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Abstract

In this paper we present a simulation platform for evaluate methods
for simultaneous location and mapping. The platform is based on The
KALMTOOL 2 toolbox which is a set of MATLAB tools for state estima-
tion for nonlinear systems. The toolbox contains functions for extended
Kalman filtering as well as for two new filters called the DD1 filter and the
DD2 filter. It also contains function for Uncented Kalman filters as well
as three versions of particle filters. The toolbox requires MATLAB ver. 6,
but no additional toolboxes are required.

1 Introduction

The simulation platform, which is described in this paper, is build as an exten-
tion to Kalmtool 2. This toolbox is a collection of estimation algorithms for
solving nonlinear state estimation problems.

During the work it was found that the extended Kalman filter was somewhat
inconvenient to use in some of our applications. A small modification of the
application sometimes had serious implications on the EKF implementation.
Moreover, it was often difficult to implement. Our problem was that the EKF
requires a linearization of the system model. Sometimes this is easy to find
but sometimes it can be pretty hard. In any case, it makes things inflexible.



2 The Platform 2

If a small change is made in the model, one has to work out a new set of
derivatives. This is particularly inconvenient in model calibration where certain
model parameters are temporarily included in the state vector and estimated
simultaneously with the actual states.

Since it was suggested, the extended Kalman filter (EKF) has undoubtly been
the dominating technique for nonlinear state estimation. Nevertheless, the EKF
is known to have several drawbacks. These are mainly due to the Taylor lin-
earization of the nonlinear transformations around the current state estimate.
The linearization requires that Jacobians of state transition and observation
equations are derived, which is often a quite complex task. Moreover, some-
times there are points in which the Jacobians are not defined. In addition to
the difficulties with implementation, convergence problems are often encoun-
tered due to the fact that the linearized models describe the system poorly.

There have been significant focus on this area recently and previous work include
several toolboxes and other platforms. ReBEL (Recursive Bayesian Estimation
Library) (van der Merwe 2004) is a Matlabg toolkit of functions and scripts,
designed to facilitate sequential Bayesian inference (estimation) in general state
space models. The CAS Robot Navigation Toolbox (Arras 2004) is a tool for
doing off-line off-board localization and SLAM on mobile robots. The design of
the CAS toolbox decouples robot model, sensor models, features and algoritms
used giving the user ability to adapt the toolbox by just modifying or adding
the pieces in question. The toolbox does not in its present form support the
generation of realtime code for use on the robot. The present platform Kalmtool
IT has its root in Kalmtool but focus here is on comparision and transparency
giving the developer more control over the process of adapting changes and
keeping housekeeping code minimal.

The paper is organized as follows: first the overall design philosophy behind the
platform is described. Next a description of the estimation algorithms are given
including the extended Kalman filter, the Uncented Kalman filter and different
types of particlefilters. Section 4 gives an extensive example study as well as
a demonastration of the platform for comparing algortims for navigation of a
mobile robot. Finally conclusions and references are given.

2 The Platform

The overall design philosophy has been to put focus on making a simple, trans-
parent, yet powerfull platform that and makes life easy to use both for applica-
tion and algorithm developer.

Transperancy overcomes the barrier effect that is often expirenced when using
tools that at first sight seem very user friendly but when used on real problems
becomes difficult to handle due to the inherent complexity.

The approach taken uses MATLAB as a numerical and graphical basis for de-
veloping the platform. The platform is driven from Simulink as this provides
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a shorter path to implementation using for instance Realtime Workshop and
makes is simple to use real data for comparison.
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Figure 1. The Simulink layout of a continous system.

Figure 2. The Simulink layout of a discrete time systems

As seen in the above figures the user can easily add new algorithm into the plat-
form by modifying the MATLAB function in the Estimation block and change
the system by modifying the system and measurement MATLAB blocks.

3 Location and Mapping

When maneuvering an autonomous guide vehicle (AGV) it is important to know
the position and orientation of the vehicle. This is often done by using the
odonometry of the vehicle. This is basically just to use the measured traveling
distance and measured change of orientation. This is also denoted as dead-
reckoning. It is however well known that this method has an inherit nature
of accumulating errors. The determination of the position and orientation is
therefore supplied with measurement of the robot position and orientation in
relation to some guide marks with known (or relative well known) positions.
This, dead-reckoning and eventually the use of some guide marks is denoted as
location or navigation.

The model of the mobile robot (unicycle type) is given by the set of equations
which are slightly nonlinear. The equations yield a position as well as a heading.
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The input signals (i.e. control signals) are the velocity, v, and turnrate, w.

d T Yt 005(9t)
it v | =\ wsin(6) | +v (1)
915 Wt

The process noise is in the (later) example studies simulated as N(0,0.01 I3).
The estimation procedure in the location part and the mapping part is based
on a sampled version of the above process equation. The sampling can be done
analytically (for this simple example) or by means of a numerical ODE solver.

Location in relation autonomuous guided vehicle is based on a fusion of results
from several sensors. Normally one of the sensors set is the odometry, i.e. noisy
measurements of the speed of the wheels:

29+ bwy
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Another set of measurements is the relative position between a guide marks
and the robot. Assume a guide mark has a position which is known with some
precision embedded in
[5”9 ] eN(0,P,)
Yg

The position of the robot is also known with some precision reflected by

Tt jjt
yr | €N U |, B
0 0y

The actual measurement is the distance and the direction to the guide mark
which can be transformed into a set of Cartesian measurement:

Tt
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w=1101 0 0 -1 0; | +e; (2)
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The mesurement noise is assumend to be N (0, Ry) where Ry reflects the trans-
formation of the uncertainty in the mesurements of the distanse and the direction
from the robot to the guide mark.

Both location and mapping is based on the same principle. In connection to
mapping a newly observed guide mark is assumed to have a position given by
the a’priori distribution
[ o ] €N (p, ) (3)
Yg
reflecting the lack of knowledge. As a limit it can be assumed to be totally flat.
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4 Estimation algorithms

Consider a system in which the evolution of the state sequence {z} € R", k € N}
is given by
Thi1 = Jr(r, vk, vi) (4)

where fj is a possible nonlinear function of the state, xj, the input (control)
signal, ug and the process noise, v;y. The process noise is assumed to be a
sequence {vx € R™ k € N} of i.i.d. stochastic vectors.

The objective is to estimate x; from measurements

yk = gr(zg,ex) €R™ (5)

where also g is a possible nonlinear function of the state and the measurement
noise, e;. The measurement noise is assumed to be a sequence, {e; € R™ k € N},
of i.i.d. stochastic vectors. More specific we seek an estimate of x; based on all
available measurements (and known inputs) Yo.x = {(yi, w;), i =0, ..., k}.

The solution to this problem is embedded in the conditional degree of belief in
the state, xy given the data, Yy.x. The problem is then (recursively) to determine
the pdf. p(xk|yo.k). If the initial distribution, p(zg), is known then the solution
can in principle be determined through the recursions:

p(p Yo 1) = / p(@plen 1)@ 1| Yor_1)des1 (6)
and ( ‘ )
P\Yk| Tk

p(zk|Yor) = pi(yklyoqu)p(xk‘%:kfl) (7)

These two recursions are related to the dynamic ((6)) and the inference ((7))
step, respectively and can only in special cases be solved analytically. In the
linear Gaussian case the pdf. can be parameterized in terms of mean and vari-
ance and the recursions results in the well known Kalman filter. In that case
(the linear Gaussian case with standard assumptions including zo € N (2o, F))
the system is assumed to be given by the recursions:

Tht1 = Axy + Bug + v, v € Nyd (0, Rl)

yr = Czp + ey ek € Niiq (0, Rz)
The Kalman filter is given by the prediction or the time updates

Poiie = AP AT + Ry (9)

and the inference recursion

T = -1 + Ki(k — Jrjp—1) (10)
Por = Prjp—1 — KxCPyp—1 (11)
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where:
Ky, = Py, CT S

and
Urp—1 = XTpjp—1 Sk = CPy—1C" + Ry

In this case, the prediction in (6) results in (8) and can also be found as an
application of calculus for linear operations on Gaussian vectors. The inference
recursion in (10) emerge from (7) or as an application of the Projection Theorem.

The various filters differs in the way the handle the propagation of the distribu-
tions through the two nonlinearities, f and g, and how the inference is carried
out. The next three filters are all based on the projection Theorem.

In this case, the prediction in (6) results in (8) and can also be found as an
application of calculus for linear operations on Gaussian vectors. The inference
recursion in (10) emerge from (7) or as an application of the Projection Theorem

Tk My P, P
Yor—1 €N , Y
P (L B D)
xk‘ YO:k eN (mxa Pa:)
Mg =My + Poy Py (ye —my)  Po = Po— PoyPy ' Py

In this case

The connection to (10)-(11) is simply through

My = Tp|—1 my = CTy—y

Py = Pyp-1 Pyy = Py—1CT P, = Sk

4.1 The Extended Kalman filter

The Extended Kalman filter is as its name indicate based on an extension of the
application of the Kalman filter to the nonlinear case. The Extended Kalman
filter (EKF) is based on a standard Taylor expansion of the nonlinear functions
and can be regarded as a local approximation. In general the approximation is
best for small deviations from the point of linearization.

The basic idea is related to the problem of determine the distribution of z if
z=F(x)

and the distribution of z is known to be N (&, P,;). The approximation is simply
to use
z € N (F(2), AP, AT)

where 3
A= —F
or |,
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This approximation applies both to the process equation (and f) and the mea-
surement equation (and g). In fact, the only changes with respect to (8)-(11)
is

Tig1p = fi(Zijs, wi, 0) ili = 9i(Z4,0)
The variance update, (9) and (11), are unchanged (except for the state depen-
dent system matrices).

4.2 Divided difference filters

The divided difference filter exists in a first order version (DD1) and in a sec-
ond order version (DD2) and is based on Stirlings interpolation formula (see
(Ngrgaard, Poulsen & Ravn 2000) and Figure 3 for illustration).

Two polynomial approximations of the same function
T T

Figure 3. Comparison of a second-order polynomial approximation obtained
with the Taylor (dot-dashed) and the Stirling method (dashed)

Let again, x be a stochastic variable and x € N (3%, Sng). The approximation
which takes the variation of w into account is

where

<

(@) = My { o (R0 +18,5) — i@ - 05,50}

VL) = My {3 [0 + hS25) + Fila — 125) — 2(2)]

Here h is a scale parameter and S;; is the j'th column in S;. In the Gaussian
case the choice h? = 3 is in some sense optimal (see (Ngrgaard et al. 2000)).

Introduce the notation
FEf =F(&+hSyp) Fy =F(&—hS,,) F'=F(2)
For the DD2 filter the approximation is then

. R — . o 1 & " _
Z = b +2h2ZFp + 1
p=1
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and
1 &
_ + —\( 1+ —\T
P = 4—h22(Fp _Fp)(Fp _Fp)
i=1
h? -1 &

> (Ff + F, —2F°)(F, + F, —2F°)"
=1

4h?

For the first order filter (DD1) only the first terms in the approximations are
used.

In the divided difference filters (DD1 and DD2) the propagation of mean and
variance is determined through the approximations mentioned above. The in-
ference is based on the Projection Theorem.

4.3 The Unscented kalman filter

The Uncented filter is based on the (uncentedi) transformation of a stochastic
variable, z, through a nonlinear function, F'(x) (see (Julier & Uhlmann 2004)).
Assuming again the mean of x is # and the variance matrix is P, = S, 5%, then
the sigma points are defined as:

W = 2 wy = il
Ny + K
A . K
2 = &+ (ne + K)Ses wi = 2ng + 1)
X
1=1, ... ny
. A K
20 = b Sy W = s
€T
j=1 ... ny

Here k is a scaling parameter and w; is the weight associated with a point and

2Ny

Z w; = 1
1=0

Each sigma point is propagated through the nonlinear function

20 = F(z) i =0, ... 2ny
and the approximation is then
2Ny
2= wiz®
i=0
and
2N
P, = Zwi(z(l) — 2)(2'(’) -7
=0

The standard UKF is based on the approximation mentioned above and the
Projection Theorem. In the scaled version of UKF the weight is chosen in a
slightly different manner (see (Julier 2002) or (Wan & van der Merwe 2000) for
details).
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4.4 Particle filters

Particle filters comes in several versions and implementations (see e.g. (Arulampalam,
Maskell, Gordon & Clapp 2002) or (van der Merwe, Doucet, de Freitas &
Wan 2000)). In the most basic version (Exp. PF) implemented in the platform
the nonlinearities are dealt with by propagating a swarm of particle through
the nonlinearities. Again assuming x € N (Z, P,) a number (V) of particles are
generated

¥ — N(z,P,) i=1, .. N

and propagated through the nonlinear function
L) — F(g:(i))

The approximation is then simply

N N
p=> 20 P, =) (2" —2)(z" - 5)T
i=1 =1

In the most basic version (Exp. PF) the inference is based on the Projection
Theorem and the nonlinearities are handled with the method mentioned above.

In the generic particle filters (Gen. PF) the inference is not based on the Projec-
tion Theorem, but is carried out by applying 7 directly. That results in weights
associated with each of the particles. In this version the particle are only ini-
tially generated as described above. After the inference step the particles are
resampled from a distribution characterized by the weights. In the last version
(MH. PF) implemented here on this platform, the resampling is performed by
means of the Metropolis-Hastings algorithm.

5 Example study

The versatility of the simulation framework is most evident when implementing
a number of examples. For the purpose of this demonstration, a discrete time
difference equation system and a continuous time differential equation system
are selected. The example studies concludes with a simultanous location and
mapping problem.

5.1 Nonlinear state estimation

The first example i a discrete time system and is an academic example of a
nonlinear system (though in a simplified form), which has been used previously
as a benchmark for testing filter algorithms ((Netto, Gimeno & Mendes 1978)).

In the example the process is a nonlinear equation with a linear and noisy
measurements. First, the process equation, zjy; is listed, next the measurement
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Divided Difference KF (2Z2nd)
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Figure 4. Two examples of the highly nonlinear and noisy system given in equa-
tion 12. The topmost is the 2nd order Divided Difference filter, while the bot-
tommost is a generic Particle Filter.
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Figure 5. Two graphs depicting the effect of varying the particle count per update
on the benchmark system. The mean RMSE and mean variance estimates are
seen to converge rather quickly to relatively stationary values at around 100
particles per time update.

equation, yg.

L, 25w
x = -z
k+1 k 1+xz

5 + 8cos(1.2k) + vy,

(12)
Yk = Tf+ Wg;

Note that, both the noise sources, vy and wy, are zero mean Gaussian white
noise with variances of 10.0 and 1.0 respectively. As was the case with the small
robot model, a Monte Carlo series of simulations was made with a variety of
estimation algorithms. Two examples of the appearance of a simulation can be
found in figure 4.

The result of the Monte Carlo simulation can be seen in table 1. The Kalman
filter type algorithms were simulated 1000 times and the means of the root mean
square errors (RMSE) were found as well as the means of the variance estimates.
The Particle Filter types were simulated 100 times with 200 particles per time
update in all filters.

Finally, in order to compare the precision of the three particle filters as a function
of the number of particles per time update, a Monte Carlo series of simulations
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Figure 6. A path traced by the small unicycle robot. The estimation routine
employed is the 2nd order Divided Difference filter with a sampling frequency of
1 Hz. At every other estimated state, the 95% confidence intervals are drawn as
ellipses or bars respectively. The estimate is at no point outside the confidence
intervals.
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Algorithm ‘ Mean RMSE ‘ Mean Var. Est. ‘ Time

C.D. EKF 0.9573 0.9206 1.000
Std. UKF 0.9472 0.9238 0.126
Scl. UKF 0.9503 0.9247 0.151
DDI1 0.9417 0.9221 0.133
DD2 0.9260 0.9238 0.137
Exp. PF 0.9513 0.9165 2.067
Gen. PF 4.2326 31.595 5.917
PF (MH) 4.0238 28.165 8.543

Table 1. Table of results for a Monte Carlo series of simulations on the discrete
nonlinear and noisy system.

was made using the benchmark system. The results can be seen in figure 5.
The series consisted of 100 runs per particle count, from 2 to 256 particles in
increasing steps. The algorithms converge rather quickly as the particle count
increases.

5.2 Dead-reckoning

Algorithm | Max. RMSE | Max. Var. Est. | Time

C.D. EKF 0.06799 0.005717 1.000
Std. UKF 0.07399 0.006779 2.678
Scl. UKF 0.07331 0.006693 3.673
DD1 0.07251 0.006779 2.640
DD2 0.07177 0.006781 2.658
Exp. PF 0.07591 0.006479 16.86
Gen. PF 0.09698 0.039829 17.82
PF (MH) 0.08960 0.058690 18.53

Table 2. Small mobile robot, worst value of mean estimate (x,y,0) and maximum
mean variance estimate of 100 Monte Carlo simulations. The table is split into
Kalman filter variants (top) and particle filters (bottom). The particle filters all
used 200 particles.

The next example is a continuous time system and is a very simple model of a
dead-reckoning guidance for a small mobile robot ( see equation (1)). In Figure 6
the results of a simulation using the Divided Difference (2nd order) as estimator
can be seen. The integral of the control signal, w, is seen in the lower panel
below the path traced by the robot (upper panel).
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In order to compare a range of techniques implemented in the framework, ac-
curacy results are given in table 2. Attempting to find a fair estimate of the
accuracy, 100 runs were made with each algorithm and the average values were
found. The particle filters all used 200 particles per time update. The table
contains the "worst case" values for the three states.

Also listed in the table is the computational burden of each algorithm. The
latter is given as a relative number compared to the runtime of a continuous-
discrete extended Kalman filter (C.D. EKF). The times are relative, as other
processor speeds and types will yield different absolute results. Furthermore,
the algorithms and their runtimes may well benefit from numerical optimiza-
tions in application specific implementations. The algorithms used a fixed step
integration (Matlab, Dormand-Prince, order 5) to solve equation 1. The stan-
dard Unscented Kalman filter (Std. UKF) performs very well, while it’s scaled
version gives a lower mean RMSE and a slightly lower mean variance estimates.
The DD1 and DD2 both give low mean RMSE and consistent variance estimates
- in this case, the second order parts of the DD2 does not yield much.
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5.3 Simultanuous location and mapping I

DD2 - T_=1.000
6 T

o
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Figure 7. Navigation of a mobile robot through a door opening. The map is build
simultanuouly while controlling the robot. The control is based on the location
i.e. the estimation of the position and orientation of the robot. The positions
and their incertainty are anotated by 99% confidence areas (ellipsoids).

The next two examples are related to location while a map of the guide marks
is build. The dynamics involved is the AGV given in (1) with a sensor fusing
between the odometry (dead-reckoning) and the relatiove postioning of the guide
marks. Both the location and mapping is based on the oberservation equation,
(2), where the guide mark is the actual guide mark under observation. The
robot is assumed to have an active view sector in front which is 90 degree wide
and has a range of 4 m. The active guide marks are the guide marks visible
within the robot view sector.

In this context the map consists of a database containing the estimated locations
of the guide marks and their respective uncertainty. Besides the database the
location and mapping consists of a routine for handling the information related
to the active guide marks.

In the first example related to simultaneous location and mapping the task is
to navigate the robot along a wall and drive through the door opening and
return. The door opening is defined in terms of two set of guide marks. The
navigation is performed by means of way points located in in front and behind
the door opening. The positions of the way points are assumed to be known.
The control implementation is described in (Bak 2000), but is beyond the scope
of this paper.

The results are illustrated in Figure 7 where the applied estimation technique
is based on the DD2 method described in section 4.
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5.4 Simultanuous location and mapping II
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Figure 8. Navigation of a mobile robot along a corridor with guide marks located
on the walls. The map is build simultanuouly while controlling the robot.

This example is quite similar to the previous example, except that in this case
it is a bit more complex and the robot has to follow a coridor equipped with
guide marks. The results can be seen in Figure 8. The true robot path (which
is known due to the simulation) and the estimated are indicated by solid lines.
The location of the 4 way points are also indicated.

As the map is build the position of the guide marks are introduced. The es-
timated positions and their uncertainties are indicated with a dot and a 99%
confidence area (ellipsoids). Notice, that in some case the correct position of a
guide mark is outside the confidence area.
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6 Conclusion

In this paper we have presented a simulation platform for simultaneous location
and mapping. The platform is an extention of the toolbox KALMTOOL ver.
2 which a set of MATLAB tools for state estimation for nonlinear systems.
It contains functions for extended Kalman filtering as well as for the two new
filters the DD1 filter and the DD2 filter. It also contains functions for Unscented
(standard and scaled) Kalman filter as well as three versions of particle filters.

The paper contain a few examples to illustrate the methods and the results
maninly based on divided difference approach (DD2) to nonlinear estimation.

In this work we have applied an earth fixed coordiante system in which both
position (and orientation) of the robot and the guide marks are related. The
result is positions of robot and guide marks in an absolute scale. However, the
dynamic is related to the robot only. Another approach is to apply a robot
fixed coordinate system. Then the position of the robot and guide marks are
relative. In a robot fixed coordinate system the process equation for the guide
marks are no longer the identity but a result of the movement of the robot (and
the coordinate system).
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