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h 21, 2005Abstra
tIn this paper we present a simulation platform for evaluate methodsfor simultaneous lo
ation and mapping. The platform is based on TheKALMTOOL 2 toolbox whi
h is a set of MATLAB tools for state estima-tion for nonlinear systems. The toolbox 
ontains fun
tions for extendedKalman �ltering as well as for two new �lters 
alled the DD1 �lter and theDD2 �lter. It also 
ontains fun
tion for Un
ented Kalman �lters as wellas three versions of parti
le �lters. The toolbox requires MATLAB ver. 6,but no additional toolboxes are required.1 Introdu
tionThe simulation platform, whi
h is des
ribed in this paper, is build as an exten-tion to Kalmtool 2. This toolbox is a 
olle
tion of estimation algorithms forsolving nonlinear state estimation problems.During the work it was found that the extended Kalman �lter was somewhatin
onvenient to use in some of our appli
ations. A small modi�
ation of theappli
ation sometimes had serious impli
ations on the EKF implementation.Moreover, it was often di�
ult to implement. Our problem was that the EKFrequires a linearization of the system model. Sometimes this is easy to �ndbut sometimes it 
an be pretty hard. In any 
ase, it makes things in�exible.1



2 The Platform 2If a small 
hange is made in the model, one has to work out a new set ofderivatives. This is parti
ularly in
onvenient in model 
alibration where 
ertainmodel parameters are temporarily in
luded in the state ve
tor and estimatedsimultaneously with the a
tual states.Sin
e it was suggested, the extended Kalman �lter (EKF) has undoubtly beenthe dominating te
hnique for nonlinear state estimation. Nevertheless, the EKFis known to have several drawba
ks. These are mainly due to the Taylor lin-earization of the nonlinear transformations around the 
urrent state estimate.The linearization requires that Ja
obians of state transition and observationequations are derived, whi
h is often a quite 
omplex task. Moreover, some-times there are points in whi
h the Ja
obians are not de�ned. In addition tothe di�
ulties with implementation, 
onvergen
e problems are often en
oun-tered due to the fa
t that the linearized models des
ribe the system poorly.There have been signi�
ant fo
us on this area re
ently and previous work in
ludeseveral toolboxes and other platforms. ReBEL (Re
ursive Bayesian EstimationLibrary) (van der Merwe 2004) is a Matlab® toolkit of fun
tions and s
ripts,designed to fa
ilitate sequential Bayesian inferen
e (estimation) in general statespa
e models. The CAS Robot Navigation Toolbox (Arras 2004) is a tool fordoing o�-line o�-board lo
alization and SLAM on mobile robots. The design ofthe CAS toolbox de
ouples robot model, sensor models, features and algoritmsused giving the user ability to adapt the toolbox by just modifying or addingthe pie
es in question. The toolbox does not in its present form support thegeneration of realtime 
ode for use on the robot. The present platform KalmtoolII has its root in Kalmtool but fo
us here is on 
omparision and transparen
ygiving the developer more 
ontrol over the pro
ess of adapting 
hanges andkeeping housekeeping 
ode minimal.The paper is organized as follows: �rst the overall design philosophy behind theplatform is des
ribed. Next a des
ription of the estimation algorithms are givenin
luding the extended Kalman �lter, the Un
ented Kalman �lter and di�erenttypes of parti
le�lters. Se
tion 4 gives an extensive example study as well asa demonastration of the platform for 
omparing algortims for navigation of amobile robot. Finally 
on
lusions and referen
es are given.2 The PlatformThe overall design philosophy has been to put fo
us on making a simple, trans-parent, yet powerfull platform that and makes life easy to use both for appli
a-tion and algorithm developer.Transperan
y over
omes the barrier e�e
t that is often expiren
ed when usingtools that at �rst sight seem very user friendly but when used on real problemsbe
omes di�
ult to handle due to the inherent 
omplexity.The approa
h taken uses MATLAB as a numeri
al and graphi
al basis for de-veloping the platform. The platform is driven from Simulink as this provides



3 Lo
ation and Mapping 3a shorter path to implementation using for instan
e Realtime Workshop andmakes is simple to use real data for 
omparison.
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Figure 1. The Simulink layout of a 
ontinous system.
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Figure 2. The Simulink layout of a dis
rete time systemsAs seen in the above �gures the user 
an easily add new algorithm into the plat-form by modifying the MATLAB fun
tion in the Estimation blo
k and 
hangethe system by modifying the system and measurement MATLAB blo
ks.3 Lo
ation and MappingWhen maneuvering an autonomous guide vehi
le (AGV) it is important to knowthe position and orientation of the vehi
le. This is often done by using theodonometry of the vehi
le. This is basi
ally just to use the measured travelingdistan
e and measured 
hange of orientation. This is also denoted as dead-re
koning. It is however well known that this method has an inherit natureof a

umulating errors. The determination of the position and orientation istherefore supplied with measurement of the robot position and orientation inrelation to some guide marks with known (or relative well known) positions.This, dead-re
koning and eventually the use of some guide marks is denoted aslo
ation or navigation.The model of the mobile robot (uni
y
le type) is given by the set of equationswhi
h are slightly nonlinear. The equations yield a position as well as a heading.



3 Lo
ation and Mapping 4The input signals (i.e. 
ontrol signals) are the velo
ity, γ, and turnrate, ω.
d

dt





xt

yt

θt



 =





γt cos(θt)
γt sin(θt)

ωt



 + vt (1)The pro
ess noise is in the (later) example studies simulated as N(0, 0.01 I3).The estimation pro
edure in the lo
ation part and the mapping part is basedon a sampled version of the above pro
ess equation. The sampling 
an be doneanalyti
ally (for this simple example) or by means of a numeri
al ODE solver.Lo
ation in relation autonomuous guided vehi
le is based on a fusion of resultsfrom several sensors. Normally one of the sensors set is the odometry, i.e. noisymeasurements of the speed of the wheels:
ωr =

2γt + bωt

2rr

ωl =
2γt − bωt

2rlAnother set of measurements is the relative position between a guide marksand the robot. Assume a guide mark has a position whi
h is known with somepre
ision embedded in
[

xg

yg

]

∈ N (0, Pg)The position of the robot is also known with some pre
ision re�e
ted by

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ŷt
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The a
tual measurement is the distan
e and the dire
tion to the guide markwhi
h 
an be transformed into a set of Cartesian measurement:
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



1 0 0 −1 0
0 1 0 0 −1
0 0 1 0 0
















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
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

+ et (2)The mesurement noise is assumend to be N (0, R2) where R2 re�e
ts the trans-formation of the un
ertainty in the mesurements of the distanse and the dire
tionfrom the robot to the guide mark.Both lo
ation and mapping is based on the same prin
iple. In 
onne
tion tomapping a newly observed guide mark is assumed to have a position given bythe a'priori distribution
[

xg

yg

]

∈ N (p, P0) (3)re�e
ting the la
k of knowledge. As a limit it 
an be assumed to be totally �at.



4 Estimation algorithms 54 Estimation algorithmsConsider a system in whi
h the evolution of the state sequen
e {xk ∈ R
n, k ∈ N}is given by

xk+1 = fk(xk, uk, vk) (4)where fk is a possible nonlinear fun
tion of the state, xk, the input (
ontrol)signal, uk and the pro
ess noise, vk. The pro
ess noise is assumed to be asequen
e {vk ∈ R
n k ∈ N} of i.i.d. sto
hasti
 ve
tors.The obje
tive is to estimate xk from measurements

yk = gk(xk, ek) ∈ R
m (5)where also gk is a possible nonlinear fun
tion of the state and the measurementnoise, ek. The measurement noise is assumed to be a sequen
e, {ek ∈ R

m k ∈ N},of i.i.d. sto
hasti
 ve
tors. More spe
i�
 we seek an estimate of xk based on allavailable measurements (and known inputs) Y0:k = {(yi, ui), i = 0, ..., k}.The solution to this problem is embedded in the 
onditional degree of belief inthe state, xk given the data, Y0:k. The problem is then (re
ursively) to determinethe pdf. p(xk|y0:k). If the initial distribution, p(x0), is known then the solution
an in prin
iple be determined through the re
ursions:
p(xk|Y0:k−1) =

∫

Ωx

p(xk|xk−1)p(xk−1|Y0:k−1)dxk−1 (6)and
p(xk|Y0:k) =

p(yk|xk)

p(yk|Y0:k−1)
p(xk|Y0:k−1) (7)These two re
ursions are related to the dynami
 ((6)) and the inferen
e ((7))step, respe
tively and 
an only in spe
ial 
ases be solved analyti
ally. In thelinear Gaussian 
ase the pdf. 
an be parameterized in terms of mean and vari-an
e and the re
ursions results in the well known Kalman �lter. In that 
ase(the linear Gaussian 
ase with standard assumptions in
luding x0 ∈ N (x̂0, P0))the system is assumed to be given by the re
ursions:

xk+1 = Axk + Buk + vk vk ∈ Niid (0, R1)

yk = Cxk + ek ek ∈ Niid (0, R2)The Kalman �lter is given by the predi
tion or the time updates
x̂k+1|k = Ax̂k|k + Buk (8)
Pk+1|k = APk|kA

T + R1 (9)and the inferen
e re
ursion
x̂k|k = x̂k|k−1 + Kk(yk − ŷk|k−1) (10)
Pk|k = Pk|k−1 −KkCPk|k−1 (11)



4 Estimation algorithms 6where:
Kk = Pk|k−1C

T S−1
kand

ŷk|k−1 = Xx̂k|k−1 Sk = CPk|k−1C
T + R2In this 
ase, the predi
tion in (6) results in (8) and 
an also be found as anappli
ation of 
al
ulus for linear operations on Gaussian ve
tors. The inferen
ere
ursion in (10) emerge from (7) or as an appli
ation of the Proje
tion Theorem.The various �lters di�ers in the way the handle the propagation of the distribu-tions through the two nonlinearities, f and g, and how the inferen
e is 
arriedout. The next three �lters are all based on the proje
tion Theorem.In this 
ase, the predi
tion in (6) results in (8) and 
an also be found as anappli
ation of 
al
ulus for linear operations on Gaussian ve
tors. The inferen
ere
ursion in (10) emerge from (7) or as an appli
ation of the Proje
tion Theoremon:

[

xk

yk

]∣

∣

∣

∣

Y0:k−1 ∈ N

([

mx

my

]

,

[

Px Pxy

Pyx Py

])In this 
ase
xk|Y0:k ∈ N

(

m̄x, P̄x

)

m̄x = mx + PxyP
−1
y (yk −my) P̄x = Px − PxyP

−1
y PyxThe 
onne
tion to (10)-(11) is simply through

mx = x̂k|k−1 my = Cx̂k|k−1

Px = Pk|k−1 Pxy = Pk|k−1C
T Py = Sk4.1 The Extended Kalman �lterThe Extended Kalman �lter is as its name indi
ate based on an extension of theappli
ation of the Kalman �lter to the nonlinear 
ase. The Extended Kalman�lter (EKF) is based on a standard Taylor expansion of the nonlinear fun
tionsand 
an be regarded as a lo
al approximation. In general the approximation isbest for small deviations from the point of linearization.The basi
 idea is related to the problem of determine the distribution of z if

z = F (x)and the distribution of x is known to be N (x̂, Px). The approximation is simplyto use
z ∈ N

(

F (x̂), APxAT
)where

A =
∂

∂x
F

∣

∣

∣

∣

x̂



4 Estimation algorithms 7This approximation applies both to the pro
ess equation (and f) and the mea-surement equation (and g). In fa
t, the only 
hanges with respe
t to (8)-(11)is
x̂i+1|i = fi(x̂i|i, ui, 0) ŷi|i = gi(x̂i|i, 0)The varian
e update, (9) and (11), are un
hanged (ex
ept for the state depen-dent system matri
es).4.2 Divided di�eren
e �ltersThe divided di�eren
e �lter exists in a �rst order version (DD1) and in a se
-ond order version (DD2) and is based on Stirlings interpolation formula (see(Nørgaard, Poulsen & Ravn 2000) and Figure 3 for illustration).

−1 0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x

f(
x)

Two polynomial approximations of the same function

Figure 3. Comparison of a se
ond-order polynomial approximation obtainedwith the Taylor (dot-dashed) and the Stirling method (dashed)Let again, x be a sto
hasti
 variable and x ∈ N
(

x̂, SxST
x

). The approximationwhi
h takes the variation of w into a

ount is
F (x) = F (x̂) + ∇̄zF (x̂)(x− x̂) +

1

2
∇̄2

xF (x̂)(x− x̂)2 + εwhere
∇̄xF (x̂) = Mij

{

1

2h
[Fi(x̂ + hSxj)− Fi(x̂− hSxj)]

}

∇̄2
xF (x̂) = Mij

{

1

h2
[Fi(x̂ + hSxj) + Fi(x̂− hSxj)− 2Fi(x̂)]

}Here h is a s
ale parameter and Sxj is the j'th 
olumn in Sx. In the Gaussian
ase the 
hoi
e h2 = 3 is in some sense optimal (see (Nørgaard et al. 2000)).Introdu
e the notation
F+

p = F (x̂ + hSx,p) F−
p = F (x̂− hSx,p) F 0 = F (x̂)For the DD2 �lter the approximation is then

ẑ =
h2 − nx

h2
F 0 +

1

2h2

nx
∑

p=1

F+
p + F−

p



4 Estimation algorithms 8and
Pz =

1

4h2

nx
∑

i=1

(F+
p − F−

p )(F+
p − F−

p )T

+
h2 − 1

4h2

nx
∑

i=1

(F+
p + F−

p − 2F 0)(F+
p + F−

p − 2F 0)TFor the �rst order �lter (DD1) only the �rst terms in the approximations areused.In the divided di�eren
e �lters (DD1 and DD2) the propagation of mean andvarian
e is determined through the approximations mentioned above. The in-feren
e is based on the Proje
tion Theorem.4.3 The Uns
ented kalman �lterThe Un
ented �lter is based on the (un
entedi) transformation of a sto
hasti
variable, x, through a nonlinear fun
tion, F (x) (see (Julier & Uhlmann 2004)).Assuming again the mean of x is x̂ and the varian
e matrix is Px = SxST
x , thenthe sigma points are de�ned as:

x(1) = x̂ w0 =
κ

nx + κ

x(i) = x̂ +
√

(nx + κ)Sxi wi =
κ

2(nx + κ)

i = 1, ... nx

x(j+nx) = x̂−
√

(nx + κ)Sx,j wj+nx
=

κ

2(nx + κ)

j = 1, ... , nxHere κ is a s
aling parameter and wi is the weight asso
iated with a point and
2nx
∑

i=0

wi = 1Ea
h sigma point is propagated through the nonlinear fun
tion
z(i) = F (x(i)) i = 0, ... 2nxand the approximation is then

ẑ =
2nx
∑

i=0

wiz
(i)and

Pz =

2nx
∑

i=0

wi(z
(i) − ẑ)(z(i) − ẑ)TThe standard UKF is based on the approximation mentioned above and theProje
tion Theorem. In the s
aled version of UKF the weight is 
hosen in aslightly di�erent manner (see (Julier 2002) or (Wan & van der Merwe 2000) fordetails).



5 Example study 94.4 Parti
le �ltersParti
le �lters 
omes in several versions and implementations (see e.g. (Arulampalam,Maskell, Gordon & Clapp 2002) or (van der Merwe, Dou
et, de Freitas &Wan 2000)). In the most basi
 version (Exp. PF) implemented in the platformthe nonlinearities are dealt with by propagating a swarm of parti
le throughthe nonlinearities. Again assuming x ∈ N (x̂, Px) a number (N) of parti
les aregenerated
x(i) ← N (x̂, Px) i = 1, ... Nand propagated through the nonlinear fun
tion

z(i) = F (x(i))The approximation is then simply
ẑ =

N
∑

i=1

z(i) Pz =

N
∑

i=1

(z(i) − ẑ)(z(i) − ẑ)TIn the most basi
 version (Exp. PF) the inferen
e is based on the Proje
tionTheorem and the nonlinearities are handled with the method mentioned above.In the generi
 parti
le �lters (Gen. PF) the inferen
e is not based on the Proje
-tion Theorem, but is 
arried out by applying 7 dire
tly. That results in weightsasso
iated with ea
h of the parti
les. In this version the parti
le are only ini-tially generated as des
ribed above. After the inferen
e step the parti
les areresampled from a distribution 
hara
terized by the weights. In the last version(MH. PF) implemented here on this platform, the resampling is performed bymeans of the Metropolis-Hastings algorithm.5 Example studyThe versatility of the simulation framework is most evident when implementinga number of examples. For the purpose of this demonstration, a dis
rete timedi�eren
e equation system and a 
ontinuous time di�erential equation systemare sele
ted. The example studies 
on
ludes with a simultanous lo
ation andmapping problem.5.1 Nonlinear state estimationThe �rst example i a dis
rete time system and is an a
ademi
 example of anonlinear system (though in a simpli�ed form), whi
h has been used previouslyas a ben
hmark for testing �lter algorithms ((Netto, Gimeno & Mendes 1978)).In the example the pro
ess is a nonlinear equation with a linear and noisymeasurements. First, the pro
ess equation, xk+1 is listed, next the measurement
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Figure 4. Two examples of the highly nonlinear and noisy system given in equa-tion 12. The topmost is the 2nd order Divided Di�eren
e �lter, while the bot-tommost is a generi
 Parti
le Filter.
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Figure 5. Two graphs depi
ting the e�e
t of varying the parti
le 
ount per updateon the ben
hmark system. The mean RMSE and mean varian
e estimates areseen to 
onverge rather qui
kly to relatively stationary values at around 100parti
les per time update.equation, yk.
xk+1 =

1

2
xk +

25xk

1 + x2
k

+ 8cos(1.2k) + vn (12)
yk = xk + wk;Note that, both the noise sour
es, vk and wk, are zero mean Gaussian whitenoise with varian
es of 10.0 and 1.0 respe
tively. As was the 
ase with the smallrobot model, a Monte Carlo series of simulations was made with a variety ofestimation algorithms. Two examples of the appearan
e of a simulation 
an befound in �gure 4.The result of the Monte Carlo simulation 
an be seen in table 1. The Kalman�lter type algorithms were simulated 1000 times and the means of the root meansquare errors (RMSE) were found as well as the means of the varian
e estimates.The Parti
le Filter types were simulated 100 times with 200 parti
les per timeupdate in all �lters.Finally, in order to 
ompare the pre
ision of the three parti
le �lters as a fun
tionof the number of parti
les per time update, a Monte Carlo series of simulations
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Figure 6. A path tra
ed by the small uni
y
le robot. The estimation routineemployed is the 2nd order Divided Di�eren
e �lter with a sampling frequen
y of1 Hz. At every other estimated state, the 95% 
on�den
e intervals are drawn asellipses or bars respe
tively. The estimate is at no point outside the 
on�den
eintervals.



5 Example study 13Algorithm Mean RMSE Mean Var. Est. TimeC.D. EKF 0.9573 0.9206 1.000Std. UKF 0.9472 0.9238 0.126S
l. UKF 0.9503 0.9247 0.151DD1 0.9417 0.9221 0.133DD2 0.9260 0.9238 0.137Exp. PF 0.9513 0.9165 2.067Gen. PF 4.2326 31.595 5.917PF (MH) 4.0238 28.165 8.543Table 1. Table of results for a Monte Carlo series of simulations on the dis
retenonlinear and noisy system.was made using the ben
hmark system. The results 
an be seen in �gure 5.The series 
onsisted of 100 runs per parti
le 
ount, from 2 to 256 parti
les inin
reasing steps. The algorithms 
onverge rather qui
kly as the parti
le 
ountin
reases.5.2 Dead-re
koningAlgorithm Max. RMSE Max. Var. Est. TimeC.D. EKF 0.06799 0.005717 1.000Std. UKF 0.07399 0.006779 2.678S
l. UKF 0.07331 0.006693 3.673DD1 0.07251 0.006779 2.640DD2 0.07177 0.006781 2.658Exp. PF 0.07591 0.006479 16.86Gen. PF 0.09698 0.039829 17.82PF (MH) 0.08960 0.058690 18.53Table 2. Small mobile robot, worst value of mean estimate (x,y,θ) and maximummean varian
e estimate of 100 Monte Carlo simulations. The table is split intoKalman �lter variants (top) and parti
le �lters (bottom). The parti
le �lters allused 200 parti
les.The next example is a 
ontinuous time system and is a very simple model of adead-re
koning guidan
e for a small mobile robot ( see equation (1)). In Figure 6the results of a simulation using the Divided Di�eren
e (2nd order) as estimator
an be seen. The integral of the 
ontrol signal, ω, is seen in the lower panelbelow the path tra
ed by the robot (upper panel).



5 Example study 14In order to 
ompare a range of te
hniques implemented in the framework, a
-
ura
y results are given in table 2. Attempting to �nd a fair estimate of thea

ura
y, 100 runs were made with ea
h algorithm and the average values werefound. The parti
le �lters all used 200 parti
les per time update. The table
ontains the "worst 
ase" values for the three states.Also listed in the table is the 
omputational burden of ea
h algorithm. Thelatter is given as a relative number 
ompared to the runtime of a 
ontinuous-dis
rete extended Kalman �lter (C.D. EKF). The times are relative, as otherpro
essor speeds and types will yield di�erent absolute results. Furthermore,the algorithms and their runtimes may well bene�t from numeri
al optimiza-tions in appli
ation spe
i�
 implementations. The algorithms used a �xed stepintegration (Matlab, Dormand-Prin
e, order 5) to solve equation 1. The stan-dard Uns
ented Kalman �lter (Std. UKF) performs very well, while it's s
aledversion gives a lower mean RMSE and a slightly lower mean varian
e estimates.The DD1 and DD2 both give low mean RMSE and 
onsistent varian
e estimates- in this 
ase, the se
ond order parts of the DD2 does not yield mu
h.
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Figure 7. Navigation of a mobile robot through a door opening. The map is buildsimultanuouly while 
ontrolling the robot. The 
ontrol is based on the lo
ationi.e. the estimation of the position and orientation of the robot. The positionsand their in
ertainty are anotated by 99% 
on�den
e areas (ellipsoids).The next two examples are related to lo
ation while a map of the guide marksis build. The dynami
s involved is the AGV given in (1) with a sensor fusingbetween the odometry (dead-re
koning) and the relatiove postioning of the guidemarks. Both the lo
ation and mapping is based on the oberservation equation,(2), where the guide mark is the a
tual guide mark under observation. Therobot is assumed to have an a
tive view se
tor in front whi
h is 90 degree wideand has a range of 4 m. The a
tive guide marks are the guide marks visiblewithin the robot view se
tor.In this 
ontext the map 
onsists of a database 
ontaining the estimated lo
ationsof the guide marks and their respe
tive un
ertainty. Besides the database thelo
ation and mapping 
onsists of a routine for handling the information relatedto the a
tive guide marks.In the �rst example related to simultaneous lo
ation and mapping the task isto navigate the robot along a wall and drive through the door opening andreturn. The door opening is de�ned in terms of two set of guide marks. Thenavigation is performed by means of way points lo
ated in in front and behindthe door opening. The positions of the way points are assumed to be known.The 
ontrol implementation is des
ribed in (Bak 2000), but is beyond the s
opeof this paper.The results are illustrated in Figure 7 where the applied estimation te
hniqueis based on the DD2 method des
ribed in se
tion 4.
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Figure 8. Navigation of a mobile robot along a 
orridor with guide marks lo
atedon the walls. The map is build simultanuouly while 
ontrolling the robot.This example is quite similar to the previous example, ex
ept that in this 
aseit is a bit more 
omplex and the robot has to follow a 
oridor equipped withguide marks. The results 
an be seen in Figure 8. The true robot path (whi
his known due to the simulation) and the estimated are indi
ated by solid lines.The lo
ation of the 4 way points are also indi
ated.As the map is build the position of the guide marks are introdu
ed. The es-timated positions and their un
ertainties are indi
ated with a dot and a 99%
on�den
e area (ellipsoids). Noti
e, that in some 
ase the 
orre
t position of aguide mark is outside the 
on�den
e area.
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lusion 176 Con
lusionIn this paper we have presented a simulation platform for simultaneous lo
ationand mapping. The platform is an extention of the toolbox KALMTOOL ver.2 whi
h a set of MATLAB tools for state estimation for nonlinear systems.It 
ontains fun
tions for extended Kalman �ltering as well as for the two new�lters the DD1 �lter and the DD2 �lter. It also 
ontains fun
tions for Uns
ented(standard and s
aled) Kalman �lter as well as three versions of parti
le �lters.The paper 
ontain a few examples to illustrate the methods and the resultsmaninly based on divided di�eren
e approa
h (DD2) to nonlinear estimation.In this work we have applied an earth �xed 
oordiante system in whi
h bothposition (and orientation) of the robot and the guide marks are related. Theresult is positions of robot and guide marks in an absolute s
ale. However, thedynami
 is related to the robot only. Another approa
h is to apply a robot�xed 
oordinate system. Then the position of the robot and guide marks arerelative. In a robot �xed 
oordinate system the pro
ess equation for the guidemarks are no longer the identity but a result of the movement of the robot (andthe 
oordinate system).A
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