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Abstract

In the Dial-a-Ride problem (DARP) customers send transportation requests to an
operator. A request consists of a specified pickup location and destination location
along with a desired departure or arrival time and demand. The aim of DARP is
to minimize transportation cost while satisfying customerservice level constraints
(Quality of Service).

In this paper we present a genetic algorithm for solving the DARP. The algo-
rithm is based on the classical cluster-first route-second approach, where it alternates
between assigning customers to vehicles using a genetic algorithm and solving inde-
pendent routing problems for the vehicles using a routing heuristic. The algorithm is
implemented in Java and tested on publicly available data sets.

1 Introduction

In the Dial-a-Ride problem (DARP) customers request transportation from a transporta-
tion operator. A request consists of a specified pickup (origin) location and drop-off
(destination) location along with a desired departure or arrival time and the number of
passengers to be transported.

The problem consists of determining the best routing schedule for the vehicles, which
minimizes overall transportation costs while maintaininga high level of customer service.
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The service level estimation can be based on the ride times ofthe customers, deviations
from desired departure or arrival times, etc. The challengeis to combine the conflicting
factors: low cost of transportation versus a high level of service.

An example of a DARP transportation system is specialized transportation, i.e. the
transportation of children, disabled, elderly people, etc. These specialized transportations
are usually provided by local government (see eg. [1]).

The main contribution of this paper is the demonstration that genetic algorithms can
be effectively implemented in a cluster-first route-secondapproach to generate heuristic
solutions to the DARP. The clustering is solved using the genetic algorithm and the routing
will be determined by a modified space-time nearest neighborheuristic developed by
Baugh et al. [3].

The solution method will be implemented in Java and tested using data sets generated
by Cordeau and Laporte [5].

2 The Dial-a-ride problem

The DARP has been formulated in a number of ways usually depending on the underlying
real-life problem. The problem formulation here is focusedon practical considerations
present in the Danish transportation sector, see Jorgensen[8].

In the Dial-a-Ride transportation system modeled in this paper customers have to be
transported from door to door but not necessarily directly,i.e., customers are allowed to
share a ride but there are no fixed routes. This is for example the case in the transportation
of elderly and disabled people in Denmark. All vehicles start and end their routes at a
depot, but not necessarily the same depot.

We will consider the static case where all transportation requests are known in ad-
vance. We define an upper limit on the number of vehicles available and assume that
customers cannot be rejected. All vehicles have identical capacityCk. Some instances
might therefore have a feasible solution.

A time window for all stops, which can be specified either by the customer or the
transportation operator, is defined. The time windows are considered to be soft time win-
dows. Soft time windows are also useful when evaluating the tradeoffs between service
requirements and cost requirements. Solutions with soft time windows indicate the degree
of violation, thus allowing penalty methods to distinguishbetween a given pair of infea-
sible solutions in attempting to find a feasible region. The time windows are constructed
based on the desired pickup or drop-off time given by the customer.

A upper bound on the length of the route duration, i.e. the time it takes the vehicle
to leave the depot, service all the customers on its route andreturn to the depot is set.
If the maximum route duration is exceeded it results in overtime pay to the driver or
compensation by days off. Therefore a violation is penalized in the objective function.

The cost in the DARP is calculated by a multi-objective function. The multi-objective
function will be handled by combining the multiple objectives into one scalar objective
by minimizing the positively weighted sum of the objectives. The cost of transportation
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of the customers is estimated in this project to be the actualtransportation cost and a “cost
of inadequate service”.

Transportation cost consists of transportation time whichis defined as the total routing
time of all the vehicles used in the transportation. The costof bad service is defined by the
excess ride time of customers and waiting time in the bus. Excess ride time is the extra
time a customer is in the vehicle compared to a direct transportation from pickup to drop-
off locations. The excess ride time gives a better estimate of the customer inconvenience
than the total transportation time.

Constraints not included in the model are for example constraints concerning union
rules and even distribution of customers on the routes. Distributing the customers evenly
is desirable since it levels out the workload of the drivers.Costs not included are fixed
costs such as capital cost, fixed costs for vehicles and depots, salary costs (assuming
constant number of staff), etc.

Assume that we have a set ofn customer requests. Each request specifies a pickup
location,i, and delivery location,n + i. The customers also specify a demand,∆i, which
is the number of seats required for the passengers that are tobe transported from location
i to n + i during a given time, and either a preferred pickup time,ai, or drop-off time,
bn+i. Each vehicle,k, starts at an origin depoto(k) and ends at a destination depotd(k)
and each vehicle has a constant capacityCk. Now we can define the following sets:

P = {1, . . . , n} set of pickup locations
D = {n + 1, . . . , 2n} set of delivery locations
N = P ∪ D set of pickup and delivery locations
K set of vehicles
V ⊂ K set of vehicles used in solution
A = N ∪ {o(k), d(k)} set of all possible stopping locations for all vehiclesk ∈ K

We also define the following parameters:

ai earliest time that service is allowed to start at in locationi

bi latest time that service is allowed to start at in locationi

si service time needed at locationi

ti,j travelling time or distance from locationi to j

li change in load at locationi
rk maximum route duration for vehiclek
ui maximum ride time for a customer with pickup at locationi

The following decision variables will be used in the model:

xk
i,j =

{

1, if vehiclek services a customer at locationi and the next customer at locationj

0, otherwise
m number of vehicles used in the solution, i.e.|V | = m

T k
i time at which vehiclek starts its service at locationi

Lk
i load of vehiclek after servicing locationi

W k
i waiting time of vehiclek before servicing locationi
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In the model the weights in the objective function will be thefollowing:

w1 weight on customers transportation time
w2 weight on excess ride time
w3 weight on waiting time for customers
w4 weight on work time
w5 weight on time window violation
w6 weight on excess of maximum ride time
w7 weight on excess work time

The resulting mathematical model then becomes:

min w1
∑

k∈V

∑

i,j∈A
ti,jx

k
i,j + w2

∑

k∈V

∑

i∈P
(T k

n+i − si − T k
i − ti,n+i) + w3

∑

k∈V

∑

i∈N
W k

i (Lk
i − li)+

w4
∑

k∈V
(T k

d(k) − T k
o(k)) + w5

∑

k∈V

∑

i∈A
max(0, ai − T k

i , T k
i − bi)+

w6
∑

k∈V

∑

i∈P
max(0, (T k

n+i + T k
i ) − ui) + w7

∑

k∈V
max(0, (T k

d(k) − T k
o(k)) − rk)

(1)
Subject to

∑

k∈V

∑

j∈P∪d(k)

xk
o(k),j = m (2)

∑

k∈V

∑

i∈D∪o(k)

xk
i,d(k) = m (3)

∑

j∈A

xk
i,j −

∑

j∈A

xk
j,i = 0 ∀k ∈ V, i ∈ N (4)

∑

k∈V

∑

j∈N

xk
i,j = 1 ∀i ∈ P (5)

∑

j∈N

xk
i,j −

∑

j∈N

xk
j,n+i = 0 ∀k ∈ V, i ∈ P (6)

xk
i,j(T

k
i + si + ti,j + W k

j − T k
j ) ≤ 0 ∀k ∈ V, i, j ∈ A (7)

T k
i + si + ti,n+i + W k

j − T k
i+n ≤ 0 ∀k ∈ V, i ∈ P (8)

xk
i,j(L

k
i + lj − Lk

j ) = 0 ∀k ∈ V, i, j ∈ A (9)

li ≤ Lk
i ≤ Ck ∀k ∈ V, i ∈ P (10)

Lk
o(k) = Lk

d(k) = 0 ∀k ∈ V (11)

xk
i,j ∈ {0, 1} ∀k ∈ K, i, j ∈ A (12)

The objective function (1) of the dial-a-ride problem is a multi-criteria objective func-
tion. The objective function consists of the competing objectives of minimizing the total
transportation cost, and the inconvenience to the customers. The total transportation cost
is here estimated to be proportional to the total time used when transporting the customers
by all the vehicles, the total number of vehicles used in the solution, and the total route
time of all vehicles used. Customer inconvenience is estimated to be proportional to the
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total excess ride time for the customers and the total waiting time for the customers in the
vehicles.

In order to handle this multi-criteria objective function each part of the objective func-
tion is multiplied by a weight. These weights are denotedw1, w2, . . . , w7. The values of
the weights are then used to decide the relative weight of each criteria in the overall prob-
lem.

The depot constraints (2) and (3) describe the requirement that each vehicle starts and
ends in a depot. The constraints allow a vehicle to leave an origin depot and drive straight
to a destination depot without servicing any customers.

The routing constraints (4) simply state that all locationsmust be visited. They ensure
that there are equally many vehicles that arrive at a location as depart from the same
location.

The precedence constraints (5) and (6) represent the requirement that each customer
must first be picked up at his pickup location and then droppedoff at his delivery location
by thesame vehicle. The first of these constraints ensures that there isexactly one vehicle
which leaves every origin location, i.e. every request is met. The second set of constraints
states that the origin and destination locations of a customer are serviced during the same
trip.

Constraint (7) ensures that the arrival time at locationj (T k
j −W k

j ) must be later than
the sum of departure time from locationi (T k

i + si) and traveling time,ti,j , between the
locations if that leg is to be part of the route.

To obtain a feasible solution it is furthermore necessary tovisit first the origin point of
a customer and then the delivery point. That is, the arrival time atn + i must be later than
or equal to the sum of the departure time from locationi and the traveling time,ti,n+i,
between the locations. This results in constraints (8).

The time windows for inbound customers are set according to the request of the cus-
tomer regarding earliest pickup time. These desired times then set the lower limit for the
pickup time window, i.e. equal toai. Usually the transportation operator or the authority
specifies a time limit on the maximum deviation from these desired times,dev, usually
10-30 minutes. The upper limit on the pickup time window is set as:bi = ai + dev.

The lower limit on the delivery time window is the earliest possible arrival time, i.e.
the time at which the customer would arrive at the destination if picked up at the earliest
pickup time, serviced, and transported directly from the origin to destination, that is:
an+i = ai + si + ti,n+i.

The upper limit is set as the latest feasible arrival time forthe customer, for which
the limits on ride time and pickup time are observed. The ridetime constraint can be
formulated using the concept of maximum excess ride time xxref. The excess ride time is
the difference between actual ride time and direct transportation time. Usually an upper
limit on the excess ride time,E, is specified for the customers. Excess ride time is the
extra time the customer has to spend in the vehicle compared to being transported directly
from pickup location to drop-off location. This excess timeis often specified as a linear
equation, e.g. 5 minutes +1

2
· (direct transport time). In this model there is a limit on the

total time each customer must spend in the vehicle. This allows setting different criteria
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t
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i i n+i n+i
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Figure 1: Setting the time windows for the drop-off location[an+i, bn+i] given the pickup
locations time window[ai, bi], the direct transportation timeti,n+i from i to n + i, service
timesi at i and the upper limit on excess ride timeE (Figure from [5]).

for different customers. Then the upper time limit for the drop off location becomes:
bn+i = bi + si + ti,n+i + E. These time window calculations are shown in Figure 1.

In the case of an outbound customer, the customer specifies the latest drop-off time,
which is set as the upper limit on the drop-off time window, equal tobn+i. The other time
window limits are then found using the same method backwardsin time.

Constraints (10) ensures that the vehicle capacity is not exceeded.
In order to keep track of the number of seats needed for customers in each vehicle

throughout the route, the term of load for each vehicle is introduced. The load of a vehicle
at a point in time is the number of seats needed for the customers in the vehicle at that
point in time. When a vehicle has serviced a pickup locationi, the change in load is
represented byli = ∆i and the change in load after servicing a drop-off locationn + i is
ln+i = −∆i.

The actual load of vehiclek after servicing locationi is Lk
i . The load of the vehicle

after servicing the next location in the route,j, is thenLk
j = Lk

i + lj. To make sure the
capacity for a vehicle is not exceeded constraints (9) are introduced to the model. This
ensures that the loads are correctly calculated for the edges used in the route. Finally,
constraints (10) ensures that vehicle capacity is not exceeded and constraints (11) ensures
that he actual loads of the vehicles are set to zero at the depots.

The actual arrival time of a customer at the destination location depends on different
factors in the objective function, such as the time window violation, excess ride time, ride
time violation, route duration, route duration violation,and waiting time.

If the customer arrives on time at his destination within thetime windows, the cost
contributed by the arrival of that customer is, if any, the excess ride time and the waiting
time in an idle vehicle. On the other hand, if the customer is late, the time that passes
from the upper bound of the time window to actual arrival is both the excess ride time
and penalty for every minute the arrival time exceeds the upper time limit. If in addition
the ride time of the customer exceeds the maximum ride time, apenalty is added to both
the cost of excess ride time and time window violation. In this case we assume that
the maximum ride time for the customer plus the pickup time ishigher than the upper
bound on the drop-off time window. This case is presented in Figure 2. Thus the cost
of delivering a customer late increases in steps depending on the three constraints and of
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Figure 2: The influence of the arrival time on cost. The slope (α) of the cost increases in
steps depending on the arrival time.

course on how late the customer is delivered.
If a vehicle arrives too early at a location, it has to wait. Two cases may arise: 1)

no customers are present in the vehicle; or 2) one or more customers are waiting in the
vehicle. In the first case, the minutes the vehicle has to waitadd a penalty to the cost for
violating the time windows, the route duration increases, and a route duration violation
may occur. The reason for penalizing a time window violationeven though the vehi-
cle is empty is to have the same implementation of the time window violation. If there
are customers present in the vehicle, the waiting minutes will add to the cost in several
ways: Penalty for time window violation, the waiting time multiplied by the number of
customers present in the idling vehicle, excess ride time for the customers, route duration
increases, and possibly ride time or route duration violations as well.

The DARP can be proven to beNP-hard (see e.g. Baugh et al. [3]). The proof is based
on the relatedNP-hard traveling salesman problem with time windows, into which the
DARP can be transformed.

3 Related work

This section contains a short description of previous work within the field of the DARP.
The work mentioned here is selected based on its close relations to the problem definition
and/or solution method found in this paper.

7



The work by Jaw et al. [6] in 1986 is generally considered pioneer research within
DARP, and describes a sequential insertion heuristic algorithm. The objective function
combines the minimization of operator costs and the minimization of customer incon-
venience with respect to both customer ride time and deviation from desired pickup or
drop-off times specified by each customer. The different parts of the objective function
are balanced by multiplying them by user-specified constants. In the computational ex-
periments the algorithm is tested on a number of simulated data sets with 250 customers,
and 4 or 5 vehicles and real data sets with 2617 customers and 28 vehicles. The execution
time for the simulated data set is about 20 seconds and about 12 minutes for the real data
set.

In Baugh et al. [3] the DARP is solved using simulated annealing. The work is based
on the classical cluster-first, route-second approach. Customers are first organized into
clusters and then the routes are developed for each individual cluster. The clustering
is performed using simulated annealing while the routing isperformed using a modi-
fied space-time nearest neighbour heuristic. The modified space-time nearest neighbour
heuristic used to create routes for each cluster is a greedy algorithm. The results obtained
are based on a set of real-life data set with 300 customers as well as on a generated data
set with 25 customers. No CPU times are given in the paper. It is claimed by the authors
that the algorithm gives near globally optimal solutions.

Cordeau and Laporte [5] describe a tabu search heuristic. Their algorithm initiates
with a randomly generated initial solution. In order to avoid cycling, solutions possessing
attributes of recently visited solutions, are put on the tabu list and are therefore forbidden
for a number of iterations. Infeasible solutions may be explored during the search, as
constraints are relaxed and violations are added to the objective function. After each
iteration the parameters are dynamically adjusted. The objective function consists of the
total transportation cost of the vehicles and the violationterms. Three variants of the
heuristic were tested using both randomly generated data sets with 24 to 144 customers
and six real-life data sets containing either 200 or 295 customers. The execution times
for the randomly generated data sets are about 2 minutes for the smallest data sets and up
to 93 minutes for the largest data sets. The execution times for the real-life data sets are
given to be between 13 and 268 minutes.

Jih et al. [7] solve the single vehicle pickup and delivery problem with time windows
using a genetic algorithm. In the algorithm the chromosome representation of a route is
defined by letting the chromosome represent the locations ina traveling sequence of the
route. The algorithm permits exploration of infeasible solutions during the search. The
objective function is the sum of the total travel cost of the vehicle and the penalty for
violating constraints. Four different types of crossover are considered. The algorithm is
tested on randomly generated data sets with up to 100 customers. Execution time is about
38 minutes for the largest data sets. The results of the algorithm are compared with the
optimal values which are available for the smaller data sets(up to 40 customers). The best
results for the genetic algorithm are obtained by using the uniform order-based crossover.
It is able to reach the optimum on the average in 83% of the runsfor the data sets with up
to 40 customers.
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Paper Algorithm Objectives Test results
size type time

[6] sequential insertion
heuristic

min operator costs,
min customer ride
times, min devia-
tion from time win-
dows

250 random 20 sec.

2617 real-life 12 min.
[3] cluster-first route-

second, simulated
annealing

min total distance,
min number of ve-
hicles, min incon-
venience

25 random n.a.

300 real-life n.a.
[5] Tabu Search min transportation

cost, min penalty
violations

144 random 93 min.

295 real-life 768 min.
[7] Genetic Algorithm min transportation

cost, min penalty
violation

100 random 38 min.

Table 1: Overview of previous related work for the DAR problem. Note that [7] solves
the related Pickup-and-Delivery problem.

4 The Genetic Algorithm

Genetic Algorithms (GA) have shown good performance on a number of related routing
problems (see eg. [11, 9]). It was therefore an obvious choice for the clustering level in
our two-phase approach.

GA is based on maintaining a set of solutions, called a population. Therefore an initial
population generator is needed before the GA can start. In this case, the GA begins by
creating an initial population, in which all the customers are clustered randomly. For an
in-depth introduction into GA see [10].

One way of implementing a genetic algorithm for the DARP in one step is to adopt the
chromosome representation used in Pereira et al. [9]. In thechromosome representation
both the allocation of customers to vehicles and the order ofthe customers on the routes
are encoded. The representation is used when solving the vehicle routing problem but the
extension to the DARP is problematic. The main obstacles arethe precedence constraints
(5) and (6). In order to solve this problem some elaborate fix-up would be needed each
time a new individual is created.

Instead the classical split in clustering and routing is used. In the clustering part
as many groups of customers as there are available transportation vehicles are created.
Each customer can only belong to one group and only one group can be assigned to each
vehicle. The clustering of customers is solved using the genetic algorithm. When all the
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customers have been grouped, a route for each vehicle is constructed. The routing involves
deciding the order of the stops of the vehicle as well as the time table for the vehicle. The
routing is solved using an extended version of the modified space-time nearest neighbor
heuristic developed by Baugh et al. [3]. Figure 3 presents anoverview of the solution
process.

Initial population
constructed

NO

YESEND

GA
cost calculated

and 
Routes developed

STOP

Figure 3: An overview of the solution process.

The construction of the GA involves decisions regarding which chromosome represen-
tation fits the solution to the problem, which population size is adequate, how the initial
population should be generated, what stopping criteria to use, how the fitness calculations
should be made, what kind of selection mechanism is superior, and which modifying
operators to use.

In order for an individual in the population to represent a solution to the problem
of allocating customers to vehicles it is decided to use a twolevel binary chromosome
representation.

The representation is set up as a matrix. There are as many rows as there are available
vehicles and there are as many columns as there are customersand depots. A 1-entry
at any position[g1, g2] indicates that the customer/depot represented by columng1 is
allocated to the vehicle represented by rowg2. It is very easy to verify that each customer
is allocated to exactly one vehicle.

Figure 4 shows an example of what the chromosome representation looks like when
there are four vehicles available, one depot and 16 customers. The routes can be con-
structed in many ways e.g. as shown in Figure 5.

The size of the population greatly influences the performance of the GA. If the popu-
lation size is too small it results in a high possibility of anunder-covered solution space,
while too large a population is a burden on the computationaltime and may lead to an
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Figure 4: An example of the binary chromosome representation used in the solution
method. There are as many columns as customers and depots andas many rows as routes.
The number of routes equals the number of available vehicles. Each customer must be
assigned to exactly one route and each route has to include the depot.

depot - 9.1 - 15.1 - 15.2 - 2.1 - 9.2 - 8.1 - 10.1 - 8.2 - 2.2 - 10.2 - 13.1 - 13.2 - 4.1 - 4.2 - depot

Figure 5: A possible route based on the clustering of Figure 4, where thei.1 is the pickup
location of customeri andi.2 is the drop off location of customeri, for all i in route 1.

unacceptable slow rate of convergence. It is decided to use the conventional method of a
constant population size and perform some preliminary tests to decide how big the pop-
ulation size should be for the problems that are to be solved.The algorithm terminates
after a fixed number of iterations.

One parent is chosen by means of a stochastic procedure, while the second parent
is chosen randomly. The stochastic procedure, also called the roulette wheel method,
gives each individual in the current population a probability of being chosen as parent
proportional to the fitness value of the individual.

In each iteration one offspring is created, which replaces one random member belong-
ing to theZ portion of the current population, consisting of the individuals with the worst
fitness values, i.e. which represent solutions with high cost. Z is set to be proportional to
the population size and different values forZ will be tested. This method for updating the
population is called incremental replacement and the best member of a current population
is guaranteed to survive to the next population.

The crossover used in the algorithm is a version of the crossover described by Pereira
et al. [9]. In this crossover, one row, i.e. one cluster, is chosen at random from both
parents and a random binary template is created. The template is used as a recipe for one
row in the offspring, where a 1-entry in the template indicates that the gene is to be taken
from parent 2. The offspring consists of the new row while theother rows are duplicates
from parent 1.

When constructing a new solution with the crossover operator as described above, the
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resulting solution is not necessarily a legal solution. Therefore it is examined whether a
customer exists which is assigned to more than one vehicle orno vehicle at all. If such
a customer is found, a cluster is chosen randomly and the customer is either added or
deleted from that cluster depending on whether the customeris allocated too often or not
at all. If the randomly chosen cluster is the cluster createdin the crossover a new cluster
is randomly chosen. This procedure is repeated until all thecustomers are allocated to
exactly one vehicle. It is not necessary to verify that the depot is present in every cluster
since the parents represent a legal clustering solution. Ineach iteration one crossover is
performed resulting in one offspring. If parent 2 turns out to be the better parent, the
parent numbering is switched, so that parent 1 always represents a better individual than
parent 2.

Initially the template was generated completely randomly but tests indicate that in-
creasing the probability of selecting genes from parent 1 yields better results. Preliminary
results show that a big increase of the probability is not sensible, especially in the begin-
ning of the iterations, therefore the probability of choosing genes from parent 1 (the better
parent) is set to 60%.

The mutation operator moves one random customer from its current cluster to another
random cluster. It is not possible to generate illegal solutions using this mutation so no
verification or correction procedure is needed after mutation. The offspring that has been
created in the crossover can be subjected to mutation with a certain probability, called the
mutation probability,Pµ.

As duplicates distort the selective process and waste computational resources, they
are to be avoided if possible. In our algorithm the probability of duplicate chromosomes
is reduced by mutating the offsprings that have the same fitness values as their parent 1
and therefore represent the same solution.

Latest pickup
time

Latest possible
departure from
pickup location

Lower bound Upper bound
on drop−off TW

Time

Service time Direct transportation time

s

a b

ti i,n+i

n+i n+i

on drop−off TW

Figure 6: Illustration of the latest pickup time calculations for an outbound customer. The
latest pickup time is calculated backwards in time. The direct transportation time from
pickup to drop-off location and the service time at the pickup location are subtracted from
the upper bound on the drop-off time window.

Now clusters of customers have been generated using the GA inthe first phase of the
solution method. In the second phase routes are constructedfor the clusters and costs
evaluated. The modified space-time nearest neighbor heuristic (Baugh routing-heuristic)
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Initial population
constructed cost calculated

and 
Routes developed

Parents selected 

Crossover 
− new solution

Population updated 
− if needed

Mutation
− new solution

YES ENDSTOP

NO

MUTATEYES

NO

Figure 7: An overview of the initial heuristic

described by Baugh et al. [3] is used, in an extended version,for developing routes and
calculating cost for each route. It is used as it displays excellent results.

In the Baugh routing-heuristic the cost of a route is set to bethe weighted sum of travel
time and time window violations. The hard constraints that are included into the heuristic
are the routing, precedence and capacity constraints. The depot constraints, maximum
route duration, and maximum ride time constraints are not included. Neither are excess
ride times, waiting times with passengers in idle vehicles nor route duration constraints.
The remaining constraints and cost factors are included directly in the heuristic in this
paper. Service times at each location are also included in the heuristic.

The method of choosing the first customer in a route is also altered from the original
procedure. In the Baugh routing-heuristic the first customer is chosen to be the customer
with the earliest pickup time, which does not give good results for the data used here,
since some of the pickup locations have no associated time window which is the case
for outbound customers. This means that the time window is set to the whole planning
horizon ([0, T ]) and the lower time window is zero. Therefore outbound customers are
often chosen as first customers, as the drop-off time has no influence. In order to account
for this, the first serviced customer is instead chosen to be the customer with the earliest
upper time limit in the pickup time window. For customers with no pickup time windows,
latest pickup times, based on the drop off time windows, are assigned. The latest pickup
times for these customers are the upper time limit for the drop-off location subtracted by
direct transportation time and service time at the pickup location. An illustration of the
latest pickup time calculations for an outbound customer isshown in Figure 6.

Figure 7 gives an overview of the structure of the heuristic.
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5 Experimental results

There are as yet no well-known and established benchmarks available in the literature of
the version of DARP used in this project. The behavior of the solution method proposed
here can therefore not be tested using data instances that have been widely tested and
the results cannot be compared to the optimum or the best results obtained in previous
publications.

The test instances used for testing the solution method proposed here are obtained
from Cordeau and Laporte [5]. They created the test instances to analyze the behavior of
the simulated annealing when solving the DARP. Cordeau and Laporte generated a set of
20 random test instances (data sets) according to realisticassumptions. The information
regarding time window widths, vehicle capacity, route duration, and maximum ride time
were provided by the Montreal Transit Commission (MTC).

In the test instances there are between 24 and 144 customers.The first half of the cus-
tomers is assumed to consist of outbound customers while theremainder of the customers
are assumed to be inbound. For each instance, the origin and destination locations are
generated using a procedure that creates clusters of vertices around a certain number of
seed points. All instances contain a single depot and the location of the depot is set at the
average location of the seed points. For a more detailed description of this procedure, we
refer to Cordeau et al. [4].

For each instance the service time (si) in each locationi (i ∈ N) is equal to10, and
the load change,li, in each locationi is either1 or−1. 1 for the pickup locations and−1
for the drop-off locations, i.e. no customer has companionstraveling with them, and all
the customers demand only one seat. The depot location, on the other hand, has a service
time and load change equal to zero, since no customers are entering or leaving the vehicle
at the depot. Further, the maximum route duration,rk, is equal to480 in all instances,
vehicle capacity,Ck, is equal to6, and the maximum ride time,ui, is equal to90.

A time window [ai, bi] is generated for each location. As mentioned in Section 2, the
origin point of an inbound customer and the destination point of an outbound customer are
subject to time windows, while the other points have no customer specific time windows
associated with them. The time windows for these points are therefore set to[0, T ], where
T is the planing horizon, which in these experiments is equal to 1440 = 24x60, i.e. the
number of minutes in one day.

Two groups of customer specific time windows are constructedin the data sets. The
first one has narrow time windows while the second one has widetime windows. The
narrow time windows are constructed by choosing an uniform random number,ai, in the
interval [60, 480] and then choosing another uniform random number,bi, in the interval
[ai +15, ai +45]. For the wide time windows groupai is chosen in the same manner butbi

is chosen in the interval[ai + 30, ai + 90], resulting in time windows[ai, bi] (i ∈ N). The
test instances R1a to R10a have narrow time windows while test instances R1b to R10b
have wide time windows.

Test instances R1a to R6a and R1b to R6b are generated so that the number of available
vehicles in comparison to the number of customers is higher than in test instances R7a to
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Instances Customers Vehicles

R1a R1b 24 3
R2a R2b 48 5
R3a 72 7
R4b 96 9
R5a R5b 120 11
R6a R6b 144 13
R07a R07b 36 4
R9a R9b 108 8
R10a R10b 144 10

Table 2: Size of data instances used in tests

Population size M 50
Iteration number G 15000
Mutation probability Pµ 0.01
Proportion replaced Z 0.10

Table 3: Fixed parameters

R10a and R7b to R10b, e.g. R6a has13 available vehicles while R10a has10 available
vehicles, both instances having144 customers.

All the test instances constructed by Cordeau and Laporte are available from the
Internet athttp://www.hec.ca/chairedistributique/data/darp/. We
are only considering the instances where the necessary information for a comparison is
present. Problems in Table 2 have a given solution except R4band R7a, which will be
used in parameter tuning.

Table 2 gives the number of customers and available vehiclesin the test instances that
are used in this paper.

The distance between any two locationsi andj is set to be the Euclidean distance
between the coordinates of locationsi andj, i, j ∈ A. The speed of the vehicles is set
to 1, so the transportation timeti,j is equal to the Euclidean distance betweeni andj.
So the first term in the objective function 1 now equals the total weighted transportation
distance.

Through an extensive set of tests, good values for the population size, number of
iterations, multation probability, and proportion of population that is replaced have been
found. The parameters are fixed at the values reported in Table 3. A more in-depth
description of the tests can be found in [2].

Of course, the more iterations that are run, the better solutions are obtained. The cho-
sen number of iterations defines a good compromise between time and quality. Running
e.g. 30000 iterations resulted in execution times of around150 minutes, which is too
much for a practical setting.
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The customers naturally emphasize the level of service provided by the transportation
operator. They want the bus to arrive on time and the ride timeto be minimal. On the
other hand they do not want the service to be very expensive and therefore they set their
demands on service to reasonably high levels in their opinion. After performing some
preliminary testing the resulting weights are:

w1 = 8, w2 = 3, w3 = 1, w4 = 1, w5 = n, w6 = n, w7 = n

The weights on violating the relaxed constraints presentedin the objective function (1)
are set ton, i.e. the total number of customers in each data instance, because the values
for the cost factors for distance, route duration and ride time increase proportionally with
the number of customers. The value of the cost terms for the relaxed constraints is not
as dependent on the number of customers as the above mentioned factors. The weight
on customers transportation time is set to 8, as the customers are concerned with the
transportation time. The weight on excess ride time (w2) is set to 3, as the customers
consider it important that transportation time is short. The weights on waiting time with
customers (w3) are set to 1, because the customers generally do not mind waiting in the
vehicle as long as the excess ride time is reasonable. The weight on work time (w4) is also
set to 1, because the size of the route duration is large compared to the other segments in
the fitness function and the customers are not very concernedwith the route duration, as
they only share part of the route.

In all tests, each instance is run 5 times and we present the average results from the
data obtained in these runs along with the best total cost found for each instance.

The results obtained using the genetic algorithm is compared to the results obtained
by Cordeau and Laporte [5]. The average results from the bestimproved heuristic are
presented in Table 4 along with the results for the best solution obtained for each data
set (i.e. the solution with the lowest cost). The vehicle waiting time is not critical in this
model, since it is not a part of the objective to minimize the vehicle waiting time but rather
customer waiting time. Cordeau and Laporte [5], on the otherhand, report this waiting
time which is the reason it is included in Table 4. The best solution results are somewhat
different from the average results of Cordeau and Laporte [5]. Route duration is 14%
higher, waiting time 40% lower, and ride time 9% lower in the solution presented here.

Cordeau and Laporte [5] performed104 to 105 iterations in order to get their best
results which are presented in Table 5. In the testing in thispaper,15000 iterations are
performed. The total CPU time is however comparable. Cordeau and Laporte [5] use an
Intel Pentium 4, 2 GHz processor in their CPU measurements and in this paper, results
are obtained on an Intel Celeron 2 GHz processor.99% of the CPU time spent on the test
cases in this paper is used by the routing heuristic.

The objective function used by Cordeau and Laporte [5] is:

v(S) = v1(S) + αv2(S) + βv3(S) + γv4(S) + τv5(S) (13)

wherev(S) is the objective value for solutionS. The functionv1(S) denotes the total
routing cost of the vehicles,v2(S) denotes total load violation,v3(S) denotes total route
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Route duration Vehicle waiting time Ride time CPU
Avg. Best Avg. Best Avg. Best time

total avg total avg total avg total avg [min]
R1a 1041 1039 252 5.25 260 5.42 477 19.86 310 12.90 5.57
R2a 1969 1994 470 4.90 514 5.36 1367 28.47 1330 27.72 11.43
R3a 2779 2781 292 2.03 301 2.09 3081 42.79 2894 40.20 21.58
R5a 4250 4274 500 2.08 527 2.20 5099 42.49 4837 40.30 58.23
R9a 3597 3526 94 0.44 32 0.15 6251 57.88 6719 62.21 40.78
R10a 5006 5025 315 1.09 246 0.86 8413 58.42 8341 57.92 65.98
R1b 907 928 143 2.98 164 3.42 630 26.24 549 22.89 5.46
R2b 1719 1710 198 2.06 162 1.69 1214 25.30 1300 27.07 11.72
R5b 4296 4336 552 2.30 568 2.37 4615 38.46 4720 39.33 58.93
R6b 5309 5227 630 2.19 513 1.78 6134 42.59 6397 44.42 81.23
R7b 1299 1316 102 1.41 128 1.78 990 27.50 784 21.76 8.29
R9b 3679 3676 147 0.68 177 0.82 5362 49.65 5358 49.61 44.66
R10b 4733 4678 113 0.39 85 0.29 7969 55.34 8119 56.38 66.41
Total 40584 40508 3808 27.81 3678 28.21 51600 514.99 51657 502.72 488.61

Table 4: The results obtained by the genetic algorithm.

Route Vehicle wait. time Ride time CPU
duration total avg total avg [min]

R1a 881 211 4.4 1095 45.62 1.90
R2a 1985 724 7.54 1977 41.18 8.06
R3a 2579 607 4.22 3587 49.82 17.18
R5a 3870 833 3.47 6154 51.3 46.24
R9a 3155 323 1.5 5622 52.05 50.51
R10a 4480 721 2.5 7164 49.75 87.53
R1b 965 321 6.68 1042 43.4 1.93
R2b 1565 309 3.22 2393 49.86 8.29
R5b 3596 606 2.52 6105 50.87 54.33
R6b 4072 449 1.56 7347 51.02 73.70
R7b 1097 129 1.79 1762 48.94 4.23
R9b 3249 487 2.26 5581 51.68 51.28
R10b 4041 362 1.26 7072 49.11 92.41
Total 35537 6082 42.92 56900 634.6 497.59

Table 5: Results obtained by Cordeau and Laporte [5].

17



duration violation,v4(S) denotes total time window violation, andv5(S) denotes total ride
time violation. α, β, γ, andτ are a self-adjusting weights. The values of these weights
change in each iteration and no approximate values are givenin the paper. Neither is
the method used to calculate the total routing cost specifiedin the paper, which makes
it impossible to evaluate the comparison of the total costs obtained by the two solution
methods.

As mentioned previously, the route duration is higher in ouralgorithm than in Cordeau
and Laporte [5]. The other two results, which are related to customer service, ride time,
and vehicle waiting time are on the other hand better than in the results obtained by
Cordeau and Laporte [5]. One reason for these results is that, in this paper, the weights
are set to represent the choice of the customers so there is anemphasis on customer service
factors.

6 Conclusion and further research

This paper has presented an implementation of a new heuristic approach for solving the
DARP, using the classical cluster-first route-second framework. A genetic algorithm was
used for the clustering phase, and a modified space-time nearest neighbor heuristic was
used in the routing part.

The resulting method was compared to the results given by Cordeau and Laporte [5].
The comparison focused on route duration, as well as ride andvehicle waiting times. The
comparison showed that Cordeau and Laporte [5] obtain better results for route duration
whereas the genetic algorithm approach presented here obtains better results with regards
to ride time and vehicle waiting time. The results are overall comparable to those obtained
by Cordeau and Laporte [5], where differences are explainedby the setting of cost vs.
service level parameters.

The improvements to the genetic algorithm introduced in Section 4 regarding the re-
duction of randomness, have shown to give very good results,and several ideas con-
cerning further improvements are still untested. One possibility is to use ranking when
selecting parents in the genetic algorithm and to experiment with different crossover and
mutation operators. Also, to improve computational time, adifferent routing algorithm
could be implemented. The modified space-time nearest neighbour heuristic used 99%
of the CPU time which of course set a rather low limit on the number of iterations the
genetic algorithm could perform.

The overall conclusion of this paper is that the new solutionmethod for solving the
DARP, which is presented here, shows some promising results. It is possible to adjust the
weights of seven factors concerning cost of operation vs. level of service, which enables
evaluation of consequences in different dial-a-ride scenarios. The new solution method
has achieved solutions comparable to the current state-of-the-art methods.
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