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Abstract

Previous studies have successfully used static analysis to automatically vali-
date security properties of classical protocols. In this thesis we show how the
very same technique can be used to validate modern web-based protocols, in
particular, we study the SAML Single Sign-On protocols.

The specifications of the protocols does not supply any security analysis.
Different kinds of attacks are discussed and various recommendations on the
security which must be used on each messages sent. We model the protocols
using the process calculus LySa and using the static analysis tool LySa-tool
we can analyse them. We are able to find flaws in the protocols even when
following the recommendations of the specifications. The attacks found is also
not discussed in the specifications.

To help us writing the large LySa processes needed for SAML Single Sign-
On we extend the LySa process calculus with macro language. This enables us
to specify transport layer protocols and the protocols above with little effort.

Keywords: Protocol Validation, LySa, Static Analysis, Authentication, Au-
thentication Protocols.
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Resumé

Tidligere studier har med stor succes brugt statisk analyse til automatisk at
validere sikkerhedsegenskaber i klassiske protokoller. I denne afhandling viser
vi hvordan de samme teknikker ogs̊a kan bruges til at validere moderne web
baserede protokoller. Vi vil mere specifikt behandle SAML Single Sign-On pro-
tokollerne.

Specifikationen af protokollerne indeholder ikke nogen sikkerhedsanalyse af
protokollerne. Dog gennemg̊as forskellige former for angreb imod protokollerne
samt forskellige anbefalinger af sikkerhed der skal bruges ved hver besked der
sendes. Vi modellerer protokollerne ved brug af proceskalkulen LySa og analy-
serer dem ved hjælp af LySa-toolder bygger p̊a statisk analyse. Vi finder flere
fejl i protokollerne selv n̊ar vi følger anbefalingerne for sikkerhed. De fundne
angreb er heller ikke beskrevet i specifikationerne for protokollerne.

For at hjælpe os med at skrive de store LySa processer der er nødvendige for
SAML Single Sign-On tilføjer vi et macro sprog til LySa. Dette gør os i stand
til lettere at specificere transport lags protokoller og de overliggende protokoller.

Nøgleord: Protokol validering, LySa, Statisk analyse, Autentifikation, Aut-
entifikationsprotokoller.
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Chapter 1

Introduction

So far the application of formal methods in the analysis of cryptographic proto-
cols has mainly been concerned with key distribution protocols used to establish
secure communication between two principals; the Needham Schroeder shared
key and public key protocols are famous example of protocols in this category
[30]. In many cases automatic or semi-automatic tools have been constructed
based on the theoretical developments and they have successfully pinpointed
subtle bugs in protocols that have been considered secure for several years; a
success story is Lowe’s attack [22, 23] on the Needham Schroeder public key
protocol which was discovered using the FDR model checker [16].

In this thesis we will describe and use a formal and automatic method to
verify protocols used in modern web-scenarios. In particular we will study the
SAML Single Sign-On protocol.

1.1 Cryptographic protocols

The purpose of cryptographic protocols is to establish and perform secure com-
munication on an insecure network. Principals in a protocol use cryptographic
functions and shared secrets1 either to prove that they are in fact who they
claim to be, or to transfer confidential data over the network (or both).

A message transfer such as principal A sending message M encrypted under
the key K to principal B has the notation:

A→ B : {M}K
Later in this thesis we will extend this notation. To be able to decrypt (and read)
the message M , principal B must possess the key K. A protocol is formalised
as a list of correct message transfers. To exemplify this, the following notation
describes a variant of the Wide Mouthed Frog protocol (WMF) [12]:

1. A→ S : A,B, {K}KA

2. S → B : A, {K}KB

3. A→ B : {m1, ...,mk}K
This protocol aims to establish a shared session-key K between the two princi-
pals A and B, who prior to this protocol run have shared master keys KA and

1Secret to all others than the intended principals

1



2 Introduction

KB with a trusted server S. The principal A initiates the protocol by sending
the message A,B{K}KA

to the server S in step 1. Since S possesses the shared
master key KA, S is able to decrypt the message and recognise that A wants to
engage secure communication with B using K as a session key. In step 2 S sends
the message A, {K}KB

to B. B is able to decrypt the message and retrieve the
session key K. In step 3 A is now able to send a secret message {m1, ...,mk}K
to B using the session key K, since the key now is known to both A and B.

In this example only symmetric encryption has been used. Asymmetric
encryption is also a very common technique in cryptographic protocols, this
is carried out using a private/public key pair e.g. K−/K+. The private key
is kept secret and the public key is common knowledge. Encrypting messages
using a private key leaves the opportunity for all to decrypt it using the public
key, whether as encrypting messages using the public key only allow for the
principal possessing the private key to decrypt it. Description of asymmetric
encryption is done in the following notation:

A→ B : {|M |}K−

This describes the scenario where principal A sends the message M encrypted
using his private key K−. If the principal B should be able to decrypt the
message, the principal must possess the corresponding public key K+.

It is important to note that since public keys usually are public in the sense
that every principal is able to obtain it, asymmetric encryption itself does not
assure, the message to be kept secret.

The global scenario

In the formalisation of the protocol in the previous Section, only the correct
message transfers of the protocol are described, it is therefore important to be
aware of the possibility of an attacker present on the network. A common way
to model an attacker on a public accessed network, is to use the Dolev-Yao
notion of a “hardest attacker” [14]. This model allows the attacker to perform
the following operations:

• The attacker is able to intercept any message.

• The attacker can decrypt an encrypted message if and only if he knows
the key. The attacker can encrypt messages using keys in his possession.
The attacker cannot guess a key.

• The attacker can construct new messages.

• The attacker can send constructed or intercepted messages on the network.

In this scenario it is not possible to determine the sender of a message by looking
at it. Since the attacker can intercept and replay any messages, nor the origin
neither the destination of any message is certain, while an attacker is present.

If the WMF protocol from the previous Section is deployed on a network
where an attacker is present, the following run of the protocol could occur:

1. A → M(S) : A,B, {K}KA

1.′ M(A) → S : A,M, {K}KA

2. S → M(B) : A, {K}KM

3. A → M(B) : {m1, ...,mk}K
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M(S) denotes the malicious attacker acting as S in this message transfer. The
attacker intercepts the first message sent from A to the server. Since the attacker
does not possess the key KA he cannot decrypt the session key. The attacker
now changes the intercepted message and replaces B with his own identifier M .
Receiving this the server S believes that A wants to engage secure communica-
tion with the attacker M , and therefore the session key is sent to the attacker
encrypted with a master key shared between the attacker and the server. Now
the attacker is able to intercept and read messages sent from A to B encrypted
under the session key K. Messages believed by A to be secret between A and
B are in fact readable to the attacker.

Validating protocols

Doing a validation of a protocol, it is important to be aware of what properties
of the protocol is validated. A protocol validated to be tolerant to denial of
service attacks could very well be flawed with respect to replay attacks. The
most common properties to consider when validating cryptographic protocols
are:

Authenticity To be authenticated means to prove that you are in fact the
one that you claim to be. Communicating over a protocol which offers
authenticity means that you are communicating with the exact principal
you believe to be communicating with.

Confidentiality A protocol that ensures confidentiality ensures that secret
data is transfered in a way, such that only the intended receiver is able to
read the data.

Integrity If data integrity is offered, the principals know that messages cannot
be changed by any malicious user.

The task of validating these properties is very difficult, and many different ap-
proaches have been used over the last decades. The most recent research tend to
formalise protocols in some simplified programming language, process calculus
or logic description, and then use automatic tools to verify the properties for the
simplified description of the protocol. The three main approaches in automatic
verification are:

• Theorem proving methods use automatic tool to carry out proofs on a
protocol described in a logic formalisation. This method is used in [6] to
verify the SET protocol.

• State exploration methods [16], from model checking have been used to
find flaws in protocols. This method explores each state in the protocol
and reports if the protocol enters a state that violates the properties to
be validated.

• Static analysis has also successfully detected errors in protocols [8]. Con-
trol flow analysis is used to do an over-approximation of the possible vari-
able bindings and message transfers. Constructing reference monitor se-
mantics it is possible to know whether the properties to be validated are
violated.
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The theorem proving method is often used on the classic small key distribution
protocols, where the reasoning about the formalisation of the protocol into a
logic description is relatively simple, and the assumption made prior to a run of
the protocol. For more modern protocols, involving complex scenarios and big
applications these reasonings become very hard to do.

The methods from model checking and static analysis are somewhat sim-
ilar; in these two cases a reachability analysis is carried out. Confidentiality
is interpreted as weather secret data reaches the attacker. Authentication is
reachability in the sense that information should end up at the user from the
intended provider of that information. Both methods have advantages and dis-
advantages. The model checking approach will always return a trace of the
protocol that leads to the reported error, but it have to investigate all possi-
ble traces trough the protocol. As the length of the protocol to be analysed
increases the number of different traces through a protocol raises significantly,
and if an attacker is present, the number of states is infinite which makes it
hard to use the method on full scale protocols. In static analysis it is possible
to create an over-approximation of the components, without investigating all
possible traces, this makes it feasible to create automatic tools for validations
with the presence of an attacker. If an error is reported by the static analysis,
the trace leading to the error is however not part of the result.

1.2 Strategy and Concepts

In this thesis we describe the method we have used, to analyse security properties
of the SAML Single Sign-On protocol. The task is done in several steps:

1. Derive a model of the protocol and describe it in the LySa process calculus.

2. A static analysis of the LySa process is carried out. This analysis reveal
potential breaches in the protocol.

3. The result of the static analysis is analysed.

4. If the analysis reveals attacks on the protocols, we shall suggest modifica-
tions to avoid these attacks.

The analyses of the protocols are carried out within the LySa framework [8].
LySa is a process calculus in the pi/spi calculus family [3, 27, 28] allowing com-
munication protocols to be specified and annotated allowing for validation of
authentication properties, in particular, destination/origin authentication pro-
perties. To be able to describe a modern scenario, we have extended the original
LySa-calculus. This enables us to add different transport layers to the message
transfers.

The technology of our analysis is based on static analysis [31] meaning that
we conservatively construct an approximation of the behaviour of the protocol.
In doing so we focus on (i) the communications that may take place over the
network, (ii) the potential bindings of the variables occurring in the protocol
and (iii) the potential violations of the destination/origin annotations of the
protocol. The analysis is carried out in the presence of a Dolev-Yao attacker
[14] meaning that any message sent on the network may be intercepted, any
encryption with a key known to the attacker may be decrypted by him and
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furthermore the attacker may make use of all the information available to him
to construct new encryptions and to send messages on the network. To be able
to model encryption we use the notion of a perfect encryption library ; after
encryption a message can only be decrypted if the correct key is used.

The protocol we have chosen to analyse is the SAML Single Sign-On pro-
tocol. SAML stands for Security Assertion Markup Language and the Single
Sign-On protocol is developed by the standardisation organisation OASIS [41]
for secure exchange of information between online business partners, in partic-
ular for authentication of web-users to destination sites via already established
authentications with source sites.

The SAML Single Sign-On protocol operates with three kinds of principals:
users, destination sites and source sites. Users will (via a standard web-browser)
communicate with a source site in order to be authenticated and thereby get
access to a destination site offering some specific services; these services are
only available to users that have been authenticated by one of the source sites.
The actual formats of the messages exchanged are described using XML; they
include a large number of elements, however, only a few are mandatory thereby
leaving a lot of security decisions to the implementation. From the description
above it should already be evident that the Single Sign-On protocol is not just
one protocol but rather a framework for several protocols, a fact that is further
stressed by the advice from [25]:

Before deployment, each combination of authentication, message in-
tegrity, and confidentiality mechanisms should be analysed for vul-
nerability in the context of the deployment environment.

In this thesis we shall analyse several variants of the protocol.
One of the recommendations of the OASIS group is to use the Transport

Layer Security (TLS) protocol as the basis for the communication between
clients and servers. Also this protocol exists in a number of versions. We
present in this report an analysis of several instances of the Transport Layer
Security protocol.

1.3 Prerequisites

The reader of this thesis is supposed to have some knowledge of the concepts
of cryptographic protocols. The reader should furthermore be familiar with the
basic techniques of static analysis presented in [31]. Some understanding of
semantics and its applications [33] is also required. The implementation of the
techniques described in this report is carried out in Standard ML of New Jersey
[40]. However this thesis does not require extensive knowledge in this area.

1.4 Structure of this Report

Chapter 2 introduces the concepts and usage of the SAML Single Sign-On
protocol we wish to analyse in this thesis.

Chapter 3 introduces a formal way of describing protocols. Also we describe
how implementations of protocols are deduced from specifications.
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Chapter 4 the process calculi LySa used to describe the implementations of
the protocols is introduced, as well as the static analysis used to validate
security properties of the protocols. Last in the chapter we show how to
use the analysis on a simple example.

Chapter 5 contains details on the extensions of the LySa-tool. This extension
enables us to describe protocols using transport layer protocols on message
transfers.

Chapter 6 presents the analysis of the SAML Single Sign-On protocol. The
analysis results are obtained using the extended LySa-tool to analyse the
described protocols.

Chapter 7 summarises our work, and concludes on the security aspects of
the analysed protocols. Also possible improvements and alternative ap-
proaches are discussed in this chapter.



Chapter 2

Single Sign-On protocols

Today websites increasingly offer personalised content. This require users to
authenticate themselves, which is usually done by giving the user an account
with an associated user name and password. The website could be an online shop
where users need to be authenticated to see their current orders. Other examples
of websites could be: news sites, game sites or libraries. This means a user could,
potentially, have loads of accounts, each on different websites. It is tedious for a
user to remember many user names and passwords, and often a user will resort
to using only a single user name and password for every website. From a security
point of view, this is not a wise strategy. If a single login is eavesdropped and
thereby compromised, all logins are compromised. Furthermore, it has a cost to
the websites to manage the many accounts for their users. Each website need
their own system to issue new accounts, remove unused accounts, handle lost
passwords and other administrative tasks associated with the accounts. Also
as accounts are often created ad-hoc, websites cannot truly rely on the identity
information stated, when an account is created. Websites could be more strict
and require valid identity information, but as it could exclude or scare some of
their users this is often not an option.

These problems have motivated the development of new ways to authenticate
users, of which Single Sign-On protocols are one. The purpose of these proto-
cols are to allow users to authenticate themselves to several websites using one
account, and if visiting more websites simultaneously or in quick succession,
a single log on is sufficient. At the same time, when using a Single Sign-On
protocol, each website does not have to manage accounts for users. Account
management can be carried out at a central authentication site. As the users
only have to use one account it should be easier to use and remember the asso-
ciated password. Using a Single Sign-On protocol the user only should create
one account, to authenticate themselves to the authentication site used by the
websites providing the services.

This chapter describes how a Single Sign-On protocol functions, more specif-
ically the SAML-Single Sign-On protocol. An example is used to demonstrate
the scenario in with SAML SSO is used and how it works. The roles played
in the protocol are discussed and finally two examples of real-life single sign-on
protocols which extend SAML SSO are described.

7
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Figure 2.1: SSO example

2.1 SAML SSO

We have chosen to focus on the SAML Single Sign-On (SSO) protocol. This pro-
tocol is developed as a standard within the SAML (Security Assertion Markup
Language) framework by the standardisation organisation OASIS [41]. The
SAML-framework is used for secure exchange of information between online
business partners.

The use of standard web-browsers as the client-program makes the SAML
SSO protocol flexible and usable across different platforms, without the need to
install additional software. To illustrate a typical scenario in which the SAML
SSO protocol may be used let us consider Figure 2.1.

Assume a user visits an online store (message 1 of figure 2.1). At some
point he must authenticate himself to the store and this may happen through
a special authentication firm, by using the SSO protocol, as shown in the first
instance of the protocol on the figure. The authentication firm1 will ask the user
to login using a password. As a result of the SSO protocol the authentication
firm and the online store now know the identity of the user and the shopping
can continue (message 2 on the figure). Later the user may like to look at the
balance of his bank account (message 3). Since the bank does not know the
user he must now authenticate himself to the bank. As before an SSO protocol
is used for establishing the connection. The authentication firm recognises the
user and authenticates him to the bank without requesting the password again.
The user is now able to check the balance of his account (message 4). Notice
that the user logs in only once at the authentication firm which enables him to
gain access to various sites without needing to reauthenticate.

2.2 Roles & Concepts

In the scenario where the SAML Single Sign-On protocol is deployed principals
are divided into three roles:

1The authentication firm should be trusted by all other principals prior to the run of the
protocol, this is further explained in section 2.5 on page 13.
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Figure 2.2: The SAML SSO

Users: The user accesses the network via a standard web-browser that imple-
ments standard protocols such as HTTP and TLS. The user is only linked
to the web-browser while he is logged on a specific service.

Destinations: The destination site offers a restricted service which is only
available to users authenticated by a central authentication server.

Sources: The source site authenticates users, thereby allowing users to access
services at destination sites.

There are no restrictions on the number of principals of the three kinds; however
each principal only act in one role.

The protocol uses the concept of an artifact that arises because most browsers
only allow for a limited length of the HTTP URL. Many websites send argu-
ments along with the HTTP query by appending them to the query. For ex-
ample when a search for the string “test” is submitted to the search engine
google the resulting URL is: http://www.google.com/search?q=test; in this
example the URL is 36 characters long. If a more complicated argument was to
be transferred this could become too long for the browser to handle. An artifact
is a unique string which is used as an argument in an URL instead of the real
data.

In the SAML scenario, the artifact is used as an identifier for a larger SAML
assertion. An assertion is described in the SAML specification as a package of
information that supplies one or more statements made by an authority [20,
line 124–130]. These statements describe the identity of the subject, how and
when the authentication was performed, details on how the subject could be
re-authenticated, etc.

2.3 Protocol steps

Figure 2.2 describes the six steps of the SAML Single Sign-On protocol:
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1. The user makes a HTTP request for a SAML assertion to a specific service
at a restricted destination site.

2. If the source site recognises that the user is authenticated, an artifact and
the corresponding SAML assertion are created. The source site responds
to the users request by redirecting him to the desired destination site. The
artifact is part of the redirect message enabling the user to identify himself
to the destination site.

3. The user transparently completes the redirect started in step 2 by sending
the artifact to the destination site.

4. In order to verify the identity of the user, the destination site sends a
SAML:Request message stating the desired assertions and containing the
artifact to the source site.

5. The source site receives the SAML:Request and looks up the SAML as-
sertion using the artifact. The source site then sends a SAML:Response
message back to the destination site with the answer to the requested
assertions.

6. The SAML:Response contains information needed by the destination to be
able to proceed the communication requested by the user. Depending on
the contents of the SAML:Response message the destination site sends a
HTTP response either allowing or denying access to the restricted service.

An artifact can only be used once and therefore the source site maintains a
list of pending assertions. When an artifact is checked by the source site it and
the associated assertions are removed from the pending list.

In a variant of the protocol the user enters the destination site prior to step
1. Then the user is redirected to the source site, the protocol continues as
described above. We have chosen only to consider the version of the protocol
where the source site is entered first, but it should be straight forward to apply
our analysis to other versions of the protocol.

2.4 Possible Attacks on Protocols

The SAML specification states a list of Security and Privacy Considerations in
[26]. In this document a number of possible attack scenarios on the SAML SSO
protocol is described. At the same time possible counter-measures used as pro-
tection against attacks on the protocols are described. We will shortly describe
each possible attack and how they could occur, as well as the recommendations
from the specification [26].

The possibility of the attacks presented below have motivated the OASIS
organisation [41] to add security premises to the SAML Single Sign-On protocol.
We will later in this thesis verify whether they are sufficient or not.

Eavesdropping.

This attack occurs, when the attacker can intercept and read messages from
the protocol, see Figure 2.3 on the next page. When the attacker acts as an
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eavesdropper, the attack is carried out in a passive way, meaning the attacker
does not send any messages to principals in the protocol, and the principals of
the protocol does not engage any communication with the attacker either. All
other attack-types are active attacks.

Usually encryption is used to guarantee that eavesdropping cannot occur. It
is important that the used encryption is guaranteed to be secure with respect
to the attacker, since otherwise the attacker still is able to understand the
intercepted message. The SAML specification [26] states that usage of TLS/SSL
as transport layer should prevent eavesdropping.

Most of the complex attacks on known protocols include eavesdropping as a
part of the attack, to gain basic knowledge.

A

C S

Figure 2.3: Eavesdropping

Replay attack

A replay attack occurs, when the attacker sends a message (or a part of a
message) that has been sent in a previous run of the protocol to a principal in
the current run of the protocol, see Figure 2.4. To avoid replay attacks protocols
often try to verify a freshness property of messages. This could be done using
nonces, timestamps and a counter initialised at a random number.

The SAML specification [26] again uses the TLS/SSL transport protocol as
a countermeasure, since this protocol provide in-transit confidentiality allowing
only the two principals who originally engaged communication to send messages
on this transport layer, also a sequence number is added to each message.

A

C S

Figure 2.4: Replay attack
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Modification

Modification attacks occur, when a message is intercepted by the attacker
(eavesdropping), and then modified, see Figure 2.5. The attacker could modify
the entire message, or just a singe field in the message. Encrypted data does
not provide data integrity it self, since even though the message cannot be mod-
ified, it could be replaced with another message encrypted using the same key.
To prevent this hashing is used. If a message and its corresponding hash value
is signed using a private2 key (asymmetric cryptography), the recipient of this
message is able to verify the signature and the hash-value, doing so that data
integrity is verified.

The SAML specification [26] uses the TLS protocol, since it guaranties in-
transit data integrity.

A

C S

Figure 2.5: Modification

Man-In-the-Middle

A Man-in-the-Middle attack is a combination of an eavesdropping and a mod-
ification attack, where the attacker places himself between two communicating
principals intercepting each of the communicated messages, possible altering
them before sending them on to the intended principal, see Figure 2.6. In order
to prevent such attacks a bilateral authentication is required, allowing the two
communicating principals to verify that the received messages originates from
the other principal.

The TLS protocol exists in a version, where bilateral authentication is used,
therefore the SAML specification [26] uses TLS as transport layer.

AC S

Figure 2.6: Man-In-the-Middle

2The private key must be a “private” key in the sense that a private key is only intended
for one principal.
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Deletion/Insertion attacks

These kinds of attacks occurs when an attacker deletes message from the pro-
tocol (deletion attack) without the principal noticing it. This will not result in
a security breach, rather it would lead to a halt of the protocol. Since this is a
implementation issue rather than a security issue this is not discussed.

The attacker could try to start the protocol by sending a request to a des-
tination site, this would be an insertion attack. Since a simple request is no
security threat to the protocol, this kind of attacks should not be considered.
Insertion attacks are also covered by the combination of the already presented
attacks.

Insider attack

A type of attacks not covered in the SAML security document [26] is insider
attacks. An insider attack occurs when a previously trusted principal suddenly
becomes a malicious attacker. In the worst case scenario this could lead to
disclosure of all secrets this principal has shared with other principals in the
scenario. Insider attacks for example occurs, when a security breach for one or
more principals are not detected immoderately, and an attacker then is able to
use this breach to attack the system from the inside. Usually such attacks are
not taken in to consideration as they would often lead to a complete breakdown
of security, though it could be insightful to examine the effect of a worst case
security breach.

2.5 Public Key Infrastructure (PKI)

On the Internet users routinely have to verify the identity of a website and trust
that it is the correct identity. This could be when a user is accessing an online
shop or when using an online bank service. It is very important that a user can
be sure he is not the victim of a Man-In-the-Middle attack. To cater for this a
Public Key Infrastructure has been developed. The basic idea behind this is to
have all web browsers trust a few companies acting as Certificate Authorities.
Each CA has a root certificate meaning that web browsers know and trust this
certificate. This puts a great deal of trust on the company acting as a CA and
should a CA turn “bad” it would immediately loose this trust.A CA can issue
certificates to websites and a user can verify these certificates by verifying that
a trusted CA has issued it.

In a Single Sign-On scenario the principals involved must trust the Source-
Site before the protocol can be used. The SAML specification [20] describes
how to obtain this trust as:

The primary mechanism is for the relying party and asserting party
to have a pre-existing trust relationship, typically involving a Public
Key Infrastructure.

The users and destination sites are relying principals trusting the asserting prin-
cipal, in this case the source sites. The users are not required to have certificates
as it would be an economic burden on the users. As a result the asserting princi-
pal must rely on other means of authenticating the users. The relying principal
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in fact rely on the asserting principal and, hence, does not have to trust the
user directly.

The trust relationship between asserting and relying principals must be ne-
gotiated in advance. This is not a problem as it is done only once. Another issue
is how to ensure that the principals can still trust each other. One principal
might “turn bad” resulting in a broken protocol and this is not handled in the
specification documents. The PKI infrastructure itself only deals with identity
not trustworthiness.

2.6 Single Sign-On Applications

The problems addressed by a Single Sign-On protocol are common and the re-
solve to address them widespread. This has lead to different implementations of
Single Sign-On protocols. Some are closed proprietary protocols and other open
free standards. Some free SSO protocols are build on top of SAML SSO. Two
major implementations on top of SAML SSO exist: the Liberty-Alliance Project
[37] and the Shibboleth c© Project [42]. These different implementations of the
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Figure 2.7: The SAML SSO scenario

Single Sign-On protocol, supply the protocol with additional features, to adjust
the protocol to the specific scenario in which they are deployed. The features
added stem from differing views on how the network and users are organised.
To emphasise the differences we first take a look at the SAML scenario, shown
in figure 2.7. In this scenario a number of different users exist, who all have
access to at least one source site. Users can also access a number of different
destination sites offering different services. The users need to be authenticated
to the destination sites.

We shall give a short overlook of two different applications of the SAML
SSO protocol, to show the different approaches which can be taken. The Single
Sign-On protocol is only small parts of these projects, but since it is the main
concern of this report we will only be interested in the implementation of this
protocol. This will show the effort being put into the development of Single Sign-
On protocols using SAML SSO and thereby further underlining the relevance
of this report.
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Liberty Alliance Project

[37] An alliance between more than 150 companies around the world supports
the Liberty Alliance Project. The doctrine is to develop an open standard for
federated network identity supporting current and emerging network devices.
In the scenario envisioned by Liberty Alliance, a number of users exist, who all
have access to a global network. On this global network a number of service
providers and identity providers exist, corresponding to destination sites and
source sites in the SAML scenario. The service providers and identity providers
are organised in small “circles of trust”. Inside these circles of trust, data
provided by the user at one service provider can be shared among all the service
providers using the identity provider as a hub for this communication. This
could be the address information of a user, meaning that the user only has to
type in his or her address once inside the current “circle of trust”. This is what
Liberty Alliance call federation of data, which is essentially sharing of data.
The scenario is shown on figure 2.8. For this sharing of data to work it is of
cause necessary for the user to trust all service and identity providers within
the “circle of trust”.
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Provider
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UserUser

UserUser
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UserUser

Figure 2.8: The Liberty Alliance scenario

To exemplify this assume that a user using the Liberty scenario is ordering
a flight-ticket, and providing the flight company with the needed data such as
name, address, phone number credit card number etc. When these data are
submitted the user is asked to allow federation (sharing) of the data. Allowing
this the user enters a site of a car rental company the user is transparently logged
in via the Single Sign-On protocol. The user is now asked whether the car rental
company should be allowed to view federated data. If the user allows this, the
user is now able to rent a car and pay for it without providing additional data
unless the data already provided is not sufficient. These properties applies to
all service providers within the circle of trust the user has entered. The identity
provider should store what service providers are allowed to read federated data
so that the user should only allow this once.

Also the Liberty Alliance addresses the need to support many different mo-



16 Single Sign-On protocols

bile devices such as palm-pilots, mobile phones etc. This is however not com-
pletely new, since the SAML SSO is supported on any device able to run a
modern web browser.

The management of federated data, such as allowing data to be federated,
allowing service providers to read addresses, account numbers etc. is done by a
number of different protocols developed by the Liberty Alliance organisation. To
summarise the Liberty Alliance implementation of the Single Sign-On protocol
enables service providers to gain access to federated data from the identity
provider. When data are federated, and service providers are allowed to read
the federated data, a simplified version of the Liberty Alliance SSO protocol
would implement the same basic steps as SAML SSO presented in figure 2.2 on
page 9. In stead of just a SAML:Response the message in step 5 also should
contain the federated data concerning the user.

Shibboleth

[42] is developed and funded by a number of universities in cooperation with
IBM. The goal of the Shibboleth project is to provide a link between exist-
ing campus authentication systems and resource providers offering services to
universities. Shibboleth emphasise the privacy of the user. In some countries
universities are legally required to protect the privacy of their students. Shibbo-
leth does this by only allowing resource providers to see some general attributes
of a user and not the identity of a user. The overall scenario is structured
as shown in figure 2.9. The main idea is not very different from other Single
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Figure 2.9: The Shibboleth scenario

Sign-On cases; a user enrolled on campus either as a student or as staff request
access to a restricted resource, the resource site request some authentication,
the authentication is done via an attribute authority present at campus.

As an example a biology student request access to a restricted resource,
e.g. a database containing research material only accessible to biology students
and professors. The student authenticates himself using the attribute authority
present at the campus. The artifact received from this attribute authority is send
on to the resource site. Now the resource site contacts the attribute authority



2.6. Single Sign-On Applications 17

at the campus, to verify the authenticity of the user, and if this is verified
the user gain access to the restricted database. The student would be able
transparently to use the Shibboleth Single Sign-On implementation to log on to
another restricted resource, e.g. a journal collection requiring the user to be a
masters student.

The Shibboleth implementation of the Single Sign-On protocol provides the
same basic 6 steps as the SAML SSO, the main difference is however that
users are structured in a hierarchy at the attribute authority, and the restricted
resource is only verified that the user has certain attributes. In the previous
example, the resource offering the restricted research database is only provided
with the required attributes of the student, in this example that the student is
a biology student. The steps 4 and 5 (SAML:Request and SAML:Response) in
the SAML SSO is in the Shibboleth implementation substituted with what they
call Attribute:Query and Attribute:Response.

Using federated administration, the Shibboleth implementation provides
user privacy, in such a way that the resource site only know that it is a certain
university that has accessed a resource. If a resource is misused the attribute
authority is of cause able to link the used artifact back to a certain user. In this
way the privacy of the user is protected alongside the need for efficient system
administration.





Chapter 3

Specifying SAML SSO

The specification of the SAML SSO protocol does not contain any protocol
narration in the classical sense. Some charts illustrating the message flow are
presented but no abstraction from the complex message structures is given. This
could be a result of the designers focussing more on the implementation of the
protocols rather than a formal validation of the protocols. In the literature,
security protocols are described using the standard notation of protocol narra-
tions. We use an extended form of protocol narration named extended protocol
narrations defined in Automatic Validation of Protocol Narration [8]. In this
chapter we will develop an extended protocol narration for SAML SSO and for
the underlying TLS transport protocol.

3.1 Protocol Narrations

In protocol narrations an exchange of a message sent from A to S, containing
A,B, {K}KA

where {K}KA
denotes the name K encrypted under the key KA

is formalised as:

A→ S : A,B, {K}KA

This is the first message of the WMF protocol, which where also used in an
example presented in Section 1.1 on page 1. We wish to use an extended version
of this notation to formalise the protocols to be analysed. Extended protocol
narrations differ from the classical protocol narrations in that they distinguish
between the outputs and the corresponding inputs. This enables us to insert
explicit checks on values and cryptographic operations, that would otherwise be
left as implementation decisions. The source and destination of the messages are
prepended to the message. This allows the receiving principal to check whether
he was the intended receiver. Using this extension the first step of the WMF
protocol would now be split into three pars:

1. A → : A,S,A,B, {K}KA

1.′ → S : xA, xS , x
′
A, xB , xMess, [check xS = S, xA = x′A]

1.′′ → S : decrypt xMess as {xKey}KA

19
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First A sends a message on the network containing five parts: the identity
of the sender (A), the intended recipient (S), the two principals to establish
communication between (A,B)1 and the session key encrypted with a shared
longterm key {K}KA

.

In step 1′ we express that S receives the message and the variables xA, xS , x
′
A, xB

and xMess are bound to the corresponding pars of the received message. To
make sure that the message really is meant for S it is explicitly checked that
xS is bound to S (xS = S), and it is checked that the principal initiating the
communication is the one who wishes to establish secure communicate to B
(xA = x′A).

In step 1.′′ S will decrypt {K}KA
bound to xMess and extract its contents

using the variable xKey which in turn will be bound to K.

We are interested in analysing authenticity properties of the protocol. This
property depend on whether messages are sent and received by the correct
principals in the protocol. To be able to capture this we annotate messages
with a destination at the sender, and an origination at the receiver. Only
encrypted messages are annotated as an attacker capable of eavesdropping on
network traffic would be able to read any clear text messages. With this we
get the following extended protocol narration for the first step of the WMF
protocol:

1. A → : A,S,A,B, {K}KA
[ dest {S}]

1.′ → S : xA, xS , x
′
A, xB , xMess [check xS = S, xA = x′A]

1.′′ S : decrypt xMess as {xKey}KA
[ orig {A}]

The [ dest {S}] in line 1 means that the encrypted message {K}KA
should only

be decrypted at the principal S, and the [ orig {A}] denotes that the message
decrypted in line 1.′′ should have been encrypted at principal A.

WMF Using this formalism on the all the message in the WMF protocol as
presented in Section 1.1 on page 1 we get:

1. A → : A,S,A,B, {K}KA
[ dest {S}]

1.′ → S : xA, xS , x
′
A, xB , xMess [check xS = S, xA = x′A]

1.′′ S : decrypt xMess as {xKey}KA
[ orig {A}]

2. S → : S, xB , xA, {xKey}KB
[ dest {B}]

2.′ → B : yS , yB , yA, yMess [check yB = B]

2.′′ B : decrypt yMess as {yKey}KB
[ orig {S}]

3. A → : A,B, {m1, ...,mk}K

3.′ → B : y′A, y
′
B , yMessages [check y′B = B, y′A = yA]

3.′′ B : decrypt yMessages as {ym1 , ..., ymk
}yKey

Table 3.1: Extended protocol narration of WMF

1This part of the message could be simplified to contain only the identity of B since the
first part of the message shows that the identity of the initiator is A



3.2. Message Format 21

<element name=”Request ” type=”samlp : RequestType”/>

<complexType name=”RequestType”>

<complexContent>

<extens ion base=”samlp : RequestAbstractType”>

<choice>

<element r e f=”samlp : Query”/>

<element r e f=”samlp : SubjectQuery”/>

<element r e f=”samlp : AuthenticationQuery”/>

<element r e f=”samlp : AttributeQuery”/>

<element r e f=”samlp : Author izat ionDecis ionQuery”/>

<element r e f=”saml : Assert ionIDReference ” maxOccurs=”unbounded”/>

<element r e f=”samlp : As s e r t i onAr t i f a c t ” maxOccurs=”unbounded”/>

</choice>

</extens ion>

</complexContent>

</complexType>

Table 3.2: SAML:Request

<element name=”Response” type=”samlp : ResponseType”/>

<complexType name=”ResponsetType”>

<complexContent>

<extens ion base=”samlp : ResponseAbstractType”>

<sequence>

<element r e f=”samlp : Status”/>

<element r e f=”saml : Asse r t ion ” minOccurs=”0” maxOccurs=”unbounded”/>

</sequence>

</extens ion>

</complexContent>

</complexType>

Table 3.3: SAML:Response

<element name=”SubjectConf i rmat ion ” type=”saml : SubjectConfirmationType”/>

<complexType name=”SubjectConfirmationType”>

<sequence>

<element r e f=”saml : ConfirmationMethod” maxOccurs=”unbounded”/>

<element r e f=”saml : SubjectConfirmationData ” minOccurs=”0”/>

<element r e f=”saml : ds : KeyInfo ” minOccurs=”0”/>

</sequence>

</complexType>

Table 3.4: SubjectConfirmation

We have already explained the message: 1., 1.′ and 1.′′. The two other
messages follow in a similar fashion. Notice that the variables introduced in
1′ and 1.′′ are used by S again in 2. when it sends a message to B. Similarly
variables known used by B in 2.′′ and 2.′′ are used again in 3.′ and 3.′′. We will
use this notation style to describe SAML SSO in a formal fashion.

3.2 Message Format

In section 2.3 on page 9 the flow of the SAML Single Sign-On protocol is de-
scribed as 6 basic steps. To extend these steps into an extended protocol nar-
ration the format of the messages should be clear. The format of the messages
determines the implementation, therefore the considerations made must be well
thought through. In this section we shall give a reasoning about the format of
the messages in our model of the SAML SSO protocol.

Since SAML is a framework, and not an implementation of the Single Sign-
On protocol, we have to consider many implementation issues. The SAML
specification [24, 25] specifies a number of XML-schemes used to validate the
contents of SAML-messages. We shall start by describing of how, in particular
the SAML:Request and SAML:Response messages are used and ow we have
modelled them.

The protocol uses a very general form of assertions that can record many
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different aspects about the user. As an example, the destination site can use a
SAML:Request in step 4 in the protocol to ask the source site how the user was
authenticated as well as requesting a key for secure communication with the user.
The source site then responds with the information requested in SAML:Request
using a SAML:Response message.

The XML-scheme for a SAML:Request message is shown in table 3.2. The
<choice> element indicates that a valid SAML message only have to include one
of the elements listed in its body. The elements themselves each refer to other
XML documents which again might contain <choice> elements and refer to yet
other documents in this way creating a large set of possible messages. The choice
of elements depend on what information (assertion) the destination site requires.
In our formalisation of the protocol we shall ignore this detailed structure and
only model the artifact embedded in the SAML:Request message and the user’s
key in the SAML:Response. This corresponds to assuming that the source and
destination sites beforehand have agreed always to use one specific form of
request.

In table 3.3 the overall XML-scheme for SAML:Response message is shown
and it also rely on other XML documents describing the details. This is the for-
mat of the message used to respond to the SAML:Request messages and like the
request, the response also has a large set of possible messages. If the destination
site receives a SAML:Response from the source site we shall in our formalisa-
tion assume that the validation of the artifact was successful. To model the
response, the source site sends the identity of the user and the cryptographic
key held by the user to the destination site. A cryptographic key is encoded
in the SAML:Response using the SubjectConfirmation XML-scheme shown in
table 3.4 on the preceding page. This scheme contains a saml:ds:KeyInfo ele-
ment which hold the cryptographic key. The SubjectConfirmation scheme is not
directly part of the SAML:Response scheme; actually it is a subelement to one
of the subelements of SAML:Response.

Also the encoding of the artifact should be considered. It is encoded as a
sequence of bytes. A part of this sequence is an AssertionHandle implemented
as a random 20 byte sequence. This AssertionHandle must according to the
specification [25] be infeasible to construct or guess. If it is impossible to guess
the AssertionHandle it should also be impossible to guess the Artifact, therefore
we shall in our model treat the artifact as a nonce.

SAML SSO

Using this message format, and applying the methods about extended protocol
narration from section 3.1 on page 19 we produce the extended protocol nar-
ration for the SAML Single Sign-On protocol in table 3.5 on the facing page.
Here we write D for the destination site, S for the source site and U for the
user. It should be straightforward to identify the six steps of the protocol from
figure 2.2. Since no encryption is added to the model of the SAML SSO proto-
col at this stage, the first 5 original steps are each only extended to a sending
part x. and a receiving part x.′. The last step contains encrypted information,
and therefore it is extended into three parts, the last part being the decryption
6.′′. To ensure confidentiality and authenticity of the messages some security
mechanisms must be added to the message transfers.
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1. U → : U, S,D
1.′ → S : xU , xS , xD [check xS = S]

2. S → : S, xU , xD, Artifact

2.′ → U : yS , yU , yD, yArtifact [check yU = U ]

[check yS = S, yD = D]

3. U → : U, yD, S, yArtifact

3.′ → D : zU , zD, zS , zArtifact [check zD = D]

4. D → : D, zS , zArtifact

4.′ → S : xD, xS , xArtifact [check xS = S]

[check xArtifact = Artifact]

5. S → : S,D,KU , U
5.′ → D : z′S , zD, zKey, zU′ [check zD = D]

[check zU′ = zU ] [check z′S = zS ]

6. D → : D,U, {Mess}zKey
[ dest {U}]

6.′ → U : yD, yU , ycMess [check yU = U ]

6.′′ U : decrypt ycMess as {yMess}KU
[ orig {D}]

Table 3.5: Extended protocol narration for SAML SSO

3.3 Protocol Layers

The communication in the SAML SSO protocol takes place on a public network
possibly the Internet, using the standard communication protocols for this kind
of communication. On figure 3.1 the protocol stack used in SAML SSO is shown.
In a protocol stack the data has to travel from the bottom to the top, to be

SOAP

SAML

HTTP

TCP/IP

SSL/TLS

Figure 3.1: The protocol stack used in SAML

received, and the other way to be send. The layers beneath TCP/IP layer,
are the layers providing the physical link to the network. These layers does
not provide any security features to the actual protocol and is therefore not
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modelled. The following sections describe very briefly how the layers work and
how we represent them in our model of the SAML SSO protocol.

3.3.1 TCP/IP

The TCP/IP layer is the network/transport layer. This layer does the actual
delivery of messages. A simple abstraction of this layer is found in the extended
protocol narration in that the first element of a message is the sender and
the second element is the intended receiver. For example given the following
protocol narration:

Source→ Destination : Payloaad

using extended protocol narration this would be transformed to:

Source→ : Source,Destination, Payloaad

Since the Source and Destination are sent in clear-text, the message could
easily be intercepted by an attacker, and modified.

3.3.2 TLS

Transport Layer Security This layer can provide authentication and confiden-
tiality on messages. All modern browsers implements the TLS protocol, as well
as all web servers. This makes the protocol one of the most commonly used
protocols to transfer data secure data over the Internet since browsers are the
client program for web servers.

In SAML SSO TLS is used to provide security properties to the messages in
the protocol. The TLS protocol is rather complicated, and therefore we return
to the problem doing a qualified abstraction in section 3.4 on page 26.

3.3.3 HTTP

The HyperText Transport Protocol is used to transport World Wide Web pages
between a web server and a browser. The SAML SSO protocol is using the
HTTP protocol to transfer data between the principals. We do not model
HTTP directly but rather we model the content of the messages. In this context
HTTP is used mainly to instruct the browser of what to do next. HTTP has a
way to send errors back to browsers but as we do not model errors we will not
describe them here. Each paragraph in the following describes a method from
the HTTP-protocol [15] used in the SAML SSO protocol:

GET The GET method is used to query a web server for information. This
could be a request for a home page on the Internet. The request can in-
clude parameters in the HTTP-URL. For example when a search for the string
“test” is submittet to the search engine google the resulting URL is: http:

//www.google.com/search?q=test. The characters to the right of the “?” is
parameters for the query. In this example the URL is 36 characters long but
could be much longer. Most browsers has a limit of how long an URL can be.
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This is one of the reasons for using artifacts in SAML SSO protocol as men-
tioned in Section 2.2 on page 8. We model the data in the query resulting in
the following protocol narration:

1. C → : C, S,Query
1.′ → S : xC , xS , xQuery [check xS = S]

2. S → : S,C,Response

2.′ → C : yS , yC , yResponse [check yC = C]

In step 1., the Client C sends a Query to the Server S. In step 1.′ the Request
is received and processed by the Server. If the server recognises the Request
it creates a corresponding Response. In step 2. the Response is sent by the
Server, and it is received in step 2.′ by the user.

REDIRECT This method is used by the server to send the browser to a new
location. The REDIRECT message contains the URL of the new location. A
REDIRECT method could very well be a valid response to a GET query if the
Server is requested for a service not available, but the server has the knowledge
of another server offering this service. When a browser receives a REDIRECT
message it performs a GET query with the URL received in the REDIRECT
message. Notice this URL contains both the new server and the request string.
This is modelled as:

1. S → : S,C, S′, Request′

1.′ → C : yS , yC , yS′ , yRequest′ [check yC = C]

2. C → : C, yS′ , y′Request

2.′ → S′ : xC , x
′
S , xRequest [check x′

S = S′]

3. S′ → : S′, C,Response

3.′ → C : y′S , yC , yResponse [check yC = C]

In step 1. the server sends the name of the new server S ′ as well as the new
Request′ to the Client. This is received by the Client in step 1.′. Now the
Client uses the GET method to query the new location yS′ with the new request
yRequest. The steps 2 and 3 are really just a GET with the server yS′ and the
request y′Request.

POST The POST method has the same effect as the GET method, but the
data send to the server is send in a message body in stead of encoded into the
HTTP-URL, which allows the POST method to transfer unlimited length of
data to the Server. The POST method is usually used in cases where large
amounts of data must be updated. The difference between POST and GET
methods are that a REDIRECT will instruct a browser to issue a new GET
query. This mean POST cannot be used in conjunction with REDIRECT.
Besides this there is no difference in how POST and GET is modelled.

3.3.4 SOAP

Simple Object Access Protocol [29] is used to exchange data in a decentralised
distributed scenario. It is fundamentally just a structured way to exchange
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messages using XML. From our point of view it is only used to define the message
formats. In section 3.2 on page 21 we have discussed how the abstraction from
the specified XML-structure to protocol narration i done, therefore there should
be no need of doing further modelling of the specific message format.

3.4 Transport Layered Security

’The documents describing the SAML SSO protocol recommend using the Trans-
port Layer Security (TLS) protocol for establishing secure communication [13].
TLS is based upon the SSL 3.0 protocol [4] and is supported by almost all
Internet browsers for ensuring secure communication between users and web-
sites. We shall return to the actual recommendations of the specification [25]
in Section 6.2 on page 83 and focus on the TLS protocol itself in the present
section.

3.4.1 TLS

The TLS protocol is used in a scenario where a client wishes to establish secure
communication with a server. TLS can be used in two ways (shown on Fig-
ure 3.2); either in an unilateral version where the server has a certificate issued
and signed by a mutually trusted Certificate Authority (CA); or in the bilateral
version the client has a similar certificate. In the unilateral version the Server
is authenticated to client but not the other way around as it is the case in the
bilateral version. The protocol use certificates to prove the identity of the prin-

Server

Server
Certificate

Client

PSfrag replacements √

(a) Unilateral TLS

Server

Client
Certificate

Server
Certificate

Client

PSfrag replacements √√

(b) Bilateral TLS

Figure 3.2: The TLS variants

cipals. Then a common master key is agreed upon. All further communication
is exchanged using session keys derived from this master key.

The TLS protocol has two layers, the record protocol and on top of that,
a layer using one of four protocols [13]. The record protocol handles messages
sent on the network, and as part of this, it can fragment and compress the
messages before they are sent. Furthermore, messages may have a Message
Authentication Code (MAC, see 3.4.2 on page 30) applied and they may be
encrypted. At the receiving part, data is then decrypted, verified using the
MAC code, decompressed and reassembled. The four protocols used on top of
the TLS record layer are: a handshake protocol, an alert protocol, a change
cipher spec protocol and an application data protocol:
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• The handshake protocol is by far the most complex of the four proto-
cols. It negotiates the encryption keys and verifies the certificates.

• The alert protocol consists of a single message used to signal failure of
the protocol.

• The change cipher spec protocol consists of a single message which
instructs the receiving principal that subsequent messages will be using
the newly negotiated cipher spec.

• The application data protocol is essentially a transparent protocol.
When this protocol is used it is only the record layer which is in effect.

The TLS protocol is summarised in Table 3.6 using a notation close to the
one found in [13]. The left column lists the messages sent by the client while
the right column show those sent by the server; the order of the exchanges is
from top to bottom, so ClientHello will be the first message exchanged.

The table focuses on the four protocols mentioned above and thus ignores the
details of the record layer. However, several messages will be grouped together
and could be handled as a single message by the record protocol; as an example
the five messages ServerHello, Certificate, ServerKeyExchange, CertificateRequest
and ServerHelloDone are treated as a single message by the record protocol. The

Client Server
ClientHello →

ServerHello
ServerCertificate

ServerKeyExchange*
CertificateRequest*

← ServerHelloDone
ClientCertificate*
ClientKeyExchange
CertificateVerify*
[ChangeCipherSpec]
Finished →

[ChangeCipherSpec]
← Finished

Application Data ↔ Application Data

Table 3.6: Message flow for a full handshake

messages marked with an asterisk (*) are optional as they will only be needed
in specific runs of the protocol. In the following we shall discuss the individual
messages in more detail:

ClientHello This is the first message sent in the handshake protocol. It can
be sent at any time by the client requesting a new session or resuming an old
session. The message contains a time stamp, 28 bytes of random data, a list of
supported compression methods and a list of cipher methods the client is willing
to use. In case the client wishes to resume a session, a SessionID is included
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in the message. The use of session resume can shorten the handshake protocol
but the Finished messages (see below) will always be sent. [13, chap. 7.4.1.2]

ServerHello This message contains a time stamp, 28 bytes of random data,
a session id, the selected cipher method and the selected compression method.
[13, chap. 7.4.1.3]

ServerCertificate If the selected cipher method is not anonymous, the server
sends it’s certificate. The certificate can be one of several different types but it
must be trusted by the client. [13, chap. 7.4.2]

ServerKeyExchange It may be the case, that the connection is not anony-
mous and the client cannot use the certificate to encrypt the premaster secret
and to cater for this situation the server sends a public key that can be used
instead. [13, chap. 7.4.3]

CertificateRequest The server may request a certificate to authenticate the
client by sending this message. It contains a list of acceptable certificate types
and certificate authorities. [13, chap. 7.4.4]

ServerHelloDone This message signals that the server is done sending the
initial response messages. When the client receives this message it should start
processing the messages from the server. [13, chap. 7.4.5]

ClientCertificate This message contains the client’s certificate but it is only
sent by the client if the server has requested a certificate. [13, chap. 7.4.6]

ClientKeyExchange The client generates a premaster secret which consists
of 46 bytes of random data. It is crucial to keep this value secret. It is sent to
the server encrypted with the servers certificate or the public key provided in
ServerKeyExchange of the previous messages. Alternatively the premaster secret
could be generated by using the Diffie Hellman Key Agreement protocol. In this
case the present message is left empty. [13, chap. 7.4.7]

CertificateVerify This message is only sent if a ClientCertificate message was
sent by the server and it should enable the server to verify that the received
certificate belongs to the client. The message is constructed by taking a hash of
all previous messages exchanged in the handshake protocol and signing it with
the clients certificate. [13, chap. 7.4.8]

[ChangeCipherSpec] This message is sent using the Change cipher spec pro-
tocol and it informs the other principal that the next messages will be sent using
the newly negotiated cipher specs. A similar message also have to be sent by
the server before exchanging the Finished messages. The effect is that the sender
changes his sending part of the record protocol, and the receiver changes the
receiving part of the record protocol to use the new encryption and mac.
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Finished(client) This message signals the end of the above sequence of mes-
sages sent by the client and it is used to verify that both client and server have
agreed on the same master secret. The message contains a hash of all exchanged
messages. [13, chap. 7.4.9]

Finished(server) This message is then used to confirm that both client and
server have agreed on the same master secret — however this is not exactly the
same as Finished(client) as it will take the additional message into account. [13,
chap. 7.4.9]

Before sending the ChangeCipherSpec message the session and MAC keys are
calculated. TLS uses a custom hash function called Pseudo Random Function
(PRF). It is hash function combining the output from SHA1 [1] and MD5 [35].
When running the handshake protocol both principals will learn the value of the
time stamps and random values in the hello messages and the premaster secret.
These values are then combined and hashed using PRF to obtain the master
secret. All session and MAC keys are generated from this. The keys generated
are: read MAC, write MAC, read key and write key. Additionally initialisation
vectors for the ciphers are generated.

3.4.2 Considerations Modelling TLS

Clearly, the above description contains many details that cannot be modelled.
We shall now discuss how to obtain a model of TLS. It is important to remember
the assumption made in Section 1.2 on page 4, that the encryption used in
the model is perfect, meaning that the only reverse function of encryption is
decryption with the correct key. Also it is assumed that encrypted values hold
enough redundant data to provide data integrity. We have no notion of time
in our model and consequently time stamps cannot be modelled. Also error
handling hardly makes sense as either the protocol is stuck or it finishes all
steps successfully.

Hash functions and key generation. We can model a hash function using
a public name as the key of an asymmetric encryption. Since there does not
exist a corresponding key to the public name it is neither a public nor a private
key (a more thorough explanation will be given in section 4.5 on page 49 . This
has the effect that the encrypted value can never be decrypted as no decryption
key exist. Still it allows for matching of the value. The hash function used in
TLS is called PRF (Pseudo Random Function) and is modelled by using PRF
as a key in an asymmetric encryption. This is exemplified by the following
extended protocol narration:

1. A → : A,B,Mess, {|Mess|}PRF

1.′ → B : xA, xB , xMess, xHash [check xA = B, {|xMess|}PRF = xHash]

A sends in step 1. a message Mess and the hash value calculated from the
message {|Mess|}PRF to principal B. To be able to verify the hash value
in step 1.′ principal B must calculate the value from the received message
xMess and compare it to the received hash-value xHash, this is done as follows:
{|xMess|}PRF = xHash.
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Message Authentication Codes. In TLS a keyed MAC (HMAC, see [21])
is used to verify the integrity of messages. This is modelled using a shared secret
key and a cryptographic hash function. The message is hashed along with the
key and a sequence number. This hash value can then be used to verify the
integrity of the message.

MAC codes which are used for the sole purpose of data integrity can be
omitted, since we have made the assumption that encrypted values hold enough
redundant data to provide data integrity. As we shall see later the sequence
numbers cannot be left out as they ensure messages within a single session
cannot be confused with one another. This is modelled by using a sequence of
public values Seq1, Seq2, . . . and each message will be encrypted along with one
of these numbers using the current session key. The i’th message transfer from
principal A to principal B will be:

1. A → : A,B, {Seqi,Mess}KSession

1.′ → B : xA, xB , xEncryptedMess [check xB = B]

1.′′ B : decrypt xEncryptedMess as {xSeq, xMess}KSession
[check xSeq = Seqi]

To be able to do the check xSeq = Seqi the server and the client using the
TLS connection to communicate must agree upon when to start the sequence
numbering.

Renegotiation and cipher specs. When using TLS both the server and
the client can request renegotiation of keys and ciphers at any time. This
is implemented to allow the change to a stronger cipher before sending more
sensitive information or to renew old keys.

This is not modelled, the reason being that we model perfect cryptography
and new keys are negotiated using the old secure connection.

Session resume. A client can resume a session by sending a ClientHello with
the old SessionID. If both principals still believe the master secret is secret, then
new random values are exchanged using the old session keys. For simplicity we
do not model this.

Signatures Signatures are modelled using the private key of a principal. If a
message is encrypted using a private key then the message is signed, since the
all principals can get hold of the public key and thereby decrypt it. But only
the owner of the private key is able to encrypt a message using this key. The
use of signatures is illustrated in the following example:

1. A → : A,B, {|Mess|}
K

−

A

1.′ → B : xA, xB , xSignedMess [check xB = B]

1.′′ B : decrypt xSignedMess as {|xMess|}K
+
A

Principal A sends a message signed using the private key K−
A to principal B, to

be able to read the signed message principal B decrypts the message using the
corresponding public key K+

A . To be able to read the signed message principal
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B must have the knowledge of the public key. If a principal is able to read a
signed message using a public key, the message is verified to be signed by the
holder of the corresponding private key.

In cryptographic protocols signatures are often used alongside with sym-
metric encryption, in these cases the symmetric encryption is used to preserve
confidentiality and the asymmetric encryption (signatures) are used to authenti-
cate the principals in the protocol. It is important to note the difference between
a message where a Secret first is signed using the private key K− and thereafter
encrypted using a secret key KSecret:

{{|Secret|}K−}KSecret

and a message where the Secret first is encrypted using the secret key and
thereafter signed using the private key:

{|{Secret}KSecret
|}K−

Even seen from a perspective where both the public key, K+ and the secret
key, KSecret is known these two messages have entirely different meanings. The
first message indicates that the sender has knowledge of the secret key, and
the original message, and that the signature is correct. The second message
only assures that the sender knows the private key K−. The original message
could be intercepted from another principal and the original signature removed,
and a new one added without decrypting the original message. This feature is
emphasised as one of the principles in [5]:

Sign before encryption. If a signature is affixed to encrypted data,
then one cannot assume that the signer has any knowledge of the
data. A third party certainly cannot assume that the signature is
authentic, so non repudiation is lost.

To be able to use signatures, there must exist a trust relationship between the
two principals communicating; the public key must have been shared in some
way, possibly by an existing public key infrastructure (PKI) using a known key
distribution protocol, or by using certificates.

Certificates and Diffie Hellman. TLS can be set up to run without au-
thentication of the server using anonymous key exchange([13, chap. F.1.1.1.]).
This does not provide any protection against man-in-the-middle attacks and
because the model is used only where authentication is needed we shall not
model this. Rather we model TLS using unilateral authentication or bilateral
authentication.

In the TLS scenario two principals exists, the server, S, and the client, C. To
model certificates all principals will know CA+, which is the public key of the
certificate authority. In order to create certificates all honest clients also know
CA−; this is essentially the same as having all certificates issued by a single CA
with the only exception being that also a dishonest client should be able to get
a certificate. This can be achieved by having an honest client issue a certificate
to the attacker. The attacker must not have the knowledge of the private key of
the CA (CA−), since then it would be able to falsify certificates and use these
to engage attacks on the protocols. A certificate is modelled using the private
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public key pair of the principal. The certificate contains the identifier of the
principal and the public key of the owner, and this is all signed by the CA. The
following message shows the format of a certificate belonging to the server S:

{|S,K+
S |}CA−

Certificates are used, when there is no existing trust relationship between the
principals that are going to communicate. Instead of sharing public keys, they
share the trust in the certificate authority. The public key of a principal is part
of the certificate. To illustrate the use of certificates consider this example:

1. S → : S,C, {|Mess|}
K

−

S
, {|S,K+

S |}CA−

1.′ → C : xS , xC , xSignedMess, xCertificate [check xC = C]

1.′′ C : decrypt xCertificate as {|x′
S , xKS+ |}CA+ [check x′

S = xS ]

1.′′′ C : decrypt xSignedMess as {|xMess|}x
KS+

In step 1. a server S sends a signed message to the client C, since there is
no existing trust relationship between the two principals the server appends its
certificate to the message. In step 1.′ the client receives the message and bind
the values to the variables: xS , xC , xSignedMess and xCertificate. If the client
trusts the certificate authority he can decrypt the certificate in step 1.′′. When
the certificate belonging to the server is decrypted, the identifier of the server
S is bound to the variable x′S and the public key of the server is bound to the
variable xKS+ . After decryption of the certificate in step 1.′′′, the client is able
to read the signed message using the servers public key bound to xKS+ . At this
stage it is verified to the client, that the message Mess is in fact signed by the
holder of the certificate.

3.4.3 Extended Protocol Narration

We shall now present extended protocol narrations for the unilateral and bilat-
eral versions of TLS; they are given in Tables 3.7 on the next page and 3.8 on
page 34 and explained below.

Unilateral TLS

The extended protocol narration for TLS with unilateral authentication is shown
in Table 3.7 on the next page. The first message is ClientHello which is modelled
by a nonce Nc; recall that time stamps, compression, different cipher methods
and session resumes are not modelled so the only part left is the random value.
It is received by S in 1.′ and here the server check the message is intended for
it. Because the server does not know which client it is communicating with it
only stores its name in xc.

Message 2 contains the messages ServerHello, Certificate and the empty Server-
HelloDone. As above the ServerHello message is modelled using a nonce. The
certificate {|S,KS+|}CA− belonging to the server is sent in the Certificate mes-
sage and it is received by the client which can check that the message is intended
for it (using yc = C), and that is comes from S (using ys = S). Also the client
checks the certificate by decrypting it with CA+ and ensuring that ys = S. At
the same time the client obtains the server’s public key yKS .
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1. C → : C, S,Nc

1.′ → S : xc, xs, xNc [check xs = S]

2. S → : S, xc, Ns, {|S,KS
+|}CA−

2.′ → C : ys, yc, yNs, ycert [check ys = S, yc = C]

2.′′ C : decrypt ycert as {|ys, yKS |}CA+ [check ys = S]

3. C → : C, S, {|pm|}yKS
, {Seq1, {|{|Nc, yNs, pm|}PRF |}PRF }sessionkey [ dest {S}]

3.′ → S : xc, xs, xcpm, xmh [check xs = S]

3.′′ S : decrypt xcpm as {xpm}KS−

3.′′′ S : decrypt xmh as {xSeq1, xrmh}sessionkey

[check xSeq = Seq1, xrmh = {|{|xNc, Ns, xpm|}PRF |}PRF ]

4. S → : S, xc, {Seq2, {|{|xNc, Ns, xpm|}PRF |}PRF }sessionkey

4.′ → C : ys, yc, ymhash [check ys = S, yc = C]

4′′ C : decrypt ymhash as {ySeq2, yrmhash}sessionkey [ orig {S}]

[check ySeq2 = Seq2, yrmhash = {|{|Nc, yNs, pm|}PRF |}PRF ]

Table 3.7: TLS unilateral authentication

Before message 3 is sent the client generates a new premaster secret pm.
From the premaster secret, Nc and yNs the master secret is generated as {|Nc, yNs, pm|}PRF .
The ClientKeyExchange message contains the premaster secret encrypted with
the server’s public key. After this the ChangeCipherSpec message should be sent;
however, we shall merely assume that the server know when to change to the
new cipher and omit this message in the model. Finally, the Finished message is
sent over the new cipher. The resulting Finished message is encrypted together
with a sequence number Seq1 using the session key generated from the master
secret. The Finished message should be a hash of all previous messages but we
limit it to be a hash of the master secret. The messages are received by S and
the encrypted premaster secret is decrypted to xpm. This allows the server to
calculate the session key and verify the Finished message xmh.

The fourth and last message of the protocol is the server’s Finished message to
the client. It is modelled as a hash of the master key {|{|xNc, Ns, xpm|}PRF |}PRF

and is sent using the encrypted connection just established. It is encrypted with
the session key along with the second sequence number Seq2 and will be verified
by the client. Notice here the ChangeCipherSpec message is also omitted.

Bilateral TLS

To model bilateral authentication a few changes are needed. Table 3.8 on the
following page show the extended protocol narration for this instance of TLS.
Compared with the unilateral version of Table 3.7 only message changed is
message 3. It now contains the clients certificate ({|C,KC+|}CA−) together
with the CertificateVerify message. The latter is constructed along the same
lines as the Finished messages, by hashing the master secret and signing it with
the clients certificate ({|master secret|}KC−). These extra messages are verified
by the server leading to two more decryptions at 3′′ and 3′′′′.

The protocol narrations of Tables 3.7 and 3.8 only show the handshake proto-
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1. C → : C, S,Nc

1.′ → S : xc, xs, xNc [check xs = S]

2. S → : S, xc, Ns, {|S,KS
+|}CA−

2.′ → C : ys, yc, yNs, ycert [check ys = S, yc = C]

2.′′ C : decrypt ycert as {|ys, yKS |}CA+ [check ys = S]

3. C → : C, S, {|C,KC+|}CA− , {|pm|}yKS
, {|{|{|Nc, yNs, pm|}PRF |}PRF |}KC− ,

{Seq1, {|{|Nc, yNs, pm|}PRF |}PRF }sessionkey [ dest {S}]

3.′ → S : xc, xs, xcert, xcpm, xcertv, xmh [check xs = S]
3.′′ S : decrypt xccert as {ccc, xKC}CA+ [check xc = xcc]

3.′′′ S : decrypt xcpm as {xpm}KS−

3.′′′′ S : decrypt xcertv as {|xm|}xKC

[check xm = {|{|xNc, Ns, xpm|}PRF |}PRF ]

3.′′′′′ S : decrypt xmh as {xSeq1, xrmh}sessionkey [ orig {xc}]
[check xSeq = Seq1, xrmh = {|{|xNc, Ns, xpm|}PRF |}PRF ]

4. S → : S, xc, {Seq2, {|{|xNc, Ns, xpm|}PRF |}PRF }sessionkey [ dest {xc}]
4.′ → C : ys, yc, ymhash [check ys = S, yc = C]

4.′′ C : decrypt ymhash as {ySeq2, yrmhash}sessionkey [ orig {S}]

[check ySeq2 = Seq2, yrmhash = {|{|Nc, yNs, pm|}PRF |}PRF ]

Table 3.8: TLS bilateral authentication

col but more messages can be sent from either side. Such messages will all take
the general form {Seqi,Message}sessionkey, with a corresponding decryption
operation and with Seqi being a unique sequence number for the i’th message
in the communication.

Crypto-points

The narrations have been annotated with crypto-points as a preparation for
doing an analysis of the security properties. The crypto-points are only of use
after the handshake protocol has established the session key. As the session key
is secret encryptions or decryptions using it can be annotated with crypto-points.
In the case of unilateral authentication crypto-points are only meaningful on the
client side because the client is not authenticated to the server. On the other
hand in the case of bilateral authentication all encryptions and decryptions can
be annotated. In the unilateral case this can be seen in Table 3.7 on the page
before message 3. and 4.′′. Any messages sent using the already established
TLS connection should also be annotated on the client side. In the bilateral
case Table 3.8 show this in the messages: 3., 3.′′′′′, 4. and 4.′′. Any further
message should be annotated on both the client and the server side.

3.5 Assembling the Model

We have now derived a model for the SAML SSO protocol, and for two versions
of the TLS protocols used to apply security to the message transfers. In the final
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description of the entire SAML SSO model the extended protocol narrations for
the two TLS versions have to be inserted in the SAML SSO protocol narration.

The extended protocol narrations for the TLS protocols should be inserted
parameterised in the SAML SSO protocol, since the SAML SSO protocol uses
several different instances of the TLS protocol. For each instance of a TLS
protocol some initialisation is done, thereafter a parameterised version of the
extended protocol narrations from either Table 3.7 or 3.8 should be used to
establish communication. When the message transfers using a TLS connection
are done, the messages should be encrypted using the session key belonging to
the current TLS connection, and a sequence number should be added.

The insertion of a parameterised version of the TLS-protocol into the SAML
SSO protocol is a very tedious and error prone work, if it should be done by
hand therefore this shall wait as we later in Chapter 5 on page 63 describe
an automated method for inserting at transport layer protocol into another
protocol.





Chapter 4

Process calculus

To conduct a formal analysis of the SAML SSO protocol we need to have a for-
malised description of the protocol. One common way to do formal descriptions
is to use a process calculus. A substantial number of different process calculi
has been developed over the years.

Communicating sequential processes in short CSP [19] was one of the early
process calculi. In CSP one can define parallel processes synchronising/com-
municating using events. Later the π calculus [27, 28] introduced the notion of
channels. This meant that instead of using events to communicate, communica-
tion was done over channels. Channel could be secret between some processes
meaning that only they could send and receive messages on them. The SPI or
Secure π calculus introduces encryptions and decryptions. Now a key can be
used to encrypt a message and the only by knowing the key it would be possible
to read the message. This closely resembles the way protocols using encryption
work.

LySa [8] is using some of the elements from SPI/π to form a process calculus
with encryption and decryption but with only one global channel or network.
Messages sent from one process to another are conceptually communicated using
a network everyone can see. The syntax of LySa match the syntax of extended
protocol narrations closely. The translation between the two is very straight
forward.

4.1 LySa

In order to analyse the SAML SSO protocol we shall first formalise it in the
process calculus LySa [8]. Here we present a short list of the characteristics of
LySa we will be using.

• There is only one global ether for communication and hence local commu-
nication is excluded.

• The calculus has primitives for symmetric and asymmetric cryptography ;
the encryption operations are formalised as part of the term language of
the calculus.

• Decryption is modelled using pattern matching which also plays a central

37
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role for communication where it can be used to filter messages sent on the
ether.

In LySa terms are used to describe processes. Terms are built from names
(including symmetric keys, nonces, etc.), variables and public and private keys.
They can be composed using symmetric and asymmetric encryption. The syn-
tax of terms E is shown in table 4.1. Here N and X denote sets of names and

E ::= terms
n name (n ∈ N )
x variable (x ∈ X )
k+, k− public and private keys
{E1, · · · , Ek}`E0

[destL ] symmetric encryption (k ≥ 0)
{|E1, · · · , Ek|}`E0

[destL ] asymmetric encryption (k ≥ 0)

Table 4.1: LySa terms

variables. Encryptions are tuples of terms {E1, . . . , Ek} encrypted under the
term E0. The term E0 can be constructed from other terms it this way forming
a complex key. We assume that encryption is perfect, meaning that the only
inverse function of encryption is to use decryptions with the correct key. The

P ::= processes
0 nil
〈E1, · · · , Ek〉. P output
(E1, · · · , Ej ; xj+1, · · · , xk). P input (with matching)
P1 | P2 parallel composition
(ν n)P restriction
(ν± m)P key pair creation
!P replication

decrypt E as {E1, · · · , Ej ; xj+1, · · · , xk}`E0
[origL ] in P

symmetric decryption (with matching)

decrypt E as {|E1, · · · , Ej ; xj+1, · · · , xk|}`E0
[origL ] in P

asymmetric decryption (k ≥ 0)

Table 4.2: The LySa process language

process language contains the usual operations for the inactive process, paral-
lel composition, restriction and replication; however, note that restriction can
also be used to introduce a key pair for asymmetric cryptography. The output
and input operations are polyadic; however, the input operation is combined
with pattern matching meaning that it will only succeed if a prefix of the mes-
sage matches the terms specified in the input operation. The receiving process
(E1, · · · , Ej ; xj+1, · · · , xk). P means that a tuple containing the first j received
values is pairwise matched to the tuple of j terms (E1, · · · , Ej), if there is a
pairwise coresponence the remaining k − j values of the received message are
bound to the variables xj+1, · · · , xk. This is syntacticaly indicated using a semi-
colon to seperate the terms to be matched and the variables to be bound. This
pattern matching is also used in decryptions. The syntax of processes is shown
i Table 4.2.
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As an example consider the first communication of the WMF protocol:

A→ S : A,B, {K}KA

This communication was divided into three parts in the extended protocol nar-
ration in section 3.1 on page 19:

1. A → : A,S,A,B, {K}KA

1.′ → S : xA, xS , x
′
A, xB , xMess, [check xS = S, xA = x′A]

1.′′ → S : decrypt xMess as {xKey}KA

The coresponding LySa process shlould contain the same 3 parts, principal A
sends the message (1.), ther server S receives the process (1.’) and the server
S decrypts the message (1.”). The process for the principal A will contain the
send action

〈A,S,A,B, {K}KA
〉. · · ·

whereas the process for S will contain the receive action

(A,S,A;xB , xMess). · · ·

thereby enforcing not only that a tuple containing five parts is received but
also that the first three components are A,S and A, respectively. There are no
requirements on components four and five of the message, they will be bound to
the variables xB and xMess. To decrypt messages, LySa contains explicit de-
cryption operations that are also combined with pattern matching. Continuing
the above example, the process for S would be continued with:

(A,S,A, xB ;xMess). decrypt xMess as{;xKey}KA
in · · ·

thereby requiring that A and S agree on the key KA. The decrypted value
of the encrypted message xMess in S is bound to the variable xKey. In this
example there is no matching going on in the decrypt operations, since there
are no terms to the left of the semi-colon.

In order to express the intentions of the protocols the LySa syntax includes
annotations about the origin and destination of messages. Encryptions can be
annotated with a crypto-point defining it’s position in the process. To state
where the encrypted value is intended to be decrypted a set of destination
crypto-points can be added. Similarly, each decryption construct can be anno-
tated with a crypto-point defining its position in the process as well as a set
of crypto-points specifying the potential origins of the encrypted messages. For
the first communication of the WMF protocol, the corresponding LySa code
looks as follows:

(νKA) (
(νK )
〈A,S,A,B, {K}KAB

[atA destS ]〉.0
|
(A,S,A; xB, xMess).
decrypt xMess as {; xKey}KA

[atS origA ] in 0
)
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The construct [atA destS ] in process A specifies that the encryption is created
at crypto-point A and is intended for decryption at crypto-point S. The process
for S specifies that the message to be decrypted at crypto-point S is intended
to come from crypto-point A, using the corresponding statement [atS origA ].

The restriction constructs are used to limit the scope of the keys so that
an attacker does not know them. A further explanation on why restrictions
are necessary is presented in section 4.4 on page 47. The two restrictions in
this example have different scope. The restriction of the existing longterm key
KA between principal A and the Server (ν KA) has a scope that includes both
the Server and principal A. This is indicated using parentheses around rest of
the LySa process. The session key K is created by principal A, and therefore
a scope only including principal A. This is seen as no parentheses follow the
restriction (νK ) .

In table 4.3 the entire LySa process for the WMF protocol is listed. The
number in the left margin refer to the message number of the extended protocol
narration for WMF (see Table 3.1 on page 20). Step 0. in the LySa process
is used to setup the longterm keys between the server S and the principals A
and B. The scope of the restriction of KA and KB include the definition of
both A and B and the Server S. Both the steps 1. and 3. of the principal A
contains two lines. In the first case it is because the newly created key has to
be restricted, and in step 3. the message containing confidential data must also
be restricted. The matching and variable bindings in the LySa process is not
done entirely as described in the extended protocol narration, we will explain
this later in section 4.8 on page 58.

0. (νKA) (ν KB ) (
1. (νK )

〈A,S,A,B, {K}KA
[atA1 destS1 ]〉.

3. (ν Secret)
〈A,B, {Secret}K〉[atA2 destB ]
|

1.′ (A,S,A; xB, xMess).
1.′′ decrypt xMess as {; xKey}KA

[atS1 origA1 ] in
2. 〈S, xB,A, {xKey}KB

〉[atS2 destB1 ].0
|

2.′ (S,B; yA, yMess).
2.′′ decrypt yMess as {; yKey}KB

[atB1 origS1 ] in
3.′ (yA,B; yMessages).
3.′′ decrypt yMessages as {; ySecret}yKey[atB2 origA2 ] in 0
)

Table 4.3: LySa process for WMF

4.2 Semantics of LySa

To be precise on what a LySa process describes we shall in this section give a
short description of the reduction semantics defined for LySa[8]. We use the
notation of P [E/x] to describe that all occurrences of x in process P should
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be replaced by the term E, (or simply the value of E is bound to variable x in
P ). The notation bbEicc is the term Ei with all destination/origin annotations
removed. Names used in a LySa process are global in the sense that if a name
“X” occurs in two places in the process they have the same meaning. This
also apply to variables and it is therefore not possible to use local variables. In
essence this means that each name should only be used in one meaning. For
example should variable names only be used once. To simplify definition of
the control flow analysis in section 4.3 on page 43, all occurrences of a bound
name n is mapped to one canonical name bnc. The same mapping applies for
variables. The function applied to terms bEc replaces all names and variables
in the term with their canonical versions. To ease the reading of the semantic
rules we write E for the canonical term canonE. We say that two processes are
α-equivalent only if the mapping of names and variables correspond.

Before we look at the semantics we present the structural congruence, ≡,
which LySa processes satisfy:

• P ≡ Q if P and Q are disciplined α-equivalent;

• P | Q ≡ Q | P
P | (Q | R) ≡ (P | Q) | R
P | 0 ≡ P

• (ν n) 0 ≡ 0,
(ν n) (ν n′)P ≡ (ν n′) (ν n)P , and
(ν n) (P | Q) ≡ P | (ν n)Q if n 6∈ fn(P );

• !P ≡ P | !P

The rules for the reduction semantics→R is shown in Table 4.4 on the following
page. The congruence should be used to reorder a process so it is possible to
apply one of the rule from the reduction semantics.

Communication

The communication rule from Table 4.4 expresses that an output 〈E1, · · · , Ek〉. P
is matched by a corresponding input (E ′

1, · · · , E′
j ; xj+1, · · · , xk). Q if the first j

elements match pairwise; e.g. Ei with all annotations removed is compared to E ′
i

with all annotations removed for all i: ∧j
i=1bbEicc = bbE′

icc. If the matching is suc-
cessful rest of the terms Ej+1, · · · , Ek are bound to the variables xj+1, · · · , xk.

Decryption

The rule for decryption expresses the matching on the term

decrypt {E1, · · · , Ek}`E0
[destL ] as {E′

1, · · · , E′
j ; xj+1, · · · , xk}`

′

E′

0
[origL′ ] in P

can only take place if the key used to decryption corresponds to the one used
to create the encrypted term, this is expressed by bbE0cc = bbE′

0cc for symmetric
decryption. For asymmetric decryption the key used for decryption must be
the opposite of the one used to encrypt, expressed by {E0, E

′
0} = {m±,m∓},

which is a short notation for {E0, E
′
0} = {m+,m−} ∨ {E0, E

′
0} = {m−,m+}.
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(Communication)

∧j
i=1 bbEicc = bbE′

icc

〈E1, · · · , Ek〉. P | (E′
1, · · · , E

′
j ; xj+1, · · · , xk). Q→R P | Q[Ej+1/xj+1, · · · , Ek/xk]

(Decryption)

∧j
i=0 bbEicc = bbE′

icc ∧ R(`,L′, `′,L)

decrypt {E1, · · · , Ek}
`

E0
[destL ] as {E′

1, · · · , E
′
j ; xj+1, · · · , xk}

`′

E′

0
[origL′ ] in P

→R P [Ej+1/xj+1, · · · , Ek/xk]

(Asymmetric-Decryption)

∧j
i=1 bbEicc = bbE′

icc ∧ {E0, E
′
0} = {m±,m∓} ∧ R(`,L′, `′,L)

decrypt {|E1, · · · , Ek|}
`

E0
[destL ] as {|E′

1, · · · , E
′
j ; xj+1, · · · , xk|}

`′

E′

0
[origL′ ] in P

→R P [Ej+1/xj+1, · · · , Ek/xk]

(Parallel)
P →R P ′

P | Q→R P ′ | Q

(Restriction)
P →R P ′

(ν n)P →R (ν n)P ′

(Asymmetric-Restriction)
P →R P ′

(ν±m)P →R (ν±m)P ′

(Congruence)
P ≡ Q ∧ Q→R Q′ ∧ Q′ ≡ P ′

P →R P ′

Table 4.4: Operational semantics, P →R P ′, parameterised on R.

These strong requirements to the keys model the assumption about perfect
encryption; data can only be decrypted using the correct key. The matching in
the decryption construction take place as in the communication, where the first
j terms are matched ∧j

i=1bbEicc = bbE′
icc and the last k − j terms are bound to

variables Ej+1/xj+1, · · · , Ek/xk. The conditionR(`,L′, `′,L) is universally true
and can therefore be ignored at the moment. We shall return to this condition
on crypto-points in section 4.2 on the next page.

Parallel

The reduction rule for parallel construction is straight forward; two parallel
processes P | Q is reduced using the reduction semantics on either one of them
e.g. P →R P .

Restriction

As for the parallel construction, the reduction rule for the restriction con-
struction (ν n)P applies the reduction semantics on the restricted process e.g.
P →R P . The same rule applies for restriction on asymmetric keys.



4.3. Static analysis 43

Congruence

The congruence rule in the reduction semantics, is not a rule about congruence,
but the rule expresses that two congruent processes P ≡ Q are reduced to two
congruent processes P ′ ≡ Q′ if the reduction semantics are applied to them.

Reference Monitor Semantics

We have now defined a reduction semantics →R, that produces relations for
the annotations on encryptions and decryptions R(`,L′, `′,L) but does not use
them. We now look at another variant of the semantics, where the annotations
are used to define a reference monitor semantics →RM. The reduction rules of
the semantics are the same, but instead of defining the R relation, the reference
monitor takes this relation as input: RM(`,L′, `′,L) = (` ∈ L′ ∧ `′ ∈ L. This
means that the encryption should have made at l must be in the set L′ of
expected origins of the data, as well as the actual place where the decryption
takes place l′ must be in the set of expected destinations L.

The idea of a reference monitor is to ensure that access to a specific object
or data is only done in a valid way. In this case the reference monitor ensures
that decryptions can only occur at places described in the annotations of the
encryption. Otherwise the execution should be halted by the reference monitor.
This reference monitor is used in the definition of the analysis of LySa-processes
as the result contain a set describing where the reference monitor would have
halted the process.

4.3 Static analysis

We now present a formal method to do a security analysis of LySa processes.
The idea of the analysis is to track messages communicated on the network,
along with the possible values of the variables in the protocol. Additionally the
analysis will record the potential violations of the destination/origin annota-
tions. In Figure 4.1 it is shown how the analysis approximate traces of a LySa

LYSA Process

Possible traces

Figure 4.1: The over-approximation of a LySa-process

process. For example a LySa process describes a set of possible operations, to
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do a safe approximation of this, the analysis uses an over-approximation of this
set, therefore the analysis could investigate a trace not possible at all.

4.3.1 Terms

In Table 4.5 the analysis for terms is given. The analysis of terms uses the
notion of an abstract environment for names and variables:

ρ : bXc → ℘(V)

The abstract environment ρ maps the canonical variables bXc to the set of
canonical values V. The analysis of terms uses the abstract environment to
make a judgement of the form:

ρ |= E : ϑ

Here ϑ ⊆ V is a safe approximation of the set of values that E may evaluate
to in the environment ρ. The rules in Table 4.5 expresses that ϑ must contains
all the canonical values associated the components of a term. The rules for
names and private/public key pairs say that the canonical names must be in
ϑ. The rule for variables expresses that the set of canonical value the canonical
variable maps to from the environment must be a subset of ϑ: ρ(bxc) ⊆ ϑ.

The encryption term {E1, · · · , Ek}`E0
[destL ] is constructed using a number of

other terms E0, · · · , Ek. The rules of the analysis expresses that each term
is analysed ∧k

i=0 ρ |= Ei : ϑi and all combinations of values from this analysis
∀V0, V1, · · · , Vk : ∧k

i=0 Vi ∈ ϑi must be in ϑ belonging to the analysis of the

overall encryption term {V1, · · · , Vk}`V0
[destL ] ∈ ϑ. The notation V ∈ ϑ tests if

V is in the set ϑ.

bnc ∈ ϑ

ρ |= n : ϑ

ρ(bxc) ⊆ ϑ

ρ |= x : ϑ

bm+c ∈ ϑ

ρ |= m+ : ϑ

bm−c ∈ ϑ

ρ |= m− : ϑ

∧k
i=0 ρ |= Ei : ϑi ∧

∀V0, V1, · · · , Vk : ∧k
i=0 Vi ∈ ϑi ⇒ {V1, · · · , Vk}

`

V0
[destL ] ∈ ϑ

ρ |= {E1, · · · , Ek}
`

E0
[destL ] : ϑ

∧k
i=0 ρ |= Ei : ϑi ∧

∀V0, V1, · · · , Vk : ∧k
i=0 Vi ∈ ϑi ⇒ {|V1, · · · , Vk|}

`

V0
[destL ] ∈ ϑ

ρ |= {|E1, · · · , Ek|}
`

E0
[destL ] : ϑ

Table 4.5: Analysis of terms, ρ |= E : ϑ.

4.3.2 Processes

In the analysis of processes focus on what values can flow on the network, this
is stored in an environment:

κ ⊆ ℘(V∗)
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This environment includes all messages communicated on the global network.
Using the two environments ρ and κ the rules for processes are defined in Ta-
ble 4.6 on the following page. The rules for processes have the form:

(ρ, κ) |=RM P : ψ

The analysis uses the reference monitor defined in section 4.2 on page 43, in
such a way that if the reference monitor abborts, the annotation leading to the
abbortion should be placed in the error component ψ and the execution should
continue. The analysis returns a tuple of (ρ, κ, ψ) so the rules of the analysis
are satisfied. The error component ψ contains an over-approximation of the
potential origin/destination violations. If (l, l′) ∈ ψ it means that something
encrypted at l could unexpectedly be decrypted at l′.

The analysis of processes use the analysis of terms defined in Table 4.5 on
the facing page, where ϑ gives the set of values the terms can evaluate to. The
rules for inactive processes 0, restriction (ν n)P , parallel construct P1|P2 and
replication !P are all trivial, and does only require that the rules are satisfied
for another simple process, therefore these rules are not explained further.

Output

The rule for sending a message on the network 〈E1, · · · , Ek〉. P requires that
each of the k terms are evaluated to a set of possible values using the rules
for terms: ∧k

i=1 ρ |= Ei : ϑi, and all k-tuples of values (V1, · · · , Vk) taken from
ϑ1× · · ·×ϑk can occur on the network κ, expressed as: ∀V1, · · · , Vk : ∧k

i=1 Vi ∈
ϑi ⇒ 〈V1, · · · , Vk〉 ∈ κ. If the rules are satisfied for the output construct the
rules should also be applied to the rest of the process (ρ, κ) |=RM P : ψ.

Input

The rule for input evaluates the first j terms E1, · · · , Ej as to their acceptable
estimates ϑi using the rules for terms, and checks whether the first j values of any
message on the network 〈V1, · · · , Vj , Vj+1, . . . , Vk〉 ∈ κ are pointwise included1

in ϑi. If this is the case, the rest of the values from the message Vj+1, · · · , Vk

are added to the acceptable estimate for the variables xj+1, · · · , xk. If the
communication succeeds, the continues process P is analysed.

Decryption

In the rule for decryption all terms are evaluated to their respectable esti-
mates ϑi. The first j values V0, · · · , Vj of the evaluation of the encrypted term

{V1, · · · , Vk}`V0
[destL ] ∈ ϑ are checked whether they are pointwise included in

ϑi. For symmetric decryption the check V0 E ϑ0 ensures that only the correct
key can be used to decrypt encrypted values. For asymmetric decryption the
rule expresses that the key used for decryption must be the opposite as the one
used for encryption {V0, V

′
0} = {m±,m∓}. If the matching succeeds for the

first j values and the keys for decryption matches the ones used for decryption,
the values Vj+1, · · · , Vk are added to the acceptable estimates for the variables
xj+1, · · · , xk. Finally the reference monitor is considered; if there is a violation

1The check Vi E ϑi, describes that annotations are ignored as for the semantics rules
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(ρ, κ) |=RM 0 : ψ
(ρ, κ) |=RM P : ψ

(ρ, κ) |=RM (ν n)P : ψ

(ρ, κ) |=RM P : ψ

(ρ, κ) |=RM (ν±m)P : ψ

(ρ, κ) |=RM P1 : ψ ∧ (ρ, κ) |=RM P2 : ψ

(ρ, κ) |=RM P1|P2 : ψ

(ρ, κ) |=RM P : ψ

(ρ, κ) |=RM !P : ψ

(Output)

∧k
i=1 ρ |= Ei : ϑi ∧

∀V1, · · · , Vk : ∧k
i=1 Vi ∈ ϑi ⇒ 〈V1, · · · , Vk〉 ∈ κ ∧

(ρ, κ) |=RM P : ψ

(ρ, κ) |=RM 〈E1, · · · , Ek〉. P : ψ

(Input)

∧j
i=1 ρ |= Ei : ϑi ∧

∀〈V1, · · · , Vk〉 ∈ κ : ∧j
i=1 Vi E ϑi ⇒ ∧k

i=j+1 Vi ∈ ρ(bxic) ∧

(ρ, κ) |=RM P : ψ

(ρ, κ) |=RM (E1, · · · , Ej ; xj+1, · · · , xk). P : ψ

(Decryption)

ρ |= E : ϑ ∧ ∧j
i=0 ρ |= Ei : ϑi ∧

∀ {V1, · · · , Vk}
`

V0
[destL ] ∈ ϑ : ∧j

i=0 Vi E ϑi ⇒ ∧k
i=j+1 Vi ∈ ρ(bxic) ∧

(¬RM(`,L′, `′,L) ⇒ (`, `′) ∈ ψ) ∧

(ρ, κ) |=RM P : ψ

(ρ, κ) |=RM decrypt E as {E1, · · · , Ej ; xj+1, · · · , xk}
`′

E0
[origL′ ] in P : ψ

(Asymmetric decryption)

ρ |= E : ϑ ∧ ∧j
i=0 ρ |= Ei : ϑi ∧

∀(m±,m∓) : ∀ {|V1, · · · , Vk|}
`

V0
[destL ] ∈ ϑ : ∀V ′

0 E ϑ0 : {V0, V
′
0} = {m±,m∓}∧

∧j
i=1Vi E ϑi ⇒ ∧k

i=j+1 Vi ∈ ρ(bxic) ∧

(¬RM(`,L′, `′,L) ⇒ (`, `′) ∈ ψ) ∧

(ρ, κ) |=RM P : ψ

(ρ, κ) |=RM decrypt E as {|E1, · · · , Ej ; xj+1, · · · , xk|}
`′

E0
[origL′ ] in P : ψ

Table 4.6: Analysis of processes, (ρ, κ) |=RM P : ψ.
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of the annotations leading to an abortion of the reference monitor, from the fact
that the encrypted term E is decrypted at an unexpected place (l′ /∈ L) or that
the decrypted values where encrypted at an unexpected place (l /∈ L′), then
the error component must contain the annotations where the error occurred
(l, l′) ∈ ψ. If the decryption succeeds the continuing process P is analysed.
The only difference between the symmetric and asymmetric decryption is the
requirements that the keys used are a matching pair instead of being identi-
cal. No further explanation of the asymmetric decryption should therefore be
needed.

It is proved in [8] that if (ρ, κ) |=RM P : ψ then the triple (ρ, κ, ψ) is a valid
estimate for all the states passed through in an execution of P . It is also proved
that when ψ = ∅ in an estimate of the form (ρ, κ) |=RM P : ψ then the reference
monitor cannot abort the execution of P .

4.4 The Attacker

In order to analyse protocols for vulnerabilities, what is analysed is really the
LySa process in parallel with so-called Dolev-Yao attacker [14]. The attacker
can perform the same operations as a normal principal, such as encryption,
decryption, message send and receive etc. The result of the analysis of a process
P analysed in parallel with the attacker return the least solution that satisfy the
rules from the previous Section (ρ, κ, ψ). Besides the variable bindings for the
process P , the analysis result also contain the variable bindings for the attacker.
All possible variables of the attacker are mapped to the canonical variable z•,
and the all names to the canonical name n•. The attacker is able to encrypt
and decrypt terms, using his knowledge, therefore there exist annotations for
the attacker, where l• is a crypto-point in the attacker and C is the set of
crypto-points in the original process P in parallel with the attacker. Also there
exist a public/private key-pair belonging to the attacker {m+

• ,m
−
• }. Using these

notations the formal definition from [8] of the attacker is given in Table 4.7 on
the next page.

These conditions describe an attacker capable of carying out attacks on
closed processes2 P of the type (Nf ,Aκ,A+

Enc
). Here Nf is the set of free names

of the process, Aκ is the set of all arities used for sending and receiving, and
A+

Enc
is the set of all arities used for encryption and decryption. We now give a

short description of the conditions.

1. The attacker is able to eavesdrop all messages send on the network. The
values of these messages are added to the knowledge of the attacker.

2. If the attacker knows the correct key V0 E ρ(z•), he is albe to decrypt the
term and thereby adding the decrypted values to the knowledge of the
attacker ∧k

i=1 Vi ∈ ρ(z•). If the message was not intended to be decrypted
at the attacker an error (l, l•) should be added to the error component
ψ telling that something encrypted at l was actualy decrypted by the
attacker at l•.

2A process P is closed if it has no free variables. That is, a variable which is never bound
to a name.
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(1) ∧k∈Aκ ∀〈V1, · · · , Vk〉 ∈ κ : ∧k
i=1 Vi ∈ ρ(z•)

(2) ∧
k∈A+

Enc

∀{V1, · · · , Vk}
`

V0
[destL ] ∈ ρ(z•) :

V0 E ρ(z•) ⇒ (∧k
i=1 Vi ∈ ρ(z•) ∧ (¬RM(`, C, `•,L) ⇒ (`, `•) ∈ ψ))

(3) ∧
k∈A+

Enc

∀V0, · · · , Vk : ∧k
i=0 Vi ∈ ρ(z•) ⇒ {V1, · · · , Vk}

`•
V0

[dest C ] ∈ ρ(z•)

(4) ∧k∈Aκ ∀V1, · · · , Vk : ∧k
i=1 Vi∈ρ(z•) ⇒ 〈V1, · · · , Vk〉∈κ

(5) {n•} ∪ bNfc ⊆ ρ(z•)

(6) ∀(m+,m−) : ∧
k∈A+

Enc

∀{|V1, · · · , Vk|}
`

V0
[destL ] ∈ ρ(z•) :

∀V ′
0 E ρ(z•) : {V0, V

′
0} = {m±,m∓} ⇒ (∧k

i=1 Vi ∈ ρ(z•) ∧
(¬RM(`, C, `•,L) ⇒ (`, `•) ∈ ψ))

(7) ∧
k∈A+

Enc

∀V0, V1, · · · , Vk : ∧k
i=0 Vi ∈ ρ(z•) ⇒ {|V1, · · · , Vk|}

`•
V0

[dest C ] ∈ ρ(z•)

(8) {m+
• ,m

−
• } ⊆ ρ(z•)

Table 4.7: Dolev-Yao condition.

3. The attacker create an encrypted term of the same length (arity) as any
other encrypted terms in the process P using the values in his knowledge.
This encrypted term will have the annotations that it was created at l• and
has the destination C. This could lead to an error in the error component
of the type (l•, l) expressing that something encrypted at the attacker was
uexpected decrypted by a process P at l.

4. The attacker is able to send out a messages on the network 〈V1, · · · , Vk〉 ∈
κ with the same length as any other messages k ∈ Aκ send in the process
P . The messages are contructed using the knowledge of the attacker ρ(z•).

5. All free names Nf of the process P as well as the canonical name n• must
be added to the knowledge of the attacker.

6. As for condition (2) the attacker can decrypt a term encrypted using
asymetric encryption, if he possesses the knowledge of the oposite key
used for encryption.

7. As for condition (3) the attacker can create an encrypted term using asy-
metric encryption.

8. The attacker possesses a private/public keypair.

The Dolev-Yao conditions are related to the possible attacks discussed in
section 2.4 on page 10 as follows; Condition (1) expresses that the attacker is
able to eavesdrop any messages in the protocol, condition (2) and (6) enables the
attacker to read eavesdrop message even though they are encrypted if the correct
key is somehow in the knowledge (possible eavesdropped earlier). Condition (4)
allows the attacker to send out messages on the network, enabling a replay of a
previous eavesdropped message. Condition (3) and (7) enables the attacker to
create new encryptions, combining this with the ability to send out messages
the attacker described by these conditions should also be able to carry out
modification and Man-In-the-Middle attacks. Deletion attacks are not expressed
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by this attacker since a message on the network κ cannot be removed from the
network. The attacker is however capable of doing insertion attacks by creating
a message and sending it out on the network. Insider attacks does not relate
to how the attacker is modelled, rather how certificates are used. Real attacks
usually consists of combinations of these attacks.

The soundness of the Dolev-Yao conditions is proved in [8].

4.5 LySa Tricks

Process algebras such as LySa are constructed from a point of view where
small is beautifully, because it is much simpler to do proofs on a small algebra.
Therefore the first impression of LySa could be that it is impossible to express
many things using this notation, but gaining some insights on LySa helps to
express even very complex process in a very compact way. We will in this section
shortly describe some of the “tricks” we have used to express complex processes
in LySa.

Leaking Information

Using the LySa-tool it is obvious that the result of the analysis very much
depends on what information the attacker possesses. In the definition of LySa

and the attacker it is not possible directly to add information to the attacker. In
order to do so, condition (1) of the attacker should be examined (see Table 4.7 on
the preceding page). All information sent on the network is eavesdropped by the
attacker, using this condition it is possible to add information to the attacker
by sending the information on the network.

〈Leaked Information〉.0
|
P

Hash-functions in LySa

In modern protocols hash-functions are used to guarantee data integrity. Hash
functions are defined such that the hash-function applied on any message should
give a hash-value Hash(Mess) = HashV alue such that two hash-values are
only equal if the hash-function is applied to the same message: Hash(Mess1) =
Hash(Mess2)⇔Mess1 = Mess2. By definition there does not exist an inverse
hash-function e.g. it is impossible to calculate the original message from the
hash-values.

To model such a function i LySa we consider the constructs used for asym-
metric encryption and decryption. It is only possible to decrypt a term en-
crypted using asymmetric encryption if there exist a matching key to the one
used to encrypt the term. Such a matching key require that the term was en-
crypted using a key from a valid key pair created using the (ν± K) construct.
If we instead of such a key uses a free name say Hash:

{|Mess|}Hash

It is impossible to decrypt the message since Hash is not a key in a key-pair.
On the other hand we can still do matching since the free name Hash can be
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used in all processes to created encrypted term of the same form, if the message
Mess is known.

Variable bindings in LySa

When complex keys and hash-functions are used in the encoding of a protocol
in LySa it would be nice to have an assignment construct enabling you to
store large terms in a temporary variable, and the just matching the variable to
another term.

Using the decrypt term it is possible to archive the same effect as if assign-
ments where a part of the LySa-calculus. If a protocol uses a term {N1, {|N1|}Hash|}K
as a complex session key, it would be nice to store this term in a variable, and
then use this variable for decryption and encryption. This could be done as:

decrypt {{N1, {|N1|}Hash|}K}ASSIGN as {; xKey}ASSIGN

First the entire term (the session key) is encrypted using a free name ASSIGN ,
thereafter the term is decrypted using the same name at a place, where no
matching takes place, only a binding to the variable so that the complex key
should be in the estimate for the variable {N1, {|N1|}Hash|}K ∈ ρ(xKey).

Certificates in LySa

If certificates are used in a protocol described by a LySa-process (e.g. the TLS
protocol uses certificates), a PKI must be part of the LySa-process. Certificates
are signed by a Certificate Authority (CA), to be able to do so there must exist a
public/private key pair of such an authority, and to ensure that the attacker does
not know the private key, the keys should be restricted (ν± CA) . Now each of
the principals described in the LySa-process could create it own public/private
key-pair, and then use the private key of the CA CA− to sign its own certificate
of the form: {|C,K+

C |}CA− where C is the name of the principal, and K+
c is the

public key belonging to the principal. In this way all other principals are able
to verify the certificate using the public key of the CA to decrypt the signed
message. The attacker is however not able to create a certificate since the
public/private key pair of the CA is restricted. If the keys where not restricted
the attacker could create a certificate for every principal, since the names of
the principals are free names in LySa-processes, and thereby impersonate all
principals to the others3. To give the attacker a certificate without enabling
him to do insider-attacks a signed certificate is leaked on the network together
with the public key of the CA CA+. LySa-processes using certificates have the
following form:

(ν± CA) (
〈CA+, {|n•,m

+
• |}CA−〉.0

|
...
)

The certificate of the attacker {|n•,m
+
• |}CA− contain the name of the attacker

n• and the public key of the attacker m•. The can also verify other certificates
using the leaked key CA+.

3This is an insider-attack
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4.6 MetaLySa

So far we have seen LySa and the analysis which can be used upon it. Now
we shall look at how protocols are modelled in LySa and introduce a way to
handle many parallel instances of the same process.

MetaLySa is an extension or a layer on top of LySa in order to conveniently
model several parallel instances of the same protocol. This idea is to add indices
on names and variables (eg. xi). An index can be instantiated as a number in
a range of numbers (eg. [0; 2]). When indices are instantiated MetaLySa is
converted to LySa see Figure 4.2. Nothing conceptually new is added by using
MetaLySa, only convenient abbreviations are included.

unfolding

PSfrag replacements

LySaMetaLySa

Figure 4.2: MetaLySa & LySa

New Constructs

MetaLySa contains a construct used to create several parallel instances of the
same protocol. The construct is |ni=a where i is an index descriptor and a is the
first instantiation of the index and n is the maximum value of an index. n is
chosen globally, meaning it is not possible to have |ni=1 and |n′

j=0 where n 6= n′.
For example the construct |ni=1|nj=0 Pi,j is an abbreviation for:

P1,0|P1,1| . . . |P1,n| . . . |Pn,0|Pn,1| . . . |Pn,n

Here P1,0 is a notation for the process P where names and variables with indices
i and j replaced with 1 and 0 respectively. The n which is the upper bound
for indices is determined when MetaLySa is expanded to LySa before using
it as input to the analysis. Usually indices start from 1 and depending on the
value chosen for n the expansion will result in more or less processes. It is also
possible to use another form this parallel construct which allow an exception to
the values of the index. In the example above indices were in the range [a;n].
It is possible to make an exception to this removing one index from this range
using |ni=a\j . This mean the index i can take values in the range [a;n] except
the value if the index j. That is, i cannot have the same value as j. We can
change the example from before to |ni=1|nj=0\i Pi,j . Compared with the example
from above this would remove the processes: P1,1, . . . , Pn,n.

MetaLySa also has a construct for indexed restrictions defined by :

(νn
i=a1,j=a2,... namei,j,...)

Unlike the parallel construct being an abbreviation for parallel processes this is
an abbreviation for a sequence of restrictions. Also all indices must be listed
in this construct so indices i, j, etc. is listed in the construct. As an example
(νn

i=1,k=1 namei,k) is an abbreviation for:

(ν name1,1) (ν name1,2) . . . (ν name1,n) . . . (ν namen,n)
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A similar construct exist for restricting names for asymmetric keys and has the
form: (νn

i=a1,j=a2,... ± namei,j,...).

Structure

When modelling protocols using LySa the structure used is the same regardless
of what specific protocol is being modelled. In a protocol a principal can play
one or more roles. The roles might be Client, Server, Certificate Authority, etc.
The structure of the model in LySa is the same only the interpretation changes.
Many protocols also require certain secrets to be in place before the protocol
can begin. This could be a shared secret or a certificate. A model of this in
LySa first restricts the names that are secret to the attacker. Then the process
is split into parallel processes, one for each role in the protocol.

For example the Wide-Mouth-Frog protocol. It has an Initiator, a Responder
and a Key-Server. Each principal has a shared key with the Key-Server. A
principal can be both an Initiator and a Responder at the same time but only
one Server exists and it is distinct form the others. This is modelled as:

(ν K)
Initiator
|
Responder
|
Server

Index Value Zero

The index i = 0 is usually reserved for the attacker. There is nothing special
about index 0 but in some scenarios it is convenient to use this index for roles
the attacker can play. For example a scenario where a two principals A and B
use a shared secret key K to communicate with each other. If A and B are two
different types of roles, meaning that one principal cannot act as both A and B,
A could be indexed with i and B with j. In MetaLySa this would looks like:

(νn
i=1,j=1Ki,j)
|ni=1 |nj=1 A
|
|nj=1 |ni=0 B

In this scenario we have i processes of type A and j processes of type B. Each
pair of Ai and Bi share a secret key Ki,j and this is used to communicate with
each other. Notice that in this example we allow the index i in the process B
to be in the interval [0;n]. We say that this is the same as allowing B to talk
to the attacker. Notice that the key Ki,j is only restricted with both indices:
i, j ∈ [1;n]. This means that when the process B indexed with i = 0 tries
to communicate it will do so with a key that is not restricted, hence known
by the attacker. In the conversion from MetaLySa to LySa the annotations
on encryptions and decryptions are changed. If a destination or origin set of
crypto-points include a crypto-point with an index of 0 the crypto-point of the
attacker `• is included in the set. This ensures that none of the crypto-points
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where the process is talking directly with the attacker (modelled by a process
with index = 0) is included in the ψ component of the result.

The scenario is a bit more complicated when using asymmetric keys. These
keys can occur in the process in three forms. As either minus or plus name or
as a name in a restriction declaring an asymmetric key pair. If the restriction
occur in a process both the plus and the minus key is added to the space of
names in the process. If on the on the contrary only the plus key or the minus
key occur in a process the matching key partner is not added to the space of
names. This could be a problem when using scenarios where some roles should
talk to the attacker. For example consider this LySa process:

(νMess) (
〈{|Mess|}k−〉.
0
)

Here the nameMess is restricted and thereafter sent on the network asymmetric
encrypted with the unrestricted key k−. The key k− is known by the attacker
but since the key k+ does not exist in the process, the attacker cannot decrypt
the message and read Mess. On the other hand if the process is changed to:

(νMess) (
〈{|Mess, k+|}k−〉.
0
)

The attacker will now be able to decrypt the message and read Mess. In our
setting this means we have to ensure that for all asymmetric key both parts of
the key exist in the process.

A similar problem occur when dealing with certificates of other complex
shared key structures. A certificate is modelled by {identity , public − key+}CA− .
We restrict the key CA−, which restricts the attacker from issuing certificates.
The attacker still needs a certificate if he should interact with any of the roles
using a certificate. If we have a role A and it is indexed to Ai. To allow the
attacker to act as A0 we must supply him with the certificate {A0 , key

+}CA−

and the key key−.

Value of n

We have now seen how MetaLySa can be used to create many parallel processes
or many restricted names. This was done using indices in an interval. The lower
bound of the interval can be given at each place where a MetaLySa construct
is used but the upper bound n is set globally. The question is, what the value
of n is, where increasing n would not allow the analysis to find more errors.

Let us consider a scenario where we have an infinite number of parallel pro-
cesses. We would have the Dolev-Yao attacker A in parallel with the processes
Px with x ∈ N:

A|P1|P2| · · · |Pj | · · · |Pk| · · ·
If the protocol modelled has two roles each P would be two parallel processes.

This means that a process P is one instance of a protocol. The errors found
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by the analysis originate form the annotations of encryptions and decryptions
with crypto-points and a set of either destination crypto-points or origin crypto-
points. An error is found if an encrypted value is decrypted at a crypto-point
not in the destination set or if the value was not encrypted at a crypto-point in
the origin set. For errors where a value is either encrypted or decrypted by the
attacker resulting in an error only one instance of a protocol is needed. Errors
could also occur within a single instance of a protocol. That is, a message from
one step of the protocol could end up in another step of the protocol. This
would also only require one instance of the protocol. Generally an encrypted
value would originate from one process Pj and be decrypted at another process
Pk in which case we need two instances. This gives us that any error would be
found if n = 2. This does, though, not mean that we can find any error in a
protocol but merely that if the analysis is able find an error in a scenario with
n parallel processes it would also find it if n = 2.

4.7 Using the Analysis

We have used the implementation of the LySa-tool from [38]. The flow of the
analysis is illustrated on Figure 4.3. The LySa-tool parses a LySa process from
an ASCII-file then transforms it to ALFP logic equations which are solved by
the Succinct Solver [32]. The Succinct Solver4 is a tool for solving constraints
specified in ALFP, we shall not go further into these details here. The Suc-
cinct Solver computes the minimum solution satisfying the input equations and
returns a result. This result from the Succinct Solver is transformed by the
LySa-tool, to a readable version of the estimate (ρ, κ, ψ). The LySa-tool also

Transformation Succinct Solver Post Processing

PSfrag replacements

LySa (ρ, κ, ψ)

Figure 4.3: Implementation of the analysis

implements pretty-print functions for the LySa processes, and analysis results,
this is very useful for debugging and interpretation of the analysis result.

Analysis of WMF

To use the analysis on the WMF protocol the LySa-tool takes an ASCII version
of the LySa-process presented in Table 4.3 on page 40, this ASCII implemen-
tation of LySaprocess for the WMF protocol can be found in Appendix A on
page 99. The analysis result gives an estimate where ψ = ∅. The variable en-
vironment ρ is given below, where V• denotes any value the attacker has the
knowledge of e.g. V• ∈ ρ(z•).

4An implementation can be found at [39].
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ρ(xB) = V•, B
ρ(xKey) = K
ρ(xMess) = V•, {K}KA

ρ(yA) = V•, A
ρ(yKey) = K
ρ(yMess) = V•, {K}KA

ρ(yMessages) = V•, {Secret}K
ρ(ySecret) = Secret

K /∈ rho(z•)
Secret /∈ rho(z•)

The κ component is left out since the over-approximation of the messages on
the network is of no interest for the properties such as authenticity and confi-
dentiality we are interested in.

The case that ψ = ∅ ensures that there does not occur encryptions/decryp-
tions at unexpected places, therefore it should not come as a surprise that the
attacker does not possess the knowledge of the Secret. All variables bound to
values received directly5 on the network can all be bound to anything inside the
attacker V•. This is because the attacker can send out a message of any length
matching any term receiving values, and the names the process matches on are
all free names so the attacker has the knowledge to create messages on the right
form. The attacker does however not possess information enough needed to
create encrypted messages to be mistaken for messages en the correct run of
the protocol (this would lead to an error in ψ of the form (l•, l), where l is any
point in the LySa-process), neither is the attacker able to decrypt any of the
encrypted terms from the message on the network.

Now one could think that the WMF protocol was verified to guarantee au-
thenticity and confidentiality, since messages believed to originate from A actu-
ally do so, and messages to be kept secret are not leaked to the attacker. This
is however only the case in this very specific scenario described in the LySa-
process. The LySa-process from Table 4.3 on page 40 describes a fixed scenario,
where there only exist one initiator A, one server S and one responder B this
scenario is shown on Figure 4.4(a). This scenario also limits the attacker to
act as a passive attacker; since there only exist one initiator and one responder,
the attacker cannot act at either of them, this restricts the attacker only to
eavesdrop messages sent in the protocol, and use these messages to send out
new messages.

What we want to analyse is a more flexible scenario, where there exist a num-
ber of initiators Ii, and a number of responders Ij , such a scenario is depicted
on Figure 4.4(b). In this more flexible scenario the attacker is able to act as
either an initiator or as a responder in a protocol run, since all initiators and re-
sponders share keys with the server the attacker also shares keys with the server
S. To describe a more flexible scenario we use MetaLySa-extension described
in section 4.6 on page 51. The LySa-process in Table 4.8 on page 57 describes
the more flexible scenario. Initially shared keys KAi and KBj are restricted for
the valid principals 1 ≤ i, j ≤ n. The keys belonging to the attacker KA0 and
KB0 are not restricted and are therefore threaded as free names in the analysis.
The LySa-description of the initiating principal Ii is indexed from i = 1 and
j = 1 because we only describe the legitimate part of the system. The server S

5Directly in the sense they are not decrypted from values received on the network
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(a) Fixed WMF scenario

S

Initiators Responders

I i I j

(b) Flexible WMF scenario

Figure 4.4: Different WMF scenarios

is indexed from i = 0 and j = 0 allowing the attacker to act as either a initiator
or a responder in the protocol. The responder Ij is indexed from i = 0 and
j = 1 allowing the responder to actually receive messages from the attacker. All
indices are restricted i 6= j to avoid principals to try to authenticate themselves.

Using this LySa-process we run the analysis again, and now we get a entirely
different result:

ψ = (A2i,j , l•), (l•, B2i,j), (A11,2, S12,1), . . . , (A21,2, B22,1), . . .
ρ(ySecret1,2) = V•, Secret1,2, Secret2,1, . . .
ρ(ySecret2,1) = V•, Secret2,1, Secret1,2, . . .

...
Ki,j ∈ rho(z•)

Secreti,j ∈ rho(z•)

The result ψ 6= ∅ shows that encryptions and decryptions have occurred at
places not expected. Components of the type (A2i,j , l•) shows that information
encrypted at A2 in any principal initiating the protocol can be decrypted by
the attacker. A2 is the place where the Secreti,j is encrypted and therefore
this pair in the error-component implies that all secrets are known by the at-
tacker Secreti,j ∈ rho(z•). Components of the type (l•, B2i,j) shows that the
attacker is able to impersonate any initiator of the protocol to the responder,
and hereby sending encrypted information to the responder believed to be from
the actual initiator. Using this method the attacker can send any information in
his knowledge V• to any responder Ij who believes the information originating
from the initiator Ii, by this the variable storing this information contains val-
ues from the attacker V• ∈ ρ(ySecreti,j). Errors of the types (A11,2, S12,1) and
(A21,2, B22,1) indicates that messages encrypted in one run of the protocol can
be decrypted in another run of the protocol, which results in the a secret meant
for principal I1 could end up at principal I2 e.g. Secret2,1 ∈ ρ(ySecret1,2). The
result for WMF contain more errors than described here but they are of the
same types as has already been described.

As mentioned in section in Section 4.3 on page 43 the analysis result is an
over-approximation, this means that ψ 6= ∅ does not necessarily imply that there
exist an error. The value in the error-component ψ could come from a trace
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(νn
i=1...n KAi)

(νn
j=1...n KB j)
|ni=1...n |nj=1...n j 6=i

!(ν Kij)
〈Ii, S, Ii, Ij , {Kij}KAi

[atA1 ij destS1 ij ]〉.
(ν Secret ij)
〈Ii, Ij , {Secret ij}Kij

[atA2 ij destB2 ij ]〉.
0
|
|ni=0...n |nj=0...n j 6=i

!(Ii, S, Ii; xB ij , xMessij).
decrypt xMess ij as {; xKey ij}KAi

[atS1 ij orig A1 ij ] in
〈S, xB ij , Ii, {xKey ij}KBj

[atS2 ij destB1 ij ]〉.
0

|
|nj=1...n |ni=0...n i6=j

!(S, Ij ; yAij , yMessij).
decrypt yMess ij as {; yKey ij}KBj

[atB1 ij orig S2 ij ] in
(yAij , Ij ; yMessages ij).
decrypt yMessages ij as {; ySecret ij}yKeyij

[atB2 ij orig A2 ij ] in
0

Table 4.8: Flexible WMF scenario specified in MetaLySa

that is actual not possible. To conclude anything about a protocol analysed to
have errors one have to use the analysis result to find an actual trace leading to
an this error. In the following example → M(S) denotes that the attacker is
able to eavesdrop the message intended for principal S, and M(I1) → denotes
that the attacker impersonates the principal I1.

1. I1 → M(S) : I1, I2, {K1,2}KA1

1.′ M(I1) → S : I1, I0, {K1,2}KA1

2. S → I0 : I1, {K1,2}KB0

3. I1 → M(I2) : {Secret}K1,2

The trace above of the flexible WMF-protocol leads to the error (A21,2, l•) in 4
steps.

1. The initiating principal I1 wants to engage communication with a respond-
ing principal I2 using the key K1,2 as session key. The newly created
session key is encrypted using the shared key KA1. The attacker is able
to eavesdrop the message intended for the server S

1.’ The attacker now changes the message so that it impersonates I1 who wants
to engage communication with I0.

2. The server S recognises the message as a message from the initiating principal
I1 who wants to communicate with the principal I0 (who is in fact the
attacker) therefore the session key is send to I0 using the shared key KB0.

3. The attacker is able to decrypt the session key, and can now decrypt any
messages send from I1 to I2, indicated by (A21,2, l•).
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Using the session key K1,2 learned above, the attacker is able impersonate I1 to
the responder I2:

1. M(I1) → M(S) : I1, I2, {K1,2}KA1

2. S → I2 : I1, {K1,2}KB2

3. M(I1) → I2 : {FalseSecret}K1,2

1. The first message from the previous run of the protocol is replayed by the
attacker, leading the Server S to believe that I1 has created at fresh key
for communication with I2.

2. The session key is sent to I2, who believes it to be shared with I1, but in
fact it is shared with the attacker.

3. The attacker is now able to impersonate I1, by sending false secrets to I2

This protocol run leads to the error (l•, B21,2) because the decrypted secret
was believed to originate from the initiator I1 but was in fact encrypted at the
attacker.

The third type of error, where the error component indicate that encryp-
tion/decryption inside the real protocol could lead to errors e.g. (A11,2, S12,1)
is not discussed here. Here the WMF protocol is only used to explain how
the analysis is used. The analysis result of the WMF protocol is thoroughly
discussed in [8] therefore we shall leave out further discussion of WMF.

4.8 Limitations of the Analysis

As mentioned in Section 4.3 on page 43 the analysis returns an over-approximation
of the variable environment ρ and network component κ, the error-component
ψ is therefore also an over-approximation because the reference monitor could
abort due to the over-approximation of the two other components. In this sec-
tion we describe some the details that could lead either to an over-approximation
of the analysis, or a misunderstanding of the analysis result.

4.8.1 Analysis with and without the Attacker

When using the LySa-tool it is important to be aware that a result from the
analysis on a LySa-process P in parallel with the Dolev-Yao attacker A, is not
the same as a result where P is analysed alone.

(ρ, κ) |=RM P |A : ψ 6= (ρ′, κ′) |=RM P : ψ′

All communications occurring in P can also occur in P |A, therefore the esti-
mates for the process P alone is a subset of the estimates for the process in
parallel with the attacker e.g.

∀x ∈ X ρ′(x) ⊆ ρ(x) ∧ κ′ ⊆ κ ∧ ψ′ ⊆ ψ

If the variable environment ρ is considered to verify that certain variable bind-
ings occur, one must be aware that it might only be the case in the presence
of an attacker. To assure that the variable bindings also occur without the
presence of the attacker the variable environment ρ′ from the analysis without
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(ν K) (
(ν Secret)
〈A,C, {Secret}K [atA destB ]〉.
0
|
(A,B; xMess).
decrypt xMess as {; xSecret}K [atB origA ] in
0
)

Table 4.9: Influence of the Attacker

the attacker should be considered. An example showing this is presented in
Table 4.9. There exists a long term key K between two principals A and B.
A wishes to communicate a secret to B, but there has been made an error in
the implementation of the LySa-process, so A sends the secret to a principal
C: 〈A,C, {Secret}K [atA destB ]〉. The result of the analysis with and without
the attacker yields the following result:

Without the Attacker With the Attacker
ψ′ = ∅ ⊆ ψ = ∅

ρ′(xSecret) = ∅ ⊆ ρ(xSecret) = Secret

In the result of the analysis with the presence of an attacker, the message is in
fact communicated to the principal B. This is actually done by the attacker, who
is carrying out a replay attack on B, replaying a modified version of the message
sent from A to C matching the input in B so the principal B believes it is
originating from A. When the message is receivedB is able to decrypt the Secret
using the long term key K and binding it to the variable xSecret. If an attacker
did not exist, the message could not be modified and therefore the message
would not match the input pattern of B. The semantics of LySa requires input
patterns to match the values of the output, to do a communication, since this
is not the case the communication never occurs when there does not exist an
attacker. Since B never receives the encrypted Secret it is impossible to decrypt
and therefore no value is bound to xSecret.

4.8.2 Independent Attribute Analysis

The analysis implement a Independent Attribute Analysis [31]. This means that
terms and their evaluations are treated independently even if a strong relation
between them exists. Consider the example presented in Table 4.10 on the
following page. A principal A wants to send an encrypted nonce N to the
principal B using the newly created key K, alongside the encrypted nonce the
free name any is sent. After this the principal A once more sends any and
afterwards the key K used to encrypt the nonce. The principal B receives
the values over the network and binds them to the variables yA and yK, the
encrypted term is then decrypted and bound to the variable yS. In this LySa-
process one input term in principal B: (A,B; yA, yK ) is used to receive both
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(ν N) (ν K)
〈A,B, {N}K , any〉.
〈A,B, any ,K〉.
0
|
(A,B; yA, yK ).
decrypt yA as {; yS}yK in
0

Table 4.10: Example of the independent attribute

outputs from principal A. Running the analysis we get following result6:

ρ(yA) = {N}K , any
ρ(yK) = K, any
ρ(yS) = N

The variables yA and yK in principal B both have the values corresponding to
the output from principal A, and the value of the variable ρ(yS) = N indicates
that B is able to decrypt the encrypted nonce N . If we take a closer look at
the variables yA and yK, they are both bound at the same place e.g. in the
term receiving values a message from A: (A,B; yA, yK ). Since the variables
are bound at the same place, there exist a relation between the values bound
to them. If the values originate from the first output in A the variables would
be bound as {yA, yK} = {{N}K , any}, after receiving the second message
from A the values would be bound as {yA, yK} = {any,K}. Considering
this the decryption decrypt yA as {; yS}yK should never take place since this
require the variables to be bound to {yA, yK} = {{N}K ,K} which can never
happen. This is however not captured by the analysis, since there does not
exist any bindings between variables, there only exist a set of possible values
for each variable. When the decryption is analysed the analysis checks whether
there exist an encrypted term in the possible values of yA, since this is the
case: {N}K ∈ ρ(yA), the analysis now checks whether the correct key is in the
possible values of yK and when this is verified K ∈ ρ(yK) the nonce N is bound
to yS.

This feature could of cause lead to errors in the error-component not actually
possible (false positives) e.g. if the encrypted nonce was annotated with a
destination different from the one at the place where the decryption occurs,
an error would be reported in ψ but this error could never occur in a real
implementation, e.g. the reference monitor aborts because the analysis does
not capture the relation between the variables yA and yK.

4.8.3 Overall Properties

The LySa-tool is very useful to describe and analyse certain properties of cryp-
tographic protocol, where as others are not analysed. We shall shortly describe
some of the properties that are not grasped by the analysis.

6The ψ component is ignored as well as values originating from the attacker V•
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No notion of time exist in LySa, therefore time stamps cannot be used.
Many cryptographic protocol however use time stamps more as a nonce, since
they do not rely on different clocks to be synchronised. Such protocols can
be modelled in LySa using a restricted (thereby fresh) value instead of a time
stamp.

LySa models perfect encryption which implies it is impossible to derive any
encryption key from large amounts of cipher text. Leaks of information (e.g. an
old session key) can be used to model the effect of a crypto analysis attacks.

Properties of liveliness cannot be verified using the LySa-tool. E.g. a denial
of service attacks could never occur be found using the LySa-tool. Seen from
the analysis point of view a communication can either occur since it maintain
the semantics of a LySa process, or it can not. The attacker has no possibility
to “block” communications by repeatedly sending out messages on the network.

Understanding the limitations of the LySa-tool, it is also important to un-
derstand, what properties actually are possible to verify. The most important
ones are:

Confidentiality It is possible to verify whether a Dolev-Yao attacker or other
principals are able to read confidential messages by investigating the vari-
able environment ρ.

Authenticity Using the origin/destination annotations it is possible to ver-
ify authenticity in a protocol. Violations will be reported in the error
component ψ.

Integrity The LySa-tool models perfect encryption, this can be used to guar-
antee data integrity. E.g. an encrypted message can only be modified, if
it first is decrypted using the correct key, and then encrypted again.

4.9 SAML SSO in LySa

The protocol narration of the SAML Single Sign-On from Table 3.5 on page 23
is now reformulated as a LySa process. This process is shown in Table 4.11.
We have added three indices to all variables and crypto-points, since each of
the three roles can be played by arbitrarily many principals. The case where
i = 1, j = 2 and k = 3 represents the scenario where User1 requests a service
at Destination2 using Source3 for authentication. The reason for only adding
one index to each of the names identifying the principals is that the nature of
a process does not change when another source-site is used for authentication
or another destination-site is requested for a service. However, the variable
bindings certainly do change and in order to aid the analysis we shall use three
indices for the variables.

As discussed in section 3.5 on page 34 the TLS-protocol should be inserted
into the SAML-protocol, we shall however first describe how a transport layer
protocol is described and used in LySa in Chapter 5 on page 63.
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(νn
i=1 KU i)
|ni=1 |nj=1 |nk=1

!〈Ui, Sj , Dk〉.
(Sj , Ui, Dk; yArtifact ijk).
〈Ui, Dk, Sj , yArtifact ijk〉.
(Dk, Ui; ycMess ijk).
decrypt ycMess ijk as {; yMessijk}KU i

[atUijk origDijk ] in
0
|
|ni=1 |nj=1 |nk=1

!(Ui, Sj ; xD ijk).
(ν Artifact ijk) 〈Sj , Ui, xD ijk,Artifact ijk〉.
(Dk, Sj ,Artifact ijk; ).
〈Sj , Dk, Ui,KU i〉.
0
|
|ni=1 |nj=1 |nk=1

!(Ui, Dk; zS ijk, zArtifact ijk).
〈Dk, zS ijk, zArtifact ijk〉.
(zS ijk, Dk, Ui; zKU ijk).
(νMess) 〈Dk, Ui, {Mess}zKU ijk

[atDijk destUijk ]〉.
0

Table 4.11: SAML SSO in LySa



Chapter 5

CLySa

As models of protocols get more accurate the complexity of the models increase.
When the complexity of a protocol increases so does the complexity of the cor-
responding model along with the risk of errors, also the more complex the model
is the harder it is to read. This is particularly true when modelling a protocol
utilising a transport layer protocol. A protocol with only a few messages can
grow dramatically a transport layer protocol is used, as each message is sent
with as many messages as used in the transport layer. A transport layer proto-
col is often used several times, and thereby instantiated several times, leaving
great parts of the model almost identical, this makes the model hard to write
and later read.

We have found these problems to be significant when modelling SAML SSO
on top of TLS. The handshake of TLS is four messages and three instances are
needed in SAML SSO which in itself are six messages. Additionally it would
be interesting to test SAML SSO in scenarios with different combinations of
unilateral and bilateral TLS. This all lead to the conclusion that in order to
handle the processes in LySa a simple way of modelling a protocol on top of a
transport layer protocol was needed. Looking at the SPI [3] calculus, it defines
a notion of channels. An established connection using a transport layer protocol
does in some sense act as a private channel. The idea is to use the syntax from
SPI but expand channels to the LySa process elements modelling the transport
layer protocol. This idea enables us to change all instances of a transport layer
in a model just by changing the definition, as well as one implementation of
a transport layer easily could be replaced by another. Using an expansion of
channels into LySa-process we are able to use the analysis defined in [8] and
explained in Section 4.3 on page 43 without any modifications.

One could ask why it is necessary to model transport layers. It could seem
logical to assume certain security properties of the transport layer protocol.
We are however not aware of any result showing that TLS cannot in some
way interfere with itself or with the data it caries. It would also require a new
analysis as each message would need some annotation of the properties provided
by the transport layer.

A transport layer protocol is like any other layer in the OSI reference model.
The layer may need some initial and ending messages but besides this, interfac-
ing with the layer is simply sending and receiving messages. When we look at
this layer concept in a process calculus it can be viewed as channels. The exten-

63
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sion described in this chapter is named CLySa for “LySa with channels”. As
mentioned before we do not want channels in the way SPI defines them, rather a
channel is a shorthand for a LySa process modelling the current process on top
of a transport layer protocol. In this sense channels are parameterised macros
to be expanded into a LySa-process.

5.1 Channels

A protocol narration has a set of roles, this could be client and server. Each role
is a separate principal on a network meaning that they can run independently of
each other communication only by sending messages on the network. In LySa

this is modelled by processes combined by parallel constructs. In a scenario with
one client and one server the model would have the structure of Table 5.1.

Table 5.1: Example of a simple process

Mess# CLySa
1 Client . . .

|
1′ Server . . .

This model show a strategy where parallel constructs are only used to com-
bine different roles in the protocol. That is, a process will split into several
parallel processes first, not first send/receive a few messages and then split into
more parallel processes.

What we are looking for here is a way to transform a LySa process using
channels to a normal LySa process. This can be illustrated by a simple example
shown in Table 5.2. Suppose we have a protocol with two roles: A, B. Only
one message exchange occurs. A sends the message {A,B,C,D,E} to B over
the channel TL. This message is received at B, using the channel, A,B,C are
matched and D,E are bound to the variables x, y. This example includes square
brackets around some of the message elements, this is list construct, whose
purpose and meaning will be explained later. For now this can be ignored.

Table 5.2: Example of a simple process using channels

Mess# CLySa
1 TLs〈A,B, [C,D,E]〉. 0

|
1′ TLr(A,B,C; [x, y]). 0

Now we have to define the channel TL, TLs is for sending and TLr is for
receiving. In this example TL is a transport layer encrypting all messages using
the symmetric key K. Using this definition we can expand the process using
channels to one not using channels shown in Table 5.3 on the next page.
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Table 5.3: Expansion of a process using channels

Mess# CLySa
1 〈A,B, {C,D,E}Cli

K [dest Serv] 〉. 0
|

1′ (A,B; enc).
1′′ decrypt enc as {C;x, y}Serv

K [ orig Cli ] in 0

In the expanded process the message elements have been encrypted. The A
and B elements are not encrypted because, as said before, they act as sender and
receiver addresses of the messages. In message 1 C,D,E are encrypted using
the key K and furthermore this encryption is annotated with a label Cli and a
destination crypto-point Serv. At message 1’, a new variable is introduced to
hold the encrypted values. These are decrypted at 1”, and here C is matched
while D,E are bound to x, y.

This example should give an idea of how the use of channels can be used
to simplify LySa processes. Also if the transport layer modelling the channel
TL is changed, there is no need to change the un-expanded LySa process. The
example is however not complete, as the channel TL has not yet been defined
formally. When expanding LySa processes a channel is expanded as a macro
taking some arguments. A macro can be defined as:

TLs(C,S,M) :=< C,S, {M}Cli
K [dest Serv] > .0

The sending macro TLs has the formal parameters C,S,M . In the example
from Table 5.2 on the facing page A is bound to C and B is bound to S. The
bindings to M is more complicated. M is the message payload and it can consist
of zero, one or more elements. In this case the payload consists of three elements
C,D and E. To solve this problem of binding a formal parameter to several
actual parameters we introduce the notion of a list. A list is an element which
can contain zero or more elements. It is used where zero or more elements
are needed to be bound to a formal parameter in a macro. Therefore the list
[C,D,E] is bound to M in the example. The list constructs used is removed
after the expansion.

TLr(C,S,M,m) := (C,S, enc).decrypt enc as {M ;m}Serv
K [ orig Cli ] in 0

Similarly, the TLr macro has four formal parameters, the first two C,S are
bound as before. C is bound to M , it could have been bound to the empty
list([ ]) or a list with more elements. M is the matching part of the decryption
and m the variable binding part, therefore the list of variables [x, y] is bound to
m.

This example illustrate how the channel concept can be used to simplify
LySa processes when modelling protocol using transport layers. A channel can
be modelled by a macro which is instantiated when the process is expanded
to remove the use of channels. Also the use of lists have been motivated and
described. This simple example does, however, only cover some of the features
needed to make this channel extension to LySausable.

Additional features are required when dealing with more macros and macros
which are instantiated several times.
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Alpha Renaming In order to get the most precise analysis result a name or
variable should only be used in one place or meaning in a model. The analysis
is an over-approximation and hence will calculate the union of possible values
of a variable. Because of this, it is beneficial to ensure that names and variables
are not ’reused’ with new semantic meaning in a process. A source of such a
problem is when several instances of the same macro is used. Looking at the
example above (Table 5.2 on page 64), if the TL macro was instantiated more
than once, it would reuse the variable enc. To avoid this problem each channel
is annotated with a string used as an identifier. This ID string is then on the
actual expansion appended to each name and variable which is not a parameter
or a restricted name (ν restriction).

Another problem is when processes are indexed (MetaLySa). Again looking
at the example (Table 5.2 on page 64) if both the client and the server were
indexed it would be necessary to apply these indices to the variable enc giving
enci,j . When the indexed process is expanded each instance of enc would differ
yielding a precise analysis result.

Global Names It is sometimes desirable to use names which are known glob-
ally and which do not need α-renaming. This could be a dummy name used only
to enable variable bindings. There is no need to add id or indices to this name.
To hinder the expansion from performing α-renaming a $ can be prepended
names. This means the value could be $dummy.

Sequence Numbers When modelling transport layer protocols sequence num-
bers are often used to distinguish messages from the same session. Usually the
first sequence number for a session is selected randomly and increased each time
a message is sent/received. That is, each session will start with a unique se-
quence number and it is unlikely that the same sequence numbers should be
used in concurrent sessions. As sequence numbers are used by transport layers
they cannot be numbered before the expansion of channels. Instead sequence
numbers are marked by prepending ’#’ to their name in the macro definitions.
Then when the expansion has taken place they can be numbered. Also sequence
numbers in a sending process (e.g. TLs) will have to match the corresponding
sequence number in the matching receiving process (e.g. TLr) running in par-
allel.

Crypto-Points If encryptions or decryptions are annotated with crypto-points
inside a macro they have to be α-renamed and numbered. As with sequence
numbers crypto-points need to match in pairs of sending and receiving processes
in parallel.

5.2 Extending LySa

We will now describe the extended syntax for CLySa. First of all a list construct
has been added to terms, see Table 5.4 on the next page. The terms: name,
variable and asymmetric keys deserve special attention. These types consist of a
string describing the name and a list of indices. If the string is prefixed by ’#’ it
is a sequence number. If the term is used inside a macro definition and the string
is prefixed by ’$’ it is treated as a publicly known global constant. This has the
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expansion unfolding

PSfrag replacements

LySaMetaLySaCLySa

Figure 5.1: CLySa & MetaLySa & LySa

E ::= terms
n name (n ∈ N )
x variable (x ∈ X )
m+

m−

{E1, · · · , Ek}E0
symetric encryption (k ≥ 0)

{|E1, · · · , Ek|}E0
asymetric encryption (k ≥ 0)

[E1, · · · , Ek] List construct

Table 5.4: CLySa Terms

effect that the term is not subjected to alpha conversion. A new process type
for macro instantiation has been added to processes (see Table 5.5). It requires
that the macro m has been defined, meaning that it is in the environmentM. id
is the string identifier added to the particular instance of the macro. E1, · · · , Ek

are the actual parameters for the macro.

The definitions of the macros themselves have their own syntax, see Ta-
ble 5.6 on the next page. The name of the macro m and the formal arguments
arg1, · · · , argk are defined. The process P is what is inserted when a macro is
instantiated. As any process ends with 0 when inserted this zero is where the
next process element is placed. As explained before P should not contain any
parallel constructs. To bind the macro definitions and the process we define a
new top level type. A program both has the macro definitions and the actual
process using the macros. A CLySa program first has the define keyword then
some macro definitions then the in keyword and in the end the process. The
program definition is shown in Table 5.7 on the following page.

P ::= processes P
0 nil
〈E1, · · · , Ek〉.P output
(E1, · · · , Ej ;xj+1, · · · , xk).P input (with matching)
P1|P2 parallel composition
(νn)P restriction
!P replication
decrypt E as {E1, · · · , Ej ;xj+1, · · · , xk}E0

in P
symmetric decryption (with matching)

(ν±n)P restriction
decrypt E as {|E1, · · · , Ej ;xj+1, · · · , xk|}E0

in P
asymmetric decryption (with matching)

mid(E1, · · · , Ek).P Macro instance (m ∈M)

Table 5.5: CLySa Processes
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M ::= macro definitions M
m(arg1, · · · , argk) := P Macro definition

Table 5.6: CLySa macro definition

G ::= program
define M1, · · · ,Mk in P Macro definitions M used in P

Table 5.7: CLySaprogram definition

5.3 Formalising the Expansion of CLySa

Up until now we have only described the expansion of CLySa to LySa infor-
mally. In this section we will formalise the conversion. This section will also
introduce SML types to ease the reading of the implemented functions. During
the expansion some environments are needed:

M a set of tuples with a macro name, its formal arguments and its process.

B a set of restricted names or formal arguments. Names in this environment
should not be subjected to alpha conversion.

I a set of indices under which the current process is declared.

C a set of pairs of string and integer where the string is the name of a variable,
name, etc.

To maintain readability and for the sake of briefness we have the semantics of
the conversions are only stated for LySa without asymmetric encryptions and
the extensions of MetaLySa. The full set of rules are stated in Appendix E on
page 107. We formalise the expansion using inference rules.

5.3.1 Alpha Conversion

Terms are subjected to alpha conversion in order to generate unique names. The
conversion is denoted as α shown in Table 5.8. Here the rules for asymmetric
keys and variables have been left out, the full set of rules can be found in
Appendix E.1 on page 107. A name is actually a tuple of a string as a name
and a list of indices. The first rule, in Table 5.8, NAME/∈ is used when the
string name is not in the B environment. The id string is prepended to the string
name and the index list is substituted with I. If the string name is in B then
the second rule is used and nothing is changed. The rule for encryption and for
lists apply the conversion recursively. Crypto-points are also alpha converted
and this conversion is denoted cp and shown in Table 5.9 on the next page. The
conversion is similar to the one used for names, but no B environment is needed
as all crypto-points should be converted. Additionally a “#” is prepended to
the string name of each crypto-point to indicate that is should be numbered
later, as described in Section 5.3.4 on page 72.

Table 5.8: Alpha conversion: α

[NAME/∈] B, I, id ` (n, il)
α−→ (n̂ id, I)

Continued on next page
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Continued from previous page
If n /∈ B

[NAME∈] B, I, id ` (n, il)
α−→ (n, il)

If n ∈ B

[ENC ]

∀i ∈ [1; k] B, I, id ` Ei
α−→ E′

i

`
cp−→ `, ∀i ∈ [1; l] cpi

cp−→ cp′i

B, I, id ` {E1, · · · , Ek}`E0
[Dest cp1, · · · , cpl]

α−→
{E′

1, · · · , E′
k}`

′

E′

0
[Dest cp′1, · · · , cp′l]

[LIST ]
∀i ∈ [1; k] B, I, id ` Ei

α−→ E′
i

B, I, id ` [E1, · · · , Ek]
α−→ [E′

1, · · · , E′
k]

Table 5.9: Crypto-points

[CP ] I, id ` (n, il)
cp−→ (# n̂̂ id, I)

5.3.2 Substitution of Formal Parameters

When a macro is expanded the formal parameters are substituted with the
actual parameters. The conversion uses an environment A to hold pairs of
formal and actual parameters. For each name, variable or asymmetric key, if it
exists in this environment it is substituted for the new value. When matching
the formal parameters only the string part of the name is used. We use the
operator TxU to denote the string name of x. Substitution is denoted s and is
shown in Table 5.10.

Table 5.10: Substitution: s

[NAME ]
(TEU, E′) ∈ A
A ` E s−→ E′

[ENC ]

∀i ∈ [0; k] A ` Ei
s−→ E′

i

A `{E1, · · · , Ek}`E0
[Dest cp1, · · · , cpl]

s−→
{E′

1, · · · , E′
k}`E′

0
[Dest cp1, · · · , cpl]

[LIST ]
∀i ∈ [1; k] A ` Ei

s−→ E′
i

A ` [E1, · · · , Ek]
s−→ [E′

1, · · · , E′
k]

5.3.3 Macros

Then expansion of macros are carried out in two steps. One where a macro
is in the process of being inserted called insertion, denoted µ and shown in
Table 5.11 on the following page. Another is where no macro is currently being
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inserted but any macro encountered is expanded called expansion, denoted η
and shown in Table 5.12 on the next page. As described in Section 5.1 on
page 64, in the scenarios we model it is not logical to use a parallel construct
inside a macro definition. Macro insertion is, therefore not defined for parallel
constructs.

Starting with the macro insertion a number of environments are defined.
An environment with the defined macros M, exceptions to alpha renaming
B, current indices I, the formal and the actual parameters A and the identifier
used with the current macro being inserted id. The asymmetric versions of NEW
and DEC are treated as their symmetric counterparts. NIL, OUT, INP, NEW,
DEC, BANG, PAR are all trivial in that they only apply alpha conversion and
substitution to all terms and does a recursive call on the remaining process. One
interesting thing with the rule for NEW is that is does not add the new name to
B. This is because it has itself already been subjected to α and s conversions,
therefore subsequent occurrences should not be excluded. The rule for MACRO
corresponds to a macro being used to define another macro. The challenge here
is to expand the nested macro and then apply the current macro. First the name
of the nested macro N is found in M hereby also giving the formal arguments
farg1, · · · , fargk. Then the new versions of the environments are calculated B′

and A′. First the nested macro insertion is applied to q giving q′ and after this
the current giving q′′.0. The notation with q′′.0 is used to show that the ending
0 is removed to allow p′ to be prepended. It should be clear that a recursive
macro definition must not appear since it would lead to an infinite loop of macro
insertions and expansions.

Table 5.11: Macro insertion: µ

[NIL] M,B, I,A, id ` 0
µ−→ 0

[OUT ]

∀i ∈ [1; k] B, I, id ` Ei
α−→ E′

i,A ` E′
i

s−→ E′′
i ,

M,B, I,A, id ` p µ−→ p′

M,B, I,A, id ` 〈E1, · · · , Ek〉.p µ−→
〈E′

1, · · · , E′
k〉.p′

[INP ]

∀i ∈ [1; k] B, I, id ` Ei
α−→ E′

i,A ` E′
i

s−→ E′′
i

M,B, I,A, id ` p µ−→ p′

M,B, I,A, id ` (E1, · · · ; · · · , Ek).p
µ−→

(E′
1, · · · ; · · · , E′

k).p′

[NEW ]
B, I, id ` E α−→ E′,A ` E′ s−→ E′′,M,B, I,A, id ` p µ−→ p′

M,B, I,A, id ` (νE).p
µ−→ (νE′′).p′

Continued on next page
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Continued from previous page

[DEC ]

B, I, id ` E α−→ E′,A ` E′ s−→ E′′,

∀i ∈ [0; k] B, I, id ` Ei
α−→ E′

i,A ` E′
i

s−→ E′′
i ,

M,B, I,A, id ` p µ−→ p′, `
cp−→ `′, ∀i ∈ [1; l] cpi

cp−→ cp′i

M,B, I,A, id ` decryptE as {E1, · · · ; · · · , Ek}`E0

[Orig cp1, · · · , cpl] in p
µ−→

decryptE′ as {E′
1, · · · ; · · · , E′

k}`
′

E′

0

[Orig cp′1, · · · , cp′l] in p′

[MACRO ]

(N, (farg1, · · · , fargk), q) ∈M,

∀arg ∈ (arg1, · · · , argk)B, I, id ` arg α−→ arg′,A ` arg′ s−→ arg′′,

B′ := B ∪ {farg1, · · · , fargk},
A′ := {(farg1, arg1), · · · , (fargk, argk)},
M, I,B′,A′, id′ ` q µ−→ q′,

M, I,B,A, id ` q′ µ−→ q′′.0, M,B, I,A, id ` p µ−→ p′

M,B, I,A, id ` Nid′(arg1, · · · , argk).p
µ−→ q′′.p′

Macro expansion is used to expand any macros in a process. When a macro
is encountered in the process it will be expanded, and then the macro insertion
will be used to do the actual insertion. Most of the rules for macro expansion
are simple, in that they only apply the expansion to the rest of the process. One
interesting thing is that in the rule for NEW the string name of the term is
added to the B environment. The notation TEU is used to get the string name
of a term. This of cause assumes the term to be a name or a variable. The rule
for PAR X (not shown) is the same as the one for PAR I. Here the new index
is added to the index environment I. The rule for macros are, not surprisingly,
the most complex. The name of the macro is found in theM environment and
new B and mathcalA environments are calculated. Then the macro insertion
transformation is used to get the expanded process.

Table 5.12: Macro expansion: η

[NIL] M,B, I ` 0
η−→ 0

[OUT ]

M,B, I ` p η−→ p′

M,B, I ` 〈E1, · · · , Ek〉.p η−→
〈E1, · · · , Ek〉.p′

[INP ]

M,B, I ` p η−→ p′

M,B, I ` (E1, · · · ; · · · , Ek).p
η−→

(E1, · · · ; · · · , Ek).p′

[NEW ]
M,B ∪ {TEU}, I ` p η−→ p′

M,B, I ` (νE).p
µ−→ (νE).p′

Continued on next page
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Continued from previous page

[DEC ]

M,B, I ` p η−→ p′

M,B, I ` decryptE as {E1, · · · ; · · · , Ek}E0
in p

η−→
decryptE′ as {E1, · · · ; · · · , Ek}E0

in p′

[BANG ]
M,B, I ` p η−→ p′

M,B, I `!p η−→!p′

[PAR]
∀i ∈ [1; k]M,B, I ` pi

η−→ p′i

M,B, I ` p1| · · · |pk
η−→ p′1| · · · |p′k

[MACRO ]

(N, (farg1, · · · , fargk), q) ∈M,

B′ := B ∪ {farg1, · · · , fargk},
A := {(farg1, arg1), · · · , (fargk, argk)},
M, I,B′,A, id ` q µ−→ q′.0, M,B, I ` p η−→ p′

M,B, I ` Nid(arg1, · · · , argk).p
η−→ q′.p′

5.3.4 Numbering

After macros have been expanded, names, variables and crypto-points which
have a “#” as the first character in their string names have to be numbered.
Meaning that the first occurrence should have the number 1 appended, the
second 2, etc. As an example the process:

(#num; inp; .)〈#num, out〉.0
has two instances of #num. After numbering this process would be:

(num1; inp; .)〈num2, out〉.0
thereby removing “#” and appending numbers to the names. In order to allow
numbered names to match between parallel processes, the numbering of names
in each parallel process are independent. For example:

〈#seq,message〉.0|(#seq;mess; .)0
here each “#seq” is in its own parallel process and the numbering of them will
not affect each other.

〈seq1,message〉.0|(seq1;mess; .)0

5.3.5 List Expansion

In CLySa we introduced a list construct. After the expansion of macros this
construct has to be removed to allow the CLySa process to be converted to
LySa. In LySa lists of terms are used many places, usually denoted E1, · · · , Ek.
If a list construct occurs as one of these Ei elements it is inserted as the elements
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inside this list construct. That is if Ei is a list with the elements Ei,1, Ei,2 the
list is expanded to E1, · · · , Ei,1, Ei,2, · · · , Ek.

To formalise this we define two expansions. l which is a list expansion on
a single term, and lt which is the expansion of a list of terms. The rule for lt
is shown below. The full set of rules for lists, terms and processes are listed in
Appendix E.6 on page 111.

∀i ∈ [1; k]

If Ei = [Ei,1, · · · , Ei,j ]

Ei,1, · · · , Ei,j
lt−→ E′

i,1, · · · , E′
i′,j′

Else Ei
l−→ E′

i,1

E1, · · · , Ek
lt−→ E′

1,1, E
′
1,2, · · · , E′

k,l

5.3.6 Variable Marking

Before macros are expanded it is unclear what names are indeed names and
which are variables. After the macros are expanded the variables can be found
by running through the process and picking any variable bindings up in an
environment (B). This is exactly the same functionality as the bindVar, isVar
and toVar functions implemented in lysaasciiio.sml in the LySa-tool. The
only difference is that now it is not done immediately after parsing the data but
instead after macro expansion.

5.4 Implementation

The implementation of CLySa is build on top of LySa-tool [11]. The main
focus of this project is not to implement a new version of LySa-tool but merely
to provide the necessary features to allow us to model protocols using other
protocols. From the outset the goal was to extend LySa-tool by touching as
little as possible and in that sense CLySa is merely an extension much like
MetaLySa is. The implementation is carried out by implementing new versions
of: lysa.sml, lysagrammar.grm, lysalexer.lex and lysaasciiio.sml from
LySa-tool. The new files have a “c” prepended. The lexer, grammar and asciiio
files have not changed much as the only change needed was the addition of a
few new data structures.

The environments used in the inference rules presented are here summarised
and the types used are listed:

M a list of macro definitions: (string * string list * Proc) list

B a set of restricted names or formal arguments. string list

I a set of indices under which the current process is declared. string list

C a set of pairs of string names and integers: (string * int) list ref
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5.4.1 Data Structure

The revised data structure for CLySa is shown below on Figure 5.2. Here LIST

is added as a type of Term and MACRO is added as a type of Proc. Two new
types are defined: Macrodef which is a definition of a macro and Prog which is
a list of macro definitions and a process. The constructs listed under experiment
1, LEAK and TEST are not used in our implementation.

datatype Form = ORIG of CP l i s t
| DEST of CP l i s t

datatype Term = NAME of Name
| NAMEP of Name
| NAMEM of Name
| VAR of Var
| ENC of Term l i s t ∗ Term ∗ CP ∗ Form opt ion
| AENC of Term l i s t ∗ Term ∗ CP ∗ Form opt ion
(∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗)
(∗ Elements below are inser t ed by Jakob & Ste f f en ∗)
(∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗)
| LIST of Term l i s t

datatype Proc = OUT of Term l i s t ∗ Proc
| INP of Term l i s t ∗ Term l i s t ∗ Proc
| DEC of Term ∗ Term l i s t ∗ Term l i s t ∗ Term ∗

CP ∗ Form opt ion ∗ Proc
| ADEC of Term ∗ Term l i s t ∗ Term l i s t ∗ Term ∗

CP ∗ Form opt ion ∗ Proc
| NEW of Term ∗ Proc
| ANEW of Term ∗ Proc
| BANG of Proc
| PAR of Proc l i s t
| NIL

(∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗)
(∗ Elements below are conceptua l l y part of Meta Lysa ∗)
(∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗)

| PAR I of s t r i n g ∗ i n t ∗ Proc
| PAR X of s t r i n g ∗ i n t ∗ s t r i n g ∗ Proc
| NEW I of ( ( s t r i n g ∗ i n t ) l i s t ∗ Term) l i s t ∗ Proc
| ANEW I of ( ( s t r i n g ∗ i n t ) l i s t ∗ Term) l i s t ∗ Proc
(∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗)
(∗ Elements below are inser t ed for ”Experiment 1” ∗)
(∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗)

| LEAK of Proc ∗ ( s t r i n g ∗ i n t ) l i s t
| TEST of s t r i n g
(∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗)
(∗ Elements below are inser t ed by Jakob , S t e f f en ∗)
(∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗)
| MACRO of s t r i n g ∗ s t r i n g ∗ Term l i s t ∗ Proc

type Macrodef = s t r i n g ∗ s t r i n g l i s t ∗ Proc
type Prog = Macrodef l i s t ∗ Proc

Figure 5.2: Data Structure for CLySa

5.4.2 Combining the Expansions

In Section 5.3 on page 68, each part of the expansion of CLySa is explained.
In the implementation the function expandProg combines them along with a
function converting the CLySa data structure to the LySa data structure.

When using the program the CLySa-program is parsed from an ASCII file.
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This results in a set of macros M and a CLySa process P . Then the function
expandProg is called withM and P as arguments. expandProg first uses macro
expansion withM, an empty B environment and an empty I environment. The
resulting process is put through list expansion. After this the numbering ex-
pansion is used stating with an empty environment of numbers. Then variables
are marked and finally the process is converted to the LySa-process.

5.4.3 Tests

The implementation of the conversion form CLySa to LySa has been tested
throughout the development. When a new macro was constructed it was nec-
essary to verify that the macro was in fact expanding correctly. To supplement
this and to provide concrete tests of unexpanded and expanded processes several
tests have been performed, see Appendix G on page 127. Each test is mainly
focused on one transformation. The tests have been designed to let them use
all rules for a conversion at least once.

5.4.4 Correctness

CLySa is as MetaLySa is, an abbreviation of LySa. CLySa provides a conve-
nient way to write LySa processes. This means that we use the resulting LySa

process as an input to the analysis, and therefore it is this LySa-process we
actually analyse. The analysis result has no direct connection to MetaLySa

or CLySa. This means that the semantics of CLySa is defined in terms of
LySa and therefore the proves concerning the analysis of LySa-processes still
are valid for LySa-processes obtained using either MetaLySa or CLySa (or
both).

5.5 Example

We will now present a small example, designed to illustrate some of the features
of CLySa. Recall that a “$” in from of a name denotes a global constant.
Most of the macros used in this report will use $dummy as a global constant.
More specific it is used as a trick that allow us to bind values to variables (e.g.
assignment see Section 4.5 on page 49. The trick is to use the decrypt term to
bind a value to a variable. This often shortens complex processes and because
it is used frequently a macro has been defined to simplify processes even more.

Bind(A,B) := decrypt {A}$dummy [atUCP ] as {; B}$dummy [atUCP ] in
0

The Bind macro has two parameters A and B. The result of the macro is that
the value of A is bound to the variable B.

The example we in Table 5.13 on the following page does perhaps not in
it self hold any meaning, it should merely be seen as a demonstration of how
macros are expanded.

In Table 5.13 we have defined three macros: Bind, Send and Rec. The Send
macro use the Bind macro to do some variable binding. In the process first the
name K is restricted and thereafter splitting into two parallel processes. Each
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define Bind(A,B) := decrypt {A}$dummy [atUCP ] as {; B}$dummy [atUCP ] in
0
,
Send(y) := Bindid(y,Mess).
〈{Mess}K [atC destS ]〉.
0
,
Rec(x) := (; m).
decrypt m as {; x}K [atS origC ] in
0

in

(νn
i=1...n j=1...n K)
|ni=1...n |nj=1...n j 6=i (ν Mij)

Senda(Mij).
0
|
|ni=1...n |nj=1...n j 6=i Reca(recieved ij).

0

Table 5.13: Example process before expansion

of these are indexed with i and j. The first use the Send macro and the second
use the Rec macro.

The resulting process after the program has been expanded is showed in
Table 5.14.

(νn
i=1...n j=1...n K)
|ni=1...n |nj=1...n j 6=i (ν Mij)

decrypt {Mij}$dummy [atUCP ] as {; Messaij}$dummy [atUCP ] in
〈{Messaij}K [atCa1 ij destSa1 ij ]〉.
0
|
|ni=1...n |nj=1...n j 6=i (; maij).

decrypt maij as {; recieved ij}K [atSa1 ij orig Ca1 ij ] in
0

Table 5.14: Example process after expansion

5.6 TLS in CLySa

In Section 3.4.3 on page 32 extended protocol narrations for unilateral and
bilateral TLS were developed. Now with the concept of channels in CLySa we
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can develop macros describing how to model the TLS transport layer in LySa.
A protocol narration describes the sending and receiving parts of the protocol
at the same time. In LySa however, the sending and receiving parts of each
principal is described separately.

In Section 3.4.3 on page 32 we modelled the handshake and initialisation of
the TLS protocol. To write this as macros we need to parameterise the protocol
narration on the client C and the server S. As TLS uses a lot of messages
to initialise a session we need different macros for initialising and subsequent
messages. This all adds up to 10 different macros listed in Table 5.15.

TLS type Action Role Macro Name
Unilateral Initialisation Client TLSSInitC
Unilateral Initialisation Server TLSSInitS
Bilateral Initialisation Client TLSBInitC
Bilateral Initialisation Server TLSBInitS
Both Sending Client TLSSC
Both Receiving Client TLSRC
Unilateral Sending Server TLSSS
Unilateral Receiving Server TLSRS
Bilateral Sending Server TLSBSS
Bilateral Sending Server TLSBRS

Table 5.15: Names of macros

All of these macros can be found in Appendix F.1 on page 115, but here we
will only treat the TLSBInitC macro. This macro is used by a client to initialise
a bilateral TLS connection. The messages in this macro are numbered with
the same numbers used in the extended protocol narration for bilateral TLS
Table 3.8 on page 34. The first line defines the macro and the formal arguments
C and S. In the lines 1., 2.′ and 2.′′ the client sends a nonce Nc to the server
and receives a nonce yNs and a certificate ycert. Message 3. is implemented
in many lines as both two variables are restricted and the macro Bind is used
three times. Bind was introduced in the example in Section 5.5 on page 75. It
is used to create meaningful names for values. In the last line 3. the client’s
certificate, the premaster secret, the certificate verify and the client finished
messages are sent. The initialisation ends with the client receiving the server
finished message. The implementation of this macro is shown in Table 5.16 on
the following page.

5.7 SAML SSO in CLySa

Using the channels or macros defined for TLS we can now write the CLySa

process for the SAML SSO protocol shown in Table 5.17 on page 79.
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TLSBInitC(C,S) := (ν Nc)
1. 〈C,S,Nc〉.
2.′ (S,C; yNs, ycert).
2.′′ decrypt ycert as {|S; yKS |}CA+ [atUCP ] in
3. (ν± KC )
3. (ν pm)
3. Bindid({|Nc, yNs , pm|}$PRF [atUCP ], yMaster).
3. Bindid({|yMaster |}$PRF [atUCP ], yMasterhash).
3. Bindid({|yMaster |}$Key [atUCP ], ySession).

3. 〈C,S, {|C,KC+|}CA− [atUCP ], {|{|pm|}yKS [atUCP ]|}KC− [atUCP ],

{|yMasterhash|}KC− [atUCP ], {#Seq , yMasterhash}ySession [atC destS ]〉.
4.′ (S,C; ymhash).
4.′′ decrypt ymhash as {#Seq , yMasterhash; }ySession [atC origS ] in

0

Table 5.16: The initialisation macro for bilateral TLS (Client-side)
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(ν± CA) (
(νn

i=1 KU i)
(ν± KLDY ) (
〈CA+,KLDY −, {|LDY ,KLDY +|}CA− , {|S0,KLDY

+|}CA− ,
{|D0,KLDY

+|}CA− ,KU 0〉.
0
)
|
|ni=1 |nj=1 |nk=1

!TLSSInitCA(Ui, Sj).
TLSSCA(Ui, Sj , Dk).
TLSRCA(Sj , Ui, Dk, yArtifact ijk).
TLSSInitCB(Ui, Dk).
TLSSCB(Ui, Dk, [Sj , yArtifact ijk]).
(Dk, Ui; ycMessijk).
decrypt ycMess ijk as {; yMess ijk}KU i

[atUijk origDijk ] in
0

|
|ni=0 |nj=1 |nk=0

!TLSSInitSA(Ui, Sj).
TLSRSA(Ui, Sj , Dk, []).
(ν Artifact) (
TLSSSA(Sj , Ui, [Dk,Artifact ijk]).
TLSBInitSC(Dk, Sj).
TLSBRSC(Dk, Sj ,Artifact ijk, []).
TLSBSSC(Sj , Dk, [Ui,KU i]).
0
)

|
|ni=0 |nj=0 |nk=1

!TLSSInitSB(Ui, Dk).
TLSRSB(Ui, Dk, [Sj ], [zArtifact ijk]).
TLSBInitCC(Dk, Sj).
TLSSCC(Dk, Sj , zArtifact ijk).
TLSRCC(Sj , Dk, Ui, zKU i).
(νMessijk) (
〈Dk, Ui, {Mess ijk}zKU i

[atDijk destUijk ]〉.
0
)

)

Table 5.17: SAML SSO using TLS





Chapter 6

Analyses of Protocols

In this chapter we will present the results of our analyses on TLS and SAML
SSO. In Section 6.1 we analyse our model of the TLS protocol. In Section 6.2 on
page 83 we present the results from the analyses of different scenarios of the
SAML SSO protocol.

6.1 Analysis of TLS

To analyse the TLS protocols we use a model with just two principals negotiating
a connection and each sending a secret to each other.

Unilateral

For the unilateral version of TLS the ψ component of the analysis result is empty
meaning that no errors were found. The LySa-process for this experiment can
be found in Appendix F.2 on page 117. When applying the analysis without an
attacker the variable bindings in ρ are the same as when an attacker is present.
Since these bindings are the same in the two instances we can conclude the
processes behave as expected. If this knowledge is combined with the fact that
ψ = ∅ we also are able to conclude that the attacker cannot carry out any
attacks affecting the confidentiality an authenticity properties of the protocol.
To summarise this the LySa process behaves as intended.

ψ = ∅
ρ(yCNEWSECRETi,j) = CNEWSECRETi,j

ρ(yCSECRETi,j) = CSECRETi,j

ρ(xSNEWSECRETi,j) = SNEWSECRETi,j

ρ(xSSECRETi,j) = SSECRETi,j

Secrets /∈ ρ(z•)

Bilateral

For the bilateral version of TLS (see Appendix F.3 on page 117) the analy-
sis result contains errors. The ψ component is filled with pairs of the form
(l•, Sone#i,j) and (Sone#i,j , l•) where # is a number and i,j is indices. The
errors stem from values encrypted in the server process and decrypted by the
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attacker or values encrypted by the attacker being decrypted by the server. This
clearly show that something is wrong in server part of the protocol, which is,
compared with the lack of errors in the unilateral version of TLS, not surpris-
ing, since the only changes in the process compared with unilateral TLS are in
the server process. By using the ρ component of the result to inspect the vari-
able bindings we are able to locate where the problems originate. The variable
bindings: ρ(xSSECRETi,j) = SSECRETi,j and ρ(xSNEWSECRETi,j) =
SNEWSECRET show that the client will always get the correct values. These
values are also known by the attacker. Since these messages are only sent on the
network encrypted using the session key, the attacker must possess this key. The
session key is constructed from three parts: the nonces Nc,Ns and pm the pre-
master secret. The nonces are send unencrypted on the network and therefore
the attacker is able to change these nonces to whatever he wants them to be,
resulting in that the variables holding these nonces could be bound to any value
originating from the attacker: e.g. V• ∈ ρ(yNs) for the client, and V• ∈ ρ(xNc)
for the server. This leaves the premaster secret pm, but it turns out that the
variable holding the premaster secret at the server also could be bound to any
value originating from the attacker: V• ∈ ρ(xpmi,j). Now the attacker is able
to determine the value of all the three elements the session key is created from,
therefore the attacker is able to create a valid session key. The problem arises
from the message 3 in TLS. In extended protocol narration this looked like:

3. C → : C, S, {|C,KC+|}CA− , {|pm|}yKS
, {|{|{|Nc, yNs, pm|}PRF |}PRF |}KC− ,

{Seq1, {|{|Nc, yNs, pm|}PRF |}PRF }sessionkey [ dest {S}]

3.′ → S : xc, xs, xcert, xcpm, xcertv, xmh [check xs = S]

In LySa it is:

. . .
〈C,S, {|C,KC+|}CA− [atUCP ],

{|pm|}yKS [atUCP ],

{|yMasterhash|}KC− [atUCP ],
{#Seq , yMasterhash}ySession [atC destS ]〉.
. . .

|
. . .
(C,S; xcert , xcpm, xcertv , xmh).
. . .

Because the analysis is an independent attribute analysis (see Section 4.8.2 on
page 59 for further details) it cannot relate the elements received. Furthermore
xcpm, which is the premaster secret encrypted with the servers public key, is
writable by anyone (since the public key is in fact “public”). This means that
because the attacker knows the server’s public key of, any value can be received
as xcpm. The problem is that the analysis finds no connection between the
ClientKeyExchange message and the CertificateVerify message. We claim that
this reported error only occurs due to the independent attribute analysis, and
that it cannot occur in a real implementation and therefore it is a false positive.
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Helping the Analysis

One way to overcome the problem is to change the protocol slightly. A sim-
ilar problem is noted in [9, pp. 126] where it is suggested to add the identity
of the client to the ClientKeyExchange message thereby using the message:
{|C, pm|}KS+ . It turns out that this is not strong enough for our purposes as
the analysis is still not be able to relate this message to the client’s certificate.
Therefore, we suggest signing the above message with the clients certificate
giving the message {|{|pm|}KS+ |}KC− . In the context from above this is:

. . .
〈C,S, {|C,KC+|}CA− [atUCP ],

{|{|pm|}yKS [atUCP ]|}KC− [atUCP ],

{|yMasterhash|}KC− [atUCP ],
{#Seq , yMasterhash}ySession [atC destS ]〉.
. . .

|
. . .
(C,S; xcert , xcpm, xcertv , xmh).
. . .

This gives a stronger protocol; although, it does not prohibit anyone from
reading the encrypted premaster secret. Actually, the remedy is along the lines
of what is already done in the CertificateVerify message where the message is
also signed by the client.

When analysing this new stronger version of the bilateral TLS protocol we
discover no flaws. The result almost exactly the same as what we saw for the
unilateral version of TLS. We will use this stronger version of the protocol in
the experiments with SAML SSO. The macros forming this revised model of
TLS is shown in Appendix F.1 on page 115.

6.2 SAML SSO

In Chapter 3 on page 19, we formally described the SAML SSO protocol and
in Chapter 4 on page 37, we described the analysis tool LySa-tool. Using this
tool we are now able to analyse the SAML SSO protocol.

Experiment 1

S D

U

Figure 6.1: Experiment 1

The analysis of the SAML SSO protocol without any transport layer security,
is depicted on Figure 6.1. The LySa process can be found in Appendix F.4 on
page 118. It is obvious that this protocol does not provide any of the wanted
security properties. None of the principals are authenticated and only the sixth
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message is encrypted. The key used for the sixth message could be eavesdropped
when it was sent between the source and destination sites. One possible attack
could be an attacker (A) acting as a user:

1. A(U) → S : D
2. S → A(U) : Artifact

3. A(U) → D : S,Artifact

4. D → S : Artifact

5. S → D : U,KU

5.′ → A : U,KU : Eavesdropped by A

6. D → A(U) : {Mess}KU

This is only one of the many possible attacks but as it is obvious this protocol
is not secure at all we will not discuss this scenario further.

6.3 SAML SSO using TLS

The SAML specification [25] states three different types of security properties
to be applied to the message transfers authentication, message integrity and
confidentiality. It is also stated that when integrity or confidentiality is required
SSL 3.0 [4] or TLS [13] must be used. For authentication either the unilateral
or the bilateral version of TLS must be used.

The specification states that confidentiality and message integrity must be
provided in step 1, 2 and 3 of the SAML SSO protocol. In the steps 4 and
5 confidentiality, integrity and bilateral authentication must be provided. No
security properties are mandated for step 6.

Using the model of TLS it is possible extend the experiments with SAML
SSO protocol using different combinations of the unilateral and bilateral versions
of TLS between the three principals.

In order to model several instances of the protocol, running in parallel with
one another, we will use indices as discussed in Section 4.6 on page 51. A process
modelling a group of users is indexed with i, j, k meaning it is a user from the
i’th user group talking to a source site from the j’th source site group and a
destination site from the k’th destination site group. Some principals allow the
attacker to interact with them as a normal principal in the protocol; this is
modelled by starting the index at 0.

The scenario in which we model SAML SSO is shown in table 6.1 on the
facing page. We allow the attacker to act as a user and as a destination site
when communicating with a source site, and allowed him to act as a user when
communicating with a destination site. That is, if a principal is accepting
connections, which it has not initiated (as the source and destination sites do)
the attacker can interact with these principals as a normal client. The user
process is indexed with i = 1, j = 1, k = 1 reflecting that we assume that he
only requests services from honest destination and source sites. The user is not
allowed to contact an attacker directly as it would require the attacker to hold
a trusted certificate. This gives a total of n3 + n · (n+ 1)2 + n2 · (n+ 1) parallel
processes.
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|ni=1|nj=1|nk=1 Useri,j,k
|
|ni=0|nj=1|nk=0 Source sitei,j,k

|
|ni=0|nj=1|nk=1 Destination sitei,j,k

Table 6.1: The expansion of the analysis

The analysis itself is carried out for n = 2. This models two groups of
users, destination sites and source sites where for each role we may think of
one of the groups as being honest principals and the other group being mali-
cious1 principals. If possible one group will interfere with the other. As the
different experiments analyses versions of the SAML SSO protocol which only
differ slightly they have been illustrated using small drawings. In Table 6.3 on
page 91 we summarise all the experiments depicted by drawings and a short
description of the errors found, if any. The drawings show the three principals
in SAML SSO: the User U , the Source site S and the Destination site D. The
lines between the principals show how they exchange messages. If messages are
sent without using any transport layer a dashed line is shown. Messages sent
over the TLS transport layer is shown as a filled line. If a TLS connection is
used either one or both of the principals are authenticated. This is shown with
arrows pointing at authenticated principal(s).

Experiment 2

S D

U

Figure 6.2: Experiment 2

The second experiment (depicted in figure 6.2) follows the recommendations
from the SAML SSO documents closely. A bilateral TLS connection is used
between the destination and the source sites. A unilateral TLS connection is
used between the user and the source site and another between the user and
destination site. This means the source and destination sites are authenticated
to the user. The message in step 6 is however, not sent over a TLS connection, as
no security properties are specified in the SAML documents [25, line 562–566].
The LySa process for this experiment can be found in Appendix F.5.

In this experiment the analysis finds several flaws. The ψ component contain
the pairs (Di,x,y, Ui,z,w), where i, x, y, z, w ∈ [1, 2]. This show that a message
destined for Ui is decrypted at Ui but in the correct session. The attacker is able
to switch the messages from step 6 between different sessions, because they are
only encrypted with the users key and contain no information authenticating
the sender.

1This group of malicious principals are able to communicate with the other group of prin-
cipals because they all hold correct certificates.
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6. D → A : {Mess}KU
: message in one session intercepted by an attacker

6.′ A(D) → U : {Replay}KU
: replay of intercepted message in another session

This flaw is a result of our somewhat naive implementation of the message in
step 6, but it shows that the specification should specify how messages in step
6 and later should be sent.

Experiment 3

S D

U

Figure 6.3: Experiment 3

The third experiment (depicted on figure 6.3) is an attempt to correct the
flaw found in experiment 2. In this experiment the message in step 6 is sent
over the unilateral TLS connection established in step 3. The setup of TLS
connections are exactly the same as in experiment 2. The result of the analysis
has an empty ψ component. ρ(z•) does not contain Mess. At the same time
in both the analysis result from using the analysis with an attack present and
without him the same variable bindings occur for yMess. We conclude that this
implementation of the protocol behaves as intended, and guarantees authenticity
and confidentiality on the secret message. The LySa process can be found in
Appendix F.6 on page 119.

ψ = ∅
ρ(yMessi,j,k) = Messi,j,k

Messi,j,k /∈ ρ(z•)

Experiment 4

S D

U

Figure 6.4: Experiment 4

This experiment replaces the bilateral TLS connection between the destina-
tion and source sites by a unilateral TLS connection (depicted on figure 6.4).
The analysis result now has a non-empty ψ component. ψ = (Di,j,k, l•), where
i, j, k ∈ 1, 2. This means that the attacker can read the message sent by the
destination site in step 6. The ρ component contains these values:

ρ(z•) = KUi,Messi,j,k, . . .
ρ(xpmCi,j,k) = V•, . . .
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This shows us that the attacker can learn KUi for any session and as V• is in
ρ(xpmCi,j,k) it can also decide the session key for the TLS connections between
the source and destination sites using any value within the knowledge of the
attacker. This is not surprising as the destination site is not authenticated to
the source site. This means the following attack is possible:

1. A(U) → S : D
2. S → A(U) : Artifact

4. A(D) → S : Artifact

5. S → A(D) : U,KU

In step 1 the attacker impersonates the user and receives the artifact. The
artifact is now used to impersonate D in step 4 and 5. This can be done
because no certificate is required from D on the unilateral TLS connection. This
compromises the key KU as it is sent to the attacker. Using the compromised
key the attacker is able to act as the user and at step 6 of the protocol decrypt
all secret messages Mess. Note that the attacker is not able to impersonate the
destination site D to the user U even though he possesses the key KU , since
authentication is required. The LySa-process describing this scenario can be
found in Appendix F.7 on page 120

Experiment 5

In this experiment, depicted on Figure 6.5, we change the scenario a little. Now
the key KU is generated by the source site in each session. This means the key
is always fresh. This requires that the user is authenticated to the source site
in the first step of the protocol. One easy way of doing this is to use a bilateral
TLS connection between the user and the source site. This is particularly easy
to model as we only have to change the TLS macro used.

The revised protocol narration is:

S D

U

Figure 6.5: Experiment 5

The changes lie in messages 2. and 2.′ as the source site has to send the new
key to the user.

ψ = ∅
ρ(yMessi,j,k) = Messi,j,k

Messi,j,k /∈ ρ(z•)

The ψ component from the analysis result, using this protocol scenario as input,
is empty. The values in ρ are present both when using the analysis with an
attacker and without. This shows, that the protocol is correct in the sense that
it can run without input from the attacker and that the attacker cannot change
the variable binding. The LySa process can be found in Appendix F.8 on
page 121.
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1. U → : U, S,D
1.′ → S : xU , xS , xD [check xS = S]

2. S → : S, xU , xD, Artifact,KU

2.′ → U : yS , yU , yD, yArtifact, xKU [check yU = U ]

[check yS = S, yD = D]

3. U → : U, yD, S, yArtifact

3.′ → D : zU , zD, zS , zArtifact [check zD = D]

4. D → : D, zS , zArtifact

4.′ → S : xD, xS , xArtifact [check xS = S]

[check xArtifact = Artifact]

5. S → : S,D,KU , U
5.′ → D : z′S , zD, zKU , zU′ [check zD = D]

[check zU′ = zU ] [check z′S = zS ]

6. D → : D,U, {Mess}zKU
[ dest {U}]

6.′ → U : yD, yU , ycMess [check yU = U ]

6.′′ U : decrypt ycMess as {yMess}xKU
[ orig {D}]

Table 6.2: Extended protocol narration for SAML SSO

Experiment 6

S D

U

Figure 6.6: Experiment 6

Now as no errors were found in experiment 5 we change how the last (sixth)
message is sent. In experiment 2 it was not sent over the TLS connection and
this resulted in errors. We try the same in this scenario. This sixth experiment,
depicted on Figure 6.6, only differs from experiment 5 in that message six is
now not sent over a TLS connection (e.g. the message is only encrypted using
the fresh key KU ).

ψ = ∅
ρ(yMessi,j,k) = Messi,j,k

Messi,j,k /∈ ρ(z•)

Unlike experiment 2 with this experiment the analysis returns an empty ψ
component and therefore finds no errors in the protocol. Also the value of ρ
shown in the table above is the same running the analysis both with and without
the attacker, as this result is exactly the same as fore the fifth experiment we
conclude this protocol to be correct as well. The LySa process can be found in
Appendix F.9 on page 122.
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S D

U

Figure 6.7: Experiment 7

Experiment 7

So far we have only looked at the SAML SSO source first2 profile. SAML SSO
defines another profile where it is the destination site with is contacted first.
The only difference compared with the source first profile is that the protocol
is initiated one step before. That is, if a user requests a service at a destination
site, the user is redirected to a source site with the corresponding request. We
extend our model by prepending a message from U to D and a redirect from D
to U . The user process then uses the values of S and D provided in the redirect.
We do not apply security properties on the redirect as it is not discussed in the
SAML documents. This gives us this updated version of narration for SAML
SSO:

−2. U → :
−2.′ → D :

−1. D → : D,S

−1.′ → U : yD, yS

1. U → : U, yS, yD

1.′ → S : xU , xS , xD [check xS = S]

2. S → : S, xU , xD, Artifact

2.′ → U : yS , yU , yD, yArtifact [check yU = U ]

[check yS = yS, yD = yD]

3. U → : U, yD, yS, yArtifact

3.′ → D : zU , zD, zS , zArtifact [check zD = D]

4. D → : D, zS , zArtifact

4.′ → S : xD, xS , xArtifact [check xS = S]

[check xArtifact = Artifact]

5. S → : S,D,KU , U
5.′ → D : z′S , zD, zKey, zU′ [check zD = D]

[check zU′ = zU ] [check z′S = zS ]

6. D → : D,U, {Mess}zKey
[ dest {U}]

6.′ → U : yD, yU , ycMess [check yU = U ]

6.′′ U : decrypt ycMess as {yMess}KU
[ orig {D}]

The new messages −1 and −2 are not sent over a TLS connection. The rest of
the messages are sent over TLS connections like experiment 3 where no errors
were found. An unilateral TLS connection is used between U and S and another
between U and D. A bilateral TLS connection is used between D and S. The
LySa process for this narration can be found in Appendix F.10 on page 123.

The analysis of this process returns a non-empty ψ component in the re-
sult. Like the result in experiment 2, ψ contains pairs where only i match.

2Source-first means the User U contact the source site to be authenticate before contacting
the destination site.
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This means a user can get a message back from a wrong session. This is
also seen by looking at the variable bindings. For example ρ(yMess1,1,1) =
Mess1,1,1,Mess1,1,2,Mess1,2,1,Mess1,2,2. The attacker though can not read
Mess. The additional errors in ψ occur because the attacker can use his own
certificate to play source site or destination site. If the attacker is not given a
certificate these errors disappear.

ψ = (Di,j,k, Ui,l,m) · · ·
ρ(yMessi,j,k) = Messi,l,m

Messi,j,k /∈ ρ(z•)

The errors are a result of the attacker changing the redirect message sent from
D to U , see the narration below. The attacker could remove the redirect from
D in message −1 and replace it with his own containing D′, S′ instead of D,S.

−2. U → :
−2.′ → D :

−1. D → : D,S

−1.′ → A : This message is removed

−1.∗ A(D) → : D′, S′

−1.′ → U : yD, yS

Experiment 8

S D

U

Figure 6.8: Experiment 8

To correct the errors found in experiment 7 the first messages (−1 and −2)
should be sent over a TLS connection. This is a unilateral TLS connection
between U and D. A connection like this already exist but we have chosen to
use two different connections for communicating between U and D. The first
one is used for the messages −1 and −2 and the other is used as usual for the
rest of the messages. The LySa process for this experiment can be found in
Appendix F.11 on page 124.

The analysis finds no errors in this scenario resulting in an empty ψ compo-
nent. Still the variable binding of yMess is Mess both when using the analysis
with and without the attacker.

ψ = ∅
ρ(yMessi,j,k) = Messi,j,k

Messi,j,k /∈ ρ(z•)

6.4 Summary of Experiments

The experiments are summarised in Table 6.3 on the facing page. Each of the
experiments is either described as a scenario in the SAML specifications, or is
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Ex # Scenario Description ρ(z•) ψ

1
S D

U
Multiple Errors Mess ∈ ρ(z•) ψ 6= ∅

2
S D

U
User gets arbitrary result Mess /∈ ρ(z•) ψ 6= ∅

3
S D

U
No Errors Mess /∈ ρ(z•) ψ = ∅

4
S D

U
Compromised Mess Mess ∈ ρ(z•) ψ 6= ∅

5
S D

U
No Errors Mess /∈ ρ(z•) ψ = ∅

6
S D

U
No Errors Mess /∈ ρ(z•) ψ = ∅

7
S D

U
User gets arbitrary result Mess /∈ ρ(z•) ψ 6= ∅

8
S D

U
No Errors Mess /∈ ρ(z•) ψ = ∅

Table 6.3: Summary of Experiments

a scenario correcting a flaw found in another scenario.

Experiment 1 We analysed SAML SSO without any security and, as expected
the analysis revealed several flaws.

Experiment 2 In experiment 2 we used the modelled of TLS to and analyse
SAML SSO using the recommendations in the specification. If no security
properties where applied to the message in step 6 of the protocol this
protocol is also flawed.

Experiment 3 To correct the flaws from discovered in experiment 2, experi-
ment 3 transmits the message in step 6 over the established TLS connec-
tion. The analysis finds no errors in this protocol.

Experiment 4 Experiment 4 replaces the bilateral TLS connection with an
unilateral TLS connection only authenticating the source site. This pro-
tocol also has flaws thereby showing that the bilateral TLS connection is
indeed required.

Experiment 5 The fifth experiment is of a slightly changed scenario where a
fresh key is generated by the source site, and bilateral TLS connections
are used not only between destination and source sites but also between
users and source sites. As with experiment 3 we find no errors in this
scenario.

Experiment 6 The sixth experiment is a combination of experiment 2 and
experiment 5. In this experiment the last message is not sent over a TLS
connection but unlike experiment 2 the analysis finds no errors because
the key KU is fresh in each session.

Experiment 7 Experiment 7 model the destination first profile of SAML SSO
and finds several errors.
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Experiment 8 The errors from experiment 7 are corrected in experiment 8
showing the importance of what security properties applied to redirects.



Chapter 7

Discussion

In this Chapter we will summarise our work and the results we have obtained
on the analysis of different versions of the SAML Single Sign-On protocol. We
will also briefly discuss how others have approached the problem of formal ve-
rification of web-protocols.

7.1 Scalability

The LySa-tool [8, 38] is used to analyse protocols described in the LySa process
calculus. We have extended the LySa-calculus to be able to incorporate trans-
port layers in the model of the protocols to be analysed. The protocols analysed
in this thesis have all been modelled in the extended calculus CLySa. To be
able to evaluate the scalability of the method used to analyse the SAML SSO
protocol we here include some observations on the scalability of the LySa-tool.

During the course of this project we have at some points hit the limit of
how complex processes the analysis could handle. It was clear almost from the
beginning of this project that it would explore models of processes far larger
than had been tried before. This inevitably lead to problems with scalability.
To combat this Mikael Buchholtz constructed two optimisations to help us with
the analysis.

• Firstly, the generation of ALFP logic was changed so that constraint ge-
neration of input and decryptions did not use nested implications.

• Secondly, a new way of generating labels was constructed. Before this
optimisation each name or variable would get a new label for each occur-
rence of it in the process. This lead to a result which repeated itself as
many times as the variable was used. Now each the same label is used for
all occurrences of the same name or variable.

Each of these optimisations gave us a very large speedup of the time used
by the analysis. Particularly the second optimisation had an enormous effect,
alone cutting down the size of analysis result by up to twenty times.

Another problem encountered was the readability of the analysis result. We
used the HTML output from the analysis, as it is generally nicely structured
and easy to handle. The problem arose when the output got very large. To read
the analysis result it was often necessary to jump from one label to another. To
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help this we have added links from label references to label definitions in the
result allowing the result to be read faster.

Further, we had a problem with the result when many encryptions and
decryptions were not annotated with crypto-points. This showed up in the
result as a crypto-point with a destination or origin set containing all crypto-
points. With the particular scenarios we used in this project this problem seem
particularly visible as we use several TLS connections which each have many
of these encryptions and decryptions without crypto-points. We defined that
destination or origin sets that include `•, the crypto-point of the Dolev-Yao
attacker, should not show up in the result. This gave us a ten fold decrease in
the size of the result. We have not looked into how the analysis handles crypto-
points but it is certainly not useful to have them in the result. Also it must
cost time for the analysis to collect these crypto-points and it would therefore
be preferred if the analysis did not collect them.

Scalability of LySa-tool

In this thesis the LySa processes analysed the upper limit of indices has been 2.
This should be enough but it was certainly not possible to set this limit higher.

To see how LySa-tool scales with an increasing number of parallel processes
we have constructed the graph shown in Figure 7.1 on the next page. As this
thesis is mainly concerned with SAML SSO it is obviously interesting to see
how it scales. In order to have something to compare this with, we have also
included data points for the Wide Mouth Frog (WMF, see Appendix B.1 on
page 101) protocol and the Needham-Schroeder symmetric key protocol (NSSK,
see Appendix B.2 on page 102). The horizontal axis show the number of parallel
processes analysed and the vertical axis show the number of seconds the analysis
used. The vertical axis has a logarithmic scale. The data points from each of
the three protocols are connected to allow us to see how the time increase as
more parallel processes are modelled.

Clearly WMF and NSSK follow a polynomial trend. The last data point in
each of these sets seem to jump up in the time used. This is properly caused
by the New Jersey ML system almost running out of memory. The system can
only allocate 1GB of memory and the last points gets close to this limit. As for
SAML SSO it is clear that it is much more complex than the other two and the
run time for it increases much faster than the other two. To take a closer look
at SAML SSO we have constructed a graph where only data points from the
lower end of the scale is used, see Figure 7.2 on the facing page. Here we can
see that SAML SSO also seem to have a polynomial trend.

7.2 Evaluation

We have done a formal analysis of the SAML Single Sign-On protocol in dif-
ferent scenarios. We have found that the protocol provides authenticity and
confidentiality, in the scenarios where a suitable usage of the transport layer
protocol TLS is used. The specifications [24, 25, 26] are however somewhat
unclear on how the TLS protocol should be applied, therefore we have studied
different combination of this, resulting in different attacks.
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Specifications

Even though the attacks we discover in Section 6.2 on page 83 may seem ob-
vious, they are not mentioned in the section discussing possible attacks on the
SAML Single Sign-On protocols [26]. This fact emphasises the importance of a
more thorough analysis of protocol specifications, since specifications are used
as basis for the implementations of protocols, e.g. errors or terms which are mis-
understood could lead to flawed implementations. This point is also stressed by
Lawrence Paulson [34] in their analysis of the TLS protocol. In Verifying policy-
based security for web services [7] the authors carry this thought even further
by suggesting a XML-like language for specifying security goals of web-services.
Using this language and the tool presented in [7] they are able to establish a
direct link between the analysis result, the specification and the implementation
of a protocol.

Even though the SAML Single Sign-On protocol is in general carefully de-
signed, we believe it would have been even better, if the principles for design
of cryptographic protocols presented by M. Arbadi and R. Needham in [2] were
followed more closely.

Related work

In Security Analysis of the SAML Single Sign-on Browser/Artifact Profile [17]
Thomas Groß presents his analysis of the SAML Single Sign-On. His analysis
does not show the same attacks as we have found and presented in Section 6.2 on
page 83. It seems that no formal methods or tools are used in the analysis of the
protocol. He does through consider a broader spectrum of error than consider
in this thesis. One attack scenario he claims exist which we do not consider
is a HTTP referer attack. Security properties of different products are often
compared using the Common Criteria [36]. Using these criteria we conclude
that this work would be evaluated in the lower end of the Evaluation Assurance
Level (EAL) scale. We conclude this on the basis that the work is structured,
methodical and maybe even semi-formally described. In our thesis we use a
formal method that is fully automated. We are convinced this would score a
value on the EAL scale in the higher end.

Flexibility

All analysis result in this thesis are automatically generated. This flexibility is
very useful, when small changes to the different scenarios are made, also our
extension to LySa enabling us to use transport layer protocols has been very
helpful.

At the outset of our thesis project, the available version of the specifications
for the SAML SSO protocol was version 1.1. At some point later a draft ver-
sion 2.0 was made available at the OASIS web-page [41]. To the best of our
knowledge the only significant change in draft version 2.0 from version 1.1 of
the specification is a new scenario. The addition of this scenario is that instead
of using a longterm shared key known by the user and the server a new key is
generated each time the user needs to be authenticated. Using the flexibility
we where able to do analyses of combinations of this scenario, these are the
scenario described as experiment 5 and 6 in Section 6.2 on page 83.
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The specifications of the SAML SSO protocol focus on the scenario, where
the user enters the source site first (source-first), if the destination site is con-
tacted first (destination-first) the user should be transfered to the source site
using a redirect. As this latter version could also be interesting for implementors
of real web-services we analysed combinations of this version. Experiment 7 and
8 in Section 6.2 on page 83 show these results. Our analysis again revealed an
attack not considered in the section discussing possible attacks on the SAML
SSO protocol from [26]. As experiment 8 show this can be amended by using a
TLS connection to transmit this redirect.

Further work

In the analysis of SAML SSO we use several instances of TLS connections.
From the point of view of the analysis these connections are all the same. One
obvious extension of our work would be to analyse one of these connections and
get a result which is parametrised on the involved client and server. This would
enable us to analyse a transport layer protocol once and the reuse this analysis
result in every protocol using this transport layer protocol. Broadfoot and Lowe
have in [10] suggested such a strategy.

This could also lead to a potential speedup of the LySa-tool allowing even
larger protocols and scenarios to be analysed. This relates very much to the
idea of verifying a library used in a programming language once. Subsequent
analyses of programs using this library would then use this result in the analysis.
This saves an analysis of all the functions used in the program.

Future work includes modelling even more aspects of realistic protocols as
for example the Liberty Alliance protocols. With the growing size of not only
the protocols but also the scenarios in which they are employed.

7.3 Conclusion

Using static analysis to validate protocols has already, with great success, been
applied to many classical protocol scenarios [8]. In these scenarios there usually
exist one server and two users who want to communicate in a secure manner.
The work presented in this thesis shows that LySa and LySa-tool can be used to
model and validate large protocols involving many principals in several different
roles. The work carried out in this thesis is presented in the paper Using static
analysis to validate the SAML Single Sign-On protocol [18] appearing on the
Workshop on Issues in the Theory of Security (WITS’05) [43].

We have concentrated on the protocols defined by OASIS in the SAML
documents. The importance of this line of work is evidenced by the comment
from a SAML document [25]:

Before deployment, each combination of authentication, message in-
tegrity, and confidentiality mechanisms should be analysed for vul-
nerability in the context of the deployment environment.

This leaves the programmer with a great burden, not least since history tells
us that it is indeed very difficult to develop secure protocols. Without any tool
support the best a programmer can do will typically be to follow the recom-
mendations of the protocol designers.
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We do pinpoint two errors or deficiencies in the specifications. As no recom-
mendations on security properties for messages in the sixth step of the protocol
is given, this can lead to a flawed interpretation of the protocol as seen in ex-
periment 2. Also if the destination first profile of the SAML SSO protocol is
used no recommendations are given regarding the first redirect. This can also
lead to flaws as seen in experiment 7.

One can hardly blame the programmer who simply assume that if no security
properties are recommended none are needed. As we have seen this results in a
seriously flawed protocol. We are however able to correct these flaws by appro-
priate usage of the TLS protocol, and validate the authenticity, confidentiality
and integrity properties.



Appendix A

ASCII input to LySa for
WMF

/∗ Long term keys ∗/
(new KA)(
(new KB)(

/∗ I n i t i a t o r s A∗/
(

(new K)
<A, S , A, B, {K} : KA [ at A1 dest {S1} ] > .
(new Sec re t )
<A, B, { Sec re t } : K [ at A2 dest {B2} ] > .0 )

|

/∗ Server S ∗/
(

(A, S , A; xB , xMess ) .
decrypt xMess as { ; xKey} : KA [ at S1 o r i g {A1} ] in

<S , xB , A, {xKey} : KB [ at S2 dest {B1} ] > . 0 )
|

/∗ Responder B∗/
(

(S , B; yA, yMess ) .
decrypt yMess as { ; yKey} : KB [ at B1 o r i g {S2 } ] in

(yA, B; yMessages ) .
decrypt yMessages as { ; ySecre t } : yKey [ at B2 o r i g {A2} ] in 0)

) )
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Appendix B

Protocols used for
benchmarking

B.1 WMF

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
/∗ Wide Mouthed Frog ( without timestamp ) ∗/
/∗ ∗/
/∗ M. Burrows , M. Abadi , R. Needham : A l o g i c of authent i ca t i on , ∗/
/∗ ACM Transact ion on Computer Systems , pp 18−36 , 1990 . ∗/
/∗ ∗/
/∗ Time−stamp : <17−03−2004 Mikael Buchholtz> ∗/
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

/∗ Long term keys ∗/
( new { i =1} KL { i } ) (

/∗ I n i t i a t o r s ∗/
(
| { i =1} | { j=1\ i }
! (new K { i , j })

<I { i } , S , I { i } , { I { j } , K { i , j }} : KL { i } [ at a1 { i , j } dest { s 1 { i , j }} ] > .
(new mess { i , j })
<I { i } , I { j } , {mess { i , j }} : K { i , j } [ at a2 { i , j } dest {b2 { i , j }} ] > .0

)

|

/∗ Responder ∗/
(
| { j=1} | { i =0}
! (S , I { j } ; y1 { i , j } ) .

decrypt y1 { i , j } as { I { i } ; yk { i , j }} : KL { j } [ at b1 { i , j } o r i g { s 2 { i , j }} ] in

( I { i } , I { j } ; y2 { i , j } ) .
decrypt y2 { i , j } as { ; ym { i , j }} : yk { i , j } [ at b2 { i , j } o r i g { a2 { i , j }} ] in 0

)

|

/∗ Server ∗/
(
| { i =0} | { j=0} !

( I { i } , S , I { i } ; z { i , j } ) .
decrypt z { i , j } as { I { j } ; zk { i , j }} : KL { i } [ at s 1 { i , j } o r i g { a1 { i , j }} ] in

<S , I { j } , { I { i } , zk { i , j }} : KL { j } [ at s 2 { i , j } dest {b1 { i , j }} ] > . 0 )
)
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B.2 NSSK

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
/∗ Needham−Schroeder symmetric key ∗/
/∗ ∗/
/∗ R. Needham and M. Schroeder : Using encrypt ion f o r au then t i ca t i on ∗/
/∗ in l a r g e networks of computers . CACM, 21(12) , pp . 993−−999, 1978 ∗/
/∗ ∗/
/∗ Time−stamp : <17−03−2004 Mikael Buchholtz> ∗/
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

/∗ Long term keys ∗/
( new { i =1} LK { i } ) (

/∗ I n i t i a t o r s ∗/
(
| { i =1} | { j=0} ! ( new NA { i , j })

<I { i } , S , I { i } , S , NA { i , j }>.
(S , I { i } ; x1 { i , j } ) .
decrypt x1 { i , j }

as {NA { i , j } , I { j } ; x2 { i , j } , x3 { i , j }} : LK { i }
[ at a1 { i , j } o r i g { s 2 { i , j }} ] in

<I { i } , I { j } , x3 { i , j }>.
( I { j } , I { i } ; x4 { i , j } ) .
decrypt x4 { i , j }

as { ; x5 { i , j }} : x2 { i , j }
[ at a2 { i , j } o r i g {b2 { i , j }} ] in

<I { i } , I { j } , { {x5 { i , j }} : succ } : x2 { i , j }
[ at a3 { i , j } dest {b3 { i , j }} ] > .0)

|

/∗ Responders ∗/
(
| { j=1} | { i =0} ! ( I { i } , I { j } ; y1 { i , j } ) .

decrypt y1 { i , j }
as { I { i } ; y2 { i , j }} : LK { j }
[ at b1 { i , j } o r i g { s 1 { i , j }} ] in

(new NB { i , j })
<I { j } , I { j } , {NB { i , j }} : y2 { i , j }

[ at b2 { i , j } dest { a2 { i , j } } ] > .
( I { i } , I { j } ; y3 { i , j } ) .
decrypt y3 { i , j }

as { {NB { i , j }} : succ ; } : y2 { i , j }
[ at b3 { i , j } o r i g { a3 { i , j }} ] in 0 )

|

/∗ Server ∗/
( | { i =0} | { j=0} ! ( I { i } , S , I { i } , I { j } ; z1 { i , j } ) .

(new K { i , j })
<S , I { i } ,

{ z1 { i , j } , I { j } , K { i , j } ,
{ I { i } , K { i , j }} : LK { j }
[ at s 1 { i , j } dest {b1 { i , j }} ] } : LK { i }

[ at s 2 { i , j } dest { a1 { i , j }} ] > .0)

)



Appendix C

Users guide to CLySa

C.1 Installation Guide

To be able to carry out the analysis of the protocols as described in this thesis
the software must be downloaded from the web-page:

• http://www.student.dtu.dk/~s991471/clysa/

Also the New Jersey Standard ML and the Succinct Solver must be downloaded
and installed. These are also available at the web-page. Following line in the
file lysatool/sources.cm must point to the installation of the Succinct Solver.

HORN/Formulas/sources.cm

In the directory lysatool the file runhtml.sml is used to specify which protocol
to be analysed. In this file the line:

val filename = "protocols/filename”;

In the subdirectory files for all protocols analysed in this theses are placed, the
filename is used to indicate what protocol to be analysed. To run the analysis
the interactive compiler of New Jersey Standard ML should be started using
the command sml. If lysatool is the current directory the analysis is started
by typing the following in the interactive compiler.

use ‘‘runhtml.sml’’;

When the analysis has finished the following files are produced:

Filename Description
mlp.html MetaLySa process for the parsed file
lp.html LySa process for the parsed file
out.html Analysis result for the parsed file
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Appendix D

Overview of Source Files

analysis1.sml
clysa.sml
llysa.sml
lysa2llysa.sml
lysa.sml
mlysa2lysa.sml
run.sml
set.sml

Parsing CLySa from ASCII text

CLySa processes can be parsed from ASCII text using the grammar shown in
Table 5.7 on page 68 . This grammar is an extension of what is presented in [11].
A new keyword define has been added giving the following set of keywords:

as,at,orig,dest,define,decrypt,in,new,CPDY
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From CLySa to LySa

Table E.1: Alpha α

[NAME/∈] B, I, id ` (n, il)
α−→ (n̂ id, I)

If n /∈ B
[NAME∈] B, I, id ` (n, il)

α−→ (n, il)
If n ∈ B

[NAMEP/∈] B, I, id ` (n, il)
α−→ (n̂ id, I)

If n /∈ B
[NAMEP∈] B, I, id ` (n, il)

α−→ (n, il)
If n ∈ B

[NAMEM/∈] B, I, id ` (n, il)
α−→ (n̂ id, I)

If n /∈ B
[NAMEM∈] B, I, id ` (n, il)

α−→ (n, il)
If n ∈ B

[V AR/∈] B, I, id ` (n, il)
α−→ (n̂ id, I)

If n /∈ B
[V AR∈] B, I, id ` (n, il)

α−→ (n, il)
If n ∈ B

[ENC ]

∀i ∈ [1; k] B, I, id ` Ei
α−→ E′

i

`
cp−→ `, ∀i ∈ [1; l] cpi

cp−→ cp′i

B, I, id ` {E1, · · · , Ek}`E0
[Dest cp1, · · · , cpl]

α−→
{E′

1, · · · , E′
k}`

′

E′

0
[Dest cp′1, · · · , cp′l]

Continued on next page
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Continued from previous page

[AENC ]

∀i ∈ [1; k] B, I, id ` Ei
α−→ E′

i

`
cp−→ `, ∀i ∈ [1; l] cpi

cp−→ cp′i

B, I, id ` {|E1, · · · , Ek|}`E0
[Dest cp1, · · · , cpl]

α−→
{|E′

1, · · · , E′
k|}`

′

E′

0
[Dest cp′1, · · · , cp′l]

[LIST ]
∀i ∈ [1; k] B, I, id ` Ei

α−→ E′
i

B, I, id ` [E1, · · · , Ek]
α−→ [E′

1, · · · , E′
k]

Table E.2: Crypto-points

[CP ] I, id ` (n, il)
cp−→ (# n̂̂ id, I)

Table E.3: Substitution s

[NAME ]
(TEU, E′) ∈ A
A ` E s−→ E′

[NAMEP ]
(TEU, E′) ∈ A
A ` E s−→ E′

[NAMEM ]
(TEU, E′) ∈ A
A ` E s−→ E′

[VAR]
(TEU, E′) ∈ A
A ` E s−→ E′

[ENC ]

∀i ∈ [0; k] A ` Ei
s−→ E′

i

A `{E1, · · · , Ek}`E0
[Dest cp1, · · · , cpl]

s−→
{E′

1, · · · , E′
k}`E′

0
[Dest cp1, · · · , cpl]

[AENC ]

∀i ∈ [0; k] A ` Ei
s−→ E′

i

A `{|E1, · · · , Ek|}`E0
[Dest cp1, · · · , cpl]

s−→
{|E′

1, · · · , E′
k|}`E′

0
[Dest cp1, · · · , cpl]

[LIST ]
∀i ∈ [1; k] A ` Ei

s−→ E′
i

A ` [E1, · · · , Ek]
s−→ [E′

1, · · · , E′
k]
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Table E.4: Macro insertion µ

[NIL] M,B, I,A, id ` 0
µ−→ 0

[OUT ]

∀i ∈ [1; k] B, I, id ` Ei
α−→ E′

i,A ` E′
i

s−→ E′′
i ,

M,B, I,A, id ` p µ−→ p′

M,B, I,A, id ` 〈E1, · · · , Ek〉.p µ−→
〈E′

1, · · · , E′
k〉.p′

[INP ]

∀i ∈ [1; k] B, I, id ` Ei
α−→ E′

i,A ` E′
i

s−→ E′′
i

M,B, I,A, id ` p µ−→ p′

M,B, I,A, id ` (E1, · · · ; · · · , Ek).p
µ−→

(E′
1, · · · ; · · · , E′

k).p′

[NEW ]
B, I, id ` E α−→ E′,A ` E′ s−→ E′′,M,B, I,A, id ` p µ−→ p′

M,B, I,A, id ` (νE).p
µ−→ (νE′′).p′

[ANEW ]
B, I, id ` E α−→ E′,A ` E′ s−→ E′′,M,B, I,A, id ` p µ−→ p′

M,B, I,A, id ` (ν ± E).p
µ−→ (ν ± E′′).p′

[DEC ]

B, I, id ` E α−→ E′,A ` E′ s−→ E′′,

∀i ∈ [0; k] B, I, id ` Ei
α−→ E′

i,A ` E′
i

s−→ E′′
i ,

M,B, I,A, id ` p µ−→ p′, `
cp−→ `′, ∀i ∈ [1; l] cpi

cp−→ cp′i

M,B, I,A, id ` decryptE as {E1, · · · ; · · · , Ek}`E0

[Orig cp1, · · · , cpl] in p
µ−→

decryptE′ as {E′
1, · · · ; · · · , E′

k}`
′

E′

0

[Orig cp′1, · · · , cp′l] in p′

[ADEC ]

B, I, id ` E α−→ E′,A ` E′ s−→ E′′,

∀i ∈ [0; k] B, I, id ` Ei
α−→ E′

i,A ` E′
i

s−→ E′′
i ,

M,B, I,A, id ` p µ−→ p′, `
cp−→ `′, ∀i ∈ [1; l] cpi

cp−→ cp′i

M,B, I,A, id ` decryptE as {|E1, · · · ; · · · , Ek|}`E0

[Orig cp1, · · · , cpl] in p
µ−→

decryptE′ as {|E′
1, · · · ; · · · , E′

k|}`
′

E′

0

[Orig cp′1, · · · , cp′l] in p′

Continued on next page
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Continued from previous page

[MACRO ]

(N, (farg1, · · · , fargk), q) ∈M,

∀arg ∈ (arg1, · · · , argk)B, I, id ` arg α−→ arg′,A ` arg′ s−→ arg′′,

B′ := B ∪ {farg1, · · · , fargk},
A′ := {(farg1, arg1), · · · , (fargk, argk)},
M, I,B′,A′, id′ ` q µ−→ q′,

M, I,B,A, id ` q′ µ−→ q′′.0, M,B, I,A, id ` p µ−→ p′

M,B, I,A, id ` Nid′(arg1, · · · , argk).p
µ−→ q′′.p′

Table E.5: Macro expansion η

[NIL] M,B, I ` 0
η−→ 0

[OUT ]

M,B, I ` p η−→ p′

M,B, I ` 〈E1, · · · , Ek〉.p η−→
〈E1, · · · , Ek〉.p′

[INP ]

M,B, I ` p η−→ p′

M,B, I ` (E1, · · · ; · · · , Ek).p
η−→

(E1, · · · ; · · · , Ek).p′

[NEW ]
M,B ∪ {TEU}, I ` p η−→ p′

M,B, I ` (νE).p
µ−→ (νE).p′

[ANEW ]
M,B ∪ {TEU}, I ` p η−→ p′

M,B, I ` (ν ± E).p
µ−→ (ν ± E).p′

[DEC ]

M,B, I ` p η−→ p′

M,B, I ` decryptE as {E1, · · · ; · · · , Ek}E0
in p

η−→
decryptE′ as {E1, · · · ; · · · , Ek}E0

in p′

[ADEC ]

M,B, I ` p η−→ p′

M,B, I ` decryptE as {|E1, · · · ; · · · , Ek|}E0
in p

η−→
decryptE′ as {|E1, · · · ; · · · , Ek|}E0

in p′

[BANG ]
M,B, I ` p η−→ p′

M,B, I `!p η−→!p′

[PAR]
∀i ∈ [1; k]M,B, I ` pi

η−→ p′i

M,B, I ` p1| · · · |pk
η−→ p′1| · · · |p′k

Continued on next page
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Continued from previous page

[MACRO ]

(N, (farg1, · · · , fargk), q) ∈M,

B′ := B ∪ {farg1, · · · , fargk},
A := {(farg1, arg1), · · · , (fargk, argk)},
M, I,B′,A, id ` q µ−→ q′.0, M,B, I ` p η−→ p′

M,B, I ` Nid(arg1, · · · , argk).p
η−→ q′.p′

[PAR I ]
M,B, I ∪ {i} ` p η−→ p′

M,B, I ` |i=n p
η−→ |i=n p

′

[PAR X ]
M,B, I ∪ {i} ` p η−→ p′

M,B, I ` |ni=a\j p
η−→ |ni=a\j p

′

[NEW I ]
M,B ∪ {Ei}, I ` p η−→ p′

M,B, I ` (νn
i=aEi).p

η−→ (νn
i=aE

′′
i ).p′

[ANEW I ]
M,B ∪ {Ei}, I ` p η−→ p′

M,B, I ` (νn
i=a ± Ei).p

η−→ (νn
i=a ± E′′

i ).p′

Table E.6: List expansion on lists of terms lt

[TERM LISTS ]

∀i ∈ [1; k]

If Ei = [Ei,1, · · · , Ei,j ]

Ei,1, · · · , Ei,j
lt−→ E′

i,1, · · · , E′
i′,j′

Else Ei
l−→ E′

i,1

E1, · · · , Ek
lt−→ E′

1,1, E
′
1,2, · · · , E′

k,l

Table E.7: List expansion application on terms l

[NAME ] E
l−→ E

[NAMEP ] E
l−→ E

[NAMEM ] E
l−→ E

[VAR] E
l−→ E

[ENC ]

E1, · · · , Ek
lt−→ E′

1, · · · , E′
j , E0

l−→ E′
0

A `{E1, · · · , Ek}`E0
[Dest cp1, · · · , cpl]

s−→
{E′

1, · · · , E′
j}`E′

0
[Dest cp1, · · · , cpl]

Continued on next page
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Continued from previous page

[AENC ]

E1, · · · , Ek
lt−→ E′

1, · · · , E′
j , E0

l−→ E′
0

A `{|E1, · · · , Ek|}`E0
[Dest cp1, · · · , cpl]

s−→
{|E′

1, · · · , E′
j |}`E′

0
[Dest cp1, · · · , cpl]

Table E.8: List expansion application on processes lp

[NIL] 0
lp−→ 0

[OUT ]

E1, · · · , Ek
lt−→ E′

1, · · · , E′
j , p

lp−→ p′

〈E1, · · · , Ek〉.p η−→
〈E′

1, · · · , E′
j〉.p′

[INP ]

E1, · · · , Ek
lt−→ E′

1, · · · , E′
j , p

lp−→ p′

(E1, · · · ; · · · , Ek).p
lp−→

(E′
1, · · · ; · · · , E′

j).p
′

[NEW ]
p

lp−→ p′

(νE).p
lp−→ (νE).p′

[ANEW ]
p

lp−→ p′

(ν ± E).p
lp−→ (ν ± E).p′

[DEC ]

E
l−→ E′, E1, · · · , Ek

lt−→ E′
1, · · · , E′

j , E0
l−→ E′

0 p
lp−→ p′

decryptE as {E1, · · · ; · · · , Ek}E0
in p

lp−→
decryptE′ as {E′

1, · · · ; · · · , E′
j}E′

0
in p′

[ADEC ]

E
l−→ E′, E1, · · · , Ek

lt−→ E′
1, · · · , E′

j , E0
l−→ E′

0 p
lp−→ p′

decryptE as {|E1, · · · ; · · · , Ek|}E0
in p

lp−→
decryptE′ as {|E′

1, · · · ; · · · , E′
j |}E′

0
in p′

[BANG ]
p

lp−→ p′

!p
lp−→!p′

[PAR]
∀i ∈ [1; k] pi

lp−→ p′i

p1| · · · |pk
lp−→ p′1| · · · |p′k

[PAR I ]
p

lp−→ p′

|i=n p
lp−→ |i=n p

′

Continued on next page
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Continued from previous page

[PAR X ]
p

lp−→ p′

|ni=a\j p
lp−→ |ni=a\j p

′

[NEW I ]
p

lp−→ p′

(νn
i=aEi).p

lp−→ (νn
i=aE

′′
i ).p′

[ANEW I ]
p

lp−→ p′

(νn
i=a ± Ei).p

lp−→ (νn
i=a ± E′′

i ).p′





Appendix F

Protocols in LySa

F.1 TLS macros

define Bind(A,B) := decrypt {A}$dummy [atUCP ] as {; B}$dummy [atUCP ] in
0
,
TLSSInitC(C,S) := (ν Nc)
〈C,S,Nc〉.
(S,C; yNs, ycert).
decrypt ycert as {|S; yKS |}CA+ [atUCP ] in
(ν pm)
Bindid({|Nc, yNs, pm|}$PRF [atUCP ], yMaster).
Bindid({|yMaster |}$PRF [atUCP ], yMasterhash).
Bindid({|yMaster |}$Key [atUCP ], ySession).
〈C,S, {|pm|}yKS [atUCP ], {#Seq , yMasterhash}ySession [atC destS ]〉.
(S,C; ymhash).
decrypt ymhash as {#Seq , yMasterhash; }ySession [atC origS ] in
0
,
TLSBInitC(C,S) := (ν Nc)
〈C,S,Nc〉.
(S,C; yNs, ycert).
decrypt ycert as {|S; yKS |}CA+ [atUCP ] in
(ν± KC )
(ν pm)
Bindid({|Nc, yNs, pm|}$PRF [atUCP ], yMaster).
Bindid({|yMaster |}$PRF [atUCP ], yMasterhash).
Bindid({|yMaster |}$Key [atUCP ], ySession).

〈C,S, {|C,KC+|}CA− [atUCP ], {|{|pm|}yKS [atUCP ]|}KC− [atUCP ],
{|yMasterhash|}KC− [atUCP ], {#Seq , yMasterhash}ySession [atC destS ]〉.

(S,C; ymhash).
decrypt ymhash as {#Seq , yMasterhash; }ySession [atC origS ] in
0
,
TLSSC(C,S,Mess) := 〈C,S, {#Seq ,Mess}ySession [atC destS ]〉.
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0
,
TLSRC(S,C,MMess,Mess) := (C,S; ycmess).
decrypt ycmess as {#Seq ,MMess; Mess}ySession [atC origS ] in
0
,
TLSSInitS(C,S) := (C,S; xNc).
(ν± KS )
(ν Ns)
〈S,C,Ns , {|S,KS+|}CA− [atUCP ]〉.
(C,S; xcpm, xmh).
decrypt xcpm as {|; xpm|}KS− [atUCP ] in
Bindid({|xNc,Ns, xpm|}$PRF [atUCP ], xMaster).
Bindid({|xMaster |}$PRF [atUCP ], xMasterhash).
Bindid({|xMaster |}$Key [atUCP ], xSession).
decrypt xmh as {#Seq , xMasterhash; }xSession [atS ] in
〈S,C, {#Seq , xMasterhash}xSession [atS ]〉.
0
,
TLSBInitS(C,S) := (C,S; xNc).
(ν± KS )
(ν Ns)
〈S,C,Ns , {|S,KS+|}CA− [atUCP ]〉.
(C,S; xcert , xccpm, xcertv , xmh).
decrypt xcert as {|C; xKC |}CA+ [atUCP ] in
decrypt xccpm as {|; xcpm|}xKC [atUCP ] in
decrypt xcpm as {|; xpm|}KS− [atUCP ] in
Bindid({|xNc,Ns, xpm|}$PRF [atUCP ], xMaster).
Bindid({|xMaster |}$PRF [atUCP ], xMasterhash).
decrypt xcertv as {|xMasterhash; |}xKC [atUCP ] in
Bindid({|xMaster |}$Key [atUCP ], xSession).
decrypt xmh as {#Seq , xMasterhash; }xSession [atS origC ] in
〈S,C, {#Seq , xMasterhash}xSession [atS destC ]〉.
0
,
TLSSS(S,C,Mess) := 〈S,C, {#Seq ,Mess}xSession [atS ]〉.
0
,
TLSRS(C,S,MMess,Mess) := (C,S; xcmess).
decrypt xcmess as {#Seq ,MMess; Mess}xSession [atS ] in
0
,
TLSBSS(S,C,Mess) := 〈S,C, {#Seq ,Mess}xSession [atS destC ]〉.
0
,
TLSBRS(C,S,MMess,Mess) := (C,S; xcmess).
decrypt xcmess as {#Seq ,MMess; Mess}xSession [atS origC ] in
0
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F.2 test tls

(ν± CA) (
(ν± KLDY ) (
〈CA+,KLDY −, {|LDY ,KLDY +|}CA− , {|U0,KLDY

+|}CA− ,
{|S0,KLDY

+|}CA− , {|D0,KLDY
+|}CA− ,KU 0〉.

0
)
|
|ni=1 |nj=0 !TLSSInitCone(Ai, Bj).
(ν CSECRET ij)
TLSSCone(Ai, Bj ,CSECRET ij).
TLSRCone(Ai, Bj , [], xSSECRET ij).
(ν CNEWSECRET ij)
TLSSCone(Ai, Bj ,CNEWSECRET ij).
TLSRCone(Ai, Bj , [], xSNEWSECRET ij).
0

|
|ni=0 |nj=1 !TLSSInitSone(Ai, Bj).
TLSRSone(Ai, Bj , [], yCSECRET ij).
(ν SSECRET ij)
TLSSSone(Ai, Bj ,SSECRET ij).
TLSRSone(Ai, Bj , [], yCNEWSECRET ij).
(ν SNEWSECRET ij)
TLSSSone(Ai, Bj ,SNEWSECRET ij).
0
)

F.3 test tls bilateral

(ν± CA) (
(ν± KLDY ) (
〈CA+,KLDY −, {|LDY ,KLDY +|}CA− , {|U0,KLDY

+|}CA− ,
{|S0,KLDY

+|}CA− , {|D0,KLDY
+|}CA− ,KU 0〉.

0
)
|
|ni=1 |nj=0 !TLSBInitCone(Ai, Bj).
(ν CSECRET ij)
TLSSCone(Ai, Bj ,CSECRET ij).
TLSRCone(Ai, Bj , [], xSSECRET ij).
(ν CNEWSECRET ij)
TLSSCone(Ai, Bj ,CNEWSECRET ij).
TLSRCone(Ai, Bj , [], xSNEWSECRET ij).
0

|
|ni=0 |nj=1 !TLSBInitSone(Ai, Bj).
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TLSBRSone(Ai, Bj , [], yCSECRET ij).
(ν SSECRET ij)
TLSBSSone(Ai, Bj ,SSECRET ij).
TLSBRSone(Ai, Bj , [], yCNEWSECRET ij).
(ν SNEWSECRET ij)
TLSBSSone(Ai, Bj ,SNEWSECRET ij).
0
)

F.4 LySa process for experiment 1

(ν± CA) (
(νn

i=1 KU i)
(ν± KLDY ) (
〈CA+,KLDY −, {|LDY ,KLDY +|}CA− , {|U0,KLDY

+|}CA− ,
{|S0,KLDY

+|}CA− , {|D0,KLDY
+|}CA− ,KU 0〉.

0
)
|
|ni=1 |nj=1 |nk=1 !〈Ui, Sj , Dk〉.
(Sj , Ui, Dk; yArtifact ijk).
〈Ui, Dk, [Sj , yArtifact ijk]〉.
(Dk, Ui; ycMess ijk).
decrypt ycMess ijk as {; yMessijk}KU i

[atUijk origDijk ] in
0

|
|ni=0 |nj=1 |nk=0 !(Ui, Sj , Dk; ).
(ν Artifact) (
〈Sj , Ui, [Dk,Artifact ijk]〉.
(Dk, Sj ,Artifact ijk; ).
〈Sj , Dk, [Ui,KU i]〉.
0
)

|
|ni=0 |nj=0 |nk=1 !(Ui, Dk, Sj ; zArtifact ijk).
〈Dk, Sj , zArtifact ijk〉.
(Sj , Dk, Ui; zKU i).
(νMessijk) (
〈Dk, Ui, {Messijk}zKU i

[atDijk destUijk ]〉.
0
)

)
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F.5 LySa process for experiment 2

(ν± CA) (
(νn

i=1 KU i)
(ν± KLDY ) (
〈CA+,KLDY −, {|LDY ,KLDY +|}CA− , {|U0,KLDY

+|}CA− ,
{|S0,KLDY

+|}CA− , {|D0,KLDY
+|}CA− ,KU 0〉.

0
)
|
|ni=1 |nj=1 |nk=1 !TLSSInitCA(Ui, Sj).
TLSSCA(Ui, Sj , Dk).
TLSRCA(Sj , Ui, Dk, yArtifact ijk).
TLSSInitCB(Ui, Dk).
TLSSCB(Ui, Dk, [Sj , yArtifact ijk]).
(Dk, Ui; ycMessijk).
decrypt ycMess ijk as {; yMess ijk}KU i

[atUijk origDijk ] in
0

|
|ni=0 |nj=1 |nk=0 !TLSSInitSA(Ui, Sj).
TLSRSA(Ui, Sj , Dk, []).
(ν Artifact) (
TLSSSA(Sj , Ui, [Dk,Artifact ijk]).
TLSBInitSC(Dk, Sj).
TLSBRSC(Dk, Sj ,Artifact ijk, []).
TLSBSSC(Sj , Dk, [Ui,KU i]).
0
)

|
|ni=0 |nj=0 |nk=1 !TLSSInitSB(Ui, Dk).
TLSRSB(Ui, Dk, [Sj ], [zArtifact ijk]).
TLSBInitCC(Dk, Sj).
TLSSCC(Dk, Sj , zArtifact ijk).
TLSRCC(Sj , Dk, Ui, zKU i).
(νMessijk) (
〈Dk, Ui, {Mess ijk}zKU i

[atDijk destUijk ]〉.
0
)

)

F.6 LySa process for experiment 3

(ν± CA) (
(νn

i=1 KU i)
(ν± KLDY ) (
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〈CA+,KLDY −, {|LDY ,KLDY +|}CA− , {|U0,KLDY
+|}CA− ,

{|S0,KLDY
+|}CA− , {|D0,KLDY

+|}CA− ,KU 0〉.
0
)
|
|ni=1 |nj=1 |nk=1 !TLSSInitCA(Ui, Sj).
TLSSCA(Ui, Sj , Dk).
TLSRCA(Sj , Ui, Dk, yArtifact ijk).
TLSSInitCB(Ui, Dk).
TLSSCB(Ui, Dk, [Sj , yArtifact ijk]).
TLSRCB(Dk, Ui, [], ycMess ijk).
decrypt ycMess ijk as {; yMessijk}KU i

[atUijk origDijk ] in
0

|
|ni=0 |nj=1 |nk=0 !TLSSInitSA(Ui, Sj).
TLSRSA(Ui, Sj , Dk, []).
(ν Artifact) (
TLSSSA(Sj , Ui, [Dk,Artifact ijk]).
TLSBInitSC(Dk, Sj).
TLSBRSC(Dk, Sj ,Artifact ijk, []).
TLSBSSC(Sj , Dk, [Ui,KU i]).
0
)

|
|ni=0 |nj=0 |nk=1 !TLSSInitSB(Ui, Dk).
TLSRSB(Ui, Dk, [Sj ], [zArtifact ijk]).
TLSBInitCC(Dk, Sj).
TLSSCC(Dk, Sj , zArtifact ijk).
TLSRCC(Sj , Dk, Ui, zKU i).
(νMessijk) (
TLSSSB(Dk, Ui, {Messijk}zKU i

[atDijk destUijk ]).
0
)

)

F.7 LySa process for experiment 4

(ν± CA) (
(νn

i=1 KU i)
(ν± KLDY ) (
〈CA+,KLDY −, {|LDY ,KLDY +|}CA− , {|U0,KLDY

+|}CA− ,
{|S0,KLDY

+|}CA− , {|D0,KLDY
+|}CA− ,KU 0〉.

0
)
|
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|ni=1 |nj=1 |nk=1 !TLSBInitCA(Ui, Sj).
TLSSCA(Ui, Sj , Dk).
TLSRCA(Sj , Ui, Dk, yArtifact ijk).
TLSSInitCB(Ui, Dk).
TLSSCB(Ui, Dk, [Sj , yArtifact ijk]).
TLSRCB(Dk, Ui, [], ycMess ijk).
decrypt ycMess ijk as {; yMess ijk}KU i

[atUijk origDijk ] in
0

|
|ni=0 |nj=1 |nk=0 !TLSBInitSA(Ui, Sj).
TLSBRSA(Ui, Sj , Dk, []).
(ν Artifact) (
TLSBSSA(Sj , Ui, [Dk,Artifact ijk]).
TLSSInitSC(Dk, Sj).
TLSRSC(Dk, Sj ,Artifact ijk, []).
TLSSSC(Sj , Dk, [Ui,KU i]).
0
)

|
|ni=0 |nj=0 |nk=1 !TLSSInitSB(Ui, Dk).
TLSRSB(Ui, Dk, [Sj ], [zArtifact ijk]).
TLSSInitCC(Dk, Sj).
TLSSCC(Dk, Sj , zArtifact ijk).
TLSRCC(Sj , Dk, Ui, zKU i).
(νMessijk) (
TLSSSB(Dk, Ui, {Messijk}zKU i

[atDijk destUijk ]).
0
)

)

F.8 LySa process for experiment 5

(ν± CA) (
(ν± KLDY ) (
〈CA+,KLDY −, {|LDY ,KLDY +|}CA− , {|U0,KLDY

+|}CA− ,
{|S0,KLDY

+|}CA− , {|D0,KLDY
+|}CA− ,KU 0〉.

0
)
|
|ni=1 |nj=1 |nk=1 !TLSBInitCA(Ui, Sj).
TLSSCA(Ui, Sj , Dk).
TLSRCA(Sj , Ui, Dk, [yKU ijk, yArtifact ijk]).
TLSSInitCB(Ui, Dk).
TLSSCB(Ui, Dk, [Sj , yArtifact ijk]).
TLSRCB(Dk, Ui, [], ycMess ijk).
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decrypt ycMess ijk as {; yMessijk}yKU ijk
[atUijk origDijk ] in

0

|
|ni=0 |nj=1 |nk=0 !TLSBInitSA(Ui, Sj).
TLSBRSA(Ui, Sj , Dk, []).
(ν Artifact ijk) (
(νKU ijk) (
TLSBSSA(Sj , Ui, [Dk,KU ijk,Artifact ijk]).
TLSBInitSC(Dk, Sj).
TLSBRSC(Dk, Sj ,Artifact ijk, []).
TLSBSSC(Sj , Dk, [Ui,KU ijk]).
0
)
)

|
|ni=0 |nj=0 |nk=1 !TLSSInitSB(Ui, Dk).
TLSRSB(Ui, Dk, [Sj ], [zArtifact ijk]).
TLSBInitCC(Dk, Sj).
TLSSCC(Dk, Sj , zArtifact ijk).
TLSRCC(Sj , Dk, Ui, zKU ijk).
(νMessijk) (
TLSSSB(Dk, Ui, {Messijk}zKU ijk

[atDijk destUijk ]).
0
)

)

F.9 LySa process for experiment 6

(ν± CA) (
(ν± KLDY ) (
〈CA+,KLDY −, {|LDY ,KLDY +|}CA− , {|U0,KLDY

+|}CA− ,
{|S0,KLDY

+|}CA− , {|D0,KLDY
+|}CA− ,KU 0〉.

0
)
|
|ni=1 |nj=1 |nk=1 !TLSBInitCA(Ui, Sj).
TLSSCA(Ui, Sj , Dk).
TLSRCA(Sj , Ui, Dk, [yKU ijk, yArtifact ijk]).
TLSSInitCB(Ui, Dk).
TLSSCB(Ui, Dk, [Sj , yArtifact ijk]).
(Dk, Ui; ycMess ijk).
decrypt ycMess ijk as {; yMessijk}yKU ijk

[atUijk origDijk ] in
0

|
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|ni=0 |nj=1 |nk=0 !TLSBInitSA(Ui, Sj).
TLSBRSA(Ui, Sj , Dk, []).
(ν Artifact ijk) (
(ν KU ijk) (
TLSBSSA(Sj , Ui, [Dk,KU ijk,Artifact ijk]).
TLSBInitSC(Dk, Sj).
TLSBRSC(Dk, Sj ,Artifact ijk, []).
TLSBSSC(Sj , Dk, [Ui,KU ijk]).
0
)
)

|
|ni=0 |nj=0 |nk=1 !TLSSInitSB(Ui, Dk).
TLSRSB(Ui, Dk, [Sj ], [zArtifact ijk]).
TLSBInitCC(Dk, Sj).
TLSSCC(Dk, Sj , zArtifact ijk).
TLSRCC(Sj , Dk, Ui, zKU ijk).
(νMessijk) (
〈Dk, Ui, {Mess ijk}zKU ijk

[atDijk destUijk ]〉.
0
)

)

F.10 LySa process for experiment 7

(ν± CA) (
(νn

i=0 KU i)(
(ν± KLDY ) (
〈CA+,KLDY −, {|LDY ,KLDY +|}CA− , {|U0,KLDY

+|}CA− ,
{|S0,KLDY

+|}CA− , {|D0,KLDY
+|}CA− ,KU 0〉.

0
)
|
|ni=1 |nj=1 |nk=1 !〈Ui, Dk〉.
(Dk, Ui; yD ijk, yS ijk).
TLSSInitCA(Ui, yS ijk).
TLSSCA(Ui, yS ijk, yD ijk).
TLSRCA(yS ijk, Ui, yD ijk, yArtifact ijk).
TLSSInitCB(Ui, yD ijk).
TLSSCB(Ui, yD ijk, [yS ijk, yArtifact ijk]).
TLSRCB(yD ijk, Ui, [], ycMess ijk).
decrypt ycMess ijk as {; yMess ijk}KU i

[atUijk origDijk ] in
0

|
|ni=0 |nj=1 |nk=1 !TLSSInitSA(Ui, Sj).
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TLSRSA(Ui, Sj , Dk, []).
(ν Artifact ijk) (
TLSSSA(Sj , Ui, [Dk,Artifact ijk]).
TLSBInitSC(Dk, Sj).
TLSBRSC(Dk, Sj ,Artifact ijk, []).
TLSBSSC(Sj , Dk, [Ui,KU i]).
0
)

|
|ni=0 |nj=1 |nk=1 !(Ui, Dk; ).
〈Dk, Ui, Dk, Sj〉.
TLSSInitSB(Ui, Dk).
TLSRSB(Ui, Dk, [Sj ], [zArtifact ijk]).
TLSBInitCC(Dk, Sj).
TLSSCC(Dk, Sj , zArtifact ijk).
TLSRCC(Sj , Dk, Ui, zKU i).
(νMessijk) (
TLSSSB(Dk, Ui, {Messijk}zKU i

[atDijk destUijk ]).
0
)

))

F.11 LySa process for experiment 8

(ν± CA) (
(νn

i=0 KU i)(
(ν± KLDY ) (
〈CA+,KLDY −, {|LDY ,KLDY +|}CA− , {|U0,KLDY

+|}CA− ,
{|S0,KLDY

+|}CA− , {|D0,KLDY
+|}CA− ,KU 0〉.

0
)
|
|ni=1 |nj=1 |nk=1 !TLSSInitCD(Ui, Dk).
TLSSCD(Ui, Dk, []).
TLSRCD(Dk, Ui, [], [yD ijk, yS ijk]).
TLSSInitCA(Ui, yS ijk).
TLSSCA(Ui, yS ijk, yD ijk).
TLSRCA(yS ijk, Ui, yD ijk, yArtifact ijk).
TLSSInitCB(Ui, yD ijk).
TLSSCB(Ui, yD ijk, [yS ijk, yArtifact ijk]).
TLSRCB(yD ijk, Ui, [], ycMess ijk).
decrypt ycMess ijk as {; yMessijk}KU i

[atUijk origDijk ] in
0

|
|ni=0 |nj=1 |nk=1 !TLSSInitSA(Ui, Sj).
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TLSRSA(Ui, Sj , Dk, []).
(ν Artifact ijk) (
TLSSSA(Sj , Ui, [Dk,Artifact ijk]).
TLSBInitSC(Dk, Sj).
TLSBRSC(Dk, Sj ,Artifact ijk, []).
TLSBSSC(Sj , Dk, [Ui,KU i]).
0
)

|
|ni=0 |nj=1 |nk=1 !TLSSInitSD(Ui, Dk).
TLSRSD(Ui, Dk, [], []).
TLSSSD(Dk, Ui, [Dk, Sj ]).
TLSSInitSB(Ui, Dk).
TLSRSB(Ui, Dk, [Sj ], [zArtifact ijk]).
TLSBInitCC(Dk, Sj).
TLSSCC(Dk, Sj , zArtifact ijk).
TLSRCC(Sj , Dk, Ui, zKU i).
(νMessijk) (
TLSSSB(Dk, Ui, {Messijk}zKU i

[atDijk destUijk ]).
0
)

))





Appendix G

Test of CLySa Expansion

G.1 Alpha Conversion

Before Expansion:

define Test(A,B) := 〈X,A,K+, k+,K−, k−〉.
(; x,B).
〈{A,B}k− [atA destB ], {|A,B|}k[atA destB ]〉.
0

in

(ν± k) (
Testid(a, b).
0
)

After Expansion:

(ν± k) (
〈Xid , a,Kid+, k+,Kid−, k−〉.
(; xid , b).
〈{a, b}k− [atAid1 destBid1 ], {|a, b|}k[atAid2 destBid2 ]〉.
0
)

G.2 Substitution

Before Expansion:

define Test(A,B,C,D) := decrypt A as {; B}C+ [atUCP ] in
decrypt A as {|; B|}C− [atUCP ] in
(x; y).
0
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in

Testid(a, b, c, d).
0

After Expansion:

decrypt a as {; b}c[atUCP ] in
decrypt a as {|; b|}c[atUCP ] in
(xid ; yid).
0

G.3 Macro Insertion

Before Expansion:

define Inside(F,G) := 〈F,G, x, k+, zzz 〉.
0
,
T est(A,B) := (ν x) (
(ν± k) (
(A; x).
Insiden(A,B).
decrypt A as {B; z}key [atUCP ] in
decrypt B as {|A; z|}k+ [atUCP ] in
0
)
)

in

(ν key) (
Testid(C,D).
0
)

After Expansion:

(ν key) (
(ν xid) (
(ν± kid) (
(C; xid).
〈C,D, xnid , knid+, zzznid〉.
decrypt C as {D; zid}key [atUCP ] in
decrypt D as {|C; zid |}kid+ [atUCP ] in
0
)
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)
)

G.4 Macro Expansion

Before Expansion:

define Test(D,E) := 〈D,E, b, k〉.
0

in

(νn
± i=1 key)(

(νn
j=1 name)(
|ni=1 !〈A,B〉.
T estIDa(A,B).
0
|
|nj=1 |ni=1 i6=j !(ν b) (
(ν± k) (
(A,B; x, y).
decrypt x as {A,B; z}key [atUCP ] in
decrypt y as {|A,B; z|}key [atUCP ] in
TestIDb(A,B).
0
)
)

))

After Expansion:

(νn
± i=1 key)(

(νn
j=1 name)(
|ni=1 !〈A,B〉.
〈A,B, bIDai, kIDai〉.
0
|
|nj=1 |ni=1 i6=j !(ν b) (
(ν± k) (
(A,B; x, y).
decrypt x as {A,B; z}key [atUCP ] in
decrypt y as {|A,B; z|}key [atUCP ] in
〈A,B, b, k〉.
0
)
)

))
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G.5 List Expansion

Before Expansion:

(νn
± i=1 key)(

(νn
j=1 name)(
|ni=1 !〈A, [Ai, Ai, Ai, []], [B], B〉.
〈[{[A], A}A[atUCP ]]〉.
〈{[A]}{A,B}key [at UCP ][atUCP ]〉.
〈[{|[A], A|}A[atUCP ]]〉.
〈{|A|}{|A,B|}key [at UCP ][atUCP ]〉.
0
|
|nj=1 |ni=1 i6=j !(ν b) (
(ν± k) (
([Bj , Bj , Bj ], k

−, k+, B; [x], [], y).
decrypt A as {A, [B]; x}{[A]}key [at UCP ][atUCP ] in
decrypt A as {|A, [B]; x|}{|[A]|}

k− [at UCP ][atUCP ] in
0
)
)

))

After Expansion:

(νn
± i=1...n key)

(νn
j=1...n name)
|ni=1...n !〈A,Ai, Ai, Ai, B,B〉.
〈{A,A}A[atUCP ]〉.
〈{A}{A,B}key [at UCP ][atUCP ]〉.
〈{|A,A|}A[atUCP ]〉.
〈{|A|}{|A,B|}key [at UCP ][atUCP ]〉.
0
|
|nj=1...n |ni=1...n i6=j !(ν b) (ν± k) (Bj , Bj , Bj , k

−, k+, B; x, y).
decrypt A as {A,B; x}{A}key [at UCP ][atUCP ] in
decrypt A as {|A,B; x|}{|A|}

k− [at UCP ][atUCP ] in
0

G.6 Numbering

Before Expansion:

(νn
i=1 j=1 Kij)(

(νn
± i=1 j=1 Hij)(
|ni=1 (ν#x ) (
〈{#A,#B}#k [at#A dest #B ],#B〉.
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(#A; #x ).
decrypt #x as {#A,#B ; #x}#k [at #A orig #B ] in
0
)
|
|nj=1 (ν± #x ) (
〈#A,#B〉.
({|#A,#B |}#k [at #A dest#B ]; #x ).
decrypt #x as {|#A,#B ; #x |}#k [at #A orig #B ] in
0
)

))

After Expansion:

(νn
i=1 j=1 Kij)(

(νn
± i=1 j=1 Hij)(
|ni=1 (ν x1 ) (
〈{A1 ,B1}k1 [atA1 destB1 ],B2 〉.
(A2 ; x2 ).
decrypt x3 as {A3 ,B3 ; x4}k2 [atA2 orig B2 ] in
0
)
|
|nj=1 (ν± x1 ) (
〈A1 ,B1 〉.
({|A2 ,B2 |}k1 [atA1 destB1 ]; x2 ).
decrypt x3 as {|A3 ,B3 ; x4 |}k2 [atA2 orig B2 ] in
0
)

))
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