, you will have to change the target_dir where the snapshots are saved to a directory
valid on your system. The onsave needs to be the correct path to the event1 and event2
programs, most likely ∼/seac/webcam/event1 and ∼/seac/webcam/event2. Also make
sure that the vidoedevice option is correct.

If using a newer version of Motion be aware that the con�gurations �les have a slightly
di�erent layout and way of handling two cameras. Be sure to read the documentation to
set up the program.

Installation of Motion Detection Programs
1. Update the pipe paths (Optional)

The �le pipe.h (Appendix F.7.6) speci�es where the pipes used for communication
will be created. This can be changed if needed.

2. Compile the code
Enter the webcam directory and run make.

3. Update the PATH variable
The PATH environment variable should be set so that includes the path to the motion
detection programs.
export PATH=$PATH:$HOME/seac/webcam:

The path to the webcam directory might be di�erent.

http://motion.sourceforge.net
http://motion.sourceforge.net

109

Appendix C

User's Guide

In this appendix, a user's guide for both the super user and a non-privileged user is pro-
vided. First of all, it is described how the core of the system consisting of the stackable
�le system and window management part is started up and shutdown (see Appendix C.1).
Since the motion detection program will possibly be running on a di�erent machine than
the one containing the classi�ed �les, the startup and shutdown of this part of the system
is described in a separate section (see Appendix C.2).

The SEAC system consists of many command-line programs, and their functionality
were described in Chapter 6. A regular user will, however, not be interested in these
details, but rather in how the programs should be used, so a user's guide is provided in
Appendix C.3. The users can of course also use the Security Manager GUI instead of the
command line programs (see Appendix C.4).

C.1 System Startup and Shutdown

In a secure deployment of the system, a regular user should not be able to login as the
super user since an unauthorized person then can use physical coercion to circumvent all
the mandatory access control provided by the system. Furthermore, the principal who has
super user privileges should not present near the environment since he then is susceptible to
kidnapping. If an unauthorized person in some way is able to login as the super user, he can
unmount the stackable �le system and obtain unrestricted access to all the classi�ed �les
in the underlying �les system. To avoid that the principal who has super user privileges
is present, the startup and shutdown of the system should preferably be made part of
the Linux startup and shutdown procedure. This can be done by inserting the required
commands in scripts that are run automatically at startup and shutdown.

C.1.1 Guide to the Super User

Initializing the system will on most systems require root privileges since a non-privileged
user is not allowed to mount �le systems and load kernel modules. As motivated in Sec-
tion 7.1.2, the mount point is speci�ed in the header �le mount_point.h, and if a non-
default mount point should be used, the code must be recompiled after the modi�cation.

The stackable �le system comes in the form of a loadable kernel module, macfs, and
the �rst task for the super user is to install it in the running kernel. This is done with the
command:

110 Appendix C. User's Guide

insmod macfs.o

provided that the �le macfs.o is in the current working directory (after the installation,
this �le is in /out/Linux-2.4/macfs).

The next step is to mount the �le system. The most secure mount style is an overlay
mount where the mount point and the underlying �le system have the same absolute
path[43]. User processes must pass through macfs before they can access �les, and the
lower �le system is therefore hidden from user processes. macfs should be mounted with
the command:

mount -t macfs -o dir=MOUNT_POINT MOUNT_POINT MOUNT_POINT

Because the underlying �le system can be used before the macfs is mounted on it, there
can possibly exists some �les where no associated �le level exists. In this case, the lowest
level will be returned by the programs listsl and getfl, ensuring that the system works
even if �les already exist below the stackable �le system.

The insecure mount style is a regular mount where two paths (LOWERDIR and
MOUNT_POINT) are speci�ed, and the mount command is used as follows:

mount -t macfs -o dir=LOWERDIR LOWERDIR MOUNT_POINT

This mount style should only be used when testing the system since it makes all the security
mechanisms provided by the stackable �le system worthless: a unauthorized person will
have direct access to all the �les in LOWERDIR, regardless of their �le level, and he can use
any editor he wishes to open the �les, since the system will not unmap a window unless it
has opened �les from the stackable �le system.

The command lsmod lists information about all loaded modules and should include
the macfs module. If the command mount is used without any command line arguments,
it should include the macfs �le system. The stackable �le system uses the system log for
auditing, and its content can be seen in the �le /var/log/messages or using a special
application such as redhat-logviewer (see the menu item system log).

After the mount, the stackable �le system must be initialized by running the seac_init
program:

seac_init POLICY_FILE FILE_LEVELS_FILE USER_LEVELS_FILE - initialize �le system
The super user must use this program to initialize the �le system. All the command
line arguments are �les. The �le POLICY_FILE must contain the security policy that
should be used by the system. The format must be as follows:

Hide non-readable file names: x
No read up: x
No read down: x
No write down: x
No write up: x
Permit lower level login: x

C.1 System Startup and Shutdown 111

where x is either y or n, indicating that the policy is chosen or not, respectively.
The �le FILE_LEVELS_FILE must either be an empty �le or it must store inodes and
corresponding �le levels in the binary format that is used when the seac_destroy
stores the system state. Similarly, the �le USER_LEVELS_FILE must be empty or store
user IDs and corresponding user levels.
To avoid that non-privileged users corrupt the �les, they should be protected using
the security mechanisms provided by Unix so that only the super user can modify the
�les. The directory containing them should also be protected so that the �les are not
simply removed; this can be done using sticky bits or by forbidding write access to
the directory. The non-privileged user should have read access to the POLICY_FILE
so that they can see which security policy is enforced by the system.
The program will fail if any of the �les does not exists or the format in a �le is invalid.
It will also fail if it is not the super user that runs the program, or if it has already
been run previously.

If the system should make windows visible or invisible according to the detected persons,
the visibility_manager, file_open_monitor, and sensor_server programs must sub-
sequently be started. However, this step is optional since the stackable �le system part of
the system can be used independently of the window management and sensor part, if only
logical mandatory access control is required.

When the system should be shutdown, the seac_destroy program must be run:

seac_destroy - terminate system
stores all the �le and user levels, terminates the stackable �le system so that it
no longer can be used and kills the visibility_manager and file_open_monitor
process.

If the sensor_server was started previously, it is terminated by sending it a negative �le
level. Furthermore, the stackable �le system must be unmounted and the kernel module
must be unloaded. This is done as follows:

swsensor -1 i
umount MOUNT_POINT
rmmod macfs

To easing the job of the system administrator, the script startup.sh can be used
to startup the system (see Appendix F.9.2), and the script shutdown.sh can be used
to shutdown the system (see Appendix F.9.3). Furthermore, the script reset.sh (see
Appendix F.9.1) should be called before the system is used the �rst time: it will create
the mount point if it does not exists and the required empty �les for the �le levels and
user levels. If it is called subsequently, it will delete all the �les created in the stackable
�le system and delete all �le levels and user levels; it is of course only the intention that it
should be used for testing purpose.

C.1.2 Guide to a Non-Privileged User

A user must �rst log in to the system using the initcl program:

112 Appendix C. User's Guide

initcl [LOGIN_LEVEL] - initialize clearance level
Initializes the clearance level to the user level of the user who runs this program. If the
security policy permits it, the user can use the command line argument LOGIN_LEVEL
to specify a level below the user's level that the clearance level should be initialized to.
Whether this is permitted can be read in the security policy �le, which is maintained
by the super user.

The system will only detect created windows if the LD_PRELOAD environment variables
is set to the directory containing the shared libraries x_create_window_interceptor.so
and backup_interceptor.so. If only logical access control should be provided by the
system, this variable should not be set. If the shared libraries are stored in the directory
~/seac/macfs, this can be done with the command
export LD_PRELOAD=~/seac/out/Linux-2.4/macfs/x_create_window_interceptor.so:
~/seac/out/Linux-2.4/macfs/backup_interceptor.so

in a terminal, and then subsequently starting the editor from that terminal. If the stackable
�le system is mounted on /mnt/macfs the user can open an editor with the command
cd /mnt/macfs
emacs file.txt

or, alternatively:
emacs /mnt/macfs/file.txt

If the system should be noti�ed about all the created windows, and not just those started
from a terminal, the LD_PRELOAD variable can be set in a startup script such as .bashrc
(if the bash shell is used). The system will then be noti�ed about all the created windows,
and not just those that are used to edit classi�ed �les. For testing purposes, a script (such
as test/usertest.sh) can be used to set LD_PRELOAD, call initcl and start one or more
editors. By setting LD_PRELOAD in a script, it is avoided that all rename, XCreateWindow
and XCreateSimpleWindow calls made from the terminal are intercepted by the shared
libraries. This approach may be preferred if many GUI programs are started from the
terminal and only a few of them will be used to open classi�ed �les; the user can then
easily determine which window the SEAC system should be noti�ed about.

C.2 The Web-Camera Sensor

Startup
The camera sensor can be started by any user, but for the system to be e�ective it should
be started by root. This is to prevent unauthorized termination of the sensors.

The system is started using the following the steps:
1. Run Motion with the command motion -D.
2. Run start_motion. This starts the two motion_handler instances.

C.3 The Command Line Programs 113

3. Run camera_client ENVIRONMENT-LEVEL HOST-NAME PORT. ENVIRONMENT-LEVEL is
the level a default person detected by the camera should be assigned. HOST-NAME
and PORT is the host name and the port where the server_client is listening.

Alternatively, the camera system can be started with the script startcam.sh found
in the webcam directory. This executes all the above steps, but the variables for the
camera_client must be changed to re�ect the actual system.

Shutdown

If the system should be terminated ps -ef | grep motion and ps -ef | grep camera
can be used to obtain the process IDs of the programs started (motion, camera_client and
two instances of motion_handler), and they can be terminated using the kill command.

Since the snapshot_overwrite option for Motion does not function as expected, Mo-
tion will take a lot of snapshots during operation and save them in the directory set in
target_dir. These images should be removed at regular intervals.

C.3 The Command Line Programs

Several command line programs have been developed, as described in this section. Where
not speci�ed otherwise, they can be used by all users.

C.3.1 File Level Management

The file level management sub-system provides three command line programs. They
all take a �le or directory as command line argument, which must exist in the stackable
�le system; otherwise, an error message is returned.

setfl FILE FILE_LEVEL - set �le level
Sets the �le level associated with FILE to FILE_LEVEL. If the visibility_manager is
running and a user has the �le open in an editor, the visibility of the editor's window
will change if the new level implies that the window should be mapped or unmapped.
Only the super user can use this program.

getfl FILE - get �le level
Retrieves the �le level associated with FILE. If the hide_non-readable_�les security
policy is chosen and the �le is not readable according to the security policy, no �le
level can be retrieved and an error message will indicate that the �le does not exist.

listfl [DIR] - list �le levels
Lists the �le name and corresponding �le level for every �le in DIR. If no direc-
tory is speci�ed, the �le level for the current working directory will be printed. If
the hide_non-readable_�les security policy is chosen, the non-readable �les will be
skipped in this listing.

114 Appendix C. User's Guide

C.3.2 User Level Management

The user level management sub-system provides three command line programs:

setul USER_NAME USER_LEVEL - set user level
sets the user level for the user with the user name USER_NAME to USER_LEVEL. The
level can be any positive integer. Only the super user is allowed to change the user
level.

getul [USER_NAME] - get user level
Retrieves the user level for a given user. A user can retrieve his own level, but not
the level of another user.

listul - list user levels
lists the user name and corresponding user level for every user in the system. Only
the super user is allowed to list the user levels.

C.3.3 Window Management

The window management sub-system provides three command line programs that require
super user privileges. They should all run as a demon processes.

visibility_manager POLICY_FILE
Starts the visibility manager which is responsible for changing the visibility of win-
dows whenever an unauthorized person enters the environment. The security policy
that should be enforced is read from the text �le POLICY_FILE.

file_open_monitor
Starts the �le open monitor. Whenever a regular �le or a link to a �le is opened, it
will notify the visibility_manager about this.

sensor_server[PORT]
Starts the sensor server. If a non-default port should be used, it must be speci�ed
as the command line argument PORT. The default port number is 33333.

The window management sub-system provides three command line programs that can be
used by all users:

listwl - list window levels
List all the window levels for all the current windows along with other status infor-
mation.

listsl - list subject levels
List the subject levels for every subject in the environment.

getcl - get clearance level
Retrieves the current clearance level.

C.4 The Security Manager GUI 115

C.3.4 Sensors

swsensor LEVEL DIRECTION [HOST] [PORT] - software sensor client
The software sensor client can be used to simulate that a person enters or leaves an
environment. The �rst command line argument (LEVEL) is the environment level of
a person. If the level is negative, it will shut down the sensor_server. The second
(DIRECTION) is the direction of the person which must be either `i' or `o', indicating
that the person enters or leaves the environment, respectively. The third argument
(HOST) is the host where the sensor_server runs. If no host is speci�ed the default
host localhost will be used, and the sensor_client can then only be used on the
host where the sensor_server runs. Finally, the fourth argument (PORT) is the port
number used by the sensor_server. If no port is speci�ed, the default port 33333
will be used.

C.4 The Security Manager GUI

Many of the developed command line programs can be used indirectly via the Security
Manager GUI. The GUI contains �ve menu items (as can be seen in Appendix E), and
they can be used to run the following programs: getfl, setfl, listfl, getul, setul,
listul, listwl, getcl, listsl. If the mount point is /mnt/macfs, the GUI can be
started as follows:

java -jar seacGUI.jar /mnt/macfs &

If a command line program can only be used by the super user, it cannot be used in the
GUI either. It will, for instance, only be possible to modify user or �le levels and see the
levels of all the users, when the super user runs the GUI.

116 Appendix C. User's Guide

117

Appendix D

Testing

We have tested the di�erent part of the system for various cases on the Linux distribution
Fedora Core 1. The tests are managed and executed a bit di�erently depending on which
subsystem we are testing. Table D.1 shows the users and �les that constitute the default
state of the system before any tests are started. The �les all contain a text string, and
are readable and write-able by all users with respect to the Linux DAC permissions. No
persons are assumed to be present when the tests start. In Table D.2, a set of policies are
shown, in each test or case a speci�c one will be used. The policies are the ones from the
security policy �le loaded when the system is started.

user level
alice 3
bob 20
root superuser

�le level
a.txt 1
b.txt 5
c.txt 20

Table D.1: Default Users and Files

Policy read up read down write up write down �le names lower level login
A no yes yes no hidden yes
B yes no no yes hidden no
C no yes yes no shown no

Table D.2: Policies used in testing

D.1 Stackable File System Test

The stackable �le system is tested to disclose whether normal �le operations can take place
while still maintaining the properties of a MAC �le system. The tests made by the super
user can be seen in Table D.3. Furthermore, movement and copying was tested with an
unprivileged user; these tests can be seen in Table D.4.

118 Appendix D. Testing

Command Test Case Expected Result OK
link c.txt c2.txt Link a �le to another c2.txt has the same level as

c.txt

√

unlink c2.txt Unlink a �le c2.txt is removed √

mkdir test Create a directory Directory test created √

mv a.txt test/a.txt Move a �le a.txt is in the directory test
with its level intact

√

cp b.txt test/b2.txt Copy a �le b2.txt is created and assigned
the clearance level

√

rm b2.txt Remove a �le b2.txt is removed √

rmdir test Remove a directory test is removed √

Table D.3: Test of the Stackable File System by the Super User

Command Test Case Expected Result OK
mv a.txt
/home/alice/a.txt

Move a �le with a lower level than
the user outside the �le system

Not permitted √

mv c.txt
/home/alice/c.txt

Move a �le with a higher level than
the user outside the �le system

Not permitted √

cp a.txt
/home/alice/a.txt

Copy a �le with a lower level than
the user to outside the �le system

Permitted √

cp c.txt
/home/alice/c.txt

Copy a �le with a higher level than
the user to outside the �le system

Not permitted √

cp c.txt c2.txt Copy a �le with a higher level than
the user

Not permitted √

cp a.txt a2.txt Copy a �le with a lower level than
the user

Permitted √

Table D.4: Test of the Stackable File System by a User

D.2 File Level Management Test 119

D.2 File Level Management Test

The �le level management programs setfl, getfl, listfl are tested both with a normal
user and super used logged in, as well as with di�erent security policies. The test cases
can be seen in Table D.5.
User Policy Command Test Case Expected Output OK
alice A setfl a.txt 6 Change a �le level Not permitted √

alice A listfl List the �les List shows only the �le
a.txt

√

alice A getfl a.txt Get the level of a �le be-
low the users level

The level of a.txt is
shown (3)

√

alice A getfl c.txt Get the level of a �le
above the users level

Not permitted √

alice C listfl List the �les List shows all �lenames √

root A listfl List the �les List shows all �lenames √

root A setfl a.txt 6 Set a �le to a new level a.txt is assigned level 6 √

root A getfl c.txt Get a �le's level The level of c.txt is
shown (20)

√

Table D.5: Test of the File Level Management

D.3 User Level Management Test

The user level management programs setul, getul, listul are tested both with a normal
user and super used logged in while using policy A. The test cases can be seen in Table D.6.
User Command Test Case Expected Result OK
alice setul alice 5 Change users own level Not permitted √

alice setul bob 21 Change another users level Not permitted √

alice getul Get the users own level alice's level is shown (3) √

alice getul bob Get the level of another users Not permitted √

alice listul List all user levels Not permitted √

root listul List all user levels A list of the user levels is shown √

root getul bob Get the user level of a user bob's user level is shown (20) √

root setul alice 5 Change a users level alice's user level is 5 √

Table D.6: Test of User Level Management

D.4 Mandatory Access Control Test

The Mandatory Access Control is tested by attempting to read and write di�erent �les
under di�erent policies, all with the user alice (level 3). The tests can be seen in Table D.7.

120 Appendix D. Testing

Command Policy Test Case Expected Result OK
cat a.txt A Read a �le below the users

level
Permitted √

cat b.txt A Read a �le above the users
level

Not permitted √

echo x > a.txt 123 A Write to a �le below the users
level

Not permitted √

echo x > b.txt 123 A Write to a �le above the users
level

Permitted √

touch d.txt A Create a �le d.txt created with
level 3

√

rm d.txt A Remove a �le d.txt is removed √

cat a.txt B Read a �le below the users
level

Not permitted √

cat b.txt B Read a �le above the users
level

Permitted √

echo x > a.txt 123 B Write to a �le below the users
level

Permitted √

echo x > b.txt 123 B Write to a �le above the users
level

Not permitted √

echo x > a.txt 123 A Write to a �le below the users
level while logged in at a lower
level

Permitted √

Table D.7: Test of the Mandatory Access Control

D.5 Window Management Test 121

D.5 Window Management Test

The window management subsystem needs to be tested in two ways. The programs getcl,
listwl and listsl need to be tested, and these tests can be seen in Table D.8. The
mapping and unmapping of windows depending on the clearance level need to be tested
as well, this is done using the swsensor. These tests can be seen in Table D.9. All tests
were conducted using policy A.

In this test is is assumed that the swsensor functions as expected, it is assumed that
it can send the correct value and direction via the socket communication. This is not an
unrealistic requirement, as it is a very simple program, and the correct transmission of data
was tested during development. It is necessary to use this to test the window management
system, as changes in the environment level needs to be tested.
Command Test Case Expected Result OK
getcl Only the user in the room Returns the user's level √

getcl A person in the room Returns the lowest of the person's
and user's levels

√

listsl Only the user in the room Returns the user's level √

listsl A person in the room Lists the user's and the person's
level

√

listwl No open windows Notes that no windows are open √

listwl Files in a mapped window Lists the level of the window as the
maximum of the open �les

√

listwl Files in an unmapped window Lists the level of the window as the
maximum of the �les open, and lists
the high level �le names as 'unavail-
able'

√

listwl Multiple windows, both mapped
and unmapped

Lists the levels of the windows as
the maximum of the �les open in
that window, and the high level �le
names as 'unavailable'

√

Table D.8: Test of Window Management Tools

D.6 Editor Test

We have tested the system with di�erent editors and viewers. In Table D.10 it can be seen
which cases were tested with each, and in Table D.11 the results for each editor or viewer
can be seen. The editors were the standard versions included in Fedora.

D.7 Web-camera Sensor Test

At last we test the web-camera sensor to see if the persons passing by are registered
correctly and windows are mapped or unmapped correspondingly. The tests can be seen
in Table D.12.

122 Appendix D. Testing

Event Test Case Expected Output OK
A person enters No open �les Nothing √

A person enters Open �les with higher level
than the person

The window(s) containing the
�les is unmapped

√

A person enters Open �les with lower level
than the person

Nothing √

A person enters Open �les with both higher
and lower level than the per-
son

All windows containing �les
with higher level than the per-
son are unmapped

√

The person leaves For all of the above The system is reverted to its
previous state

√

Two persons en-
ters after one an-
other

Files open with higher level
than one of the persons

Windows containing the �les
are unmapped

√

One person
leaves, one stays

Clearance level rises above
some of the �les

Windows containing the �les
becomes mapped

√

One person
leaves, one stays

The clearance level stays the
same

Nothing √

Table D.9: Test of the Window Management

Test Case Description Expected Result
A Open a �le with write and read per-

mitted to the user
Permitted

B Open �le with read only permitted to
the user

Should only open in a viewer or in a
non-editable mode

C Open a �le with read not permitted
to user

Not permitted
D Create a �le The �le should be assigned the clear-

ance level
E Clearance level is lowered due to a

person
Window should disappear

F Clearance level is raised due to a per-
son leaving

Window should be remapped
G Open a backup of a �le with read not

permitted to the user
Not permitted

Table D.10: Editor and Viewer Test Cases

Editor/Viewer case A case B case C case D case E case F case G
emacs √ √ √ √ √ √ √

gedit √ √ √ √
÷ ? √

nedit √ √ √ √ √ √ √

mozilla √ √ √ N/A √ √ √

Table D.11: Test of Editors and Viewers

D.7 Web-camera Sensor Test 123

Event Test Case Expected Output OK
A person enters No open �les Nothing √

A person enters Open �les with higher level
than the person

The window(s) containing the
�les is unmapped

√

A person enters Open �les with lower level
than the person

Nothing √

A person enters Open �les with both higher
and lower level than the per-
son

All windows containing �les
with higher level than the per-
son are unmapped

√

The person leaves For all of the above The system is reverted to its
previous state

√

Two persons en-
ters close to an-
other

The time di�erence between
two persons is low

listsl should list both per-
sons

√

A person enters The person moves at a fast
(not running) pace

The web-cameras detect the
person

√

Table D.12: Test of the Camera Sensor

124 Appendix D. Testing

125

Appendix E

GUI Screen-shots

A few screen-shots have been taken of the SecurityManagerGUI, and they are shown in
Figure E.1 to E.8. The Bell-LaPadula access control model was used during this test.
Furthermore, the non-readable �les were hidden i.e., the name of a �le where the �le level
is greater than the clearance level is hidden by the �le system and visibility_manager
process. The content of the security policy �le was therefore as follows:
Hide non-readable files: y
No read up: y
No read down: n
No write down: n
No write up: n
Permit lower level login: y

When the �le level management menu item is selected (see Figure E.1), the user can
select to view the �le level of an individual �le by writing its name in the text �eld or
clicking on the Browse button and selecting the �le (see Figure E.2). If a directory is
selected, the �le levels for all the �les and directories in the selected directory is listed.
When the super user runs the SecurityManagerGUI application, the �le levels in the File
Level column can be modi�ed to any positive integer. When a non-privileged user runs
the application, the �le levels are not editable.

The user who initially logged in by calling the initcl program was s973732. This user
has clearance level 10, and when the User Level Management menu item is selected, only
this user level is shown (see Figure E.4). When the super user runs the application, he will
have access to all the user levels for all the normal users in the system (see Figure E.3).

Two persons with levels 5 and 9 have been detected in the environment and the clearance
level is therefore decreased from 10 to 5 (see Figure E.8). (The detection of persons can
be simulated with the sensor_client program.)

Only one �le (/mnt/macfs/dir1/file6.txt) has a �le level that is greater than the
clearance level. It is open in an emacs editor, which is invisible (see Figure E.5). The �le
name is replaced by 'unavailable' in the dialog window that displays information about the
open �les in the invisible window (see Figure E.6).

Four editors and a single Internet browser have �les open, but none of the �les contain
information that should be hidden, so the windows are visible (see Figure E.7). An overview
of all the information maintained about the visible and invisible windows can be obtained
using the listwl program; its output after this test is listed in Figure 7.2.

126 Appendix E. GUI Screen-shots

Figure E.1: The File Level Management menu item is selected, and all the �le levels of
the �les and directories in /mnt/macfs are listed.

127

Figure E.2: When the Browse button is clicked, the user can select a �le or directory. If
a �le is selected, the corresponding �le level is displayed. If a directory is selected, all the
�le levels of the �les and directories in the directory are listed.

128 Appendix E. GUI Screen-shots

Figure E.3: When the User Level Management menu item is selected and the super user
runs the application, all the users and corresponding user levels are listed. The user levels
are editable, and any changes are stored persistently.

129

Figure E.4: When the User Level Managementmenu item is selected and a non-privileged
user runs the application, only the user level of the user is displayed.

130 Appendix E. GUI Screen-shots

Figure E.5: One window was unmapped when this screen-shot was taken. The clearance
level was 5 and the window was unmapped because its window level was 6 and the Bell
LaPadula model should be enforced.

131

Figure E.6: The �le names and corresponding �le levels of the open �les in the unmapped
window. Because the hide_non-readable_�les policy is chosen, the �le name of the �le
with �le level 6 is replaced by `unavailable'.

132 Appendix E. GUI Screen-shots

Figure E.7: When the Mapped Windows menu item is selected, information about the �ve
visible windows are listed.

133

Figure E.8: When the Current Subject Levels menu item is selected, the subject levels
of all the subjects who are currently present are listed. This list is always sorted in
increasing order, and the �rst element is therefore equal to the clearance level.

134 Appendix E. GUI Screen-shots

135

Appendix F

Source Code

In this appendix, all the source code for our system is listed. This includes mainly C Code,
but also FiST code and Java code. The �les are listed according to which subsystem they
belong to, starting at the lowest layer in our layered architecture.

F.1 Common Files

F.1.1 mount_point.h

#ifndef MOUNT_POINT
#define MOUNT_POINT "/mnt/macfs "
#endif

F.1.2 seac_ipc.h

#ifndef _SEAC_IPC_H
#define _SEAC_IPC_H

//////////////////////
// X11 d e c l a r a t i o n s //
//////////////////////

#include <X11/Xlib . h>

#define CLIENT_MESSAGE "CLIENT_MESSAGE"

enum message_types {INIT_CLEARANCE_LEVEL = 0 ,
XCREATE_WINDOW_INTERCEPTOR,
FILE_OPEN_MONITOR,
BACKUP_INTERCEPTOR,
SET_FILE_LEVEL,
SENSOR_SERVER,
LIST_WINDOW_INFO,
LIST_SUBJECT_LEVELS,
DESTROY} ;

136 Appendix F. Source Code

// Sends the message ' data ' to the v i s i b i l i t y_manage r .
int send_xcl ient_event (long data [] , Display ∗ di sp lay , Window target_window) ;

enum backup_types {EMACS_BACKUP} ;

////////////////////////////
// Named pipe d e c l a r a t i on //
////////////////////////////

#define FIFO_FILE "/tmp/ . f i f o%i "

////////////////////////////////
// Shared memory d e c l a r a t i o n s //
////////////////////////////////

#define SHARED_MEMORY_KEY 123

enum shared_memory_offsets {
SECURITY_MANAGER_SHM_OFFSET = 0 ,
FILE_OPEN_MONITOR_SHM_OFFSET = s izeof (Window) ,

} ;

////////////////////////////
// Semaphore d e c l a r a t i o n s //
////////////////////////////

#i f de f ined (__GNU_LIBRARY__) && ! de f ined (_SEM_SEMUN_UNDEFINED)
/∗ union semun i s de f ined by i n c l ud in g <sys /sem . h> ∗/
#else
/∗ accord ing to X/OPEN we have to d e f i n e i t o u r s e l v e s ∗/
union semun {

int va l ; /∗ va lue f o r SETVAL ∗/
struct semid_ds ∗ buf ; /∗ b u f f e r f o r IPC_STAT, IPC_SET ∗/
unsigned short ∗ array ; /∗ array f o r GETALL, SETALL ∗/
/∗ Linux s p e c i f i c par t : ∗/
struct seminfo ∗__buf ; /∗ b u f f e r f o r IPC_INFO ∗/

} ;
#endif

#define FILE_OPEN_MONITOR_SEM_NUM 0

#define SEMAPHORE_KEY 1234

#define NO_OF_SEMAPHORES 1

int semaphore_down (int sem_id , unsigned short sem_num) ;
int semaphore_up (int sem_id , unsigned short sem_num) ;

#endif

F.1 Common Files 137

F.1.3 seac_ipc.c

#include " seac_ipc . h"

#include <X11/Xlib . h>
#include <X11/Xatom . h>
#include <errno . h>
#include <sys /shm . h>
#include <sys / types . h>
#include <sys / ipc . h>
#include <sys /sem . h>

/∗ Wait on a b inary semaphore . Block u n t i l the semaphore va lue i s
p o s i t i v e , then decrement i t by one .

∗/
int semaphore_down (int sem_id , unsigned short sem_num){

struct sembuf ope ra t i on s [1] ;

ope ra t i on s [0] . sem_num = sem_num;

// Decrement by one
ope ra t i on s [0] . sem_op = -1 ;

// Permit undo ' ing
ope ra t i on s [0] . sem_flg = SEM_UNDO;

return semop (sem_id , operat ions , 1) ;
}

/∗ Post to a b inary semaphore : increment i t s va lue by one . The
func t i on re turns immediate ly .

∗/
int semaphore_up (int sem_id , unsigned short sem_num){

struct sembuf ope ra t i on s [1] ;

ope ra t i on s [0] . sem_num = sem_num;

// Increment by one
ope ra t i on s [0] . sem_op = 1;

// Permit undo ' ing
ope ra t i on s [0] . sem_flg = SEM_UNDO;

return semop (sem_id , operat ions , 1) ;
}

////////////////
// Xevent IPC //
////////////////

int send_xcl ient_event (long data [] , Display ∗ di sp lay , Window target_window) {

138 Appendix F. Source Code

int created_disp lay = 0 ;

i f (! d i sp l ay)
// Use d e f a u l t d i s p l a y
i f (! (d i sp l ay = XOpenDisplay (NULL))) {

p r i n t f ("Error opening d i sp l ay [% s] \ n" , XDisplayName (NULL)) ;
return - 1 ;

}
else

created_disp lay = 1 ;

i f (! target_window) {
// I n i t i a l i z e security_manager shared memory
int shm_id = shmget (SHARED_MEMORY_KEY, s izeof (Window) , 0) ;

i f (shm_id == -1)
return - 1 ;

void ∗ shm = shmat (shm_id , 0 , 0) ;
i f (! shm) {

pe r ro r ("shmat") ;
return - 1 ;

}

memcpy(&target_window , shm+SECURITY_MANAGER_SHM_OFFSET, s izeof (Window)) ;

shmdt (shm) ;
i f (! target_window)
return - 1 ;

}

Atom cl ient_message = XInternAtom (d i sp lay , "CLIENT_MESSAGE" , Fa l se) ;

i f (c l i ent_message == None)
return - 1 ;

Window root = RootWindow(d i sp lay , De fau l tScreen (d i sp l ay)) ;
XEvent event ;
event . type = ClientMessage ;
event . x c l i e n t . d i sp l ay = d i sp l ay ;
event . x c l i e n t . window = target_window ;
event . x c l i e n t . message_type = cl ient_message ;
event . x c l i e n t . format = 32 ;
event . x c l i e n t . data . l [0] = data [0] ;
event . x c l i e n t . data . l [1] = data [1] ;
event . x c l i e n t . data . l [2] = data [2] ;
event . x c l i e n t . data . l [3] = data [3] ;
event . x c l i e n t . data . l [4] = data [4] ;

int s t a tu s = XSendEvent (d i sp lay , target_window , False , 0 , (XEvent ∗) &event)
;

i f (c reated_disp lay) {
XFlush (d i sp l ay) ;
XCloseDisplay (d i sp l ay) ;

F.2 The Stackable File System Files 139

}

return s t a tu s ;
}

F.1.4 security_policy_parameters.h

#ifndef _SECURITY_POLICY_PARAMETERS_H
#define _SECURITY_POLICY_PARAMETERS_H

#define HIDE_NON_READABLE_FILES "Hide non - r eadab le f i l e s : "

#define PERMIT_LOWER_LEVEL_LOGIN "Permit lower l e v e l l o g i n : "

#define NO_READ_UP "No read up : "
#define NO_WRITE_DOWN "No wr i t e down : "

#define NO_READ_DOWN "No read down : "
#define NO_WRITE_UP "No wr i t e up : "

#endif

F.1.5 sensor.h

#ifndef _SENSOR_H
#define _SENSOR_H

#define DEFAULT_HOST " l o c a l h o s t "
#define DEFAULT_PORT 33333

#endif

F.2 The Stackable File System Files

The �les listed in Appendix F.2.1 to Appendix F.2.4 contains kernel space code that
make up our part stackable �le system. The reaming code is available with the stackable
�le systems software package (�stgen), see [12]. The �les listed in Appendix F.2.5 to
Appendix F.2.7 contain user space code, which are used when the system is initialized or
shut down.

F.2.1 macfs.�st

%{
// The g l o b a l c l earance l e v e l . I t i s updated when an unauthor i sed
// person enter or l e a v e the environment .
extern int c l e a r anc e_ l ev e l ;

140 Appendix F. Source Code

// I s non - zero i f the system e i t h e r has not been i n i t i a l i s e d or i t
// has been des t royed .
extern int is_done ;

// I f non - zero , permits the user to s p e c i f y a l e v e l be low h i s user
// l e v e l , which shou ld be used to i n i t i a l i s e the c l earance l e v e l .
extern int permit_lower_level_login ;

// I f non - zero , f i l e names o f f i l e s t h a t are non - r eadab l e accord ing
// to the s e c u r i t y p o l i c y w i l l be hidden .
extern int hide_non_readable_f i les ;

// Be l l -La Padula r u l e s :
extern int no_read_up ;
extern int no_write_down ;

// Biba r u l e s :
extern int no_write_up ;
extern int no_read_down ;

// The f i l e names o f the f i l e l e v e l s f i l e , user l e v e l f i l e , and
// s e c u r i t y p o l i c y f i l e , r e s p e c t i v e l y :
extern char f i l e _ l e v e l s [2 5 6] ;
extern char us e r_ l eve l s [2 5 6] ;
extern char s e cu r i t y_po l i cy [2 5 6] ;

// Used when the open system c a l l i s invoked :
extern struct semaphore open_sem ;
extern char f i le_name [2 5 6] ;
extern int l e v e l ;
extern int pid ;
extern long f i l e_ inode ;

// I s invoked whenever a f i l e i s opened in the f i l e system .
extern void f i l e_open_inte rcepted (long inode , int mode , const char ∗name) ;

// I s invoked whenever the permiss ions o f f i l e i s checked by the
// f i l e system .
extern int inode_permiss ion (long inode , int mask) ;

// DEBUG i s se t , debugg ing in format ion i s wr i t t en to the system l o g .
#ifndef DEBUG
#define DEBUG 0
#endif
%}

// By f i l t e r i n g on the f i l e names , the f i l e s t h a t shou ld be hidden can
// be sk ipped in a d i r e c t o r y read ing ; t h i s i s on ly used when
// hide_non_readab le_f i les != 0 .
f i l t e r name ;

// Source code t ha t shou ld be compi led and l i n k e d wi th the f i l e system .
mod_src f i l e _ l e v e l s . c s e cu r i t y_po l i c y . c u s e r_ l eve l s . c ;

// Source code f o r stand - a lone user space programs t ha t use the f i l e
// system v ia i o c t l system c a l l s .

F.2 The Stackable File System Files 141

user_src i n i t c l . c s eac_ in i t . c seac_destroy . c s e t f l . c g e t f l . c l i s t f l . c s e t u l . c
g e tu l . c l i s t u l . c g e t c l . c v i s i b i l i t y_manage r . c f i le_open_monitor . c

seac_ipc . h mount_point . h secur i ty_pol icy_parameters . h ;

add_mk macfs_mk ;

// I n i t i a l i s a t i o n and shutdown opera t i ons :

i o c t l INIT {
char s e cu r i t y_po l i cy [2 5 6] ;
char f i l e _ l e v e l s [2 5 6] ;
char us e r_ l eve l s [2 5 6] ;

} ;

i o c t l INIT_CLEARANCE_LEVEL {
int l e v e l ;

} ;

i o c t l : f romuser DESTROY {
int op ;

} ;

// F i l e l e v e l opera t i ons :

i o c t l SET_FILE_LEVEL {
int l e v e l ;
long inode ;

} ;

i o c t l GET_FILE_LEVEL {
int l e v e l ;
long inode ;

} ;

// User l e v e l opera t i ons :

i o c t l SET_USER_LEVEL{
int uid ;
int l e v e l ;

} ;

i o c t l GET_USER_LEVEL {
int uid ;
int l e v e l ;

} ;

// Clearance l e v e l opera t i ons :

i o c t l SET_CLEARANCE_LEVEL {
int l e v e l ;

} ;

i o c t l GET_CLEARANCE_LEVEL {

142 Appendix F. Source Code

int l e v e l ;
} ;

// Open i n t e r c e p t opera t ion :

i o c t l OPEN {
char name [2 5 6] ;
int pid ;
int l e v e l ;
long inode ;

} ;

// F i l e formats t ha t are used when f i l e and user l e v e l s are s t o r ed in
// f i l e s .

f i l e f o rma t FILE_LEVEL{
long inode ;
int l e v e l ;

} ;

f i l e f o rma t USER_LEVEL{
int uid ;
int l e v e l ;

} ;

%%

///
// I n i t i a l i z a t i o n and shutdown func t i on s //
///

%op : i o c t l : INIT{
i f (current ->euid)
return -EPERM;

i f (f i s tGe t I o c t lDa t a (INIT , s ecur i ty_po l i cy , s e cu r i t y_po l i cy) < 0 | |
f i s tGe t I o c t lDa t a (INIT , f i l e_ l e v e l s , f i l e _ l e v e l s) < 0 | |
f i s tGe t I o c t lDa t a (INIT , use r_leve l s , u s e r_ l ev e l s) < 0 | |
! is_done)

return -EFAULT;

is_done = 0 ;

i f (read_hashtable () | | read_pol icy ())
return -EFAULT;

sema_init(&open_sem , 0) ;
}

%op : i o c t l :INIT_CLEARANCE_LEVEL{
int l o g i n_ l ev e l ;

F.2 The Stackable File System Files 143

i f (f i s tGe t I o c t lDa t a (INIT_CLEARANCE_LEVEL, l e v e l , & l o g i n_ l ev e l) < 0)
return -EFAULT;

i f (c l e a r anc e_ l ev e l == -1){// The c l earance l e v e l has not been i n i t i a l i s e d .
c l e a r anc e_ l ev e l = get_user_leve l (current ->uid) ;
i f (permit_lower_level_login && log i n_ l ev e l != -1 &&

log i n_ l ev e l < c l e a r anc e_ l ev e l)
c l e a r anc e_ l ev e l = l o g i n_ l ev e l ;

}
f i s t S e t I o c t lD a t a (INIT_CLEARANCE_LEVEL, l e v e l , & c l e a r anc e_ l ev e l) ;

}

%op : i o c t l :DESTROY {
int op ;

i f (current ->euid)
return -EPERM;

i f (f i s tGe t I o c t lDa t a (DESTROY, op , &op) | | is_done)
return -EFAULT;

write_hashtable () ;
f r ee_hashtab le () ;
is_done = -1 ; // Denotes t ha t the fi le_open_monitor shou ld s top running .
up(&open_sem) ;

i f (DEBUG) pr in tk ("SEAC: the system i s destroyed . \ n") ;
}

//////////////////////////
// F i l e l e v e l f unc t i on s //
//////////////////////////

%op : i o c t l :SET_FILE_LEVEL {
long ino ;
int l e v e l ;

// Only roo t i s a l l owed to change the f i l e l e v e l .
i f (current ->euid)
return -EPERM;

i f (f i s tGe t I o c t lDa t a (SET_FILE_LEVEL, l e v e l , & l e v e l) < 0 | |
f i s tGe t I o c t lDa t a (SET_FILE_LEVEL, inode , & ino) < 0 | |
is_done)

return -EFAULT;

l e v e l = s e t_ f i l e_ l e v e l (ino , l e v e l) ;

f i s t S e t I o c t lD a t a (SET_FILE_LEVEL, l e v e l , & l e v e l) ;
}

%op : i o c t l :GET_FILE_LEVEL {
long ino ;

144 Appendix F. Source Code

int l e v e l ;

i f (f i s tGe t I o c t lDa t a (GET_FILE_LEVEL, inode , & ino) < 0 | |
is_done)

return -EFAULT;

l e v e l = g e t_ f i l e_ l e v e l (ino) ;

i f (l e v e l == -1) // A l e v e l i s not a s s o c i a t e d wi th the inode .
l e v e l = 0 ;

i f (hide_non_readable_f i les && inode_permiss ion (ino , 4)) // Permission denied
return -ENOENT;

f i s t S e t I o c t lD a t a (GET_FILE_LEVEL, l e v e l , & l e v e l) ;
}

//////////////////////////
// User l e v e l f unc t i on s //
//////////////////////////

%op : i o c t l :SET_USER_LEVEL {
int uid ;
int l e v e l ;

// Only roo t i s a l l owed to change the user l e v e l .
i f (current ->euid)
return -EPERM;

i f (f i s tGe t I o c t lDa t a (SET_USER_LEVEL, l e v e l , & l e v e l) < 0 | |
f i s tGe t I o c t lDa t a (SET_USER_LEVEL, uid , & uid) < 0)

return -EFAULT;

i f (DEBUG) pr in tk ("SEAC Set user l e v e l : uid = %i , user l e v e l = % i \n" , uid ,
l e v e l) ;

l e v e l = set_user_leve l (uid , l e v e l) ;

f i s t S e t I o c t lD a t a (SET_USER_LEVEL, l e v e l , & l e v e l) ;
}

%op : i o c t l :GET_USER_LEVEL {
int uid ;
int l e v e l ;

i f (f i s tGe t I o c t lDa t a (GET_USER_LEVEL, uid , & uid) < 0)
return -EFAULT;

i f (current ->euid && current ->euid != uid)
return -EPERM;

l e v e l = get_user_leve l (uid) ;
i f (DEBUG) pr in tk ("SEAC Get user l e v e l : uid = %i , user l e v e l = % i \n" , uid ,

l e v e l) ;

F.2 The Stackable File System Files 145

f i s t S e t I o c t lD a t a (GET_USER_LEVEL, l e v e l , & l e v e l) ;
}

///////////////////////////////
// Clearance l e v e l f unc t i on s //
///////////////////////////////

%op : i o c t l :SET_CLEARANCE_LEVEL {
int l e v e l ;

// Only roo t i s a l l owed to change the c l earance l e v e l .
i f (current ->euid)
return -EPERM;

i f (f i s tGe t I o c t lDa t a (SET_CLEARANCE_LEVEL, l e v e l , & l e v e l) < 0)
return -EFAULT;

i f (DEBUG) pr in tk ("SEAC Set c l e a r anc e l e v e l : l e v e l = % i \n" , l e v e l) ;

memcpy(&c l ea rance_leve l , & l e v e l , s izeof (int)) ;

}

%op : i o c t l :GET_CLEARANCE_LEVEL {
f i s t S e t I o c t lD a t a (GET_CLEARANCE_LEVEL, l e v e l , & c l e a r anc e_ l ev e l) ;
i f (DEBUG) pr in tk ("SEAC Get c l e a r anc e l e v e l : l e v e l = % i \n" , c l e a r anc e_ l ev e l) ;

}

/////////////////////////////
// Open i n t e r c e p t f unc t i on //
/////////////////////////////

%op : i o c t l :OPEN {
e r r = down_interrupt ib le (&open_sem) ;
// down_interrup t i b l e r e turns 0 i f you got the lock , or -EINTR i f
// the proces s was i n t e r r up t e d wi th a s i g n a l .
i f (! e r r) {

i f (is_done)
f i s t S e t I o c t lD a t a (OPEN, l e v e l , & is_done) ;

else {
f i s t S e t I o c t lD a t a (OPEN, name , f i le_name) ;
f i s t S e t I o c t lD a t a (OPEN, pid , & pid) ;
f i s t S e t I o c t lD a t a (OPEN, l e v e l , & l e v e l) ;
f i s t S e t I o c t lD a t a (OPEN, inode , & f i l e_ inode) ;

}
}

}

/////////////////////
// F i l e opera t i ons //
/////////////////////

146 Appendix F. Source Code

%op : c r e a t e : p o s t c a l l {
i f (DEBUG) pr in tk ("SEAC cr ea t e : f i l e name = %s , inode = %i , l e v e l = % i \n" ,

dentry ->d_name . name , dentry ->d_inode ->i_ino , c l e a r anc e_ l ev e l) ;

i f (! e r r)
i n s e r t (dentry ->d_inode ->i_ino , c l e a r anc e_ l ev e l) ;

}

%op : un l ink : p o s t c a l l {
i f (DEBUG) pr in tk ("SEAC unl ink : f i l e name = %s , inode = %i , l i n k count = % i \n

" , dentry ->d_name . name , dentry ->d_inode ->i_ino , dentry ->d_inode ->i_nl ink
) ;

i f (! e r r && dentry ->d_inode ->i_nl ink == 0)
d e l e t e (dentry ->d_inode ->i_ino) ;

}

//////////////////////////
// Direc tory opera t i ons //
//////////////////////////

%op : mkdir : p o s t c a l l {
i f (DEBUG) pr in tk ("SEAC mkdir : d i r e c t o r y name = %s , inode = %i , f i l e l e v e l

= % i \n" , dentry ->d_name . name , dentry ->d_inode ->i_ino , c l e a r anc e_ l ev e l) ;

i f (! e r r)
i n s e r t (dentry ->d_inode ->i_ino , c l e a r anc e_ l ev e l) ;

}

%op : rmdir : p o s t c a l l {
i f (DEBUG) pr in tk ("SEAC rmdir : d i r e c t o r y name = %s , inode = %i , l i n k count

= % i \n" , dentry ->d_name . name , dentry ->d_inode ->i_ino , dentry ->d_inode ->
i_nl ink) ;

i f (! e r r && dentry ->d_inode ->i_nl ink == 0)
d e l e t e (dentry ->d_inode ->i_ino) ;

}

%op : r eadd i r : c a l l {
i f (current ->euid && hide_non_readable_f i les && inode_permiss ion (ino , 4)) {

i f (DEBUG) pr in tk ("SEAC readd i r : sk ipp ing f i l e %s \n" , decoded_name) ;
f i stSkipName (decoded_name) ;

}
}

%%

int c l e a r anc e_ l ev e l = -1 ;
int is_done = 1 ;

// Secur i t y p o l i c y parameters :

int permit_lower_level_login = 0 ;

F.2 The Stackable File System Files 147

int hide_non_readable_f i les = 0 ;

// Be l l -La Padula :
int no_read_up = 0;
int no_write_down = 0;

// Biba :
int no_write_up = 0 ;
int no_read_down = 0;

char s e cu r i t y_po l i cy [2 5 6] ;
char f i l e _ l e v e l s [2 5 6] ;
char us e r_ l eve l s [2 5 6] ;

// F i l e open monitor v a r i a b l e s :
struct semaphore open_sem ;
int pid ;
int l e v e l ;
char f i le_name [2 5 6] ;
long f i l e_ inode ;

// Taken from ba s e2 f s . f i s t
int macfs_encode_filename (const char ∗name , int l ength , char ∗∗ encoded_name ,

int skip_dots , const vnode_t ∗vp , const vfs_t ∗ vf sp) {
int encoded_length = length + 1 ;
∗encoded_name = f i s tMa l l o c (encoded_length) ;
fistMemCpy (∗ encoded_name , name , l ength) ;
(∗ encoded_name) [l ength] = ' \0 ' ;
return encoded_length ;

}

// re turns l en g t h o f decoded s t r i n g , or -1 i f e r ror
int macfs_decode_filename (const char ∗name , int l ength , char ∗∗decoded_name ,

int skip_dots , const vnode_t ∗vp , const vfs_t ∗ vf sp) {
int e r r o r = 0 ;
∗decoded_name = f i s tMa l l o c (l ength) ;
fistMemCpy (∗decoded_name , name , l ength) ;
e r r o r = length ;
return e r r o r ;

}

void f i l e_open_inte rcepted (long ino , int mode , const char ∗name) {

i f (! S_ISREG(mode) && !S_ISLNK(mode))
return ;

int new_level = g e t_ f i l e_ l e v e l (ino) ;
i f (new_level == -1){

pr in tk ("SEAC f i l e_open_inte rcepted () e r r o r : the inode % i was not found\n")
;

return ;
}

148 Appendix F. Source Code

i f (DEBUG) pr in tk ("SEAC f i l e open i n t e r c ep t ed : f i l e name = %s , inode = %i ,
f i l e l e v e l = %i , PID = % i \n" , name , ino , new_level , current ->pid) ;

memcpy(&pid , & current ->pid , s izeof (pid)) ;
memcpy(& l e v e l , & new_level , s izeof (l e v e l)) ;
memcpy(& f i l e_ inode , & ino , s izeof (ino)) ;
memcpy(file_name , name , 2 5 6) ;
i f (DEBUG) pr in tk ("SEAC f i l e open i n t e r c ep t ed : f i l e name = %s\n" , f i le_name) ;
up(&open_sem) ;

}

// Secur i t y p o l i c y func t i on . Returns 0 i f the inode can be accessed
// wi th the prov ided mask .
int inode_permiss ion (long inode , int mask) {

int f i l e _ l e v e l = g e t_ f i l e_ l e v e l (inode) ;
i f (f i l e _ l e v e l == -1)
return 0 ; // A l e v e l has not been a s s o c i a t e d wi th the f i l e .

i f (current ->uid && // Only the acces s f o r non - roo t user s i s
// r e s t r i c t e d .

(// Be l l -La Padula r u l e s :
no_read_up && mask & 4 && f i l e _ l e v e l > c l e a r anc e_ l ev e l | |
no_write_down && mask & 2 && f i l e _ l e v e l < c l e a r anc e_ l ev e l | |
// Biba r u l e s :
no_write_up && mask & 2 && f i l e _ l e v e l > c l e a r anc e_ l ev e l | |
no_read_down && mask & 4 && f i l e _ l e v e l < c l e a r anc e_ l ev e l)) {

i f (DEBUG) pr in tk ("Permiss ion denied f o r inode % i \n" , inode) ;
return -EPERM;

}

return 0 ;
}

F.2.2 security_policy.c

#ifde f FISTGEN
#include " f i s t_mac f s . h"
#endif
#include " f i s t . h"

#include " secur i ty_pol icy_parameters . h"

// Reads a l i n e from the p o l i c y f i l e
int read_l ine (f i l e_ t ∗ f i l p , char ∗ option , int ∗ cho i c e) {
char buf [4 0] ;
int bytes = f i l p ->f_op ->read (f i l p , buf , s t r l e n (opt ion)+2, & f i l p ->f_pos) ;

i f (! strncmp (buf , option , s t r l e n (opt ion))) {
∗ cho i c e = buf [s t r l e n (opt ion) +1] ;

i f (∗ cho i c e != (int) ' y ' && ∗ cho i c e != (int) 'n ') {
pr in tk ("SEAC e r r o r : i n v a l i d format i s e c u r i t y po l i c y f i l e . The format

must be \"%s x\" where x i s e i t h e r y or n\n" , opt ion) ;
return - 1 ;

F.2 The Stackable File System Files 149

}
∗ cho i c e -= 'n ' ;

}

while (bytes > 0 && buf [0] ! = ' \n ')
bytes = f i l p ->f_op ->read (f i l p , buf , 1 , & f i l p ->f_pos) ;

return 0 ;
}

int read_pol icy () {
f i l e_ t ∗ f i l p ;
mm_segment_t o l d f s ;
int e r r = 0 ;

i f (DEBUG) pr in tk ("SEAC s e cu r i t y po l i c y : \ n") ;
f i l p = f i lp_open (secur i ty_po l i cy , O_RDONLY, 0) ;

i f (! f i l p | | IS_ERR(f i l p))
return - 1 ;

i f (! f i l p ->f_op ->read)
return - 2 ; // f i l e (system) doesn ' t a l l ow reads

f i l p ->f_pos = 0 ; // s t a r t o f f s e t
o l d f s = get_fs () ;
s e t_f s (KERNEL_DS) ;

i f (e r r = read_l ine (f i l p , HIDE_NON_READABLE_FILES, & hide_non_readable_f i les)
< 0)

goto out ;
else

i f (DEBUG) pr in tk (" hide_non_readable_f i les = % i \n" ,
hide_non_readable_f i les != 0) ;

i f (e r r = read_l ine (f i l p , NO_READ_UP, &no_read_up) < 0)
goto out ;

else
i f (DEBUG) pr in tk (" no_read_up = % i \n" , no_read_up != 0) ;

i f (e r r = read_l ine (f i l p , NO_READ_DOWN, &no_read_down) < 0)
goto out ;

else
i f (DEBUG) pr in tk (" no_read_down = % i \n" , no_read_down != 0) ;

i f (e r r = read_l ine (f i l p , NO_WRITE_DOWN, &no_write_down) < 0)
goto out ;

else
i f (DEBUG) pr in tk (" no_write_down = % i \n" , no_write_down != 0) ;

i f (e r r = read_l ine (f i l p , NO_WRITE_UP, &no_write_up) < 0)
goto out ;

else
i f (DEBUG) pr in tk (" no_write_up = % i \n" , no_write_up != 0) ;

150 Appendix F. Source Code

i f (e r r = read_l ine (f i l p , PERMIT_LOWER_LEVEL_LOGIN, & permit_lower_level_login
) < 0)

goto out ;
else

i f (DEBUG) pr in tk (" permit_lower_level_login = % i \n" ,
permit_lower_level_login != 0) ;

out :
s e t_f s (o l d f s) ;
fput (f i l p) ; // c l o s e the f i l e

return e r r ;
}

F.2.3 �le_levels.c

#ifde f FISTGEN
#include " f i s t_mac f s . h"
#endif
#include " f i s t . h"

// Hashtab le node
typedef struct node ∗ node_t ;
struct node{
long inode ;
int l e v e l ; // f i l e l e v e l
node_t next ; // Pointer to the next e lement .

} ;

#ifndef HASH_TABLE_SIZE
#define HASH_TABLE_SIZE 10
#endif

stat ic node_t hashtab le [HASH_TABLE_SIZE] ;

stat ic int s i z e = 0 ; // The number o f e lements in the ha sh t a b l e .

//////////////////////////
// Hash t a b l e f unc t i on s //
//////////////////////////

stat ic unsigned int hash (int key) { return key % HASH_TABLE_SIZE; }

// Pr in t s the content o f the hash t a b l e .
stat ic void pr in t () {

i f (! s i z e) {
pr in tk ("\nThe hash tab l e i s empty . \ n") ;
return ;

}

int i ;
for (i = 0 ; i < HASH_TABLE_SIZE; i++){

node_t x ;

F.2 The Stackable File System Files 151

pr in tk ("\ n i = % i : " , i) ;

for (x = hashtab le [i] ; x ; x = x->next)
pr in tk ("(%u, % i) " , x->inode , x-> l e v e l) ;

}
pr in tk ("\n") ;

}

stat ic node_t search (int k) {
node_t x = hashtab le [hash (k)] ;

while (x && x->inode != k)
x = x->next ;

return x ;
}

int i n s e r t (long inode , int l e v e l) {

i f (inode < 0 | | l e v e l < 0)
return - 1 ;

node_t x = hashtab le [hash (inode)] ;

while (x && x->inode != inode)
x = x->next ;

i f (x) { // Update the node
i f (x-> l e v e l != l e v e l)
x-> l e v e l = l e v e l ;

}
else { // In s e r t a new node

node_t y ;
y = kmalloc (s izeof (struct node) , GFP_KERNEL) ;
i f (! y) {

pr in tk ("SEAC Error : Out o f memory . ") ;
return - 1 ;

}

s i z e++;
int index = hash (inode) ;
// Create a new node ' ' y ' ' wi th key va lue inode
y->inode = inode ;
y-> l e v e l = l e v e l ;
y->next = hashtab le [index] ;
hashtab le [index] = y ;

}

i f (DEBUG){
pr in tk ("SEAC hashtab le a f t e r i n s e r t : ") ;
p r i n t () ;

}
return 0 ;

}

152 Appendix F. Source Code

void de l e t e (long inode) {

node_t x = hashtab le [hash (inode)] , y = 0 ;

for (; x && x->inode != inode ; x = x->next)
y = x ;

i f (! x) { // inode does not e x i s t in t a b l e
pr in tk ("SEAC de l e t e e r r o r : inode % i was not found . \ n" , inode) ;
return ;

}

s i z e - - ;

i f (y) // The inode was not the f i r s t e lement in the l i s t .
y->next = x->next ;

else // De le te the f i r s t e lement in the l i s t
hashtab le [hash (inode)] = x->next ;

k f r e e (x) ;

i f (DEBUG){
pr in tk ("SEAC hashtab le a f t e r d e l e t e : ") ;
p r i n t () ;

}
}

// Read the content o f a hash t a b l e from a f i l e and s t o r e i t in t a b l e
int read_hashtable () {

struct _fist_fileformat_FILE_LEVEL buf ;
int l en = s izeof (struct _fist_fileformat_FILE_LEVEL) ;

f i l e_ t ∗ f i l p ;
mm_segment_t o l d f s ;
int bytes = 1 ;

f i l p = f i lp_open (f i l e_ l e v e l s , O_RDONLY, 0) ;

i f (! f i l p | | IS_ERR(f i l p))
return - 1 ;

i f (! f i l p ->f_op ->read)
return - 2 ;

f i l p ->f_pos = 0 ; // s t a r t o f f s e t
o l d f s = get_fs () ;
s e t_f s (KERNEL_DS) ;

// Read an inode and a corresponding l e v e l from the f i l e and
// i n s e r t i t i n t o the ha sh t a b l e .
bytes = f i l p ->f_op ->read (f i l p , (void ∗) &buf , len , & f i l p ->f_pos) ;

while (bytes > 0){

F.2 The Stackable File System Files 153

i n s e r t (buf . inode , buf . l e v e l) ;
bytes = f i l p ->f_op ->read (f i l p , (void ∗) &buf , len , & f i l p ->f_pos) ;

}

se t_f s (o l d f s) ;
fput (f i l p) ; // c l o s e the f i l e

return 0 ;
}

// Store the content o f t a b l e in a f i l e .
int write_hashtable () {

struct _fist_fileformat_FILE_LEVEL buf ;
int l en = s izeof (struct _fist_fileformat_FILE_LEVEL) ;
f i l e_ t ∗ f i l p ;
mm_segment_t o l d f s ;
int bytes , i ;

f i l p = f i lp_open (f i l e_ l e v e l s , O_WRONLY, 0) ;

i f (! f i l p | | IS_ERR(f i l p))
return - 1 ;

i f (! f i l p ->f_op ->wr i t e)
return - 2 ;

f i l p ->f_pos = 0 ; // s t a r t o f f s e t
o l d f s = get_fs () ;
s e t_f s (KERNEL_DS) ;

for (i = 0 ; i < HASH_TABLE_SIZE; i++){
node_t x = hashtab le [i] ;

for (; x ; x = x->next) {
memcpy(&buf . inode , &x->inode , s izeof (x->inode)) ;
memcpy(&buf . l e v e l , &x-> l ev e l , s izeof (x-> l e v e l)) ;
bytes = f i l p ->f_op ->wr i t e (f i l p , (void ∗) &buf , len , & f i l p ->f_pos) ;

}
}
se t_f s (o l d f s) ;
fput (f i l p) ; // c l o s e the f i l e

return 0 ;
}

void f r ee_hashtab le () {
int i ;

for (i = 0 ; i < HASH_TABLE_SIZE; i++){
node_t x , y ;

for (x = hashtab le [i] ; ;) {
i f (x)
y = x->next ;

154 Appendix F. Source Code

else
break ;

i f (DEBUG) pr in tk (" k f r e e (%u, % i) \n" , x->inode , x-> l e v e l) ;
k f r e e (x) ;
x = y ;

}
}

}

// Returns the f i l e l e v e l f o r the f i l e or d i r e c t o r y wi th the g iven
// inode , or -1 i f no l e v e l has been a s s o c i a t e d wi th the inode .
int g e t_ f i l e_ l e v e l (long inode) {

node_t x = search (inode) ;

i f (x)
// inode was in the ha sh t a b l e .
return x-> l e v e l ;

else
return - 1 ;

}

int s e t_ f i l e_ l e v e l (long inode , int new_level) {

i f (new_level < 0)
return - 1 ;

return i n s e r t (inode , new_level) ;
}

F.2.4 user_levels.c

#ifde f FISTGEN
#include " f i s t_mac f s . h"
#endif
#include " f i s t . h"

/∗∗
∗ Se t s the user l e v e l f o r the user wi th the ID uid .
∗/
int se t_user_leve l (int uid , int l e v e l) {

struct _fist_fileformat_USER_LEVEL buf ;
int l en = s izeof (struct _fist_fileformat_USER_LEVEL) ;
f i l e_ t ∗ f i l p ;
mm_segment_t o l d f s ;
int uid_found = 0 ; // I s 0 i f f the uid was found in the f i l e

// open the f i l e
f i l p = f i lp_open (use r_leve l s , O_WRONLY, 0) ;

i f (! f i l p | | IS_ERR(f i l p))
return - 1 ;

i f (! f i l p ->f_op ->wr i t e | | ! f i l p ->f_op ->read)

F.2 The Stackable File System Files 155

return - 2 ;

f i l p ->f_pos = 0 ; // s t a r t o f f s e t
o l d f s = get_fs () ;
s e t_f s (KERNEL_DS) ;

while (f i l p ->f_op ->read (f i l p , (void ∗) &buf , len , & f i l p ->f_pos) > 0)
i f (buf . uid == uid) {
// The uid a l r eady e x i s t s in the f i l e , so the o ld l e v e l i s
// ove rwr i t t en by the new l e v e l .
memcpy(&buf . l e v e l , & l e v e l , s izeof (l e v e l)) ;
uid_found = 1 ;
f i l p ->f_pos = f i l p ->f_pos - l en ;
f i l p ->f_op ->wr i t e (f i l p , (void ∗) &buf , len , & f i l p ->f_pos) ;
break ;

}

i f (! uid_found) {
// The uid was not found in the f i l e , so the uid and corresponding
// l e v e l i s appended to the f i l e .
memcpy(&buf . uid , & uid , s izeof (uid)) ;
memcpy(&buf . l e v e l , & l e v e l , s izeof (l e v e l)) ;
f i l p ->f_op ->wr i t e (f i l p , (void ∗) &buf , len , & f i l p ->f_pos) ;

}

se t_f s (o l d f s) ;
fput (f i l p) ; // c l o s e the f i l e
return 0 ;

}

/∗∗
∗ Gets the user l e v e l f o r the user wi th the ID uid .
∗/
int get_user_leve l (int uid) {

struct _fist_fileformat_USER_LEVEL buf ;
int l en = s izeof (struct _fist_fileformat_USER_LEVEL) ;
f i l e_ t ∗ f i l p ;
mm_segment_t o l d f s ;
int l e v e l = 0 ;

f i l p = f i lp_open (use r_leve l s , O_RDONLY, 0) ;

i f (! f i l p | | IS_ERR(f i l p))
return - 1 ;

i f (! f i l p ->f_op ->read)
return - 2 ; // f i l e system does not a l l ow reads

f i l p ->f_pos = 0 ; // s t a r t o f f s e t
o l d f s = get_fs () ;
s e t_f s (KERNEL_DS) ;

while (f i l p ->f_op ->read (f i l p , (void ∗) &buf , len , & f i l p ->f_pos) > 0)
i f (buf . uid == uid) {
// The uid was found in the f i l e .

156 Appendix F. Source Code

memcpy(& l e v e l , & buf . l e v e l , s izeof (l e v e l)) ;
break ;

}

s e t_f s (o l d f s) ;
fput (f i l p) ; // c l o s e the f i l e
return l e v e l ;

}

F.2.5 seac_init.c

#include <sys / types . h>
#include <sys / i o c t l . h>
#include < f c n t l . h>
#include <s td i o . h>

#include "mount_point . h"
#include <wrapfs . h>

int main (int argc , char ∗ argv []) {

struct _fist_ioct l_INIT va l ;

i f (argc < 4) {
f p r i n t f (s tde r r , "Usage : % s POLICY_FILE FILE_LEVELS_FILE USER_LEVELS_FILE\n

" , argv [0]) ;
e x i t (1) ;

}

s t r cpy (va l . s e cur i ty_po l i cy , argv [1]) ;
s t r cpy (va l . f i l e_ l e v e l s , argv [2]) ;
s t r cpy (va l . u se r_leve l s , argv [3]) ;

int fd = open (MOUNT_POINT, O_RDONLY) ;
i f (fd < 0) {

pe r ro r ("open") ;
e x i t (1) ;

}

// Set the c l earance l e v e l in the f i l e system .
int s t a tu s = i o c t l (fd , FIST_IOCTL_INIT, & va l) ;
i f (s t a tu s < 0)

pe r ro r ("Could not a c c e s s f i l e system") ;

c l o s e (fd) ;
e x i t (s t a tu s) ;

}

F.2.6 initcl.c

#include <sys / types . h>
#include <sys / i o c t l . h>

F.2 The Stackable File System Files 157

#include < f c n t l . h>
#include <unis td . h>
#include <s td i o . h>

#include "mount_point . h"
#include " seac_ipc . h"
#include <wrapfs . h>

int main (int argc , char ∗ argv []) {

i f (argc > 2) {
f p r i n t f (s tde r r , "Usage : % s [LOGIN_LEVEL]\ n" , argv [0]) ;
e x i t (1) ;

}

struct _fist_ioctl_INIT_CLEARANCE_LEVEL va l ;

i f (argc == 2)
va l . l e v e l = a t o i (argv [1]) ;

else
va l . l e v e l = -1 ; // The l e v e l w i l l be s e t in the k e rne l to the

// user ' s user l e v e l

int fd = open (MOUNT_POINT, O_RDONLY) ;
i f (fd < 0) {

pe r ro r ("open") ;
e x i t (1) ;

}

int r e s = i o c t l (fd , FIST_IOCTL_INIT_CLEARANCE_LEVEL, & va l) ;
c l o s e (fd) ;
i f (r e s < 0) {

pe r ro r ("Could not a c c e s s f i l e system") ;
e x i t (r e s) ;

}

long data [] = {INIT_CLEARANCE_LEVEL, va l . l e v e l , 0 , 0 , 0 } ;
send_xcl ient_event (data , 0 , 0) ;

}

F.2.7 seac_destroy.c

#include <sys / types . h>
#include <sys / s t a t . h>
#include <sys / i o c t l . h>
#include < f c n t l . h>
#include <unis td . h>
#include <s td i o . h>

#include "mount_point . h"
#include " seac_ipc . h"

#include <wrapfs . h>

158 Appendix F. Source Code

int main () {

struct _fist_ioctl_DESTROY val ;

int fd = open (MOUNT_POINT, O_RDONLY) ;
i f (fd < 0) {

pe r ro r ("open") ;
e x i t (1) ;

}

// Store the f i l e system s t a t e and s top the fi le_open_monitor proces s
int s t a tu s = i o c t l (fd , FIST_IOCTL_DESTROY, & va l) ;
i f (s t a tu s < 0)

pe r ro r ("Could not a c c e s s f i l e system") ;

c l o s e (fd) ;

// Shut down the v i s i b i l i t y_manage r
long data [] = {DESTROY, 0 , 0 , 0 , 0 } ;
return send_xcl ient_event (data , 0 , 0) ;

}

F.3 File Level Management Files

F.3.1 get�.c

#include <sys / types . h>
#include <sys / s t a t . h>
#include <sys / i o c t l . h>
#include < f c n t l . h>
#include <unis td . h>
#include <s td i o . h>

#include "mount_point . h"
#include <wrapfs . h>

int main (int argc , char ∗ argv []) {

struct _fist_ioctl_GET_FILE_LEVEL val ;
struct s t a t stat_buf ;

i f (argc < 2) {
f p r i n t f (s tde r r , "Usage : % s FILE\n" , argv [0]) ;
e x i t (1) ;

}

char ∗ cwd = getcwd (0 , 0) ;
i f (strncmp (MOUNT_POINT, cwd , s t r l e n (MOUNT_POINT)) &&

(argc == 1 | | strncmp (MOUNT_POINT, argv [1] , s t r l e n (MOUNT_POINT)))) {
p r i n t f ("Error : % s i s not supported in t h i s d i r e c t o r y . \ n" , argv [0]) ;
f r e e (cwd) ;
e x i t (1) ;

}

F.3 File Level Management Files 159

f r e e (cwd) ;

int s t a tu s = s t a t (argv [1] , & stat_buf) ;
i f (s t a tu s < 0) {

pe r ro r (" s t a t ") ;
e x i t (1) ;

}
va l . inode = stat_buf . st_ino ;

int fd = open (MOUNT_POINT, O_RDONLY) ;
i f (fd < 0) {

pe r ro r ("open") ;
e x i t (1) ;

}

s t a tu s = i o c t l (fd , FIST_IOCTL_GET_FILE_LEVEL, & va l) ;
i f (s t a tu s == -1){

i f (va l . l e v e l == -1)
p r i n t f ("No f i l e l e v e l has been s e t . \ n") ;

else
per ro r ("Could not a c c e s s f i l e system") ;

}
else

p r i n t f ("%u\n" , va l . l e v e l) ;

c l o s e (fd) ;
}

F.3.2 set�.c

#include <sys / types . h>
#include <sys / s t a t . h>
#include <sys / i o c t l . h>
#include < f c n t l . h>
#include <unis td . h>
#include <s td i o . h>
#include <di r en t . h>

#include " seac_ipc . h"
#include "mount_point . h"

#include <wrapfs . h>

int main (int argc , char ∗ argv []) {

struct _fist_ioctl_SET_FILE_LEVEL val ;
struct s t a t stat_buf ;

i f (argc < 3) {
f p r i n t f (s tde r r , "Usage : % s FILE FILE_LEVEL\n" , argv [0]) ;
e x i t (1) ;

}

char ∗ f i le_name = argv [1] ;

160 Appendix F. Source Code

char ∗ cwd = getcwd (0 , 0) ;
// Check t ha t the path to the f i l e i s v a l i d .
i f (strncmp (MOUNT_POINT, cwd , s t r l e n (MOUNT_POINT)) &&

(argc == 1 | | strncmp (MOUNT_POINT, file_name , s t r l e n (MOUNT_POINT)))) {
p r i n t f ("Error : % s i s not supported in t h i s d i r e c t o r y . \ n" , argv [0]) ;
f r e e (cwd) ;
e x i t (1) ;

}
f r e e (cwd) ;

// Get the inode number corresponding to the f i l e .
int s t a tu s = s t a t (fi le_name , & stat_buf) ;
i f (s t a tu s < 0) {

pe r ro r (" s t a t ") ;
e x i t (1) ;

}

va l . inode = stat_buf . st_ino ;
va l . l e v e l = a t o i (argv [2]) ;
long data [] = {SET_FILE_LEVEL, va l . inode , va l . l e v e l , 0 , 0 } ;

int fd = open (MOUNT_POINT, O_RDONLY) ;
i f (fd < 0) {

pe r ro r ("open") ;
e x i t (1) ;

}

// Set the f i l e l e v e l in the s t a c k a b l e f i l e system .
s t a tu s = i o c t l (fd , FIST_IOCTL_SET_FILE_LEVEL, & va l) ;
i f (s t a tu s < 0){

pe r ro r ("Could not a c c e s s f i l e system") ;
c l o s e (fd) ;
e x i t (1) ;

}
c l o s e (fd) ;

i f (va l . l e v e l < 0) {
pe r ro r (" s e t f l ") ;
e x i t (1) ;

}

// Not i f y the v i s i b i l i t y_manage r about the l e v e l change .
send_xcl ient_event (data , 0 , 0) ;

}

F.3.3 list�.c

#include <sys / types . h>
#include <sys / s t a t . h>
#include <sys / i o c t l . h>
#include < f c n t l . h>
#include <unis td . h>
#include <s td i o . h>
#include <di r en t . h>

F.3 File Level Management Files 161

#include "mount_point . h"
#include <wrapfs . h>

int main (int argc , char ∗ argv []) {

struct _fist_ioctl_GET_FILE_LEVEL val ;
struct s t a t stat_buf ;

i f (argc > 2) {
f p r i n t f (s tde r r , "Usage : % s [DIR] \ n" , argv [0]) ;
e x i t (1) ;

}

char ∗ cwd = getcwd (0 , 0) ;
i f (strncmp (MOUNT_POINT, cwd , s t r l e n (MOUNT_POINT)) &&

(argc == 1 | | strncmp (MOUNT_POINT, argv [1] , s t r l e n (MOUNT_POINT)))) {
p r i n t f ("Error : l i s t f l i s not supported in t h i s d i r e c t o r y . \ n") ;
f r e e (cwd) ;
e x i t (1) ;

}
f r e e (cwd) ;

char ∗ dir_name = (argc < 2) ? " . " : argv [1] ;
DIR ∗ d i r = opendir (dir_name) ;
i f (! d i r) {

pe r ro r (" opendir ") ;
e x i t (1) ;

}

i f (chd i r (dir_name) == -1){
pe r ro r (" chd i r ") ;
e x i t (1) ;

}

struct d i r en t ∗ d i r en t = readd i r (d i r) ;
i f (! d i r en t) {

pe r ro r (" r eadd i r ") ;
e x i t (1) ;

}
d i r en t = readd i r (d i r) ; // .
d i r en t = readd i r (d i r) ; // . .

int fd = open (MOUNT_POINT, O_RDONLY) ;
i f (fd < 0) {

pe r ro r ("open") ;
e x i t (fd) ;

}

for (; d i r en t ; d i r en t = readd i r (d i r)) {
char ∗name = dirent ->d_name ;

int s t a tu s = s t a t (name , & stat_buf) ;
i f (s t a tu s < 0)
continue ;

162 Appendix F. Source Code

va l . inode = stat_buf . st_ino ;

s t a tu s = i o c t l (fd , FIST_IOCTL_GET_FILE_LEVEL, & va l) ;
i f (s t a tu s < 0) {

pe r ro r ("Could not a c c e s s f i l e system") ;
break ;

}

p r i n t f ("%-15 s %10u\n" , name , va l . l e v e l) ;
}

c l o s e (fd) ;
c l o s e d i r (d i r) ;

}

F.4 User Level Management Files

F.4.1 getul.c

#include <sys / types . h>
#include <sys / s t a t . h>
#include <sys / i o c t l . h>
#include < f c n t l . h>
#include <unis td . h>
#include <s td i o . h>
#include <pwd . h>
#include <sys / types . h>

#include "mount_point . h"

#include <wrapfs . h>

int main (int argc , char ∗ argv []) {

struct _fist_ioctl_GET_USER_LEVEL va l ;
struct passwd ∗ p_entry ;

i f (argc > 2) {
f p r i n t f (s tde r r , "Usage : % s [USER_NAME]\ n" , argv [0]) ;
e x i t (1) ;

}

i f (argc == 1)
// I f no argument i s supp l i ed , the user ID of the current user i s
// r e t r i e v e d .
va l . uid = getu id () ;

else {
p_entry = getpwnam(argv [1]) ; // ge t password entry

i f (! p_entry) {
p r i n t f ("The user l e v e l could not be r e t r i e v e d . \ n") ;
e x i t (1) ;

}

F.4 User Level Management Files 163

va l . uid = p_entry ->pw_uid ;
}

int fd = open (MOUNT_POINT, O_RDONLY) ;
i f (fd < 0) {

pe r ro r ("open") ;
e x i t (1) ;

}

// Get the user l e v e l i s from the s t a c k a b l e f i l e system .
int s t a tu s = i o c t l (fd , FIST_IOCTL_GET_USER_LEVEL, & va l) ;
i f (s t a tu s < 0) {

pe r ro r (" i o c t l ") ;
}
c l o s e (fd) ;

i f (va l . l e v e l < 0) {
p r i n t f ("The user l e v e l could not be r e t r i e v e d . \ n") ;
pe r ro r (" i o c t l ") ;

}
else

p r i n t f ("%i \n" , va l . l e v e l) ;
}

F.4.2 setul.c

#include <sys / types . h>
#include <sys / s t a t . h>
#include <sys / i o c t l . h>
#include < f c n t l . h>
#include <unis td . h>
#include <s td i o . h>
#include <pwd . h>
#include <sys / types . h>

#include "mount_point . h"
#include <wrapfs . h>

int main (int argc , char ∗ argv []) {

struct _fist_ioctl_SET_USER_LEVEL val ;
struct passwd ∗ p_entry ;

i f (argc < 3) {
f p r i n t f (s tde r r , "Usage : % s USER_NAME USER_LEVEL\n" , argv [0]) ;
e x i t (1) ;

}

int fd = open (MOUNT_POINT, O_RDONLY) ;
i f (fd < 0) {

pe r ro r (argv [1]) ;
e x i t (1) ;

}

164 Appendix F. Source Code

p_entry = getpwnam(argv [1]) ; // ge t password entry

i f (! p_entry) {
p r i n t f ("The user l e v e l could not be s e t . \ n") ;
e x i t (1) ;

}

va l . uid = p_entry ->pw_uid ;
va l . l e v e l = a t o i (argv [2]) ;

int r e s = i o c t l (fd , FIST_IOCTL_SET_USER_LEVEL, & va l) ;
i f (r e s < 0) {

pe r ro r ("Could not a c c e s s f i l e system") ;
}

i f (va l . l e v e l == -1){
p r i n t f ("The user l e v e l could not be s e t . \ n") ;
pe r ro r (" s e t u l ") ;

}

c l o s e (fd) ;
e x i t (r e s) ;

}

F.4.3 listul.c

#include <sys / types . h>
#include <sys / s t a t . h>
#include <sys / i o c t l . h>
#include < f c n t l . h>
#include <unis td . h>
#include <s td i o . h>
#include <pwd . h>
#include <sys / types . h>

#include "mount_point . h"
#include <sys /mman. h>

#include <wrapfs . h>
#include <g l i b . h>

#define MAX_PATH_LENGTH 50

#ifndef SHELL_PATH
#define SHELL_PATH "/ etc / s h e l l s "
#endif

stat ic g in t compare_strings (g cons tpo in t e r a , g cons tpo in t e r b) {
return strcmp (a , b) ;

}

int main () {

F.4 User Level Management Files 165

FILE ∗ fp = fopen (SHELL_PATH, " r ") ;
i f (! fp) {

pe r ro r (" fopen ") ;
e x i t (1) ;

}

// The / e t c / s h e l l s f i l e i s (u s u a l l y) l i s t o f a l l o f the v a l i d
// ' l o g i n ' s h e l l s on the system - - see the man page ' s h e l l s ' ,
// s e c t i on 5 . A l i n k e d l i s t wi th t h e s e v a l i d s h e l l s i s c rea t ed
// i n i t i a l l y .
GSList ∗ l o g i n_ sh e l l s_ l i s t = NULL;
char buf [MAX_PATH_LENGTH] ;
while (! f e o f (fp) && ! f e r r o r (fp) && f s c a n f (fp , "%s \n" , buf))

l o g i n_ sh e l l s_ l i s t = g_slist_append (l o g i n_sh e l l s_ l i s t ,
g_memdup(buf , s t r l e n (buf)+1)) ;

i f (f c l o s e (fp)) {
pe r ro r (" f c l o s e ") ;
e x i t (1) ;

}

struct _fist_ioctl_GET_USER_LEVEL va l ;
struct passwd ∗ p_entry ;

int fd = open (MOUNT_POINT, O_RDONLY) ;
i f (fd < 0) {

pe r ro r ("open") ;
e x i t (1) ;

}

// The password f i l e i s scanned , and a l l user IDs corresponding to
// v a l i d l o g i n s h e l l s are p r in t ed to s tandard output a long wi th the
// user l e v e l o f the user .
for (p_entry = getpwent () ; // ge t a password entry

p_entry ; p_entry = getpwent ()) {

i f (! g_sl ist_find_custom (l o g i n_sh e l l s_ l i s t , p_entry ->pw_shell , &
compare_strings) | | ! strcmp ("/ sb in / no log in " , p_entry ->pw_shell))

continue ;

va l . uid = p_entry ->pw_uid ;

// The user l e v e l i s r e t r i e v e d from the s t a c k a b l e f i l e system .
int r e s = i o c t l (fd , FIST_IOCTL_GET_USER_LEVEL, & va l) ;
i f (r e s < 0) {

pe r ro r ("Could not a c c e s s f i l e system") ;
break ;

}

i f (va l . l e v e l < 0) {
p r i n t f ("Could not read the user l e v e l s . \ n") ;
break ;

}

// The user name and corresponding user l e v e l i s p r in t ed .

166 Appendix F. Source Code

p r i n t f ("%-15 s %10u\n" , p_entry ->pw_name , va l . l e v e l) ;
}

g_s l i s t_ f r e e (l o g i n_ sh e l l s_ l i s t) ;

endpwent () ;
c l o s e (fd) ;

}

F.5 Window Management Files

F.5.1 visibility_manager.c

#include <sys / ipc . h>
#include <sys /shm . h>
#include <sys /sem . h>
#include <s td i o . h>
#include <g l i b . h>
#include <sys / types . h>
#include <sys / s t a t . h>
#include <sys / i o c t l . h>
#include <sys / f c n t l . h>
#include < f c n t l . h>
#include <wrapfs . h>
#include <X11/Xatom . h>

#include " secur i ty_pol icy_parameters . h"
#include " seac_ipc . h"
#include "mount_point . h"

#ifndef DEBUG
#define DEBUG 0
#endif

#define error (s t r) f p r i n t f (s tde r r , s t r) ;
#define e r r o r 2 (s t r , arg) f p r i n t f (s tde r r , s t r , arg) ;

// Secur i t y p o l i c y parameters :
stat ic int hide_non_readable_f i les ;
stat ic int no_read_up ;
stat ic int no_read_down ;

stat ic GHashTable ∗ t ab l e ; // A hash t a b l e where the key i s a proces s
// ID of type int , and the in format ion va lue
// i s an element o f type WindowInfo .

stat ic GSList ∗ s ub j e c t_ l i s t = NULL; // The l i s t i s s o r t ed in inc r ea s i n g order
so t ha t the c l e rance l e v e l i s the f i r s t e lement in the l i s t .

typedef struct {
char ∗ f i le_name ;
int f i l e _ l e v e l ;
unsigned long inode ;

F.5 Window Management Files 167

} F i l e I n f o ;

typedef struct {
Window window_id ;
char ∗app_name ;
GSList ∗ f i l e _ l i s t ; // A l i s t where the e lements are F i l e I n f o s t r u c t u r e s . The

l i s t i s s o r t ed in decreas ing order (accord ing to the f i l e l e v e l) so
t ha t the window l e v e l i s the f i l e l e v e l in the f i r s t e lement o f the l i s t
.

int is_mapped ; // i s 1 i f and only i f the window i s mapped .
} WindowInfo ;

stat ic int x_error_handler (Display ∗ di sp lay , XErrorEvent ∗ e r r o r) {
char error_msg [8 0] ;
XGetErrorText (d i sp lay , e r ro r ->error_code , error_msg , s izeof (error_msg)) ;
e r r o r 2 ("XError : % s \n" , error_msg) ;
return 0 ;

}

// Reads a l i n e from the s e c u r i t y p o l i c y f i l e .
int read_l ine (int fd , char ∗ option , int ∗ cho i c e) {
char buf [4 0] ;
int bytes = read (fd , buf , s t r l e n (opt ion)+2) ;

i f (! strncmp (buf , option , s t r l e n (opt ion))) {
∗ cho i c e = buf [s t r l e n (opt ion) +1] ;

i f (∗ cho i c e != (int) ' y ' && ∗ cho i c e != (int) 'n ') {
e r r o r 2 (" Inva l i d format . The format must be \"%s x\" where x i s e i t h e r y

or n\n" , opt ion) ;
return - 1 ;

}
∗ cho i c e -= 'n ' ;

}

while (bytes > 0 && buf [0] ! = ' \n ')
bytes = read (fd , buf , 1) ;

return 0 ;
}

// GHashTable f unc t i on s
///////////////////////

stat ic gboolean equalFunc (gcons tpo in t e r a , g cons tpo in t e r b) {
return ∗ ((const pid_t ∗) a) == ∗((const pid_t ∗) b) ;

}

stat ic gu int hashFunc (gcons tpo in t e r key) {
return ∗ ((const pid_t ∗) key) ;

}

168 Appendix F. Source Code

// GSList f unc t i on s
///////////////////

// Used when e lements are i n s e r t e d in s u b j e c t_ l i s t
stat ic g in t compare_incr (g cons tpo in t e r a , g cons tpo in t e r b) {
return ∗ ((const int ∗) a) - ∗ ((const int ∗) b) ;

}

// Used by f i l e _ l i s t (in a WindowInfo s t r u c t) to compare the F i l e I n f o
// e lements ; i t s usage ensures t ha t the l i s t i s s o r t ed in decreas ing
// order .
stat ic g in t compare_decr (gcons tpo in t e r a , g cons tpo in t e r b) {
return ((const F i l e I n f o ∗) b) -> f i l e _ l e v e l - ((const F i l e I n f o ∗) a) ->

f i l e _ l e v e l ;
}

// Compares the inodes in a f i l e _ l i s t (which i s an element in a
// WindowInfo s t r u c t) .
g in t compare_inodes (g cons tpo in t e r a , g cons tpo in t e r b) {
return (((const F i l e I n f o ∗) b) ->inode) != (((const F i l e I n f o ∗) a) ->inode) ;

}

// FILE_OPEN_MONITOR func t i on s
//////////////////////////////

g in t i s_backup_f i le (g cons tpo in t e r a , g cons tpo in t e r b) {
char ∗ f 1 = ((const F i l e I n f o ∗) a) ->file_name ;
char ∗ f 2 = ((const F i l e I n f o ∗) b) ->file_name ;

i f (! strncmp (f2 +1 , f1 , s t r l e n (f 1)) &&
! (s t r l e n (f 2) <= 2 | | f 2 [0] ! = '#' | | f 2 [s t r l e n (f 2) - 1] != '#')) {

// An emacs backup f i l e o f the form # f i l e . t x t# was found .
((F i l e I n f o ∗) b) -> f i l e _ l e v e l = ((F i l e I n f o ∗) a) -> f i l e _ l e v e l ;
return 0 ;

}

// re turns 0 i f an emacs backup f i l e o f the form f i l e . t x t ~ was found .
return ! (! strcmp (((const F i l e I n f o ∗) b) ->file_name , ((const F i l e I n f o ∗) a) ->

file_name) &&
((F i l e I n f o ∗) a) ->inode == -1) ;

}

// SET_FILE_LEVEL func t i on s
///////////////////////////

// Aux i l i a r y func t i on f o r upda t e_ f i l e_ l e v e l s
stat ic void s e t_ f i l e_ l e v e l (gpo in te r d , gpo in te r user_data) {

F i l e I n f o ∗ fd = d ;
long ∗ data = ((long ∗) user_data) ;
i f (∗ (data+1) == fd ->inode)
memcpy(&fd -> f i l e_ l e v e l , data+2 , s izeof (fd -> f i l e _ l e v e l)) ;

}

F.5 Window Management Files 169

stat ic void updat e_f i l e_ l eve l s (gpo in t e r key , gpo in t e r value , gpo in t e r
user_data) {

WindowInfo ∗window_info = value ;
i f (window_info -> f i l e _ l i s t) {

g_s l i s t_foreach (window_info -> f i l e _ l i s t , & s e t_ f i l e_ l e v e l , user_data) ;
window_info -> f i l e _ l i s t = g_s l i s t_so r t (window_info -> f i l e _ l i s t , &

compare_decr) ;
}

}

// SENSOR_SERVER and SET_FILE_LEVEL func t i on
//

stat ic void unmap_windows(gpo in t e r key , gpo in t e r value , gpo in t e r user_data) {
WindowInfo ∗window_info = value ;
Display ∗ d i sp l ay = user_data ;

i f (window_info ->is_mapped && window_info -> f i l e _ l i s t) {
int window_level = ((F i l e I n f o ∗) window_info -> f i l e _ l i s t ->data) -> f i l e _ l e v e l

;
int c l e a r anc e_ l ev e l = (s ub j e c t_ l i s t) ? ∗ ((int ∗) sub j e c t_ l i s t ->data) : 0 ;
i f (no_read_up && window_level > c l e a r anc e_ l ev e l | |

no_read_down && window_level < c l e a r anc e_ l ev e l) {
window_info ->is_mapped = 0 ;
XUnmapWindow(d i sp lay , window_info ->window_id) ;

}
}

}

stat ic void map_windows(gpo in t e r key , gpo in t e r value , gpo in t e r user_data) {
WindowInfo ∗window_info = value ;
Display ∗ d i sp l ay = user_data ;

i f (! window_info ->is_mapped && window_info -> f i l e _ l i s t) {
int window_level = ((F i l e I n f o ∗) window_info -> f i l e _ l i s t ->data) -> f i l e _ l e v e l

;
int c l e a r anc e_ l ev e l = ∗ ((int ∗) sub j e c t_ l i s t ->data) ;

i f (! (no_read_up && window_level > c l e a r anc e_ l ev e l | |
no_read_down && window_level < c l e a r anc e_ l ev e l)) {

window_info ->is_mapped = 1 ;
XMapWindow(d i sp lay , window_info ->window_id) ;

}
}

}

// LIST_WINDOW_INFO func t i on s
/////////////////////////////

stat ic void p r i n t_ f i l e_d e t a i l s (gpo in te r data , gpo in t e r user_data) {
F i l e I n f o ∗ fd = data ;
int c l e a r anc e_ l ev e l = (s ub j e c t_ l i s t) ? ∗ ((int ∗) sub j e c t_ l i s t ->data) : 0 ;

170 Appendix F. Source Code

i f (hide_non_readable_f i les &&
((no_read_up && fd -> f i l e _ l e v e l > c l e a r anc e_ l ev e l) | |
((no_read_down && fd -> f i l e _ l e v e l < c l e a r anc e_ l ev e l))))

f p r i n t f ((FILE ∗) user_data , " \ ' unava i l ab l e ' %10u\n" , fd -> f i l e _ l e v e l) ;
else

f p r i n t f ((FILE ∗) user_data , "%-15 s %10u\n" , fd ->file_name , fd -> f i l e _ l e v e l)
;

}

stat ic void p r i n t_ f i l e_ in f o (gpo in t e r key , gpo in t e r value , gpo in t e r user_data) {
WindowInfo ∗window_info = value ;
i f (window_info -> f i l e _ l i s t) {

f p r i n t f ((FILE ∗) user_data , "\nOpen f i l e s in window % i : \ n" , window_info ->
window_id) ;

f p r i n t f ((FILE ∗) user_data , "%-15 s %10 s \n" , " F i l e Name" , " Leve l ") ;
g_s l i s t_foreach (window_info -> f i l e _ l i s t , & p r i n t_ f i l e_de t a i l s , user_data) ;

}
}

stat ic void print_window_info (gpo in te r key , gpo in t e r value , gpo in te r user_data
) { pid_t ∗ pid = key ;

WindowInfo ∗window_info = value ;
int win_level = 0 ;
i f (window_info -> f i l e _ l i s t)

win_level = ((F i l e I n f o ∗) window_info -> f i l e _ l i s t ->data) -> f i l e _ l e v e l ;
f p r i n t f ((FILE ∗) user_data , "%-16 s %6 i %10 i %18 i %10 i \n" , window_info ->

app_name , ∗ pid , window_info ->window_id , win_level , window_info ->is_mapped
) ;

}

// LIST_SUBJECT_LEVELS func t i on
///////////////////////////////

void pr in t_sub j e c t_ l i s t (gpo in t e r data , gpo in t e r user_data) {
f p r i n t f ((FILE ∗) user_data , "%i " , ∗ ((int ∗) data)) ;

}

// Des t royNot i f y f unc t i on s
//////////////////////////

stat ic gboolean rm_win(gpo in t e r key , gpo in t e r value , gpo in t e r user_data) {
Window ∗window_id = user_data ;
WindowInfo ∗window_info = value ;
return window_info ->window_id == ∗window_id ;

}

// DESTROY func t i on s
////////////////////

void key_destroy_func (gpo in t e r data) {
g_free (data) ;

}

F.5 Window Management Files 171

void value_destroy_func (gpo in t e r data) {
WindowInfo ∗window_info = data ;
g_free (window_info ->app_name) ;
g_s l i s t_ f r e e (window_info -> f i l e _ l i s t) ;
g_free (window_info) ;

}

int main (int argc , char ∗ argv []) {

// X11 i n i t i a l i s a t i o n
/////////////////////

Display ∗ d i sp l ay ;
i f (! (d i sp l ay = XOpenDisplay (NULL))) {

e r r o r 2 ("ERROR opening d i sp l ay [% s] \ n" , XDisplayName (NULL)) ;
goto out ;

}

XSetErrorHandler (x_error_handler) ;

// Create the t a r g e t window tha t the c l i e n t s shou ld send XEvents
// to . This window i s never mapped and the dimensions and o ther
// arguments to XCreateSimpleWindow are a r b i t r a r y l e g a l va l u e s .
Window target_window = XCreateSimpleWindow (d i sp lay , RootWindow(d i sp lay ,

De fau l tScreen (d i sp l ay)) , 0 , 0 , 1 0 , 1 0 , 1 , 1 , 1) ;

i f (target_window == (Window) None) {
e r r o r ("Error opening window .\ n") ;
XCloseDisplay (d i sp l ay) ;
goto out ;

}

Atom cl ient_message = XInternAtom (d i sp lay , "CLIENT_MESSAGE" , Fa l se) ;
Atom wm_name = XInternAtom (d i sp lay , "WM_NAME" , True) ;
Atom net_wm_name = XInternAtom (d i sp lay , "_NET_WM_NAME" , True) ;
Atom ut f8_st r ing = XInternAtom (d i sp lay , "UTF8_STRING" , True) ;

// I n i t i a l i z e shared memory
/////////////////////////////

int shm_id = shmget (SHARED_MEMORY_KEY, ge tpag e s i z e () ,
IPC_CREAT // | IPC_EXCL
| 0 6 6 6) ;

i f (shm_id == -1){
pe r ro r ("shmget") ;
goto out ;

}

void ∗ shm = shmat (shm_id , 0 , 0) ;
i f (! shm) {

pe r ro r ("shmat") ;
goto out ;

}

172 Appendix F. Source Code

// Store the t a r g e t window id in the shared memory
memcpy(shm+SECURITY_MANAGER_SHM_OFFSET, & target_window , s izeof (Window)) ;

// I n i t i a l i z e semaphore s e t
///////////////////////////

int sem_id = semget (SEMAPHORE_KEY, NO_OF_SEMAPHORES, IPC_CREAT | 0 6 6 6) ; //
| IPC_EXCL

i f (sem_id == -1){
pe r ro r (" semid") ;
goto out ;

}

// I n i t i a l i s e a l l semaphore va l u e s to 1 .
unsigned short va lue s [NO_OF_SEMAPHORES] ;
int i = 0 ;
for (; i < NO_OF_SEMAPHORES; i++)

va lue s [i] = 1 ;

union semun sem_union ;
sem_union . array = va lues ;
i f (semct l (sem_id , 0 , SETALL, sem_union) == -1){

pe r ro r (" semct l ") ;
goto out ;

}

// Read s e c u r i t y p o l i c y op t i ons
///////////////////////////////

i f (argc != 2) {
e r r o r 2 ("Usage : % s POLICY_FILE\n" , argv [0]) ;
goto out ;

}

int fd = open (argv [1] , O_RDONLY) ;
i f (fd == -1){

pe r ro r ("open") ;
goto out ;

}

i f (read_l ine (fd , HIDE_NON_READABLE_FILES, & hide_non_readable_f i les) < 0) {
pe r ro r (" read ") ;
goto out ;

}

i f (read_l ine (fd , NO_READ_UP, &no_read_up) < 0){
pe r ro r (" read ") ;
goto out ;

}

i f (read_l ine (fd , NO_READ_DOWN, &no_read_down) < 0){
pe r ro r (" read ") ;
goto out ;

}

F.5 Window Management Files 173

c l o s e (fd) ;

// Wait u n t i l a user has l o gged in
XEvent event ;
int not_done = 1 ;
while (not_done) {

XNextEvent (d i sp lay , & event) ; // Get the next event from the X Server .
switch (event . xany . type) {
case ClientMessage :

i f (event . x c l i e n t . message_type == cl ient_message)
switch (event . x c l i e n t . data . l [0]) {

case INIT_CLEARANCE_LEVEL:{
int c l_ l e v e l = event . x c l i e n t . data . l [1] ;
s u b j e c t_ l i s t = g_sl ist_prepend (sub j e c t_ l i s t , & c l_ l e v e l) ;
not_done = 0 ;
break ;

}

case LIST_WINDOW_INFO:
case LIST_SUBJECT_LEVELS:{

char f i le_name [2 5 6] ;
s p r i n t f (fi le_name , FIFO_FILE , event . x c l i e n t . data . l [1]) ;

FILE ∗ f i f o _ f i l e = fopen (file_name , "w") ;
i f (! f i f o _ f i l e) {

pe r ro r (" fopen ") ;
break ;

}

f p r i n t f (f i f o_ f i l e , "Error : No one has logged in yet . \ n") ;

i f (f c l o s e (f i f o _ f i l e))
pe r ro r (" f c l o s e ") ;

break ;
}
case DESTROY:

goto out ;

default :
e r r o r ("Error : No one has logged in yet . \ n") ;

}
}

}

// I n i t i a l i z e the hash t a b l e
t ab l e = g_hash_table_new_full (hashFunc , equalFunc , key_destroy_func ,

value_destroy_func) ;

// Open a f i l e d e s c r i p t o r to the s t a c k a b l e f i l e system .
fd = open (MOUNT_POINT, O_RDONLY) ;
i f (fd < 0) {

pe r ro r ("open") ;
goto out ;

174 Appendix F. Source Code

}

not_done = 1 ;
// A user has now logged in , so o ther even t s can now be r e c e i v ed .

XSelectInput (d i sp lay , RootWindow(d i sp lay , De fau l tScreen (d i sp l ay)) ,
SubstructureNoti fyMask) ;

while (not_done) {
XNextEvent (d i sp lay , & event) ; // Get the next event from the X Server .
switch (event . xany . type) {
case ClientMessage :

i f (event . x c l i e n t . message_type == cl ient_message)
switch (event . x c l i e n t . data . l [0]) {

case INIT_CLEARANCE_LEVEL:
e r r o r ("Error : A user has a l r eady logged in . \ n") ;
break ;

case XCREATE_WINDOW_INTERCEPTOR:{
Window window = event . x c l i e n t . data . l [2] ;
unsigned char ∗ data ;
Atom real_type ;
int real_format ;
unsigned long items_read , i t ems_le f t ;

pid_t ∗ pid = g_memdup(&event . x c l i e n t . data . l [1] , s izeof (pid_t)) ;
WindowInfo ∗window_info = g_hash_table_lookup (tab le , pid) ;
i f ((! window_info | |

window_info && ! strcmp (" ned i t " , window_info ->app_name)) &&
XGetWindowProperty (d i sp lay , window , wm_name,

0 , 0 x 7 f f f f f f f , False , XA_STRING,
&real_type , & real_format , &

items_read ,
&items_le f t , & data) == Success

&& items_read >= 1){
i f (DEBUG) p r i n t f ("CREATE_WINDOW_INTERCEPTOR: pid = %i , window = %u

\n" , event . x c l i e n t . data . l [1] , window) ;

// A WindowInfo s t r u c t f o r the newly crea t ed window i s
// i n s e r t e d in to t a b l e .
window_info = g_new(WindowInfo , 1) ;
window_info ->window_id = window ;
window_info ->app_name = g_memdup(data , s t r l e n (data)+1) ;
window_info -> f i l e _ l i s t = NULL;
window_info ->is_mapped = 1 ;

g_hash_table_insert (tab le , pid , window_info) ;

// Not i f y the X se r v e r t ha t we would l i k e to r e c e i v e an
// ' Des t royNot i fy ' XEvent when the window i s des t royed .
XSelectInput (d i sp lay , window_info ->window_id , StructureNoti fyMask)

;
}
break ;

}

F.5 Window Management Files 175

case FILE_OPEN_MONITOR:{
i f (DEBUG) p r i n t f ("FILE_OPEN_MONITOR: pid = %i , l e v e l = %i , inode = %

ul \n" , event . x c l i e n t . data . l [1] , event . x c l i e n t . data . l [2] , event .
x c l i e n t . data . l [3]) ;

WindowInfo ∗window_info = g_hash_table_lookup (tab le , & event . x c l i e n t .
data . l [1]) ;

i f (window_info) {
// An ed i t o r has opened a f i l e .

F i l e I n f o ∗ f = g_new(F i l e I n f o , 1) ;
f ->file_name = g_memdup(shm+FILE_OPEN_MONITOR_SHM_OFFSET, 2 5 6) ;
f -> f i l e _ l e v e l = event . x c l i e n t . data . l [2] ;
f ->inode = event . x c l i e n t . data . l [3] ;

GSList ∗ e = g_slist_find_custom (window_info -> f i l e _ l i s t , f ,
i s_backup_f i le) ;

i f (e) { // A b a c k f i l e was crea t ed
struct _fist_ioctl_SET_FILE_LEVEL val ;
struct s t a t stat_buf ;

va l . inode = f ->inode ;
i f (((F i l e I n f o ∗) e ->data) ->inode == -1){

va l . l e v e l = ((F i l e I n f o ∗) e ->data) -> f i l e _ l e v e l ;
((F i l e I n f o ∗) e ->data) ->inode = f ->inode ;

}
else

va l . l e v e l = ((F i l e I n f o ∗) e ->data) -> f i l e _ l e v e l ;

// The f i l e l e v e l o f the backup f i l e i s updated in the
// f i l e system .
i f (i o c t l (fd , FIST_IOCTL_SET_FILE_LEVEL, & va l) < 0) {

pe r ro r (" i o c t l ") ;
c l o s e (fd) ;
break ;

}
g_free (f) ;

i f (va l . l e v e l == -1)
e r r o r ("The l e v e l could not be s e t . \ n") ;

}
else i f (! g_sl ist_find_custom (window_info -> f i l e _ l i s t , f ,

compare_inodes)) {
// The f i l e i s not a l r eady open in the e d i t o r .
// Furthermore , the f i l e i s not a backup f i l e , so i t i s
// i n s e r t e d in the l i s t o f open f i l e s .
window_info -> f i l e _ l i s t = g_s l i s t_ inse r t_sor t ed (window_info ->

f i l e _ l i s t , f , & compare_decr) ;
}

}

i f (semaphore_up (sem_id , FILE_OPEN_MONITOR_SEM_NUM) == -1)
pe r ro r ("semop") ;

176 Appendix F. Source Code

break ;
}

case BACKUP_INTERCEPTOR:{
i f (DEBUG) p r i n t f ("BACKUP_INTERCEPTOR: pid= %i , inode= %i ,

app l i c a t i o n ID = % i \n" , event . x c l i e n t . data . l [1] , event . x c l i e n t .
data . l [2] , event . x c l i e n t . data . l [3]) ;

F i l e I n f o ∗ f = g_new(F i l e I n f o , 1) ;
f ->inode = event . x c l i e n t . data . l [2] ;

WindowInfo ∗window_info = g_hash_table_lookup (tab le , & event . x c l i e n t .
data . l [1]) ;

i f (window_info && window_info -> f i l e _ l i s t)
i f (event . x c l i e n t . data . l [3] == EMACS_BACKUP&&

(! strcmp (window_info ->app_name , "emacs") | |
! strcmp (window_info ->app_name , " g ed i t "))) {

// Only backup f i l e s c rea t ed by emacs and g e d i t can be handled .
GSList ∗ e = g_slist_find_custom (window_info -> f i l e _ l i s t , f ,

&compare_inodes) ;
i f (e) //Marking backup f i l e

((F i l e I n f o ∗) e ->data) ->inode = -1 ;
}

break ;
}

case SENSOR_SERVER:{
int env_leve l = event . x c l i e n t . data . l [1] ;
char d i r e c t i o n = event . x c l i e n t . data . l [2] ;
struct _fist_ioctl_SET_CLEARANCE_LEVEL val ;

i f (DEBUG) p r i n t f ("SENSOR_SIMULATOR: environment l e v e l = %i ,
d i r e c t i o n = %c\n" , env_level , d i r e c t i o n) ;

i f (d i r e c t i o n == ' i ') { // A su b j e c t has entered the o f f i c e

i f (! s u b j e c t_ l i s t) { // No one was p r e v i o u s l y pre sen t in the
// environment .

// The c l earance l e v e l in the f i l e system has to be s e t .
va l . l e v e l = env_leve l ;
i f (i o c t l (fd , FIST_IOCTL_SET_CLEARANCE_LEVEL, & va l) < 0)

pe r ro r (" i o c t l ") ;

// The l e v e l i s i n s e r t e d in the s u b j e c t_ l i s t l i s t .
s ub j e c t_ l i s t = g_sl ist_prepend (sub j e c t_ l i s t ,

g_memdup(&env_level , s izeof (
env_leve l))) ;

// Some windows w i l l p o s s i b l y have to be mapped .
g_hash_table_foreach (tab le , map_windows , d i sp l ay) ;

}
else i f (env_leve l < ∗((int ∗) sub j e c t_ l i s t ->data)) {

// Someone was a l r eady presen t in the environment .

// The c l earance l e v e l in the f i l e system must be updated .

F.5 Window Management Files 177

va l . l e v e l = env_leve l ;
i f (i o c t l (fd , FIST_IOCTL_SET_CLEARANCE_LEVEL, & va l) < 0)

pe r ro r (" i o c t l ") ;

s u b j e c t_ l i s t = g_sl ist_prepend (sub j e c t_ l i s t ,
g_memdup(&env_level , s izeof (

env_leve l))) ;
g_hash_table_foreach (tab le , unmap_windows , d i sp l ay) ;

}
else

s ub j e c t_ l i s t = g_s l i s t_ inse r t_sor t ed (sub j e c t_ l i s t ,
g_memdup(&env_level , s izeof

(env_leve l)) ,
compare_incr) ;

}
else i f (d i r e c t i o n == ' o ') {// A su b j e c t has l e f t the o f f i c e

i f (! s u b j e c t_ l i s t) {
e r r o r ("Error : No sub j e c t s are pre sent . \ n") ;
break ;

}

GSList ∗ e = g_slist_find_custom (sub j e c t_ l i s t , & env_level ,
compare_incr) ;

i f (! e) {
e r r o r 2 ("Error : the re i s no sub j e c t in the room with the

c l e a r anc e l e v e l % i . \ n" , env_leve l) ;
break ;

}

i f (g_s l i s t_length (s ub j e c t_ l i s t) == 1){
// No one i s in the o f f i c e now
va l . l e v e l = 0 ;
i f (i o c t l (fd , FIST_IOCTL_SET_CLEARANCE_LEVEL, & va l) < 0)

pe r ro r (" i o c t l ") ;

// Removes the s i n g l e e lement in the l i s t .
s ub j e c t_ l i s t = g_sl ist_remove_link (sub j e c t_ l i s t , e) ;
g_s l i s t_free_1 (e) ;

g_hash_table_foreach (tab le , unmap_windows , d i sp l ay) ;
}
else {

// At l e a s t one person i s s t i l l p re sen t in the environment .
int o ld_c learance_leve l = ∗ ((int ∗) sub j e c t_ l i s t ->data) ;
s u b j e c t_ l i s t = g_sl ist_remove_link (sub j e c t_ l i s t , e) ;
g_s l i s t_free_1 (e) ;

i f (env_leve l == old_c learance_leve l) {
// The l owe s t l e v e l i s to be removed .
// The c l earance l e v e l in the k e rne l must be updated .
va l . l e v e l = ∗ ((int ∗) sub j e c t_ l i s t ->data) ;

i f (i o c t l (fd , FIST_IOCTL_SET_CLEARANCE_LEVEL, & va l) < 0)
pe r ro r (" i o c t l ") ;

g_hash_table_foreach (tab le , map_windows , d i sp l ay) ;

178 Appendix F. Source Code

}
}

}
else e r r o r ("Error : I nva l i d d i r e c t i o n . \ n") ;

break ;
}

case SET_FILE_LEVEL:{
i f (DEBUG) p r i n t f ("SET_FILE_LEVEL : inode = %i , l e v e l = % i \n" , event .

x c l i e n t . data . l [1] , event . x c l i e n t . data . l [2]) ;

g_hash_table_foreach (tab le , & update_f i l e_ leve l s , event . x c l i e n t . data .
l) ;

i f (! s u b j e c t_ l i s t)
break ;

// Change the v i s i b i l i t y o f windows , i f r e qu i r ed .
i f (event . x c l i e n t . data . l [2] <= ∗ ((int ∗) sub j e c t_ l i s t ->data))
g_hash_table_foreach (tab le , map_windows , d i sp l ay) ;

else
g_hash_table_foreach (tab le , unmap_windows , d i sp l ay) ;

break ;
}

case LIST_WINDOW_INFO:{
i f (DEBUG) p r i n t f ("LIST_WINDOW_INFO\n") ;

char f i le_name [2 5 6] ;
s p r i n t f (fi le_name , FIFO_FILE , event . x c l i e n t . data . l [1]) ;

FILE ∗ f i f o _ f i l e = fopen (file_name , "w") ;
i f (! f i f o _ f i l e) {

pe r ro r (" fopen ") ;
break ;

}

// Return the con ten t s o f the t a b l e to the c l i e n t proces s
// v ia a named pipe .
i f (g_hash_table_size (t ab l e)) {

f p r i n t f (f i f o_ f i l e , "Table content : \ n\n") ;
f p r i n t f (f i f o_ f i l e , "%-16 s %6s %10 s %18 s %10 s \n" , "Appl i ca t ion

Name" , "PID" , "Window ID" , " Secur i ty Leve l " , " I s mapped") ;
g_hash_table_foreach (tab le , & print_window_info , f i f o _ f i l e) ;
g_hash_table_foreach (tab le , & pr in t_ f i l e_ in f o , f i f o _ f i l e) ;

}
else

f p r i n t f (f i f o_ f i l e , "No windows are mapped . \ n") ;

i f (f c l o s e (f i f o _ f i l e))
pe r ro r (" f c l o s e ") ;

break ;
}

F.5 Window Management Files 179

case LIST_SUBJECT_LEVELS:{
i f (DEBUG) p r i n t f ("LIST_SUBJECT_LEVELS\n") ;
char f i le_name [2 5 6] ;
s p r i n t f (fi le_name , FIFO_FILE , event . x c l i e n t . data . l [1]) ;

FILE ∗ f i f o _ f i l e = fopen (file_name , "w") ;
i f (! f i f o _ f i l e) {

pe r ro r (" fopen ") ;
break ;

}

// Return the con ten t s o f the s u b j e c t_ l i s t to the c l i e n t
// proces s v ia a named pipe .
i f (s ub j e c t_ l i s t) {

g_s l i s t_foreach (sub j e c t_ l i s t , & pr in t_sub j e c t_ l i s t , f i f o _ f i l e) ;
f p r i n t f (f i f o_ f i l e , "\n") ;

}
else

f p r i n t f (f i f o_ f i l e , "No sub j e c t s are in the room .\ n") ;

i f (f c l o s e (f i f o _ f i l e))
pe r ro r (" f c l o s e ") ;

break ;
}

case DESTROY: {
not_done = 0 ; // Breaks the loop .
break ;

}

default :
e r r o r ("Unknown c l i e n t message . \ n") ;

}
break ;

case DestroyNot i fy :
i f (event . xdestroywindow . event == event . xdestroywindow . window) {

i f (DEBUG) p r i n t f ("DestroyNot i fy : window = %u\n" , event . xdestroywindow .
event , event . xdestroywindow . send_event) ;

g_hash_table_foreach_remove (tab le , rm_win, & event . xdestroywindow .
window) ;

}
break ;

}
}

out :
i f (DEBUG) p r i n t f ("Clos ing the v i s i b i l i t y manager . \ n") ;
c l o s e (fd) ;
semct l (sem_id , 0 , IPC_RMID) ;

shmdt (shm) ;
shmctl (shm_id , IPC_RMID, 0) ;

180 Appendix F. Source Code

XDestroyWindow(d i sp lay , target_window) ;
XCloseDisplay (d i sp l ay) ;

}

F.5.2 �le_open_monitor.c

#include <sys / ipc . h>
#include <sys /shm . h>
#include <sys / types . h>
#include <sys / s t a t . h>
#include <sys / i o c t l . h>
#include < f c n t l . h>
#include <s td i o . h>

#include " seac_ipc . h"
#include "mount_point . h"
#include <wrapfs . h>

int main () {

struct _fist_ioctl_OPEN val ;
int s t a tu s = 0 ;

// I n i t i a l i z e semaphore
int sem_id = semget (SEMAPHORE_KEY, 0 , 0) ;
i f (sem_id == -1){

pe r ro r (" semid") ;
e x i t (1) ;

}

// I n i t i a l i z e security_manager shared memory
int shm_id = shmget (SHARED_MEMORY_KEY, ge tpag e s i z e () , 0) ;
i f (shm_id == -1){

pe r ro r ("shmget") ;
e x i t (1) ;

}

void ∗ shm = shmat (shm_id , 0 , 0) ;
i f (! shm) {

pe r ro r ("shmat") ;
e x i t (1) ;

}

// Get a f i l e d e s c r i p t o r to the s t a c k a b l e f i l e system .
int fd = open (MOUNT_POINT, O_RDONLY) ;
i f (fd < 0) {

pe r ro r ("open") ;
e x i t (1) ;

}

Window target_window ;
memcpy(&target_window , shm+SECURITY_MANAGER_SHM_OFFSET, s izeof (Window)) ;
long data [] = {FILE_OPEN_MONITOR, 0 , 0 , 0 , 0 } ;

F.5 Window Management Files 181

i f (! target_window) {
p r i n t f ("Error : the t a r g e t window has not been i n i t i a l i z e d . \ n") ;
e x i t (1) ;

}

while (1) {
// Block u n t i l a new f i l e i s opened .
s t a tu s = i o c t l (fd , FIST_IOCTL_OPEN, & va l) ;

i f (s t a tu s < 0) {
pe r ro r ("Could not a c c e s s f i l e system") ;
break ;

}

i f (va l . l e v e l < 0)
break ; // The des t roy program has been invoked , so the f i l e_open

// monitor shou ld s top running .

// Wait u n t i l the shared memory can be wr i t t en , i . e . when the
// consumer (the v i s i b i l i t y_manage r) i s ready to read the shared
// memory .
s t a tu s = semaphore_down (sem_id , FILE_OPEN_MONITOR_SEM_NUM) ;
i f (s t a tu s == -1){

pe r ro r ("semop") ;
break ;

}

// Write to the shared memory .
s t r cpy (shm+FILE_OPEN_MONITOR_SHM_OFFSET, va l . name) ;
data [1] = va l . pid ;
data [2] = va l . l e v e l ;
data [3] = va l . inode ;

// Not i f y the v i s i b i l i t y manager t ha t the memory can be read .
i f (send_xcl ient_event (data , 0 , target_window) < 0)

f p r i n t f (s tde r r , "Error : f i le_open_monitor could not send message to
v i s ib i l i t y_manage r . \ n") ;

}

shmdt (shm) ;
c l o s e (s t a tu s) ;
e x i t (0) ;

}

F.5.3 sensor_server.c

#include <sys / types . h>
#include <sys / socke t . h>
#include <ne t i n e t / in . h>
#include <netdb . h>
#include < s t r i n g . h>
#include <unis td . h>
#include <s td i o . h>
#include <sys /shm . h>

182 Appendix F. Source Code

#include " seac_ipc . h"
#include " senso r . h"

#define QUEUE_SIZE 5

int main (int argc , char ∗ argv []) {

int hSocket , hServerSocket ; // handle to socke t
struct hostent ∗ pHostInfo ; // ho ld s i n f o about a machine
struct sockaddr_in Address ; // In t e rne t s o c k e t address s t u c t
int nAddressSize=s izeof (struct sockaddr_in) ;
int nHostPort = DEFAULT_PORT;

i f (argc > 2) {
f p r i n t f (s tde r r , "Usage : % s [PORT]\ n" , argv [0]) ;
e x i t (1) ;

}

i f (argc == 2)
nHostPort = a t o i (argv [1]) ;

hServerSocket=socket (AF_INET,SOCK_STREAM, 0) ;
i f (hServerSocket == -1){

pe r ro r (" socket ") ;
e x i t (1) ;

}

// f i l l address s t r u c t
Address . sin_addr . s_addr=INADDR_ANY;
Address . s in_port=htons (nHostPort) ;
Address . s in_fami ly=AF_INET;

i f (bind (hServerSocket , (struct sockaddr ∗)&Address , s izeof (Address)) == -1){
pe r ro r ("bind") ;
e x i t (1) ;

}

// ge t por t number
getsockname (hServerSocket , (struct sockaddr ∗) &Address , (socklen_t ∗)&

nAddressSize) ;

i f (l i s t e n (hServerSocket ,QUEUE_SIZE) == -1){
pe r ro r (" l i s t e n ") ;
e x i t (1) ;

}

// I n i t i a l i z e security_manager shared memory
int shm_id = shmget (SHARED_MEMORY_KEY, ge tpag e s i z e () , 0) ;

i f (shm_id == -1){
pe r ro r ("shmget") ;
e x i t (1) ;

}

F.5 Window Management Files 183

void ∗ shm = shmat (shm_id , 0 , SHM_RDONLY) ;
i f (! shm) {

pe r ro r ("shmat") ;
e x i t (1) ;

}

Window target_window ;
memcpy(&target_window , shm+SECURITY_MANAGER_SHM_OFFSET, s izeof (Window)) ;
shmdt (shm) ;

i f (! target_window) {
p r i n t f ("Error : the t a r g e t window has not been i n i t i a l i z e d . \ n") ;
c l o s e (hServerSocket) ;
e x i t (1) ;

}

int e r r = 0 ;
while (! e r r) {

int env_leve l ;
char d i r e c t i o n ;

hSocket=accept (hServerSocket , (struct sockaddr ∗)&Address , (socklen_t ∗)&
nAddressSize) ;

read (hSocket , & env_level , s izeof (env_leve l)) ;
read (hSocket , & d i r e c t i on , s izeof (d i r e c t i o n)) ;

i f (env_leve l < 0) {
e r r = 1 ;

}
else

i f (d i r e c t i o n != ' i ' && d i r e c t i o n != ' o ')
e r r = -1 ;

else {
long data [] = {SENSOR_SERVER, env_level , d i r e c t i on , 0 , 0 } ;
send_xcl ient_event (data , 0 , target_window) ;

}

wr i t e (hSocket , & err , s izeof (e r r)) ;
i f (c l o s e (hSocket) == -1)

pe r ro r (" c l o s e ") ;
}

i f (c l o s e (hServerSocket) == -1){
pe r ro r (" c l o s e ") ;
e x i t (1) ;

}

e x i t (0) ;
}

F.5.4 listwl.c

#include <sys / ipc . h>

184 Appendix F. Source Code

#include <sys /shm . h>
#include < f c n t l . h>
#include <di r en t . h>
#include <s td i o . h>
#include " seac_ipc . h"

int main () {

char f i le_name [MAXNAMLEN+1] ;
s p r i n t f (fi le_name , FIFO_FILE , getp id ()) ;

i f (mkf i fo (fi le_name , 0 6 0 0 | O_CREAT | O_EXCL) == -1){
pe r ro r ("mkf i fo ") ;
e x i t (1) ;

}

// Not i f y the sm tha t i t can wr i t e to the new f i f o .
long data [] = {LIST_WINDOW_INFO, getp id () , 0 , 0 , 0 } ;
send_xcl ient_event (data , 0 , 0) ;

// Read the data from the f i f o
FILE ∗ f i f o _ f i l e = fopen (file_name , " r ") ;
i f (! f i f o _ f i l e) {

pe r ro r (" fopen ") ;
e x i t (1) ;

}

char buf [MAXNAMLEN+1] ;
while (! f e o f (f i f o _ f i l e) && ! f e r r o r (f i f o _ f i l e) && f g e t s (buf , s izeof (buf) ,

f i f o _ f i l e))
fput s (buf , s tdout) ;

i f (f c l o s e (f i f o _ f i l e)) {
pe r ro r (" f c l o s e ") ;
e x i t (1) ;

}

remove (f i le_name) ;
}

F.5.5 listsl.c

#include <sys / ipc . h>
#include <sys /shm . h>
#include <s td i o . h>
#include <di r en t . h>
#include < f c n t l . h>

#include " seac_ipc . h"

int main () {

char f i le_name [MAXNAMLEN+1] ;
s p r i n t f (fi le_name , FIFO_FILE , getp id ()) ;

F.5 Window Management Files 185

i f (mkf i fo (fi le_name , 0 6 0 0 | O_CREAT | O_EXCL) == -1){
pe r ro r ("mkf i fo ") ;
e x i t (1) ;

}

// Not i f y the sm tha t i t can wr i t e to the new f i f o .
long data [] = {LIST_SUBJECT_LEVELS, getp id () , 0 , 0 , 0 } ;
send_xcl ient_event (data , 0 , 0) ;

// Read the data from the f i f o
FILE ∗ f i f o _ f i l e = fopen (file_name , " r ") ;
i f (! f i f o _ f i l e) {

pe r ro r (" fopen ") ;
e x i t (1) ;

}

char buf [MAXNAMLEN+1] ;
while (! f e o f (f i f o _ f i l e) && ! f e r r o r (f i f o _ f i l e) && f g e t s (buf , s izeof (buf) ,

f i f o _ f i l e))
fput s (buf , s tdout) ;

i f (f c l o s e (f i f o _ f i l e)) {
pe r ro r (" f c l o s e ") ;
e x i t (1) ;

}

remove (f i le_name) ;
}

F.5.6 getcl.c

#include <sys / i o c t l . h>
#include < f c n t l . h>

#include "mount_point . h"
#include " seac_ipc . h"

#include <wrapfs . h>

int main () {

struct _fist_ioctl_GET_CLEARANCE_LEVEL val ;

int fd = open (MOUNT_POINT, O_RDONLY) ;
i f (fd < 0) {

pe r ro r ("open") ;
e x i t (1) ;

}

// Get the c l earance l e v e l from the f i l e system .
int s t a tu s = i o c t l (fd , FIST_IOCTL_GET_CLEARANCE_LEVEL, & va l) ;
i f (s t a tu s < 0)

pe r ro r ("Could not a c c e s s f i l e system") ;

186 Appendix F. Source Code

else
p r i n t f ("%i \n" , va l . l e v e l) ;

c l o s e (fd) ;
e x i t (s t a tu s) ;

}

F.6 Editor Files

F.6.1 x_create_window_interceptor.c

#include <sys / types . h>
#include <unis td . h>
#include <s td i o . h>
#include <d l f cn . h>
#include " seac_ipc . h"

#ifndef libX11_PATH
#define libX11_PATH "/usr /X11R6/ l i b / l ibX11 . so "
#endif

//XCreateWindow c r ea t e s an unmapped subwindow fo r the s p e c i f i e d parent
//window and re turns the window ID of the crea t ed window .
stat ic Window (∗ original_XCreateWindow) (Display ∗ di sp lay , Window parent , int

x , int y , unsigned int width , unsigned int height , unsigned int
border_width , int depth , unsigned int c l a s s , Vi sua l ∗ v i sua l , unsigned long
valuemask , XSetWindowAttributes ∗ a t t r i b u t e s) ;

stat ic Window (∗ original_XCreateSimpleWindow) (Display ∗ di sp lay , Window parent
, int x , int y , unsigned int width , unsigned int height , unsigned int
border_width , unsigned long border , unsigned long background) ;

Window XCreateWindow(Display ∗ di sp lay ,
Window parent ,
int x ,
int y ,
unsigned int width ,
unsigned int height ,
unsigned int border_width ,
int depth ,
unsigned int c l a s s ,
Visua l ∗ v i sua l ,
unsigned long valuemask ,
XSetWindowAttributes ∗ a t t r i b u t e s) {

void ∗ handle = dlopen (libX11_PATH , RTLD_LAZY) ;
i f (! handle) {

fput s (d l e r r o r () , s t d e r r) ;
return 0 ;

}

char ∗ e r r o r ;

F.6 Editor Files 187

original_XCreateWindow = dlsym (handle , "XCreateWindow") ;
i f ((e r r o r = d l e r r o r ()) != NULL) {

fput s (e r ror , s t d e r r) ;
return 0 ;

}

Window window = (∗ original_XCreateWindow) (d i sp lay , parent , x , y ,
width , height ,
border_width , depth ,
c l a s s , v i sua l ,
valuemask , a t t r i b u t e s) ;

i f (parent == RootWindow(d i sp lay , De fau l tScreen (d i sp l ay))) {
long data [] = {XCREATE_WINDOW_INTERCEPTOR, getp id () , window , 0 , 0 } ;
send_xcl ient_event (data , d i sp lay , 0) ;

}

return window ;
}

Window XCreateSimpleWindow (Display ∗ di sp lay ,
Window parent ,
int x ,
int y ,
unsigned int width ,
unsigned int height ,
unsigned int border_width ,
unsigned long border ,
unsigned long background) {

void ∗ handle = dlopen (libX11_PATH , RTLD_LAZY) ;
i f (! handle) {

fput s (d l e r r o r () , s t d e r r) ;
return 0 ;

}

char ∗ e r r o r ;
original_XCreateSimpleWindow = dlsym (handle , "XCreateSimpleWindow") ;
i f ((e r r o r = d l e r r o r ()) != NULL) {

fput s (e r ror , s t d e r r) ;
return 0 ;

}

Window window = (∗ original_XCreateSimpleWindow) (d i sp lay , parent , x , y ,
width , height ,
border_width , border ,
background) ;

i f (parent == RootWindow(d i sp lay , De fau l tScreen (d i sp l ay))) {
long data [] = {XCREATE_WINDOW_INTERCEPTOR, getp id () , window , 0 , 0 } ;
send_xcl ient_event (data , d i sp lay , 0) ;

}

return window ;
}

188 Appendix F. Source Code

F.6.2 backup_interceptor.c

#include <sys / types . h>
#include <sys / s t a t . h>

#include <s td i o . h>
#include <d l f cn . h>
#include " seac_ipc . h"
#include "mount_point . h"

#ifndef libc_PATH
#define libc_PATH "/ l i b / t l s / l i b c . so . 6 "
#endif

stat ic int (∗ or ig inal_rename) (const char ∗ oldpath , const char ∗ newpath) ;

int rename (const char ∗ oldpath , const char ∗ newpath) {

char ∗ e r r o r ;
void ∗ handle = dlopen (libc_PATH , RTLD_LAZY) ;

i f (! handle) {
fput s (d l e r r o r () , s t d e r r) ;
return - 1 ;

}

or ig inal_rename = dlsym (handle , "rename") ;
i f ((e r r o r = d l e r r o r ()) != NULL) {

fput s (e r ror , s t d e r r) ;
return - 1 ;

}

long data [] = {BACKUP_INTERCEPTOR, getp id () , 0 , 0 , 0 } ;
struct s t a t stat_buf ;

i f (s t a t (oldpath , & stat_buf) < 0){
pe r ro r (" s t a t ") ;
return 0 ;

}
data [2] = stat_buf . st_ino ;

int s t a tu s = (∗ or ig inal_rename) (oldpath , newpath) ;

i f (! o ldpath | | strncmp (MOUNT_POINT, oldpath , s t r l e n (MOUNT_POINT)))
return 0 ;

s i ze_t o ld_s i ze = s t r l e n (oldpath) ;
s i z e_t new_size = s t r l e n (newpath) ;
i f (o ld_s i ze + 1 == new_size &&

! strncmp (oldpath , newpath , o ld_s i ze) &&
newpath [new_size -1] == '~ ') {

data [3] = EMACS_BACKUP;
send_xcl ient_event (data , 0 , 0) ;

F.7 Sensor Files 189

}

return 0 ;
}

F.7 Sensor Files

F.7.1 swsensor.c

#include <sys / types . h>
#include <sys / socke t . h>
#include <ne t i n e t / in . h>
#include <netdb . h>
#include < s t r i n g . h>
#include <unis td . h>
#include <s td i o . h>

#include " senso r . h"

#define HOST_NAME_SIZE 255

int main (int argc , char ∗ argv []) {
int hSocket ; // handle to socke t
struct hostent ∗ pHostInfo ; // ho ld s i n f o about a machine
struct sockaddr_in Address ; // In t e rne t s o c k e t address s t u c t
long nHostAddress ;
unsigned nReadAmount ;
char strHostName [HOST_NAME_SIZE] ;
int nHostPort = DEFAULT_PORT;

i f (argc < 3 | | argc > 5) {
f p r i n t f (s tde r r , "Usage : % s LEVEL DIRECTION [HOST] [PORT]\ n" , argv [0]) ;
e x i t (1) ;

}

int env_leve l = a t o i (argv [1]) ;
char d i r e c t i o n = argv [2] [0] ;

i f (argc == 4)
i f (s izeof (argv [3]) >= s izeof (strHostName)) {

f p r i n t f (s tde r r , "Error : the host name must be l e s s than % i cha ra c t e r s . \ n
" , s izeof (strHostName)) ;

e x i t (1) ;
}
else

s t r cpy (strHostName , argv [3]) ;
else

s t r cpy (strHostName , DEFAULT_HOST) ;

i f (argc == 5)
nHostPort = a t o i (argv [4]) ;

hSocket=socket (AF_INET,SOCK_STREAM,IPPROTO_TCP) ;

190 Appendix F. Source Code

i f (hSocket == -1){
pe r ro r (" socket ") ;
p r i n t f ("\nCould not make a socke t \n") ;
e x i t (1) ;

}

// ge t IP address from name
pHostInfo=gethostbyname (strHostName) ;
memcpy(&nHostAddress , pHostInfo ->h_addr , pHostInfo ->h_length) ;

// f i l l address s t r u c t
Address . sin_addr . s_addr=nHostAddress ;
Address . s in_port=htons (nHostPort) ;
Address . s in_fami ly=AF_INET;

i f (connect (hSocket , (struct sockaddr ∗)&Address , s izeof (Address)) == -1){
pe r ro r (" connect ") ;
e x i t (1) ;

}

wr i t e (hSocket , & env_level , s izeof (env_leve l)) ;
wr i t e (hSocket , & d i r e c t i on , s izeof (d i r e c t i o n)) ;

int s t a tu s ;
read (hSocket , & status , s izeof (s t a tu s)) ;

i f (s t a tu s == -1)
f p r i n t f (s tde r r , "Error : \ '% c \ ' i s an i n v a l i d d i r e c t i o n . \ n" , d i r e c t i o n) ;

i f (c l o s e (hSocket) == -1){
pe r ro r (" c l o s e ") ;
p r i n t f ("\nCould not c l o s e socket \n") ;

}

e x i t (0) ;
}

F.7.2 motion_handler.c

/∗ motion_handler . c ∗/
/∗ Date : 04/05 -2004 ∗/
/∗ Author : Ida ∗/
/∗ l a s t modi f ied : 04/08 -2004 ∗/

/∗ This i s the program tha t c o l l e c t s even t s (p i c t u r e s taken) from Motion ∗/
/∗ I t r e c i e v e n o t i f i c a t i o n when a snapshot has been taken ∗/
/∗ I t w i l l then determine i f motion have been de t e c t e d or not , ∗/
/∗ based on how many snapshots have been taken ∗/
/∗ t h i s i n c l u d e s communication o f r e s u l t s . ∗/

#include <s td i o . h>
#include <unis td . h>
#include < s t d l i b . h>
#include < f c n t l . h> // f o r p ipe s

F.7 Sensor Files 191

#include <sys / types . h> // f o r p ipe s
#include <sys / s t a t . h> // f o r p ipe s
#include <pthread . h> // f o r threads
#include <semaphore . h> // f o r threads
#include <time . h> // f o r timestamps mv
#include <g l i b . h> // f o r l i n k e d l i s t
#include < s i g n a l . h> // f o r terminat ion hande l ing .

#include " pipe2 . h" // l en g t h o f p i pe s

#define MIN_MOTION_NO 10 // no o f p i c s needed f o r motion to be d e t e c t e d
#define MAX_MOTION_DIFF 5 // sec o f d i f f e r e n c e f o r motion - f o r a l l . i e

dependent on above va lue .
#define NEW_MOTION_DIFF 4 // sec between o ld a new motion . - from newest !
//NB the headtime then becomes l a s t time

void ∗ eventRec i ever (void ∗ arg) ; // the func t i on the thread w i l l c a l l .
// Prototype . Takes a vo id po in t e r as arg , and re turns a po in t e r to vo id .

GSList ∗ even tL i s t ; //The l i s t o f even t s
pthread_mutex_t l i s tMutex = PTHREAD_MUTEX_INITIALIZER; //mutex to p r o t e c t the

l i s t .
sem_t l i s tSem ; // semaphore f o r the l i s t
char ∗ pipename [PIPE_NAME_LENGTH] ;
char ∗ campipe [PIPE_NAME_LENGTH] ;

//aux func t i on to p r i n t the GSList
stat ic void printElement (gpo in t e r value , gpo in t e r user_data)
{

time_t ∗ time = value ;
p r i n t f ("Timestamp = %i \n" , ∗ time) ;

}

// func t i on t ha t p r i n t s the GSList .
void pr in t ()
{

i f (g_s l i s t_length (even tL i s t) > 0)
{

p r i n t f (" -\n") ;
p r i n t f (" L i s t content : \ n") ;
p r i n t f (" -\n") ;
g_s l i s t_foreach (eventL i s t , & printElement , NULL) ;
p r i n t f (" -\n") ;

}
else

p r i n t f ("The L i s t i s empty . \ n") ;
}

// terminat ion func t i on
void end (int s i g)
{

p r i n t f ("Terminating the motion_handler : % s \n" , ∗ pipename) ;
int no = g_s l i s t_length (even tL i s t) ;
int j ;
for (j = 0 ; j < no ; j++)

{

192 Appendix F. Source Code

even tL i s t = g_s l i s t_de l e t e_ l ink (eventL i s t , ev en tL i s t) ;
// removes & d e a l l o c a t e s the f i r s t e lement .

}
e x i t (0) ;

}

//MAIN
int main (int argc , char ∗ argv [])
{

i f (argc < 3)
// argv [0] = prog name , argv [1 to argc -1] = arguments
{

p r i n t f ("Usage : % s PIPE -NAME PIPE -CAM-NAME\n" , argv [0]) ;
e x i t (1) ;

}

// f o r c i v i l i z e d terminat ion :
struct s i g a c t i o n act ;
act . sa_handler = end ;
s igemptyset (&act . sa_mask) ;
act . sa_f lags = 0 ;
s i g a c t i o n (SIGINT, & act , NULL) ;
s i g a c t i o n (SIGTERM, & act , NULL) ;

int r e s ;
pthread_t event_rec iev ing_thread ;
pthread_attr_t a t t r ; // a t t r i b u t e s o f the thread

∗pipename = argv [1] ;
∗campipe = argv [2] ;

p r i n t f ("motion_handler s t a r t i n g : % s \n" , ∗ pipename) ;

int no = 0 ;
int j ; // counter
time_t l a s t t ime = 0 ; // the time f o r the l a s t p i c in the l a s t mostion

de t e c t e d sequence .
time_t ∗ pStartt ime = g_new(time_t , 1) ;
time_t ∗ pEndtime = g_new(time_t , 1) ;

int d i f f = 0 ; // d i f f e r e n c e between f i r s t and l a s t p i c
int gap = 0 ; // d i f f e r e n c e between l a s t sequence o f p i c s and new seq

struct tm ∗pNow=NULL; // f o r n ice p r i n t i n g o f time
char Buf f e r [1 0 0] ; // f o r n ice p r i n t i n g o f time

sem_init(&l i stSem , 0 , 0) ; // i n i t the semaphore .

// i n i t i a l i s i n g the a t t r i b u t e s wi th d e f a u l t
pthread_attr_init (&a t t r) ;
// s e t t i n g the s p e c i a l i s e d a t t r i b u t e
pthread_attr_setdetachstate (&attr , PTHREAD_CREATE_DETACHED) ;
// c r ea t i n g thread
r e s = pthread_create(&event_recieving_thread , & attr , eventRec iever , NULL) ;
i f (r e s != 0)

F.7 Sensor Files 193

{
pe r ro r ("MOTION_HANDLER: thread could not be c rea ted ") ;
return - 1 ;

}

// de s t r oy ing thread a t t r i b u t e o b j e c t .
pthread_attr_destroy(&a t t r) ;

/∗ ∗∗∗∗∗∗∗∗ MAIN LOOP ∗∗∗∗∗∗∗∗ ∗/
// wa i t ing f o r a sequence o f even t s to beg in
while (1)

{
sem_wait(& l i s tSem) ; // wa i t ing f o r soemthng to happen
pthread_mutex_lock(& l i s tMutex) ;
no = g_s l i s t_length (even tL i s t) ;

i f (no > MIN_MOTION_NO) // i f t h e r e i s enough p i c t u r e s
{

pStartt ime = g_slist_nth_data (eventL i s t , 0) ;
pEndtime = g_slist_nth_data (eventL i s t , no -1) ;
pthread_mutex_unlock(& l i s tMutex) ;

d i f f = d i f f t im e (∗pEndtime ,∗ pStartt ime) ;

i f (d i f f < MAX_MOTION_DIFF) // i f they are taken c l o s e enough
{

gap = ∗ pStartt ime - l a s t t ime ;

i f (gap > NEW_MOTION_DIFF) // i f they are f a r enough from the l a s t
motion de t e c t e d .

{
/∗
// Pr in t ing o f d e t e c t i on
pNow = l o c a l t ime (pS tar t t ime) ;
s t r f t im e (Buffer , s i z e o f (Buf f er) ,"Motion de t e c t e d on %d %m %Y

at %H.%M.%S" ,pNow) ;
p r i n t f ("∗∗\

n") ;
p r i n t f ("%s:%s\n" , Buffer , ∗ pipename) ;
p r i n t f ("∗∗\

n") ;
∗/

//open the p ipe
int camp = open (∗ campipe , O_WRONLY) ;
// send the time
wr i t e (camp , pStartt ime , s izeof (pStartt ime)) ;
// c l o s e the p ipe
i f (camp != -1)

(void) c l o s e (camp) ;

l a s t t ime = ∗pEndtime ;

//remove a l l from 0 to no - 1 :
for (j = 0 ; j < no ; j++)

{

194 Appendix F. Source Code

pthread_mutex_lock(& l i s tMutex) ;
even tL i s t = g_s l i s t_de l e t e_ l ink (eventL i s t , ev en tL i s t) ;
pthread_mutex_unlock(& l i s tMutex) ;
// removes& d e a l l o c a t e s the f i r s t e lement .

}
/∗

NB: as we a l r eady know the o r i g i n a l No,
we do not want to remove i tems put on the l i s t a f t e r t ha t
but as we do not update nN, we do not remove new items .
here we j u s t make sure they can be added to the l i s t

wh i l e remmoving .
∗/

}
else // i f they are par t o f the prev iouse motion sequence

{
//remove a l l t h a t are par t o f the prev ious seq .
while ((gap <= NEW_MOTION_DIFF) && (g_s l i s t_length (even tL i s t)

> 0))
{

// s e t t i n g a new l a s t time
pthread_mutex_lock(& l i s tMutex) ;
pEndtime = g_slist_nth_data (eventL i s t , 0) ;
l a s t t ime = ∗pEndtime ;
// removing & d e a l l o c a t i n g
even tL i s t = g_s l i s t_de l e t e_ l ink (eventL i s t , ev en tL i s t) ;

// c a l c u l a t i n g next gap
i f (g_s l i s t_length (even tL i s t) > 0)
{

pStartt ime = g_slist_nth_data (eventL i s t , 0) ;
gap = ∗ pStartt ime - l a s t t ime ;

}
pthread_mutex_unlock(& l i s tMutex) ;

}
}

}
else //not c l o s e enough

{
pthread_mutex_lock(& l i s tMutex) ;
//remove o l d e s t and t r y again
even tL i s t = g_s l i s t_de l e t e_ l ink (eventL i s t , ev en tL i s t) ;
pthread_mutex_unlock(& l i s tMutex) ;

}
}

else
{

pthread_mutex_unlock(& l i s tMutex) ; //as we l ocked i t to read no .
}

}//end wh i l e (1)

return 0 ;

}//end main ()

// the second thread o f execu t i on
// the event l i s t e n e r

F.7 Sensor Files 195

void ∗ eventRec i ever (void ∗ arg)
{

int comm ; // the p ipe
char event = ' 0 ' ; // the event r e c i e v ed over the p ipe .

// check i f the p ipe e x i s t s .
i f (a c c e s s (∗ pipename , F_OK)==-1)
{

// crea t e the p ipe
comm = mkf i fo (∗ pipename , 0 7 7 7) ;
// check ing to see i f the p ipe cou ld be crea t ed . . .
i f (comm != 0)
{

f p r i n t f (s tde r r , "MOTION_HANDLER: Could not c r e a t e f i f o ") ;
return ((void ∗) -1) ; // t h i s i s moot , s ince thread i s detached

}
}

time_t ∗pTime ;

while (1)
{
comm = open (∗ pipename , O_RDONLY) ;
read (comm, & event , 1) ;

i f (comm != -1)
{

pTime = g_new(time_t , 1) ;
∗pTime = time (NULL) ;
(void) c l o s e (comm) ;
pthread_mutex_lock(& l i s tMutex) ;
even tL i s t = g_slist_append (eventLi s t , pTime) ;
sem_post(& l i s tSem) ; // pos t t h a t a new event was r e c i e v ed .
pthread_mutex_unlock(& l i s tMutex) ;

}
}

return NULL; // detached thread . w i l l never be used .

}//end eventRec iever .

F.7.3 camera_client.c

/∗ camera_client . c ∗/
/∗ Date : 28/04 -2004 ∗/
/∗ Author : Ida ∗/
/∗ l a s t modi f ied : 29/08 -2004 ∗/

/∗ This i s the program tha t communicates wi th the sensor_server ∗/
/∗ I t w i l l p i c k up in format ion from the motion_handler , ∗/
/∗ and determine i f the o f f i c e was entered or l e f t ∗/
/∗ Then i t w i l l send t ha t in format ion to the sensor_server ∗/

196 Appendix F. Source Code

#include <sys / types . h>
#include <sys / socke t . h>
#include <ne t i n e t / in . h>
#include <netdb . h>
#include < s t r i n g . h>
#include <unis td . h>
#include <time . h>
#include <s td i o . h>
#include < f c n t l . h> // f o r p ipe s
#include <g l i b . h> // f o r g_new
#include " pipe2 . h"
#include < s i g n a l . h> // f o r terminat ion s i g n a l hande l ing

#define SOCKET_ERROR -1
#define MAX_PASSING_TIME 15 // the time i t t a k e s to pass by the 2 cams

int hSocket ; // handle to socke t

int c r ea teP ipe (char pipename [])
{

i f (a c c e s s (pipename , F_OK)==-1) // check i f the p ipe e x i s t s .
{

// crea t e the p ipe
int comm = mkf i fo (pipename , 0 7 7 7) ;
// check ing to see i f the p ipe cou ld be crea t ed . . .
i f (comm != 0)
{

f p r i n t f (s tde r r , "CAMERA_CLIENT: Could not c r e a t e f i f o :%s \n" ,
pipename) ;

return - 1 ;
}

}
return 0 ;

}

void readPipe (char pipename [] , time_t ∗ ptime)
{

int comm = open (pipename , O_RDONLY) ;
read (comm, ptime , s izeof (ptime)) ;
i f (comm != -1)
{

(void) c l o s e (comm) ;
}

}

// terminat ion func t i on
void end (int s i g)
{

p r i n t f ("Terminating the camera_cl ient \n") ;
// c l o s i n g sock e t
i f (c l o s e (hSocket) == SOCKET_ERROR)

{
f p r i n t f (s tde r r , "\nCAMERA_CLIENT: Socket a l r eady c l o s ed \n") ;

}
e x i t (0) ;

F.7 Sensor Files 197

}

int main (int argc , char ∗ argv [])
{

i f (argc < 4)
// argv [0] = prog name , argv [1 to argc -1] = arguments
{

f p r i n t f (s tde r r , "Usage : % s INTURDER-LEVEL HOST-NAME PORT\n" , argv [0]) ;
e x i t (1) ;

}

int r e s ; // pipe c r ea t i n g r e s u l t
time_t ∗ ptime1 = g_new(time_t , 1) ;
time_t ∗ ptime2 = g_new(time_t , 1) ;
struct tm ∗pNow=NULL; // f o r n ice p r i n t i n g o f the time
char Buf f e r [1 0 0] ; // f o r n ice p r i n t i n g o f the time

char ∗ host_name = argv [2] ; // hos t name fo r d e l i v e r i n g r e s u l t s
int port = a t o i (argv [3]) ; // sock e t name fo r d e l i v e r i n g r e s u l t s
// i n t hSocket ; / / handle to soc ke t
struct hostent ∗ pHostInfo ; /∗ ho ld s i n f o about a machine ∗/
struct sockaddr_in Address ; /∗ I n t e rne t s o c k e t address s t r u c t ∗/
long nHostAddress ;

int i n t rude r = a t o i (argv [1]) ; // the l e v e l a in t rude r d e t e c t e d by the
cameras w i l l be as s i gned .

char d i r e c t i o n ; // entered=' i ' or e x i t e d ='o '

// f o r c i v i l i z e d terminat ion :
struct s i g a c t i o n act ;
act . sa_handler = end ;
s igemptyset (&act . sa_mask) ;
act . sa_f lags = 0 ;
s i g a c t i o n (SIGINT, & act , NULL) ;
s i g a c t i o n (SIGTERM, & act , NULL) ;

// ge t IP address from name
pHostInfo=gethostbyname (host_name) ;
// copy address in t o long
memcpy(&nHostAddress , pHostInfo ->h_addr , pHostInfo ->h_length) ;
// f i l l address s t r u c t
Address . sin_addr . s_addr=nHostAddress ;
Address . s in_port=htons (port) ;
Address . s in_fami ly=AF_INET;

// c r ea t i n g p ipe s
p r i n t f (" - - - - - - -\ ncamera_cl ient s t a r t i n g . \ nIntruder l e v e l : % i . \ nHostname : % s

. \ nPort no : % i \n - - - - - - -\n" , int ruder , host_name , port) ;

i f (r e s = createP ipe (PIPE_CAM_1) != 0)
return r e s ;

198 Appendix F. Source Code

i f (r e s = crea teP ipe (PIPE_CAM_2) != 0)
return r e s ;

while (1)
{

readPipe (PIPE_CAM_1, ptime1) ;
readPipe (PIPE_CAM_2, ptime2) ;
int d i f f = d i f f t im e (∗ ptime1 ,∗ ptime2) ;

while (d i f f > MAX_PASSING_TIME)
{

i f (∗ ptime1 < ∗ptime2)
{

readPipe (PIPE_CAM_1, ptime1) ;
d i f f = d i f f t im e (∗ ptime1 ,∗ ptime2) ;

}
else

{
readPipe (PIPE_CAM_2, ptime2) ;
d i f f = d i f f t im e (∗ ptime1 ,∗ ptime2) ;

}
}

i f (∗ ptime2 > ∗ptime1)
{

//someone entered
d i r e c t i o n = ' i ' ;
// p r i n t to screen :
pNow = lo c a l t ime (ptime1) ;
s t r f t ime (Buffer , s izeof (Buf f e r) , "CAMERA_CLIENT: Someone entered on %

d %m%Y at %H.%M.%S" ,pNow) ;
p r i n t f ("%s\n" , Buf f e r) ;

}
else // time1 > time2

{
// s e t e x i t
d i r e c t i o n = ' o ' ;
// p r i n t to screen
pNow = lo c a l t ime (ptime2) ;
s t r f t ime (Buffer , s izeof (Buf f e r) , "CAMERA_CLIENT: Someone ex i t ed on %d

%m%Y at %H.%M.%S" ,pNow) ;
p r i n t f ("%s\n" , Buf f e r) ;

}

//make the sock e t
hSocket=socket (AF_INET,SOCK_STREAM,IPPROTO_TCP) ;

i f (hSocket == SOCKET_ERROR)
{

f p r i n t f (s tde r r , "\nCAMERA_CLIENT: Could not c r e a t e a socke t \n") ;
}

else
{

F.7 Sensor Files 199

// connect to hos t
i f (connect (hSocket , (struct sockaddr ∗)&Address , s izeof (Address)) ==

SOCKET_ERROR)
{

f p r i n t f (s tde r r , "\nCAMERA_CLIENT: Could not connect to host %s \n
" , host_name) ;

}

else
{

// wr i t e to socke t
wr i t e (hSocket , & intruder , s izeof (i n t rude r)) ;
wr i t e (hSocket , & d i r e c t i on , s izeof (d i r e c t i o n)) ;

//umm c l o s e the socke t , ya?
i f (c l o s e (hSocket) == SOCKET_ERROR)
{

f p r i n t f (s tde r r , "\nCAMERA_CLIENT: Could not c l o s e socke t on
host %s \n" , host_name) ;

}

}
}

}

return 0 ;
}

F.7.4 event1.c

/∗ event1 . c ∗/
/∗ Date : 21/04 -2004 ∗/
/∗ Author : Ida ∗/
/∗ l a s t modi f ied : 21/03 -2004 ∗/

/∗ This i s a sma l l program tha t shou ld run every time Motion take s a p i c ∗/
/∗ I t w i l l then send the even t s to the even thande l r ∗/
/∗ So far , named p ipe s are used f o r communication ∗/

#include <s td i o . h>
#include <sys / types . h>
#include <sys / s t a t . h>
#include < f c n t l . h>

#include " pipe2 . h"

int main (char ∗ argv [])
{

char f l a g = ' 1 ' ;
char ∗ p f l a g = & f l a g ;

//open the p ipe
// p r i n t f (" event opening p ipe \n") ;

200 Appendix F. Source Code

int comm = open (PIPE_NAME_1, O_WRONLY) ;

// send the f l a g
// p r i n t f (" event wr i t i n g %c to p ipe \n" , f l a g) ;
wr i t e (comm, pf lag , 1) ;

// c l o s e the p ipe
i f (comm != -1)
(void) c l o s e (comm) ;

return 0 ;
}

F.7.5 event2.c

/∗ event2 . c ∗/
/∗ Date : 21/04 -2004 ∗/
/∗ Author : Ida ∗/
/∗ l a s t modi f ied : 21/03 -2004 ∗/

/∗ This i s a sma l l program tha t shou ld run every time Motion take s a p i c ∗/
/∗ I t w i l l then send the even t s to the even thande l r ∗/
/∗ So far , named p ipe s are used f o r communication ∗/

#include <s td i o . h>
#include <sys / types . h>
#include <sys / s t a t . h>
#include < f c n t l . h>

#include " pipe2 . h"

int main (char ∗ argv [])
{

char f l a g = ' 1 ' ;
char ∗ p f l a g = & f l a g ;

//open the p ipe
// p r i n t f (" event opening p ipe \n") ;
int comm = open (PIPE_NAME_2, O_WRONLY) ;

// send the f l a g
// p r i n t f (" event wr i t i n g %c to p ipe \n" , f l a g) ;
wr i t e (comm, pf lag , 1) ;

// c l o s e the p ipe
i f (comm != -1)
(void) c l o s e (comm) ;

return 0 ;
}

F.7 Sensor Files 201

F.7.6 pipe2.h

/∗ pipe2 . h ∗/
/∗ Date : 21/04 -2004 ∗/
/∗ Author : Ida ∗/
/∗ l a s t modi f ied : 21/04 -2004 ∗/

/∗ conta ins the p ipe names used f o r communicating ∗/

#define PIPE_NAME_1 "/tmp/ t e s t 1 "
#define PIPE_NAME_2 "/tmp/ t e s t 2 "
#define PIPE_CAM_1 "/tmp/cam1"
#define PIPE_CAM_2 "/tmp/cam2"
#define PIPE_NAME_LENGTH 15

F.7.7 start_motion.c

/∗ start_motion . c ∗/
/∗ Date : 21/04 -2004 ∗/
/∗ Author : Ida ∗/
/∗ l a s t modi f ied : 04/08 -2004 ∗/

/∗ This i s a program tha t s t a r t s the two d i f f e r e n t motionhandlers , ∗/
/∗ one f o r each camera . ∗/
/∗ uses f o r k ∗/

#include < s t d l i b . h>
#include <s td i o . h>

#include " pipe2 . h"

int main ()
{

pid_t pid ;

pid = fo rk () ;

i f (pid != 0)
{

exec lp ("motion_handler" , "motion_handler" ,PIPE_NAME_1,PIPE_CAM_1, 0) ;
f p r i n t f (s tde r r , "START_MOTION: an e r r o r occcured in parent \n") ;

}
else

{
exec lp ("motion_handler" , "motion_handler" ,PIPE_NAME_2, PIPE_CAM_2, 0) ;
f p r i n t f (s tde r r , "START_MOTION: an e r r o r occcured in ch i l d \n") ;

}

return 0 ;
}

202 Appendix F. Source Code

F.8 GUI Files

F.8.1 Exec.java

import java . u t i l . ∗ ;
import java . i o . ∗ ;

class Exec{

stat ic Runtime r t = Runtime . getRuntime () ;

stat ic void getWindowInfo (Vector data , Hashtable d e t a i l s , boolean mapped) {
try{

Process p = r t . exec (" l i s t w l ") ;

BufferedReader in =
new BufferedReader (new InputStreamReader (p . getInputStream ())) ;

S t r ingToken ize r s t ;

S t r ing l i n e = in . readLine () ;
i f (l i n e == null)

return ;

l i n e = in . readLine () ;
l i n e = in . readLine () ;

// Read window data
for (l i n e = in . readLine () ; l i n e != null && ! l i n e . equa l s ("") ; l i n e

= in . readLine ()) {
s t = new Str ingToken ize r (l i n e) ;
Object [] s = { s t . nextToken () , new I n t eg e r (s t . nextToken ()) ,

new I n t eg e r (s t . nextToken ()) , new I n t eg e r (s t .
nextToken ()) , new I n t eg e r (0) } ;

boolean isMapped = (In t eg e r . pa r s e In t (s t . nextToken ()) == 1) ;
i f (isMapped == mapped)

data . add (s) ;
}

for (l i n e = in . readLine () ; l i n e != null ; l i n e = in . readLine ()) {
int idx1 = l i n e . l a s t IndexOf (' ') ;
int idx2 = l i n e . l a s t IndexOf (' : ') ;
I n t eg e r windowID = new I n t eg e r (l i n e . sub s t r i ng (idx1 +1 , idx2)) ;
Vector v = new Vector () ;
// Read f i l e data
l i n e = in . readLine () ;
for (l i n e = in . readLine () ; l i n e != null && ! l i n e . equa l s ("") ;

l i n e = in . readLine ()) {
s t = new Str ingToken ize r (l i n e) ;
v . add (new Object [] { s t . nextToken () , new I n t eg e r (s t .

nextToken ()) }) ;
}
d e t a i l s . put (windowID , v) ;

F.8 GUI Files 203

}

// Read window data
for (Enumeration e = data . e lements () ; e . hasMoreElements () ;) {

Object [] s = (Object []) e . nextElement () ;
Object f i l e s = d e t a i l s . get (s [2]) ;
i f (f i l e s != null) {

int noOfOpenFiles = ((Vector) f i l e s) . s i z e () ;
i f (noOfOpenFiles > 0)

s [4] = new I n t eg e r (noOfOpenFiles) ;
}

}
p . des t roy () ;

}
catch (Exception e) {

System . e r r . p r i n t l n (e) ;
}

}

stat ic int getClearanceLeve l () {
try{

Process p = r t . exec (" g e t c l ") ;

BufferedReader in =
new BufferedReader (new InputStreamReader (p . getInputStream ())) ;

S t r ing l i n e = in . readLine () ;
p . des t roy () ;
return I n t eg e r . pa r s e In t (l i n e) ;

}
catch (Exception e) {

System . e r r . p r i n t l n (e) ;
}
return - 1 ;

}

stat ic I n t eg e r g e tF i l eL ev e l (S t r ing f i l ename) {
St r ing l i n e = null ;
try{

Process p = r t . exec (" g e t f l "+f i l ename) ;

BufferedReader in =
new BufferedReader (new InputStreamReader (p . getInputStream ())) ;

l i n e = in . readLine () ;
p . des t roy () ;
return new I n t eg e r (l i n e) ;

}
catch (NumberFormatException e) {

System . e r r . p r i n t l n (e) ;
return new I n t eg e r (-1) ;

}
catch (Exception e) {

System . e r r . p r i n t l n (e) ;
}

return null ;

204 Appendix F. Source Code

}

stat ic St r ing s e tF i l e L e v e l (S t r ing f i l ename , In t eg e r l e v e l) {
try{

Process p = r t . exec (" s e t f l "+f i l ename+" "+l e v e l) ;

BufferedReader in =
new BufferedReader (new InputStreamReader (p . getInputStream ())) ;

S t r ing l i n e = in . readLine () ;
p . des t roy () ;
return l i n e ;

}
catch (Exception e) {

System . e r r . p r i n t l n (e) ;
}
return null ;

}

stat ic St r ing g e tF i l eL ev e l s (Vector data , S t r ing dirname) {
St r ing l i n e = null ;
try{

Process p = r t . exec (" l i s t f l "+dirname) ;
BufferedReader in =

new BufferedReader (new InputStreamReader (p . getInputStream ())) ;
S t r ingToken ize r s t ;
for (l i n e = in . readLine () ; l i n e != null ; l i n e = in . readLine ()) {

s t = new Str ingToken ize r (l i n e) ;
Object [] s = { s t . nextToken () , new I n t eg e r (s t . nextToken ()) } ;
data . add (s) ;

}
p . des t roy () ;

}
catch (NumberFormatException e) {

System . e r r . p r i n t l n (e) ;
return "Error : f i l e s e l e c t i o n i s not supported in t h i s d i r e c t o r y . "

;
}
catch (Exception e) {

System . e r r . p r i n t l n (e) ;
}
return null ;

}

stat ic St r ing se tUse rLeve l (S t r ing uid , I n t eg e r l e v e l) {
try{

Process p = r t . exec (" s e t u l "+uid+" "+l e v e l) ;

BufferedReader in =
new BufferedReader (new InputStreamReader (p . getInputStream ())) ;

S t r ing l i n e = in . readLine () ;
p . des t roy () ;
return l i n e ;

}
catch (Exception e) {

F.8 GUI Files 205

System . e r r . p r i n t l n (e) ;
}
return null ;

}

stat ic I n t eg e r getUserLeve l () {
try{

Process p = r t . exec (" g e tu l ") ;

BufferedReader in =
new BufferedReader (new InputStreamReader (p . getInputStream ())) ;

S t r ing l i n e = in . readLine () ;
p . des t roy () ;
return new I n t eg e r (l i n e) ;

}
catch (Exception e) {

System . e r r . p r i n t l n (e) ;
}
return new I n t eg e r (-1) ;

}

stat ic St r ing ge tSub j ec tLeve l () {
try{

Process p = r t . exec (" l i s t s l ") ;

BufferedReader in =
new BufferedReader (new InputStreamReader (p . getInputStream ())) ;

S t r ing l i n e = in . readLine () ;
p . des t roy () ;
return l i n e ;

}
catch (Exception e) {

System . e r r . p r i n t l n (e) ;
}
return null ;

}

stat ic St r ing getUserName () {
try{

Process p = r t . exec ("whoami") ;

BufferedReader in =
new BufferedReader (new InputStreamReader (p . getInputStream ())) ;

S t r ing l i n e = in . readLine () ;
p . des t roy () ;
return l i n e ;

}
catch (Exception e) {

System . e r r . p r i n t l n (e) ;
}
return null ;

}

206 Appendix F. Source Code

stat ic boolean i sRootProces s () {
try{

Process p = r t . exec (" id -u") ;

BufferedReader in =
new BufferedReader (new InputStreamReader (p . getInputStream ())) ;

S t r ing l i n e = in . readLine () ;
p . des t roy () ;
return l i n e . equa l s ("0") ;

}
catch (Exception e) {

System . e r r . p r i n t l n (e) ;
}

return fa l se ;
}

stat ic void getUserLeve l s (Vector data) {
try{

Process p = r t . exec (" l i s t u l ") ;

BufferedReader in =
new BufferedReader (new InputStreamReader (p . getInputStream ())) ;

S t r ingToken ize r s t ;
for (S t r ing l i n e = in . readLine () ; l i n e != null ; l i n e = in . readLine

()) {
s t = new Str ingToken ize r (l i n e) ;
Object [] s = { s t . nextToken () , new I n t eg e r (s t . nextToken ()) } ;
data . add (s) ;

}
p . des t roy () ;

}
catch (Exception e) {

System . e r r . p r i n t l n ("Error : "+e) ;
}

}
}

F.8.2 SecurityManagerGUI.java

import javax . swing . ∗ ;
import java . awt . ∗ ;
import javax . swing . event . L i s t S e l e c t i o nL i s t e n e r ;
import javax . swing . event . L i s tS e l e c t i onEven t ;
import java . u t i l . ∗ ;
import java . i o . ∗ ;
import java . awt . event . ∗ ;

public class SecurityManagerGUI extends JFrame implements
L i s t S e l e c t i o nL i s t e n e r {
f ina l JPanel menu = new JPanel () ;

F.8 GUI Files 207

/∗∗
∗ The index o f the s e l e c t e d menu item .
∗/
private int s e l e c t ed Index ;

/∗∗
∗ The l i s t t h a t conta ins the a v a i l a b l e menu items .
∗/
f ina l JL i s t l i s t ;
f ina l CardLayout cardLayout = new CardLayout () ;
f ina l JPanel panel = new JPanel (cardLayout) ;

f ina l private In i tPane l i n i tPane l = new In i tPane l () ;
private Fi l eLeve lPane l f i l e L e v e lP an e l ;
private UserLevelPanel userLeve lPane l = new UserLevelPanel (this) ;
f ina l MessagePanel messagePanel = new MessagePanel (this) ;
f ina l SubjectLeve lPane l sub j ec tLeve lPane l = new SubjectLeve lPane l (this) ;
f ina l private WindowPanel unmappedWindowsPanel = new WindowPanel (this ,

fa l se) ;
f ina l private WindowPanel mappedWindowsPanel = new WindowPanel (this , true)

;
f ina l stat ic int width = 700 ;
f ina l stat ic int he ight = 400 ;

public SecurityManagerGUI (F i l e mountPoint) {
super (" Secu r i ty Manager GUI") ;
s e t S i z e (width , he ight) ;
setBounds (100 ,100 , width+100 , he ight+100) ;

Container contents = getContentPane () ;
contents . setLayout (new BorderLayout ()) ;
contents . add (panel , BorderLayout .CENTER) ;
panel . add (in i tPane l , I n i tPane l . id) ;
f i l e L e v e lPan e l = new Fi l eLeve lPane l (this , mountPoint) ;
panel . add (f i l eL ev e lPane l , F i l eLeve lPane l . id) ;
panel . add (userLeve lPanel , UserLevelPanel . id) ;
panel . add (unmappedWindowsPanel , "UnmappedWindowsPanel") ;
panel . add (mappedWindowsPanel , "MappedWindowsPanel") ;
panel . add (messagePanel , MessagePanel . id) ;
panel . add (subjectLeve lPane l , SubjectLeve lPane l . id) ;

addWindowListener (new WindowAdapter () {
public void windowClosing (WindowEvent e) {

System . e x i t (0) ;
}

}) ;

setFocusCycleRoot (true) ;
s e tFocusTrave r sa lPo l i cy (new LayoutFocusTraversa lPol icy ()) ;

// Create the menu
St r ing [] menuItems = new St r ing [] { " F i l e Leve l Management" ,

"User Leve l Management" ,
"Unmapped Windows" ,
"Mapped Windows" ,

208 Appendix F. Source Code

"Current Subject Leve l s " } ;
l i s t = new JL i s t (menuItems) ;
l i s t . s e tSe l ect ionMode (L i s tSe l e c t i onMode l .SINGLE_SELECTION) ;
// l i s t . setBackground (new Color (204 , 204 , 255)) ;
l i s t . setBackground (new Color (204 , 153 , 255)) ;
l i s t . setFont (new Font (" He lve t i ca " , Font .BOLD, 1 4)) ;
l i s t . a ddL i s t S e l e c t i o nL i s t e n e r (this) ;

menu . add (l i s t) ;
menu . setBackground (l i s t . getBackground ()) ;
contents . add (menu , "West") ; // Add the menu

cardLayout . show (panel , I n i tPane l . id) ;
}

/∗∗
∗ This method i s c a l l e d whenever a new item i s s e l e c t e d in the menu .
∗/

public void valueChanged (L i s tS e l e c t i onEven t e) {
i f (e . ge tVa lue I sAdjust ing ())

return ;
updatePanel () ;

}

void updatePanel () {
s e l e c t ed Index = l i s t . g e tSe l e c t ed Index () ;
switch (s e l e c t ed Index) {
case 0 : // F i l e Leve l Management

f i l e L e v e lPan e l . r e f r e s h . doCl ick () ;
break ;

case 1 : // User Leve l Management
userLeve lPane l . r e f r e s h . doCl ick () ;
break ;

case 2 : // Unmapped Windows
unmappedWindowsPanel . r e f r e s h . doCl ick () ;
break ;

case 3 : // Mapped Windows
mappedWindowsPanel . r e f r e s h . doCl ick () ;
break ;

case 4 : // Current Sub j e c t Leve l s
sub j ec tLeve lPane l . r e f r e s h . doCl ick () ;
break ;

default :
cardLayout . show (panel , I n i tPane l . id) ;

}
}

public stat ic void main (St r ing [] a rgs) {

i f (args . l ength < 1){
System . e r r . p r i n t l n ("Usage : java SecurityManagerGUI MOUNT_POINT\n")

;
System . e x i t (1) ;

}

F.8 GUI Files 209

F i l e mountPoint = new F i l e (args [0]) ;
i f (! mountPoint . i sD i r e c t o r y ()) {

System . e r r . p r i n t l n ("\ n Inva l id mount po int : \ " "+mountPoint+" \" does
not e x i s t or i s not a d i r e c t o r y . \ n") ;

System . e x i t (1) ;
}

SecurityManagerGUI smGUI = new SecurityManagerGUI (mountPoint) ;
smGUI . s e tV i s i b l e (true) ;

}
}

F.8.3 BasicPanel.java

import javax . swing . ∗ ;
import java . awt . ∗ ;
import java . awt . event . Act i onL i s t ene r ;
import java . awt . event . ActionEvent ;

/∗∗
∗ The BasicPanel i s the a b s t r a c t super c l a s s o f a l l the pane l c l a s s e s
∗ t h a t are used in the SEAC System .
∗/
abstract class BasicPanel extends JPanel implements Act ionL i s t ene r {

f ina l JPanel i n s t ru c t i onPane l = new JPanel () ,
inputPanel = new JPanel () ,
buttonPanel = new JPanel () ;

f ina l JLabel i n s t r = new JLabel () ;

f ina l JButton r e f r e s h = new JButton (" Refresh ") ;
f ina l JButton cance l = new JButton (" Cancel ") ;

f ina l stat ic Font ins t rFont = new Font ("TimesRoman" , Font .BOLD, 2 0) ;
f ina l stat ic Color pane lColor = new Color (255 , 255 , 153) ;

Bas icPanel () {
super (new BorderLayout ()) ;

// se tup o f the in s t ru c t i onPane l
i n s t r . setFont (in s t rFont) ;
i n s t ru c t i onPane l . setBackground (pane lColor) ;
i n s t ru c t i onPane l . add (i n s t r) ;
add (in s t ruc t i onPane l , "North") ;

// se tup o f the inputPane l
inputPanel . setBackground (pane lColor) ;
add (inputPanel , "Center ") ;

// se tup o f the but tonPane l
buttonPanel . setBackground (pane lColor) ;
buttonPanel . setLayout (new FlowLayout (FlowLayout .RIGHT, 1 5 , 1 0)) ;

210 Appendix F. Source Code

buttonPanel . add (r e f r e s h) ;
add (buttonPanel , "South") ;

// Setup o f bu t ton
r e f r e s h . addAct ionLis tener (this) ;
r e f r e s h . setMnemonic (' r ') ;

}

void s e t I n s t r u c t i o n (S t r ing i n s t r u c t i o n) {
i n s t r . setText (i n s t r u c t i o n) ;

}
}

F.8.4 InitPanel.java

import java . awt . event . ActionEvent ;
import java . awt . Font ;

class In i tPane l extends BasicPanel {

f ina l stat ic St r ing id = " I n i t " ;

In i tPane l () {
buttonPanel . remove (r e f r e s h) ;
buttonPanel . remove (cance l) ;

s e t I n s t r u c t i o n (" Sensor Enhanced Access Control System") ;
}

public void act ionPerformed (ActionEvent e) {}
}

F.8.5 MessagePanel.java

import java . awt . event . ActionEvent ;
import java . awt . GridBagLayout ;
import javax . swing . JLabel ;

class MessagePanel extends BasicPanel {
f ina l stat ic St r ing id = "Message" ;
private JLabel label = new JLabel () ;

f ina l private SecurityManagerGUI frame ;

MessagePanel (SecurityManagerGUI frame) {
this . frame = frame ;
inputPanel . setLayout (new GridBagLayout ()) ;
inputPanel . add (label) ;

}

public void setText (S t r ing text) {
label . setText (t ex t) ;

F.8 GUI Files 211

}

public void act ionPerformed (ActionEvent e) {
frame . updatePanel () ;

}
}

F.8.6 FileLevelPanel.java

import java . i o . F i l e ;
import java . awt . event . ActionEvent ;
import java . awt . ∗ ;
import javax . swing . ∗ ;
import java . u t i l . Vector ;

public class Fi l eLeve lPane l extends BasicPanel {
f ina l stat ic St r ing id = " F i l e Leve l " ;

f ina l private SecurityManagerGUI frame ;

f ina l private FileLevelTableModel tableModel = new FileLevelTableModel () ;
f ina l private TableSorter s o r t e r = new TableSorter (tableModel) ;
f ina l JTable t ab l e = new JTable (s o r t e r) ;

stat ic F i l e f i l e ;
f ina l private JFi leChooser f c ;

f ina l private JTextFie ld f i l eT e x tF i e l d = new JTextFie ld (25) ;
f ina l JButton browse = new JButton (" Browse ") ;

f ina l private int tableWidth = 340 ;
f ina l private int tab l eHe ight = 100 ;

F i l eLeve lPane l (SecurityManagerGUI frame , F i l e mountPoint) {
this . f i l e = mountPoint ;
this . frame = frame ;
s e t I n s t r u c t i o n (" F i l e Leve l Management") ;

f c = new JFi leChooser (f i l e) ;
f c . s e tF i l eSe l e c t i onMode (JFi leChooser .FILES_AND_DIRECTORIES) ;

// Table Setup
s o r t e r . setTableHeader (t ab l e . getTableHeader ()) ;
t ab l e . se tSe lect ionMode (L i s tSe l e c t i onMode l .SINGLE_SELECTION) ;
t ab l e . getTableHeader () . setReorder ingAl lowed (fa l se) ;
t ab l e . s e tCe l l S e l e c t i onEnab l ed (true) ;

// Setup o f the inputPane l
GridBagLayout layout = new GridBagLayout () ;

// Te x t f i e l d
GridBagConstraints c = new GridBagConstraints () ;
c . g r idx = 0 ;
c . g r idy = 0 ;

212 Appendix F. Source Code

i n s t ru c t i onPane l . remove (i n s t r) ;
i n s t ru c t i onPane l . setLayout (layout) ;
layout . s e tCons t r a i n t s (i n s t r , c) ;
i n s t ru c t i onPane l . add (i n s t r) ;

c . g r idy++;
c . gr idwidth = GridBagConstraints .RELATIVE;
c . i n s e t s . r i g h t = 20 ;
c . i n s e t s . bottom = 20 ;
c . i n s e t s . top = 20 ;

f i l eT e x tF i e l d . setText (f i l e . t oS t r i ng ()) ;
layout . s e tCons t r a i n t s (f i l eTex tF i e l d , c) ;
i n s t ru c t i onPane l . add (f i l eT e x tF i e l d) ;

// ' ' Browse ' ' Button
c . g r idx++;
c . gr idwidth = GridBagConstraints .REMAINDER;
c . i n s e t s . r i g h t = 0 ;

browse . setMnemonic ('b ') ;
l ayout . s e tCons t r a i n t s (browse , c) ;
i n s t ru c t i onPane l . add (browse) ;

// (F i l e Name , Secur i t y Leve l) Table
inputPanel . setLayout (layout) ;
c . anchor = GridBagConstraints .CENTER;
c . gr idx = 0 ;
c . g r idy++;

JScro l lPane s c r o l lPane = new JScro l lPane (t ab l e) ;
layout . s e tCons t r a i n t s (s c ro l lPane , c) ;
inputPanel . add (s c r o l lPane) ;

browse . addAct ionLis tener (this) ;
f i l eT e x tF i e l d . addAct ionListener (this) ;

}

boolean updateTable () {

tableModel . data . removeAllElements () ;
i f (! f i l e . e x i s t s ()) {

JOptionPane . showMessageDialog (null ,
"No such f i l e or d i r e c t o r y : "+f i l e ,
" F i l e S e l e c t i o n Error " ,
JOptionPane .ERROR_MESSAGE) ;

return fa l se ;
}

i f (f i l e . i s F i l e ()) {
In t eg e r r e s = Exec . g e tF i l eL ev e l (f i l e . t oS t r i ng ()) ;

i f (r e s . equa l s (new I n t eg e r (-1))) {
JOptionPane . showMessageDialog (null ,

F.8 GUI Files 213

"Error : f i l e s e l e c t i o n i s not
supported in t h i s d i r e c t o r y .
" ,

" F i l e S e l e c t i o n Error " ,
JOptionPane .ERROR_MESSAGE) ;

return fa l se ;
}
tableModel . data . add (new Object [] { f i l e . getName () , r e s }) ;

}
else { // f i l e . i sD i r e c t i o r y () == true

St r ing r e s = Exec . g e tF i l eL ev e l s (tableModel . data , f i l e . t oS t r i ng ()) ;
i f (r e s != null) {

JOptionPane . showMessageDialog (null ,
res ,
" F i l e S e l e c t i o n Error " ,
JOptionPane .ERROR_MESSAGE) ;

return fa l se ;
}

}

f i l eT e x tF i e l d . setText (f i l e . t oS t r i ng ()) ;
/∗
i f (t a b l e . getRowCount () == 0){

frame . messagePanel . s e tTex t ("No f i l e s e x i s t s . ") ;
frame . cardLayout . show (frame . panel , MessagePanel . i d) ;
re turn t rue ;
}∗/

// Setup o f the t a b l e s i z e

int he ight = tab l e . getRowHeight () ∗ t ab l e . getRowCount () ;
int width = tab l e . getColumnModel () . getColumn (0) . getWidth () +

tab l e . getColumnModel () . getColumn (1) . getWidth () ;

Dimension tableDimension = new Dimension (tableWidth , he ight) ;

i f (he ight > SecurityManagerGUI . he ight /2)
tableDimension . he ight = SecurityManagerGUI . he ight /2 ;

t ab l e . s e tP r e f e r r e dS c r o l l a b l eV i ewpo r tS i z e (tableDimension) ;
tableModel . f i r eTableStructureChanged () ;
tableModel . f ireTableDataChanged () ;

frame . panel . r e v a l i d a t e () ;
frame . panel . r epa in t () ;
frame . cardLayout . show (frame . panel , F i l eLeve lPane l . id) ;
return true ;

}

public void act ionPerformed (ActionEvent e) {
F i l e cu rF i l e = f i l e ;
Object source = e . getSource () ;
i f (source == r e f r e s h) {

i f (! updateTable ()) {
f i l e = cu rF i l e ;
r e f r e s h . doCl ick () ;

214 Appendix F. Source Code

}
}
else i f (source == browse) {

int returnVal = f c . showDialog (this , " S e l e c t ") ;
i f (returnVal == JFi leChooser .APPROVE_OPTION) {

f i l e = f c . g e t S e l e c t e dF i l e () . g e tAbso lu t eF i l e () ;
i f (! updateTable ()) {

f i l e = cu rF i l e ;
r e f r e s h . doCl ick () ;

}
}

}
else i f (source == f i l eT e x tF i e l d) {

f i l e = new F i l e (f i l eT e x tF i e l d . getText ()) ;
i f (! updateTable ()) {

f i l e = cu rF i l e ;
r e f r e s h . doCl ick () ;

}
}

}
}

F.8.7 FileLevelTableModel.java

import javax . swing . JOptionPane ;
import java . u t i l . Vector ;

public class FileLevelTableModel extends SimpleTableModel {

Fi leLevelTableModel () {
super (new St r ing [] { " F i l e Name" , " F i l e Leve l " }) ;

}

public boolean i sC e l l Ed i t a b l e (int row , int c o l) {
return Exec . i sRootProces s () && co l == 1;

}

public void setValueAt (Object value , int row , int c o l) {
Object [] s = (Object []) data . elementAt (row) ;
S t r ing errMessage = Exec . s e tF i l e L e v e l (F i l eLeve lPane l . f i l e .

getAbsolutePath ()+"/"+s [0] , (I n t eg e r) va lue) ;
i f (errMessage != null)

JOptionPane . showMessageDialog (null , errMessage ,
" Set F i l e Leve l Error " ,
JOptionPane .ERROR_MESSAGE) ;

else {
s [c o l] = value ;
data . setElementAt (s , row) ;

}
f i r eTab leCe l lUpdated (row , c o l) ;

}
}

F.8 GUI Files 215

F.8.8 SimpleTableModel.java

import javax . swing . t ab l e . AbstractTableModel ;
import java . u t i l . Vector ;

class SimpleTableModel extends AbstractTableModel {
Vector data = new Vector () ;
S t r ing [] columnNames ;

SimpleTableModel (S t r ing [] columnNames) {
this . columnNames = columnNames ;

}

public St r ing getColumnName(int c o l) {
return columnNames [c o l] ;

}

public int getColumnCount () {
return columnNames . l ength ;

}

public int getRowCount () {
return (data == null) ? 0 : data . s i z e () ;

}

public Object getValueAt (int row , int c o l) {
return ((Object []) data . elementAt (row)) [c o l] ;

}

public Class getColumnClass (int c) {
return getValueAt (0 , c) . g e tC la s s () ;

}
}

F.8.9 UserLevelPanel.java

import java . awt . event . ActionEvent ;
import java . awt . ∗ ;
import javax . swing . ∗ ;
import java . u t i l . Vector ;

public class UserLevelPanel extends BasicPanel {
f ina l stat ic St r ing id = "User Level " ;

f ina l private SecurityManagerGUI frame ;

f ina l private UserLevelTableModel tableModel = new UserLevelTableModel () ;
f ina l private TableSorter s o r t e r = new TableSorter (tableModel) ;
f ina l JTable t ab l e = new JTable (s o r t e r) ;

f ina l private int tableWidth = 340 ;

216 Appendix F. Source Code

f ina l private int tab l eHe ight = 100 ;

UserLevelPanel (SecurityManagerGUI frame) {
this . frame = frame ;
s e t I n s t r u c t i o n ("User Leve l Management") ;

// Table Setup
s o r t e r . setTableHeader (t ab l e . getTableHeader ()) ;
t ab l e . se tSe lect ionMode (L i s tSe l e c t i onMode l .SINGLE_SELECTION) ;
t ab l e . getTableHeader () . setReorder ingAl lowed (fa l se) ;
t ab l e . s e tCe l l S e l e c t i onEnab l ed (true) ;
t ab l e . getColumnModel () . getColumn (0) . setPre ferredWidth (tableWidth /2) ;
t ab l e . getColumnModel () . getColumn (1) . setPre ferredWidth (tableWidth /2) ;

// Setup o f the inputPane l
GridBagLayout layout = new GridBagLayout () ;

// Te x t f i e l d
GridBagConstraints c = new GridBagConstraints () ;
c . g r idx = 0 ;
c . g r idy = 0 ;
i n s t ru c t i onPane l . remove (i n s t r) ;
i n s t ru c t i onPane l . setLayout (layout) ;
layout . s e tCons t r a i n t s (i n s t r , c) ;
i n s t ru c t i onPane l . add (i n s t r) ;

c . i n s e t s . bottom = 20 ;
c . i n s e t s . top = 20 ;
c . gr idwidth = GridBagConstraints .REMAINDER;
c . i n s e t s . r i g h t = 0 ;

// (User ID , User Leve l) Table
inputPanel . setLayout (layout) ;
c . anchor = GridBagConstraints .CENTER;
JScro l lPane s c r o l lPane = new JScro l lPane (t ab l e) ;

layout . s e tCons t r a i n t s (s c ro l lPane , c) ;
inputPanel . add (s c r o l lPane) ;

}

void updateTable () {
i f (! Exec . i sRootProces s ()) {

frame . messagePanel . setText ("The user "+Exec . getUserName ()+" has
user l e v e l "+Exec . getUserLeve l ()+" . ") ;

frame . cardLayout . show (frame . panel , MessagePanel . id) ;
return ;

}

tableModel . data . removeAllElements () ;
Exec . ge tUserLeve l s (tableModel . data) ;

// Setup o f the t a b l e s i z e

int he ight = tab l e . getRowHeight () ∗ t ab l e . getRowCount () ;
Dimension tableDimension = (he ight < SecurityManagerGUI . he ight /2) ?

F.8 GUI Files 217

new Dimension (tableWidth , he ight) :
new Dimension (tableWidth , SecurityManagerGUI . he ight /2) ;

t ab l e . s e tP r e f e r r e dS c r o l l a b l eV i ewpo r tS i z e (tableDimension) ;
tableModel . f i r eTableStructureChanged () ;
frame . cardLayout . show (frame . panel , UserLevelPanel . id) ;

}

public void act ionPerformed (ActionEvent e) {
Object source = e . getSource () ;
i f (source == r e f r e s h)

updateTable () ;
}

}

F.8.10 UserLevelTableModel.java

import javax . swing . JOptionPane ;
import java . u t i l . Vector ;

public class UserLevelTableModel extends SimpleTableModel {

UserLevelTableModel () {
super (new St r ing [] { "User Name" , "User Leve l " }) ;

}

public boolean i sC e l l Ed i t a b l e (int row , int c o l) {
return c o l == 1;

}

public void setValueAt (Object value , int row , int c o l) {
i f (va lue == null)

return ;

Object [] s = (Object []) data . elementAt (row) ;
S t r ing errMessage = Exec . s e tUserLeve l ((S t r ing) getValueAt (row , 0) , (

I n t eg e r) va lue) ;
i f (errMessage != null)

JOptionPane . showMessageDialog (null , errMessage ,
" Set user l e v e l e r r o r " ,
JOptionPane .ERROR_MESSAGE) ;

else {
s [c o l] = value ;
data . setElementAt (s , row) ;

}
f i r eTab leCe l lUpdated (row , c o l) ;

}
}

F.8.11 WindowPanel.java

import javax . swing . event . L i s t S e l e c t i o nL i s t e n e r ;

218 Appendix F. Source Code

import javax . swing . event . L i s tS e l e c t i onEven t ;
import java . i o . F i l e ;
import java . awt . event . ActionEvent ;
import java . awt . ∗ ;
import javax . swing . ∗ ;
import java . u t i l . Hashtable ;
import java . u t i l . Vector ;

public class WindowPanel extends BasicPanel implements
L i s t S e l e c t i o nL i s t e n e r {

St r ing id ;

f ina l private SecurityManagerGUI frame ;

f ina l WindowTableModel tableModel = new WindowTableModel () ;

f ina l private TableSorter s o r t e r = new TableSorter (tableModel) ;
f ina l JTable t ab l e = new JTable (s o r t e r) ;
f ina l private int tableWidth = 520 ;

f ina l private SimpleTableModel dialogModel = new SimpleTableModel (new
St r ing [] { " F i l e Name" , " F i l e Leve l " }) ;

// f i n a l p r i v a t e Tab leSor ter d i a l o gSo r t e r = new Tab leSor ter (d ia logMode l) ;
// f i n a l p r i v a t e JTable d i a l o gTab l e = new JTable (d i a l o gSo r t e r) ;
f ina l private JTable d ia logTab le = new JTable (dia logModel) ;
f ina l private JDialog d i a l o g = new JDialog () ;
f ina l private Hashtable d e t a i l s = new Hashtable () ;

private boolean mappedWindows = fa l se ;

WindowPanel (SecurityManagerGUI frame , boolean mappedWindows) {
id = (mappedWindows) ? "Mapped Windows" : "Unmapped Windows" ;
s e t I n s t r u c t i o n (id) ;
this . mappedWindows = mappedWindows ;
this . frame = frame ;

// Setup d i a l o g
dia logTable . getTableHeader () . setReorder ingAl lowed (fa l se) ;
d i a l o g . s e t S i z e (new Dimension (430 , 250)) ;
d i a l o g . s e tDe fau l tC lo seOperat ion (JDialog .HIDE_ON_CLOSE) ;
d i a l o g . getContentPane () . add (new JScro l lPane (d ia logTable)) ;

// Table Setup
s o r t e r . setTableHeader (t ab l e . getTableHeader ()) ;
t ab l e . se tSe lect ionMode (L i s tSe l e c t i onMode l .SINGLE_SELECTION) ;
t ab l e . setRowSelect ionAl lowed (true) ;
t ab l e . getTableHeader () . setReorder ingAl lowed (fa l se) ;

t ab l e . ge tSe l ec t i onMode l () . a ddL i s t S e l e c t i o nL i s t e n e r (this) ;

i n s t ru c t i onPane l . add (i n s t r) ;

GridBagLayout layout = new GridBagLayout () ;
inputPanel . setLayout (layout) ;

GridBagConstraints c = new GridBagConstraints () ;

F.8 GUI Files 219

c . anchor = GridBagConstraints .WEST;
c . gr idwidth = GridBagConstraints .REMAINDER;
c . i n s e t s . bottom = 15 ;
JLabel lb = new JLabel (" Cl i ck on a row to see the open f i l e s and

a s s o c i a t ed f i l e l e v e l s : ") ;
layout . s e tCons t r a i n t s (lb , c) ;
inputPanel . add (lb) ;

JScro l lPane s c r o l lPane = new JScro l lPane (t ab l e) ;
layout . s e tCons t r a i n t s (s c ro l lPane , c) ;
inputPanel . add (s c r o l lPane) ;

}

void updateTable () {
tableModel . data . removeAllElements () ;
Exec . getWindowInfo (tableModel . data , d e t a i l s , mappedWindows) ;

i f (t ab l e . getRowCount () == 0){
i f (mappedWindows) {

frame . messagePanel . setText ("No windows are mapped . ") ;
frame . cardLayout . show (frame . panel , MessagePanel . id) ;

}
else {

frame . messagePanel . setText ("No windows are unmapped . ") ;
frame . cardLayout . show (frame . panel , MessagePanel . id) ;

}
return ;

}

int he ight = tab l e . getRowHeight () ∗ t ab l e . getRowCount () ;
Dimension tableDimension = (he ight < SecurityManagerGUI . he ight /2) ?

new Dimension (tableWidth , he ight) :
new Dimension (tableWidth , SecurityManagerGUI . he ight /2) ;

t ab l e . s e tP r e f e r r e dS c r o l l a b l eV i ewpo r tS i z e (tableDimension) ;
tableModel . f i r eTableStructureChanged () ;
i f (mappedWindows)

frame . cardLayout . show (frame . panel , "MappedWindowsPanel") ;
else

frame . cardLayout . show (frame . panel , "UnmappedWindowsPanel") ;

r e v a l i d a t e () ;
r epa in t () ;

}

public void act ionPerformed (ActionEvent e) {
updateTable () ;

}

public void valueChanged (L i s tS e l e c t i onEven t e) {
// Ignore ex t ra messages .
i f (e . ge tVa lue I sAdjust ing ()) return ;

L i s tSe l e c t i onMode l lsm = (L i s tSe l e c t i onMode l) e . getSource () ;
i f (! lsm . i sSe lect ionEmpty ()) {

Exec . getWindowInfo (tableModel . data , d e t a i l s , mappedWindows) ;

220 Appendix F. Source Code

int row = lsm . getMinSe lec t ionIndex () ;
Object winID = tableModel . getValueAt (row , 2) ;

dia logModel . data = (Vector) d e t a i l s . get (winID) ;
d ia logTable . c l e a r S e l e c t i o n () ;
d ia logTable . r e v a l i d a t e () ;
d ia logTable . r epa in t () ;

d i a l o g . s e tT i t l e ("The f i l e s that have been open in window "+winID) ;
d i a l o g . s e tLocat ionRe lat iveTo (frame) ;
d i a l o g . s e tV i s i b l e (true) ;

}
}

}

F.8.12 WindowTableModel.java

import javax . swing . ∗ ;
import javax . swing . t ab l e . AbstractTableModel ;
import java . u t i l . Vector ;

class WindowTableModel extends SimpleTableModel {
WindowTableModel () {

super (new St r ing [] { "Appl i ca t ion Name" , "PID" , "Window ID" , "Window
Level " , "No . o f Open F i l e s " }) ;

}
}

F.8.13 SubjectLevelPanel.java

import java . awt . event . ActionEvent ;
import java . awt . ∗ ;
import javax . swing . JLabel ;

class SubjectLeve lPane l extends BasicPanel {
f ina l stat ic St r ing id = " Subjec tLeve l " ;
private JLabel label = new JLabel () ;
private JLabel l a b e l 2 = new JLabel () ;

f ina l private SecurityManagerGUI frame ;

SubjectLeve lPane l (SecurityManagerGUI frame) {
this . frame = frame ;

// Setup o f the inputPane l
GridBagLayout layout = new GridBagLayout () ;
inputPanel . setLayout (layout) ;

// Te x t f i e l d
GridBagConstraints c = new GridBagConstraints () ;
c . anchor = GridBagConstraints .WEST;
c . g r idx = 0 ;

F.9 System Administration Scripts 221

c . g r idy = 0 ;
c . i n s e t s . bottom = 10 ;

layout . s e tCons t r a i n t s (label , c) ;
inputPanel . add (label) ;

c . g r idy++;
layout . s e tCons t r a i n t s (l abe l2 , c) ;
inputPanel . add (l a b e l 2) ;

}

public void setText (S t r ing text) {
label . setText (t ex t) ;
l a b e l 2 . setText ("") ;

}

public void setText2 (S t r ing text) {
l a b e l 2 . setText (t ex t) ;

}

public void act ionPerformed (ActionEvent e) {
int c l e a r anc eLeve l = Exec . ge tClearanceLeve l () ;
i f (c l e a r anceLeve l == -1)

setText ("The c l e a r anc e l e v e l has not been i n i t i a l i s e d . ") ;
else {

setText ("Current sub j e c t l e v e l s : "+Exec . ge tSub j ec tLeve l ()) ;
setText2 ("The c l e a r anc e l e v e l : "+c l e a ranc eLeve l) ;

}
frame . cardLayout . show (frame . panel , SubjectLeve lPane l . id) ;

}
}

F.9 System Administration Scripts

F.9.1 reset.sh

#!/ bin / bash - norc
s e t - x
MOUNT_POINT=/mnt/macfs
FILE_LEVELS="/ root / . f i l e _ l e v e l s "
USER_LEVELS="/ root / . u s e r_ l eve l s "

Remove o ld f i l e s
rm - r f ${FILE_LEVELS} ${USER_LEVELS} /mnt/macfs /∗

i f [! - f "${MOUNT_POINT}"]
then mkdir "${MOUNT_POINT}"

chmod a+twrx /mnt/macfs
f i

i f [! - f "${FILE_LEVELS}"]
then touch ${FILE_LEVELS}

chmod u=rw , go= ${FILE_LEVELS}

222 Appendix F. Source Code

f i

i f [! - f "${USER_LEVELS}"]
then touch ${USER_LEVELS}

chmod u=rw , go= ${USER_LEVELS}
f i

F.9.2 startup.sh

#!/ bin / bash - norc
s e t - x

POLICY="/home/ s973732 / seac / t e s t / po l i c y . txt "
FILE_LEVELS="/ root / . f i l e _ l e v e l s "
USER_LEVELS="/ root / . u s e r_ l eve l s "

MOUNT_POINT=/mnt/macfs
LOWERDIR=${MOUNT_POINT}

A regu l a r user w i l l be permi t t ed acces s to r e t r i e v i n g h i s own user l e v e l
chmod +s ge tu l
chown 0 : 0 g e tu l

i f ! a c c e s s x "${USER_LEVELS}"
then chmod +s i n i t c l

chown 0 : 0 i n i t c l
f i

f i l e system i n i t
insmod /home/ s973732 / seac /out/Linux -2 . 4 / macfs /macfs . o | | e x i t
mount - t macfs - o d i r=${LOWERDIR} ${LOWERDIR} ${MOUNT_POINT} | | e x i t
s eac_in i t ${POLICY} ${FILE_LEVELS} ${USER_LEVELS} | | e x i t

User space l e v e l i n i t
v i s ib i l i t y_manage r ${POLICY} &
fi le_open_monitor &
sensor_server &

F.9.3 shutdown.sh

#!/ bin / bash - norc
s e t - x
MOUNT_POINT=/mnt/macfs

seac_destroy
swsensor - 1 i
umount ${MOUNT_POINT}
rmmod macfs

	Introduction
	Motivation
	Sensor Enhanced Access Control Model
	The Developed Prototype
	Contributions
	Thesis Organization

	Security and Access Control
	Computer Security
	Access Control
	Physical Access Control
	Logical Access Control

	Summary

	Sensors and Motion Detection
	Sensors
	Motion Detection
	Infrared Sensors
	Radio Wave Frequency Sensors
	Digital Images

	Summary

	Unix Background Information
	The X Window System
	File Systems
	The Virtual File System
	Stackable File Systems

	Sensor Enhanced Access Control Model
	Logical Access Control
	Files
	Users

	Physical Access Control
	Windows
	Persons

	Combining Logical and Physical Access Control
	Reference Monitors
	Security Policy

	Design
	Software Architecture Overview
	The Subsystems
	Processes and Message Passing

	The Security Policy Parameters
	The Stackable File System
	File Level Management
	User Level Management
	Window Management
	Motion Detection using Sensors
	Choice of Sensors
	Motion Detection Programs
	Design of Physical Premises

	CSP Specification
	Processes, Channels, and Users
	Data Types
	Functions
	The Communication Protocol

	Implementation
	The Stackable File System
	Storage of Levels
	FiST Input File

	Window Management
	The Visibility Manager
	Intercepting Window Creation and Destruction
	Intercepting File Open
	Handling of Backup Files
	The Sensor Server
	Printing Subject and Window Status Information

	Sensors
	Web-cameras
	Motion, a Motion Detection Program
	Motion Detection Programs
	Known Limitations in the Camera System

	The Security Manager GUI
	The GUI Functionality
	Interfacing between Java and C Programs
	The GUI Classes

	Evaluation
	Further Developments
	Porting the System to Other Unix Versions
	Exportation of Classified Data
	Using other Access Control Models
	Extending or Replacing the Sensor Subsystem

	Conclusion
	Summary of Contributions
	Future Work

	Bibliography
	CSP and VDM-SL Notation
	CSP Process Expressions
	VDM-SL Symbols

	Installation Guide
	Installation of the Access Control Part
	Changes made to the Stackable File System Templates

	Installation of the Web-cameras and Motion Detection Programs

	User's Guide
	System Startup and Shutdown
	Guide to the Super User
	Guide to a Non-Privileged User

	The Web-Camera Sensor
	The Command Line Programs
	File Level Management
	User Level Management
	Window Management
	Sensors

	The Security Manager GUI

	Testing
	Stackable File System Test
	File Level Management Test
	User Level Management Test
	Mandatory Access Control Test
	Window Management Test
	Editor Test
	Web-camera Sensor Test

	GUI Screen-shots
	Source Code
	Common Files
	mount_point.h
	seac_ipc.h
	seac_ipc.c
	security_policy_parameters.h
	sensor.h

	The Stackable File System Files
	macfs.fist
	security_policy.c
	file_levels.c
	user_levels.c
	seac_init.c
	initcl.c
	seac_destroy.c

	File Level Management Files
	getfl.c
	setfl.c
	listfl.c

	User Level Management Files
	getul.c
	setul.c
	listul.c

	Window Management Files
	visibility_manager.c
	file_open_monitor.c
	sensor_server.c
	listwl.c
	listsl.c
	getcl.c

	Editor Files
	x_create_window_interceptor.c
	backup_interceptor.c

	Sensor Files
	swsensor.c
	motion_handler.c
	camera_client.c
	event1.c
	event2.c
	pipe2.h
	start_motion.c

	GUI Files
	Exec.java
	SecurityManagerGUI.java
	BasicPanel.java
	InitPanel.java
	MessagePanel.java
	FileLevelPanel.java
	FileLevelTableModel.java
	SimpleTableModel.java
	UserLevelPanel.java
	UserLevelTableModel.java
	WindowPanel.java
	WindowTableModel.java
	SubjectLevelPanel.java

	System Administration Scripts
	reset.sh
	startup.sh
	shutdown.sh

