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Abstract

In the Dial-a-Ride problem (DARP) customers send tranggiort requests to an
operator. A request consists of a specified pickup locati@hdestination location
along with a desired departure or arrival time and demande dim of DARP is
to minimize transportation cost while satisfying custorservice level constraints
(Quiality of Service).

In this paper we present a genetic algorithm for solving tihdRB. The algo-
rithm is based on the classical cluster-first route-secqpicach, where it alternates
between assigning customers to vehicles using a genetidthlg and solving inde-
pendent routing problems for the vehicles using a routingibgc. The algorithm is
implemented in Java and tested on publicly available ddta se

I ntroduction

In the Dial-a-Ride problem (DARP) customers request trartgion from a transporta-
tion operator. A request consists of a specified pickup (yitpcation and drop-off
(destination) location along with a desired departure avartime and the number of
passengers to be transported.

The problem consists of determining the best routing sdedduthe vehicles, which

minimizes overall transportation costs while maintairartggh level of customer service.
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The service level estimation can be based on the ride tim#dgeafustomers, deviations
from desired departure or arrival times, etc. The challaage combine the conflicting
factors: low cost of transportation versus a high level ovise.

An example of a DARP transportation system is specializadsjportation, i.e. the
transportation of children, disabled, elderly people, €ttese specialized transportations
are usually provided by local government (see eg. [1]).

The main contribution of this paper is the demonstration ¢femetic algorithms can
be effectively implemented in a cluster-first route-secapgroach to generate heuristic
solutions to the DARP. The clustering is solved using theegjemlgorithm and the routing
will be determined by a modified space-time nearest neighiearistic developed by
Baugh et al. [3].

The solution method will be implemented in Java and testedyudata sets generated
by Cordeau and Laporte [5].

2 TheDial-a-ride problem

The DARP has been formulated in a number of ways usually dépgion the underlying
real-life problem. The problem formulation here is focusedpractical considerations
present in the Danish transportation sector, see Jorg¢Blsen

In the Dial-a-Ride transportation system modeled in thizgpaustomers have to be
transported from door to door but not necessarily directty, customers are allowed to
share a ride but there are no fixed routes. This is for exarhpledse in the transportation
of elderly and disabled people in Denmark. All vehiclestséard end their routes at a
depot, but not necessarily the same depot.

We will consider the static case where all transportatiaquests are known in ad-
vance. We define an upper limit on the number of vehicles avksland assume that
customers cannot be rejected. All vehicles have identiaphcityC*. Some instances
might therefore have a feasible solution.

A time window for all stops, which can be specified either bg tustomer or the
transportation operator, is defined. The time windows arsidered to be soft time win-
dows. Soft time windows are also useful when evaluating theeioffs between service
requirements and cost requirements. Solutions with so# windows indicate the degree
of violation, thus allowing penalty methods to distinguistween a given pair of infea-
sible solutions in attempting to find a feasible region. Tiheetwindows are constructed
based on the desired pickup or drop-off time given by thearust.

A upper bound on the length of the route duration, i.e. thestittakes the vehicle
to leave the depot, service all the customers on its routereioen to the depot is set.
If the maximum route duration is exceeded it results in overtpay to the driver or
compensation by days off. Therefore a violation is pendlirghe objective function.

The cost in the DARP is calculated by a multi-objective fumrat The multi-objective
function will be handled by combining the multiple objeetivinto one scalar objective
by minimizing the positively weighted sum of the objectiv8%ie cost of transportation



of the customers is estimated in this project to be the attalasportation cost and a “cost
of inadequate service”.

Transportation cost consists of transportation time wisdefined as the total routing
time of all the vehicles used in the transportation. The obbtad service is defined by the
excess ride time of customers and waiting time in the bus e&xcide time is the extra
time a customer is in the vehicle compared to a direct tramatpon from pickup to drop-
off locations. The excess ride time gives a better estimitieeocustomer inconvenience
than the total transportation time.

Constraints not included in the model are for example cairg concerning union
rules and even distribution of customers on the routesriDiging the customers evenly
is desirable since it levels out the workload of the driveCgsts not included are fixed
costs such as capital cost, fixed costs for vehicles and slepalary costs (assuming
constant number of staff), etc.

Assume that we have a setofcustomer requests. Each request specifies a pickup
location,i, and delivery locationy + i. The customers also specify a demaag, which
is the number of seats required for the passengers that besttansported from location
1 ton + i during a given time, and either a preferred pickup time,or drop-off time,
b,+i. Each vehiclek, starts at an origin depof k) and ends at a destination depiot:)
and each vehicle has a constant capatity Now we can define the following sets:

P=A{1,...,n} set of pickup locations
D={n+1,...,2n} setof delivery locations
N=PUD set of pickup and delivery locations
K set of vehicles

VCcK set of vehicles used in solution

A= NU{o(k),d(k)} setofall possible stopping locations for all vehicles K
We also define the following parameters:

a; earliest time that service is allowed to start at in location
b; latest time that service is allowed to start at in location

s; service time needed at location

t;; travelling time or distance from locatiarto j

[; change inload at location

r® maximum route duration for vehicle

u; maximum ride time for a customer with pickup at location

The following decision variables will be used in the model:

o 1, if vehicle k services a customer at locatiband the next customer at locatign
A 0, otherwise

m number of vehicles used in the solution, i€ = m

TF time at which vehiclé: starts its service at locatian

Lk load of vehiclet after servicing location

Wk waiting time of vehiclek before servicing location
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In the model the weights in the objective function will be théowing:

wy; weight on customers transportation time
wy Weight on excess ride time

wsz weight on waiting time for customers

wy Weight on work time

ws Weight on time window violation

wg Weight on excess of maximum ride time
w; weight on excess work time

The resulting mathematical model then becomes:

minw; ), > t”%] twy ¥ (T, —si —TF —tipi) +ws X S WHLE— 1)+

kGVZ]EA keV ieP keV icN
wy Y (T, T())+w5 > Y max(0,a; — TF, TF — b))+
kev kEV i€A
We 2. 2 max( (TF,, + TF) — u;) + wr Y. max(0, (Téf(k) - Tf(k)) "
keV ieP kev
(1)
Subject to
> > xff(k),j =m )
keV jePUd(k)
Yo Tiaw = (3)
keV ie DUo(k)
Soab Y ak=0 VkeVieNnN (@)
JEA jeA
> Y af;=1 VieP 5)
keV jEN
Zxﬁg‘_zxinﬂzo VkeV,ieP (6)
JEN JEN
xﬁj(ﬂk+8i+ti7j+wk—Tk)§0 VkeVijeA (7)
TF+ s+ tipei +WE=TFE <0 VkeVieP 8)
e (LE+1;—LE)=0 VkeVijeA (9)
L<LE<CF VkeVieP (10)
ng(k) = sz(k) =0 VkeV (11)
f;e{01} VheKijeA (12)

The objective function (1) of the dial-a-ride problem is altincriteria objective func-
tion. The objective function consists of the competing otyes of minimizing the total
transportation cost, and the inconvenience to the custnidéie total transportation cost
is here estimated to be proportional to the total time useshvitansporting the customers
by all the vehicles, the total number of vehicles used in thateon, and the total route
time of all vehicles used. Customer inconvenience is eséiche be proportional to the
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total excess ride time for the customers and the total waitme for the customers in the
vehicles.

In order to handle this multi-criteria objective functiomo part of the objective func-
tion is multiplied by a weight. These weights are denatggws, ..., w;. The values of
the weights are then used to decide the relative weight d¢f edieria in the overall prob-
lem.

The depot constraints (2) and (3) describe the requirerhanhetch vehicle starts and
ends in a depot. The constraints allow a vehicle to leaveigimatepot and drive straight
to a destination depot without servicing any customers.

The routing constraints (4) simply state that all locationsst be visited. They ensure
that there are equally many vehicles that arrive at a looa® depart from the same
location.

The precedence constraints (5) and (6) represent the eaggiit that each customer
must first be picked up at his pickup location and then dromgskat his delivery location
by thesame vehicle. The first of these constraints ensures that thereaistly one vehicle
which leaves every origin location, i.e. every request is. ke second set of constraints
states that the origin and destination locations of a cust@re serviced during the same
trip.

Constraint (7) ensures that the arrival time at Iocaj;’ltﬁfjC — Wf) must be later than
the sum of departure time from locatiof7* + s;) and traveling time¢; ;, between the
locations if that leg is to be part of the route.

To obtain a feasible solution it is furthermore necessamygi first the origin point of
a customer and then the delivery point. That is, the arriva atn + < must be later than
or equal to the sum of the departure time from locati@nd the traveling time; ,,,
between the locations. This results in constraints (8).

The time windows for inbound customers are set accordingegaequest of the cus-
tomer regarding earliest pickup time. These desired times set the lower limit for the
pickup time window, i.e. equal te;. Usually the transportation operator or the authority
specifies a time limit on the maximum deviation from thesdarddstimes,dev, usually
10-30 minutes. The upper limit on the pickup time window isaeb; = a; + dev.

The lower limit on the delivery time window is the earliestsgible arrival time, i.e.
the time at which the customer would arrive at the destimafipicked up at the earliest
pickup time, serviced, and transported directly from thigiorto destination, that is:
Upti = @ + Si + i pgie

The upper limit is set as the latest feasible arrival timetf& customer, for which
the limits on ride time and pickup time are observed. The tide constraint can be
formulated using the concept of maximum excess ride timefxdhe excess ride time is
the difference between actual ride time and direct trartafion time. Usually an upper
limit on the excess ride timdy, is specified for the customers. Excess ride time is the
extra time the customer has to spend in the vehicle compataeing transported directly
from pickup location to drop-off location. This excess timeften specified as a linear
equation, e.g. 5 minutes% (direct transport time). In this model there is a limit on the
total time each customer must spend in the vehicle. Thisvalketting different criteria
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Figure 1: Setting the time windows for the drop-off locatien.;, b,.;] given the pickup
locations time windowa;, b;], the direct transportation time,,; fromi to n + i, service

time s; at: and the upper limit on excess ride timie(Figure from [5]).

for different customers. Then the upper time limit for themoff location becomes:
bnti = b; + s; + tini + E. These time window calculations are shown in Figure 1.

In the case of an outbound customer, the customer speciédattst drop-off time,
which is set as the upper limit on the drop-off time window,&ltob,, ;. The other time
window limits are then found using the same method backwiartise.

Constraints (10) ensures that the vehicle capacity is rogesied.

In order to keep track of the number of seats needed for cs®m each vehicle
throughout the route, the term of load for each vehicle i®ohiced. The load of a vehicle
at a point in time is the number of seats needed for the cusgomeéhe vehicle at that
point in time. When a vehicle has serviced a pickup locatiothe change in load is
represented bl = A, and the change in load after servicing a drop-off location i is
Lyyi = —A\.

The actual load of vehiclé after servicing location is L%. The load of the vehicle
after servicing the next location in the rougg,is thenLé‘? = L¥ + 1;. To make sure the
capacity for a vehicle is not exceeded constraints (9) d@rednced to the model. This
ensures that the loads are correctly calculated for thesedged in the route. Finally,
constraints (10) ensures that vehicle capacity is not éemband constraints (11) ensures
that he actual loads of the vehicles are set to zero at theslepo

The actual arrival time of a customer at the destinationtlonadepends on different
factors in the objective function, such as the time windowlation, excess ride time, ride
time violation, route duration, route duration violati@md waiting time.

If the customer arrives on time at his destination within tinee windows, the cost
contributed by the arrival of that customer is, if any, theess ride time and the waiting
time in an idle vehicle. On the other hand, if the customeanis,lthe time that passes
from the upper bound of the time window to actual arrival ishbihe excess ride time
and penalty for every minute the arrival time exceeds theeupme limit. If in addition
the ride time of the customer exceeds the maximum ride tinpenalty is added to both
the cost of excess ride time and time window violation. Irstbase we assume that
the maximum ride time for the customer plus the pickup timbigher than the upper
bound on the drop-off time window. This case is presentedigniié 2. Thus the cost
of delivering a customer late increases in steps dependingeothree constraints and of
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Figure 2: The influence of the arrival time on cost. The slapeof the cost increases in
steps depending on the arrival time.

course on how late the customer is delivered.

If a vehicle arrives too early at a location, it has to wait. oTeases may arise: 1)
no customers are present in the vehicle; or 2) one or moremass are waiting in the
vehicle. In the first case, the minutes the vehicle has to adata penalty to the cost for
violating the time windows, the route duration increasesl a route duration violation
may occur. The reason for penalizing a time window violatewen though the vehi-
cle is empty is to have the same implementation of the timalaanviolation. If there
are customers present in the vehicle, the waiting minutdsadd to the cost in several
ways: Penalty for time window violation, the waiting time hiplied by the number of
customers present in the idling vehicle, excess ride timé®customers, route duration
increases, and possibly ride time or route duration viotetias well.

The DARP can be proven to WéP-hard (see e.g. Baugh et al. [3]). The proofis based
on the relatedVP-hard traveling salesman problem with time windows, intaclitthe
DARP can be transformed.

3 Reated work

This section contains a short description of previous woitkiw the field of the DARP.
The work mentioned here is selected based on its closemesdin the problem definition
and/or solution method found in this paper.
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The work by Jaw et al. [6] in 1986 is generally considered p@rresearch within
DARP, and describes a sequential insertion heuristic gkgor The objective function
combines the minimization of operator costs and the miraton of customer incon-
venience with respect to both customer ride time and devidtom desired pickup or
drop-off times specified by each customer. The differentspair the objective function
are balanced by multiplying them by user-specified constaimt the computational ex-
periments the algorithm is tested on a number of simulatélskts with 250 customers,
and 4 or 5 vehicles and real data sets with 2617 customersdavehicles. The execution
time for the simulated data set is about 20 seconds and aBonirutes for the real data
set.

In Baugh et al. [3] the DARP is solved using simulated anmggallrhe work is based
on the classical cluster-first, route-second approachtothess are first organized into
clusters and then the routes are developed for each indivduster. The clustering
is performed using simulated annealing while the routingesformed using a modi-
fied space-time nearest neighbour heuristic. The modifiadesfime nearest neighbour
heuristic used to create routes for each cluster is a grdgdyithm. The results obtained
are based on a set of real-life data set with 300 customerglhssvon a generated data
set with 25 customers. No CPU times are given in the papes.cleimed by the authors
that the algorithm gives near globally optimal solutions.

Cordeau and Laporte [5] describe a tabu search heuristieir @lgorithm initiates
with a randomly generated initial solution. In order to @/oycling, solutions possessing
attributes of recently visited solutions, are put on theitigdi and are therefore forbidden
for a number of iterations. Infeasible solutions may be ergd during the search, as
constraints are relaxed and violations are added to thectlgefunction. After each
iteration the parameters are dynamically adjusted. Theatilig function consists of the
total transportation cost of the vehicles and the violatenms. Three variants of the
heuristic were tested using both randomly generated dé&tansth 24 to 144 customers
and six real-life data sets containing either 200 or 295austs. The execution times
for the randomly generated data sets are about 2 minutesd@ntallest data sets and up
to 93 minutes for the largest data sets. The execution tiorethé real-life data sets are
given to be between 13 and 268 minutes.

Jih et al. [7] solve the single vehicle pickup and deliverglgem with time windows
using a genetic algorithm. In the algorithm the chromosoepeasentation of a route is
defined by letting the chromosome represent the locatioagiaveling sequence of the
route. The algorithm permits exploration of infeasibleusimns during the search. The
objective function is the sum of the total travel cost of tlehicle and the penalty for
violating constraints. Four different types of crossouwer eonsidered. The algorithm is
tested on randomly generated data sets with up to 100 custoBreecution time is about
38 minutes for the largest data sets. The results of theidlgoare compared with the
optimal values which are available for the smaller data(@gt$o 40 customers). The best
results for the genetic algorithm are obtained by using thoum order-based crossover.
It is able to reach the optimum on the average in 83% of thefaumbe data sets with up
to 40 customers.



Paper Algorithm Objectives Test results
size type time
[6] sequential insertion min operator costs, 250 random 20 sec.
heuristic min customer ride
times, min devia-
tion from time win-

dows
2617 real-life 12 min.
[3] cluster-first route- min total distance, 25 random n.a.
second, simulated min number of ve-
annealing hicles, min incon-
venience
300 real-life n.a.
[5] Tabu Search min transportation 144 random 93 min.
cost, min penalty
violations
295 real-life 768 min.
[7] Genetic Algorithm  min transportation 100 random 38 min.
cost, min penalty
violation

Table 1: Overview of previous related work for the DAR probleNote that [7] solves
the related Pickup-and-Delivery problem.

4 The Genetic Algorithm

Genetic Algorithms (GA) have shown good performance on aberrof related routing
problems (see eg. [11, 9]). It was therefore an obvious ehfaicthe clustering level in
our two-phase approach.

GA is based on maintaining a set of solutions, called a pdjomaTherefore an initial
population generator is needed before the GA can start.idrcse, the GA begins by
creating an initial population, in which all the customers elustered randomly. For an
in-depth introduction into GA see [10].

One way of implementing a genetic algorithm for the DARP ie step is to adopt the
chromosome representation used in Pereira et al. [9]. Ichh@mosome representation
both the allocation of customers to vehicles and the ordénetustomers on the routes
are encoded. The representation is used when solving th@derebuting problem but the
extension to the DARP is problematic. The main obstacleth@erecedence constraints
(5) and (6). In order to solve this problem some elaborateifixxould be needed each
time a new individual is created.

Instead the classical split in clustering and routing isdusén the clustering part
as many groups of customers as there are available traaiporvehicles are created.
Each customer can only belong to one group and only one grape assigned to each
vehicle. The clustering of customers is solved using theegemalgorithm. When all the



customers have been grouped, a route for each vehicle iggotesl. The routing involves
deciding the order of the stops of the vehicle as well as the table for the vehicle. The
routing is solved using an extended version of the modifiettsgime nearest neighbor
heuristic developed by Baugh et al. [3]. Figure 3 presents\amnview of the solution

process.
Initial population
constructed

Routes developed
and
cost calculated

NO

END

YES

Figure 3: An overview of the solution process.

The construction of the GA involves decisions regardingolitihromosome represen-
tation fits the solution to the problem, which populatioresiz adequate, how the initial
population should be generated, what stopping criteriaé kiow the fitness calculations
should be made, what kind of selection mechanism is supeara which modifying
operators to use.

In order for an individual in the population to represent &uson to the problem
of allocating customers to vehicles it is decided to use alewel binary chromosome
representation.

The representation is set up as a matrix. There are as masyaothere are available
vehicles and there are as many columns as there are custamedepots. A l-entry
at any positiong1, g2] indicates that the customer/depot represented by colgims
allocated to the vehicle represented by vt is very easy to verify that each customer
is allocated to exactly one vehicle.

Figure 4 shows an example of what the chromosome representabks like when
there are four vehicles available, one depot and 16 custonigre routes can be con-
structed in many ways e.g. as shown in Figure 5.

The size of the population greatly influences the perforraariche GA. If the popu-
lation size is too small it results in a high possibility of amder-covered solution space,
while too large a population is a burden on the computatitined and may lead to an
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Roel |1 0 1 0 1 0 0 0 1 1 1 0 0 1 0 1 0

Route2|llOOOllOOOOOlOOOO

|
|
Route3 |1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 O |
|

Route4|10000001000101001

Figure 4: An example of the binary chromosome represemaised in the solution
method. There are as many columns as customers and dep@ts arashy rows as routes.
The number of routes equals the number of available vehi&esh customer must be
assigned to exactly one route and each route has to incledgetot.

depot-9.1-151-152-21-9.2-81-10.1-8.2-2.2-10.34113.2-4.1- 4.2 - depdt

Figure 5: A possible route based on the clustering of Figuvehére the.1 is the pickup
location of customei andi.2 is the drop off location of customeyfor all i in route 1.

unacceptable slow rate of convergence. It is decided tohesednventional method of a
constant population size and perform some preliminarg testiecide how big the pop-
ulation size should be for the problems that are to be solUéae: algorithm terminates
after a fixed number of iterations.

One parent is chosen by means of a stochastic procedures thieilsecond parent
is chosen randomly. The stochastic procedure, also cdlieddulette wheel method,
gives each individual in the current population a probabiif being chosen as parent
proportional to the fitness value of the individual.

In each iteration one offspring is created, which replacesrandom member belong-
ing to theZ portion of the current population, consisting of the indivals with the worst
fitness values, i.e. which represent solutions with high.cdss set to be proportional to
the population size and different values fowill be tested. This method for updating the
population is called incremental replacement and the bestlmer of a current population
is guaranteed to survive to the next population.

The crossover used in the algorithm is a version of the ckasstescribed by Pereira
et al. [9]. In this crossover, one row, i.e. one cluster, iesgn at random from both
parents and a random binary template is created. The tesriplased as a recipe for one
row in the offspring, where a 1-entry in the template indésahat the gene is to be taken
from parent 2. The offspring consists of the new row whiledtiger rows are duplicates
from parent 1.

When constructing a new solution with the crossover opeestalescribed above, the
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resulting solution is not necessarily a legal solution. rEf@e it is examined whether a
customer exists which is assigned to more than one vehial® @ehicle at all. If such
a customer is found, a cluster is chosen randomly and themestis either added or
deleted from that cluster depending on whether the cust@adiocated too often or not
at all. If the randomly chosen cluster is the cluster creatdte crossover a new cluster
is randomly chosen. This procedure is repeated until alctrstomers are allocated to
exactly one vehicle. It is not necessary to verify that theatiés present in every cluster
since the parents represent a legal clustering solutioeadh iteration one crossover is
performed resulting in one offspring. If parent 2 turns aube the better parent, the
parent numbering is switched, so that parent 1 always reptes better individual than
parent 2.

Initially the template was generated completely randomilytbsts indicate that in-
creasing the probability of selecting genes from parentldgibetter results. Preliminary
results show that a big increase of the probability is nosixe, especially in the begin-
ning of the iterations, therefore the probability of chawsgenes from parent 1 (the better
parent) is set to 60%.

The mutation operator moves one random customer from itewgucluster to another
random cluster. It is not possible to generate illegal sohst using this mutation so no
verification or correction procedure is needed after momati he offspring that has been
created in the crossover can be subjected to mutation wigtaie probability, called the
mutation probability P,

As duplicates distort the selective process and waste ctatpoal resources, they
are to be avoided if possible. In our algorithm the probabdf duplicate chromosomes
is reduced by mutating the offsprings that have the samesfitaalues as their parent 1
and therefore represent the same solution.

S G n+i
Service time Direct transportation time
| | i | P+ | Time
Latest pickup Latest possible Lower bound Upper bound
time departure from on drop—-off TW  on drop-off TW

pickup location

Figure 6: lllustration of the latest pickup time calculatsdfor an outbound customer. The
latest pickup time is calculated backwards in time. Thedliteansportation time from
pickup to drop-off location and the service time at the pglkacation are subtracted from
the upper bound on the drop-off time window.

Now clusters of customers have been generated using the @ first phase of the
solution method. In the second phase routes are constrtaitéde clusters and costs
evaluated. The modified space-time nearest neighbor tieBaugh routing-heuristic)
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Routes developed
and
cost calculated

Initial population
constructed

Mutation
- new solution

Population updated -
e END
NO
Parents selected ,—‘
Crossover
- new solution

Figure 7: An overview of the initial heuristic

YES MUTATE

described by Baugh et al. [3] is used, in an extended verfomeveloping routes and
calculating cost for each route. It is used as it display®keuwt results.

In the Baugh routing-heuristic the cost of a route is set tthbeveighted sum of travel
time and time window violations. The hard constraints tmatiacluded into the heuristic
are the routing, precedence and capacity constraints. &petaonstraints, maximum
route duration, and maximum ride time constraints are nduded. Neither are excess
ride times, waiting times with passengers in idle vehiclesmute duration constraints.
The remaining constraints and cost factors are includesttyrin the heuristic in this
paper. Service times at each location are also includeceihehristic.

The method of choosing the first customer in a route is alsweadtfrom the original
procedure. In the Baugh routing-heuristic the first custoisiehosen to be the customer
with the earliest pickup time, which does not give good risstdr the data used here,
since some of the pickup locations have no associated timdami which is the case
for outbound customers. This means that the time windowtisosthe whole planning
horizon (0, 7]) and the lower time window is zero. Therefore outbound custs are
often chosen as first customers, as the drop-off time hasflu@nte. In order to account
for this, the first serviced customer is instead chosen tthéeustomer with the earliest
upper time limit in the pickup time window. For customerstwito pickup time windows,
latest pickup times, based on the drop off time windows, asggaed. The latest pickup
times for these customers are the upper time limit for th@-arid location subtracted by
direct transportation time and service time at the pickuatlion. An illustration of the
latest pickup time calculations for an outbound customeh@wn in Figure 6.

Figure 7 gives an overview of the structure of the heuristic.
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5 Experimental results

There are as yet no well-known and established benchmaakigslale in the literature of
the version of DARP used in this project. The behavior of thletton method proposed
here can therefore not be tested using data instances tmatlean widely tested and
the results cannot be compared to the optimum or the bedtsediained in previous
publications.

The test instances used for testing the solution methodogetphere are obtained
from Cordeau and Laporte [5]. They created the test instatacanalyze the behavior of
the simulated annealing when solving the DARP. Cordeau apdite generated a set of
20 random test instances (data sets) according to reassiemptions. The information
regarding time window widths, vehicle capacity, route diora and maximum ride time
were provided by the Montreal Transit Commission (MTC).

In the test instances there are between 24 and 144 custohherfirst half of the cus-
tomers is assumed to consist of outbound customers whilkethainder of the customers
are assumed to be inbound. For each instance, the originestohation locations are
generated using a procedure that creates clusters ofegdround a certain number of
seed points. All instances contain a single depot and ttegitocof the depot is set at the
average location of the seed points. For a more detailedigéso of this procedure, we
refer to Cordeau et al. [4].

For each instance the service timg) (in each location (i € N) is equal to10, and
the load changé;, in each locatiori is eitherl or —1. 1 for the pickup locations ané 1
for the drop-off locations, i.e. no customer has compantoasling with them, and all
the customers demand only one seat. The depot locationgeastlier hand, has a service
time and load change equal to zero, since no customers am@gnor leaving the vehicle
at the depot. Further, the maximum route duratidi,is equal to480 in all instances,
vehicle capacityC*, is equal ta5, and the maximum ride time;, is equal tad0.

A time window [a;, b;] is generated for each location. As mentioned in Sectione, th
origin point of an inbound customer and the destinationfoaiian outbound customer are
subject to time windows, while the other points have no austospecific time windows
associated with them. The time windows for these pointstemefore set t¢0, 7', where
T is the planing horizon, which in these experiments is equalit0 = 24260, i.e. the
number of minutes in one day.

Two groups of customer specific time windows are constructéde data sets. The
first one has narrow time windows while the second one has tinake windows. The
narrow time windows are constructed by choosing an unif@ngdom numbei;, in the
interval [60, 480] and then choosing another uniform random numbeiin the interval
la; + 15, a; +45]. For the wide time windows group is chosen in the same manner but
is chosen in the intervad; + 30, a; + 90], resulting in time windowsua;, b;] (i € N). The
test instances R1a to R10a have narrow time windows whitarissnces R1b to R10b
have wide time windows.

Testinstances R1ato R6a and R1b to R6b are generated suethathber of available
vehicles in comparison to the number of customers is hidteer in test instances R7a to
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Instances Customers Vehicles

Rla R1b 24 3
R2a R2b 48 5
R3a 72 7

R4b 96 9

R5a R5b 120 11
R6a R6b 144 13
RO7a RO7b 36 4
R9a R9b 108 8
R10a R10b 144 10

Table 2: Size of data instances used in tests

Population size M 50
Iteration number G 15000
Mutation probability P,  0.01
Proportion replaced ~Z 0.10

Table 3: Fixed parameters

R10a and R7b to R10b, e.g. R6a Hasavailable vehicles while R10a hae available
vehicles, both instances havithdd customers.

All the test instances constructed by Cordeau and Lapodeaaailable from the
Internet athtt p: / / www. hec. ca/ chai redi stri buti que/ dat a/ darp/. We
are only considering the instances where the necessammatmn for a comparison is
present. Problems in Table 2 have a given solution exceptaRdlbR7a, which will be
used in parameter tuning.

Table 2 gives the number of customers and available vehitkbe test instances that
are used in this paper.

The distance between any two locatianand ; is set to be the Euclidean distance
between the coordinates of locationandj, i,j € A. The speed of the vehicles is set
to 1, so the transportation tintg; is equal to the Euclidean distance betweemd j.
So the first term in the objective function 1 now equals theltaeighted transportation
distance.

Through an extensive set of tests, good values for the ptpualaize, number of
iterations, multation probability, and proportion of pdgtion that is replaced have been
found. The parameters are fixed at the values reported ire TablA more in-depth
description of the tests can be found in [2].

Of course, the more iterations that are run, the betterisolsiare obtained. The cho-
sen number of iterations defines a good compromise betweenaind quality. Running
e.g. 30000 iterations resulted in execution times of aroli@ minutes, which is too
much for a practical setting.
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The customers naturally emphasize the level of serviceigeo\by the transportation
operator. They want the bus to arrive on time and the ride tortee minimal. On the
other hand they do not want the service to be very expensu¢hamnefore they set their
demands on service to reasonably high levels in their opinifter performing some
preliminary testing the resulting weights are:

wy =8, wy=3, w3=1 wys=1 ws=n, wg=n, wWr=n

The weights on violating the relaxed constraints presentdéte objective function (1)
are set tm, i.e. the total number of customers in each data instancause the values
for the cost factors for distance, route duration and ridetincrease proportionally with
the number of customers. The value of the cost terms for tla@ed constraints is not
as dependent on the number of customers as the above mehtamters. The weight
on customers transportation time is set to 8, as the cussoarerconcerned with the
transportation time. The weight on excess ride timeg) (is set to 3, as the customers
consider it important that transportation time is shorte Weights on waiting time with
customers;) are set to 1, because the customers generally do not mirishgvai the
vehicle as long as the excess ride time is reasonable. Thyhtwn work time {v,) is also
set to 1, because the size of the route duration is large cmupa the other segments in
the fitness function and the customers are not very concevitadhe route duration, as
they only share part of the route.

In all tests, each instance is run 5 times and we present grage results from the
data obtained in these runs along with the best total cosidféor each instance.

The results obtained using the genetic algorithm is contpreéhe results obtained
by Cordeau and Laporte [5]. The average results from theibgsbved heuristic are
presented in Table 4 along with the results for the best isoludbtained for each data
set (i.e. the solution with the lowest cost). The vehicletingitime is not critical in this
model, since it is not a part of the objective to minimize tkaicle waiting time but rather
customer waiting time. Cordeau and Laporte [5], on the oftaerd, report this waiting
time which is the reason it is included in Table 4. The besitsmh results are somewhat
different from the average results of Cordeau and Lapotte Route duration is 14%
higher, waiting time 40% lower, and ride time 9% lower in tlodusion presented here.

Cordeau and Laporte [5] performdd* to 10° iterations in order to get their best
results which are presented in Table 5. In the testing inghger,15000 iterations are
performed. The total CPU time is however comparable. Cardea Laporte [5] use an
Intel Pentium 4, 2 GHz processor in their CPU measuremerttsrathis paper, results
are obtained on an Intel Celeron 2 GHz proces$@o of the CPU time spent on the test
cases in this paper is used by the routing heuristic.

The objective function used by Cordeau and Laporte [5] is:

v(S) = v1(9) + ava(S) + Bus(S) + yva(S) + Tv5(S) (13)

wherew(S) is the objective value for solutiof. The functionv, (S) denotes the total
routing cost of the vehicles,(.S) denotes total load violation;(.S) denotes total route
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Route duration Vehicle waiting time Ride time CPU
Avg. Best Avg. Best Avg. Best time
total avg total avg total avg total avg [min]

Rla 1041 1039 252 525 260 542 477  19.86 310 12.90 5.57
R2a 1969 1994 470 490 514 536 1367 2847 1330 27.72 11.43
R3a 2779 2781 292 2.03 301 2.09 3081 42.79 2894 40.20 21.58
R5a 4250 4274 500 2.08 527 220 5099 4249 4837 40.30 58.23
R9a 3597 3526 94 0.44 32 015 6251 57.88 6719 62.21 40.78
R10a 5006 5025 315 1.09 246 0.86 8413 5842 8341 57.92 65.98
R1b 907 928 143 298 164 3.42 630 26.24 549  22.89 5.46
R2b 1719 1710 198 206 162 1.69 1214 2530 1300 27.07 11.72
R5b 4296 4336 552 230 568 2.37 4615 38.46 4720 39.33 58.93
R6b 5309 5227 630 2.19 513 1.78 6134 4259 6397 44.42 81.23
R7b 1299 1316 102 141 128 1.78 990 27.50 784  21.76 8.29
R9b 3679 3676 147 0.68 177 0.82 5362 49.65 5358 49.61 44.66
R10b 4733 4678 113 0.39 85 0.29 7969 55.34 8119 56.38 66.41
Total 40584 40508 3808 27.81 3678 28.21 51600 514.99 51652.730 488.61

Table 4: The results obtained by the genetic algorithm.

Route Vehicle wait. time Ride time CPU
duration total avg total avg [min]

Rla 881 211 44 1095 45.62 1.90
R2a 1985 724 7.54 1977 41.18 8.06
R3a 2579 607 422 3587 49.82 17.18
Rb5a 3870 833 3.47 6154 51.3 46.24
R9a 3155 323 1.5 5622 52.05 50.51
R10a 4480 721 25 7164 49.75 87.53
R1b 965 321 6.68 1042 434 1.93
R2b 1565 309 3.22 2393 49.86 8.29
R5b 3596 606 252 6105 50.87 54.33
R6b 4072 449 156 7347 51.02 73.70
R7b 1097 129 1.79 1762 48.94 4.23
R9b 3249 487 2.26 5581 51.68 51.28
R10b 4041 362 1.26 7072 49.11 92.41
Total 35537 6082 42,92 56900 634.6 497.59

Table 5: Results obtained by Cordeau and Laporte [5].
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duration violationyp,(.S) denotes total time window violation, angl(.S) denotes total ride
time violation. «, 3, v, andr are a self-adjusting weights. The values of these weights
change in each iteration and no approximate values are givére paper. Neither is
the method used to calculate the total routing cost spedifi¢de paper, which makes

it impossible to evaluate the comparison of the total cobtained by the two solution
methods.

As mentioned previously, the route duration is higher inalgorithm than in Cordeau
and Laporte [5]. The other two results, which are relatedusst@mer service, ride time,
and vehicle waiting time are on the other hand better tharhénrésults obtained by
Cordeau and Laporte [5]. One reason for these results isithdtis paper, the weights
are set to represent the choice of the customers so therems@masis on customer service
factors.

6 Conclusion and further research

This paper has presented an implementation of a new heuagiroach for solving the
DARP, using the classical cluster-first route-second fraank. A genetic algorithm was
used for the clustering phase, and a modified space-timesteagighbor heuristic was
used in the routing part.

The resulting method was compared to the results given bgeaaorand Laporte [5].
The comparison focused on route duration, as well as ridevahidle waiting times. The
comparison showed that Cordeau and Laporte [5] obtainrxettelts for route duration
whereas the genetic algorithm approach presented henasbttter results with regards
to ride time and vehicle waiting time. The results are ove@hparable to those obtained
by Cordeau and Laporte [5], where differences are explalnyethe setting of cost vs.
service level parameters.

The improvements to the genetic algorithm introduced irtiSeel regarding the re-
duction of randomness, have shown to give very good resaittd, several ideas con-
cerning further improvements are still untested. One ppdggiis to use ranking when
selecting parents in the genetic algorithm and to experimvéh different crossover and
mutation operators. Also, to improve computational timeljfeerent routing algorithm
could be implemented. The modified space-time nearest beigheuristic used 99%
of the CPU time which of course set a rather low limit on the bemof iterations the
genetic algorithm could perform.

The overall conclusion of this paper is that the new solutrethod for solving the
DARP, which is presented here, shows some promising resukspossible to adjust the
weights of seven factors concerning cost of operation w&l lef service, which enables
evaluation of consequences in different dial-a-ride sgesa The new solution method
has achieved solutions comparable to the current statieeedrt methods.
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