
Simultanuous Loalization and MappingA Simulation PlatformThomas Hanefeld Sejerøe, Ole RavnØrsted•DTU, Automation,E-mail:s991707�student.dtu.dk, or�oersted.dtu.dkBuilding 326,Niels Kjølstad PoulsenInformatis and Mathematial ModellingE-mail:nkp�imm.dtu.dkBuilding 321,The Tehnial University of Denmark,DK-2800 Kgs. Lyngby, DenmarkMarh 21, 2005AbstratIn this paper we present a simulation platform for evaluate methodsfor simultaneous loation and mapping. The platform is based on TheKALMTOOL 2 toolbox whih is a set of MATLAB tools for state estima-tion for nonlinear systems. The toolbox ontains funtions for extendedKalman �ltering as well as for two new �lters alled the DD1 �lter and theDD2 �lter. It also ontains funtion for Unented Kalman �lters as wellas three versions of partile �lters. The toolbox requires MATLAB ver. 6,but no additional toolboxes are required.1 IntrodutionThe simulation platform, whih is desribed in this paper, is build as an exten-tion to Kalmtool 2. This toolbox is a olletion of estimation algorithms forsolving nonlinear state estimation problems.During the work it was found that the extended Kalman �lter was somewhatinonvenient to use in some of our appliations. A small modi�ation of theappliation sometimes had serious impliations on the EKF implementation.Moreover, it was often di�ult to implement. Our problem was that the EKFrequires a linearization of the system model. Sometimes this is easy to �ndbut sometimes it an be pretty hard. In any ase, it makes things in�exible.1



2 The Platform 2If a small hange is made in the model, one has to work out a new set ofderivatives. This is partiularly inonvenient in model alibration where ertainmodel parameters are temporarily inluded in the state vetor and estimatedsimultaneously with the atual states.Sine it was suggested, the extended Kalman �lter (EKF) has undoubtly beenthe dominating tehnique for nonlinear state estimation. Nevertheless, the EKFis known to have several drawbaks. These are mainly due to the Taylor lin-earization of the nonlinear transformations around the urrent state estimate.The linearization requires that Jaobians of state transition and observationequations are derived, whih is often a quite omplex task. Moreover, some-times there are points in whih the Jaobians are not de�ned. In addition tothe di�ulties with implementation, onvergene problems are often enoun-tered due to the fat that the linearized models desribe the system poorly.There have been signi�ant fous on this area reently and previous work inludeseveral toolboxes and other platforms. ReBEL (Reursive Bayesian EstimationLibrary) (van der Merwe 2004) is a Matlab® toolkit of funtions and sripts,designed to failitate sequential Bayesian inferene (estimation) in general statespae models. The CAS Robot Navigation Toolbox (Arras 2004) is a tool fordoing o�-line o�-board loalization and SLAM on mobile robots. The design ofthe CAS toolbox deouples robot model, sensor models, features and algoritmsused giving the user ability to adapt the toolbox by just modifying or addingthe piees in question. The toolbox does not in its present form support thegeneration of realtime ode for use on the robot. The present platform KalmtoolII has its root in Kalmtool but fous here is on omparision and transparenygiving the developer more ontrol over the proess of adapting hanges andkeeping housekeeping ode minimal.The paper is organized as follows: �rst the overall design philosophy behind theplatform is desribed. Next a desription of the estimation algorithms are giveninluding the extended Kalman �lter, the Unented Kalman �lter and di�erenttypes of partile�lters. Setion 4 gives an extensive example study as well asa demonastration of the platform for omparing algortims for navigation of amobile robot. Finally onlusions and referenes are given.2 The PlatformThe overall design philosophy has been to put fous on making a simple, trans-parent, yet powerfull platform that and makes life easy to use both for applia-tion and algorithm developer.Transperany overomes the barrier e�et that is often expirened when usingtools that at �rst sight seem very user friendly but when used on real problemsbeomes di�ult to handle due to the inherent omplexity.The approah taken uses MATLAB as a numerial and graphial basis for de-veloping the platform. The platform is driven from Simulink as this provides



3 Loation and Mapping 3a shorter path to implementation using for instane Realtime Workshop andmakes is simple to use real data for omparison.
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Figure 1. The Simulink layout of a ontinous system.
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Figure 2. The Simulink layout of a disrete time systemsAs seen in the above �gures the user an easily add new algorithm into the plat-form by modifying the MATLAB funtion in the Estimation blok and hangethe system by modifying the system and measurement MATLAB bloks.3 Loation and MappingWhen maneuvering an autonomous guide vehile (AGV) it is important to knowthe position and orientation of the vehile. This is often done by using theodonometry of the vehile. This is basially just to use the measured travelingdistane and measured hange of orientation. This is also denoted as dead-rekoning. It is however well known that this method has an inherit natureof aumulating errors. The determination of the position and orientation istherefore supplied with measurement of the robot position and orientation inrelation to some guide marks with known (or relative well known) positions.This, dead-rekoning and eventually the use of some guide marks is denoted asloation or navigation.The model of the mobile robot (uniyle type) is given by the set of equationswhih are slightly nonlinear. The equations yield a position as well as a heading.



3 Loation and Mapping 4The input signals (i.e. ontrol signals) are the veloity, γ, and turnrate, ω.
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 + vt (1)The proess noise is in the (later) example studies simulated as N(0, 0.01 I3).The estimation proedure in the loation part and the mapping part is basedon a sampled version of the above proess equation. The sampling an be doneanalytially (for this simple example) or by means of a numerial ODE solver.Loation in relation autonomuous guided vehile is based on a fusion of resultsfrom several sensors. Normally one of the sensors set is the odometry, i.e. noisymeasurements of the speed of the wheels:
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2rlAnother set of measurements is the relative position between a guide marksand the robot. Assume a guide mark has a position whih is known with somepreision embedded in
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The atual measurement is the distane and the diretion to the guide markwhih an be transformed into a set of Cartesian measurement:
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+ et (2)The mesurement noise is assumend to be N (0, R2) where R2 re�ets the trans-formation of the unertainty in the mesurements of the distanse and the diretionfrom the robot to the guide mark.Both loation and mapping is based on the same priniple. In onnetion tomapping a newly observed guide mark is assumed to have a position given bythe a'priori distribution
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∈ N (p, P0) (3)re�eting the lak of knowledge. As a limit it an be assumed to be totally �at.



4 Estimation algorithms 54 Estimation algorithmsConsider a system in whih the evolution of the state sequene {xk ∈ R
n, k ∈ N}is given by

xk+1 = fk(xk, uk, vk) (4)where fk is a possible nonlinear funtion of the state, xk, the input (ontrol)signal, uk and the proess noise, vk. The proess noise is assumed to be asequene {vk ∈ R
n k ∈ N} of i.i.d. stohasti vetors.The objetive is to estimate xk from measurements

yk = gk(xk, ek) ∈ R
m (5)where also gk is a possible nonlinear funtion of the state and the measurementnoise, ek. The measurement noise is assumed to be a sequene, {ek ∈ R

m k ∈ N},of i.i.d. stohasti vetors. More spei� we seek an estimate of xk based on allavailable measurements (and known inputs) Y0:k = {(yi, ui), i = 0, ..., k}.The solution to this problem is embedded in the onditional degree of belief inthe state, xk given the data, Y0:k. The problem is then (reursively) to determinethe pdf. p(xk|y0:k). If the initial distribution, p(x0), is known then the solutionan in priniple be determined through the reursions:
p(xk|Y0:k−1) =

∫

Ωx

p(xk|xk−1)p(xk−1|Y0:k−1)dxk−1 (6)and
p(xk|Y0:k) =

p(yk|xk)

p(yk|Y0:k−1)
p(xk|Y0:k−1) (7)These two reursions are related to the dynami ((6)) and the inferene ((7))step, respetively and an only in speial ases be solved analytially. In thelinear Gaussian ase the pdf. an be parameterized in terms of mean and vari-ane and the reursions results in the well known Kalman �lter. In that ase(the linear Gaussian ase with standard assumptions inluding x0 ∈ N (x̂0, P0))the system is assumed to be given by the reursions:

xk+1 = Axk + Buk + vk vk ∈ Niid (0, R1)

yk = Cxk + ek ek ∈ Niid (0, R2)The Kalman �lter is given by the predition or the time updates
x̂k+1|k = Ax̂k|k + Buk (8)
Pk+1|k = APk|kA

T + R1 (9)and the inferene reursion
x̂k|k = x̂k|k−1 + Kk(yk − ŷk|k−1) (10)
Pk|k = Pk|k−1 −KkCPk|k−1 (11)



4 Estimation algorithms 6where:
Kk = Pk|k−1C

T S−1
kand

ŷk|k−1 = Xx̂k|k−1 Sk = CPk|k−1C
T + R2In this ase, the predition in (6) results in (8) and an also be found as anappliation of alulus for linear operations on Gaussian vetors. The inferenereursion in (10) emerge from (7) or as an appliation of the Projetion Theorem.The various �lters di�ers in the way the handle the propagation of the distribu-tions through the two nonlinearities, f and g, and how the inferene is arriedout. The next three �lters are all based on the projetion Theorem.In this ase, the predition in (6) results in (8) and an also be found as anappliation of alulus for linear operations on Gaussian vetors. The inferenereursion in (10) emerge from (7) or as an appliation of the Projetion Theoremon:
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−1
y (yk −my) P̄x = Px − PxyP

−1
y PyxThe onnetion to (10)-(11) is simply through

mx = x̂k|k−1 my = Cx̂k|k−1

Px = Pk|k−1 Pxy = Pk|k−1C
T Py = Sk4.1 The Extended Kalman �lterThe Extended Kalman �lter is as its name indiate based on an extension of theappliation of the Kalman �lter to the nonlinear ase. The Extended Kalman�lter (EKF) is based on a standard Taylor expansion of the nonlinear funtionsand an be regarded as a loal approximation. In general the approximation isbest for small deviations from the point of linearization.The basi idea is related to the problem of determine the distribution of z if

z = F (x)and the distribution of x is known to be N (x̂, Px). The approximation is simplyto use
z ∈ N
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4 Estimation algorithms 7This approximation applies both to the proess equation (and f) and the mea-surement equation (and g). In fat, the only hanges with respet to (8)-(11)is
x̂i+1|i = fi(x̂i|i, ui, 0) ŷi|i = gi(x̂i|i, 0)The variane update, (9) and (11), are unhanged (exept for the state depen-dent system matries).4.2 Divided di�erene �ltersThe divided di�erene �lter exists in a �rst order version (DD1) and in a se-ond order version (DD2) and is based on Stirlings interpolation formula (see(Nørgaard, Poulsen & Ravn 2000) and Figure 3 for illustration).
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Figure 3. Comparison of a seond-order polynomial approximation obtainedwith the Taylor (dot-dashed) and the Stirling method (dashed)Let again, x be a stohasti variable and x ∈ N
(

x̂, SxST
x

). The approximationwhih takes the variation of w into aount is
F (x) = F (x̂) + ∇̄zF (x̂)(x− x̂) +

1

2
∇̄2

xF (x̂)(x− x̂)2 + εwhere
∇̄xF (x̂) = Mij

{

1

2h
[Fi(x̂ + hSxj)− Fi(x̂− hSxj)]

}

∇̄2
xF (x̂) = Mij

{

1

h2
[Fi(x̂ + hSxj) + Fi(x̂− hSxj)− 2Fi(x̂)]

}Here h is a sale parameter and Sxj is the j'th olumn in Sx. In the Gaussianase the hoie h2 = 3 is in some sense optimal (see (Nørgaard et al. 2000)).Introdue the notation
F+

p = F (x̂ + hSx,p) F−
p = F (x̂− hSx,p) F 0 = F (x̂)For the DD2 �lter the approximation is then
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4 Estimation algorithms 8and
Pz =

1

4h2

nx
∑

i=1
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p )T

+
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4h2
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p − 2F 0)(F+
p + F−

p − 2F 0)TFor the �rst order �lter (DD1) only the �rst terms in the approximations areused.In the divided di�erene �lters (DD1 and DD2) the propagation of mean andvariane is determined through the approximations mentioned above. The in-ferene is based on the Projetion Theorem.4.3 The Unsented kalman �lterThe Unented �lter is based on the (unentedi) transformation of a stohastivariable, x, through a nonlinear funtion, F (x) (see (Julier & Uhlmann 2004)).Assuming again the mean of x is x̂ and the variane matrix is Px = SxST
x , thenthe sigma points are de�ned as:

x(1) = x̂ w0 =
κ

nx + κ

x(i) = x̂ +
√

(nx + κ)Sxi wi =
κ

2(nx + κ)

i = 1, ... nx

x(j+nx) = x̂−
√

(nx + κ)Sx,j wj+nx
=

κ

2(nx + κ)

j = 1, ... , nxHere κ is a saling parameter and wi is the weight assoiated with a point and
2nx
∑

i=0

wi = 1Eah sigma point is propagated through the nonlinear funtion
z(i) = F (x(i)) i = 0, ... 2nxand the approximation is then

ẑ =
2nx
∑

i=0

wiz
(i)and

Pz =

2nx
∑

i=0

wi(z
(i) − ẑ)(z(i) − ẑ)TThe standard UKF is based on the approximation mentioned above and theProjetion Theorem. In the saled version of UKF the weight is hosen in aslightly di�erent manner (see (Julier 2002) or (Wan & van der Merwe 2000) fordetails).



5 Example study 94.4 Partile �ltersPartile �lters omes in several versions and implementations (see e.g. (Arulampalam,Maskell, Gordon & Clapp 2002) or (van der Merwe, Douet, de Freitas &Wan 2000)). In the most basi version (Exp. PF) implemented in the platformthe nonlinearities are dealt with by propagating a swarm of partile throughthe nonlinearities. Again assuming x ∈ N (x̂, Px) a number (N) of partiles aregenerated
x(i) ← N (x̂, Px) i = 1, ... Nand propagated through the nonlinear funtion

z(i) = F (x(i))The approximation is then simply
ẑ =

N
∑

i=1

z(i) Pz =

N
∑

i=1

(z(i) − ẑ)(z(i) − ẑ)TIn the most basi version (Exp. PF) the inferene is based on the ProjetionTheorem and the nonlinearities are handled with the method mentioned above.In the generi partile �lters (Gen. PF) the inferene is not based on the Proje-tion Theorem, but is arried out by applying 7 diretly. That results in weightsassoiated with eah of the partiles. In this version the partile are only ini-tially generated as desribed above. After the inferene step the partiles areresampled from a distribution haraterized by the weights. In the last version(MH. PF) implemented here on this platform, the resampling is performed bymeans of the Metropolis-Hastings algorithm.5 Example studyThe versatility of the simulation framework is most evident when implementinga number of examples. For the purpose of this demonstration, a disrete timedi�erene equation system and a ontinuous time di�erential equation systemare seleted. The example studies onludes with a simultanous loation andmapping problem.5.1 Nonlinear state estimationThe �rst example i a disrete time system and is an aademi example of anonlinear system (though in a simpli�ed form), whih has been used previouslyas a benhmark for testing �lter algorithms ((Netto, Gimeno & Mendes 1978)).In the example the proess is a nonlinear equation with a linear and noisymeasurements. First, the proess equation, xk+1 is listed, next the measurement



5 Example study 10

0 20 40 60 80 100

−25

−20

−15

−10

−5

0

5

10

15

20

25

Divided Difference KF (2nd)

k

0 20 40 60 80 100

−20

−15

−10

−5

0

5

10

15

20

Generic PF − No. of Particles = 100

k

True value
Estimate

Figure 4. Two examples of the highly nonlinear and noisy system given in equa-tion 12. The topmost is the 2nd order Divided Di�erene �lter, while the bot-tommost is a generi Partile Filter.
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Figure 5. Two graphs depiting the e�et of varying the partile ount per updateon the benhmark system. The mean RMSE and mean variane estimates areseen to onverge rather quikly to relatively stationary values at around 100partiles per time update.equation, yk.
xk+1 =

1

2
xk +

25xk

1 + x2
k

+ 8cos(1.2k) + vn (12)
yk = xk + wk;Note that, both the noise soures, vk and wk, are zero mean Gaussian whitenoise with varianes of 10.0 and 1.0 respetively. As was the ase with the smallrobot model, a Monte Carlo series of simulations was made with a variety ofestimation algorithms. Two examples of the appearane of a simulation an befound in �gure 4.The result of the Monte Carlo simulation an be seen in table 1. The Kalman�lter type algorithms were simulated 1000 times and the means of the root meansquare errors (RMSE) were found as well as the means of the variane estimates.The Partile Filter types were simulated 100 times with 200 partiles per timeupdate in all �lters.Finally, in order to ompare the preision of the three partile �lters as a funtionof the number of partiles per time update, a Monte Carlo series of simulations
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Figure 6. A path traed by the small uniyle robot. The estimation routineemployed is the 2nd order Divided Di�erene �lter with a sampling frequeny of1 Hz. At every other estimated state, the 95% on�dene intervals are drawn asellipses or bars respetively. The estimate is at no point outside the on�deneintervals.



5 Example study 13Algorithm Mean RMSE Mean Var. Est. TimeC.D. EKF 0.9573 0.9206 1.000Std. UKF 0.9472 0.9238 0.126Sl. UKF 0.9503 0.9247 0.151DD1 0.9417 0.9221 0.133DD2 0.9260 0.9238 0.137Exp. PF 0.9513 0.9165 2.067Gen. PF 4.2326 31.595 5.917PF (MH) 4.0238 28.165 8.543Table 1. Table of results for a Monte Carlo series of simulations on the disretenonlinear and noisy system.was made using the benhmark system. The results an be seen in �gure 5.The series onsisted of 100 runs per partile ount, from 2 to 256 partiles ininreasing steps. The algorithms onverge rather quikly as the partile ountinreases.5.2 Dead-rekoningAlgorithm Max. RMSE Max. Var. Est. TimeC.D. EKF 0.06799 0.005717 1.000Std. UKF 0.07399 0.006779 2.678Sl. UKF 0.07331 0.006693 3.673DD1 0.07251 0.006779 2.640DD2 0.07177 0.006781 2.658Exp. PF 0.07591 0.006479 16.86Gen. PF 0.09698 0.039829 17.82PF (MH) 0.08960 0.058690 18.53Table 2. Small mobile robot, worst value of mean estimate (x,y,θ) and maximummean variane estimate of 100 Monte Carlo simulations. The table is split intoKalman �lter variants (top) and partile �lters (bottom). The partile �lters allused 200 partiles.The next example is a ontinuous time system and is a very simple model of adead-rekoning guidane for a small mobile robot ( see equation (1)). In Figure 6the results of a simulation using the Divided Di�erene (2nd order) as estimatoran be seen. The integral of the ontrol signal, ω, is seen in the lower panelbelow the path traed by the robot (upper panel).



5 Example study 14In order to ompare a range of tehniques implemented in the framework, a-uray results are given in table 2. Attempting to �nd a fair estimate of theauray, 100 runs were made with eah algorithm and the average values werefound. The partile �lters all used 200 partiles per time update. The tableontains the "worst ase" values for the three states.Also listed in the table is the omputational burden of eah algorithm. Thelatter is given as a relative number ompared to the runtime of a ontinuous-disrete extended Kalman �lter (C.D. EKF). The times are relative, as otherproessor speeds and types will yield di�erent absolute results. Furthermore,the algorithms and their runtimes may well bene�t from numerial optimiza-tions in appliation spei� implementations. The algorithms used a �xed stepintegration (Matlab, Dormand-Prine, order 5) to solve equation 1. The stan-dard Unsented Kalman �lter (Std. UKF) performs very well, while it's saledversion gives a lower mean RMSE and a slightly lower mean variane estimates.The DD1 and DD2 both give low mean RMSE and onsistent variane estimates- in this ase, the seond order parts of the DD2 does not yield muh.



5 Example study 155.3 Simultanuous loation and mapping I
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Figure 7. Navigation of a mobile robot through a door opening. The map is buildsimultanuouly while ontrolling the robot. The ontrol is based on the loationi.e. the estimation of the position and orientation of the robot. The positionsand their inertainty are anotated by 99% on�dene areas (ellipsoids).The next two examples are related to loation while a map of the guide marksis build. The dynamis involved is the AGV given in (1) with a sensor fusingbetween the odometry (dead-rekoning) and the relatiove postioning of the guidemarks. Both the loation and mapping is based on the oberservation equation,(2), where the guide mark is the atual guide mark under observation. Therobot is assumed to have an ative view setor in front whih is 90 degree wideand has a range of 4 m. The ative guide marks are the guide marks visiblewithin the robot view setor.In this ontext the map onsists of a database ontaining the estimated loationsof the guide marks and their respetive unertainty. Besides the database theloation and mapping onsists of a routine for handling the information relatedto the ative guide marks.In the �rst example related to simultaneous loation and mapping the task isto navigate the robot along a wall and drive through the door opening andreturn. The door opening is de�ned in terms of two set of guide marks. Thenavigation is performed by means of way points loated in in front and behindthe door opening. The positions of the way points are assumed to be known.The ontrol implementation is desribed in (Bak 2000), but is beyond the sopeof this paper.The results are illustrated in Figure 7 where the applied estimation tehniqueis based on the DD2 method desribed in setion 4.



5 Example study 165.4 Simultanuous loation and mapping II
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Figure 8. Navigation of a mobile robot along a orridor with guide marks loatedon the walls. The map is build simultanuouly while ontrolling the robot.This example is quite similar to the previous example, exept that in this aseit is a bit more omplex and the robot has to follow a oridor equipped withguide marks. The results an be seen in Figure 8. The true robot path (whihis known due to the simulation) and the estimated are indiated by solid lines.The loation of the 4 way points are also indiated.As the map is build the position of the guide marks are introdued. The es-timated positions and their unertainties are indiated with a dot and a 99%on�dene area (ellipsoids). Notie, that in some ase the orret position of aguide mark is outside the on�dene area.



6 Conlusion 176 ConlusionIn this paper we have presented a simulation platform for simultaneous loationand mapping. The platform is an extention of the toolbox KALMTOOL ver.2 whih a set of MATLAB tools for state estimation for nonlinear systems.It ontains funtions for extended Kalman �ltering as well as for the two new�lters the DD1 �lter and the DD2 �lter. It also ontains funtions for Unsented(standard and saled) Kalman �lter as well as three versions of partile �lters.The paper ontain a few examples to illustrate the methods and the resultsmaninly based on divided di�erene approah (DD2) to nonlinear estimation.In this work we have applied an earth �xed oordiante system in whih bothposition (and orientation) of the robot and the guide marks are related. Theresult is positions of robot and guide marks in an absolute sale. However, thedynami is related to the robot only. Another approah is to apply a robot�xed oordinate system. Then the position of the robot and guide marks arerelative. In a robot �xed oordinate system the proess equation for the guidemarks are no longer the identity but a result of the movement of the robot (andthe oordinate system).AknowledgmentThe support from the Danish Center for Sienti� Computing (DCSC) (undergrant CPU-1101-30) is gratefully aknowledged.ReferenesArras, K. O. (2004), The as robot navigation toolbox, quik guide, Tehnialreport, CAS, KTH.Arulampalam, M., Maskell, S., Gordon, N. & Clapp, T. (2002), `A tutorial onpartile �lters for online nonlinear/non-gaussian bayesian traking', IEEETransations on Signal Proessing 50(2), 174�188.Bak, M. (2000), Control of Systems with Constraints, PhD thesis, IAU, DTU.Julier, S. (2002), `The saled unsented transformation', Proeedings of theAmerian Control Conferene pp. 4555�4559.Julier, S. & Uhlmann, J. (2004), `Unsented �ltering and nonlinear estimation',Proeeding of the IEEE 92(3), 401�422.Netto, A., Gimeno, L. & Mendes, M. (1978), `A new spline algorithm fornon-linear �ltering of disrete time systems', Proeedings of the 4th IFACSymposium on Identi�ation and System Parameter Estimation, Tbilisi,U.S.S.R. pp. 2123�2130.
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