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Resumé

Klassen af inverse “ill-posed” problemer beskrives sammen med en række numeriske
standard værktøjer og basale begreber fra lineær algebra, statistik og optimering.

Kendte algoritmer til løsning af lineære inverse ill-posed problemer analyseres med
henblik p̊a, hvorledes de kan opdeles i moduler. Disse moduler kombineres derefter
for at danne nye regulariserings algoritmer med andre egenskaber end dem de tog
udgangspunkt i. Flere nye varianter bliver afprøvet med Matlab toolboxen MOORe
Tools, der er udviklet i forbindelse med denne afhandling.

Objekt orienterede programmeringsteknikker anvendes til at abstrahere selve det
inverse problem og dets data. Herved kan der skrives regulariserings-algoritmer, der
automatisk udnytter struktur i det inverse problem uden en decideret omskrivning
af algoritmen.

Et stopkriterium i forbindelse med Lanczos bidiagonalisering er forklaret. Stopkri-
teriet kan anvendes i forbindelse med parametervalgs-metoder. Det undersøges, hvor-
dan standard-form transformationen kan overføres til den objekt orienterede pakke.
En prækonditioner med sigte p̊a Tikhonov regularisering i generel form forklares
og der udføres eksperimenter, som demonstrerer simpliciteten og effektiviteten af
prækonditioneren.

Via en tutorial for MOORe Tools er det vist, hvordan flere af afhandlingens
figurer er skabt. Den inkluderede artikel “Subspace Preconditioned LSQR for Ill-
Posed Problems” diskuterer en algoritme, der ikke direkte kan implementeres med
MOORe Tools.
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Abstract

The class of linear ill-posed problems is introduced along with a range of standard
numerical tools and basic concepts from linear algebra, statistics and optimization.

Known algorithms for solving linear inverse ill-posed problems are analyzed to
determine how they can be decomposed into independent modules. These modules
are then combined to form new regularization algorithms with other properties than
those we started out with. Several variations are tested using the Matlab toolbox
MOORe Tools created in connection with this thesis.

Object oriented programming techniques are explained and used to set up the ill-
posed problems in the toolbox. Hereby, we are able to write regularization algorithms
that automatically exploit structure in the ill-posed problem without being rewritten
explicitly.

We explain how to implement a stopping criteria for a parameter choice method
based upon an iterative method. The parameter choice method is also used to
demonstrate the implementation of the standard-form transformation. We have im-
plemented a simple preconditioner aimed at the preconditioning of the general-form
Tikhonov problem and demonstrate its simplicity and efficiency.

The steps taken with MOORe Tools to produce several of the figures are demon-
strated in the toolbox tutorial. We have included the article “Subspace Precondi-
tioned LSQR for Ill-Posed Problems” that discusses an algorithm that is not easily
implemented with MOORe Tools.
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Notation

Chapter 2 includes further details on notation, decompositions and other mathemat-
ical tools.

A matrix is denoted with uppercase bold roman letters like A. The ith column of
a matrix A is written ai (it can be seen as a vector). Diagonal matrices are written
with upper case Greek letters. The diagonal elements are written with lower case
Greek letters with index, that is, σi is the ith diagonal element of Σ. An block in a
block matrix A is denoted like A11, that is, bold with indices.

Vectors are written with lowercase bold letters such as a and v. The ith element
of a vector a is denoted ai (as it is a scalar). The notation [·]i used to denote the
ith element of the vector inside the brackets. A sub-vector is denoted a1, that is,
still bold. Occasionally we will use a Matlab like notation where, for example, A:,1:k

is the first k columns of the matrix A. Scalars are written with non-bold roman
or Greek letters. We have reserved a number of letters for specific and much used
entities.

Symbol Description

A Square normal equation matrix (e.g., KT K)
b Normal equation right hand side (e.g., KT y)
ek Vector of appropriate length with a “1” at the kth position
δij Dirac’s delta
K Transfer matrix (m× n)
K† Moore-Penrose pseudo-inverse of K
L†K K-weighted pseudo-inverse of L
K#

λ Regularized inverse of K
x Solution vector
xλ Regularized solution with regularization parameter λ
y Noisy right hand side
L Regularization matrix
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L1 Approximation to first derivative
L2 Approximation to second derivative
L(·, ·) The Lagrangian function
� Element-wise multiplication (Hadamard product)
⊗ Kronecker product
∇f Gradient of f
H(f) Hessian of f
a← b Assign b to a
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Chapter 1

Introduction

For a long time mathematicians felt that ill-posed problems can-
not describe real phenomena and objects. However, we shall show
in the present book that the class of ill-posed problems includes
many classical mathematical problems and, most significantly,
that such problems have important applications. Tikhonov and
Arsenin, “Solutions of Ill-Posed Problems” [123].

Give a digital computer a problem in arithmetic, and it will grind
away methodically, tirelessly, at gigahertz speed, until ultimately
it produces the wrong answer. ... Even an innocent-looking num-
ber like 1/10 can cause no end of trouble: In most cases, the
computer cannot even read it in or print it out exactly, much
less perform exact calculations with it. Brian Hayes [74].

Algorithms are created to solve problems of some kind. The algorithms and
methods described in this thesis deal with problems that, in a sense, are unsolvable
or at least very hard to solve. However, using various “tricks” we are able to find,
not the exact solution, but an approximate solution that is hopefully good enough
to be used. The problems we will treat are inverse and ill-posed problems.

1.1 Inverse Problems

How is inverse to be understood? The usual physical equations describe how some
premises or causes result in something that can be observed. Think of a planetary
system with positions and velocities of all objects. On the basis of the premises
we can compute the trajectories of the planets and how an observation would be at
some time in the future. The inverse problem would be to find the premises, that
is, the velocities and positions at an earlier time from this observation. The forward
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problem can be solved by an ordinary differential equation solver and so can the
inverse by using negative time steps. However, it is not always that easy.

Consider a very simple mathematical example. If you know (the premises) x1 and
x2 you easily observe their sum x1 +x2 — the forward problem. The inverse problem
is, given the sum, to find the causes or premises. In our very simple example we see
that we face a problem. For example, if the sum is 10 what are x1 and x2? What if
the observation is inexact and contaminated with noise? This example is maybe the
most simple linear ill-posed inverse problem we can think of.

The previous example of an inverse problem might seem irrelevant and of no
practical use. However, inverse problems appear in a wide range of applications,
for example medical tomography [102], geophysics [37], sound source detection [117]
and image restoration [10]. In [53] and [54] Groetsch lists a number of illustrative
examples of the diversity of inverse problems. The journal “Inverse Problems” (IOP
Publishing Ltd.) is also full of different examples of more or less important real world
inverse problems.

In this thesis we will look at discrete inverse linear ill-posed problems, with the
formulation

Kx = y,

where x is the unknown (the premises), K represents the system and y the obser-
vations. The sum example fits into this framework. Note, that we do not cover the
more general non-linear inverse problems under which the planetary problem falls.
See e.g. [36, 99, 124] for theory about the non-linear inverse problems.

Figure 1.1 illustrates the atmospheric blur problem. Astronomers view the sky
through not only their telescopes but also the atmosphere. The forward problem
models how the light passes through the atmosphere (via K1) and telescope (K2)
before it is measured giving x. The telescopes can be made such that K2 ≈ I
leaving K1, the atmosphere, as the source of problems. Most observatories are built
on mountains to lessen the effect of the atmosphere, and in the case of the Hubble
space telescope the influence of the atmosphere was removed by moving the telescope
outside the atmosphere and into space, that is, effectively setting K1 = I. However,
from a inverse problem point of view a somewhat funny but quite expensive story
is linked with the Hubble space telescope! When it was launched and put into orbit
the telescope had a defect in its optical system which caused another inverse problem
because K2 was not close to the identity as intended. Until a repair was made three
years later mathematics was used to fix the error. See [2] for the full story.

1.1.1 Ill-Posed Problems

Ill-posed problems violate one or more of the conditions for a well-posed problem as
defined by Hadamard [56]

1. the solution exists,

2. the solution is unique,
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Figure 1.1: The stars emit light x which is scattered by the atmosphere K1x before
it goes through the telescope K2K1x and is finally detected by an eye or a camera
(y = K2K1x). The scattering process K1 and the path through the telescope K2

form the forward problem. The inverse problem is to find out how the photons arrived
before they entered the atmosphere, that is, to find x from the observation y.

3. the solution depends continuously on the exact right hand side.

Discrete linear problems violate condition 1 if the problem is rank-deficient and the
right-hand side has a component in the null-space of the K. If the operator is rank-
deficient condition two is also violated as any component in the null-space may be
added to a solution and still produce a solution. By choosing to solve for the least
squares solution of minimum norm we avoid these problems. For a discrete inverse
problem Kx = y with the least squares solution of minimum norm

x = K†y,

we see that none of the conditions are in fact ever violated. However, if the continuous
problem from which we have derived the problem violates condition 3 we still get an
unwanted behavior. Characteristic for discrete ill-posed problems is that even very
small changes in y compared to the exact values may destroy any attempt to solve
for x with standard methods like Gaussian elimination or QR factorization. These
changes can come from noise and limited accuracy in measurement devices or even
from the limited number of digits in the computer’s floating point representation.
If we want to extract useful information from our system we need to use so-called
regularization methods.
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1.1.2 Regularization and Modules

A regularization method stabilizes the solution by adding constraints to the system
and thereby reduces the influence of errors and noise. The art of regularization is to
apply the right kind and the right amount of regularization. Secondly it is important
to select the right algorithm for solving the regularized problem.

Already when the problem is discretized we regularize the problem. The problem
is not ill-posed in a strict mathematical sense as discussed in the previous section
(and next chapter). However, we will only work with already discretized problems.

Regularization routines come in many different colors and shapes each optimized,
to some degree, toward a specific goal. We will try to extract common parts and
develop modular algorithms that can be combined. Thereby we hope that it is
possible to test the problem at hand with several different regularization methods to
decide which combination of modules fits the problem and knowledge at hand. We
will also see how the modular framework enables us to experiment with non-standard
regularization methods. The aim is not to compare the algorithms extensively but
to make it easy to compare them.

The package Regularization Tools [68] is a package with several algorithms aimed
at ill-posed inverse problems. The package is aimed at experimenting and solving
fairly small problems that can be expressed with full matrices. This thesis is ac-
companied by the Matlab package MOORe Tools, Modular Object Ooriented Regu-
larization Tools, that demonstrates the modular framework described in this thesis.
The package is available from the Internet at the location

http://www.imm.dtu.dk/nag/software

1.2 Object Oriented Programming

Making a computer do what you want it to do is hard. Especially because the com-
puter is very picky, doing only what it is told to do and nothing else. In the early
years of computing you had to control where every byte went and programming even
simple things was tedious. Programming languages like Fortran eased the task con-
siderably by introducing constructs that enabled the programmer to decompose the
code into small manageable and sometimes reusable chunks. The library LAPACK
[3] is an example of such a set of subroutines that are well tested and can be reused
making development of sophisticated programs much easier.

The next step was to introduce objects and classes which hide data and imple-
mentation and only expose an interface. Hiding the facts about implementation and
only exposing an interface increases the chance that modifications made in one part
do not introduce bugs in other parts.

We will use object oriented techniques to exploit structures in the problem oper-
ator. Algorithms will use operators according to a specified interface. Then it is the
job of the programmer to implement this interface as efficiently as possible. With-
out the object oriented approach it has often been necessary to rewrite the actual
algorithm to take advantage of problem specific structures.



1.3 Outline of the Thesis 5

1.3 Outline of the Thesis

This first chapter has given a brief overview of what an ill-posed problem is and
general methodologies to solve problems. The objectives of our software package
have briefly been explained.

In Chapter 2 we first elaborate on the properties of an inverse ill-posed prob-
lem. We start with the continuous problem and then show how also a discretized
problem has unfortunate properties even though it is not ill-posed in the sense of
Hadamard. Then we survey some basic mathematical topics, and notation is defined
in more detail. We define the SVD and GSVD decompositions, and discuss three
algorithms, that form the basis of many iterative methods. We also briefly discuss
robust estimation and state a vital result on optimization with equality constraints.

Chapter 3 explains how we decompose some of the well-known regularization
algorithms into modules. We divide the regularization algorithms into three groups.
For each group of methods we find a general set of solution methods which we call
modules. These modules can then be combined to form other regularization schemes
where we can tailor the properties to the problem at hand. Numerical experiments
are used to illustrate the many different regularization methods that can be created
from combining the modules.

In Chapter 4 we explain how object oriented techniques can be applied to the
linear algebra and optimization algorithms that we used to construct the modules.
We discuss where object oriented techniques are introduced and to what purpose in
a general context. Then we use the object oriented approach with the linear algebra
we face in our regularization methods. We use the two-term Kronecker product as a
case study to illustrate how the objects and algorithms interplay.

Chapter 5 goes through some of the new ideas developed during the creation of
the package. We look at a stopping criteria for a group of parameter choice meth-
ods. Then we consider the standard-form transformation used to simplify a problem,
and finally we propose a simple preconditioner. The ideas are also illustrated with
numerical experiments.

Finally in Chapter 6 we sum up the results and conclusions that can be made
from this work and point to areas where further research seems appropriate. We also
discuss how and where improvements to the accompanying package MOORe Tools
can be done.

A tutorial for the MOORe Tools package is included in App. A. The tutorial
shows the steps used to create several of the plots in this thesis and it details how
to implement new problems with the object oriented approach. Lists of the available
functions provided with the package are found in App. B. In App. C we show the
steps taken to validate the correctness of the code in the MOORe Tools package, and
in App. D we have included a review of the new test problems introduced.

Lastly in App. E, the paper “Subspace Preconditioned LSQR for Ill-Posed Prob-
lems” authored by Michael Jacobsen, Per Christian Hansen and Michael A. Saunders
[71] is included as it is used in the discussion of problems with the object oriented
approach.
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Chapter 2

Mathematical Tools

While mathematicians, as a group, are not known for their fear-
lessness, just what is it about (2.6) that could strike terror in
their hearts? Groetsch, “Inverse Problems in the Mathematical
Sciences” [53, p. 36], about the innocent looking Fredholm inte-
gral equation of the first kind seen in (2.1) below.

What do we mean by “infinity”? On an informal, intuitive level,
the main feature is that it’s big. Very big. No, a lot bigger than
that. Bigger than you imagine. Bigger than you can imagine.
Ian Stewart, “Never Ending Story” [120].

In this chapter we briefly survey some of the tools and concepts needed later. As
a consequence this chapter also defines some of the notation in more detail (see also
the Notation pages in the preamble of this thesis). We will start with a discussion of
the continuous problem in the form of the classic Fredholm equation of the first kind
and then move on to the tools of trade for the discrete finite dimensional problem.
Optimization and optimality conditions will be explained for our special type of
problem and the concept of “robust estimation” will be introduced and justified.

2.1 The Continuous Ill-Posed Problem

The following discussion extracts the essentials of the continuous ill-posed problem.
See, for example, Engl et al. [36] for a much more in-depth treatment of this subject.
The Fredholm integral equation of the first kind with a square integrable kernel k(s, t)
can always be written in the generic form∫ 1

0

k(s, t)f(t)dt = g(s), 0 ≤ s ≤ 1. (2.1)
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In the inverse problem the kernel k(s, t) and the right-hand side g(s) are the known
functions and f(t) is the unknown solution. We will also write (2.1) as Kf = g.
Equation (2.1) seems harmless at first sight but we will see that severe problems can
appear when solving for f—and even “strike terror in the hearts of mathematicians?”

We required the kernel k(s, t) to be square integrable, that is,

‖k(s, t)‖2 =
∫ 1

0

∫ 1

0

k(s, t)dsdt

is bounded. Then we can use the singular value expansion (SVE) to write k(s, t) as
an infinite sum

k(s, t) =
∞∑

i=1

σiui(s)vi(t), (2.2)

where ui(s) and vi(t) are the singular functions of K. The singular functions are
orthonormal, that is,

〈ui, uj〉 = 〈vi, vj〉 = δij

where 〈f, g〉 is the usual inner product 〈f, g〉 =
∫ 1

0
f(t)g(t)dt and δij is the usual

Dirac’s delta. The singular values σi are non-negative and in non-increasing order,

σ1 ≥ σ2 ≥ · · · ≥ 0.

The function f can be written in terms of the singular functions vi and the orthogonal
projection Qv onto R(K∗)⊥. Similarly g can be written in terms of ui and the
orthogonal projection Qu onto R(K)⊥. That is,

f =
∞∑

i=1

〈vi, f〉 vi +Qvf (2.3)

g =
∞∑

i=1

〈ui, g〉ui +Qug. (2.4)

A solution only exists if g ∈ R(K) or equivalently Qug = 0. Otherwise, using the
right-hand side projected into R(K), that is, g̃ =

∑∞
i=1 〈ui, g〉ui produces a best-

approximate solutions also called least squares solutions, cf. [36]. Furthermore, if
Qv 6= 0 we do not have a unique solution because f0 + Qvf1 is also a solution if
f0 ∈ N (K)⊥ is the particular solution and f1 is any arbitrary function. If we select
f1 = 0 we get the minimum norm least squares solution.

To find the least squares solution of minimum norm we insert the sums (2.2), (2.3)
(without Qvf) and (2.4) (without Qug) into the Fredholm integral equation (2.1)
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giving∫ 1

0

( ∞∑
i=1

σiuivi(t)

)
f(t)dt =

∞∑
i=1

(
σiui

∫ 1

0

vi(t)f(t)dt
)

=
∞∑

i=1

σi 〈vi, f〉ui

=
∞∑

i=1

〈ui, g〉ui.

For all σj > 0 we form the inner product with uj on each side to get the coefficient
for each term in the expansion (2.3)〈

uj ,

∞∑
i=1

σi 〈vi, f〉ui

〉
=

〈
uj ,

∞∑
i=1

(ui, g)ui

〉
m

σj 〈vj , f〉 = 〈uj , g〉
m

〈vj , f〉 =
〈uj , g〉
σj

∀σj > 0.

We can now write a formula for the least squares solution of minimum norm in terms
of the SVE

K†g =
∑
σi>0

〈ui, g〉
σi

vi, (2.5)

where the operator K† is called the Moore-Penrose pseudo-inverse (which we will
meet again later in its discrete form). The coefficient to the solution component vi

includes a division by σi that is approaching zero when the index increases. From
here on we assume that dimR(K) =∞, that is, K is compact, all singular values are
non-zero and limı→∞ σi = 0. To get a finite solution, that is ‖K†g‖22 < ∞, we find
with Parseval’s equation that

‖K†g‖22 =

∥∥∥∥∥
∞∑

i=1

〈ui, g〉
σi

vi

∥∥∥∥∥
2

2

=
∞∑

i=1

|〈ui, g〉|2

σ2
i

<∞,

where the last inequality is called the Picard criterion. We will meet the Picard
criterion in a discrete form later.

We will now demonstrate that the pseudo-inverse of K is unbounded. We disturb
the right-hand side with a small perturbation ĝ = g + δuk in the kth component
of the right-hand side. That is, ‖ĝ − g‖2 = δ for any choice of k. Comparing the
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solutions obtained by inserting the disturbed and the undisturbed right-hand side
into (2.5) gives

‖K†g −K†(g + δuk)‖2 =

∥∥∥∥∥
∞∑

i=1

〈ui, g〉
σi

−
∞∑

i=1

〈ui, g + δuk〉
σi

∥∥∥∥∥
2

=
δ2 〈uk, uk〉2

σ2
k

=
δ2

σ2
k

.

Thus, if we let the index k of the disturbed component go toward infinity we get

‖K†g −K†(g + uk)‖2 →∞ for k →∞,

because δ is constant and σi → 0 for i→∞. But ‖g − (g + δuk)‖2 = δ2 is constant
and we conclude that the pseudo-inverse is unbounded and even small changes to
the right-hand side can completely and utterly destroy the solution. In fact, the
disturbance δ does not need to be constant for all k for problems to appear. If the
ratio δ2k/σ

2
k → ∞ for k → ∞ we end up with an unbounded solution. That is, we

have an ill-posed problem.

Regularization

We can save some of the lost ground by applying regularization techniques which
introduce a modified operator so that the inverse is bounded. The art is to modify
the unbounded operator just right to obtain a solution as close to the desired result
as possible with the given data.

The truncated SVE stops the summation in (2.5) at a truncation parameter k,

ftsve = K†
kg =

k∑
i=0

〈ui, g〉
σi

vi.

We see that the solution is projected into the subspace spanned by {v1, . . . , vk} and
the operator is obviously bounded as the sum is now finite. We will call a method
like this a projection method or a subspace method.

Another approach is to penalize growth of the solution by adding an extra term
to the minimization

ftikh = K†
λg = argmin

f
{‖Kf − g‖22 + λ2‖f‖22}, (2.6)

where the solution is bounded if the regularization parameter λ > 0. This approach
is usually called Tikhonov regularization but we will also call it a penalty method
due to the penalty term λ2‖f‖22.

After this first introduction to ill-posed problems in the continuous setting we turn
to the tools used for the discretized problem. For a discussion of the discretization
itself see for example [4, 30].
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Well posed
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Ill-posed
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D
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Figure 2.1: Types of regularization methods. The Tikhonov/penalty type meth-
ods create well-posed problems while the projection/subspace methods create rank-
deficient problems. On this background it is somewhat surprising that truncated
SVE and Tikhonov regularization can yield nearly identical results, see [64].

2.2 Matrix Decompositions

To analyze and solve the discrete ill-posed problems we use a number of matrix
decompositions. The most important decomposition used to analyze discrete ill-
posed problems is the singular value decomposition, the discrete analogue to the
singular value expansion. The discrete Picard condition is also introduced and an
example of the problems with a disturbed right hand side is presented.

Definition 2.1 (SVD) The singular value decomposition (SVD) of a matrix K ∈
Rm×n, (assuming m ≥ n) is

K = UΣVT , (2.7)

where U ∈ Rm×m, Σ ∈ Rm×n and V ∈ Rn×n. Furthermore both matrices of singular
vectors U (left singular vectors) and V (right singular vectors) are orthogonal with
orthonormal columns, that is, UT U = I and VT V = I. The singular value matrix
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Σ is a “diagonal” matrix, i.e.,

Σ =



σ1

. . .
σn

0 · · · 0
...

. . .
...

0 · · · 0


with non-negative non-increasing sorted values, σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0 on the main
diagonal. Ifm < n we have an SVD of the above form for KT = UΣVT . Transposing
gives K = VΣT UT , that is, U and V are swapped and Σ is transposed.

Definition 2.2 (Thin SVD) Let p = min(m,n) and define Up = [u1 . . .up] ∈
Rm×p and Vp = [v1 . . .vp] ∈ Rn×p as the matrices composed of the first p columns
of U and V respectively. Letting Σp = diag([σ1 . . . σp]) be the p × p upper square
part of Σ, we define the thin SVD as

K = UpΣpVT
p .

The columns omitted in the thin SVD definition, i.e., U0 = [up+1 . . .um] and V0 =
[vp+1 . . .vn] can be used to form the discrete analogues of Qu = U0UT

0 and Qv =
V0VT

0 seen in (2.3) and (2.4).
The SVD reveals the rank of the operator as the largest index i with a singular

value σi > 0. If rank(K) < min(m,n) we call K rank deficient as it has an null-space
spanned by [vi+1 . . .vn].

The SVD is related to the eigenvalue decomposition through the relations KKT =
UΣ2UT and KT K = VΣ2VT , i.e., the non-zero singular values squared are the
non-zero eigenvalues of the symmetric and positive semi-definite matrices KT K and
KKT . Furthermore U and V form the corresponding eigenvectors.

The pseudo-inverse or Moore-Penrose generalized inverse K† already introduced
for the continuous problem is easily converted to the discrete case using the SVD

K†y =
rank(K)∑

i=1

uT
i y
σi

vi that is K† =
rank(K)∑

i=1

viσ
−1
i uT

i (2.8)

Recall that the pseudo-inverse applied to the right-hand side yields the least squares
solution of minimum norm. Because we have a finite sum the problem is, in the sense
of Hadamard, in fact well-posed as the ill-posed problem has been regularized by the
projection into the discrete problem. However, if the discretization is too fine (and
we need such a fine discretization) the problems are unfortunately not over yet.

From the description of the pseudo-inverse we can now illustrate the problem by
finding the least squares solution of minimum norm K†y. The singular values of an
discrete ill-posed operator decrease fast and cluster near zero. For a solution to be
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meaningful (it always exists in the discrete case) uT
i y should decrease on average at

least as fast as the singular values. Due to the resemblance with the Picard criterion
this is called the discrete Picard condition [64, 66]. Similarly to the example shown
in the previous section we also make an example with a disturbed right-hand side.
Let the right-hand side be perturbed with a vector δe, where e is a vector of white
noise with norm ‖e‖2 = 1. The white noise has components in all directions with
equal probability, that is, the expected value E(|δuT

i e|2) = δ2. If we look at the
solution with the disturbed right-hand side

K†(y + e) =
p∑

i=1

uT
i y + uT

i e
σi

vi,

we see that if |uT
i y| < δ then the noise term is likely to dominate and the solution

coefficient to vi can turn out wrong. Due to the Picard criterion this is much more
likely for large indices as (uT

i y)2 should on average decrease at least as fast as σ2
i .

Figure 2.2 shows an example of how the coefficients behave with and without white
noise added. With noise we see that |ui(y + δe)| levels off around δ instead of
decreasing steadily. In this case we added the noise on purpose, but even the errors
introduced by representing the right-hand side as floating point numbers can cause
problems.
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Figure 2.2: The dots show the singular values of an 128×128 deriv2 problem. The
circles (◦) show the coefficients |uT

i y|, while crosses (×) show solution coefficients
|uT

i y/σi|. The noise dominates the small coefficients and the corresponding solution
coefficients are too large because of small corresponding singular values. The straight
line in (b) shows δ.

Just as the eigenvalue decomposition is related to the SVD the generalized eigen-
values have a cousin in the generalized SVD. Other definitions exist, see e.g. [46].
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Definition 2.3 (GSVD) The generalized singular value decomposition (GSVD) of
a pair K ∈ Rm×n and L ∈ Rp×n of matrices with the same number of columns and
trivially intersecting null-spaces, i.e., N (K) ∩N (L) = {0}, is defined[

K
L

]
=
[

U 0
0 V

] [
Σ
M

]
X−1, (2.9)

where U ∈ Rm×m, V ∈ Rp×p, Σ ∈ Rm×n, M ∈ Rp×n, and X ∈ Rn×n. Here U
and V are orthogonal with orthonormal columns. The “diagonal” matrix Σ has non-
negative elements in non-decreasing order along the main diagonal. The matrix M
is “diagonal” and has non-negative elements in non-increasing order along the main
diagonal. The values of Σ and M are scaled so that ΣT Σ + MT M = I. Note that
X is not orthogonal, only non-singular.

Any zero elements in the diagonal of Σ, say the first k elements, are associated with
the null-space of K as is the space spanned by the first k columns of X−1. The
null-space of L is spanned by colums in X−1 where the associated diagonal element
of M is zero (found in the end) and, if p < n, by the last n− p columns of X−1.

2.3 Krylov Subspace Methods

The Lanczos tridiagonalization, Arnoldi “upper Hessenberg” and Lanczos bidiag-
onalization algorithms presented in the following form the basis of many iterative
methods for symmetric, square and general matrices respectively. We will list the
algorithms from the least generally applicable to the most applicable. However, we
will first define the Krylov subspaces central to all three algorithms.

Definition 2.4 (Krylov Subspace) The Krylov subspace of dimension k gener-
ated by the square matrix A and vector b is defined

Kk (A ,b) = span{b,Ab,A2b, . . . ,Ak−1b}. (2.10)

Lanczos Tridiagonalization

The Lanczos tridiagonalization algorithm listed in Alg. 1 is applicable to square
and symmetric matrices and computes entries for a tridiagonal matrix as well as an
orthonormal basis for a Krylov space. After k iterations with matrix K and starting
vector y we have the following relation

KVk = VkTk + βkvk+1eT
k , (2.11)

where eT
k = [0 . . . 0 1] ∈ Rk, and the columns of Vk = [v1 . . .vk] form an orthonormal

basis of the Krylov spaceKk (K ,y), and Tk ∈ Rk×k is a symmetric tridiagonal matrix
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Tk =



α1 β1 · · · 0

β1 α2 β2

...
. . . . . . . . .

...
. . . . . . βk−1

0 · · · βk−1 αk


. (2.12)

If the algorithm is stopped due to βk = 0 the Krylov space Kk (K ,y) defines an
invariant subspace of K.

The columns of Vk are orthonormal in exact arithmetic but cancellation in finite
precision calculations destroys orthogonality. Infinite precision calculations can be
simulated by adding a reorthogonalization step (either complete or selective) at the
expense of extra work and extra storage [46, Sec. 9.2].

Algorithm 1: Lanczos Tridiagonalization.

[V,T] = LanczosTri (K,y,k)

Performs a maximum of k steps of Lanczos tridiagonalization of K with y
as starting vector. The matrix V forms an orthonormal basis of the Krylov
subspace Kk(K,y).

1: v0 = 0
2: β0 = ‖y‖2; r0 = y
3: i← 0
4: while βi 6= 0 and i ≤ k do
5: vi+1 = ri/βi

6: αi+1 = vT
i+1Kvi+1

7: ri+1 = Kvi+1 − αi+1vi+1 − βivi

8: βi+1 = ‖ri+1‖2
9: i← i+ 1

10: end while
11: V = [v1 . . .vi]
12: Create T according to (2.12).

Arnoldi Upper Hessenberg

The Lanczos tridiagonalization process can only be applied to square and symmetric
matrices. In the case of square non-symmetric matrices we have the unsymmetric
Lanczos tridiagonalization algorithm and the Arnoldi method to choose from. We will
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only present Arnoldi because of the non-orthogonal (by construction) Lanczos vectors
and breakdown problems seen in the unsymmetric Lanczos method, see e.g. [46].

The Arnoldi method creates an upper Hessenberg matrix instead of a symmetric
tridiagonal matrix. After k steps of Alg. 2 we have the following relation

KVk = VkHk + hk+1,kvk+1eT
k

where Hk ∈ Rk×k is an upper Hessenberg matrix

Hk =



h11 h12 · · · · · · h1k

h21 h22 · · · · · · h2k

0 h32
. . .

...
...

. . . . . .
...

0 · · · 0 hk,k−1 hkk

 . (2.13)

Similarly to the Lanczos tridiagonalization process the columns of Vk span the Krylov
subspace Kk (K ,y) and if we get hk+1,k = 0 then Vk defines an invariant subspace
of K. If we apply the Arnoldi process to a symmetric operator the result equals
that of the Lanczos tridiagonalization, because the columns of Vk from the Arnoldi
algorithm and Vk from Lanczos tridiagonalization are the same. Therefore, for a
symmetric K we have that hi,j = 0 for i < j−1 and hi,j = hj,i if i = j−1. However,
the entries are computed at the expense of more work during the orthogonalization
process in each iteration. Due to the reorthogonalization step Arnoldi essentially
simulates infinite precision computations.

Lanczos Bidiagonalizations

In case of a rectangular K we could use Lanczos tridiagonalization on the symmetric
system KT K with KT y as starting vector or the symmetric system KKT with y as
the starting vector. Another option is to use the Lanczos bidiagonalization algorithm
(often attributed to Golub and Kahan [45]) that improves numerical stability by
avoiding the explicit use of the KT K and KKT .

Algorithm 3 creates from a matrix K and starting vector y a lower bidiagonal
matrix and two orthogonal matrices with the relations

Uk+1(β0e1) = y (2.14)
KVk = Uk+1Bk, (2.15)

KT Uk+1 = VkBT
k + αk+1vk+1eT

k+1 (2.16)

where the lower bidiagonal matrix Bk ∈ Rk+1×k is created by

Bk =



α1

β1 α2

β2
. . .
. . . αk

βk

 . (2.17)
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Algorithm 2: Arnoldi process

[V, H] = Arnoldi(K,y,k)

Performs a maximum of k steps of the Arnoldi process on K with y as
starting vector. The matrix V forms an orthonormal basis of the Krylov
subspace Kk (K ,y).

1: h1,0 = ‖y‖2; r0 = y
2: i← 0
3: while i ≤ k and hi+1,i 6= 0 do
4: vi+1 = ri/hi+1,i

5: i← i+ 1
6: ri ← Kvi

7: for j = 1 : i do
8: hj,i = rT

i vj

9: ri ← ri − hj,ivj

10: end for
11: hi+1,i = ‖ri‖2
12: end while
13: V = [v1 . . .vi]
14: Create H according to (2.13).
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The columns of Vk span the Krylov space Kk

(
KT K ,KT y

)
while the columns of

Uk+1 span the Krylov space Kk+1

(
KKT ,y

)
. The columns will be orthogonal if

exact arithmetic is used, i.e., VT
k Vk = I and UT

k+1Uk+1 = I. A reorthogonalization
step can be added after the computation of new vectors vi and ui+1 to simulate
infinite precision calculations.

The lower bidiagonalization of K with y as starting vector is related to Lanczos
tridiagonalization of KT K with starting vector KT y. They both compute the same
Vk because they both span Kk

(
KT K ,KT y

)
. If we multiply (2.15) with VT

k KT and
insert (2.16) we get

VT
k KT KVk = VT

k KT Uk+1Bk

= VT
k VkBT

k Bk + αk+1VT
k vk+1eT

k+1Bk

= BT
k Bk.

Comparing with (2.11) we conclude that Tk = BT
k Bk. That is, we have a Cholesky-

like factorization of the tridiagonal matrix Tk from the Lanczos tridiagonalization
algorithm. If we instead multiply equation (2.16) with UT

k+1K and insert (2.15) we
get

UT
k+1KKT Uk+1 = UT

k+1KVBT
k + αk+1UT

k+1Kvk+1ek+1

= UT
k+1Uk+1BkBT

k + αk+1UT
k+1Kvk+1ek+1

and using lines 7–8 of the algorithm to substitute Kvk+1 we get

UT
k+1KKT Uk+1 = UT

k+1Uk+1BkBT
k + αk+1UT

k+1(βk+1uk+2 + αk+1uk+1)ek+1

= BkBT
k + α2

k+1ek+1eT
k+1.

The right-hand side must be equal to the tridiagonal matrix obtained from Lanczos
tridiagonalization of KKT with y as starting vector because Uk+1 spans the Krylov
space Kk

(
KKT ,y

)
. That is, T̄k+1 = BkBT

k + α2
k+1ek+1eT

k+1 and we conclude that
the leading k × k part of Bk, that is,

B̄k =


α1

β1 α2

β2
. . .
. . . αk

 ∈ Rk×k

is related to the tridiagonal matrix from Lanczos tridiagonalization via T̄k = B̄kB̄T
k .

These relations, linking Lanczos tridiagonalization and bidiagonalization, are used in
§5.1.

The Krylov subspace methods have in their various forms led to many iterative
solvers. Behind the LSQR method [107] lies the bidiagonalization to lower form,
behind GMRES [116] lies the Arnoldi process, and Lanczos tridiagonalization forms
the basis of MINRES [105]—just to mention a few. For an overview of these and
other solvers see, for example, the “template” book [5].
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Algorithm 3: Lanczos Bidiagonalization

[U,V,B] = bidiag(K,y, k)

Performs a maximum of k steps of bidiagonalization on K with y as start-
ing vector. The matrix V forms an orthogonal basis of the Krylov space
Kk

(
KT K ,KT y

)
while U forms an orthogonal basis of the Krylov space

Kk+1

(
KKT ,y

)
.

1: β0 = ‖y‖2; u1 = y/β0

2: v0 = 0
3: i← 0
4: while i ≤ k and βi > 0 do
5: pi+1 = KT ui+1 − βivi

6: i← i+ 1
7: αi = ‖pi‖2; vi = pi/αi

8: qi = Kvi − αiui

9: βi = ‖qi‖2; ui+1 = qi/βi

10: end while
11: U = [u1 . . .ui+1]; V = [v1 . . .vi]
12: Create B according to (2.17).

2.4 The Givens Transformation

The Givens rotation is useful for selectively zeroing elements and will be heavily used
in connection with bidiagonal systems in §5.1.

An n× n Givens rotation is described by

Gij(θ) =



i j

1
. . .

i c s
. . .

j −s c
. . .

1


, (2.18)

where c = cos(θ) and s = sin(θ). It is called a rotation because multiplying a
vector with Gij(θ) corresponds to rotating the vector in the (i, j) coordinate plane.
Applying a Givens rotation to a vector a = [a1, . . . , an], i.e., b = Gija only modifies
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element i and j of a. That is,

bk =


cai + saj if k = i

−sai + caj if k = j

ak otherwise.

Thus, to create a zero in element j we choose

c = ai/γ, s = aj/γ, γ =
√
a2

i + a2
j ,

where γ 6= 0 unless we already have a 0 in both elements. Algorithm 4 computes c,
s and γ while avoiding overflow.

Algorithm 4: Givens coefficients

[γ, c, s] = givens( α, β)

Compute γ, c and s for a Givens rotation such that β is zeroed, that is,
−sα+ cβ = 0 and avoid overflow. Adapted from [13].

1: if β = 0 then
2: c = 1; s = 0; γ = α
3: else if |β| > |α| then
4: t = α/β; u =

√
1 + t2

5: s = 1/u; c = ts; γ = uβ
6: else
7: t = β/α; u =

√
1 + t2

8: c = 1/u; s = tc; γ = uα
9: end if

2.5 Robust Estimation

Our standard problem Kx = y can also be seen in the context of a data-fitting or
an estimation problem where we fit a linear combination of the columns of K to the
data vector y. The usual approach is to use the least squares solution

x = argmin
x
‖Kx− y‖22.

The Gauss-Markov theorem states that if the errors have expectation zero, have equal
variance and are uncorrelated then the least squares solution gives the best (that is,
minimum variance) linear unbiased estimate of x, see [13, Theorem 1.1.1] and [31].
However, the noise and errors in the right-hand side does not always “play” nice
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with the least squares approach. The least squares solution is excessively sensitive to
outliers in y, that is, elements with an error much larger than others. In Fig. 2.3(b)
we see the least squares solution trying to approximate the two outliers at the expense
of the approximation of all other points.
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Figure 2.3: Fitting of a straight line with least squares (solid) and least absolute
sum (dashed) to two sets of data. The operator K = [0 1/16 · · · 1]T ∈ R18×1 and the
undisturbed right-hand side is y = 0, with the obvious solution x = 0. The random
normal distributed noise is the same in both examples.

One obvious remedy is to somehow detect the outliers and remove them from the
dataset—an easy task in our rather extreme example shown in Fig. 2.3(b). However,
in automated processing of data or in cases with less pronounced outliers, other
methods need to be considered. The “robust estimation” methods can handle outliers
much better than least squares. The least sum of absolute values solution

x = argmin
x
‖Kx− y‖1,

is such a robust estimation method. The dashed line in Fig. 2.3(b) is less affected by
the two outliers compared to the solutions obtained from a right-hand side without
outliers, cf. Fig. 2.3(a). To explain this we use the following statistical considerations.

The least squares approach is a maximum likelihood method for noise with each
element distributed after the probability density function

p2(e) =
1√
π

exp
(
e2
)
. (2.19)

That is, the probability of an error |ei| > δ is

P2[|ei| > δ] = P2[ei < −δ] + P2[ei > δ] =
∫ −δ

−∞
p2(t)dt+

∫ ∞

δ

p2(t)dt.
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The least sum of absolute values is a maximum likelihood estimator for noise with
elements distributed after the probability density function

p1(e) =
1
2

exp (|e|) , (2.20)

also called the double-exponential or Laplace distribution [31]. Figure 2.4 shows the
probability densities (2.19) and (2.20). Notice that the “tails”, i.e., the area under
the graphs for errors larger than say ±2.5, are almost zero for the p2 probability
density function but not so for the p1 function. Due to the “shorter tail” the least
squares solution does not accept large misfits for any points and reduces them by
increasing the error off all other points.
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2 (dashed
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We have seen that using other norms for measuring the residual can adapt to
special kinds of errors. However, using another norm for penalty terms, such as
‖x‖22, in (2.6) also has its uses. A penalty term ‖x‖22 forces all elements toward zero.
But using, for example, ‖x‖1 allows for outliers in x, that is, “discontinuities” in x
which on a plot of x would appear as “spikes”.
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2.5.1 Robust Penalty Functions

In this section we list some of useful robust norm-like functions, that we will call
penalty functions.

In the linear algebra society the most pronounced norm is probably the squared
l2-norm defined as

‖x‖22 =
∑

x2
i .

The popularity is due to a number of nice properties:

• The l2-norm is invariant to orthonormal transformations, i.e., if Q is an square
orthogonal matrix with orthonormal columns we have ‖x‖22 = ‖Qx‖22.

• The gradient of the l2-norm squared exists and is simple

∇‖x‖22 = 2x,

and the Hessian is even more simple (and extremely easy to invert!)

H(‖x‖22) = 2I.

• Minimizing the model fit in the two norm ‖Kx− y‖22 is statistically appropri-
ate as the least squares solution is the unbiased linear estimator of minimum
variance if the errors are uncorrelated, have zero means and equal variance.

• In 1, 2 and 3 dimensions the l2-norm corresponds to our usual concept of
distance.

However, if the errors in y are not normally distributed we have seen that the
l1-norm might be more useful. The l1-norm is defined by

‖x‖1 =
∑
|xi|.

The l2 and l1-norms are members of the lp-norm family, defined

‖x‖p =
(∑

|xi|p
)1/p

, p ≥ 1. (2.21)

We will only consider lp-norms with p ≤ 2 because norms with p > 2 are not robust.
Consider the minimization of the extreme l∞-norm case where the maximum residual
element is minimized (and therefore also called minimax optimization). This corre-
sponds to an assumption of an uniform error distribution on [−d, d] for some d. In
this case there is absolutely no tail.

The gradient vector ∇‖x‖pp of the lp-norm to the pth power has the elements

[∇‖x‖pp]i = p|xi|p−1sign(xi),
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where the sign function is defined

sign(x) =


−1 if x < 0

0 if x = 0
1 if x > 0.

The Hessian of ‖x‖pp is (assuming xi 6= 0) a diagonal matrix H(‖x‖pp) with the
diagonal elements

[H(‖x‖pp)]i,i = p(p− 1)|xi|p−2.

We see that |xi|(p−2) is not defined for any xi = 0 if p < 2 and as a consequence
neither is the Hessian. Thus we cannot use the efficient solvers that use second order
information. Furthermore, if p = 1 we have an all-zero Hessian H(‖x‖1) = 0!

To avoid the discontinuous gradients and all-zero Hessians we can use other more
exotic norm-like functions (called M-type estimators by Huber [78]) defined as the
sum

F (x) =
n∑

i=1

f(xi), (2.22)

where the function f is a convex function, for example, chosen from Table 2.1. The
gradient and Hessian are then

∇F (x) =


f ′(x1)
f ′(x2)

...
f ′(xn)

 , H(F (x)) =


f ′′(x1)

f ′′(x2)
. . .

f ′′(xn)

 . (2.23)

Which penalty function to use is not an easy choice. Furthermore they all in-
troduce an extra parameter to adjust. The Logistic and Fair penalty functions have
the advantage that they do not branch depending on the particular values of the
argument. Ekblom [32] conducted experiments showing that the Huber function is a
better choice than the l1-norm. More information on lp-norm estimation is found in
[51] including methods to choose the optimal p.

With the gradient and Hessian available we are able to use these penalty functions
in most standard optimization routines for finding robust solutions.

2.6 Optimization and Optimality

As we will see in the next chapter all our problems reduce to problems of the type

min
q∑

i=1

λiFi(Bix− zi) = min
q∑

i=1

λiFi(ri), (2.24)
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Name f(z) f ′(z) f ′′(z)

lp-norm ‖·‖pp |z|p p|z|p−1sign(z) p(p− 1)|z|p−1

Logistic fL β2 log(cosh(z/β)) β tanh(z/β) 1− tanh2(z/β)
Fair fF β2(|z|/β − log(1 + |z|/β)) βz/(β + |z|) β2/(β + |z|)2

Huber fH

{
z2/2
β|z| − β2/2

{
z

sign(z)

{
1 if |z| < β

0 if |z| ≥ β

Table 2.1: Examples of penalty functions and their first and second derivatives.
The scalar parameter β adjusts when point is considered an outlier. Collected from
[6, 26, 103].

where ri is the ith residual vector ri = Bix− zi and each Fi function is defined as a
sum

Fi(ri) =
∑

j

fi(rj),

where the function fi is convex.
That is, we have a sum of composite functions each composed of a possible non-

linear function and a linear function. To shorten notation we will use the notation

B =


B1

B2

...
Bn

 , z =


z1

z2

...
zn

 and F (Bx− z) =
q∑

i=1

λiFi(Bix− zi).

In particular, the least squares standard-form Tikhonov problem has q = 2, B1 = K,
z = y, B2 = I, z2 = 0, F1(r) = ‖r‖22, λ1 = 1, F2(r) = ‖r‖22 and λ2 is our usual
regularization parameter. We will now derive gradients and Hessians for this special
type of function and state optimality conditions for the problem in (2.24).

The chain rule gives us the gradient with respect to x from the gradients with
respect to each residual

∇xF (Bx− z) = BT∇rF (r) = BT


λ1∇r1F1(r1)
λ2∇r2F2(r2)

...
λq∇rq

Fq(rq)

 .
If we create a block diagonal matrix of the diagonal Hessian matrices with respect
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to each residual

Hr(F (r)) =


Hr1(λ1F1(r1))

Hr2(λ2F2(r2))
. . .

Hrq (λqFn(rq))

 ,
we find by the chain rule the Hessian with respect to x

Hx(F (x)) = BT Hr(F (r))B.

Because we will only consider convex functions fi(r) a sufficient condition for the
solution is simply

∇F (r) = 0. (2.25)

If we return to the least squares standard-form Tikhonov example we have the opti-
mality condition[

K
λ2I

]T [Kx− y
x

]
= (KT K + λ2I)x−KT y = 0.

Linear Equality Constraints

If we add linear equality constraints to the generic problem, we have a problem of
the type

minF (Bx− z) subject to Cx = d, (2.26)

we need to extend the simple condition for optimality (2.25) to somehow include the
constraints. The Lagrangian function for the problem (2.26) is

L(x,λ) = F (Bx− z)− λT (Cx− d), (2.27)

where λ is a vector of so-called Lagrange multipliers. The Lagrangian is used to
formulate the first-order necessary conditions (the Karush-Kuhn-Tucker (KKT) con-
ditions) for a solution

∇xL(x,λ) = BT∇F (r)−CTλ = 0

Cx = d,

see [39, Theorem 9.1.1] for proof and a standard reference on optimization. In our
case of a convex function F and linear equality constraints (that are convex) the
KKT-conditions are also sufficient conditions for a solution.
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Non-Negativity Constraints

Problems with non-negativity constraints are not as simple as problems with equality
constraints. A non-negativity constraint xi ≥ 0 is called active if xi = 0 or inactive
if xi > 0. The active set is the set of active constraints which we will denote A(x) =
{i|xi = 0}. Note that if the active set at the solution is known we effectively have
a problem with linear equality constraints. The active set methods, see [39], try to
find the active constraints at the solution and thereby reducing the problem to the
simpler equality constrained problem.

The KKT conditions for a solution of a non-negativity constrained problem

minF (Bx− z), subject to x ≥ 0

are

∇xF (Bx− z)− λ = 0

x ≥ 0

λ ≥ 0

x� λ = 0,

where � is the elementwise multiplication. In our special case we can use the first
equation to eliminate λ:

∇xF (Bx− z) ≥ 0

x ≥ 0

x�∇xF (Bx− z) = 0.

Again we refer to [39] for a more in depth treatment of optimization. For this
particular scenario see also [124, Chap. 9]. Because we have restricted ourselves to
linear constraints the constraint qualifications are fulfilled.
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Chapter 3

Modular Algorithms

The results indicate that the method is very suitable for high
speed machines. Hestenes and Stiefel, “Methods of Conjugate
Gradients for solving Linear Systems” [75].

... when a traveler reaches a fork in the road, the L1 norm tells
him to take either way or the other, but the L2 norm instructs
him to head off into the bushes. Claerbout and Muir, “Robust
Modeling with Erratic Data” [25]

In this chapter we take a look at existing regularization methods to determine if
it is possible to either

1. split them into independent modules, that can be combined,

2. or form a common framework, that can handle a class of problems by changing
parameters.

Then we will demonstrate how it is possible to combine the modules and exploit the
common framework to form new regularization methods with other properties than
those we started out with.

3.1 Two Regularization Classes

Probably the two most important regularization methods are:

Tikhonov regularization. A penalty term is added to the problem to filter out
unwanted components.

Truncated SVD regularization (TSVD). The solution is projected into a spe-
cific subspace without the unwanted components.
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These two methods will form the basis of a splitting of the regularization methods
into two classes called penalty and projection methods, respectively. Note that it is
not a clear-cut splitting as many methods can be formulated so that they appear in
both groups. However, the formulation of a method is often more natural for one
class than the other. Finally, a projection method can be combined with a penalty
method (or another projection method) to form a so-called hybrid method. The
following pages go more into depth with the different regularization approaches.

3.1.1 Penalty Methods

This section explains the class of penalty methods. In § 3.2.1 we go into more details
about algorithms.

The usual standard-form Tikhonov regularization setup for a linear ill-posed prob-
lem Kx = y is

xλ = argmin
x

{
‖Kx− y‖22 + λ2‖x‖22

}
, (3.1)

where we denote ‖Kx − y‖22 the model fit and ‖x‖22 the penalty term. We will in
the following look at variations of (3.1). How to solve the problem is the topic of
§3.2.1. The choice of regularization parameter λ is also important and §3.3 is used
for a discussion of parameter choice methods.

The Tikhonov formulation (3.1) has several possibilities for generalizations. One
is to modify the penalty term to ‖Lx‖22, where L is a matrix describing, for example,
the first derivative. Knowledge of the covariance matrix CCT of the solution vector
x can also be used through the penalty term ‖C−1x‖, see [122].

Other possibilities are to use more than one penalty term and change the type
of norm of the model fit and the penalty term(s). Furthermore actual constraints,
such as non-negativity of the solution, can be added depending on the physics of the
particular problem.

That is, we consider a general Tikhonov regularization formulation of the form

xreg = argmin
x

{
F0(Kx− y) +

q∑
i=1

λiFi(Li(x− x∗))

}
, (3.2)

where x∗ is an a priori guess of the solution, q is the number of penalty terms, Li are
regularization matrices, λi are corresponding regularization parameters, and Fi are
“penalty” functions, see §2.5.1. The classical setup is F0(r) = ‖r‖22, F1(r) = ‖r‖22,
q = 1 and no a priori guess, that is, x∗ = 0. The generalization can be extended to
include constraints such as non-negativity, linear constraints Gx = 0, etc. Several
already proposed regularization setups can be found as combinations of the functions
listed in Table 3.1.

From (3.2) we realize that a solution method cannot be divided into small mod-
ules, each minimizing one part of the problem, because changing the value of x influ-
ences both the model fit F0(Kx− y) as well as the penalty terms λiFi(Li(x− x∗)).
Instead we will develop a general framework for the solution of (3.2), that uses the
penalty functions provided as parameters.
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F0(r) Fi(r) Constraints

‖r‖22 ‖r‖22 x ≥ 0
‖r‖qq ‖r‖pp Gx ≥ 0
‖r‖1 ‖r‖1 Gx = 0

...
∑
xi log(wixi) ‖x‖s = δ

...
...

Table 3.1: Examples of norms, penalty functions and constraints that can be used
with Tikhonov regularization. To ensure convex functions 1 < p, q. See also Table 2.1.
for more examples of F0(r) and Fi(r).

Penalty or Constraints

The distinction between constraints and penalty terms is somewhat arbitrary. For
example, the constrained problem

min‖Kx− y‖22 subject to ‖x‖22 = δ,

has the Lagrangian function (see (2.27))

L(x, λ) = ‖Kx− y‖22 − λ(δ − ‖x‖22).

The stationary point (x∗, λ∗) of the Lagrangian, that is, the point (x, λ) fulfilling

∇L(x, λ) =
[
∇xL(x, λ)
∇λL(x, λ)

]
=
[

0
0

]
,

solves the constrained problem because both the objective and constraint functions
are convex. If we assume that the stationary λ∗ has been found we have that the
stationary point of

L(x) = ‖Kx− y‖22 + λ∗(δ − ‖x‖22),

is also the minimizer of

‖Kx− y‖22 + λ∗‖x‖22,

because the term −λδ is constant. We now recognize the ordinary Tikhonov problem.
Note that the problem formulated with a constraint is harder because the proper
Lagrange multiplier λ needs to found via a root finding procedure. The formulation
using a constraint may, on the other hand, be more natural if a bound on the solution
is known.
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3.1.2 Projection Methods

This section explains the different variations on projection methods. In § 3.2.2 we
describe the more implementation details.

The other popular regularization method is the TSVD method. Here we directly
modify the ill-posed operator into a rank deficient approximation. Using the SVD of
the ill-posed operator K = UΣVT , we can form a truncated operator

Kk = UkΣkVT
k , (3.3)

where Uk = [u1 . . .uk], Vk = [v1 . . .vk] and Σk = diag([σ1 . . . σk]) are created from
the first k columns and k first singular values respectively. The TSVD solution is the
least squares solution of minimum norm to the problem with the truncated operator,
that is,

xk = argmin
x
‖x‖ subject to min‖Kkx− y‖2

or written differently

xk = Vk argmin
z
‖KVkz− y‖2

= Vk argmin
z
‖Σkz−UT

k y‖2,

where we need to solve the projected k × k problem Σkz − UT
k y. The subspace

Vk is in some sense the best k dimensional subspace to project the solution into
as information is mostly unharmed in the first components of the SVD. However,
the SVD computation uses O(min(m,n)mn) operations for a matrix K ∈ Rm×n

and quickly becomes infeasible when the problem size grows. Consequently other
subspaces need to be considered.

Krylov Subspace Methods

Iterative methods such as LSQR and GMRES can also be seen in a subspace setting,
where a Krylov subspace (see Def. 2.10) takes the place of the SVD subspace. For
example, LSQR with the zero starting vector minimizes the least squares residual
‖Kxk − y‖2 with the constraint

xk ∈ Kk

(
KT K ,KT y

)
at each step k. The GMRES method [116] for square non-symmetric problems has
also been considered for regularization see [19, 82, 109] and MINRES [105] for sym-
metric indefinite systems has also been considered [88]. Hanke has proposed the
MINRES variant mrII [57, 60] for regularization of symmetric indefinite problems.
See Table 3.2 for a overview of the just mentioned Krylov methods and their choice
of subspace.

The regularization of the subspace methods depends on the subspace dimension
(and type). If the subspace spans the entire solution space we get the unwanted
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Method Subspace Note

LSQR/CGLS Kk(KT K,KT y) General K
GMRES Kk(K,y) Square K
MINRES Kk(K,y) Square and symmetric K
mrII Kk(K,Ky) Square and symmetric K

Table 3.2: Iterative methods minimizing the residual ‖Kx−y‖2 in a Krylov subspace.

least squares solution. During the first iterations we (hopefully) include components
unharmed by the noise but at some point we start to include components dominated
by noise. In the case of TSVD this is obvious when we look at the Picard plot
(Fig. 2.2). In the case of the Krylov methods the same behavior has been observed,
i.e., that components belonging to large singular values are recovered first and then
later components contaminated with noise appears. This has lead to the notion of
“semi-convergence” where the iterative method first converges toward a nice regu-
larized solution but then — at some point — starts to include noisy components as
it converges toward the least squares solution. A more formal treatment of Krylov
methods, regularization and ill-posed problems can be found in [57].

In connection with iterative methods preconditioning is often advocated to speed
up convergence. Applying a preconditioner to one of the mentioned Krylov methods
changes the Krylov subspace and thus the result at each step. The general precon-
ditioners are constructed to accelerate convergence toward the exact solution, but in
the case of ill-posed problems we are not interested in the exact least squares solu-
tion. Thus the preconditioner must be constructed to speed up the convergence of
“good” components in the solution and not of components dominated by noise. The
preconditioners described in [60, 61] and [86] take this approach.

Modified Subspace Methods

The selected subspace S does not always allow for certain features to be recon-
structed. Hence methods that add components from the orthogonal space have been
proposed. The modified TSVD (MTSVD) method [73] solves the problem

min‖Lx‖2 subject to ‖Kkx− y‖2 = min,

where Kk is the TSVD operator defined in (3.3). The TSVD operator has a non-
trivial null-space in which a component of x is found through a minimization of
min‖Lx‖2. The piece-wise polynomial TSVD (PP-TSVD) method [70] solves

min‖Lx‖1 subject to ‖Kkx− y‖2 = min,

with a subtle change to a l1-norm in the modification.
The solutions to these “modified” subspace methods can be written as a sum of

two terms

xreg = x0 + x⊥,
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where

x0 = argmin
x∈S

F0(Kx− y) and x⊥ = argmin
x⊥S

F1(L(x0 + x))

are contributions from the projected problem and the orthogonal subspace respec-
tively. The TSVD method use the subspace spanned by the first k right singular
vectors as S, F0(r) = ‖r‖2 and x⊥ = 0, while the MTSVD method has F1(r) = ‖r‖2
and the PP-TSVD method has F1(r) = ‖r‖1. Naturally other methods can be found
by combining other choices of F0 and F1 from Table 3.1. Villiers et al. [29] suggested a
modification that not only minimized in a subspace but also enforced non-negativity
of the solution, that is, to solve

x⊥ = argmin
x⊥S

‖x0 + x‖ subject to x0 + x ≥ 0

However, this particular modification does not always have a feasible solution at all
and has not been considered further.

The subspaces can be chosen to be from the SVD or it can be created iteratively
via some Krylov method, see Table 3.2. At times it can be useful to “enrich” a
Krylov subspace method with specially chosen vectors approximating the solution,
see [20]. The Krylov methods are useful for large-scale problems when the SVD is
infeasible to compute. On the other hand the SVD based methods are theoretically
better understood.

3.1.3 Hybrid Methods

Projection methods like MINRES, GMRES and LSQR can have a regularizing effect
from limiting the number of iterations and thus the solution subspace. Unlike SVD-
based methods they can be applied to large-scale problems—at times as the the only
option. However, unwanted components may sneak in or the optimal number of
iterations is unknown and to many iterations are performed. The so-called hybrid
methods [59] attempt to fix these problems by adding regularization on the relatively
small inner least squares problems solved implicitly by the iterative methods. The
idea originates from papers of O’Leary and Simmons [104] and Björck [12].

The hybrid methods combine a subspace method with another regularization
method on the projected problem. The LSQR method solves projected problems of
the type

xk = argmin
x∈S

‖Kx− y‖2, (3.4)

where the subspace S = Kk(KT K,KT b). LSQR is based on Lanczos bidiagonaliza-
tion to lower bidiagonal form, see Alg. 3. Let Vk = [v1 . . .vk] be the orthonormal
basis for the subspace S computed during the bidiagonalization. Now using Vk and
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the relation for the bidiagonal system and the Krylov spaces (2.15) we can reformu-
late the least squares problem (3.4) to

xk = Vkzk where zk = argmin
z
‖KVkz− y‖2

zk = argmin
z
‖UkBkz− y‖2

zk = argmin
z
‖Bkz− βe1‖2,

where Bk ∈ R(k+1)×k. In LSQR only the most recent elements of the bidiagonal and
only two of the columns of Vk are needed to continue the iteration giving a very
space efficient algorithm. If we instead create Bk explicitly and store the Krylov
subspace vectors we can apply some regularization method to the bidiagonal least
squares problem to enforce a second level of regularization. The advantage is that
k is relatively small and it is therefore possible to use the theoretically more sound
SVD based methods to solve the projected system. Maybe more importantly we can
use SVD based methods to find appropriate regularization parameters, see e.g. [87].
This combination of an iterative method and regularization on the inner problem is
denoted hybrid methods.

3.2 Modules

How do we exploit the generalizations and observations made in the previous section?
We will need to construct a set of common solution methods (modules) that can be
combined as freely as possible.

To achieve modularity we also enforce which arguments a certain type of module
gets. A call to a general regularization method only has three arguments, the oper-
ator, the right-hand side and a structure of options, see the tutorial in App. A for
details and examples.

3.2.1 Penalty Methods

We will derive a general formulation for gradients and Hessians for the general penalty
regularization problem in (3.2). With the gradient and Hessian available we are able
to use Newton type methods for our optimization problem.

A simple example will suffice to demonstrate the structure. In our example we
use only one penalty term,

minF (x) where F (x) = ‖Kx− y‖22 + λ2FF (Lx) = F2(Kx− y) + λ2FF (Lx),

and FF (r) is the Fair penalty function, see Table 2.1.
To recapitulate our notation from §2.6 we define the residual as

r =
[
r1

r2

]
=
[
Kx− y

Lx

]
, (3.5)
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where we have extracted the inner linear arguments of F2 and FF . The gradient can
be expressed in terms of the residual

∇x

(
F2(Kx− y) + λ2FF (Lx)

)
= KT∇F2(r1) + λ2LT∇FF (r2)

=
[
K
L

]T [I
λI

] [
I

λI

] [
∇F2(r1)
∇FF (r2)

]
,

where ∇F2(r) = 2[r1 r2 · · · rn]T and ∇FF (r) = [f ′F (r1) f ′F (r2) · · · f ′F (rn)]T ; see also
§2.6. The Hessian H(F (x)) can also be expressed through the chain rule in terms of
r and the Hessian of F2(r1) and FF (r2);

H(F (x)) = KT H(F (r1))K + λ2LT H(FF (r2))L

=
[
K
L

]T [I
λI

] [
H(F2(r1)) 0

0 H(FF (r2))

] [
I

λI

] [
K
L

]
,

where H(F2(r)) = 2diag([1 1 · · · 1]) and

H(FF (r)) = diag([f ′′F (r1) f ′′F (r2) . . . f ′′F (rn)])

are the element-wise second derivatives of functions F2(r1) and FF (r2).
With the Hessian and gradient it is straightforward to use a Newton method to

find the minimizer. The Newton method solves

H(F (xk))d = −∇F (xk) (3.6)

and then updates the current iterate with xk+1 = xk + d. The iteration can be
globalized (insuring convergence for initial guesses far from the solution) by means
of a line-search along d (used in the MOORe Tools toolbox) or using trust-region
ideas.

The (strange) splitting of λ2 into two multiplications with λ is done to emphasize
the following relationship with a least squares problem. If we look closer at the
Hessian and gradient we see that they form the normal equation system for the least
squares system

min
d

∥∥∥∥∥
[
H(F2(r1)) 0

0 H(FF (r2))

]1/2 [I
λI

] [
K
L

]
d +

[
H(F2(r1)) 0

0 H(FF (r2))

]−1/2 [I
λI

] [
∇F2(r1)
∇FH(r2)

]∥∥∥∥∥
2

2

or more compactly as

min
d

∥∥∥∥D [K
λL

]
d + z

∥∥∥∥2

2

, (3.7)
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where

D =
[
H(F2(r1))

H(FF (r2))

]1/2

and z = D−1

[
∇F2(r1)

λ∇FF (r2)

]
Solving the least squares system either directly via a QR factorization or iteratively
via LSQR improves the precision compared to Cholesky (direct) or CG (iteratively)
directly on the (normal equation) Newton problem (3.6). The square roots of the
Hessian matrices are easy as they are diagonal matrices. In case an element of the
diagonal matrix D is zero, for example, when an residual element is larger than β
in the Huber penalty, the corresponding equation is removed from the least squares
problem.

It is straightforward to extend the above technique to an arbitrary number of
penalty terms by simply extending the block structures. Thus, to solve our general
Tikhonov/penalty problem we need to solve a number of least squares problems.

The MOORe Tools package provides functions for the penalty functions in Ta-
ble 2.1. Each function returns not only its value, F (r), but also a vector of first
derivatives, ∇F (r), and a vector of the second derivatives, diag(H(F (r))). The op-
timization routine can then easily set up the least squares problem, solve it, update
the current solution and continue if a better solution is sought.

The LSQR algorithm is by default used to solve the least squares systems. The
diagonal matrix D typically becomes very ill-conditioned as some elements get large
and some almost zero which can lead to inaccurate solutions. The MINRES-L al-
gorithm [15] takes special caution to solve the weighted least squares problem with
a small forward error and could be considered for high precision calculations, for
example, in the final stages of a Newton iteration.

Adding Non-Negativity

The non-negativity constraints arise naturally in many problems. If the result is a
series of temperatures measured in Kelvin it makes sense to require a non-negative
solution. Also in image reconstruction it does not make sense to have a negative
number of photons. The following briefly describes the GPRN algorithm [124, Alg.
9.3.3] modified to our particular problem setup and to use a least squares solver to
find the “reduced Newton step”.

The example problem is

min F (x) subject to x ≥ 0

where F (x) = F0(Kx− y) + λ2F1(Lx).

Let xk be the solution at iteration k. Then the active set is defined as A(xk) =
{i | xi = 0}, that is, the set of indices of zero elements in the vector xk.

The reduced gradient is the usual gradient at the non-active indices, i.e.,

[∇RF (x)]i =

{
0 if i ∈ A(x)
[∇F (x)]i otherwise
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and similarly the reduced Hessian is defined

HR = [∇2
Rf(x)]ij =

{
δij if i ∈ A or j ∈ A
[∇2f(x)]ij otherwise

The reduced Newton search direction is

d = −H−1
R ∇RF (x) (3.8)

Solving equation (3.8) can be seen as finding a Newton step restricted to a set of
variables, in this case the non-zero components of x. If the active set has been found
the Newton method will converge quadratically to the solution as we have essentially
removed the variables in the active set and effectively we work with an unconstrained
problem.

Combined with the restricted Newton direction we use the projection operator

[P(x)]i = max(xi, 0)

in the line search

τ = argmin
τ>0

f(P(x + τd))

The algorithm alternates between restricted Newton direction steps and simple
steepest decent steps, that is, steps in the direction d = −∇F (x). For further details
see [124].

Problems with Non-Differentiable Functions

The usual l2-norm Tikhonov problem leads to a single least squares problem and the
Newton method converges in just one step. However, if we want an l1-norm solution
we run into a non-differentiable function for residual elements ri = 0 and the Hessian
is all zero rendering the Newton method unusable. Also in other cases the second
derivative can pose a problem, for example, if p ≈ 1, Li [91] avoided the problem
by modifying the line search strategy to stop just short of a minimum with a zero
residual.

In the special case of an all 1-norm problem

min
∥∥∥∥[K
λL

]
x−

[
y
0

]∥∥∥∥1

1

= min‖K̂x− ŷ‖11

we can rewrite it into a linear programming (LP) problem in standard form by
splitting residual vector r = r+ − r− and solution vector x = x+ − x− into vectors
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of purely non-negative values giving

min [1100] · [r+ r− x+ x−] s.t.

[
I −I K̂ −K̂

]
r+

r−
x+

x−

 = ŷ

r+, r−,x+,x− ≥ 0,

and apply one of many LP solvers. In this case a non-negativity constraint actually
simplifies the problem by reducing the number of variables and the size of the con-
straint matrix. Other linear constraints are also straightforward to include in this
formulation.

Solvers for linear programming problems have improved tremendously since the
simplex algorithm appeared due to the many commercial applications of LP. The
solvers can solve problems with thousands of unknowns and constraints, but usually
they assume that the constraint matrix is sparse except for a couple of columns. If we
are solving an inverse problem coming from an integral equation (as all problems but
the interpolate test problem do) we get a dense operator K. Furthermore K might
not be directly available in matrix representation. This renders most of the available
LP solvers unusable in our context. MOORe Tools provides an interface to Matlab’s
linprog solver for small-scale problems. A preliminary implementation of an interior
method based on Mehrotra’s Predictor-Corrector algorithm (see [95, 128]) is included
for larger problems. Another option is to approximate the all-l1-norm problem via
the the Huber penalty function letting β → 0 (see [93]).

3.2.2 Projection Methods

This section is formulated in terms of the equation system r = Kx− y as the linear
part of the modification terms can be rewritten

L(x + x⊥) = L︸︷︷︸
K

x⊥︸︷︷︸
x

+ Lx︸︷︷︸
−y

The basic objective in the projection methods is to minimize in a specific subspace

x = argmin
x∈S

F (Kx− y), (3.9)

and (usually in the optional modification stage) to minimize with orthogonality con-
straints

x⊥ = argmin
x⊥S

F (Kx− y). (3.10)

The two problems in (3.9) and (3.10) are basically of the same type; minimize a
convex function in a certain subspace. Depending on the specific subspace it can be
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more convenient to express the problem as lying in a subspace and at other times it
is better to express the solution as being orthogonal to a subspace. Hence it seems
reasonable to have modules for both tasks.

We will not consider minimization in a Krylov space with the l2 norm as Krylov
subspace methods are designed to compute these solutions.

If we have a (preferable orthogonal) matrix S ∈ Rm×n with (preferably orthonor-
mal) columns spanning the subspace S, then the problem in (3.9) reduces to an
simple unconstrained problem

x = Sz, where z = argmin
z

F (KSz− y),

which can be solved by the method described in §3.2.1, that is, the solution is found
with a series of Newton steps, where the search direction in each step is found from
a least squares problem.

The minimization problem in the orthogonal subspace is on the other hand seems
less simple. We have two options

x⊥ = argmin
x

F (K(I− SS†)x− y)

= argmin
x⊥

F (Kx⊥ − y) subject to ST x⊥ = 0,

where the first option is nice if SS† = SST , i.e., if S has orthonormal columns.
Note, that the resulting coefficient matrix DK(I−SS†) of the weighted least squares
system is rank deficient and the solver must be able to handle this situation.

Linear Equality Constraints

The second option might prove more simple if the subspace is not described by an or-
thogonal operator. The unconstrained problem can be solved with a Newton method
where search directions are found via a series of weighted least squares problems as
seen in §3.2.1. If we furthermore constrain each of the weighted least squares prob-
lems in (3.7) so that the search direction in each step fulfills the equality constraints,
we get in notation similar to (3.7)

d = argmin
x
‖DKx− z‖22 subject to ST x = 0,

we get search directions in the feasible space. In our particular setting we have a
feasible starting guess x = 0 for the iteration.

In order to solve an equality constrained least squares problem we form the La-
grangian

L(x,λ) = ‖D(Kx− z)‖22 − λT (ST x),

where λ is a vector of Lagrange multipliers. From the Lagrangian function we get
the KKT first order conditions

∇L(x,λ) =
[
(DK)T (DKx− z) +−Sλ

−ST x⊥

]
=
[
0
0

]
.



3.3 Parameter-Choice Methods 41

Introducing the residual r = DKx− z yields the symmetric indefinite system 0 KT D −S
DK −I 0
−ST 0 0

x
r
λ

 =

0z
0

 . (3.11)

Direct methods for systems of this kind are surveyed in [46, Sec 4.4] while MINRES
and SYMMLQ [105] are suitable iterative solvers.

Having modules to minimize in a given norm in a subspace or its orthogonal
subspace enables us to solve the problems in the subspace category.

3.2.3 Hybrid Methods

We have created three hybrid modules based on Lanczos tridiagonalization (Alg. 1),
the Arnoldi process (Alg. 2) and Lanczos bidiagonalization to lower form (Alg. 3)
respectively.

The Lanczos bidiagonalization algorithm which also lies behind the LSQR method
iteratively computes for a matrix K ∈ Rm×n orthogonal matrices Vk ∈ Rn×k,Uk+1 ∈
Rm×k+1 and a lower bidiagonal matrix B ∈ Rk+1×k so that

KVk = Uk+1Bk.

If we insert it into the least squares problem min‖KVkz− y‖2 we get

min ‖Uk+1Bkz− y‖2 = min ‖Bkz−UT
k+1y‖2.

In LSQR Uk+1y = e1‖y‖2 because y is selected as the starting vector of the bidiago-
nalization. However, we will allow for other starting vectors and the Lanczos tridiag-
onalization hybrid method can thereby compute both a MINRES like (starting vector
y) and an mrII like (starting vector Ky) hybrid method. The hybrid method puts
the least squares system through some regularization routine like TSVD or Tikhonov,
but any regularization method can be applied, even another hybrid method.

The literature has mainly used TSVD [12, 104], but other ideas have been in-
vestigated by O’Leary and Kilmer [87]. The MOORe Tools toolbox allows for any
regularization method to do the inner regularization, including an hybrid method.

3.3 Parameter-Choice Methods

Just as important as solving the regularization problem is the choice of regularization
parameter(s). If the regularization parameters are chosen inappropriately even the
best and fastest algorithm known to man returns a useless result.

The subspace methods have one regularization parameter, namely the subspace
dimension k corresponding to the iteration count for iterative methods. The penalty
methods on the other hand can have multiple regularization parameters—one for
each penalty term. The hybrid methods need at least two parameters; the subspace
dimension and one or more parameter for the inner regularization problem.
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The multiple regularization parameter case has not been considered here, but the
interested reader may consult [7] and [17] for recent developments within this area.

We have three major parameter-choice methods which in the following are de-
scribed with respect to the Tikhonov problem.

• The (Morozov) discrepancy principle [98] selects the regularization parameter
so that the model fit ‖Kx − y‖2 is equal to an upper bound on the error δ,
that is,

‖Kxλ − y‖2 = δe where ‖e‖2 ≤ δ2.

If we know that the norm of the noise ‖e‖2 = δ (which we call the noise level)
it does not make sense to ask for a solution xλ where ‖Kxλ − y‖2 < δ as we
would fit information not present in the data y.

The iterative methods MINRES, GMRES and LSQR all have monotonically
decreasing residuals and iterations can be stopped when the residual norm
passes δe, making the discrepancy principle a perfect choice for these methods
in case we know the noise-level.

The residual norms of Tikhonov regularized solutions are also monotonic with
respect to the regularization parameter λ. Thus the discrepancy principle is
well defined for Tikhonov regularization and can be found with a root finding
procedure.

• Generalized cross validation (GCV) [125] is based on statistical considerations
and does not use information about the noise-level.

Instead it minimizes the GCV function

G(λ) =
‖Kxλ − y‖22

(trace(I−KK#
λ ))2

,

where xλ is the regularized solution and K#
λ is the inverse regularized operator,

that is, K#
λ = (KT K + λ2I)−1KT for standard-form Tikhonov regularization.

The GCV function is somewhat difficult to compute for iterative methods like
CG as the regularized inverse K# is not unique and depends not only on the
iteration number (and regularization parameter) k but also on the particular
right hand side, see [66, Sec. 7.4] for an overview of combining GCV and CG
methods.

• The L-curve method is based on heuristic observations and is already mentioned
(but not used to determine any parameters) by Lawson and Hanson [90] in
1974, but is later directly used as a parameter-choice method and named by
Hansen [65]. See also [72].

The L-curve heuristic attempts to balance the penalty ‖xλ‖2 versus the model
fit, ‖Kxλ − y‖2 for regularized solutions xλ with regularization parameter λ.
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The L-curve name comes from the characteristic shape of the curve ((log‖Kxλ−
y‖2, log‖xλ‖2), as seen on Figs. 3.1 and 3.3. Functions other than log, such as
the square root, are also used but we will limit the discussion to the logarithmic
scaling. A too small λ yields a large penalty term and a small model fit norm
while a too large λ gives a small penalty term and a poor fit. The idea is to
find a balance of the two, e.g., at the corner of the “L”.

However to find a useful algorithm we need a more precise definition of the
corner and several have been proposed. Hansen and O’Leary [72] suggested
using the point of maximum curvature. This approach is invariant to scaling
of the equations, but the computation needs derivatives of the penalty and
residual fit functions. Regińska [110] suggested minimizing ‖Kxλ − y‖β2‖xλ‖2,
where β > 0. For β = 1 it corresponds to a rotation of the L-curve 45 degrees
counter clockwise and finding a minimum, see Fig. 3.2. We will use this simple
formulation in later experiments.

Of the three only the discrepancy principle requires knowledge or estimation of the
noise-level, but the noise-level is not always available and an estimation may be
unreliable. The GCV function and L-curve method on the other hand do not require
the noise-level. An experimental comparison of how well λ is determined compared
to the optimal regularization parameter is done in [66].

log(‖Kxλ − y‖2)

lo
g
(‖

x
λ
‖
2
)

λ→∞

λ→ 0

Figure 3.1: Stylized L-Curve

Large-Scale Parameter Selection

Finding a good regularization parameter for Tikhonov using the above mentioned
methods can be quite difficult if the SVD is unavailable. The SVD makes it possi-
ble to evaluate the norms and derivatives for several regularization parameters fast.
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Figure 3.2: Stylized rotated L-Curve
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Figure 3.3: L-curve for the heat test problem with K ∈ R100×100 and white noise
added. The dotted line shows the L-curve for a no noise right hand side, the dashed
line is the L-curve for a pure noise right hand side and the solid line is the actual
L-curve for a noisy right hand side. The x markers show points for evenly spaced
regularization parameters λ. Note that the points in the L-curve do not depend
linearly with λ. Thus the plot in (b) is both rotated and then “stretched” compared
to (a).
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Otherwise, we can approximate, e.g. the L-curve, by solving multiple systems with
different parameters and thereby finding points on the L-curve. The discrepancy
principle requires some kind of root finding procedure and not having the SVD sig-
nificantly handicaps the process.

Especially the GCV function is very hard to compute for large problems, due to
the trace term in the denominator. However, the trace term can be approximated
using Hutchinson’s trace estimator [80],

trace(A) ≈ uT Au,

where u is a vector with random elements −1 and 1 with equal probability 1/2. Using
an approximation gives a “Monte Carlo” GCV method; see also [42, 43] for other
similar trace estimators.

A general solution technique related to the hybrid methods is to estimate the
parameter from a problem projected into a smaller space where an SVD is easily
obtainable; see [14, 87].

A somewhat related approach exploits a fascinating connection between the Lanc-
zos tri/bi-diagonalization methods and Gauss-quadrature formulas. This connec-
tion enables computation of upper and lower bounds on several terms used in the
parameter-choice methods for standard-form Tikhonov regularization. More details
on these bounding methods can be found later in Sec. 5.1, where we consider a
stopping criterion ensuring that the computed upper and lower bounds are close.

Non-l2-norm Problems

If we do not use l2-norm squared for residuals and penalty functions the problem gets
more problematic as we are unable to utilize many of the tools provided for the l2-
norm situation. The approximations all depend on the penalty functions being of the
least squares type and cannot be applied to problems with other penalty functions.
However, the parameter found in a least squares setting might perform well as at
least a starting guess for other norms.

3.4 Combining Modules

At this point we have considered which modules to implement. We will now consider
the arguments passed to the regularization routines so that modules are easily ex-
changed. We can do that by enforcing a default number and order of arguments to
the routines.

We have decided that all modules for standard regularization use the following
form

[X, extra] = regalgorithm(K, y, options)

The operator and right-hand side is passed as the two first options while all options
such as regularization parameters, tolerance criteria and which data to return are
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passed through the options structure. The regularized result is returned in X while
extra information collected during computations can be found in the extra structure.
The extra information could be residual and penalty norms from each iteration of an
iterative algorithm, but also a collection of vectors describing the solution space for
the Krylov methods.

The results shown in the following are computed with the MOORe Tools in
Matlab and the commands used to generate them are listed in the tutorial in App.
A.

3.4.1 Combining Modules — Numerical Experiments

This section demonstrates the results of using the modules presented. We demon-
strate both some well-known regularization approaches as well as some exotic varia-
tions. Appendix A.3 shows how the MOORe Tools package has been used to create
the plots shown in the following.

3.4.2 PP-LSQR

The PP-TSVD [70] method solves the modified subspace problem

x = x0 + x⊥ where
x0 = argmin

x∈V
‖Kx− y‖2,

x⊥ = argmin
x⊥V

‖L(x + x0)‖1

and V is a subspace spanned by the k first singular vectors. The PP-LSQR method
exchanges the SVD basis with the Krylov space

V = Kk(KT K,KT y),

computed iteratively via the LSQR method. If K is (too) large and without structure
so that an SVD cannot be computed the PP-LSQR method might show useful, if PP-
TSVD like features are wanted. The LSQR and PP-LSQR solutions after 5 iterations
are shown in Fig. 3.4. The 5 LSQR iterations used to find the subspace V (and the
LSQR solution) for this particular 4000×4000 problem takes approximately 1 second,
while the full SVD of K takes almost 2 hours to compute on the same computer—
methods to find only the first SVD components should be faster but have not been
tried. The modification step, that is, setting up and solving the LP-problem via
linprog from the Optimization Toolbox, uses 14 seconds for this example.

3.4.3 A GMRES-Tikhonov Hybrid Method

The hybrid methods have usually been implemented via the LSQR algorithm. How-
ever, the GMRES method should also be considered for square systems. Furthermore,
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Figure 3.4: LSQR and PP-LSQR solutions for a problem with a piecewise constant
solution. The test problem is deriv2 with K ∈ R4000×4000, a piece-wise continuous
solution and a right-hand side with normal distributed noise with norm 10−2‖y‖.
The LSQR solution is very smooth after 5 iterations. The “PP” modification with
L = L1, an approximation of the first derivative, recreates the discontinuous nature
of the solution.

GMRES is the only option if the operator is not symmetric and multiplication with
the transposed operator is not possible.

We choose Tikhonov regularization with the GCV parameter choice strategy as
the inner regularization method. In Fig. 3.5 we see that too many iterations (in this
example only one too many) introduce noise in the solution. Introducing regular-
ization on the inner problem saves the day and the noisy components are damped
damped. The extra work is not overwhelming as the inner regularization step only
uses the SVD of a 10 × 9 upper Hessenberg matrix and the GCV parameter choice
method is able to efficiently compute the regularization parameter using this small
SVD. Similar experiments with the GMRES-Tikhonov method and image restoration
can be found in the Master’s Thesis [82].

3.4.4 Robust TSVD

To demonstrate how the “robust” methods perform we created a test problem with
normally distributed noise except for three (extreme) outliers in the right-hand side,
see Fig. 3.6.

The TSVD method is formulated via the l2-norm, which we know is sensitive
with respect to outliers in the data. Using a robust penalty function instead of the
least squares penalty we can to some degree remove the influence of the outliers on
the solution. Figure 3.7 compares the solutions of a standard l2 TSVD and a “Fair
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Figure 3.5: The GMRES and hybrid GMRES-Tikhonov methods on the shaw test
problem with K ∈ R200×200. Normal distributed noise with norm 10−3‖y‖2 is added
to the right-hand side. The GMRES solution explodes in the 9th iteration (one to
many). The hybrid method uses Tikhonov regularization with the GCV parameter
choice method.

PSfrag replacements

0 0.2 0.4 0.6 0.8 1
-0.02

0

0.02

0.04

0.06

0.08

Figure 3.6: Right-and side of problem with outliers. The test problem is heat with
n = 300. Normally distributed noise with norm ‖e‖2 = 10−2‖y‖ is added to the
solution. Finally outliers were added at index 10, 100 and 200. This particular
right-hand side is used in Figs. 3.7, 3.9 and 3.10.
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TSVD” method,

xreg = argmin
x

FF (Kkx− y).

If the right-hand side does not have any outliers they give approximately the same
solution. If we solve with the right-hand side with outliers the l2 TSVD solution
starts to oscillate while the TSVD using the Fair penalty is almost unharmed.
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Figure 3.7: Standard and robust TSVD with truncation parameter k = 20 applied to
problems with outliers (dotted solution) and without outliers (dashed solution). The
test problem is described in Fig. 3.6 and is also solved via variations of Tikhonov in
Figs. 3.9 and 3.10.

3.4.5 A PP-LSQR-TSVD Hybrid Method

To illustrate the modularity and flexibility we now try out a combination of a hybrid
method using a projection method as inner regularization and a modification. The
LSQR Krylov subspace method is selected and we use TSVD regularization on the
inner problem. We use GCV to determine the regularization parameter for the inner
Tikhonov problem. Finally, we modify the solution according to the PP scheme, that
is, we add find the solution from xreg = x0 + x⊥ where

x⊥ = argmin
x⊥Kk(KT K ,KT y)

‖L1(x + x0)‖1,

x0 is the solution obtained from the Hybrid LSQR-TSVD method, L1 is an approx-
imation to the first derivative, and Kk

(
KT K ,KT y

)
is the k dimensional subspace

that the hybrid solution lies in.
Fig. 3.8(a) shows an example of LSQR with and without inner TSVD regular-

ization. We see that the inner regularization compensates somewhat for iterating
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Figure 3.8: LSQR, hybrid LSQR and hybrid LSQR with modification—all after 7
iterations. The example uses the heat problem with K ∈ R400×400, a piecewise
constant solution and normal distributed noise with norm 10−2‖y‖2 is added to the
right hand side.

too far as the oscillations are damped. Similar to the PP-LSQR method illustrated
previously we observe from Fig. 3.8(b) that the modification step enables the recon-
struction of sharp edges.

3.4.6 A Robust Tikhonov Method

If the right hand side contains measured data with a possibility of outliers it is
possible to “automatically ignore” those by using a robust estimator instead of the
usual l2-norm to measure the residual. In this example we will use the Fair penalty

FF (r) =
∑
i=1

nfβ(ri), where fβ(z) = β2(|z|/β − log(1 + |z|/β)).

We use the Fair penalty on the model fit and the l2-norm on the penalty term,
that is, we are minimizing

min
x

{
FF (Kx− y) + λ2F2(L2x)

}
,

where L2 is an discrete approximation to the second derivative. From Fig. 3.9(a) we
observe that the l2-norm Tikhonov solution “stretches” far to catch the outliers while
the Fair Tikhonov solution seen in Fig. 3.9(b) is almost unharmed by the outliers.

The heat test problem is dealing with temperatures. If we assume that the mea-
suring unit is degrees Kelvin it does not make sense to have negative temperatures.
If we consequently add non-negativity constraints to the solution we get the result
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Figure 3.9: Robust Tikhonov regularization solutions. The test example is heat,
K ∈ R300×300. White noise ‖e‖2 = 10−2‖y‖ and three outliers are added to the
right-hand side, see Fig. 3.6. The regularization matrix is L2 and the regularization
parameter is λ = 10−1 in both cases and has not been optimized.

shown in Fig. 3.10. In Fig. 3.10(a) we use the 2-norm and the outliers disturb the
solution around 0.3, but not to the same extent as without the outliers. Introducing
the Fair penalty function on the model fit does improve the solution, cf. Fig. 3.10(b)
where we do not see the extra peak around 0.3.

3.4.7 L-Curves for the Fair Problem

To get an idea whether we have something like an L-curve when we use other norms
we create a plot of (log(FF (Kxλ − y)), log(‖xλ‖22)) where we compute solutions to

xλ = argmin
x
{FF (Kx− y) + λ‖x‖22} (3.12)

for λ in the interval [10−12; 1].
Figure 3.11 shows a distinct corner which is close to the optimal choice of regular-

ization parameter. As the L-curve is based on a heuristic argument it is reasonable
that we can use the L-curve also when the penalties are not l2-norms. Indeed the
L-curve is also found for non-linear ill-posed problems, as seen in [55]. Finding the
corner is, on the other hand, not an easy task as many of the shortcuts available
in the l2-norm case are not available. For example, we cannot utilize the SVD to
diagonalize the problem. The “minimum distance function” presented in [7] finds the
corner via a fixed point iteration.
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PSfrag replacements

FF (Kxλ − y)

‖
x
‖
2 2

10−3 10−2 10−1
10−2

100

102

104
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norm (see (3.12)). The right-hand side is illustrated in Fig. 3.6.
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3.5 Summary

We have seen how a number of known regularization algorithms can be split into
independent modules. The hybrid methods are by construction modular. The pro-
jection methods also have a natural modular formulation as the optional modification
step is separate from the actual projection step.

On the other hand we are not able to split the penalty type methods into modules
as such. Instead we have created one algorithm that can solve penalty methods with
one or more penalty terms of different type where the penalty functions take the role
as modules.

We have seen that problems where we use norms other than the 2-norm can be
solved through a series of least squares problems. Additionally we can constrain the
solution with linear equality and non-negativity constraints. As we do not assume
anything about the operators involved in the least squares problems we default to
using LSQR to solve the unconstrained and linear equality constrained problems.
The non-negativity problems can be solved solved with a projected Newton type
method.

The parameter choice methods are difficult to modularize as they are very depen-
dent on the actual regularization method used. Hence separate groups of modules
are needed for each kind of regularization algorithm. We need at least one for algo-
rithms with a discrete regularization parameter like the subspace methods and one
group for the regularization methods with continuous regularization parameter like
the penalty functions.
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Chapter 4

Object Oriented Programming

Designing object-oriented software is hard, and designing
reusable object-oriented software is even harder. (...) Experi-
enced designers evidently know something inexperienced don’t.
What is it? Gamma, Helm, Johnson and Vlissides, “Design
Patterns: Elements of Reusable Object-Oriented Software” [41].

With the advent of object-oriented languages like C++ and Java,
computer science moved to a new still-higher level of program-
ming and design. There’s no turning back. An object-oriented
approach (OO for short) is the way. Rudy Rucker, “Software
Engineering and Computer Games” [115].

In this chapter we introduce the object oriented (OO) programming languages
along with a brief note on the procedural and functional programming languages
that are the main alternatives.

Having introduced OO programming in general we justify using Matlab as the
language for the MOORe Tools toolbox. As shown in the previous chapter most of
our problems reduce to problems of solving least squares problems of various forms
and we look how to represent the matrices and vectors in the linear algebra setting
using OO techniques.

Using the extra abstraction layer that OO provides eases many tasks but also
implies penalties with respect to running time and memory usage.

4.1 Programming Paradigms

Making programs can be hard, but making code that is easy to maintain and extend
is definitely hard, especially when the size of the program grows. Without careful
planning and detailed specifications of the program it quickly becomes impossible
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to implement anything but the simplest program. As a consequence, different ap-
proaches to go from some problem through specification to an actual program exist
and a plethora of programming languages have been created to aid the programmer
to create correct programs faster. We will consider three approaches including the
OO approach in the following and argue why we use the OO approach.

Imperative/Procedural Programming

The “imperative or procedural” programming languages assist the programmer in
decomposing problems into a number of preferably small and manageable functions.
A group of related functions can then be packaged together in libraries or toolboxes.

Often the procedural languages allow for direct manipulation of pointers and
memory and there is a close correspondence in structure between the procedural
language and how the machine works. These features have made these languages
popular for people aiming at the best possible performance as they to a large extent
are able to exploit the properties of the particular computer architecture. Also the
close correspondence between language and the machine simplified the compilers and
most of the early languages such as Fortran 77 [96], Pascal [127] and C [85] are all
inherently procedural programming languages.

Functional Programming

The functional programming languages define everything with functions in the math-
ematical sense, that is, if a = 4 we cannot later assign another value (a ← 5 in our
notation), see [79]. In procedural languages it is common that variables change value;
just think of the loop variables.

Furthermore “side effects” are not allowed, that is, a function cannot change
anything outside its scope. A pure functional programming language has no variables,
no assignments and no iterations in the usual sense. Everything is done through
(often recursive—to get the loops) function evaluation. These features make proof
of correctness for the programs feasible and functional programming languages are
very useful in discussing computer science problems such as determining whether a
language is proper.

Examples of functional languages are LISP [118], Haskell [83] and Standard ML
[97]. Within scientific computing and linear algebra these languages have never been
widely used, as they have a reputation of being slow compared to more familiar lan-
guages such as Fortran and C. The familiarity aspect is most likely a major factor.
Loops are common constructs in numerical algorithms, but they are somewhat “ob-
fuscated” in function languages. For example, the matrix-matrix multiplication can
be written as follows in Standard ML (extracted from [108]):

fun headcol [] = []

| headcol ((x::_) :: rows) = x :: headcol rows;

fun tailcols [] = []

| tailcols ((_::xs) :: rows) = xs :: tailcols rows;
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fun transp ( []::rows ) = []

| transp rows = headcol rows :: transp (tailcols rows);

fun dotprod ( [], [] ) = 0.0

| dotprod ( x::xs, y::ys ) = x*y + dotprod(xs, ys);

fun rowprod ( row, [] ) = []

| rowprod ( row, col::cols ) =

dotprod(row, col) :: rowprod(row, cols);

fun rowlistprod ( [], cols ) = []

| rowlistprod ( row::rows, cols) =

rowprod(row, cols) :: rowlistprod( rows, cols );

fun matprod ( Arows, Brows ) =

rowlistprod( Arows, transp Brows );

On the other hand, it is fairly easy to parallelize computations because the struc-
ture of the programs reveals the computationally independent parts which can be
executed in parallel. Indeed research has shown promising results with automatic
parallelization of functional programming codes [21].

4.1.1 Object Oriented Programming

The procedural languages encourage the programmer to collect algorithms and func-
tions into libraries. However, the actual data is still left “floating” around at the
mercy of the user of the libraries. Let us illustrate with an example. Let a and b
denote two vectors, where b is a list of indices such that abi

, i = 1 . . . n is a sorted
list in decreasing order. A library could include algorithms to generate b from a and
other functions related to manipulating the vectors. However, the user has direct
access to the vectors and if not careful he might swap two elements of a and the
sorting stored in b might not be correct anymore. We say that the data are in an
invalid state.

The object oriented programming collects data and the interface to the algorithms
for the data into one unit called a class. That is, not only the code but also the actual
data is contained in a object. Access to data is restricted going through the interface.
If the interface is well defined it should be easier to decompose the problems into
self contained entities that interact in a predefined way. Due to the indirect access
it is easy to avoid invalid data. In the example the “sorted list” class would need to
define a swap interface that swapped the elements in both a and b.

Classes can “inherit” from other similar classes borrowing and extending the
interface and functionality. In this way OO programming languages encourage reuse
of code. An example could be a simple list class and an extended list class with
fast access to the largest element. The specialized list could be implemented as two
vectors as described in the example above and requesting the maximum value would
be simple lookup of ab1 . They would share the lookup of element 5 of a, but as
described above the extended class should redefine how a swap of two elements is
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performed to keep the, now internal, data valid.
The object oriented ideas and techniques can be used in all languages by ad-

hering to strict rules but actual OO languages provide constructs that simplify the
implementation.

The language Simula [11] was the first language to introduce classes as an actual
language construct. It didn’t achieve widespread use, but the object oriented idea did.
Today, we have C++ [121] (OO extension to C), Java [52] (also an OO extension to C)
and Delphi (OO extension to Pascal) just to name a few of the popular OO languages.
Also the newer revisions of Fortran [96] have OO features in the language that are
used by of LAPACK95, see [3]. Among functional type languages OCaml [111] is a
Standard ML derived language with objects. Finally, object oriented facilities were
added to Matlab in version 5. For an overview of projects using object oriented
techniques for numerical computations see the web-page www.oonumerics.org.

Probably the first software package for regularization of ill-posed problems was
written in Simula by Eldén [34].

See also the web-page http://www.oonumerics.org for an overview of software
and projects that use OO techniques for scientific computing. From this page it
seems that 90% of object oriented mathematics are done in C++.

Before discussing object oriented programming and Matlab we will present the
very basic terminology used in the following. The type of an object is called a class.
An instance of a class is called an object. For example, we could say that integer
is a class while the integer 3 is an instance of an integer, that is, 3 is an object. A
function belonging to a class is called a method. A class defines a number of fields
which are to hold the data of the object. For example the integer class could have
a field called value where an instance/object would store any data, for example, the
value 3. Usually it is only possible to change fields of an object through the interface.

4.2 Object Oriented Matlab

We have chosen Matlab to implement the toolbox, but why Matlab and not, for
example, the more widespread C++ language? The most popular object oriented
languages are C++ and Java as seen on www.oonumerics.org. However, Matlab has
also been used. Examples are “DiffMann” [38] and FEMLAB [27].

The advantages of using Matlab are:

• Matlab provides a rich and powerful library of well-tested and optimized nu-
merical algorithms.

• Matlab is an interpreted “rapid application development” environment avail-
able for multiple platforms. Interactive experiments with algorithms and data
are easy as recompiling after small changes is not necessary. The same code
can be used on all platforms where Matlab is available. To a large extent even
the C and Fortran Mex-files are platform independent.

http://www.oonumerics.org
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• Advanced integrated graphical features in Matlab makes plotting and illustra-
tion of data easy.

• Matlab is widely used in teaching and research. The previous Regularization
Tools package [68] is also implemented in Matlab and MOORe Tools is to a
large extent based upon this previous work.

• Matlab takes care of memory management and many pitfalls and programming
errors are thereby avoided.

However, the many advantages come with a price. Compared to other OO lan-
guages, such as C++, we note the following disadvantages:

• As an interpreted language some overhead must be expected. Recent versions
of Matlab (from version 6.5) introduce a “Just In Time” compiler that improves
performance. However, some performance is still lost.

• Matlab does not allow fine-grained control of pointers and memory. Matlab
does try to limit memory consumption by delaying memory allocation and
copying if possible.

• The OO features of Matlab seem added as an afterthought. For example, it is
not possible to force a subclass to implement an interface and thereby prevent
the creation of objects that do not implement the methods that are required.

Matlab was originally constructed as a procedural programming language—in its
first incarnation it was a kind of Fortran interpreter. However, as popularity grew
object oriented features were added from version 5. Matlab provides the following
object oriented features:

Constructors. The constructor is a special method, that is, a function, that creates
and sets the data within the object to an initial (valid) state.

Encapsulation. Data, that is, the fields within the object, are not directly accessible
from outside the methods of the class. This makes it possible to keep the fields
in a valid state. Methods must be written to access and change data. That is,
all fields are “private” in the terminology of Java and C++.

Inheritance. Classes can inherit and extend functionality from one or more other
classes and thereby reuse already tested and functional code. When we say
that Matrix inherits from its parent LinearOperator it is implied that Matrix is a
LinearOperator. Also, LinearOperator is called a parent of Matrix and conversely
Matrix is a child of LinearOperator.

Overloading. It is possible to overload functions and operators. Overloading is to
redefine, for example, the multiplication operator * for each class. Depending
on the class of the argument(s) (the operator * has two) the correct overloaded
method is evaluated.
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Polymorphism. Algorithms can be written without knowing the exact type of the
used objects. The algorithm can, for example, assume that the object is a
linear operator and use the interface of a linear operator. The algorithm would
then work with all classes that inherit from the linear operator as these classes
also have implemented the linear operator interface either by inheritance or
overloading.

Notation

Because we are going to use inheritance, overloading and the other object oriented
features described above we end up with several methods with the same name. When
it is obvious from the context which class a method belongs to we use method to
designate the method. In cases where it is not clear we add the class name like
classname/method.

The next chapter goes into more detail about the choices made in the actual
implementation of the MOORe Tools Matlab toolbox. More details on usage, syntax,
directory structure and examples are placed in the toolbox tutorial in App. A.

4.3 Regularization and Objects

We have chosen not to create objects/classes for actual algorithms but to place them
as methods in the base classes. That is, the OO techniques are only applied to the
operators and vectors of the problems.

In this section we will go through a number of linear algebra and regularization
scenarios to determine the basic classes needed for the package. The classes are
divided into three categories:

Base classes. The two abstract classes LinearOperator and Vector form the top of
two hierarchies of inheritance. Furthermore, we use the two classes SVDOp-
erator and QROperator to indicate whether decompositions like the SVD and
QR are possible with the particular class. All other classes inherit from one or
more of these classes. The LinearOperator class holds the regularization routines
based on multiplications, that is, the iterative methods. The SVDOperator class
holds those routines that operate with the SVD such as the TSVD algorithm.

Utility classes. Classes that are useful in the formulation of regularization problems
and algorithms. For example, we often face “block” operators, products of
operators and occasionally sums of operators. That is, the utility classes are
not specific to the given inverse problem.

Other classes. Classes that are specific to a specific problem and not of general
use.

The first two categories are covered in detail in the following. The third category in-
cludes classes for test problems including a class Matrix which is an OO representation
of the usual matrix.
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4.3.1 Base Classes

To see which objects we need, we first take a look at our linear ill-posed problem

Kx = y, (4.1)

where x, y are vectors and K is a linear operator mapping a vector x to y. We see
that we have two basic types entities or objects:

• A linear operator K that can take a vector as input and output another vector
possibly of another type.

• Vectors x and y representing some kind of data.

These two types of objects form the root of the class hierarchy as the classes Linear-
Operator and Vector.

The Interface of LinearOperator

The classes should present an interface for algorithms to use. The LinearOperator and
Vector classes define an interface where the basic operations such as multiplication
and addition are defined. However, the LinearOperator class does not implement most
of the operations that the interface defines (in C++/Java terminology: the class
is abstract). Classes that inherit from LinearOperator must implement the interface
defined by LinearOperator as detailed later. Unfortunately it is not possible in Matlab
to express that a subclass must implement a certain interface. The algorithms, on
the other hand, only use the interface defined by LinearOperator and do not consider
the implementation. Multiplication with a Vector is only partly implemented by the
mtimes method in LinearOperator. The mtimes method first determines the classes
of the two arguments and from that information it performs one of the following
operations:

scalar and LinearOperator. A LinearOperator contains a scale field which is initial-
ized by the constructor to 1. Multiplying a LinearOperator with a scalar then
scales the scale field. This implies that a child class does not have to implement
multiplication with a scalar because LinearOperator takes care of the scaling as
we explain next.

LinearOperator and Vector. The LinearOperator is not fully capable of multiplica-
tion. In the case of LinearOperator multiplied onto a Vector the following steps
take place:

1. The sub applytovector method is called with the LinearOperator and
Vector as arguments. If the actual class of the given LinearOperator ob-
ject is, for example, the Matrix class, Matlab will execute the method
sub applytovector of the child class Matrix. Similarly, Matlab will exe-
cute the sub applytovector method for all other child classes of Linear-
Operator. The sub applytovector should not consider the scale field.
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2. The result of the previous step, an object of class Vector (or a child
thereof), is returned from sub applytovector. This Vector is then scaled
with the scale field of the LinearOperator and returned as the result of
mtimes.

It is assumed that all classes inheriting from LinearOperator are capable of
multiplying itself with a Vector of the proper type via the sub applytovector
method.

LinearOperator and LinearOperator. The procedure is somewhat similar to that of
multiplication with a Vector. The steps are as follows

1. The sub operatormtimes method is called with the two LinearOperator
objects. Again this method should be a member of one of the actual
classes given. For example, if the two objects are in fact Matrix objects,
the sub operatormtimes method of Matrix is called. It creates a new
Matrix object containing the product which is returned.
However, some classes do not implement sub operatormtimes. In this
case LinearOperator’s own sub operatormtimes method is called, that cre-
ates an OperatorProduct object, described later.

2. The returned LinearOperator is then scaled by the scale field of each of the
LinearOperator used in the product.

In addition to overloading the mtimes/* method LinearOperator also assists the im-
plementation of subclasses by implementing the methods:

ctranspose. Overloads the complex transpose operator, that is, writing K’ in Matlab
calls ctranspose(K). LinearOperator/ctranspose flips the transposed flag of
the operator. The flag can be read by the gettransposed method.

gettransposed. Determines whether the operator is transposed or not. This method
should be used by, for example, sub applytovector to decide whether it should
do a multiplication with a transposed or a non-transposed operator.

getmatrix. Depends on the sub getmatrix methods to generate a representation
of the operator as the usual double array. When the child method returns,
LinearOperator/getmatrix then scales the elements and transposes it if the
transpose flag is set.

diag. Similar to getmatrix, but calls sub diag. The result is scaled by the scaling
factor.

size. Matlab uses the size method whenever the size of the operators is displayed
by, for example, the Matlab function whos. It is a tedious job to get the right
output for the given input if Matlab’s conventions are to be followed. A subclass
can instead implement sub size that returns the number of columns and rows
in the non-transposed operator. The size method calls the sub size method
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and swaps the row and column count if the operator is transposed and sets up
the requested output.

Note how methods named sub something are used by one of the base classes.
If the operator supports creation of the SVD it inherits from SVDOperator that

defines the interface to the SVD and implements a number of regularization rou-
tines that either need the SVD (such as the TSVD) or exploit the SVD for faster
computations (such as Tikhonov). The SVDOperator assists by implementing the
method:

svd. The svd method calls the sub svd method. The sub svd should compute the
SVD without considering scaling of the object or whether it has been trans-
posed. The svd method prepares the proper output by taking care of scaling
by multiplying the singular values and taking care of whether the operator is
transposed by swapping left and right singular values.

Similarly we inherit from the QROperator if the operator can compute its QR factor-
ization. The QROperator implements:

qr. The qr method calls the sub qr method which should check whether the object
is transposed or not. qr takes care of scaling by multiplying the R factor.

The simple wrapper class Matrix implements all the factorizations and therefore
it inherits from both LinearOperator, SVDOperator and QROperator. Thus it imple-
ments all the above mentioned sub op methods. However, in some cases only the
multiplication is implemented and the operator only inherits from LinearOperator. An
example is the Interpolate class that implements a bilinear interpolation from a reg-
ular grid to an irregular grid via a mex-function (a function written in C or Fortran
with a Matlab interface). The corresponding matrix is never explicitly constructed;
see also App. D.2.

The Interface of Vector

The interface of a Vector defines multiplication with scalars, norms and inner prod-
ucts. It also serves as the wrapper of the ordinary vector and is therefore not an
abstract class like the LinearOperator class.

Furthermore, the Vector class provides helpers to support implementation of other
vector types. Most of the operations such as plus in Vector are implemented via the
methods getdata and setdata. For instance, the plus method is implemented as:

1 function z = plus(x,y)

2 z = setdata( x, getdata( x ) + getdata( y ) )

The Vector2D/setdata method sets the data field of the Vector2D object and the
Vector2D/getdata method gets the 2D array stored in its data field. The Vector2D
and Vector3D classes support a large number of operations, such as plus, minus,
elementwise equal etc., by implementing a getdata/setdata pair and relying on the
implementation of Vector.
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4.3.2 Utility Classes

In addition to the base classes LinearOperator, SVDOperator, QROperator and Vector
a number of utility classes have proven useful in the development and implementation
of algorithms for MOORe Tools.

Block Operators and Vectors

We often see block matrices in the formulation of algorithms. For example, we have
the Tikhonov regularization problem in its least squares formulation

min
∥∥∥∥[K
λL

]
x−

[
y
0

]∥∥∥∥
2

, (4.2)

where K and L are linear operators and y and 0 are vectors, that is, we have

1. a linear operator composed of two linear operators “stacked” on top of each
other,

2. and a vector composed of two vectors “stacked” on top of each other.

Another structure that appears often in optimization problems is the augmented 2×2
block matrix[

D K
KT 0

]
. (4.3)

These two examples lead us to introduce the OperatorArray and VectorStack classes.
They contain a number of objects derived from the LinearOperator and Vector classes
respectively and their implementation of operations are dependent on the implemen-
tation of the sub-operators and sub-vectors (the “Chain of Responsibility” pattern
[41]). The two classes “go together”, that is an OperatorArray may be multiplied
onto a VectorStack. It is possible to nest OperatorArrays and VectorStacks to get, for
example, K

λ

[
I⊗ L1

L1 ⊗ I

] and

 b[
0
0

] .
Multiplication of the above operator (transposed) and vector is computed step by
step via

[
KT λ

[
(I⊗ L1)T (L1 ⊗ I)T

]]  b[
0
0

] = KT b + λ
[
(I⊗ L1)T (L1 ⊗ I)T

] [0
0

]
= KT b + λ((I⊗ L1)T 0 + (L1 ⊗ I)T 0)

= KT b + λ0

= KT b.
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Product of Operators

The weighted least squares problem

min ‖W(Kx− y)‖2 = min ‖(WK)x−Wy‖2

is also of interest. From this problem we see that a product of operators class can
be useful. The term Wy does not introduce anything new as we can just apply the
weighting operator W to y. We cannot always apply the weighting operator to K
or it could be undesirable for numerical reasons, but we can apply the weighting
to the result of Kx. An OperatorProduct object holds a number of LinearOperator
objects and multiplications with vectors are done by applying each operator in turn
according to

(K1(· · · (Knv)))

and according to

(KT
n (· · · (KT

1 v)))

in case the OperatorProduct has been transposed.

Sum of Operators

Along the same lines is the operator sum sometimes used to make a symmetric
approximation to an “almost” symmetric operator

Ks = (K + KT )/2, (4.4)

indirectly used in [60]. An OperatorSum object holds a number of LinearOperator
objects. In this case a multiplication is done according to

(K1v) + · · ·+ (Knv),

and if the OperatorSum object is transposed according to

(KT
1 v) + · · ·+ (KT

nv).

In equation (4.4) we would have a scaled (with 1/2) OperatorSum object with two
“sub”-operators K and KT .

Other Utility Operators

We also add the identity operator (IdentityOperator), a class for diagonal operators
(DiagonalOperator) and the null operator (NullOperator) to the utility classes as they
appear often, as seen in, for example, (4.2) and (4.3). The IdentityOperator is an
extremely sparse representation of the identity. Not even the ones on the diagonal
are stored. Optionally the size of the operator is stored; that is, an IdentityOperator
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can in fact be created “sizeless”. However, operations that need the size of an operator
will fail and it is therefore recommended to specify the size of the IdentityOperator
when it is constructed. The NullOperator is similar to an IdentityOperator multiplied
by zero. The DiagonalOperator stores the diagonal as a Vector object. An operation,
such as multiplication with a vector is done through the corresponding elementwise
operation between the diagonal vector and the vector. Thus DiagonalOperator relies
on the interface defined by the Vector class. The DiagonalOperator can be initiated
with more zero rows or columns to facilitate constructs such as[

Σ 0
]

and
[
Σ
0

]
.

The class PermutationOperator stores the permutation via a list of indices. We
will use the PermutationOperator in the case study to bring the singular values of a
Kronecker product into sorted order.

The utility class VectorReshape is used to keep the sub applytovector methods
simple. Most operators can only be applied to vectors of a specific class. For example,
a KroneckerProduct2D can only be applied to Vector2D objects. However, sometimes
we wish to apply the KroneckerProduct2D to a Vector object and we need to transform
the object. The VectorReshape converts back and forth between a Vector object and
a Vector2D, Vector3D or VectorND object. Essentially, the class works as the Matlab
command reshape, hence the name. Because the operator does not change the
elements and merely reshapes the data, it is related to the identity operator, and
indeed VectorReshape is created as a child of IdentityOperator. In the case study on
the Kronecker product later in this chapter we will see how the VectorReshape class
is used in practice.

We have decided that all usual regularization methods take the operator, the
right-hand side and an options structure as arguments. This enables us to combine
methods easily. However, we cannot explicitly pass an already computed SVD to e.g.
the TSVD method as it is done in the previous package. We work around this issue by
introducing the OperatorSVD that caches/stores the three terms of the SVD. When
we ask for the SVD of an OperatorSVD we simply return the stored objects. This
approach is inspired by the linear algebra package JAMA [76] for the Java language.

All classes that represent a linear operator must inherit from LinearOperator,
while some inherit from QROperator and SVDOperator, see Fig. 4.2. Note how Kro-
neckerProduct2D and KroneckerProduct3D inherit from KroneckerProduct as they are
specializations of the general N -term Kronecker product. The KroneckerProduct2D
is the subject of the next section. The SparseMatrix class is similar to the Matrix
class but implements the solve operation, that is, the backslash operation, via sparse
QR. The VectorCollection class can contain a number of Vector objects stored as
“columns”. Applying a VectorCollection V to a Vector b is computed via a linear
combination of the stored vectors in V or, if V is transposed, as inner products
of each stored vector in V with the vector b. The classes WeightedPseudoInverse
and TikhPrecond are described in §5.2 and §5.3 respectively. The three test prob-
lem examples implemented in Interpolate, SteadyHeatFEM and SteadyHeatBEM are
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described in App. D.

Parent Child

Figure 4.1: A box denotes a class. The arrow indicates that the child inherits from
the Parent class. The child is also called a subclass of the parent class. It is said that
the class “B” is a class “A”.

We see a similar but simpler picture for the vector types; see Fig. 4.3.

4.4 Use of Classes and Operator Overloading

We illustrate with a simple example how the object oriented abstraction, in particular
the polymorphic, allows for general algorithms. The main body of a CGLS algorithm
(see [13, §7.4.1]) appears as follows:

Kd = K*d;

alpha = normr2/(Kd’*Kd);

x = x + alpha*d;

r = r - alpha*Kd;

s = K’*r;

normr2_new = s’*s;

beta = normr2_new/normr2;

normr2 = normr2_new;

d = s + beta*d;

As already described we can overload the basic operators in Matlab. For example, we
can redefine the dyadic operator * via the mtimes method. When K*b is evaluated
by Matlab it uses the multiplication defined by the class of the object K.

We observe that the operators K and KT are applied. Hence, if the given op-
erator class overloads multiplication and the transpose operation the code will work
transparently with respect to the operator. Furthermore we see addition and sub-
traction of vectors, inner products and scaling of vectors by scalars, all of which a
vector class must support.

Simulating OO Programming

If object oriented features such as overloading were not available the above would
have to be written in another, usually less clear, form. An often used alternative is to
supply the name of a function that evaluates in this case the product of the operator
and a vector. In this case first line of the code would look something like

Kd = feval(mult, d, arg1, arg2 ...);

where mult is a function that computes K*d from the given arguments. A careful im-
plementation would yield the same results as the object oriented approach. However,
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VectorReshape

IdentityOperator

LinearOperator

Matrix

KroneckerProduct

DiagonalOperator

OperatorArray

OperatorProduct

OperatorSum

PermutationOperator

SparseMatrix

VectorCollection

WeightedPseudoInverse

TikhPrecond

Interpolate

SteadyHeatFEM

SteadyHeatBEM

SVDOperator

QROperator

KroneckerProduct2D

KroneckerProduct3D

Figure 4.2: Class relationship for the LinearOperator hierarchy in MOORe Tools.
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Vector

VectorND

VectorStack

GridVector

Vector2D

Vector3D

Figure 4.3: Class relationships for vector types in MOORe Tools.

the object oriented approach helps the programmer to keep track of which methods
to use for multiplication and to hide the extra arguments.

4.5 Case Study: The Kronecker Product

In this section we will show how a two-term Kronecker product is implemented as a
Matlab class KroneckerProduct2D. The extension to three and N -dimensional Kro-
necker products follows naturally.

4.5.1 A Kronecker Product

The Kronecker product of two matrices A and B is defined as

A⊗B =


a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

...
...

am1B am2B · · · amnB

 , (4.5)

and it has among others the following very useful relations,

(A⊗B)vec(X) = vec(BXAT ), (4.6)
(A⊗B)(C⊗D) = (AC)⊗ (BD), (4.7)

(A⊗B)T = (AT ⊗BT ), (4.8)

where vec(X) denotes the stacking of the columns of X into a vector. See [92] for
proofs and other relations.

The two term Kronecker product (4.5) emerges in two-dimensional problems with
a separable kernel. For example, if we discretize the integral equation∫ 1

0

∫ 1

0

k1(x, s)k2(y, t)f(x, y) dx dy = g(s, t),
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we end up with a system of the type

(K1 ⊗K2)vec(F) = vec(G),

where K1 and K2 are discretized versions of k1 and k2 respectively. Using (4.6) we
get

K2FKT
1 = G.

Assuming K1,K2 ∈ Rn×n the multiplication is reduced from O(n4) operations to
two O(n3) operations. Furthermore we only need to store the two terms K1 and
K2. The memory needed to store the operator is thereby reduced from one n2 × n2

matrix to two n×n matrices. Multiplication with the transposed operator KT takes
advantage of (4.8) before applying (4.6).

The KroneckerProduct2D class takes advantage of these facts and stores only the
two terms K1 and K2 and the multiplication in the sub applytovector uses the
fast multiplication rule. Thereby we have the basic requirements for a LinearOperator
child in place. However, in this case we can also implement the interface required to
inherit from SVDOperator.

The SVD of a Kronecker product

The Kronecker product has several useful properties. One is that most decomposi-
tions are easily created from decompositions of the terms. If we take the SVDs of
K1 = U1Σ1VT

1 and K2 = U2Σ2VT
2 and use (4.7) we almost get an SVD

K1 ⊗K2 = (U1 ⊗U2)(Σ1 ⊗Σ2)(V1 ⊗Σ2)T .

Both (U1⊗U2) and (V1⊗V2) are orthogonal with orthonormal columns. However,
the entries in the matrix (Σ1 ⊗ Σ2) are not sorted and in some cases the non-zero
elements are not on the diagonal (if either K1 or K2 are rectangular) which is in
violation of the SVD definition, cf. Def. 2.1. Thus to fully adhere to the SVD
definition we must permute (Σ1 ⊗ Σ2) such that the non-zero elements appear on
the diagonal and are properly sorted. Let P1 and P2 denote the permutations that
sort the non-zero element of each row and each column respectively, and we get by
insertion

K1 ⊗K2 = (U1 ⊗U2)P1︸ ︷︷ ︸
U

PT
1 (Σ1 ⊗Σ2)P2︸ ︷︷ ︸

Σ

((V1 ⊗Σ2)P2)︸ ︷︷ ︸
V

T
.

Multiplication with U is then done by permutation followed by a multiplication with
a Kronecker product.

For example, if

Σ1 =
[
σ1 0 0
0 σ2 0

]
and Σ2 =

σ1 0
0 σ2

0 0

 ,
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we have the Kronecker product

Σ1 ⊗Σ2 =


σ1σ1 0 0 0 0 0

0 σ1σ2 0 0 0 0
0 0 0 0 0 0
0 0 σ2σ1 0 0 0
0 0 0 σ2σ2 0 0
0 0 0 0 0 0

 ,

which is neither diagonal nor sorted. Note that a vector of the (possible) non-zero
elements in each row can be created from the Kronecker product

[
σ1

σ2

]
⊗

σ1

σ2

0

 ,
that is, the Kronecker product of the vectors of maximum values of each row in Σ1

and Σ2 respectively. Similarly we use the maximum values of each column to create
a vector of maximum values for each column of the Kronecker product. Sorting these
two vectors yield the permutations needed for the SVD.

The Matlab Implementation

The implementation of the two-term Kronecker product has been achieved through
the class KroneckerProduct2D. We will now go through the code for each method of
the KroneckerProduct2D class. Only the comments have been removed compared to
the actual contents of the files in the KroneckerProduct2D directory.

The class KroneckerProduct2D along with the N -term KroneckerProduct class im-
plements:

KroneckerProduct2D. The constructor taking the two arguments K1 and K2 of the
type LinearOperator and stores them into the K field of the object:

1 function Obj = KroneckerProduct2D(varargin)

2 switch nargin

3 case 0

4 Obj = struct([]);

5 KND = KroneckerProduct;

6

7 case 1

8 if isa(varargin{1}, ’KroneckerProduct2D’)

9 Obj = struct([]);

10 KND = varargin{1}.KroneckerProduct;

11 else

12 error(’Incorrect input argument’);

13 end

14

15 case 2

16 Obj = struct([]);

17 KND = KroneckerProduct({varargin{1}, varargin{2}});
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18

19 otherwise

20 error(’Incorrect number of input arguments’);

21 end

22

23 Obj = class(Obj, ’KroneckerProduct2D’, KND);

24 superiorto(’Vector2D’);

In line 23 we create the object and set the generic N -term KroneckerProduct
class, initialized with the two terms, as the parent of this class. That is the
actual terms are stored in the parent. Line 24 says that this class is “superior”
to the Vector2D class. That is, Matlab selects methods of KroneckerProduct2D
before Vector2D methods. For example, if v’*K is called Matlab has the choice
between using mtimes from the Vector or LinearOperator hierarchy. By default
Matlab chooses the version belonging to the first argument which in this exam-
ple is the vector v, but using superiorto we make sure that the multiplication
is done by KroneckerProduct2D.

sub applytovector. Does the fast multiply of the Kronecker product with a Vec-
tor2D object as described previously. This function is called by mtimes method
in the parent LinearOperator class, which also takes care of scaling:

1 function y = sub_applytovector(K,x)

2 if isa(K, ’KroneckerProduct2D’) & isa(x, ’Vector2D’)

3 if ~gettransposed(K)

4 if size(get(K,2),2) ~= size(x,1) | ...

5 size(get(K,1),2) ~= size(x,2)

6 error([’Dimensions of KroneckerProduct2D terms and Vector2D do not’ ...

7 ’ agree.’]);

8 end

9 y = Vector2D(getterm(K,2)*getdata(x)*getterm(K,1)’);

10 else

11 if size(get(K,2),1) ~= size(x,1) | ...

12 size(get(K,1),1) ~= size(x,2)

13 error([’Dimensions of KroneckerProduct2D terms and Vector2D do not’ ...

14 ’ agree.’]);

15 end

16 y = Vector2D(getterm(K,2)’*getdata(x)*getterm(K,1));

17 end

18 else

19 error(sprintf(’Multiplication of %s with %s is not supported’, ...

20 class(K), class(x)));

21 end

The multiplication could have be taken care of by sub applytovector in the
parent KroneckerProduct class. But we have chosen to specialize the method
for the two term Kronecker product whereby we avoid many of the details
necessary in the general multiplication procedure.

The getterm method returns the ith term as a double array from the term
stored in the parent KroneckerProduct. This is necessary because a child class
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has no direct access to fields of the parent. The get method also returns the
ith term but as an object.

sub getmatrix. Constructs a matrix representing the Kronecker product. This func-
tion is called getmatrix of the parent class LinearOperator that afterward ad-
justs scaling and whether the operator is transposed:

1 function K = sub_getmatrix(K)

2 K = kron(getterm(K,1),getterm(K,2));

The kron function is a standard Matlab routine that computes Kronecker prod-
ucts.

sub operatormtimes. Performs multiplication of two Kronecker products if possible.
Is like sub applytovector called by mtimes of LinearOperator. The function
checks if the multiplication is possible, that is, both terms of the product must
be KroneckerProduct2D objects. Otherwise, it returns with an error and an
OperatorProduct object is created by LinearOperator/mtimes. It is also re-
quired that the terms of the two KroneckerProduct2D objects have equal inner
dimensions.

1 function C = sub_operatormtimes(A,B)

2 if isa(A, ’KroneckerProduct2D’) & isa(B, ’KroneckerProduct2D’)

3 A1 = get(A,1); A2 = get(A,2);

4 B1 = get(B,1); B2 = get(B,2);

5 if gettransposed(A)

6 A1 = A1’; A2 = A2’;

7 end

8 if gettransposed(B)

9 B1 = B1’; B2 = B2’;

10 end

11 if size(A1,2) ~= size(B1,1) | ...

12 size(A2,2) ~= size(B2,1),

13 error(’Inner dimensions of operator terms not equal.’);

14 end

15 C = KroneckerProduct2D( A1*B1, A2*B2 );

16 else

17 error(’OPERATORPRODUCT’); % throw an OPERATORPRODUCT "exception"

18 end

sub qr. Performs the obvious QR factorization of a Kronecker product.

K = K1 ⊗K2 = QR = (Q1 ⊗Q2)(R1 ⊗R2).

Called by QROperator/qr that afterward adjusts for scaling. It is necessary for
sub qr to check if the KroneckerProduct2D object has been transposed:

1 function [Q,R] = sub_qr(K, options)

2 if options ~= 0

3 error(sprintf(’Only thin QR supported for class %s’,class(K)));

4 end

5 if gettransposed(K)
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6 [Q1,R1] = qr(get(K,1)’ ,0);

7 [Q2,R2] = qr(get(K,2)’ ,0);

8 else

9 [Q1,R1] = qr(get(K,1) ,0);

10 [Q2,R2] = qr(get(K,2) ,0);

11 end

12 if size(R1,1) < size(R1,2) | size(R2,1) < size(R2,2)

13 error([’QR only supported for square or overdetirmed terms in’, ...

14 ’ KroneckerProduct2D’]);

15 end

16 Q = KroneckerProduct2D(Q1,Q2);

17 R = KroneckerProduct2D(R1,R2);

Note that only the thin QR factorization is supported. The triangular factor
in the full QR factorization is not easily constructed with rectangular terms in
the Kronecker product.

sub solve. Solve in the least squares sense a system with a Kronecker product. Here
we utilize the rule

(K1 ⊗K2)† = K†
1 ⊗K†

2.

It is called by LinearOperator’s mrdivide or mldivide methods, that also adjust
for scaling:

1 function x = sub_solve(K,y)

2 if isa(K, ’KroneckerProduct2D’) & isa(y, ’Vector2D’)

3 if ~gettransposed(K)

4 if size(get(K,2),1) == size(y,1) & ...

5 size(get(K,1),1) == size(y,2)

6 x = Vector2D(getterm(K,2) \ getdata(y) / getterm(K,1)’);

7 else

8 error(’Matrix dimensions must agree’);

9 end

10 else

11 if size(get(K,2),2) == size(y,1) & ...

12 size(get(K,1),2) == size(y,2)

13 x = Vector2D(getterm(K,2)’ \ getdata(y) / getterm(K,1) );

14 else

15 error(’Matrix dimensions must agree’);

16 end

17 end

18 else

19 error(sprintf(’Solving with %s and %s not supported.’, ...

20 class(K), class(y)));

21 end

sub svd. Computes the SVD of the Kronecker product as described previously. It
is called by SVDOperator’s svd method that takes care of scaling and whether
the operator has been transposed:

1 function [U,S,V] = sub_svd(K,varargin)

2 [U1, s1, V1] = svd(get(K,1));

3 [U2, s2, V2] = svd(get(K,2));
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4 [m1,n1] = size(get(K,1)); p1 = min(m1,n1);

5 [m2,n2] = size(get(K,2)); p2 = min(m2,n2);

6 [m,n] = size(K); p = min(m,n);

7

8 s1 = getvector(diag(s1)); s2 = getvector(diag(s2));

9

10 if nargout <= 1

11 s = kron(s1,s2);

12 if length(s) < p, s = [s; zeros( p - length(s),1)]; end

13 v = sort(s); v = flipud(v);

14 U = Vector(v);

15 return

16

17 elseif nargout == 3

18 s1r = [s1 ; zeros( max(0, m1 - p1),1)];

19 s1c = [s1 ; zeros( max(0, n1 - p1),1)];

20

21 s2r = [s2 ; zeros( max(0, m2 - p2),1)];

22 s2c = [s2 ; zeros( max(0, n2 - p2),1)];

23

24 [v, idxu] = sort(kron(s1r,s2r)); idxu = flipud(idxu);

25 PU = PermutationOperator( idxu );

26 RU = VectorReshape( m2, m1 );

27 UU = KroneckerProduct2D(U1, U2);

28

29 [v, idxv] = sort(kron(s1c, s2c)); idxv = flipud(idxv);

30 PV = PermutationOperator( idxv );

31 RV = VectorReshape( n2, n1);

32 VV = KroneckerProduct2D(V1, V2);

33

34 U = OperatorProduct( {UU, RU, PU} );

35 V = OperatorProduct( {VV, RV, PV} );

36

37 v = flipud(v); s = v(1:p);

38 if nargin == 2

39 S = DiagonalOperator(Vector( s ));

40 U = U(:,1:p);

41 V = V(:,1:p);

42 else

43 S = DiagonalOperator(Vector( s ),m,n);

44 end

45 else

46 error(’Incorrect number of output arguments’);

47 end

The sub svd method calculates the SVD of the two terms (lines 2 and 3).
It creates the Kronecker product of the singular values in line 11 if only the
singular values are requested. Otherwise we create the singular values in lines
29 and 37. The correct permutations for the singular values are computed in
lines 24 and 29. Note how we pad the vector of singular values with zeros
to get the correct permutation (lines 18–22). The singular values are stored
in a Vector or DiagonalOperator object. The matrices of singular vectors are
created as products of three terms in OperatorProduct objects (lines 34 and
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35). The products contain in addition to the Kronecker product object also the
permutation as described in the previous section. The VectorReshape object is
used to convert/reshape between Vector2D and Vector objects. Note that an
actual Kronecker product of two matrices is never explicitly created.

cond. The condition number calculation is in fact not done by KroneckerProduct2D
but by the parent KroneckerProduct. The condition number is calculated as the
product of the condition number of the two terms, that is,

cond(K1 ⊗K2) = cond(K1)cond(K2),

a fact easily seen from the discussion of the SVD. The code of the method
KroneckerProduct/cond has the simple appearance:

1 function c = cond(K)

2 c = 1;

3 for i=1:length(K.K)

4 c = c * cond( K.K{i});

5 end

where the K field holds the terms of the Kronecker product. Note that this
KroneckerProduct has direct access to its fields whereas the child Kronecker-
Product2D must go through the get and getterm methods.

sub size. Also the size operation is managed by the parent KroneckerProduct class
via:

1 function [m,n] = sub_size(K)

2 for i=1:length(K.K)

3 [m(i), n(i)] = size( K.K{i} );

4 end

5 n = prod(n); m = prod(m);

Observe that we could have used, that is, inherited, the more general implementations
from the parent KroneckerProduct class for all operations and not just cond and
sub size. This reimplementation was done to optimize the two-term case.

The OperatorProduct object created by sub svd combines three different classes;
KroneckerProduct2D, PermutationOperator, and VectorReshape. Applying, for exam-
ple, the first 10 columns of the matrix of singular vectors U to a Vector2D y, that is,
in Matlab notation

z = U(:,1:10)’*y

is done through cooperation of the objects stored in the OperatorProduct. Step by
step, Matlab evaluates the product as follows:

1. The subsref method of OperatorProduct is called to evaluate U(:,1:10). This
method replaces the last term of the product, that is, the permutation P with
the operator representing the 10 first columns of the permutation. In other
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words, the OperatorProduct passes the responsibility on to the subsref method
of PermutationOperator. We now have the operator

(U1 ⊗U2)RP̃,

where P̃ is composed of the first 10 columns of the original permutation.

2. The transposed flag is set and we have an object describing

P̃T RT (U1 ⊗U2)T

3. The multiplication takes place with the recipe

P̃T (RT ((U1 ⊗U2)T y)).

First, Matlab uses the fast multiplication of a KroneckerProduct2D object and
a Vector2D object. Secondly, the VectorReshape object reshapes the resulting
Vector2D object into a Vector object, and finally the permutation picks out the
correct 10 elements of the result. The result is then returned and stored in z.

The non-transposed operation, for example, V(:,1:10)*z is similar. The first
step picks out the first 10 columns of the permutation stored in the OperatorProduct.
The multiplication is then done with non-transposed operators. In this case the
permutation creates a large Vector putting the elements of z into the correct positions.
Then, the VectorReshape object converts the Vector into a Vector2D object and finally
the Kronecker product is applied.

4.6 Algorithmic Implications

Which algorithms are suited for working with objects of the described type? Of the
algorithms from the previous toolbox all, except for the LSQR and CGLS algorithms,
use the SVD as the basis of computations.

Our goal is to create a toolbox capable of dealing with larger problems where
creating an actual matrix and its SVD is not always a desirable or feasible option.
Thus, iterative methods play a much larger role in the new toolbox compared to the
previous.

We have settled for the following iterative solvers to form the basis of package:

• For square non-symmetric problems where the transpose is unavailable GMRES
seems to the best choice. If the operator is symmetric MINRES can be used
and if it is also positive definite we can use CG. However, in this case the range
and domain of the operator need to be compatible. That is, the class of Kx
must be compatible with x.

• For least squares problems LSQR or CGLS can be used.
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All other problems are reduced to a linear least squares system or a series of lin-
ear least squares systems that need to be solved. However, smaller problems and
problems with a special structure can still benefit from direct solvers based on fac-
torizations. An example is the Kronecker product where the SVD is easy to compute.

A topic that often goes hand in hand with iterative methods is preconditioning.
Preconditioning in the usual sense where we solve with the better conditioned and
faster converging operator KP is easily implemented. However, when the precondi-
tioner becomes more advanced implementation can become more complex as shown
in the next section.

4.6.1 Subspace Preconditioned LSQR

The “subspace preconditioned LSQR” method presented in [71] (see App. E) de-
scribes an algorithm intended for large-scale problems.

The MOORe Tools package in its current state does not support a direct imple-
mentation of the algorithm and this section will describe the issues that remain to
be solved. We will refer to lines in the algorithm which is listed on page 186.

The very first computation is a QR factorization of

K̂V =
[
K
λL

]
V =

[
Y Z

]︸ ︷︷ ︸
Q

[
R
0

]
,

where the columns of V ∈ Rm×k describe a k-dimensional subspace of the solution
space. In our toolbox V could be represented as a collection of vectors in a Vec-
torCollection object. Because K̂ is an OperatorArray object the result of applying it
to a Vector object is a VectorStack object. Thus, K̂V is another VectorCollection
where each “column” is a VectorStack obtained by applying K̂ to each column of
the VectorCollection V. The problem is now to compute a QR factorization of the
VectorCollection. A series of k Householder reflections seems appropriate in this case
to create, column by column, the upper triangular R.

In line 2, 4, 11, 12 and 24 the algorithm uses multiplications with Y and Z. If
the QR factorization of K̂V is computed using Householder reflections we have a
complete description of Q and thereby also of Y and Z as described in the paper.

The solution could be to implement a HouseholderCollection class that stores the
appropriate Householder vectors and makes sure that the result of applying the oper-
ator results in an object of the appropriate type. In this case an operation Qv should
return a VectorStack with the sub-vectors objects of the same type as the result of
K̂v. However, this is left for future work.

4.7 Performance Implications

Introducing object oriented programming can affect performance as Matlab needs to
keep track of the class, find and call the right methods etc. However, if the intended
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operation is time consuming compared to the extra time used for management we
can neglect this factor. In this section we will briefly illustrate that the extra layer
introduced by the object oriented techniques can be neglected for all but the small-
est tasks and in some special cases we can use the extra layer to actually improve
performance by working around quirks in Matlab.

We will look at the simple matrix-vector multiplication. Figure 4.4(a) shows
timings of 300 repeated matrix-vector multiplications with and without the object
oriented layer. In this setup we see that the object oriented layer costs about 0.1
seconds for 300 multiplications. When n > 103 we see that this extra cost is negligible
compared to the cost of the actual matrix-vector multiplication.

On the other hand we get the possibility of working around some quirks in older
versions of Matlab. Multiplication of a transposed matrix and a vector, that is,

>> K’*x

is for a large matrix K in some cases calculated faster by avoiding the transpose of
K,

>> (x’*K)’

This behavior is seen on Matlab 6.1 both on the command line as well as in scripts
and functions. In the newer Matlab 6.5 this is only true on the command line, while
the two versions are equally fast in a script and a function—probably due to the
“Just In Time” compiler introduced with version 6.5. Timings using version 6.1 are
shown in Fig. 4.4(b) and we see that the object oriented version is faster for problems
where n > 103, because we can exploit the little trick in class Matrix’s multiplication
method. If the same code is executed in Matlab 6.5 we see a plot similar to Fig. 4.4(a),
that is, we do not lose anything by using the trick in the newer version of Matlab.
In fact computations on the command line are still accelerated with this little trick.

In terms of memory Matlab needs to store extra bookkeeping information about
the type of an object along with the actual data for, for example, the matrix ele-
ments. The amount of extra memory needed depends on the class of the object. We
have observed extra memory use ranging from 380 bytes to almost 4000 bytes for a
KroneckerProdcut2D object (compared to storing the two terms).

4.8 Summary

We have introduced the object oriented programming approach with a brief justifi-
cation of its advantages compared to the functional and procedural approaches.

The OO approach was used to find the entities in the linear algebra used in
connection with regularization of ill-posed problems. We have demonstrated how we
need just one implementation of an algorithm while the complexity of, for example.
applying an operator to a vector in an iterative algorithm is kept within the operator.

In general it is not feasible to compute the SVD for large-scale problems. But
in some cases we can exploit structure and still implement the SVD interface and



80 Object Oriented Programming

PSfrag replacements

n

ti
m

e
(s

)

100 101 102 103 104
10−4

10−2

100

102

104

(a) Kx

PSfrag replacements

n

ti
m

e
(s

)
100 101 102 103 104

10−4

10−2

100

102

104

(b) KT x

Figure 4.4: Timings of object oriented penalty. Timings for 300 multiplications
KT x, where K ∈ Rn×n with object oriented techniques (◦) and without (×). The
computations were performed in Matlab 6.1.

use the powerful SVD based methods. The Kronecker product is an example where
structure can be exploited to compute the SVD.

Finally we considered some of the negative implications of using OO program-
ming. Some algorithms even need all new classes to be implemented before they
will work. The OO approach introduces an extra layer of abstraction but we have
demonstrated that the extra work is insignificant for larger problems.



Chapter 5

New Techniques

Many computational experiments have been tried since then, but
little success has been reported on general linear programs. (As
a general rule, negative results are rarely reported.) Stephen J.
Wright, “Primal-Dual Interior-Point Methods” [128].

Mathematics is like strong alcohol. Everybody can drink it but
not everybody can take it. Some get dizzy. In interview with
Jean-Pierre Serre, winner of the 2003 Abel Prize, Politiken, Oc-
tober 24, 2003.

In this chapter we present three algorithms not found in the previous Regular-
ization package. Several algorithms that compute upper and lower bounds of, for
example, the solution norm of a Tikhonov regularized problem, are included in the
new package and used in parameter choice methods for large-scale problems (see
[18, 48, 49, 50]). We describe a stopping criterion added to the underlying Lanczos
bidiagonalization routine that stops the bidiagonalization when the upper and lower
bounds are guarantied to be close over a given interval of regularization parameters.

We also look at how the “K-weighted pseudo-inverse of L” [8, 33, 35, 101] is
implemented to be more generally applicable than before. In the previous package any
L ∈ Rp×n was assumed to have p < n and to have full row rank, that is, rank(L) = p.
The approach described here does not assume anything about dimensions and rank
of L—only that the null-space of L is known and only intersects trivially with the
null-space of K.

Finally we investigate a simple preconditioner for general form Tikhonov prob-
lems. We perform numerical experiments and derive an upper bound for the condition
number of the preconditioned system.

In the sections on the weighted pseudo-inverse and the preconditioner we also
look at the implementation details with respect to the object oriented approach.
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5.1 Large-Scale Parameter Choice

If the SVD is available it is possible to compute the norms of the solutions and
residuals for the standard-form Tikhonov problem fast. For example,

‖xλ‖2 = ‖(KT K + λ2I)−1KT y‖2
= ‖V(Σ2 + λ2I)−1ΣUT y‖2
= ‖(Σ2 + λ2I)−1ΣUT y‖2

=

(
n∑

i=1

(
σiuT

i y
σ2

i + λ2

)2
)1/2

shows that, when we have computed UT y (O(n2) operations), we can compute the
solution norm ‖xλ‖2 for a regularization parameter λ in just O(n) operations.

The parameter choice methods in the previous package all use the SVD to find
the solution and residual norms needed in the particular parameter choice method.
As the SVD is unavailable for most large-scale problems we seek other methods
to estimate the norms we need. Work by Golub and von Matt [50] showed how
upper and lower bounds on solution and residual norms could be computed through
a fascinating connection between Gauss quadrature and Lanczos tridiagonalization
(Alg. 1) and bidiagonalization (Alg. 3). The new development in this section is a
stopping criterion that, given a range of regularization parameters, stops for the
bidiagonalization algorithm when the ratio between upper and lower bounds for the
residual norm is guaranteed to be smaller than a given tolerance. But first a sketch
of how the bidiagonalization enters the picture.

The upper and lower bounds are a consequence of applying Gauss and Gauss-
Radau quadrature (see, for example, [28]), with errors of opposite sign, to an integral
related to the quadratic form

zT f(H, λ)z, (5.1)

where z ∈ Rn, H ∈ Rn×n is symmetric and f is an analytic function.
Let H = VMVT be an eigenvalue decomposition where the eigenvalues µ1 ≤

· · · ≤ µn are sorted in non-decreasing order in the diagonal matrix M. In the
following we will use an integration interval [a; b] that contains the eigenvalues, that
is, a < µ1 and µn < b. Then we can rewrite the quadratic form zT f(H, λ)z as an
integral of the Riemann-Stieltjes type (see e.g. [28])

zT f(H, λ)z = hT f(M, λ)h =
n∑

i=1

f(µi, λ)h2
i =

∫ b

a

f(µ, λ)dω(µ),

where h = VT z and the measure ω(µ) is the staircase function

ω(µ) =
∑

{i|µi<µ}

hi
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or in other words, ω(µ) is the sum of all eigenvalues µi less than µ. The integral can
be approximated by quadrature rules, that is,∫ b

a

f(µ, λ)dω(µ) ≈
k∑

i=1

f(xi, λ)wi,

with weights {wi} and abscissas {xi}. By a clever choice of two quadrature rules
with errors of opposite signs we find upper and lower bounds for the integral and
thus the quadratic form (5.1). Golub and von Matt [49, 50] show how the integral
can be evaluated by a Gauss and a Gauss-Radau quadrature. The quadrature rules
boil down to evaluating

eT
1 f(Tk, λ)e1 and eT

1 f(T̃k, λ)e1,

where Tk is the triangular matrix from the kth step of the Lanczos algorithm (Alg. 1)
on H with z as the starting vector. The matrix T̃k is Tk modified to have a zero
eigenvalue which corresponds to fixing an abscissa in the quadrature rule to zero giv-
ing a Gauss-Radau quadrature rule, see [44, 47]. But why this interest in expressions
of the type (5.1)?

The solution to a standard-form Tikhonov problem,

xλ = (KT K + λ2I)−1KT y,

has the squared norm

‖xλ‖22 = ‖(KT K + λ2I)−1KT y‖22
= (KT y)(KT K + λ2I)−2(KT y)

= (KT y)f(KT K, λ)(KT y),

(5.2)

where f(t, λ) = 1/(t + λ2)2. Moreover, using the Sherman-Morrison-Woodbury for-
mula we can write the squared norm of the residual as

‖Kxλ − y‖22 = ‖(K(KT K + λ2I)−1KT − I)y‖22
= ‖λ2(KKT + λ2I)−1y‖22
= λ4yT (KKT + λ2I)−2y

= λ4yT f(KKT , λ)y.

(5.3)

Only the residual norm is used to determine the regularization parameter in the
discrepancy principle, while both the residual and solution norms are used to plot
the L-curve and visually find the corner. To compute the GCV we need not only the
residual and solution norms, but also the trace of (I−K(KT K + λI)−1KT )). Using
the Sherman-Morrison-Woodbury formula and Hutchinson’s trace estimator (see [80]
for details) we get the unbiased estimate

trace(I−K(KT K + λ2I)−1KT ) = trace(λ2(KKT + λ2I)−1)

≈ λ2uT (KKT + λ2I)−1u

= λ2uT g(KKT , λ)u,
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where u is a vector of zeros and ones with equal probability and g(t, λ) = 1/(t+λ2).
To actually determine a regularization parameter using, for example, the discrep-

ancy principle, we need to find λ such that ‖Kxλ − y‖22 − δ2 = 0, where δ is the
noise-level in the right-hand side. Efficient root finding methods utilize derivatives
of the solution and residual norms with respect to λ. For example, we have

d

dλ
‖xλ‖22 = (KT y)f ′(KT K, λ)(KT y)

= −4λ(KT y)(KT K + λ2I)−3(KT y), ,
(5.4)

where f ′(t, λ) = −4λ/(t+ λ2)3.
In the discussion of the bidiagonalization algorithms in Sec. 2.3 we learned that

the lower bidiagonal matrix Bk from bidiaglow, or to be more precise the leading
k × k part,

B̄k =


α1

β1 α2

. . . . . .
βk−1 αk

 ,
is related to the tridiagonal matrix T̄k from the Lanczos tridiagonalization algorithm
on KKT with y as starting vector as

B̄kB̄T
k = T̄k.

From the QR factorization Bk = [Q1 Q0][RT
k 0]T we get an upper bidiagonal Rk ∈

Rk×k where

RT
k Rk = Tk.

where Tk equals the tridiagonal obtained from Lanczos tridiagonalization of KT K
with KT y as starting vector. Using T̄k and Tk corresponds to a Gauss quadrature
rule with the error term

f (2k)(c, λ)
(2k)!

∫ b

a

k∏
i=1

(t− wi)2dω(t),

where f (2k)(c, λ) is the 2kth derivative of f(t, λ) with respect to t evaluated at c
which is bounded by the integration interval a < c < b. The integral term is always
positive. The 2kth derivative of f(t, λ) with respect to t is

f (2k)(t, λ) = (2k!)(−1)2k(t+ λ2)−2(k+1) = (2k!)(f(t, λ))(2(k+1)) > 0

Because T̄k and T are positive definite we can safely set a = 0 implying that c > 0.
Thus, using the Gauss quadrature gives a positive error for this particular function
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and we effectively have a lower bound on residual and solution norms. The Gauss-
Radau quadrature rule where we fix one abscissa to zero gives a negative quadrature
error for a function such as f and thereby we get an lower bound, see [50] for de-
tails. The modification to T̄k and Tk that creates a Gauss-Radau quadrature rule is
obtained by removing the last row of B̄T

k and Rk respectively. For example,

˜̄Tk−1 = ˜̄Bk
˜̄BT

k where ˜̄BT
k =


α1 β1

α2 β2

. . . . . .
αk−1 βk−1

 ∈ R(k−1)×k.

Thus, we can replace the triangular matrices with the corresponding bidiagonal
“factorizations” and we get for the solution and residual norms the bounds

‖Kxλ − y‖22 ≥ λ4eT
1 f(B̄kB̄T

k , λ)e1 = eT
1 (B̄kB̄T

k + λ2I)−2e1,

‖Kxλ − y‖22 ≤ λ4eT
1 f( ˜̄Bk

˜̄BT
k , λ)e1 = eT

1 ( ˜̄Bk
˜̄BT

k + λ2I)−2e1,

‖xλ‖22 ≥ eT
1 f(RT

k Rk, λ)e1 = eT
1 (RT

k Rk + λ2I)−2e1,

‖xλ‖22 ≤ eT
1 f(R̃T

k R̃k, λ)e1 = eT
1 (R̃T

k R̃k + λ2I)−2e1.

Owing to the simple nature of f , we can compute the upper bounds on the solution
and residual norms from the solutions of the following least squares systems

‖Kxλ − y‖22 ≥ λ4zT z where z = argmin
z

∥∥∥∥[B̄T
k

λI

]
z−

[
0

e1/λ

]∥∥∥∥2

2

(5.5)

‖xλ‖22 ≥ wT w where w = argmin
w

∥∥∥∥[Rk

λI

]
z−

[
0

e1/λ

]∥∥∥∥2

2

. (5.6)

Replacing the bidiagonal matrices B̄T
k and Rk with ˜̄BT

k and R̃T
k respectively yields

least squares systems used to compute the lower bounds.
The trace estimator is computed using the solution of the least squares problem

in (5.5) using

trace(λ2(KKT +λ2I)−1) ≤ λ2eT
1 z where z = argmin

z

∥∥∥∥[B̄T
k

λI

]
z−

[
0

e1/λ

]∥∥∥∥2

2

, (5.7)

where the Gauss quadrature formula computes an upper bound as g(2k)(t) < 0 for
a < t < b.

The derivative example in (5.4) is computed by

d

dλ
‖xλ‖22 ≤ vT w where v = argmin

v

∥∥∥∥[Rk

λI

]
v −

[
0

w/λ

]∥∥∥∥
2

,

where w is the solution from the least squares problem in (5.6).
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We will now show how to iteratively compute the upper and lower bounds of
the residual norm. That is, we will monitor the norm of the least squares solution
in (5.5) with and without setting αk = 0. Setting αk = 0 in the least squares
problem is equivalent to removing the last row of B̄k. Because the function f(µ, λ)
has a singularity at λ = 0 the quadrature rules are less accurate for λ near zero and
the difference between upper and lower bounds will be largest near zero. Thus, we
only monitor the upper and lower bounds for the smallest regularization parameter
we are considering. Hanke [58] recently showed that the upper and lower bounds
improve monotonically with the number of Lanczos bidiagonalization steps. That
is, when the stopping criterion has turned true it will not become false in a later
iteration.

Figure 5.1 shows the effect of applying a sequence of Givens rotations to a system
of the type (5.5). The sequence computes an upper bidiagonal matrix. The problem
is now reduced to the least squares problem

z = argmin
z

∥∥∥∥[U0
]
z−

[
φ
ψ

]∥∥∥∥
2

,

where U is an upper bidiagonal matrix.
Computing z = U−1φ is a matter of a simple back-substitution, but all elements

of z change at each iteration and all elements of U need to be stored. Instead we
use another sequence of Givens rotations to compute a lower bidiagonal matrix. The
sequence is illustrated in Fig. 5.2. Writing the resulting lower bidiagonal matrix
L = UQT and w = Qz, where Q = Gk · · ·G1 represents the sequence of Givens
rotations, we have rewritten the problem to

argmin
z
‖UQT Qz− φ‖2 = ‖Lw − φ‖2. (5.8)

Because we only need the norm of z (and not z itself) and ‖w‖22 = ‖Qz‖22 = ‖z‖22
we find our result by monitoring the norm of w and not the actual solution. Note
that the leading (k− 1)× (k− 1) part of L does not change after iteration k and as a
consequence neither does the leading part of w. When we evaluate the Gauss-Radau
quadrature rule we have αk = 0. The leading part of L and therefore also W are
independent of αk and the computation of the leading part of w can be used by both
the upper and lower bound computation. When we estimate with αk = 0 we use
λ̄k as ρk and ψ̄k as φk. The algorithm, created from these observations, is listed in
Alg. 5. We suggest using the stopping criterion

log10 (η̃/η)
2

< τ, (5.9)

where τ is some tolerance and η̃ and η are the upper and lower bounds respectively.
The criterion insures that the upper and lower bounds on the residual norm are
within a factor of 10τ of each other. The left-hand side is divided by two because η
and η̃ approximate the norms squared.
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Figure 5.1: Givens rotations to compute upper bidiagonal. Arrows show the rows
affected by the following Givens rotation. The last column of each matrix shows the
result of applying the Givens rotations to the right-hand side. The numbers above
the arrows indicate the corresponding lines in Alg. 5.
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That is, the bidiagonalization is stopped when we are certain that the upper and
lower bounds on the residual norm are closer than a given tolerance for the smallest
regularization parameter considered. The bidiagonal matrix can now be used to
estimate upper and lower bounds for residual and solution norms to form L-curve
ribbons and with the derivatives we can also estimate upper and lower bounds for
the L-curve curvature [18]. A nice overview of different applications can be found in
[50].


↓ ↓

ρ1 ξ1
ρ2 ξ2

ρ3

 1−→


↓ ↓

γ1 0
θ1 ρ̄2 ξ2

ρ3

 2−→

 γ1

θ1 γ2 0
θ2 ρ̄3


Figure 5.2: Givens rotations to compute lower bidiagonal corresponding to lines
18–20 of Alg. 5. Affected columns are indicated with arrows.

Numerical Experiments

We will now illustrate how lowering the tolerance in the stopping criteria affects
Regińska’s L-curve parameter choice method. Regińska’s L-curve parameter choice
method finds the parameter from

λ = argmin
λ
{‖Kxλ − y‖2‖xλ‖2},

where xλ is the Tikhonov regularized solution with regularization parameter λ. The
lower bounds of the product are easily found by multiplying the lower bounds of the
residual and solution norms. Likewise, we find upper bounds by multiplying upper
bounds on residual and solution norms.

After just 6 bidiagonalization steps we see in Fig. 5.3(a) that the minimum of
the upper bound is a good approximation of the regularization parameter. On the
other hand we see that the bounds are wide apart for λ = 10−4. Decreasing the
tolerance to τ = 0.05 yields after 24 iterations of the bidiagonalization algorithm the
bounds displayed in Fig. 5.3(b). Now both lower and upper bounds agree on the
minimum. In this example Regińska’s L-curve chooses a regularization parameter
that undersmooths.

The above example seems very favorable to the bounding methods as only 16
iterations are needed to compute tight bounds. However, using a bounding method
with the blur test problem yields much slower convergence, see Fig. 5.4. The con-
vergence can be accelerated in terms of iterations by using reorthogonalization of the
Lanczos vectors in the bidiagonalization but at the expense of more work. Also for
this test case Regińska’s L-curve finds an undersmoothing regularization parameter.
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Algorithm 5: Lanczos Bidiagonalization II

[U,V,B] = bidiag(K,y, k, τ)

Extra lines for Alg. 3 to compute upper and lower bounds. The first iteration,
that is, the computation of β1 and α1 is moved outside the loop to facilitate
initialization of recursion formulas. Lines 11–27 are inserted between lines 6
and 7 of Alg. 3. See also Fig. 5.1 and 5.2.

1: Compute α1 % Lines 5–6 in Alg. 3
2: ψ̄1 = 1/λ
3: [n1, c1, s1]← givens(α1, λ)
4: ρ1 = n1; φ1 = s1ψ̄1

5: ψ̂1 = c1ψ̄1

6: i← 2; c2 ← 1; θ0 = 0; z0 = 0; ηz ← 0
7: η = (φ1/ρ1)2; η̃ = (1/λ)4

8: Compute β1 % Lines 7–8 in Alg. 3
9: while log10(η̃/η) > 2τ and i < k do

10: Compute αi % Lines 5–6 in Alg. 3
11: ξi−1 = c1βi−1; νi = −s1βi−1

12: [n0, c0, s0]← givens(λ, νi)
13: λ̄ = n0; ψ̄i = s0ψ̂i−1

14: [n1, c1, s1]← givens(αi, λ̄)
15: ρi = n1; φi = s1ψ̄i

16: ψ̂i = c1ψ̄i

17: ρ̄i−1 = c2ρi−1

18: [n2, c2, s2]← givens(ρ̄i−1, ξi−1)
19: γi−1 = n2

20: θi−1 = s2ρi

21: zi−1 = (φi−1 − θi−2zi−2)/γi−1 % New fixed element
22: ηz ← ηz + z2

i−1 % Update norm of fixed elements
23: z = (φi − θi−1zi−1)/(c2ρi) % Current last element
24: η ← ηz + z2 % Add to fixed norm
25: θ̃i−1 = s2λ̄ % Assume αi = 0
26: z̃ = (ψ̄i − θ̃i−1zi−1)/(c2λ̄) % Current last element with α = 0
27: η̃ ← ηz + z̃2 % Add to fixed
28: Compute βi % Lines 7–8 in Alg. 3
29: i← i+ 1
30: end while
31: Create matrices U, V and B as in Alg. 3
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Figure 5.3: Bounds for Regińska’s L-curve. The test problem is deriv2 with K ∈
R1024×1024 where a vector of normal distributed noise with norm ‖e‖2 = 10−2‖y‖2
was added to the right-hand side. The circles (◦) indicate the minimum of the upper
bound curve while the optimal regularization parameter w.r.t. the true solution is
marked with (×). Bidiagonalizations are computed without reorthogonalization of
Lanczos vectors.

PSfrag replacements

λ

‖
K

x
λ
−

y
‖
2
‖
x

λ
‖
2

10−4 10−3 10−2 10−1

10−2

10−1

100

101

102

103

(a) Tolerance τ = 2 (203 iterations)

PSfrag replacements

λ

‖
K

x
λ
−

y
‖
2
‖
x

λ
‖
2

10−4 10−3 10−2 10−1

10−2

10−1

100

101

102

103

(b) Tolerance τ = 0.1 (2333 iterations)

Figure 5.4: Bounds for Regińska’s L-curve with the blur test problem, with σx =
σy = 1.5, K ∈ R1024×1024 and normal distributed noise with norm ‖e‖2 = 10−2‖y‖2.
The optimal regularization parameter using Regińska’s L-curve is marked with (o),
while the optimal parameter w.r.t. the solution is marked (x). Note that the bidiag-
onalizations were computed without reorthogonalization of the Lanczos vectors.
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5.2 The K-weighted Pseudo-Inverse

The K-weighted pseudo-inverse is used to transform a general-form Tikhonov prob-
lem

min
{
‖Kx− y‖22 + λ2‖Lx‖22

}
, (5.10)

into a standard-form Tikhonov problem

min
{
‖K̄x̄− ȳ‖22 + λ2‖x̄‖22

}
. (5.11)

If L is square and invertible, we simply use the transformations K̄ = KL−1,
x̄ = Lx and ȳ = y and solve (5.11) for x̄. The solution to the original problem (5.10)
is found from the transformation x = L−1x̄. Applying the inverse of L should be
done either with a precalculated factorization or by an iterative method depending
on the size and type of L. If L has a non-trivial null-space N (L) we must take it
into consideration as we demonstrate later by using the weighted pseudo-inverse.

Obviously components in the null-space of L are not regularized by the Tikhonov
method and just using the standard Moore-Penrose pseudo-inverse to transform the
problem is not an option as we will explain later. The answer is the “K-weighted
pseudo-inverse of L” [35] defined by

L†K = (I− (K(I− L†L))†K)L†. (5.12)

We will need the solution in the null-space of L (the unregularized part of the solution)
given by

x0 = (K(I− L†L))†y, (5.13)

where (I− L†L) is a projection into the null-space of L.
The transformation is then done by using

K̄ = KL†K, ȳ = y −Kx0, (5.14)

The solution to the general form Tikhonov problem (5.10) is obtained from the
solution of (5.11) via the transformation

x = L†Kx̄ + x0.

In (2.8) we have seen the usual Moore-Penrose pseudo-inverse expressed in terms
of the SVD. Assuming that K ∈ Rm×n, m ≥ n and that N (K) ∩ N (L) = {0} we
have a similar expression for the weighted pseudo-inverse using the GSVD

L†K = XM†VT . (5.15)
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Why the Weighted Pseudo-Inverse?

The iterative Krylov methods CGLS and LSQR can be used to solve a general-form
Tikhonov problem in two ways:

• Apply the iterative least squares solver to

xλ = argmin
x

∥∥∥∥[K
λL

]
x−

[
y
0

]∥∥∥∥
2

,

so that the Krylov methods find solutions in the Krylov space

Kk

(
KT K + λ2LT L ,KT y

)
.

Note that the Krylov subspace Kk

(
KT K + λ2

1L
T L ,KT y

)
is different from the

Krylov space Kk

(
KT K + λ2

2L
T L ,KT y

)
if λ1 6= λ2 and L 6= I.

• Solve the least squares problem

xλ = L†K argmin
x̄

∥∥∥∥[KL†K
λI

]
x̄−

[
ȳ
0

]∥∥∥∥
2

,

where the Krylov space becomes

Kk

(
(L†K)T KT KL†K , (L†K)T KT ȳ

)
.

Observe that the Krylov subspace is independent of λ, because λ2I only shifts
the spectrum. This approach makes it possible to solve for several λs simulta-
neously or do the damping without including the identity operator, a feature
implemented in the original LSQR code [106].

The standard form gives the possibility to use the parameter choice methods
discussed in the previous section.

But why not simply use the standard Moore-Penrose pseudo-inverse? In the
following we derive the weighted pseudo-inverse and in the process we see where the
ordinary pseudo-inverse fails. The derivation is inspired by the similar process in
Eldén [33]. We first set up the Tikhonov problem in its least squares formulation:

min
∥∥∥∥[K
λL

]
x−

[
y
0

]∥∥∥∥
2

.

We will assume that L ∈ Rp×n with p ≥ n and that L has a non-trivial null-space.
Then the SVD of L takes the form

L =
[
U1 U0

] [Σ 0
0 0

] [
V1 V0

]T
, (5.16)
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where the columns of V0 ∈ Rk×n span the null-space of L. Inserting the transfor-
mation x = V1s + V0t into the least squares problem yields

min
∥∥∥∥[KV1 KV0

λLV1 0

] [
s
t

]
−
[
y
0

]∥∥∥∥
2

.

The next step is to compute the QR factorization

KV0 = Q1R = [Q1 Q0]
[
R
0

]
, (5.17)

where R ∈ Rk×k has full rank because we assume that the null-spaces of K and L
intersect trivially. Multiplying the least squares system with the orthogonal matrix
diag(Q, I) gives

min

∥∥∥∥∥∥
QT

1 KV1 QT
1 KV0

QT
0 KV1 0
λLV1 0

[s
t

]
−

QT
1 y

QT
0 y
0

∥∥∥∥∥∥
2

.

Because QT
1 KV0 = R has full rank we can find t, such that the residual vector of

the first row is zero, from

t = R−1(QT
1 y −QT

1 KV1s).

Thereby we have reduced the least squares system to

min
∥∥∥∥[QT

0 KV1

λLV1

]
s−

[
QT

0 y
0

]∥∥∥∥
2

.

Finally, we use the SVD of L (see (5.16)) and set z = LV1s = U1Σs which we
substitute into the least squares problem

min
∥∥∥∥[QT

0 KV1Σ−1UT
1

λI

]
z−

[
QT

0 y
0

]∥∥∥∥
2

= min
∥∥∥∥[QT

0 KL†

λI

]
z−

[
QT

0 y
0

]∥∥∥∥
2

. (5.18)

That is, the Moore-Penrose pseudo-inverse cannot be used as standard-form trans-
formation because the range of KL† is not orthogonal to the range of KV0. In (5.18)
we remove any components in the range of KV0 (spanned by the columns of Q1)
from the least squares problem through the multiplication of QT

0 . If we can mod-
ify the pseudo-inverse so that min‖KPL†z−QT

0 y‖2 = min‖QT
0 KL†t−QT

0 y‖2 and
LPL† = I we have a useful transformation:

min‖QT
0 KL†z−QT

0 y‖2 = min‖Q0QT
0 KL†z−Q0QT

0 y‖2
= min‖(I−Q1QT

1 )KL†z−Q0QT
0 y‖2

= min‖(K−Q1QT
1 K)L†z−Q0QT

0 y‖2
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and because KV0(KV0)† = Q1QT
1 we get

min‖QT
0 KL†z−QT

0 y‖2 = min‖(K−KV0(KV0)†K)L†z−Q0QT
0 y‖2

= min‖K(I−V0(KV0)†K)L†z−Q0QT
0 y‖2

= min‖K(I− (KV0VT
0 )†K)L†z−Q0QT

0 y‖2
= min‖K(I− (K(I− L†L))†K)L†z−Q0QT

0 y‖2
= min‖KL†Kz−Q0QT

0 y‖2,

where have the K-weighted pseudo-inverse L†K = (I− (K(I−L†L)†K)L†. Also note
that L(I− (K(I− L†L))†K)L† = V1VT

1 + V0VT
0 = I.

5.2.1 Evaluation of the Weighted Pseudo-Inverse

Most previous work on how to evaluate the pseudo-inverse involves assumptions that
we in some cases are unable to fulfill partly due to the object oriented approach.
In Eldén [33] two QR factorizations are used to form the explicit transformation
K̄ = QT

2 KL† and ȳ = QT
2 y, as seen in (5.18). The implicit transformation used in

the previous toolbox [68] assumes that the regularization matrix L ∈ Rp×n has p ≤ n
and that we can partition L into two parts. However, with objects we cannot always
perform QR factorizations and, as we will see later, we also wish to solve problems
where L has (many) more rows than columns—but still with a non-trivial null-space.

The approach described next assumes nothing about the size of L and does not
require a factorization of L. However, it requires that the we know V0, that is,
the null-space N (L), and that it is of relatively small dimension. In regularization
problems it is usually of interest that the null-space of L is small. Otherwise we have
large parts of the solution outside the reach of the regularization. Furthermore, we
utilize the usual pseudo-inverse L†, that is, we compute least squares solutions with
L. The least squares solution can be computed through direct or iterative methods
depending on the particular choice of L. Finally, we require thatN (L)∩N (K) = {0},
so that the Tikhonov solution is unique.

We evaluate L†K as a mix of the explicit and implicit transform of [66, § 2.3.1–
2.3.2]. If we have the null-space spanned by the orthogonal operator V0 the inner
pseudo-inverse of (5.12) can be written

(K(I− L†L))† = (KV0VT
0 )†

= V0(KV0)†

= V0R−1QT ,

where QR = KV0 is a thin QR factorization seen in (5.17). Owing to V0’s small
number of columns it is feasible to compute the QR factorization of KV0. The
null-space component (5.13) is calculated by

x0 = V0R−1QT y.
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The computation of the weighted pseudo-inverse is now

L†K = (I−V0R−1QT )L†, (5.19)

that is, first we solve a least squares problem with L followed by a projection step.
The transpose of (5.19) is(

L†K
)T

=
(
L†
)T

(I−QR−T VT
0 ). (5.20)

To illustrate the procedure we consider the regularization operator

L =
[

L2 ⊗ I
I⊗ L2

]
. (5.21)

The null-space of L2 is spanned by w1 = [1 . . . 1]T and w2 = [1 2 . . . n]T . A small
calculation shows that the null-space of L is spanned by the columns of the Kronecker
product V0 = ([w1 w2]⊗ [w1 w2]) ∈ Rn2×4. In this case a QR factorization of KV0

would be a matter of performing 4 Householder reflections. However, if K is a
Kronecker product (with terms of dimensions that allow for the multiplication with
V0) the QR factorization can be done even smarter

(K1 ⊗K2)(W1 ⊗W1) = (K1W1)⊗ (K2W2)
= (Q1R1)⊗ (Q2R2)
= (Q1 ⊗Q2)(R1 ⊗R2),

requiring two QR factorizations of two small matrices.
Finally, operations with the pseudo-inverse L† can be done by solving a least

squares system with LSQR or CGLS, maybe accelerated using a preconditioner pro-
vided by the user.

Details from the Implementation

The class WeightedPseudoInverse implements the following methods

WeightedPseudoInverse. The weighted pseudo-inverse is a linear operator and is
therefore implemented as a child class of LinearOperator. The constructor takes
the arguments K, L and V0 and stores them in the fields of the object. It also
computes and stores the thin QR factorization QR = KV0.

sub getmatrix. Computes a matrix representation of the weighted pseudo-inverse
based on getmatrix of K, L†, V0, Q and R.

sub applytovector. Computes the multiplication of the weighted pseudo-inverse
following the recipes in (5.19) and (5.20). To illustrate the connection we list
the relevant lines
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if gettransposed(LKinv)

v = v - LKinv.K’*(LKinv.Q*(LKinv.R’\(LKinv.V0’*v)));

v = LKinv.L’ \ v;

else

v = LKinv.L \ v;

v = v - LKinv.V0*(LKinv.R\(LKinv.Q’*(LKinv.K*v)));;

end

where LKinv denotes the object and LKinv.K denotes the field holding K.

Note that the (ordinary Moore-Penrose) pseudo-inverse of L is computed via
the “backslash” operator. All classes are required to return the least squares
solution of minimum norm for its backslash operator. Matlab calls mldivide
which use sub solve of the particular L object to compute the pseudo-inverse.

nullcomp. Return the solution component in the null-space of L according to (5.13).

The evaluation of the K-weighted pseudo-inverse depends on the possibility of
computing the QR factorization of KV0. However, as we saw in § 4.6.1 we are not
always able to compute it (with the MOORe Tools toolbox in its current form).
However, in our particular example we are able to compute the QR factorization of
KV0 because we have a Kronecker product and not, for example, a stacked operator.

Standard Form and Bounding Methods

The standard-form transformation paves the way for the bounding methods that rely
on a standard-form Tikhonov problem. In Fig. 5.5 we combine the standard-form
transformation with Regińska’s L-curve method bounds. We use the regularization
matrix (5.21) and a test-problem created from a Kronecker product of two deriv2
matrices. The commands used to create the weighted pseudo-inverse and the trans-
formed system for this plot are found in the tutorial, see App. A.3. From Fig. 5.5(a)
we see a result where the bounds are far apart. Increasing the tolerance gives better
bounds as seen in Fig. 5.5(b). However, the result does not reveal a minimum. If we
step back and plot the regular L-curve, see Fig. 5.5(c) we do indeed see the L-curve
with a corner. Changing the “rotation” slightly and displaying ‖K̄x̄λ − ȳ‖22‖x̄‖2
yields the plot in Fig. 5.5(d) where we see a nice minimum that corresponds to the
corner seen on the L-curve.

5.3 A Tikhonov Preconditioner

The objective of preconditioning ill-posed problems can be quite different from the
usual preconditioning setting. Applying a preconditioner to a Krylov subspace
method and relying on semi-convergence, that is, regularization by projection, can be
dangerous. The preconditioner might introduce components where the noise domi-
nates before the undisturbed components. That is, the preconditioner should improve
conditioning of the operator for the components that are undisturbed by noise. The
preconditioner by Hanke, Nagy and Plemmons [61] and the related preconditioner
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Figure 5.5: Standard-form transformation and Regińska’s L-curve. The problem is
constructed from a Kronecker product K = K1 ⊗K2 ∈ R1600×1600 of two deriv2
problems K1,K2 ∈ R40×40. The regularization matrix is the block matrix (5.21) and
we have L ∈ R3120×1600. The solution x is the usual blur solution and the right-hand
side is constructed from y = Kx+e, where e contains normal distributed noise with
norm 10−2‖y‖2. Each iteration of the bidiagonalization involves two applications of
the weighted pseudo-inverse, where we need to solve least squares problems of the
type min‖Lx−y‖2 and min‖LT x−y‖2 via LSQR. We used the stopping criterion 5.9.
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by Kilmer [86] are examples of preconditioners that, properly constructed, improve
the conditioning of the space containing the undisturbed components, that is, com-
ponents corresponding to large singular values. Both preconditioners are aimed at
the class of block Toeplitz with Toeplitz block matrices, see also [24].

Preconditioning of a Tikhonov regularized problem is, on the other hand, straight-
forward as we apply the traditional preconditioning idea of approximating the perfect
preconditioner PT P,

PT P = (KT K + λ2LT L),

where the P can be used in e.g. LSQR and PT P in ordinary CG. Such precondition-
ers are seen in [22, 23] where circulant approximations to [KT λLT ]T are constructed.
In [84] K is approximated by a Kronecker product and applied to a standard-form
Tikhonov problem. The preconditioner in the following is similar to the just men-
tioned ideas.

In some cases we can calculate a regularized solution from a standard-form Tikhonov
problem very easily. For instance, if we have a Kronecker product K = K1 ⊗K2 we
can easily compute the SVD from two SVDs of small matrices. Utilizing the SVD
we can calculate solutions to the standard-form Tikhonov problems and the idea is
to apply the solver for the standard problem as a preconditioner for the general-form
Tikhonov problem, where the GSVD might be unavailable.

To discuss the preconditioner we will need the normal equation system for the
general-form Tikhonov problem

Aλ = KT K + λ2LT L = X̂−T (Σ̂2 + λ2M̂2)X̂−1, (5.22)

where the system is also written in terms of the GSVD of (K,L), cf. Def. 2.3. The
preconditioner is based on solving the standard-form problem via the SVD;

PT
γ Pγ = (KT K + γ2I) = V(Σ2 + γ2I)VT

Pγ = V(Σ2 + γ2I)1/2VT
(5.23)

where we expand the matrix in terms of the SVD of K = UΣVT and γ is a regular-
ization parameter for the preconditioner.

Preconditioning of the Standard-Form Problem

We first investigate the trivial case of applying the preconditioner to the problem in
standard form, that is, we have L = I, M̂ = I, X̂ = V and Σ̂ = Σ in (5.22). We will
bound the condition number, as the condition number can be used to estimate worst
case convergence properties, see e.g. [46]. A condition number near 1 is desirable and
a large condition number is a sign of trouble.
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We can now calculate norms of the preconditioned system S = AλP−2
γ

‖S‖2 = ‖AλP−2
γ ‖2

= ‖V(Σ2 + λ2I)VT V(Σ2 + γ2I)−1VT ‖2
= ‖(Σ2 + λ2I)(Σ + γ2I)−1‖2

= max
i

σ2
i + λ2

σ2
i + γ2

= max
i
σ̃2

i ,

(5.24)

where σ̃2
i = (σ2

i +λ2)/(σ2
i + γ2) for i = 1 . . . n. Similarly we get for the inverse of the

preconditioned system

‖S−1‖2 = ‖(Σ2 + λ2I)−1(Σ + γ2I)‖2

= max
i

1
σ̃2

i

.
(5.25)

Assume that σ1 � λ, γ � σn, then σ̃2
1 ≈ 1 and σ̃2

n ≈ λ2/γ2. We now consider
three possibilities:

• If λ = γ we have σ̃i = 1 and, as expected for the perfect preconditioner,
cond(S) = 1.

• If λ < γ the we have σ̃1 ≥ σ̃n giving the condition number

cond(S) = ‖S‖2‖S−1‖2 = σ̃2
1(1/σ̃2

n)

≈ γ2/λ2

• If λ > γ we have that σ̃1 ≤ σ̃n giving the condition number

cond(S) = (1/σ̃1)σ̃n

≈ λ2/γ2.

Thus, if γ is chosen close to λ we will have a good preconditioner. This is a quite
unsurprising result as setting γ = λ gives the perfect preconditioner.

5.3.1 The General Case

Motivated by the simple case we now look at the preconditioner applied to the general
Tikhonov problem. We will pursue the same approach as in the previous section.
Unfortunately the result is very discouraging with respect to getting small condition
numbers. However, the line of thought is included as one of the “rarely reported”
negative results, cf. the citation of the Stephen Wright in the beginning of the present
chapter.
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Let the diagonal of Φ = (Σ̂2 +λ2M̂2) ∈ Rn×n and Ψ = (Σ2 + γ2I)−1 ∈ Rn×n be
denoted φ and ψ. The cosine of the angle between φ and ψ is

cos(φ,ψ) =
φTψ

‖φ‖2‖ψ‖2
.

Since all elements of φ and ψ are strictly positive they cannot be orthogonal and
φTψ > 0 and therefore cos(φ,ψ) > 0. Hence, we can rearrange

‖φ‖2‖ψ‖2 =
φTψ

cos(φ,ψ)
.

Because

φTψ =
n∑

i=1

φiψi ≤ nmax
i

(φiψi) = n‖ΦΨ‖2

we get the bound

‖φ‖2‖ψ‖2 ≤
n‖ΦΨ‖2
cos(φ,ψ)

. (5.26)

Now we look at the expression ‖ΦBΨ‖2 = ‖B� (φψT )‖2, where � is the Hadamard
product (or elementwise multiplication). With Theorem 5.5.15 of Horn and John-
son [77] and the relation (5.26) we get

‖ΦBΨ‖2 = ‖B� φψT ‖2
≤ ‖B‖2‖φψT ‖2
= ‖B‖2‖φ‖2‖ψ‖2

≤ ‖B‖2
n‖ΦΨ‖2
cos(φ,ψ)

.

(5.27)

For ‖S‖2 we have

‖S‖2 = ‖X̂−T (Σ̂2 + λ2M̂2)X̂−1V(Σ2 + γ2I)−1VT ‖2
≤ ‖X̂−T ‖2‖(Σ̂2 + λ2M̂2)X̂−1V(Σ2 + γ2I)−1‖2

and using our bound (5.27) to “unite” the two diagonal matrices and move X̂−1V
out of the way we get

‖S‖2 ≤
n

cos(φ,ψ)
‖X̂−1‖2‖X̂−1V‖2‖(Σ̂2 + λ2M̂2)(Σ2 + γ2I)−1‖2

=
n

cos(φ,ψ)
‖X̂−1‖22‖(Σ̂2 + λ2M̂2)(Σ2 + γ2I)−1‖2.
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Likewise we have for the norm of the inverse of S

‖S−1‖2 ≤
n

cos(φ,ψ)
‖X̂‖22‖(Σ̂2 + λ2M̂2)−1(Σ2 + γ2I)‖2.

We have now derived the following bound for the condition number of S

cond(S) = ‖Ŝ‖2‖Ŝ−1‖2 ≤
(

n

cos(φ,ψ)

)2

cond2(X̂)cond(Ω), (5.28)

where Ω is the diagonal matrix

Ω = (Σ̂2 + λ2M̂2)(Σ2 + γ2I)−1

= (Σ̂2(1− λ2) + λ2I)(Σ2 + γ2I)−1.

The diagonal entries of Ω are

ωi =
σ̂2

i (1− λ2) + λ2

σ2
i + γ2

=
σ̂2

i p+ λ2

σ2
i + γ2

, (5.29)

where p = (1− λ2) is introduced to shorten the following expressions.
From [63, Theorem 2.4] we have the bounds on how the singular values change

depending on the particular X̂ (and thereby also the regularization matrix L):

1/‖X̂‖2 ≤
σ̂i

σi
≤ ‖X̂−1‖2 ⇔ σi/‖X̂‖2 ≤ σ̂i ≤ σi‖X̂−1‖2. (5.30)

Inserted into (5.29) we get the following bounds on the extreme values of ωi

ω−1 =
p

‖X̂‖22

σ2
1 + λ2‖X̂‖22/p
σ2

1 + γ2
≤ ω1 ≤ ‖X̂−1‖22p

σ2
1 + λ2/(‖X̂−1‖22p)

σ2
1 + γ2

= ω+
1

ω−n =
p

‖X̂‖22

σ2
n + λ2‖X̂‖22/p
σ2

n + γ2
≤ ωn ≤ ‖X̂−1‖22p

σ2
n + λ2/(‖X̂−1‖22p)

σ2
n + γ2

= ω+
n

These bounds on ω1 and ωn tell us that

‖Ω‖2 ≤ max
{
ω+

1 , ω
+
n

}
(5.31)

‖Ω−1‖2 ≤ max
{
1/ω−n , 1/ω

−
1

}
(5.32)

and therefore

cond(Ω) ≤ max
{
ω+

1 , ω
+
n

}
max

{
1/ω−n , 1/ω

−
1

}
(5.33)
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If we assume that λ� 1 then p ≈ 1. If furthermore σ1 � λ2‖X̂‖22, λ2/‖X̂−1‖22 �
σn we have the following approximations

ω−1 ≈
1

‖X̂‖22

σ2
1 + λ2‖X̂‖22
σ2

1 + γ2
≈ 1

‖X̂‖22

σ1

σ1
=

1

‖X̂‖22
,

ω+
1 ≈‖X̂−1‖22

σ2
1 + λ2/‖X̂−1‖22

σ2
1 + γ2

≈ ‖X̂−1‖22
σ2

1

σ2
1

= ‖X̂−1‖22

ω−n ≈
1

‖X̂‖22

σ2
n + λ2‖X̂‖22
σ2

n + γ2
≈ 1

‖X̂‖22

λ2/‖X̂‖22
γ2

=
λ2

γ2

ω+
n ≈‖X̂−1‖22

σ2
n + λ2/‖X̂−1‖22

σ2
n + γ2

≈ ‖X̂−1‖22
λ2/‖X̂−1‖22

γ2
=
λ2

γ2
.

and by insertion we get an approximation to an upper bound on the condition number
of Ω

cond(Ω) / max
{
‖X̂−1‖22, λ2/γ2

}
max

{
γ2/λ2, ‖X̂‖22

}
.

Assuming ‖X̂‖2 > γ2/λ2 and ‖X̂−1‖2 > λ2/γ2 (likely if we select λ = γ and L is
properly scaled, see [63]) we get the desired bound on the condition number of the
preconditioned system

cond(S) /

(
n

cos(φ,ψ)

)2

cond4(X̂).

This bound is not very satisfactory as we have not found a good way of bounding
cos(φ,ψ). Considering the expected convergence speed the bound is indeed very dis-
couraging with the squared term, n2/ cos2(φ,ψ), appearing. However, experiments
similar to those in the following have all shown the bounds to be very pessimistic for
all 1-D test problems. Furthermore, keep in mind that the condition number is only
part of a worst case convergence estimate. Not only the ratio of largest and smallest
singular value is interesting but also any clustering of the singular values and the
components in the particular right-hand side.

5.3.2 Numerical Experiments

We have conducted a number of experiments with the preconditioner to illustrate
the theory of the previous section. First we take a look at the condition numbers of
small systems. Then we look at three examples of eigenvalue distributions for three
different choices of the regularization parameter γ in the preconditioner. Finally we
look at the actual convergence for a large-scale blur problem.

Condition Numbers

In Fig. 5.6 we have used a small test problem, so that the condition number of a pre-
conditioned system is easily computed. We use the preconditioner on a standard-form
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problem with the identity as regularization matrix and on problems with approxima-
tions to the first derivative, the second derivative and the first and second derivative
stacked as the regularization matrix. The first case illustrates the warm up section
while the second case illustrates an actual use of the preconditioner. In Fig. 5.6(a)
we use the same regularization matrix for problem and preconditioner and naturally
we get perfect preconditioning, i.e., cond(AλP−2

γ ) = 1 when the regularization pa-
rameters λ and γ are equal. Applying the preconditioner to a general-form Tikhonov
problem shows that we indeed are able to improve the conditioning of the problem.
We also see that the bounds derived in the previous section are extremely pessimistic
as the n2cond4(X̂) (even omitting the cosine term) is above both the unprecondi-
tioned system and the chosen limits of the plot for all three choices of regularization
matrix L.

Eigenvalues of Preconditioned System

The condition number of the preconditioned system is used for a worst case conver-
gence bound for the conjugate gradient based algorithms. Any clustering of eigen-
values increases the convergence speed.

Intuitively the large singular values away from λ2 are “unharmed” by the regu-
larization term. Our preconditioner is also “unharmed” in this area of the spectrum
and we could expect the resulting system to have a cluster of singular values near
one for these components.

In the following we return to the regularization operator

L =
[
L1 ⊗ I
I⊗ L1

]
. (5.34)

Even if K is a Kronecker prouduct, that is, if K = K1 ⊗ K2, we are not able to
exploit the special structures to, for example, compute an GSVD. Therefore, if the
dimension of the problem gets large we are not able to solve with a direct method
and we must turn to an iterative method such as LSQR with preconditioning.

Figure 5.7 shows three examples of the eigenvalues of a general-form Tikhonov
system and the corresponding preconditioned system. We see a cluster of unit eigen-
values in addition to the better conditioning of the system and it seems reasonable to
expect faster convergence. The eigenvalues are computed for two choices of γ. The
choice γ2 = λ2 makes the cluster of near unit eigenvalues appear as the largest eigen-
values whereas the choice γ2 = 10λ2 makes the eigenvalues appear as the smallest
eigenvalues. As the Krylov subspace methods pick up components belonging to the
largest/extreme eigenvalues first we will in the γ2 = 10λ2 case pick up the compo-
nents belonging to the noise-space. This is not a problem as they are damped from
the Tikhonov regularization assuming λ is chosen properly. However, the opposite
behavior picking up the cluster first might be more desirable if λ is chosen too small
and we need extra regularization from the projection. When γ2 ≈ ‖L‖22λ2 the sit-
uation is a mix of the above and the cluster lies in the middle of the spectrum, see
Fig. 5.7(c).
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Figure 5.6: Condition numbers using different values of µ in preconditioner Pγ =
(KT K + γ2I)−1/2. The test problem is heat with n = 128 with the identity I (a),
the first derivative L1 (b), the second derivative L2 (c) and the stacked first and
second derivative L = [LT

1 L2]T (d) as the regularization matrix. The regularization
parameter λ = 10−3 in both examples. The dotted line shows the condition number
of the un-preconditioned system A.
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Figure 5.7: Eigenvalues of general form Tikhonov system (dots) and preconditioned
Tikhonov systems (x) with different values of regularization parameter in precondi-
tioner. The test problem is blur with σx = 2, σy = 1.5 (see Table D.1) and n = 40
giving an operator K ∈ R1600×1600. The regularization operator is the operator (5.34)
and the regularization parameter is λ = 10−3. Only every 16th eigenvalue is plotted.
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Convergence Speed

The blur test problem tends to converge slowly for small regularization parame-
ters λ. We continue with the regularization matrix (5.34) but increase the problem
size to n = 5122. This gives K = K1 ⊗ K2 ∈ R262144×262144 and more impor-
tantly L ∈ R523264×262144 which, although sparse, makes it impossible to compute
the GSVD. The SVD of the Kronecker product K poses no problem and the Tikhonov
preconditioner is easily constructed.

Figure 5.8 shows the number of iterations needed to reduce the norm of the normal
equation residual for a general-form Tikhonov problem of the form

min

∥∥∥∥∥∥
 K

10−3

[
(L1 ⊗ I)
(I⊗ L1)

]x−

 y[
0
0

]∥∥∥∥∥∥
2

= min‖K̂x− ŷ‖2.

That is, CGLS is stopped when ‖K̂T (K̂x− ŷ)‖2 < 10−10‖ŷ‖2. It is seen that around
γ = 2 · 10−3 we get the fastest convergence. In Fig. 5.9 we have plotted the norm
of the normal equation residual for the general-form Tikhonov least squares problem
for CGLS without preconditioning and with preconditioning using three different
choices of γ. If no preconditioner is used the convergence is very slow. Extrapolation
of the convergence seen from iteration 50 to 200 estimates that around 1300 iterations
are needed. The preconditioner insures convergence to a normal equation residual
precision of ‖K̂T (K̂xk − ŷ)‖2 < 10−10‖ŷ‖2 in just 7 iterations. However, the time
to construct the preconditioner and the extra time used in each iteration to apply it
must be considered also.
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Figure 5.8: Number of iterations vs. the regularization parameter γ used in the
preconditioner.

Table 5.1 shows timings collected during the experiment also seen in Fig. 5.9.
Even though the construction phase is quite costly (≈ 20 iterations of CGLS without
preconditioning) we manage to get the solution very fast. Note that after 100 itera-
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Figure 5.9: Convergence of CGLS without preconditioning (o) and with precondi-
tioning with parameters γ = 2 · 10−2 (+), γ = 2 · 10−1 (/) γ = 2 · 10−3 (.). The test
problem is blur with σx = σy = 1.5 and n = 512 giving K ∈ R5122×5122

. The regu-
larization matrix is L = [(L1⊗I)T (I⊗L1)T ]T where L1 is an discrete approximation
to the first derivative. The regularization parameter for the problem is λ = 10−3.
Timings for setup and iterations are listed in Table 5.1.
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tions with the unpreconditioned system we are not nearly as close to the solution as
the best of the preconditioned systems is after just one iteration.

CGLS Tikhonov preconditioned CGLS
γ = 2 · 10−1 γ = 2 · 10−2 γ = 2 · 10−3

Phase # Time (s) # Time (s) # Time (s) # Time (s)

Setup 0 30 30 30
Iterations �200 �333 68 265 7 29 111 438

Total �333 295 59 468

Table 5.1: Timings with and without preconditioning for the convergence history
plotted in Fig. 5.9. Note that CGLS without preconditioning does not converge to the
same level of accuracy. Extrapolating from the convergence speed between iteration
50 and 200 estimates that round 1300 iterations, corresponding to 2100 seconds, are
needed for CGLS without preconditioning to reach the same precision.

Implementation of the Preconditioner

The preconditioner is implemented in the TikhPrecond class that only implements a
few methods:

TikhPrecond. The constructor takes the operator K and the regularization param-
eter γ as arguments. It computes the SVD K = UΣVT and stores V and
(ΣT Σ + γ2I)−1/2 in fields of the object.

sub solve. When the iterative algorithms solve with the preconditioner the method
LinearOperator/mldivide calls the sub solve method of the TikhPrecond
class. The line computing x = P−1

γ b of sub solve is

x = P.V*(P.SS*(P.V’*b))

where P denotes the preconditioner object, P.V is the object containing the
singular vectors and P.SS is the diagonal matrix computed by the constructor.
Note that we do not consider whether the operator is transposed or not because
the operator is symmetric (compare with the corresponding section on the
weighted pseudo-inverse).

sub size. Returns the size of the operator.

sub getmatrix. Returns a double array representation of the operator.

5.4 Summary

In this chapter we have introduced and experimented with a stopping criterion for
Lanczos bidiagonalization that forms the basis of the “bounding” parameter choice
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methods. The experiments were performed with the Regińska’s variation of the L-
curve method.

We have described how the standard-form transformation is implemented in the
new toolbox. Because the bounding methods are based on the standard-form for-
mulation it was natural to illustrate the standard-form transformation in connection
with the bounding method of Regińska’s L-curve.

Finally we have described a preconditioner for the general-form Tikhonov problem
based on the standard-form problem. Despite discouraging theoretical bounds of
worst case condition numbers and thereby worst case convergence we obtained good
experimental results on the blur test problem.
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Chapter 6

Conclusion

—filled with a liquid that was almost, but not quite, entirely un-
like tea. Douglas Adams, “Hitchhikers Guide to the Galaxy” [1].

And this leads us to a suitable paradoxical conclusion. Even
infinity—whichever one you choose—is not “the biggest thing
that can exist”. There’s always something bigger still. But it’s
OK, you do learn to live with it eventually. Especially when you
realise you can’t live without it. Ian Stewart, “Never Ending
Story” [120].

The goal of creating a modular and object oriented framework for solving dis-
crete ill-posed problems has been achieved. The theory has been used to create the
accompanying Matlab toolbox MOORe Tools.

The following is a summary of the results and observations made in this thesis.

6.1 Modular Algorithms

The regularization algorithms have been divided into 3 groups:

Penalty methods. The penalty methods regularize ill-posed problems by adding
terms that discourage solutions with unwanted properties. The penalty func-
tions are described as a sum of composite functions, where the first usually
describes the model fit. Compared to the usual l2-norm penalty functions,
the use of other penalty functions on the model fit can make the method ro-
bust toward outliers in the data, while the use of other penalty functions with
the regularization terms enables reconstruction of, for example, discontinuous
solutions.
A flexible and modular algorithm is obtained through standardizing and ex-
tending the available penalty functions from just the l2-norm penalty function.



112 Conclusion

We have through numerical experiments shown how regularized solutions with
very different properties can be achieved with the modular approach.

Projection methods. The projection methods restrict a solution to lie in or to
be orthogonal to a specified subspace. In this case we can also utilize the
penalty functions to obtain solutions that are robust toward outliers or have
discontinuities.

Essentially two variations of the projection methods are necessary. One module
is required to minimize in a subspace, and one to minimize with a solution in a
subspace orthogonal to another. Which one to choose depends on the particular
subspace and formulation.

The basic iterative Krylov subspace methods MINRES, GMRES and LSQR
can also be placed in this category, although they are restricted to minimizing
in the l2-norm.

Hybrid Methods. The Hybrid methods combine a projection method, often of
the Krylov subspace type, with another regularization method on the smaller
projected problem. The hybrid methods are the best showcase for modular
methods as the idea inherently needs to combine at least two regularization
methods, that can be conveniently provided as modules.

The choice of regularization parameter is largely dependent on the particular reg-
ularization method used. Hence, we have been unable to construct modules that can
be used with all regularization routines. However, we can for a specific method, for
example Tikhonov regularization, create modules that estimate the optimal regular-
ization parameter.

6.2 Object Oriented Programming

We have analyzed the structures of the regularization problems and in particular the
linear algebra “constructs” we need to set up and solve the problems.

Two basic concepts, the linear operator and the vector, form the basis of the object
oriented framework. The interface of the linear operator defines what linear operators
must be capable of, for example, a linear operator can be applied to a vector. This
interface is defined in the class LinearOperator and similarly the class Vector defines
the interface for all objects of the vector type. For some linear operators it is feasible
to compute decompositions such as the SVD. In this case the linear operator also
implements the interface defined by SVDOperator.

Using the interface we are able to exploit special structures and features of the
operator without rewriting the actual regularization or minimization algorithm for
each particular operator. We have demonstrated how the object oriented approach
automatically enables CGLS to take advantage of the special properties of, for ex-
ample, the Kronecker product where the fast multiplication can be exploited. Some
regularization methods, such as Tikhonov regularization, exist in different versions;
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one that operates with the interface of SVDOperator and one that operates with
the LinearOperator interface. Thus, if the SVD is supported, then the SVD is used.
Otherwise, the default LinearOperator version of Tikhonov regularization (based on
damped LSQR) is used.

In addition to the problem-specific operators, we identified the most important
generic operators faced in the regularization methods. For instance, we have classes
representing the identity operator and block operators.

Inheritance makes it possible to extend or specialize objects. We have, for exam-
ple, a general N -term Kronecker product class that we specialized to the often used
two-term Kronecker product. In this process we can reuse code from the general case
and redefine code to, for example, optimize multiplication for the simpler two-term
case.

6.3 Other Results

In some cases we are not able to compute an SVD of the operator. Without the SVD
it is time consuming to use the usual parameter choice methods for Tikhonov reg-
ularization as solutions must be computed for a range of regularization parameters.
However, the “bounding” methods are able to compute upper and lower bounds on
the necessary solution and residual norms, as well as bounds on the trace estimator
used in Monte Carlo GCV. The bounding methods are based on the iterative Lanczos
bidiagonalization method. We have created a stopping criteria for the bidiagonaliza-
tion that stops the iteration when the ratio of upper and lower bounds are within a
given tolerance.

The standard-form transformation for Tikhonov regularization used in the pre-
vious toolbox and most approaches found in other references were not appropriate
in the object oriented framework. A more generally applicable approach has been
presented and implemented.

Slow convergence of the blur test problem with general-form Tikhonov regular-
ization led to the Tikhonov preconditioner. It demonstrates how a preconditioner
is easily incorporated within the object oriented framework. The theoretically com-
puted condition numbers gave a very pessimistic outlook, but experiments showed
good results when the problem size grew.

6.4 The Toolbox

The Matlab toolbox MOORe Tools was created to demonstrate the techniques and
ideas of modular algorithms and object oriented programming. Not only is it a proof
of concept but it is also a useful tool. It has already been used by several students
and graduate students besides the author. It has proven useful as a tool to work with
larger problems not possible to solve with the previous Regularization Tools package.
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6.5 Further Work

The thesis has described the foundation of the toolbox. The toolbox can already be
used for a wide range of problems. However, some parts are more optimized and
thoroughly tested than others. The following list points to methods and areas that
need more work or would be next in line for fixing if more time was at hand:

• The hybrid methods all minimize the outer problem in a least squares sense.
Other penalty functions should be allowed on the outer problem to increase
robustness against outliers in the right-hand side.

• The minimization routines used for problems with penalty functions other than
the l2-norm have not been tested and compared to other algorithms. The cur-
rent optimization algorithm implemented is a Newton type method with line-
search. Trust region methods such as Steihaug’s CG [119] or the LSTRS [112,
113] method (now also in a non-negativity constrained version [114]) seem
promising as an alternative.

• The general LP-solver based on Mehrotra’s interior point method which can be
used for large-scale problems is not tested well enough. How to precondition
the linear systems at each iteration is also a point of further investigation. For
small problems we use the linprog function from the Optimization Toolbox.
The linprog is also based on Mehrotra’s method, but it cannot use our object
oriented framework and we are forced to create the arguments by “de-objecting”
the objects into ordinary matrices and vectors and putting the result back into
an object.

• Several of the algorithms reduce their problem into a series of least squares
problems where a weight matrix is multiplied onto the operator. How do we
precondition a large-scale weighted least squares problem? Can we use a good
preconditioner to the unweighted least squares problem (such as the Tikhonov
preconditioner in §5.3), or do we need another approach. This question is
closely related to the previous point as it also can be seen as a weighted least
squares problem.

• Parameter choice methods for large-scale problems are not well integrated with
the iterative solution methods. Also the parameter choice methods in connec-
tion with penalty functions other than l2-norm penalty have not been inves-
tigated. The parameter choice methods for the direct methods use the firm
foundation already found in the previous package.

• The standard-form transformation has several formulations. Which specific
formulation to use has not been investigated.

• The VectorCollection should implement a QR factorization based on House-
holder reflections. This extension would enable the use of the “Subspace Pre-
conditioned LSQR” (see §4.6.1 and App. E) and the weighted pseudo-inverse
(see §5.2) for a larger group of problems.
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• The algorithms in the toolbox are all developed for real arithmetic numbers.
It has not been considered which algorithms that at this point work with test
problems with complex numbers and which algorithms that need to be altered.
A good starting point would be a test problem with a formulation using complex
numbers.
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Appendices

All this lets infinity in by the back door, while keeping it re-
spectable. It even gets its own symbol, ∞. Infinity lets us do
forbidden things, such as divide by zero. When a mathematician
writes 1/0 =∞, she doesn’t mean that 1 divided by 0 makes ∞.
She means that if a number x keeps shrinking ever closer to 0,
then 1/x keeps growing bigger and bigger, without limit. And she
has to be a very senior mathematician to be allowed to be that
sloppy, even then. Ian Stewart, “Never Ending Story” [120].

The appendix is composed of five parts

1. A tutorial showing how the toolbox is used and how to extend it with new
classes.

2. A short overview of the content of the MOORe Tools toolbox.

3. A listing of the steps taken to test the MOORe Tools toolbox. Both the classes
and the algorithms have been tested.

4. A short introduction to the new test problems introduced in the toolbox.

5. The paper “Subspace Preconditioned LSQR” by Michael A. Saunders, Per
Christian Hansen and Michael Jacobsen [71]. It is included as some details
are referred to in the main thesis.
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Appendix A

Toolbox Tutorial

This appendix shows how to use the MOORe Tools toolbox. The emphasis is on
how the object oriented features change the work flow compared to the old toolbox
[68]. Familiarity with Matlab’s object oriented features is useful and is described in
the Matlab manual [94].

More details on the reasoning around the modular functions can be found in §3.2.
The structure of the object oriented framework as well as a case study describing the
implementation of the KroneckerProduct2D class can be found in Chapter 4. See also
Appendix C where we test the objects and algorithms in the toolbox. It contains
many examples on how computations are done with and without the toolbox.

Input to Matlab is written with the usual Matlab prompt >> in front while output
from functions are without the prompt. For example,

>> 4 + 4

ans =

8

A.1 Installation and Setup

The toolbox comes in a tar.gz file that can be downloaded from

http://www.imm.dtu.dk/nag/software

It is installed in a UNIX-like system via the following steps (where # is the UNIX
prompt):

1. Create a directory for the package.
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2. Extract the files to this directory,

# cd directory

# gunzip MOOReTools.tar.gz

# tar xf MOOReTools.tar

On a Windows machine a tool such as “WinZip” can be used to extract the
files.

3. Add the directory to the Matlab path. Also the sub-directories TestExamples
and Algorithms must be added to the path. The test problems and supporting
functions are located in these directories.

4. The package contains a couple of C mex-files which need to be compiled in
order for the test problem Interpolate to work. The Matlab script regmex
compiles the mex-files in the package.

Assuming that the package has been properly set up we continue with the tutorial.

A.2 Creating a Test-Problem

We will start out by creating a test problem with one of the test example generators.
We will use the blur test problem with images of size 256× 256:

>> [K,y,x] = blur(256,10,2);

>> whos

Name Size Bytes Class

K 65536x65536 1050597 KroneckerProduct2D object

y 256x256 524916 Vector2D object

x 256x256 524916 Vector2D object

Grand total is 262179 elements using 2100429 bytes

Note that the size of K is reported as 2562 × 2562 but the size in bytes is much
lower than required for an actual (dense) matrix of that size. Because K is a Kro-
neckerProduct2D object we can store all necessary information very efficiently and
multiplications with Vector2Ds also exploit the Kronecker structure. The vectors are
both of class Vector2D. Because we often use Vector2Ds to describe images the class
provides a method called show that displays its data as an image. Typing

>> show(y)

pops up a picture of the Vector2D object y, see Fig. A.1.
The KroneckerProduct2D class has “overloaded” a number of operators. We can,

for example, multiply with a Vector2D:

>> K*x

Vector2D of 256 x 256 = 65536 elements

Also Vector2D overloads many operations; we can, for example, take the norm
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Figure A.1: Blurred image from the blur test problem.

>> norm(K*x - y)

ans =

0

>> norm(K\y - x)

ans =

3.9986e-01

where the last command is an example of how “only” having 16 digits of accuracy
can have disastrous results. We will now add some noise to y

>> yn = y + randn(size(y))*1e-4

Vector2D of 256 x 256 = 65536 elements

and try some regularization algorithms. Note that Vector2D allows the user to add
ordinary two dimensional double arrays with a Vector2D object (as long as number
of rows and columns match).

A.2.1 Tikhonov and LSQR

With a KroneckerProduct2D object we can use the SVD version of Tikhonov, because
KroneckerProduct2D inherits from SVDOperator and thus it has committed to imple-
menting the SVD. The function SVDOperator/tikhonov takes three arguments: the
operator, the right hand side and a structure of options

>> opt = regset(’RegPar’, 1e-3);

>> Xtikh = tikhonov(K,yn,opt)

The function regset checks the option names and whether the values have the right
type. If we had been working with a class that did not inherit from SVDOperator it
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would use the implementation of Tikhonov regularization supplied by LinearOperator.
The LinearOperator/tikhonov uses LSQR similarly to the way it is shown in the
following.

Another option is to use a least squares solver such as LSQR on the augmented
system [KT λI]T as done for all LinearOperators that are unable to compute the SVD.
For this to work we need the OperatorArray and VectorStack classes which are similar
to block matrices and block vectors:

>> KL = OperatorArray(2,1);

>> KL{1,1} = K;

>> KL{2,1} = 1e-3*IdentityOperator(256^2);

>> y0 = VectorStack(2);

>> y0{1} = yn; y0{2} = 0*yn;

Note how the blocks are indexed with the curly parenthesis {}. The IdentityOperator
class is an extremely “sparse” representation of the identity, where not even the
diagonal of ones is stored. A multiplication is done through a copy of the input—
no multiplications with one. The argument to the IdentityOperator constructor is
the intended size. The argument is optional but more operations are possible if the
IdentityOperator operator knows its size. Now the new objects can be used with
LSQR

>> opt = regset(’Iter’, 500, ’TolRes’, 1e-2);

>> [Xlsqr,ext] = lsqr_mt(KL,y0,opt);

>> ext.iter

ans =

88

The structure field ext.iter tells us that 88 iterations were performed before the
tolerance criterion was reached and that the result in Xlsqr is the result at that iter-
ation. Most functions return two arguments; the actual result as the first argument
and a structure of extra information in the second argument. In the example above,
we get the solution and a structure with the field iter, that holds the number of
iterations actually performed.

A.2.2 Getting Help

The regularization algorithms are located as methods of LinearOperator and SVDOp-
erator. The Tikhonov regularization algorithm exists in two versions,

• one in LinearOperator, that solves the standard-form Tikhonov problem via the
iterative LSQR algorithm,

• and one in SVDOPerator, that solves the standard-form Tikhonov problem via
the SVD.

To view the online documentation of the two functions use the following lines:

>> help LinearOperator/tikhonov

>> help SVDOperator/tikhonov



A.3 Thesis Examples 123

Similarly it is possible to view the documentation of the methods of all other classes.
Notice, that Matlab extends the help display with a list of other classes implementing
a method having the same name.

A.3 Thesis Examples

In the following we illustrate the toolbox by showing how several of the results in the
thesis are computed. Comments on the results are found in the main thesis. This
simply illustrates the calling sequences. The final steps of fine tuning the axes, lables
etc. of the plots are omitted.

PP-LSQR

See also § 3.4.2 for the mathematical formulation of the PP-LSQR method.
We take the deriv2 operator, create a piecewise constant solution, a right-hand

side and finally we add noise.

>> K = deriv2(4000);

>> x = Vector([zeros(1500,1); ones(1500,1); zeros(1000,1)]);

>> y = K*x;

>> noise = randn(4000,1); noise = noise / norm(noise);

>> yn = y + noise*1e-2*norm(y);

Then we apply 5 iterations of LSQR and make sure that it returns the Krylov sub-
space by setting the options Subspc to on

>> lsqropt = regset(’Iter’, 5, ’Subspc’, ’on’);

>> [xlsqr, ext] = lsqr_mt(K,yn, lsqropt);

Next we compute the modification. We use an approximation to the first derivative
provided by the utility function getL

>> L = getL(4000,1);

>> xperp = modsubs1(L, ext.V, xlsqr);

which outputs a line from Optimization Toolbox’s linprog function telling that
the optimization terminated successfully. In Fig. A.2 the unmodified (xlsqr) and
modified (xlsqrr+xperp) solutions are shown along with the true solution.

The results were computed on a Intel Xeon 4 1.8 GHz in approximately 15 seconds,
of which the LP-solver used 14 seconds. An SVD of the same operator takes about
2 hours on the same machine.

A GMRES-Tikhonov Hybrid Method

See also § 3.4.3. The test problem is shaw, created by

>> [K,y,x] = shaw(200);

>> noise = randn(size(y)); noise = noise / norm(noise);

>> yn = y + noise*norm(y)*1e-3;
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Figure A.2: PP-LSQR plots

To compare the hybrid method with a non-hybrid method we do two experiments.
In the non-hybrid case we explicitly set the regularization parameter to zero, that
is, no inner regularization. In the actual hybrid experiment we use the default GCV
parameter choice method. The options to the inner regularization are thus set as
follows

>> reg = regset(’RegPar’, ’gcv’);

>> noreg = regset(’RegPar’, 0);

We now do 9 iterations with the ahybrid method (Arnoldi based, like GMRES).
Note how arguments to the inner solver are passed via the InArgs option.

>> X1 = ahybrid(K, yn, regset(’Iter’, 9, ’InArgs’, noreg));

>> X2 = ahybrid(K, yn, regset(’Iter’, 9, ’InArgs’, reg));

Figure A.3 shows the results.

A PP-LSQR-TSVD Hybrid Method

See also § 3.4.5. We now go a step further and combine a hybrid of Lanczos bidi-
agonalization and TSVD with a modification of the PP type. We create a problem
with the heat kernel but with the piecewise constant solution (scaled so that the
maximum value is 1) from wing:

>> n = 400;

>> [K,y,x] = wing(n); x = x / max(x);

>> K = heat(n); y = K*x;

>> noise = randn(size(y)); noise = noise / norm(noise);

>> yn = y + noise*norm(y)*1e-2;
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Figure A.3: GMRES and GMRES-Tikhonov

We now setup the options for the inner regularization and for comparison we include
an example with no inner regularization, that is, Tikhonov regularization with λ = 0:

>> noregin = regset(’RegPar’, 0); % For Tikhonov

>> regin = regset(’RegPar’, ’gcv’);

The options are passed as options for the inner solvers

>> X1 = lbhybrid(K,yn, regset(’Iter’,iter, ’InSolv’,’tikhonov’, ’InArgs’,noregin) );

>> reg = regset(’Iter’, 7, ’InSolv’, ’tsvd’, ’InArgs’, regin,’Subspc’, ’on’);

>> [X2, ext] = lbhybrid(K, yn, reg)

The Subspc option makes lbhybrid return the Krylov subspace created during the
Lanczos bidiagonalizations, which is needed in the modification step. If we expect
a piecewise constant solution, we can achieve a good modification using an approx-
imation to the first derivative created via getL. The modification is computed via
modsubs1:

>> L1 = getL(n,1);

>> xp = modsubs1(L1,ext.V, X2)

The results, that is, X1, X2 and X2+xp, are shown in Fig. A.4.

A Robust Tikhonov Method

See also § 3.4.6. By switching the penalty functions in Tikhonov regularization we
are able to create methods that are robust toward outliers in the right hand side.
We first create a heat test problem and add the usual normal distributed noise, but
now we also add 3 outliers:

>> n = 300;

>> [K,y,x] = heat(n);

>> randn(’state’, 0); % Results are reproducible

>> noise = randn(size(y)); noise = noise/norm(noise);

>> yn = y + noise*norm(y)*1e-2;
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Figure A.4: The LSQR method with inner regularization and modification.

>> yno = yn;

>> yno(10) = yn(n/2)*(1 + 0.4);

>> yno(100) = yn(n-30)*(1 - 0.4);

>> yno(200) = yn(190)*(1-0.7);

We now create the overdetermined system of equations

>> L = 1e-1*getL(n,2);

>> KL = stack(K,L);

>> yn0 = stack(yn, zeros(L*x)); % Without outliers

>> yno0 = stack(yno, zeros(L*x)); % With outliers

where we have chosen to use an approximation to the second derivative as the regu-
larization matrix.

Then we set up the options structures for gmin. We chose to use CGLS and the
inargs options structure is used by CGLS:

>> inargs = regset(’Iter’,20);

>> options = regset(’Iter’,10, ’InSolv’, ’cgls’, ’InArgs’, inargs, ...

’Norm’, ’stacknorm’, ...

’NormArgs’, {’fair’, 0.001 , 1; ’pnorm’, 2 , 1});

We use the Fair penalty function with weight λ0 = 1 and parameter β = 0.001 for
the top block of the overdetermined system of equations (Kx− y) and the standard
l2-norm squared for the second part 10−1L2x also with λ1 = 1.

We now solve the problem as a least squares problem and with the alternative
combination of norms, and with and without outliers.

>> XF = gmin(KL, yno0, options);

>> XFo = gmin(KL, yn0, options);

>> X2o = backslash(KL, yno0);

>> X2 = backslash(KL, yn0);

>> t = linspace(0,1,n);

>> plot(t, x, ’-k’, t, X2, ’--k’, t, X2o, ’:k’);

>> plot(t, x, ’-k’, t, XF, ’--k’, t, XFo, ’:k’);

The two plots are shown in Fig. A.5



A.3 Thesis Examples 127

0 0.2 0.4 0.6 0.8 1
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

PSfrag replacements

0 0.2 0.4 0.6 0.8 1
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure A.5: Robust Tikhonov

Robust Tikhonov with Non-Negativity Constraints

In some cases it can be beneficial to add non-negativity constraints to the solution.
The gmin has a non-negativity constrained counterpart in poscg. Continuing with
the problem constructed previously we setup the options structure such that the
unconstrained solutions are used as starting guesses

>> options = regset(options, ’x0’, XF);

>> opt2 = regset(options,’Norm’, ’pnorm’, ’NormArgs’, 2, ’x0’, X2o);

>> Xpos = gminnonneg(KL, yn0, opt2);

>> Xposo = gminnonneg(KL, yno0, opt2);

>> XFpos = gminnonneg(KL, yn0, options);

>> XFposo = gminnonneg(KL, yno0, options);

>> plot(t, x, ’-k’, t, Xpos, ’--k’, t, Xposo, ’:k’);

>> plot(t, x, ’-k’, t, XFpos, ’--k’, t, XFposo, ’:k’);

Note how we in the second line is able to update fields in our option structure. The
result is shown in Fig. A.6.
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Figure A.6: Non-Negativity robust Tikhonov
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Using the Weighted Pseudo-Inverse

See also § 5.2. The weighted pseudo-inverse is used to transform a general-form
Tikhonov problem into a standard-form Tikhonov problem. We will use the standard-
form transformation in connection with a parameter choice method. In this case we
will use the bounding of Regińska’s L-curve.

We first setup the problem. We will use a Kronecker product of two deriv2 test
matrices and the stacked regularization matrix

L =
[
L1 ⊗ I
I⊗ L1

]
.

We will use the standard solution provided by blur. The setup can be done as
follows:

>> n = 40;

>> [K,y,x] = blur(n);

>> K = deriv2(n);

>> K = kron(K,K);

>> y = K*x;

>> [L1,W1] = getL(n,1);

>> I = IdentityOperator(n);

>> L = stack(kron(L1,I), kron(I,L1));

>> W = kron(W1, W1);

Observe that kron is overloaded by LinearOperator to yield a KroneckerProduct2D
object as result. That is kron(L1,I) is equivalent to KroneckerProduct2D(L1,I).
We now add normally distributed noise to the right-hand side:

>> randn(’state’, 0); % We can reproduce results

>> noise = randn(size(y));

>> noise = noise / norm(noise, ’fro’); % Normalize in 2D

>> yn = y + noise*norm(y)*1e-2;

We set up the weighted pseudo-inverse via its constructor that takes the regulariza-
tion matrix L, its null-space W and the operator K as arguments. We also find the
solution in the null-space as well as the transformed right-hand side:

>> LKinv = WeightedPseudoInverse(L,W,K);

>> x0 = nullcomp(LKinv, yn);

>> yhat = yn - K*x0;

Finally, we use the bounding method for Regińska’s L-curve on the transformed
problem with two different stopping criterion tolerances:

>> opt = regset(’RegPar’, [1e-6 1e-1], ’Disp’, 1, ’Iter’, 200);

>> [reg1, ext1] = reginska(K*LKinv, yhat, regset(opt, ’TolRes’, 2));

>> [reg2, ext2] = reginska(K*LKinv, yhat, regset(opt, ’TolRes’, 0.1 ));

The computation is not “instant” as several least squares problems with L and LT

need to be solved.
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The Tikhonov Preconditioner

The Tikhonov preconditioner is described in Sec. 5.3. It was created to accelerate
convergence of the blur test problem with non-identity regularization operator.

We first create a problem that we cannot solve by direct methods:
>> n = 512;

>> lambda = 1e-5;

>> mu = 1e-4;

>> iter = 200;

>> noise = 1e-5;

>> [K,y,x] = blur(n,8);

>> randn(’state’,0); % Reproduceable results

>> noise = randn(size(b));

>> ys = y + noise/norm(noise)*norm(y)*1e-4;

>> L1 = getL(n,1);

>> L0 = getL(n,0);

>> L = stack(KroneckerProduct2D(L1,L0), ...

KroneckerProduct2D(L0,L1));

>> y0 = L*stack(x);

We use the stack function to quickly create an OperatorArray object and a Vec-
torStack object used for the least squares formulation of the general-form Tikhonov
problem:

>> KL = stack(stack(K),lambda*L);

>> y0 = stack(stack(bs),zeros(y0));

We try to do iter iterations and storing the result after each iteration with
[X1,ext] = cgls(KL,b0,regset(’Iter’, 1:iter, ’TolRes’,1e-6));

Creating the preconditioner is as simple as providing the operator and a regular-
ization parameter to the constructors:

>> P = TikhPrecond(K, mu);

Using it is as simple as adding it to the list of options for CGLS
>> opt = regset(’Iter’, 1:iter, ’TolRes’, eps/10, ’Precond’, P));

>> [X2, ext2] = cgls(KL,b0,opt)

We set the relative residual tolerance to one tenth of the machine precision (eps) to
ensure high precision.

A.3.1 Writing a new LinearOperator child

It can be complicated and it takes some effort to implement a new LinearOperator
child. Basically two classes of operators exist—one more capable than the other. The
simplest operator type only implements multiplication with a vector and perhaps
multiplication of the transposed operator with a vector. A more advanced operator
also implements one or more factorizations. Assume that the new class is called
NewOperator

First create a directory named @NewOperator and create a file NewOperator.m
for the constructor in this directory. A template looks like
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function A = NewOperator(arg)

A.data = arg;

parent = LinearOperator;

A = class(A, ’NewOperator’, parent);

The last line puts NewOperator into the class hierarchy with LinearOperator as its
parent. If a function is called with our new operator as an argument Matlab will first
search the directory @NewOperator for a m-file (called a method) of that name. If it is
not found it continues searching the parent’s directory—in this case @LinearOperator.

The maybe most important operation for NewOperator is to apply itself to a vec-
tor. The parent LinearOperator helps with the implementation by overloading mtimes,
that is, the multiplication operator *. The @LinearOperator/mtimes method as-
sists by handling details of multiplications with scalars and NewOperator only needs
to consider how to apply itself to a vector. This should be done by the method
@NewOperator/sub applytovector.m. When an object inheriting from LinearOper-
ator is multiplied with a Vector the function @LinearOperator/mtimes.m is called. It
calls the method sub applytovector.m function to do the actual work and afterward
it scales the result, that is, 1e-2*K does not modify elements of K but merely sets
a scaling variable in the operator. The sub applytovector.m function must check
whether the operator is transposed. A generic template is

function y = sub_applytovector(K, x)

if gettransposed(K)

% Calculate y = K’*x or error if not possible

else

% Calculate y = K*x

y = fun(K.data, getvector(x))

end

where the appropriate code must be inserted. See also § 4.3.1. Actual code should
also include tests of parameter types etc.

Also keep in mind that the result of the multiplication is an object in the Vector
hierarchy of the proper type. For instance, the result of applying a KroneckerProd-
uct2D to a Vector2D object should give a Vector2D object. In other cases the classes
used for of “domain” and “range” vectors might be different.

For further examples see the already implemented classes. The class Kronecker-
Product2D is an example of a class that implements both multiplication and several
factorizations. The class Interpolate in the test examples only implements multipli-
cations (through mex-files).

A.3.2 Writing a new Vector child

Writing a new Vector descendant is easier than writing a LinearOperator class. The
Vector2D inherits almost all of its functionality from the base class Vector. The base
class Vector implements plus, minus, less than etc. using the corresponding operators
on the output from the method getdata. The result is then stored via the method
setdata. This means that if the following is true
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z = setdata(x, getdata(x) + getdata(y))

in the case of addition the only thing needed for the new Vector descendant is to
implement the constructor and the two methods setdata and getdata. The Vector2D
does that as most operators such as + work elementwise.

Finally the NewVector must also implement the inner product of two NewVectors
in its method inner and the norm method.

However, one of the useful aspects of defining a new operator is the possiblity
of implementing a proper plotting method. E.g. the Vector2D has a method show
that displays the data as a graytone image with a colorbar. Other possiblities is that
NewVector also contains information on the particular discretization used that could
be used both for plotting and for operations in connection with a NewOperator that
adapts to the size of the input vector. An example is the GridVector used by the
Interpolate operator.

A.3.3 Using the Option Structure

Inspired by the Optimization Toolbox our toolbox uses a structure to pass options to
the methods. Like optimget and optimset from the Optimization Toolbox the tool-
box provides the functions regget and regset to simplify the passing and handling
of options.

The function regset sets fields of a structure but first it checks whether data
has a valid type. As an example the field ’Iter’ is only allowed to have doubles as
argument. The ’Iter’ field can be set by one of the following lines

opt = regset( ’Iter’, 10 )

opt = regset( oldopt, ’Iter’, 10)

where the second line adds or changes the ’Iter’ field of oldopt and returns the
updated option structure.

The function regget retrieves a field from an options structure. If the field is
empty it can return a default value and thereby it significantly reduces the complexity
of the initial stages of a function. An example is

iter = regget(options, ’Iter’, 10)

where regget retrieves the option ’Iter’ in the options structure. If the field is
empty regget returns 10.

Table A.1 shows the options that can be used at the time of writing. See the help
of a method to see precisely which options it uses.

If the predefined set of options is insufficient a new field can be added by taking
the following steps:

1. In regset add the new field to the structure options.

2. Add the name of the field to the type checking switch statement in the checkfield
sub-function at the end of regset file.

3. In regget add the new field to the structure optionsstruct.



132 Toolbox Tutorial

Option name Description

Disp Verbosity level
InArgs Arguments to an inner solver
InSolv Name of an inner solver
Iter Number of outer iterations
NormArgs Arguments to a norm-function
Norm Name of a norm-function
Precond Preconditioner for outer solver
RegPar Regularization parameter for method
Reorth Reorthogonalization of e.g. Lanczos vectors
Subspc Return (e.g. Lanczos) subspace
TolRes Residual tolerance
TolCon Constraint tolerance
TolX Tolerance for solution
v1 Start vector for hybrid methods
x0 Starting guess
x true True solution

Table A.1: Fields in the options structure. The actual purpose of each option depends
on the particular function.
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MOORe Tools Contents

The MOORe Tools package includes a number of regularization methods. The it-
erative regularization methods are placed as methods in the LinearOperator class,
regularization methods that use the SVD are placed in the SVDOperator class. The
Tikhonov regularization method is special as it exist in both LinearOperator (where it
uses LSQR) and SVDOperator (where it uses the SVD). That is, the SVD is used to
compute the Tikhonov solution when the SVD is available. Otherwise we use LSQR
on the damped least squares problem. Table B.1 lists the regularization methods that
are available in MOORe Tools at the time of writing. Table B.2 shows the parameter
choice methods and Table B.3 lists the functions that are not directly regularization
methods but used as tools or modules in the actual regularization methods. See the
online help, App. A and App. C for further details and examples on how the functions
are used.

Because most functions are placed as members of the LinearOperator and SVD-
Operator classes they can only be invoked if they are called with arguments of those
types. For example to invoke lsqr mt we need K to be a LinearOperator object

>> K = Matrix(randn(8)); x = Vector(randn(8,1)); y = K*x;

>> xlsqr = lsqr_mt(K,y, regset(’Iter’,3));

To obtain help use the usual help command, e.g.,
>> help lsqr_mt

In cases where a method exists in two classes, such as tikhonov, we need to specify
the class also. For instance,

>> help LinearOperator/tikhonov

>> help SVDOperator/tikhonov
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Loc. Name Short description

L ahybrid Hybrid method based on the Arnoldi (gmres)
method

L cg Conjugate gradient method
* L cgls Conjugate gradient least squares method

A glsqr LSQR solution with general modification
L gmin A minimization method for penalty type regulariza-

tion
L gminnonneg A minimization method for penalty type regulariza-

tion with non-negativity constraint.
L gmres mt The GMRES method
L l1sol Solve constrained l1 problem
S l1tsvd TSVD in 1-norm
S lptsvd TSVD in p-norm
L lbhybrid Hybrid method with Lanczos bidiagonalization

* L lsqr mt The LSQR method
L lthybrid Hybrid method with Lanczos tridiagonilizaton
L minres mt The MINRES method
A mlsqr LSQR with modification

* A mtsvd TSVD with modification
L mrII The MINRES method II
A ppgmres GMRES with “PP” modification
A pplsqr LSQR with “PP” modification

* LS tikhonov Tikhonov regularization
* S tsvd TSVD in 2-norm (the usual)

Table B.1: Regularization functions. The Loc. column indicates where to find the
function; L indicates that is a member of LinearOperator, S tells that it is a method of
SVDOperator and A that the function is found in the Algorithm directory. LS implies
that two implementations exist, one in LinearOperator and one in SVDOperator. The
functions marked with “*” are also found in the previous package Regularization
Tools.
A penalty method denotes a method, such as Tikhonov, where we add a penalizing
term to the problem, see § 3.1.1 for more details.
A hybrid method denotes a method which combines a projection method, such as
LSQR, and regularization on the projected problem, see § 3.2.2.
A modification combines the solution from a projection method with a modification
found in the subspace orthogonal to the projection. E.g., a “PP” modification implies
adding the solution to a minimization of ‖Lx‖1 subject to an orthogonality constraint.
See also Table B.4 and § 3.2.3.
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Loc. Name Short description

* S gcv Generalized cross validation
L gcvbounds MC generalized cross validation bounds

* S l curve Plot L-curve and locate corner
L lcurvebounds Bounds for L-curve curvature
L reginska Reginska L-curve bounds

Table B.2: Parameter choice methods. See Table B.1 for explanation of the Loc.
column. The functions marked with “*” are also present in Regularization Tools.

Loc. Name Short description

A gmodsubs General minimization with orth. constraint
L lanczos Lanczos tridiagonalization
A l1orth 1-norm minimization with orth. constraint
A linesearch Line search function
A lsorth 2-norm minimization with orth. constraint
A modsubs Compute 2-norm modification (uses lsorth)
A modsubs1 Compute 1-norm modification (uses l1orth)
A regget Option structure management (getting)
A regset Option structure management (setting)

Table B.3: Supporting methods. See Table B.1 for an explanation of the Loc. column.

modsubs1 gmodsubs modsubs

ahybrid
cg

cgls
gmres ppgmres
l1tsvd
lptsvd

lbhybrid
lsqr pplsqr glsqr mlsqr

lthybrid
minres
mrII
tsvd mtsvd

Table B.4: Combination of modules. The first column shows the modules that find a
solution “in a subspace” while the first row shows the modules that find the “modifi-
cations”. Inside the matrix we indicate the combinations that are implemented. The
table is sparse but all other combinations are easily created using one of the already
implemented functions as templates.
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Appendix C

Validation of Toolbox

This appendix describes the procedure (that is, the scripts) used to test the classes
and algorithms contained in MOORe Tools.

Several of the tests compare results from MOORe Tools with results obtained
using the Regularization Tools [67] package. Hence, Regularization Tools must be
available in the Matlab path. Furthermore we use the function l1c which is embedded
as a subfunction in pptsvd.m available under “Additional Matlab Software” at

http://www.imm.dtu.dk/~pch/Regutools/index.html.

The embedded subfunction l1c must be extracted into its own “m-file”.
The Optimization Toolbox is in several cases used for comparison and is therefore

also needed to run all tests. The test functions are included in the MOORe Tools
tar-file in the TestScripts directory.

An “über-script” testall is created that runs all the scripts/functions described
in the following:

% Run all test scripts

disp(’------* Testing Objects *-------’);

disp(’Testing Vector’); testvector

disp(’Testing Vector2D’); testvector2d

disp(’Testing Vector3D’); testvector3d

disp(’Testing VectorND’); testvectornd

disp(’Testing Matrix’); testmatrix

disp(’Testing SparseMatrix’); testsparse

disp(’Testing Identity’); testidentity

disp(’Testing Diagonal’); testdiagonal

disp(’Testing KroneckerProduct2D’); testkron2d

http://www.imm.dtu.dk/~pch/Regutools/index.html
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disp(’Testing KroneckerProduct3D’); testkron3d

disp(’Testing KroneckerProduct’); testkron

disp(’Testing NullOperator’); testnulloperator

disp(’Testing OperatorProduct’); testoperproduct

disp(’Testing OperatorArray’); testoperarray

disp(’Testing OperatorSum’); testopersum

disp(’Testing PermutationOperator’); testpermutation

disp(’Testing VectorCollection’); testvectorcollection

disp(’Testing VectorReshape’); testvectorreshape

disp(’Testing TikhPrecond’); testtikhprecond

disp(’Testing WeightedPseudoInverse’); testweightedpseudoinverse

disp(’Testing OperatorSVD’); testoperatorsvd

disp(’ ’);

disp(’------* Testing Algorithms *-----’);

disp(’Testing ahybrid’); testahybrid

disp(’Testing cg’); testcg

disp(’Testing cgls’); testcgls

disp(’Testing gmin’); testgmin

disp(’Testing gminnonneg’); testgminnonneg

disp(’Testing gmres’); testgmres

disp(’Testing l1orth’); testl1orth

disp(’Testing l1sol’); testl1sol

disp(’Testing l1tsvd’); testl1tsvd

disp(’Testing lbhybrid’); testlbhybrid

disp(’Testing lptsvd’); testlptsvd

disp(’Testing lsqr’); testlsqr

disp(’Testing lthybrid’); testlthybrid

disp(’Testing mrII’); testmrii

disp(’Testing minres’); testminres

disp(’Testing tikhonov (svd)’); testtikhonovsvd

disp(’Testing tikhonov (lo)’); testtikhonovlo

disp(’Testing tsvd’); testtsvd

disp(’Testing gmodsubs’); testgmodsubs

disp(’Testing lsorth’); testlsorth

disp(’Testing modsubs’); testmodsubs

disp(’Testing modsubs1’); testmodsubs1

disp(’ ’);

disp(’------* Testing parameter choice *------’);

disp(’Testing gcv’); testgcv

disp(’Testing l_curve’); testlcurve

disp(’Testing reginska’); testreginska

disp(’Testing gcvbounds’); testgcvbounds

disp(’Testing lcurvebounds’); testlcurvebounds

disp(’ ’);

disp(’------* Testing combined algorithms *------’);

disp(’Testing glsqr’); testglsqr

disp(’Testing mlsqr’); testmlsqr

disp(’Testing mtsvd’); testmtsvd

disp(’Testing ppgmres’); testppgmres

disp(’Testing pplsqr’); testpplsqr
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C.1 Testing the Vector hierarchy

The Vector class, and the classes inheriting from it, all implement the same interface.
Therefore we construct a function that calls the functions defined by the common
interface. For each class we then add code to test special code of the particular class.
The getvector method is used in the tests of all other functions and thus we test
the getvector method first. The following function checks the common methods of
the Vector interface:

function testfunvector(v1,v2,vv1,vv2)

% Test the functions of a vector

%

% Two arguments to allow for tests of dyadic operators

v2s = {

’all’; ’any’;

’max’; ’min’;

’norm’; ’sum’ };

v2v = {

’abs’; ’cosh’;

’ctranspose’;

’exp’; ’log’;

’not’; ’sign’;

’sqrt’; ’tanh’;

’uminus’; ’uplus’;

’isinf’; ’conj’ };

vs2v = {

’and’; ’eq’;

’ge’; ’gt’;

’le’; ’lt’;

’minus’; ’ne’;

’or’; ’plus’;

’power’; ’rdivide’;

’ldivide’; ’times’;

’xor’

};

sv2v = {

’and’; ’eq’;

’ge’; ’gt’;

’le’; ’lt’;

’minus’; ’ne’;

’or’; ’plus’;

’rdivide’; ’ldivide’;

’times’; ’xor’

};

vv2v = {

’and’; ’eq’;

’ge’; ’gt’;

’le’; ’lt’;

’minus’; ’ne’;
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’or’; ’plus’;

’power’; ’rdivide’;

’ldivide’;’times’;

’xor’

};

checkgetvector(v1,vv1);

checkgetvector(v2,vv2);

for i=1:length(v2s)

checkv2s(v2s{i}, v1)

checkv2s(v2s{i}, v2)

end

for i=1:length(v2v)

checkv2v(v2v{i}, v1);

checkv2v(v2v{i}, v2);

end

for i=1:length(vs2v)

checkvs2v(vs2v{i}, v1, 2);

checkvs2v(vs2v{i}, v2, 0.1);

end

for i=1:length(sv2v)

checksv2v(sv2v{i}, 2 ,v1);

checksv2v(sv2v{i}, 0.1 ,v2);

end

vt = v1’;

if ~gettransposed(vt)

printerror(’transposing’, v1);

end

n1 = norm(v1)^2; n2 = norm(v2)^2;

if abs(v1’*v1 - n1) > length(v1)*eps,

printerror(’inner’, v1, abs(v1’*v1 - n1));

end

if abs(v2’*v2 - n2) > length(v2)*eps,

printerror(’inner’, v2, abs(v2’*v2 - n2));

end

%-----

function checkgetvector(v,vv)

d = norm(getvector(v)-vv);

if d > length(vv)*eps

printerror(’getvector’, v, d);

end

%-----

function checkvs2v(fun, v, s)

VV = feval(fun , getvector(v), s);

vv = getvector(feval(fun , v , s));
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if ~isequal(VV,vv)

printerror(fun, v, norm(VV-vv));

end

%-----

function checksv2v(fun, s, v)

VV = feval(fun , s, getvector(v) );

vv = getvector(feval(fun , s , v) );

if ~isequal(VV,vv)

printerror(fun, v, norm(VV-vv) );

end

%-----

function checkv2s(fun ,v)

S = feval(fun, getvector(v));

s = feval(fun, v);

if ~isequal(S,s)

printerror(fun, v, abs(s-S));

end

%-----

function checkv2v(fun, v)

VV = feval(fun, getvector(v));

vv = getvector(feval(fun, v));

if ~isequal(VV,vv)

printerror(fun, v, norm(VV-vv));

end

The checks are performed by calling the functions using objects and comparing
the results with the corresponding ones computed with ordinary Matlab double ar-
rays. The printerror function prints the name of the method, the class name and
optionally a scalar. The scalar is used in cases where the result of a computation
can vary depending on the exact order of, for example, a summation. The value is
used to determine if we have found an error or the different results are a consequence
of rounding errors due to another order of computations. Thus the output must be
inspected to determine if any unusually large discrepancies have occurred. Note, that
a “large discrepancy” is relative to the particular function that we are testing.

C.1.1 Test of Vector

The Vector class is tested by creating two objects and using the function described
above. We also test if the constructor reports errors for non-column vector arguments
as it should:

function testvector()
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vv1 = randn(8,1); vv2 = randn(8,1);

v1 = Vector(vv1); v2 = Vector(vv2);

testfunvector(v1,v2,vv1,vv2)

testerror(’Vector(randn(9,3))’)

Test of Vector2D, Vector3D and VectorND

The test of Vector2D, Vector3D closely follows the steps used to test the base class
Vector.
Test of Vector2D:

function testvector2d()

vv1 = randn(8); vv2 = randn(8);

v1 = Vector2D(vv1); v2 = Vector2D(vv2);

testfunvector(v1,v2,vv1(:),vv2(:));

testerror(’Vector2D(randn(9,2,4))’);

Test of Vector3D:

function testvector3d()

vv1 = randn(8,8,3); vv2 = randn(8,8,3);

v1 = Vector3D(vv1); v2 = Vector3D(vv2);

testfunvector(v1,v2,vv1(:),vv2(:));

testerror(’Vector3D(randn(8,2,9,3))’);

Test of VectorND:

function testvectornd()

vv1 = randn(8,8,3,4); vv2 = randn(8,8,3,4);

v1 = VectorND(vv1); v2 = VectorND(vv2);

testfunvector(v1,v2,vv1(:),vv2(:))

Test of VectorStack

The following script tests the various parts of the VectorStack class. The creation of
the VectorStack objects is somewhat more complicated than for the simpler classes
as it needs other Vectors to be created. See also the test of the OperatorArray class
where we test multiplication of OperatorArray and VectorStack objects.
Test of VectorStack:

function testvectorstack();

vv11 = randn(8,1); vv21 = randn(8,1);

vv12 = randn(8); vv22 = randn(8);

vv13 = randn(8,8,2); vv23 = randn(8,8,2);

v11 = Vector(vv11); v21 = Vector(vv21);

v12 = Vector2D(vv12); v22 = Vector2D(vv22);

v13 = Vector3D(vv13); v23 = Vector3D(vv23);
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v1 = stack(v11,v12,v13); vv1 = [vv11(:); vv12(:); vv13(:)];

v2 = stack(v21,v22,v23); vv2 = [vv21(:); vv22(:); vv23(:)];

testfunvector(v1,v2,vv1,vv2)

C.2 Testing the LinearOperator hierarchy

The tests of LinearOperator type objects have one or more phases:

1. A test of the interface defined by LinearOperator. This test includes testing of
multiplication and solution methods, if applicable.

2. A test of the interface defined by SVDOperator, if applicable. This part consist
of testing the svd operation.

3. A test of the interface defined by QROperator, if applicable.

The base classes LinearOperator, SVDOperator and QROperator are tested indi-
rectly through the tests of the derived classes.

LinearOperator Interface Tests

The following scripts are used to test the different interfaces defined in LinearOperator.
They are used in the tests of the operators in the LinearOperator hierarchy.

Of vital importance is the test of the getmatrix method because it is the foun-
dation of all other tests. We compare the result of getmatrix with a double array
constructed with Matlab’s usual commands:

function testgetmatrix(A,AA)

d = norm(getmatrix(A) - AA, ’fro’);

if d > prod(size(AA))*eps*10

printerror(’getmatrix’, A, d);

end

The testsize function checks if the size is reported correctly by the object:

function testsize(A)

mn = size(A); mmnn = size(getmatrix(A));

if ~isequal(mn,mmnn), printerror(’size’, A); end

The testmtimes function checks if multiplication with an object yields the same
result as multiplication with the object converted to a double array. This function
checks operator-vector multiplication:

function testmtimes(A,x)

AA = getmatrix(A);

b = getvector(A*x); bb = AA*getvector(x);

d = norm(b - bb);

if d > eps*length(x), printerror(’mtimes’, A, d); end
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Some operators also support multiplication with operators. The testopermult func-
tion checks if multiplication of two operators yields the proper result. The third
argument is an object of the class that the result of the multiplication is supposed
to be:

function testopermult(A,B,C)

AA = getmatrix(A); BB = getmatrix(B);

AB = A*B;

if ~isequal(class(AB), class(C)), printerror(’opermult’,A); end

d = norm(getmatrix(AB) - AA*BB, ’fro’);

if d > eps*prod(size(A))*10

printerror(’Not exact match in operator multiplication’, A, d);

end

The testplusminus function performs a similar test but now addition and subtrac-
tion of operators are tested:

function testplusminus(A,B,C)

APB = A+B; AMB = A-B;

if ~isequal(class(APB) , class(C)), printerror(’plus’,A); end

if ~isequal(class(AMB) , class(C)), printerror(’minus’,A); end

d = norm(getmatrix(A+B)-(getmatrix(A)+getmatrix(B)),’fro’);

if d > eps*prod(size(A))

printerror(’plus’, A, d);

end

d = norm(getmatrix(A-B)-(getmatrix(A)-getmatrix(B)),’fro’);

if d > eps*prod(size(A))

printerror(’minus’, A, d);

end

The testsolve function checks if the solve operation yields a result close to the
result obtained via Matlab’s pinv:

function testsolve(A,y)

AA = getmatrix(A); yy = getvector(y);

xx = pinv(full(AA))*yy;

x = getvector(A\y);

d = norm(xx - x);

if d > eps*length(x), printerror(’sub_solve’, A, d); end

The function testdiag tests if the diagonal is returned as expected:

function testdiag(A)

d = norm(getvector(diag(A)) - diag(getmatrix(A)));

if d > max(size(A))*eps, printerror(’diag’, A, d); end

The function testcond tests the condition number computation:
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function testcond(A)

d = abs(cond(A)-cond(full(getmatrix(A))));

if d > eps, printerror(’cond’, A, d); end

In all tests seen later we scale and transpose the operators to see if the interplay be-
tween LinearOperator’s mtimes and the particular object’s sub applytovector works
correctly.

SVDOperator Interface Test

The SVD is unique up to a change of sign in the singular vectors (assuming that none
of the singular values are equal). We check if the singular vectors from the object
oriented framework are orthogonal to the SVD vectors obtained from the operator’s
double array. Also the singular values are checked to see if they match:

function testsvd(A)

[U,S,V] = svd(A);

U = getmatrix(U);S = getmatrix(S);V = getmatrix(V);

[UU,SS,VV] = svd(full(getmatrix(A)));

p = length(find(diag(SS) < SS(1,1)*eps*10 ));

d = norm(UU(:,1:p)’*U(:,1:p) - VV(:,1:p)’*V(:,1:p), ’fro’);

if d > eps*size(U,1), printerror(’svd vectors’, A, d); end

d = norm(diag(S) - diag(SS));

if d > eps*min(size(S)), printerror(’svd values’, A, d); end

QROperator Interface Test

The QR factorization is not unique. Thus we check if we have an orthogonal matrix
and a triangular matrix which, when multiplied, gives the input operator:

function testqr(A,varargin)

[Q,R] = qr(A,varargin{:});

QQ = getmatrix(Q); RR = getmatrix(R);

d = norm(QQ’*QQ - eye(size(Q,2)), ’fro’);

if d > eps*size(Q,1), printerror(’qr vectors’, A, d);end

d = norm(RR-triu(RR),’fro’);

if d > eps*prod(size(R)), printerror(’qr tri’, A, d);end

d = norm(QQ*RR - getmatrix(A), ’fro’);

if d > eps*prod(size(A))*10, printerror(’qr prod’, A, d); end

C.2.1 Test of DiagonalOperator

The simple DiagonalOperator supports a wide range of operations due to its simple
nature. We use both Vector and Vector2D objects to describe the diagonal:
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function testdiagonal()

d = randn(64,1);

AA = diag(d); A = DiagonalOperator(Vector(d));

x = Vector(randn(64,1));

test1(A ,x,x, AA);

test1(2*A ,x,x,2*AA);

test1(3*A’,x,x,3*AA’);

AA = full(spdiags(d, 0, 64, 100));

A = DiagonalOperator(Vector(d), 64, 100);

x = Vector(randn(100,1)); y = Vector(randn(64,1));

test1( A ,x,y,AA);

test1(2*A ,x,y,2*AA);

test1(3*A’,y,x,3*AA’);

d1 = randn(64,1); d2 = randn(64,1);

D1 = DiagonalOperator(Vector(d1));

D2 = DiagonalOperator(Vector(d2));

I = IdentityOperator(64);

testopermult( D1,D2 , D1);

testopermult(2*D1,D2’, D1);

testopermult(2*D1’,I , D1);

d = randn(20);

AA = diag(d(:)); A = DiagonalOperator(Vector2D(d));

x = Vector2D(randn(20));

test1(A ,x,x, AA);

test1(2*A ,x,x,2*AA);

test1(3*A’,x,x,3*AA’);

%-----

function test1(A,x,y,AA)

testgetmatrix(A,AA);

testmtimes(A,x);

testcond(A);

testsvd(A);

testqr(A);

testsolve(A,y);

testsize(A);

testdiag(A);

testplusminus(A,A,A);

C.2.2 Test of IdentityOperator

The test of DiagonalOperator is similar to the test of DiagonalOperator. Note that
the result of multiplication of two IdentityOperators is a DiagonalOperator:

function testidentity()

AA = eye(64); A = IdentityOperator(64);
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x = Vector(randn(64,1));

test1(A ,x,x, AA);

test1(2*A ,x,x,2*AA);

test1(3*A’,x,x,3*AA’);

AA = eye(64, 100);

A = IdentityOperator(64, 100);

x = Vector(randn(100,1)); y = Vector(randn(64,1));

test1( A ,x,y,AA);

test1(2*A ,x,y,2*AA);

test1(3*A’,y,x,3*AA’);

% ---

function test1(A,x,y,AA)

testgetmatrix(A,AA);

testmtimes(A,x);

testsvd(A);

testqr(A);

testcond(A);

testsolve(A,y);

testsize(A);

testdiag(A);

testplusminus(A,A,DiagonalOperator);

C.2.3 Test of KroneckerProduct

The test of the KroneckerProduct class includes a test of multiplication between two
four-term KroneckerProduct objects:

function testkron()

disp(’Check 1 - square terms’)

AA = randn(4); BB = randn(4); CC = randn(4); DD = randn(4);

xx = randn(4,4,4,4); yy = randn(4,4,4,4);

A = Matrix(AA); B = Matrix(BB); C = Matrix(CC); D = Matrix(DD);

x = VectorND(xx); y = VectorND(yy);

ABC1 = KroneckerProduct({A,B,C,D});

AABBCC1 = kron(AA,kron(BB,kron(CC,DD)));

test1(ABC1,x,y,AABBCC1)

disp(’Check 2 - all overdetermined ’)

AA = randn(4,3); BB = randn(4,3); CC = randn(4,3); DD = randn(4,3);

xx = randn(3,3,3,3); yy = randn(4,4,4,4);

A = Matrix(AA); B = Matrix(BB); C = Matrix(CC); D = Matrix(DD);

x = VectorND(xx); y = VectorND(yy);

AABBCC2 = kron(kron(AA,BB),kron(CC,DD));

ABC2 = KroneckerProduct({A,B,C,D});

test1(ABC2,x,y,AABBCC2)

disp(’Check 3 - mixed (problems in solve)’)

AA = randn(4,4); BB = randn(3,7); CC = randn(4); DD = randn(3);



148 Validation of Toolbox

xx = randn(3,4,7,4); yy = randn(3,4,3,4);

A = Matrix(AA); B = Matrix(BB); C = Matrix(CC); D = Matrix(DD);

x = VectorND(xx); y = VectorND(yy);

AABBCC3 = kron(AA,kron(BB,kron(CC,DD)));

ABC3 = KroneckerProduct({A,B,C,D});

test2(ABC3,x,y,AABBCC3)

disp(’Test 4 - multiplication’);

testopermult(ABC1,ABC2,ABC1);

% -----

function test1(K,x,y,KK)

testgetmatrix(K,KK);

testmtimes(K,x);

testcond(K);

testsvd(K);

testqr(K,0);

testsolve(K,y);

return

% -----

function test2(K,x,y,KK)

testgetmatrix(K,KK);

testmtimes(K,x);

testcond(K);

testsvd(K);

testsolve(K,y);

return

C.2.4 Test of KroneckerProduct2D and KroneckerProduct3D

The tests of the two specialized versions of the Kronecker product, KroneckerProd-
uct2D and KroneckerProduct3D, are similar to the test of the general Kronecker prod-
uct. We simply use two and three terms, respectively, instead of four. The test of
KroneckerProduct2D:

function testkron2d

% Test without scaling and transposing

disp(’Check 1 - square terms’)

AA = randn(8); BB = randn(8); xx = randn(8); yy = randn(8);

A = Matrix(AA); B = Matrix(BB); x = Vector2D(xx); y = Vector2D(yy);

AB1 = KroneckerProduct2D(A,B);

test1(AB1,x,y)

disp(’Check 2 - overdetermined ’)

AA = randn(8,4); BB = randn(8,4);

xx = randn(4); yy = randn(8);

A = Matrix(AA); B = Matrix(BB); x = Vector2D(xx); y = Vector2D(yy);

AB2 = KroneckerProduct2D(A,B);

test1(AB2,x,y)
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disp(’Check 3 - mixed (problems in solve)’)

AA = randn(8,4); BB = randn(3,7);

xx = randn(7,4); yy = randn(3,8);

A = Matrix(AA); B = Matrix(BB); x = Vector2D(xx); y = Vector2D(yy);

AB3 = KroneckerProduct2D(A,B);

test2(AB3,x,y)

testopermult(AB1,AB2,AB1);

% ---

function test1(K,x,y)

testmtimes(K,x);

testsvd(K);

testqr(K,0);

testsolve(K,y);

return

% ---

function test2(K,x,y)

testmtimes(K,x);

testsvd(K);

testsolve(K,y);

return

Test of KroneckerProduct3D:

function testkron3d()

disp(’Check 1 - square terms’)

AA = randn(4); BB = randn(4); CC = randn(4);

xx = randn(4,4,4); yy = randn(4,4,4);

A = Matrix(AA); B = Matrix(BB); C = Matrix(CC);

x = Vector3D(xx); y = Vector3D(yy);

ABC1 = KroneckerProduct3D(A,B,C);

AABBCC1 = kron(AA,kron(BB,CC));

test1(ABC1,x,y,AABBCC1)

disp(’Check 2 - all overdetermined ’)

AA = randn(4,3); BB = randn(4,3); CC = randn(4,3);

xx = randn(3,3,3); yy = randn(4,4,4);

A = Matrix(AA); B = Matrix(BB); C = Matrix(CC);

x = Vector3D(xx); y = Vector3D(yy);

AABBCC2 = kron(kron(AA,BB),CC);

ABC2 = KroneckerProduct3D(A,B,C);

test1(ABC2,x,y,AABBCC2)

disp(’Check 3 - mixed (problems in solve)’)

AA = randn(4,4); BB = randn(3,7); CC = randn(4);

xx = randn(4,7,4); yy = randn(4,3,4);

A = Matrix(AA); B = Matrix(BB); C = Matrix(CC);

x = Vector3D(xx); y = Vector3D(yy);

AABBCC3 = kron(AA,kron(BB,CC));
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ABC3 = KroneckerProduct3D(A,B,C);

test2(ABC3,x,y,AABBCC3)

disp(’Test 4 - multiplication’);

testopermult(ABC1,ABC2,ABC1);

% ---

function test1(K,x,y,KK)

testgetmatrix(K,KK);

testmtimes(K,x);

testsvd(K);

testqr(K,0);

testsolve(K,y);

return

% ---

function test2(K,x,y,KK)

testgetmatrix(K,KK);

testmtimes(K,x);

testsvd(K);

testsolve(K,y);

return

C.2.5 Test of Matrix

The Matrix class encapsulates the ordinary double array and it is assumed that its
dimensions are “reasonable” so that the computation of a decompositions such as
the SVD can be done. Thus most operations are implemented and must be tested:

function testmatrix()

disp(’Test 1’);

AA = randn(64); A = Matrix(AA);

x = Vector(randn(64,1));

test1(A ,x,x, AA);

test1(2*A ,x,x,2*AA);

test1(3*A’,x,x,3*AA’);

testopermult(A,A,A);

testopermult(2*A’,3*A’,A);

disp(’Test 2’);

AA = randn(64,32); A = Matrix(AA);

x1 = Vector(rand(32,1)); x2 = Vector(randn(64,1));

test1(A ,x1,x2, AA);

test1(2*A ,x1,x2,2*AA);

test1(3*A’,x2,x1,3*AA’);

testopermult(A’,A,A);

testopermult(2*A’,A,A);

disp(’Test 3’);

AA = randn(32,64); A = Matrix(AA);

x1 = Vector(randn(64,1)); x2 = Vector(randn(32,1));
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test1(A,x1,x2,AA);

test1(2*A,x1,x2,2*AA);

test1(3*A’,x2,x1,3*AA’);

testopermult(A,2*A’,A);

% ---

function test1(A,x,y,AA)

testgetmatrix(A,AA);

testmtimes(A,x);

testsvd(A);

testqr(A);

testcond(A);

testsolve(A,y);

testsize(A);

testdiag(A);

testplusminus(A,A,OperatorSum);

Note that we have not implemented Matrix/plus and Matrix/minus; hence we get
an OperatorSum object when two Matrix objects are added.

C.2.6 Test of NullOperator

The NullOperator class implements fewer methods than, for instance, the Matrix class.
The sub solve method returns a zero vector:

function testnulloperator()

AA = zeros(32); A = NullOperator(32);

x = Vector(randn(32,1));

test1(A,x,x,AA)

test1(2*A,x,x,2*AA);

test1(3*A’,x,x,3*AA’);

AA = zeros(64,32);

x = Vector(randn(32,1)); y = Vector(randn(64,1));

A = NullOperator(y,x);

test1(A,x,y,AA)

test1(2*A,x,y,2*AA)

test1(3*A’,y,x,3*AA’)

AA = zeros(32,64);

x = Vector(randn(64,1)); y = Vector(randn(32,1));

A = NullOperator(y,x);

test1(A,x,y,AA)

test1(2*A,x,y,2*AA)

test1(3*A’,y,x,3*AA’)

% ---

function test1(A,x,y,AA)

testgetmatrix(A,AA);

testsize(A);

testcond(A);
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testsolve(A,y);

testmtimes(A,x);

C.2.7 Test of OperatorArray

We test the OperatorArray class by initializing a 3 × 3 block operator consisting of
Matrix and IdentityOperator objects.

function testoperarray()

AA11 = randn(64); AA12 = randn(64,32);

AA22 = eye(32); AA21 = randn(32,64);

A11 = Matrix(AA11); A12 = Matrix(AA12);

A22 = IdentityOperator(32); A21 = Matrix(AA21);

xx1 = randn(64,1); xx2 = randn(32,1);

xx = [xx1;xx2];

x1 = Vector(xx1); x2 = Vector(xx2);

x = [x1;x2];

AA = [AA11 AA12; AA21 AA22];

A = [A11 A12; A21 A22];

disp(’Test 1’);

test1(A,x,AA);

AA = [AA11’ 2*AA12; AA21 3*AA22’];

A = [A11’ 2*A12 ; A21 3*A22’ ];

disp(’Test 2’);

test1(A,x,AA);

disp(’Test 3 - transposed’);

test1(A’,x,AA’);

disp(’Test 4 - operator multiplication’);

testopermult(A,A,A);

% ---

function test1(A,x,AA)

testgetmatrix(A,AA)

testsize(A);

testmtimes(A,x);

testplusminus(A,A,OperatorSum);

C.2.8 Test of OperatorProduct

The OperatorProduct class implements sub solve for products where all terms are
square (and of equal size). No decompositions are defined:

function testoperproduct
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disp(’Test 1’)

AA = randn(8); BB = randn(8);

A = Matrix(AA); B = Matrix(BB);

xx = randn(8,1); x = Vector(xx);

yy = randn(8,1); y = Vector(yy);

AB = OperatorProduct({A,B});

test1(AB,x,y,AA*BB);

test1(AB’,x,y,BB’*AA’);

disp(’Test 2 - tranpose’)

AB = OperatorProduct({2*A,B’});

test1(AB,x,y,2*AA*BB’)

disp(’Test 3 - extending product’)

ABB = AB*B;

test1(ABB,x,y,2*AA*BB’*BB)

disp(’Test 4 - non-square terms’)

AA = randn(8,10); BB = randn(10,8);

A = Matrix(AA); B = Matrix(BB);

xx = randn(8,1); x = Vector(xx);

AB = OperatorProduct({A,B});

test2(AB,x,AA*BB);

disp(’Test 5 - extracting columns’)

testextractcolumns(AB,1:4)

% ---

function test1(A,x,y,AA)

testgetmatrix(A,AA)

testsize(A);

testmtimes(A,x)

testsolve(A,y);

testplusminus(A,A, OperatorSum);

return

% ---

function test2(A,x,AA)

testgetmatrix(A,AA)

testsize(A);

testmtimes(A,x)

testplusminus(A,A, OperatorSum);

C.2.9 Test of OperatorSum

The OperatorSum class only implements multiplication with a vector:

function testopersum()

AA = randn(8); BB = randn(8); xx = rand(8,1);

A = Matrix(AA); B = Matrix(BB); x = Vector(xx);

disp(’Test 1’);

AABB = AA+BB; AB = OperatorSum({A,B});
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test1(AB,x,AABB);

disp(’Test 2’);

AABB = 2*AA+3*BB’; AB = OperatorSum({2*A, 3*B’});

test1(AB,x,AABB);

disp(’Test 3 - transposed’);

test1(AB’,x,AABB’);

function test1(A,x,AA)

testgetmatrix(A,AA);

testsize(A);

testmtimes(A,x);

C.2.10 Test of OperatorSVD

The OperatorSVD class is used to cache the SVD factors. We test if the proper
terms are returned and if the multiplication operation with the entire object is done
properly:

function testoperatorsvd()

AA = randn(64); A = Matrix(AA);

[U,S,V] = svd(A); [UU,SS,VV] = svd(AA);

Asvd = OperatorSVD(U,S,V);

x = Vector(randn(64,1));

test1(Asvd,x,AA);

test1(2*Asvd’, x , 2*AA’);

test1(getU(Asvd),x,UU);

test1(getV(Asvd),x,VV);

test1(getS(Asvd),x,SS);

% ---

function test1(U,x,UU)

testgetmatrix(U,UU);

testmtimes(U,x);

testsolve(U,x)

testsvd(U);

C.2.11 Test of PermuationOperator

The PermutationOperator shuffles the elements of Vector objects. We perform the
usual set of tests:

function testpermutation()

v = rand(100,1);

[vv,idx] = sort(v);

v = Vector(v);

PP = eye(100); PP = PP(:,idx);
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P = PermutationOperator(idx);

disp(’Test 1’)

test1(P,v,v,PP)

test1(2*P,v,v,2*PP)

test1(2*P’,v,v,2*PP’)

disp(’Test 2 - extract columns’)

P = P(:,1:30); PP = PP(:,1:30); v2 = v(1:30);

test1(P ,v2,v , PP)

test1(2*P ,v2,v ,2*PP)

test1(2*P’,v ,v2,2*PP’)

% ---

function test1(A,x,y,AA)

testgetmatrix(A,AA);

testsize(A);

testmtimes(A,x);

testmtimes(A’,y);

C.2.12 Test of SparseMatrix

The SparseMatrix class implements fewer methods than the dense Matrix class. For
instance we do not have decompositions such as the SVD:

function testsparse()

AA = sprand(64,64,0.4,1e-4); A = SparseMatrix(AA);

x = Vector(randn(64,1));

disp(’Test 1’)

test1(A ,x,x, AA);

test1(2*A ,x,x,2*AA);

test1(3*A’,x,x,3*AA’);

disp(’Test 2’);

AA = sprandn(64,32,0.2); A = SparseMatrix(AA);

x1 = Vector(rand(32,1)); x2 = Vector(randn(64,1));

test1(A ,x1,x2, AA);

test1(2*A ,x1,x2,2*AA);

test1(3*A’,x2,x1,3*AA’);

disp(’Test 3’);

AA = sprandn(32,64,0.3); A = SparseMatrix(AA);

x1 = Vector(randn(64,1)); x2 = Vector(randn(32,1));

test1(A,x1,x2,AA);

test1(2*A,x1,x2,2*AA);

test1(3*A’,x2,x1,3*AA’);

% ---

function test1(A,x,y,AA)

testgetmatrix(A,AA);
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testmtimes(A,x);

testsolve(A,y);

testsize(A);

testdiag(A);

testplusminus(A,A,OperatorSum);

C.2.13 Test of TikhPrecond

The preconditioning class TikhPrecond only implements sub solve. Results are com-
pared to results obtained from an explicitly created double array:

function testtikhprecond()

AA = randn(64); A = Matrix(AA); l = 1e-3;

[UU,SS,VV] = svd(AA); ss = diag(SS);

PP = VV*diag( sqrt(ss.^2 + l^2) )*VV’;

P = TikhPrecond(A, l); x = Vector(randn(64,1));

test1(P ,x,PP);

test1(P’ ,x,PP’);

test1(2*P,x,2*PP);

%-----

function test1(A,x,AA)

testgetmatrix(A,AA);

testsize(A);

testsolve(A,x);

C.2.14 Test of VectorCollection

We create a VectorCollection from the columns of a double array and check the usual
set of multiplication operations:

function testvectorcollection()

AA = randn(64); xx = randn(64,1); x = Vector(xx);

A = VectorCollection(64);

for i=1:64, A(:,i) = Vector(AA(:,i)); end

disp(’Test 1’);

test1(A,x,AA);

disp(’Test 2’);

test1(A’,x,AA’);

disp(’Test 3’);

test1(2*A’,x,2*AA’)

disp(’Test 4 - extract cols’);

x = Vector(randn(32,1)); y = Vector(randn(64,1));

A = A(:,1:32); AA = AA(:,1:32);

test1(A, x, AA);

test1(2*A’, y, 2*AA’);
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disp(’Tet 5 - operator mult’)

KK = randn(64); K = Matrix(KK);

test1(K*A,x,KK*AA);

% ---

function test1(A,x,AA)

testgetmatrix(A,AA);

testsize(A);

testmtimes(A,x);

C.2.15 Test of VectorReshape

To test VectorReshape we see if it changes the type of vectors as intended:

function testvectorreshape()

disp(’Test 1 - Vector - Vector2D’)

xx = randn(64); X1 = Vector(xx(:)); X2 = Vector2D(xx);

R = VectorReshape(64,64);

test1(R,X1,X2);

test1(R’,X2,X1);

disp(’Test 2 - Vector - Vector3D’)

xx = randn(64,64,32); X1 = Vector(xx(:)); X2 = Vector3D(xx);

R = VectorReshape(64,64,32);

test1(R,X1,X2);

test1(R’,X2,X1);

disp(’Test 3 - Vector - VectorND’)

xx = randn(64,64,64,32); X1 = Vector(xx(:)); X2 = VectorND(xx);

R = VectorReshape(64,64,64,32);

test1(R,X1,X2);

test1(R’,X2,X1);

% ---

function test1(R,X1,X2)

if class(R*X1) ~= class(X2), printerror(’type’, R); end

if norm(R*X1 - X2) ~= 0, printerror(’mtimes’, R); end

C.2.16 Test of WeightedPseudoInverse

We check the WeightedPseudoInverse class against a double array created explicitly
from the GSVD:

function testweightedpseudoinverse()

KK = randn(64,32); K = Matrix(KK);

[L,W] = getL(32,1); LL = getmatrix(L); WW = getmatrix(W);

LKinv = WeightedPseudoInverse(L,W,K);

[UU,sm,XX,VV] = cgsvd(KK,LL);

MM = full(spdiags(sm(:,2),0,size(L,1),size(L,2)));
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LLKKinv = XX*pinv(MM)*VV’;

x = Vector(randn(31,1));

y = Vector(randn(32,1));

test1(LKinv, x, LLKKinv);

test1(LKinv’, y, LLKKinv’);

d = norm(nullcomp(LKinv, K*y) - pinv(KK*WW*WW’)*getvector(K*y));

if d > eps*32

printerror(’nullcomp’, LKinv, d);

end

% ---

function test1(K,x,KK,WW)

testgetmatrix(K,KK);

testsize(K);

testmtimes(K,x);

C.3 Testing the Algorithms

The tests of the algorithms are listed in alphabetical order which, in some cases,
means that we refer to tests of functions/algorithms described later in this appendix.
The algorithms that combine modules are only tested for syntax errors as they are
based on the tests of the individual modules. They have also been subject to a code
review.

Test of ahybrid

We test if the Arnoldi/upper Hessenberg decomposition within the hybrid method
has the correct properties and if the regularization of the inner problem has been
carried out correctly:

function testahybrid()

[K,y,x] = shaw(32);

inopt = regset(’RegPar’,1e-2);

opt = regset(’Iter’,10,’InSolv’,’tikhonov’,’InArgs’,inopt,’Subspc’,’on’);

[X, extra] = ahybrid(K,y,opt);

VV = getmatrix(extra.V);

HH = getmatrix(extra.H);

KK = getmatrix(K);

t = KK*VV(:,1:end-1)-VV*HH;

d = norm(t,’fro’);

if d > eps*100, printerror(’ahybrid 1’, K, d); end

d = norm(HH - triu(HH,-1), ’fro’);

if d > 0, printerror(’ahybrid 2’,K); end
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X1 = extra.V(:,1:10)*tikhonov(extra.H, extra.V’*y, inopt);

d = norm(X-X1);

if d > length(X)*eps, printerror(’ahybrid 4’,K,d), end

Test of cg

The test of conjugate gradients compares its result with lsqr mt (see later) after a
few iterations, such that rounding errors are limited. We use a symmetric positive
definite test problem obtained from the normal equations.

function testcg()

[K,y,x] = deriv2(32);

A = K’*K; b = K’*y;

[X1, ext1] = cg(A,b,regset(’Iter’,4,’TolRes’,eps));

[X2, ext2] = lsqr_mt(K,y,regset(’Iter’, 4, ’TolRes’, eps));

d = norm(X1-X2);

if d > 1e-10, printerror(’cg’, K, d); end

Test of cgls

The cgls function is tested against the lsqr mt function (tested later).

function testcgls()

[K,y,x] = deriv2(32);

[X1, ext1] = cgls(K,y,regset(’Iter’, 4,’TolRes’, eps, ’Reorth’, ’on’));

[X2, ext2] = lsqr_mt(K,y,regset(’Iter’, 4,’TolRes’, eps, ’Reorth’, ’on’));

d = norm(X1-X2);

if d > 1e-10, printerror(’cgls’, K, d); end

[X1,ext1,restart] = cgls(K,y,regset(’Iter’, 2));

[X1,ext1,restart] = cgls(K,y,regset(’Iter’, 2),restart);

d = norm(X1-X2);

if d > 1e-10, printerror(’cgls restart’, K, d); end

Test of gmin

We test gmin by comparing its result with the result from fminunc from the Opti-
mization Toolbox. We use backslash (Gauss-elimination as provided by Matlab) to
solve the inner problems. Hereby we try to only check gmin and not the accuracy and
other problems, such as the choice of stopping criteria, associated with an iterative
inner solver. However, we do not expect the results to be exactly the same due to
the different methods used:

function testgmin()

[K,y,x] = deriv2(32);
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y = y + randn(size(y))*1e-3; y(4) = y(4)*3;

KL = [K; IdentityOperator(size(K,2))]; y0 = [y; zeros(y)];

normfun = ’fair’; normarg = 1e-3;

options = regset(’InSolv’, ’backslash’, ...

’InArgs’, [], ...

’Iter’, 50, ...

’Norm’, normfun, ...

’NormArgs’,normarg);

[x1,extra] = gmin(KL,y0,options);

opt = optimset(’GradObj’, ’on’,’TolFun’,1e-10,’MaxIter’,50,...

’Hessian’,’on’,’TolX’,eps);

xx1 = fminunc(@fun, zeros(size(x1)), opt,KL,y0,normfun,normarg);

d = norm(xx1-x1)/norm(x1);

if d > 1e-6, printerror(’gmin solution’, K, d); end

normfun = ’stacknorm’; normarg = {’fair’, 1e-1, 1; ’logistic’, 1e-1, 1e-3};

options = regset(options, ...

’Norm’, normfun, ...

’NormArgs’, normarg);

[x2, extra] = gmin(KL,y0,options);

xx2 = fminunc(@fun, zeros(size(x1)), opt,KL,y0,normfun,normarg);

d = norm(xx2-x2)/norm(xx2);

if d > 1e-6, printerror(’gmin solution’, K, d); end

% ---

function [x,dx,ddx] = fun(x, KL, b0,normfun, normarg,xx)

[n,dn,ddx] = feval(normfun, KL*Vector(x)-b0, normarg);

x = n;

dx = getvector(KL’*dn);

ddx = getmatrix(KL)’*diag(getvector(ddx))*getmatrix(KL);

Test of gminnonneg

The non-negativity constrained minimization performed by gminnonneg is compared
to the result of fmincon from the Optimization Toolbox. Also in this case we expect
a larger discrepancy due to the different methods used:

function testgminnonneg()

n=100;

[K,y,x] = heat(n);

y = y + randn(size(y))*1e-3; y(4) = y(4)*3;

KL = stack(K,1e-3*IdentityOperator(n)); y0 = stack(y,zeros(y));
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normfun = ’fair’; normarg = 0.001;

inargs = regset(’Iter’, 55, ’TolRes’, 1e-12,’Disp’,0);

options = regset(’Iter’, 20, ...

’InSolv’, ’lsqr_mt’, ...

’InArgs’, inargs, ...

’Norm’, normfun, ...

’NormArgs’, normarg);

[x1, extra] = gminnonneg(KL,y0,options);

opt = optimset(’GradObj’, ’on’, ’TolFun’, 1e-10, ’MaxIter’, 50, ...

’Hessian’, ’on’, ’TolX’, eps);

xx1 = fmincon(@fun, zeros(size(x1)), ...

[],[],[],[],zeros(size(x1)),[],[], ...

opt,KL,y0,normfun,normarg);

n = feval(normfun, KL*x1 - y0, normarg);

nn = feval(normfun, Vector(getmatrix(KL)*xx1-getvector(y0)), normarg);

if (n-nn)/nn > 1e-2, printerror(’gminnonneg solution’, K, (n-nn)/nn); end

% ---

function [x,dx,ddx] = fun(x, KL, b0,normfun, normarg)

[n,dn,ddx] = feval(normfun, KL*Vector(x)-b0, normarg);

x = n;

dx = getvector(KL’*dn);

ddx = getmatrix(KL)’*diag(getvector(ddx))*getmatrix(KL);

Test of gmres mt

The GMRES function is tested against the result from the Matlab implementation
of GMRES after 4 iterations:

function testgmres()

[A,b,x] = deriv2(32);

[X,extra] = gmres_mt(A,b,regset(’Iter’,4,’Subspc’, ’on’));

[xx,flag] = gmres(getmatrix(A),getvector(b),4,eps,1);

d = norm(X-xx);

if d > length(xx)*eps, printerror(’gmres solution’, A, d); end

VV = getmatrix(extra.V);

d = norm( VV*((getmatrix(A)*VV)\getvector(b)) - getvector(X));

if d > length(xx)*eps, printerror(’gmres subs’,K,d); end

Test of l1sol

The least absolute sum minimization is tested by comparing the result to the result of
l1c (see the introduction to this appendix). Because l1sol is based on the interior
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point method in linprog of the Optimization toolbox and l1c uses the simplex
algorithm we expect a small difference in the results:

function testl1sol()

KK = randn(10,5); yy = randn(10,1);

K = Matrix(KK); y = Vector(yy);

x = l1sol(K,y,[]);

xx = l1c(KK,yy,[],[],[],[]);

d = norm(K*x-y,1) - norm(KK*xx-yy,1);

if d < 0, printerror(’l1sol solution’, K, d); end

Test of l1tsvd

The test of l1tsvd is similar to the test for l1sol:

function testl1tsvd()

[K,y,x] = deriv2(32); KK = getmatrix(K); yy = getvector(y);

[U,S,V] = svd(K);

x = l1tsvd(K,y,regset(’RegPar’,10));

UU = getmatrix(U); SS = getmatrix(S); VV = getmatrix(V);

VV10 = VV(:,1:10);

xx = VV10*l1c(KK*VV10,yy,[],[],[],[]);

d = norm(VV10*(VV10’*getvector(x))-getvector(x));

if d > length(x)*eps, printerror(’l1tsvd subspc’,K,d); end

d = norm(K*x-y,1) - norm(KK*xx-yy,1);

if d > 0, printerror(’l1tsvd solution’,K,d); end

Test of lptsvd

We test the lptsvd function with a 1.5-norm problem. We check the correctness by
looking at the gradient at the result:

function testlptsvd()

p = 1.5;

[K,y,x] = deriv2(32); KK = getmatrix(K); yy = getvector(y);

[U,S,V] = svd(K);

opt = regset(’RegPar’,10, ’Norm’, ’pnorm’, ’NormArgs’, p, ...

’TolRes’,1e-8, ’Iter’, 20);

x = lptsvd(K,y,opt);

VV = getmatrix(V); VV10 = VV(:,1:10);
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d = norm(VV10*(VV10’*getvector(x))-getvector(x));

if d > length(x)*eps, printerror(’lptsvd subspc’,K,d); end

r = KK*getvector(x)-yy;

ng = norm(VV10’*KK’*(p*abs(r).^(p-1).*sign(r)));

if ng > 1e-8, printerror(’l1tsvd solution’,K,ng); end

Test of lbhybrid

The hybrid method based on Lanczos bidiagonalization is compared with LSQR
(using no inner regularization) and LSQR on a damped least squares problem (cor-
responding to Tikhonov regularization on the inner problem):

function testlbhybrid()

[K,y,x] = shaw(32);

inopt = regset(’RegPar’,0);

opt = regset(’Iter’,4,’InSolv’,’tikhonov’,’InArgs’,inopt,’Reorth’,’on’);

X = lbhybrid(K,y,opt);

X1 = lsqr_mt(K,y,regset(’Iter’, 4, ’Reorth’,’on’));

d = norm(X1-X);

if d > eps*100, printerror(’lbhybrid 1’, K, d); end

inopt = regset(’RegPar’, 1e-2);

opt = regset(’Iter’,5,’InSolv’,’tikhonov’,’InArgs’,inopt,’Reorth’,’on’);

[X, extra] = lbhybrid(K,y,opt);

KL = stack(K, 1e-2*IdentityOperator(32)); y0 = stack(y, zeros(y));

X1 = lsqr_mt(KL,y0,regset(’Iter’, 5, ’Reorth’,’on’));

d = norm(X1-X);

if d > eps*100, printerror(’lbhybrid 2’, K, d); end

Test of lsqr mt

We compare the result of lsqr mt with lsqr b from the Regularization Tools package.
Then we test the restart feature and the preconditioning feature:

function testlsqr()

[K,y,x] = deriv2(64);

iter = 5;

opt = regset(’Iter’, iter, ’TolRes’,eps, ’Reorth’, ’on’, ’Subspc’,’on’);

[X1, ext1] = lsqr_mt(K,y,opt);

X = lsqr_b(getmatrix(K),getvector(y),iter,1);

d = norm(getvector(X1)-X(:,end));

if d > eps*cond(K), printerror(’lsqr solution’, K, d); end

VV = getmatrix(ext1.V);

d = norm( VV*((getmatrix(K)*VV)\getvector(y)) - getvector(X1));
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if d > eps*64, printerror(’lsqr subspace’,K,d); end

% Test restart do 2*5 and 10 iterations

opt = regset(’Iter’, 5);

[X1, ext1,restart] = lsqr_mt(K,y,opt);

[X2, ext2] = lsqr_mt(K,y,opt,restart);

opt = regset(’Iter’, 10);

[X3, ext3] = lsqr_mt(K,y,opt);

d = norm(X2 - X3);

if d > eps*cond(K), printerror(’lsqr restart’, K, d); end

P = Matrix(2*diag([ones(32,1);2*ones(32,1)]));

opt = regset(’Iter’,iter,’Precond’,P, ’Reorth’, ’on’,’TolRes’,eps);

X1 = lsqr_mt(K,y,opt);

X = lsqr_b(getmatrix(K*inv(P)),getvector(y),iter,1);

d = norm(X1 - inv(P)*X(:,end));

if d > eps*cond(K), printerror(’lsqr precond’,K,d); end

Test of lthybrid

The hybrid method based on Lanczos tridiagonalization is equivalent with the MIN-
RES method if we do not regularize the inner problem.

function testlthybrid()

[K,y] = deriv2(32); K = K; y = y;

KK = getmatrix(K); yy = getvector(y);

inopt = regset(’RegPar’,0);

opt = regset(’Iter’,2,’Subspc’,’on’,’Reorth’,’on’, ...

’InSolv’,’tikhonov’,’InArgs’,inopt);

[X1, ext1] = lthybrid(K,y,opt);

[X2, ext2] = minres_mt(K,y,opt);

d = norm(X1-X2);

if d > eps*100, printerror(’lthybrid 1’, K, d); end

inopt = regset(’RegPar’, 1e-2);

opt = regset(’Iter’,5,’InSolv’,’tikhonov’,’InArgs’,inopt,’Reorth’,’on’,...

’Subspc’,’on’);

[X1, ext1] = lthybrid(K,y,opt);

X2 = ext1.V*tikhonov(K*ext1.V,y,regset(’RegPar’,1e-2) );

d = norm(X1-X2);

if d > eps*100, printerror(’lthybrid 2’, K, d); end

Test of minres mt

The MINRES method minres mt is compared to results from Matlab’s implementa-
tion of MINRES:

function testminres()
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AA = orth(randn(32)); D = diag(randn(32,1));

AA = AA’*D*AA; xx = randn(32,1);

A = Matrix(AA); x = Vector(xx); b = A*x;

[x,ext] = minres_mt(A,b,regset(’Iter’,10));

[xx,ext] = minres(AA,getvector(b),eps,9); % Matlab count iterations differently

d = norm(x-xx);

if d > length(x)*eps, printerror(’minres’, A, d); end

Test of mrII

The mrII method is a variation of MINRES. We check if the solution lies in the
correct subspace obtained from lthybrid:

function testmrii()

AA = orth(randn(32)); D = diag(randn(32,1));

AA = AA’*D*AA; xx = randn(32,1);

A = Matrix(AA); x = Vector(xx); b = A*x;

[x,ext1] = mrII(A,b,regset(’Iter’,10, ’Subspc’, ’on’));

inopt = regset(’RegPar’, 0);

opt = regset(’InSolv’,’tikhonov’,’Subspc’,’on’,’InArgs’, inopt,’Iter’,10,...

’v1’, A*b, ’Reorth’,’on’);

[xx,ext2] = lthybrid(A,b,opt);

VV1 = orth(getmatrix(ext1.V)); VV2 = orth(getmatrix(ext2.V));

d = norm(VV1’*VV1-VV2’*VV2);

if d > length(x)*eps, printerror(’mrII subspace’, A, d); end

xx3 = VV1*( (getmatrix(A)*VV1)\getvector(b) );

d = norm(x-xx3);

if d > 100*eps, printerror(’mrII solution’); end

Test of tikhonov (LinearOperator)

We force MOORe Tools to use the LinearOperator implementation of Tikhonov reg-
ularization by converting a problem into a SparseMatrix. A SparseMatrix does not
support the SVD and thus it uses the LSQR-based Tikhonov algorithm found in
LinearOperator:

function testtikhonovlo()

[K1,y] = deriv2(32);

K2 = SparseMatrix(sparse(getmatrix(K1)));

opt = regset(’RegPar’, 1e-2);
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x = tikhonov(K2,y,opt);

xx = tikhonov(K1,y,opt);

d = norm(x-xx);

if d > eps*100, printerror(’tikhonov(LO)’,K2,d); end

Test of tikhonov (SVDOperator)

The results of the Tikhonov solver based on the SVD (and thus a method of SVDOp-
erator is compared to the results of the Tikhonov solver from the previous toolbox:

function testtikhonovsvd()

[K,y] = deriv2(64);

yn = y + randn(size(y))*1e-3;

x = tikhonov(K,y, regset(’RegPar’,1e-3));

[U,s,V] = csvd(getmatrix(K));

xx = tikhonov(U,s,V,getvector(y),1e-3);

d = norm(x-xx);

if d > eps*64, printerror(’tikhonov(svd)’,K,d); end

[x,ext] = tikhonov(K,yn,regset(’RegPar’,’gcv’));

xx = tikhonov(U,s,V,getvector(yn),ext.RegPar);

d = norm(x-xx);

if d > eps*64, printerror(’tikhonov(svd) gcv’,K,d); end

Test of tsvd

We compare the TSVD method with the corresponding function in the previous
toolbox:

function testtsvd()

[K,y,x] = deriv2(64);

y = y + randn(size(y))*1e-3;

ks = 10:20;

opt = regset(’RegPar’, ks);

X = tsvd(K,y,opt);

[UU,SS,VV] = csvd(getmatrix(K));

XX = tsvd(UU,SS,VV,getvector(y), ks);

d = norm(XX-getmatrix(X), ’fro’);

if d > 100*eps, printerror(’tsvd solutions’,K,d); end

[x, ext] = tsvd(K,y,regset(’RegPar’, ’gcv’));

xx = tsvd(UU,SS,VV,getvector(y), ext.RegPar);

if d > 100*eps, printerror(’tsvd par choice’, K, d); end
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C.3.1 Test of Parameter Choice Methods

Test of gcv

The GCV method is compared with the GCV function from the previous toolbox
(from which it is derived):

function testgcv()

[K,y] = deriv2(32);

yn = y + randn(size(y))*1e-3;

[UU,ss,VV] = csvd(getmatrix(K));

reg1 = gcv(K,yn,’Tikh’);

reg2 = gcv(UU,ss,getvector(yn),’Tikh’);

if reg1 ~= reg2,

printerror(’gcv error’,K,abs(reg1-reg2)/max(reg1,reg2))

end

Test of gcvbounds

Because the gcvbounds method computes bounds for an approximation to the trace-
term of the GCV-function we compute the exact quantity obtained with the MC
technique to check if the bounds are correct:

function testgcvbounds()

[K,y] = deriv2(64);

yn = y + randn(size(y))*1e-3*norm(y);

[reg, extra] = gcvbounds(K,yn, regset(’RegPar’, [1e-6 1], ’TolRes’, 1e-3));

l = extra.lambda;

KK = getmatrix(K); yy = getvector(yn);

[UU,ss,VV] = csvd(KK);

[x,rho,eta] = tikhonov(UU,ss,VV,yy,l);

I = eye(64);

uu = getvector(extra.u);

traceapprox = zeros(length(l),1);

for i=1:length(l)

traceapprox(i) = l(i)^2*uu’*inv(KK*KK’+l(i)^2*I)*uu;

end

d = min(rho - extra.rhoL);

if d < -100*eps, printerror(’rho lower’,K,d); end

d = min(extra.rhoU - rho);

if d < -100*eps, printerror(’rho upper’,K,d); end

d = min(traceapprox - extra.traceL);

if d < -100*eps, printerror(’trace lower’,K,d); end
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d = min(extra.traceU - traceapprox);

if d < -100*eps, printerror(’trace upper’,K,d); end

d = min(rho./traceapprox - extra.gcvL);

if d < -100*eps, printerror(’gcv lower’,K,d); end

d = min(extra.gcvU - rho./traceapprox);

if d < -100*eps, printerror(’gcv lower’,K,d); end

Test of l curve

The L-curve method is compared with the function from the previous toolbox (from
which it is adapted):

function testlcurve()

[K,y] = deriv2(32);

yn = y + randn(size(y))*1e-3;

KK = getmatrix(K); yy = getvector(yn);

[U,s,V] = csvd(KK);

regpar1 = l_curve(K,yn,’Tikh’);

regpar2 = l_curve(U,s,yy,’Tikh’);

d = regpar1-regpar2;

if d ~= 0, printerror(’lcurve’, K, d); end

Test of lcurvebounds

We check the L-curve curvature bounds against the curvature computed by the aux-
iliary function lcfun found in the previous toolbox:

function testlcurvebounds()

[K,y,x] = deriv2(64); yn = y + randn(size(y))*1e-3;

opt = regset(’Iter’, 40, ’RegPar’, [1e-4 1], ’TolRes’, 1e-1, ’Reorth’,’on’);

[reg, ext] = lcurvebounds(K, yn , opt);

l = ext.lambda;

KK = getmatrix(K); yy = getvector(yn);

[UU,ss,VV] = csvd(KK);

[X,rho,eta] = tikhonov(UU,ss,VV,yy,l);

beta = UU’*yy; xi = beta./ss;

cur = lcfun(l,ss,beta,xi);

d = min(rho - ext.rhoL);

if d < -100*eps, printerror(’lc bounds rhoL’, K,d); end

d = min(eta - ext.etaL);

if d < -100*eps, printerror(’lc bounds etaL’, K,d); end
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d = min(cur - ext.curL);

if d < -100*eps, printerror(’lc bounds curL’, K,d); end

d = min(ext.rhoU - rho);

if d < -100*eps, printerror(’lc bounds rhoU’, K,d); end

d = min(ext.etaU - eta);

if d < -100*eps, printerror(’lc bounds etaU’, K,d); end

d = min(ext.curU - cur);

if d < -100*eps, printerror(’lc bounds cirU’, K,d); end

Test of reginska

The Regińska parameter-choice method is tested using exact values of solution and
residual norm obtained from a Tikhonov computation. We see if we get the upper
and lower bounds we expect:

function testreginska()

[K,y] = deriv2(32);

yn = y + randn(size(y))*1e-3;

[regpar, ext] = reginska(K,yn,regset(’RegPar’,[1e-5 1],’TolRes’,1e-3));

[X, extt] = tikhonov(K,yn, regset(’RegPar’, ext.lambda));

phi = extt.rho .* extt.eta;

d = min(min(phi - ext.phiL),min(ext.phiU - phi));

if d > 100*eps, printerror(’reginska’, K);end

C.3.2 Test of Support Functions

Of the supporting methods listed in Table B.3 we do not test regset and regget as
they have been used extensively in almost all tests in this appendix. The function
linesearch is not tested because we have copied it from Nielsen’s homepage www.
imm.dtu.dk/~hbn/Software (the algorithm is described in [40]) and is assumed cor-
rect. The assumption is supported by the fact that the methods that use linesearch,
such as gmin, return reasonable results.

Test of gmodsubs

We test minimization in general norm with orthogonality constraints against fmincon
from the Optimization Toolbox:

function testgmodsubs()

[K,y,x] = deriv2(100);

[x0,extra] = lsqr_mt(K,y,regset(’Iter’,5,’Subspc’,’on’, ’Reorth’,’on’));

L = getL(100,1);

www.imm.dtu.dk/~hbn/Software
www.imm.dtu.dk/~hbn/Software
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inargs = regset(’TolRes’, 1e-10);

normfun = ’fair’; normargs = 0.5;

opt = regset(’Norm’, normfun, ’NormArgs’, normargs, ...

’Iter’,10, ’InArgs’, inargs);

xp = gmodsubs(L, extra.V, x0, opt);

d = norm(extra.V’*xp);

if d > length(xp)*eps, printerror(’gmodsubs ortho’, K, d); end

LL = full(getmatrix(L)); VV = getmatrix(extra.V); xx0 = getvector(x0);

opt = optimset(’GradObj’,’on’);

xxp = fmincon(@fun, zeros(size(xp)), [],[], VV’, zeros(size(VV,2),1), ...

[],[],[],opt,LL,-LL*xx0,normfun, normargs);

d = norm(xp - xxp);

if d > length(xp)*eps, printerror(’gmodsubs sol’, K, d); end

n1 = feval(normfun, L*(xp+x0), normargs);

n2 = feval(normfun, L*(xxp+x0), normargs);

d = n2 - n1;

if d < 0, printerror(’gmodsubs sol 2’, K, d); end

% ---

function [n,ndx] = fun(x, K, y,normfun,normargs)

r = K*x-y;

[n,dn] = feval(normfun, Vector(r), normargs);

ndx = K’*getvector(dn);

Test of l1orth

The result from l1orth is compared to the result from l1c (see introduction to this
appendix):

function testl1orth()

AA = randn(32); VV = randn(32,10); bb = randn(32,1);

A = Matrix(AA); V = Matrix(VV); b = Vector(bb);

x = l1orth(A,b,V’,zeros(V’*b));

xx = l1c(AA,bb,VV’,zeros(10,1),[],[]);

d = norm(x - xx);

if d > eps*length(x), printerror(’l1orth’,A,d); end

Test of lsorth

The constrained least squares solver lsorth is compared to lsqlin from the Opti-
mization Toolbox:

function testlsorth()

AA = randn(32); VV = randn(32,10); bb = randn(32,1);

A = Matrix(AA); V = Matrix(VV); b = Vector(bb);
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x = lsorth(A,b,V’,zeros(V’*b),regset(’TolRes’,eps));

xx = lsqlin(AA,bb,[],[],VV’,zeros(size(V,2),1));

d = norm(x - xx);

if d > eps*length(x), printerror(’lsorth’,A,d); end

Test of modsubs

The function modsubs uses lsorth and also here we use lsqlin to check the result.

function testmodsubs()

[K,y,x] = deriv2(100);

[x0,extra] = lsqr_mt(K,y,regset(’Iter’,5,’Subspc’,’on’, ’Reorth’,’on’));

L = getL(100,1);

xp = modsubs(L, extra.V, x0, regset(’TolRes’, eps,’Iter’,200));

d = norm(extra.V’*xp);

if d > length(xp)*eps, printerror(’modsubs ortho’, K, d); end

LL = full(getmatrix(L)); VV = getmatrix(extra.V); xx0 = getvector(x0);

opt = optimset(’LargeScale’, ’off’);

xxp = lsqlin(LL,-LL*xx0, [],[],VV’, zeros(size(VV,2),1),[],[],[],opt );

d = norm(xp - xxp);

if d > length(xp)*eps, printerror(’modsubs sol’, K, d); end

Test of modsubs1

The result of modsubs1 is compared to the result of l1c from Regularization Tools:

function testmodsubs1()

[K,y,x] = deriv2(100);

[x0,extra] = lsqr_mt(K,y,regset(’Iter’,5,’Subspc’,’on’, ’Reorth’,’on’));

L = getL(100,1);

xp = modsubs1(L, extra.V, x0);

d = norm(extra.V’*xp);

if d > length(xp)*eps, printerror(’modsubs1 ortho’, K, d); end

LL = getmatrix(L); VV = getmatrix(extra.V); xx0 = getvector(x0);

xxp = l1c(LL,-LL*xx0, VV’, zeros(size(VV,2),1),[],[]);

d = norm(xp - xxp);

if d > length(xp)*eps, printerror(’modsubs1 sol’, K, d); end

C.3.3 The Combined Algorithms

The algorithms obtained by combining modules are tested for correct syntax and has
been under code review, that is, the code has been looked at with extra care and the
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results have been checked to see if they appear reasonable.

Test of glsqr

function testglsqr()

[K,y,x] = deriv2(32); L = getL(32,1);

opt = regset(’Iter’,10, ’Norm’,’pnorm’,’NormArgs’,1.4);

X = glsqr(K,L,y,opt);

Test of mlsqr

function testmlsqr()

[K,y,x] = deriv2(32);

L = getL(32,1);

x = mlsqr(K,L,y, regset(’Iter’,10));

Test of mtsvd

function testmtsvd()

[K,y,x] = deriv2(32); L = getL(32,1);

opt = regset(’Iter’,10);

X = mtsvd(K,L,y,opt);

Test of ppgmres

function testppgmres()

[K,y,x] = deriv2(32); L = getL(32,1);

opt = regset(’Iter’,10);

X = ppgmres(K,L,y,opt);

Test of pplsqr

function testpplsqr()

[K,y,x] = deriv2(32); L = getL(32,1);

opt = regset(’Iter’,10);

X = pplsqr(K,L,y,opt);
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New Test Problems

All test problems from Regularization Tools [67] have been converted to use the
objects. In most cases they simply use Matrix and Vector. In the following the new
test problems are briefly explained.

D.1 Steady-State Heat Distribution

Consider a square area with a circular cut out, see Fig. D.1. The outer boundary
is perfectly insulated. The inner boundary Γ1 has a fixed temperature distribution
described by g(x). The forward problem is to find the temperature on the outer
boundary Γ2 given the temperature distribution at the inner boundary. The inverse
problem is to determine the temperature function on the inside from measurements
on the outer boundary.

Put into a partial differential framework we have the following setup
∇2t(x, y) = 0 (x, y) ∈ Ω
t(x, y) = g(x, y) (x, y) ∈ Γ1

d
dn t(x, y) = 0 (x, y) ∈ Γ2.

(D.1)

Each forward calculation implies solving the partial differential equation (PDE) sys-
tem. We consider three methods:

Finite differences. Finite differences is perhaps the easiest to understand. The
derivatives are approximated with approximations on a simple grid of points in
the area. On the other hand the finite difference method is troublesome when
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Γ2Γ1

Ω

Figure D.1: The geometry of the steady state heat problem.

boundaries become complicated. The method also finds the solution within Ω.
See [9] for an example of applying finite differences to a problem of the same
type albeit another geometry. We have not implemented the finite difference
method.

Finite element method (FEM). The finite element method divides Ω into small
sub-areas, where a set of basis functions describes an approximation to the
solution. The FEM method is very flexible with respect to the geometry of the
problem. The FEMLAB [27] Matlab package uses object oriented techniques
to describe the geometry. See also [89], where an object oriented toolbox for
partial differential equations using FEM (and the C++ language) is described
in the same spirit as this thesis. The SteadyHeatFEM class is implemented
using the FEMLAB package and we refer to its documentation for details on
the solution method.

Boundary element method (BEM). The boundary element method is different
from both the finite difference method and FEM as it only computes unknown
values at the boundaries—at least in its first steps. Because the code is not
based on a existing package, we will describe the BEM method in more detail
for our particular problem.

If we consider the Laplace equation ∇2t = 0 in two dimensions and introduce
a weighting function w we can set up the weighted integral

∇2t = 0⇒
∫

Ω

w∇2tdΩ = 0

Applying the Green-Gauss theorem once∫
Γ1∪Γ2

dt

dn
wdΓ−

∫
Ω

∇t∇wdΩ = 0



D.1 Steady-State Heat Distribution 175

and a second time on the last integral yields∫
Γ1∪Γ2

dt

dn
wdΓ−

∫
Γ1∪Γ2

t
dw

dn
dΓ +

∫
Ω

t∇2wdΩ = 0. (D.2)

A fundamental function (or Green’s function) is a function solving a PDE with a
point source and no boundary conditions. In our case the fundamental solution
to ∇2t = δ(x0 − x, y0 − y) where δ is the usual Dirac’s delta function is

w(x, y) = − 1
2π

log r, where r =
√

(x0 − x)2 + (y0 − y)2.

We now choose the weight function w to be the fundamental solution and
inserting into the last integral of (D.2) gives∫

Ω

t∇2wdΩ = −
∫

Ω

tδ(x0 − x, y0 − y)dΩ = −t(x0, y0).

That is, by this choice of w we have replaced the domain integral by a point
value, and inserted into Eq. (D.2) we get

t(x0, y0) +
∫

Γ1∪Γ2

t
dw

dn
dΓ =

∫
Γ1∪Γ2

dt

dn
wdΓ,

and we have only integrals of the boundary type left. If we divide the boundaries
into small pieces called elements and assume that each element Γj has constant
temperature tj and temperature gradient dtj/dt we get the linear equation

t(x0, y0) +
∑

j

tj

∫
Γj

dw

dn
dΓ =

∑
j

dtj
dn

∫
Γj

wdΓ. (D.3)

If we select (x0, y0) to be the midpoint of each element in turn we get N
equations

(G + I)t = Hu,

where the matrices are

Gij =
∫

Γj

dw

dn
(xi, yi)dΓ, Hij =

∫
Γj

w(xi, yi)dΓ

and the vectors are

t = [t1 t2 . . . tn]T and u = [dt1/dn dt2/dn . . . dtn/dn]T .

Depending on the boundary conditions some elements t and u are known and
others are unknown.
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In our case either ti or ui = dti/dn is known and we see that we have N
equations with N unknowns.

If we need the solution at a point (x, y) not on the boundary we use the sum
in (D.3).

The SteadyHeatBEM class uses BEM to solve the problem. The integrals involv-
ing the fundamental solution are computed via the quadrature method in the
quadg function in Matlab. This presentation of the most simple BEM is partly
based on the excellent introduction in [16] where more advanced methods and
PDEs are treated.

D.2 Interpolation

The interpolation problem is inspired by the inverse interpolation problem used in
[113]. Instead of a real world measured data set it uses randomly generated points.
The forward problem interpolates from a regular grid to a number of irregular points.

The problem implements bilinear interpolation, that is, if we want to interpolate
f(x, y) from the f(x0, y0), f(x0, y1), f(x1, y0) and f(x1, y1), see Fig. D.2 , we use the
formula

f(x, y) =
(
f(x0, y0)(x1 − x)(y1 − y)+

f(x0, y1)(x1 − x)(y − y0)+
f(x1, y0)(x− x0)(y1 − y)+

f(x1, y1)(x− x0)(y − y0)
)
/
(
(x1 − x0)(y1 − y0)

)
With n points in the regular grid and m points in the irregular grid we arrive at

an operator K ∈ Rm×n. The actual operator implements the multiplication with a
C mex-function illustrating how code in other languages can be used in connection
with the toolbox. The implementation is in the Interpolate class.

D.3 Deblurring Problems

The well known blur test example has been modified to take advantage of the
KroneckerProduct2D class. Hereby it is possible to work with bigger problems than
before as the n2 × n2 matrix is not created explicitly. Due to the Kronecker product
structure the SVD is available and is used in the TSVD method (of course), Tikhonov
and several other functions.

Furthermore, a couple of variations of blur using KroneckerProduct2D are in-
cluded, see Table D.1.

Finally the classes psf, psfMatrix and psfPrec from Restore Tools by Nagy et
al. [100] are included. They handle non-separable and spatial invariant blur. Fur-
thermore, it is possible to specify boundary conditions. The original versions did not
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(x0, y0) (x1, y0)

(x1, y1)(x0, y1)

x

y

f(x, y)

Figure D.2: Geometry of interpolation

Name Kernel K Description

blur 1
πσ exp

(
− (x−s)2+(y−t)2

σ2

)
Atmospheric blur

oblur

{
1/(πR2)), if

√
(x− s)2 + (y − t)2 ≤ R

0, else
Out-of-focus blur

mblur

{
1/(2L), if |x− s| ≤ L
0, else Motion blur

confocal dxdysinc(πdx(x− s))sinc(πdy(y − t)) Confocal blur

Table D.1: Blur test problems. All functions create a KroneckerProduct2D ob-
ject with terms found from the discretization of a integral equation of the form∫ ∫

K(x, y, s, t)f(x, y)dxdy = g(s, t). The scalars L, d and R describe the extent of
the blur and can be varied to control the level of ill-conditioning of the problem.
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inherit from LinearOperator and did not use object oriented techniques for the vectors.
In this package, they are changed to inherit properly; see the object constructors.
In methods where vectors are used, for example, in the multiplication operation, we
first unpack the data of a Vector object, then we do the operation and finally we
wrap the result into the proper type of Vector. The changes are clearly marked by
comments in the code.

D.4 Gravity

The gravity test problem described in [126] is a one dimensional Fredholm integral
equation of the first kind,

g(s) =
∫ 1

0

d√
(d2 + (s− t)2)3

f(t)dt,

where d is the depth of the mass-distribution f(t) we want to find from the mea-
surements g(s) at the surface. Larger depth d yields a more ill-posed problem. The
gravity test problem is implemented via the Matrix class.



Appendix E

Subspace Preconditioned LSQR
for Discrete Ill-Posed Problems

The following pages contain the paper now publicized in BIT [71]. The work is
based on my Master’s thesis [81], in turn based on work by Hanke and Vogel [62].
Michael Saunders suggested a significant improvement to the algorithm based on
LSQR and the result is presented in the following paper. The paper is coauthored
by Per Christian Hansen, Michael Jacobsen and Michael Saunders.

How the algorithm interacts with object oriented ideas and in particular the
situations where the current implementation does not work is described in Sec. 4.6.1.
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Abstract.

We present a novel implementation of a two-level iterative method for the solution

of discrete linear ill-posed problems. The algorithm is algebraically equivalent to the

two-level Schur complement CG algorithm of Hanke and Vogel, but involves less work

per iteration. We review the algorithm, discuss our implementation, and show promis-

ing results from numerical experiments that give insight into the proper use of the

algorithm.

AMS subject classification: 65F10, 65F22

Key words: ill-posed problems, regularization, two-level iterative methods, Schur
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1 Introduction.

Linear ill-posed problems arise in a variety of applications in science and en-
gineering, and reliable computational algorithms are available for small- and
medium-scale problems [6, 18]. However, there is a need for iterative algorithms
that can treat large-scale problems, i.e., those with sparse or structured matri-
ces, or where the action of the linear operator is provided by some computational
scheme.

This work focuses on a large-scale iterative algorithm for computing solutions
to the Tikhonov regularization problem

min
x

‖Kx− y‖22 + λ2‖Lx‖22,

in which K ∈ R
m×n is a given matrix, L ∈ R

p×n is a matrix that defines a
suitable smoothing norm for the problem, y ∈ R

m is a vector of observed data,
and the regularization parameter λ controls the weight between the residual and

∗Received xxx. Revised xxx. Communicated by Zdeněk Strakoš.
†Partially supported by Danish Natural Science Research Foundation grant 9901581, U.S.

National Science Foundation grant CCR-9988205, and U.S. Office of Naval Research grants

N00014-96-1-0274 and N00014-02-1-0076. Version of February 25, 2003
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smoothing norms. We note that both K and L may be available either explicitly
(as sparse or structured matrices) or implicitly through their action on a vector.

We present an efficient implementation of an iterative algorithm developed
by Hanke and Vogel [5], who discussed several “two-level methods” for the so-
lution of the Tikhonov problem. The algorithm is based on the least squares
formulation of the Tikhonov problem,

(1.1) xλ = argmin
x

∥∥K̂x− ŷ
∥∥

2
,

where we introduce the “stacked” matrix and vector

K̂ =

[
K

λL

]
, ŷ =

[
y

0

]
.

The key idea in the work of Hanke and Vogel is a splitting of the solution
space R

n into two subspaces, one of them with a small dimension and with
basis vectors chosen such that this subspace represents approximate regularized
solutions. Similarly to multi-level methods, the residual is projected into a small-
dimensional subspace (the coarse grid) in which the problem is solved with a
direct method, while the component of the solution in the remaining subspace
is computed by an iterative algorithm. Because of this analogy, the methods are
denoted two-level methods. The obvious extension to a multi-level method was
tested but without success [17].

Two of the three methods in [5] are based on the preconditioning idea for the
conjugate gradient (CG) method [3, 8], but we do not treat these precondition-
ing methods here because the third method performs better, in theory and in
practice [5, 9].

The third method in [5]—the only one considered here—is based on the Schur
complement CG algorithm; see Axelsson [2]. When the subspace splitting idea
is combined with the Schur complement CG algorithm, one obtains a method in
which a special Schur complement system is solved iteratively by means of CG.

Our main contribution is to show that this Schur complement system is, in fact,
the normal equations for an underlying least squares problem, and to demon-
strate how this problem can be solved efficiently by means of the LSQR algorithm
[12, 13]. There are two advantages in this approach: the implementation is more
efficient, and the algorithm is numerically more robust because it avoids the use
of the normal equations. (We focus on the use of LSQR because of its superior
stability, and because we want to give all the details of the implementation. Any
similar iterative method for least squares problems could be used, such as CGLS
[8, 12], and the efficiency would be the same.)

In addition, we discuss various strategies for choosing the basis vectors of the
subspace with small dimension, and we demonstrate by examples how this choice
affects the convergence of the method.

We first summarize the derivation of the Schur CG algorithm from [5] in §2.
Next, in §3 we show how an equivalent method can be obtained by means of a
certain QR factorization, with the advantage of a simpler algorithm with fewer
operations per iteration. Then in §4 we discuss various details on how to select
the subspace splitting, and in §5 we show numerical tests on two test problems.
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2 Two-Level Schur Complement CG.

For the presentation of the Hanke-Vogel algorithm it is convenient to introduce
the quantities

A = KTK + λ2LTL = K̂TK̂, b = KTy = K̂Tŷ

associated with the normal equations for the least squares problem (1.1). For
ease of presentation we assume in this section that the matrix L has full column
rank; otherwise the algorithm becomes substantially more complicated [15].

The two levels are created by a splitting of the solution space R
n into two

subspaces V and W of dimensions k and n − k, respectively. To make the
algorithm practical one should choose k � n. Let the columns of the matrix
V ∈ R

n×k span the subspace V , and let the columns of the matrix W ∈ R
n×(n−k)

span the subspace W . The solution is obtained in the form

(2.1) xλ = Vv + Ww.

The columns of V are not required to be orthonormal, although this is preferable
in a numerical implementation. As we shall see, the matrix W is not needed in
the algorithm—it is only necessary for its derivation.

Hanke and Vogel choose the two subspaces to be LTL-orthogonal, and the
columns of W to be LTL-orthonormal. Thus,

VTLTLW = 0 and WTLTLW = I.

These properties are not needed for the final algorithm as presented below, but
they are necessary for the omitted details in the derivation of the algorithm.

First we transform the normal equations Axλ = b to the equivalent form

(2.2) [V W ]
T

A [V W ]

[
v

w

]
= [V W ]

T
b,

which expands into the block system

(2.3)

[
A11 VTAW

WTAV WTAW

] [
v

w

]
=

[
VTb

WTb

]
,

where A11 = VTAV ∈ R
k×k . The algorithm in its final form requires A11, and

otherwise only uses K, L, b and V.
We now apply block Gaussian elimination to (2.3) as in [2] to obtain

[
A11 VTAW

0 S

] [
v

w

]
=

[
VTb

s

]

with

S = WTAW −WTAVA−1
11 VTAW,

s = WTb−WTAVA−1
11 VTb,
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where S is the Schur complement of A11 in the matrix (2.3). We see that xλ is
obtained from

Sw = s,(2.4)

A11v = VT(b−AWw),(2.5)

xλ = Vv + Ww.(2.6)

The Schur complement S ∈ R
(n−k)×(n−k) is symmetric positive definite be-

cause A is so [2, Theorem 3.9], and therefore CG comes to mind as a choice for
solving the Schur system (2.4) when n− k is large. The resulting algorithm (see
below) is expressed in terms of the original matrices K and L only. The mul-
tiplication with VA−1

11 VT can be considered a coarse grid correction step. The
rather lengthy details of this derivation are omitted here, but they are available
in [5] and [9].

Schur complement CG. Computes the Tikhonov regularized solution xλ =
argmin

x
‖K̂x− ŷ‖2. The product LTL must be invertible.

1: x0 = VA−1
11 VTb

2: r0 = b−Ax0

3: y0 = (LTL)−1r0

4: d0 = r0

5: z0 = y0

6: ρ0 = (y0)
Tr0

7: i = 0
8: repeat

9: vi = (I−VA−1
11 VTA) zi

10: wi = Avi

11: gi = (LTL)−1wi

12: βi = ρi/(di)
Tgi

13: xi+1 = xi + βivi

14: ri+1 = ri − βiwi

15: yi+1 = yi − βigi

16: ρi+1 = (yi+1)
Tri+1

17: γi+1 = ρi+1/ρi

18: di+1 = ri+1 + γi+1di

19: zi+1 = yi+1 + γi+1zi

20: i = i + 1
21: until ‖ri‖2 > ‖ri−1‖2 or i = iteration limit
22: xλ = xi

Each iteration involves solving one system with A11 (in step 9) and one with
LTL (in step 11). The Cholesky factors of these matrices are the triangular QR

factors of K̂V and L, respectively. If L is large and sparse then the solution in
step 11 can also be computed via an iterative method [14].
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Note that one iteration also requires two applications of A (i.e., two appli-

cations of K̂ and K̂T each) and an application of both V and VT. Hence one
iteration is at least twice as expensive as one iteration of LSQR or CGLS applied
to the original least squares problem (1.1), and the rate of convergence for the
two-level method must therefore be at least twice that of LSQR and CGLS for
the two-level method to be a better choice.

The stopping criterion is based on the decrease of the residual norm. Since the
residual is given in terms of the original system and not the Schur complement
a “breakdown” occurs when the Schur complement residual reaches the machine
precision. We observed that the breakdown destroys the assumed relationship
between the updated vectors, and the method diverges for the next couple of
iterations until the relationships are reestablished.

3 The Subspace Preconditioned LSQR Algorithm.

It is well known that the LSQR algorithm is algebraically identical to CGLS
and to the CG algorithm on the normal equation system. However, LSQR can
be considered as treating the least squares problem in a more direct way, and in
finite precision LSQR is often capable of achieving more accurate results than
CGLS and in particular CG. Therefore we wish to find the LSQR equivalent of
the Schur complement CG algorithm.

As before we want a solution of the form xλ = Vv +Ww to the least squares
system (1.1). Thus we need to obtain

[
v

w

]
= argmin

v,w

∥∥∥∥ K̂ [V W ]

[
v

w

]
− ŷ

∥∥∥∥
2

.

Introducing the QR factorization

(3.1) K̂V = QR̂ = [Y Z ]

[
R

0

]
= YR

with Q orthogonal and R upper triangular, we get
[

v

w

]
= argmin

v,w

∥∥∥∥Q
TK̂ [V W ]

[
v

w

]
−QTŷ

∥∥∥∥
2

= argmin
v,w

∥∥∥∥∥

[
YTK̂V YTK̂W

ZTK̂V ZTK̂W

] [
v

w

]
−

[
YTŷ

ZTŷ

]∥∥∥∥∥
2

= argmin
v,w

∥∥∥∥∥

[
R YTK̂W

0 ZTK̂W

] [
v

w

]
−

[
YTŷ

ZTŷ

]∥∥∥∥∥
2

.

Thus, the Tikhonov solution is found from

w = argmin
w

∥∥ZTK̂Ww− ZTŷ
∥∥

2
,(3.2)

Rv = YT
(
ŷ − K̂Ww

)
,(3.3)

xλ = Vv + Ww.(3.4)
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The partial QR factors of K̂[V W ] give [R YTK̂W ], which would be the top
part of a full QR factorization. After w is determined, v is found as if one were
continuing back-substitution with the full R factor in the normal way.

The QR factors in (3.1) can be computed conveniently by means of House-
holder transformations. Since the number of columns k in the matrix product
K̂V is small compared to the dimensions of the problem, the k Householder
vectors efficiently represent the orthogonal matrix Q = [Y Z ] in product form.
Then products of the form Zu and ZTv are done by actually multiplying with Q

and QT, which in turn uses the stored Householder transformations, requiring
about 4k(m + p) flops per product.

3.1 Equivalence.

We now show that the Schur complement system Sw = s (2.4) is indeed the
normal equations of the least squares system (3.2). First note from the QR

factorization of K̂V that A11 = VTK̂TK̂V = RTR. Hence

S = WT(A−AVA−1
11 VTA)W

= WTK̂T
(
I− K̂VA−1

11 VTK̂T
)
K̂W

= WTK̂T
(
I−YR(RTR)−1RTYT

)
K̂W

= WTK̂T(I−YYT)K̂W

= WTK̂TZZTK̂W,

and

s = WT
(
I−AVA−1

11 VT
)
b

= WTK̂T
(
I− K̂VA−1

11 VTK̂T
)
ŷ

= WTK̂TZZTŷ,

as required. Hence CG applied to the Schur system (2.4) and LSQR or CGLS
applied to the least squares system (3.2) produce the same results in infinite
precision. In finite precision LSQR usually yields results with slightly higher
precision.

We can also show that systems (2.5) and (3.3) are both equivalent to the least

squares problem minv ‖K̂Vv−(ŷ−K̂Ww)‖2. The Schur complement approach
uses the associated normal equations to solve for v, while our approach uses the
QR factorization (3.1).

More important, however, is that the QR approach leads to a simpler iteration
scheme and thus a simpler implementation. In particular, in each iteration we
only need one multiplication with K̂ and K̂T (while the Schur complement CG
algorithm needs two multiplications). Moreover, there is no linear equation
system involving LTL, and there is no requirement on the rank of L (as long as

K̂ has full rank).
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3.2 Solving for Ww and v.

Defining p = Ww, we first show how to proceed in cases where W is not
available. Substituting into (3.2)–(3.4) gives the equations

p = argmin
p

∥∥ZTK̂p− ZTŷ
∥∥

2
,(3.5)

Rv = YT
(
ŷ − K̂p

)
,(3.6)

xλ = Vv + p,(3.7)

in which the main computation is solving for p. The resulting algorithm is
displayed below, where for completeness all details of the LSQR iterations are
included. The Lanczos vectors are denoted by ūi and v̄i, and the w̄i are work
vectors.

Subspace preconditioned LSQR. Computes the Tikhonov regularized solu-
tion xλ = argmin

x
‖K̂x− ŷ‖2. There is no restriction on the rank of L.

1: Compute QR factorization K̂V = [Y Z ]

[
R

0

]

2: d = ZTŷ

3: β1ū1 = d % So that ‖ū1‖2 = 1

4: α1v̄1 = K̂TZū1 % So that ‖v̄1‖2 = 1
5: w̄1 = v̄1

6: p0 = 0

7: φ̄1 = β1

8: ρ̄1 = α1

9: i = 0
10: repeat

11: βi+1ūi+1 = ZTK̂v̄i − αiūi % So that ‖ūi+1‖2 = 1

12: αi+1v̄i+1 = K̂TZūi+1 − βi+1v̄i % So that ‖v̄i+1‖2 = 1
13: ρi = (ρ̄2

i + β2
i+1)

1/2

14: ci = ρ̄i/ρi

15: si = βi+1/ρi

16: θi+1 = siαi+1

17: ρ̄i+1 = −ciαi+1

18: φi = ciφ̄i

19: φ̄i+1 = siφ̄i

20: pi = pi−1 + (φi/ρi)w̄i

21: w̄i+1 = v̄i+1 − (θi+1/ρi)w̄i

22: i← i + 1
23: until φ̄iαi|ci−1| < τ

24: Solve Rv = YT(ŷ − K̂pi−1) for v

25: xλ = Vv + pi−1

Observe that ZTK̂V = ZTYR = 0, and therefore by construction, the matrix
ZTK̂ has a non-trivial null space spanned by the columns of V. For this reason
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LSQR will eventually diverge as a result of finite precision effects, cf. [12, §6.2].
Our experiments agree with those in [12], leading to a stopping criterion based

on the approximation φ̄α|c| ≈ ‖K̂TZr‖2 < τ , where r = ZT(ŷ − K̂p) is the
residual for the least squares problem (3.2), and τ is a tolerance of order 10−12,
for example. This stopping criterion ends the iterations just before divergence
sets in.

3.3 Solving for w and v.

The difficulties with the rank deficiency in ZTK̂ can be avoided by returning to
(3.2)–(3.4) and working with the slightly smaller vector w and matrix ZTK̂W.
The following lines must be changed:

4: α1v̄1 = WTK̂TZū1

6: w0 = 0

11: βi+1 = ūi+1Z
TK̂Wv̄i − αiūi

12: αi+1 = v̄i+1W
TK̂TZūi+1 − βi+1v̄i

20: wi = wi−1 + (φi/ρi)w̄i

24: Solve Rv = YT(ŷ − K̂Wwi−1) for v

25: xλ = Vv + Wwi−1

This approach is practical only if operations with W and WT can be done
quickly.

4 The Subspace Splitting.

The optimal subspace V consists of the principal k right singular vectors in
the SVD of K if L = I, or generalized right singular vectors in the GSVD of
(K,L) if L 6= I. This choice diagonalizes the submatrix A11 and minimizes the
condition number of S, which indicates faster convergence of the algorithms.
However, the optimal subspace created from the SVD or GSVD is usually not
available, and we are forced to choose a less optimal subspace. The hope is that
a subspace “close to” the optimal (G)SVD-based subspace is good enough. We
know that in most applications the right singular vectors of an ill-posed problem
have increasingly more sign changes as the corresponding (generalized) singular
values decrease, i.e., they become more oscillatory—a feature we should try to
emulate.

In the previous sections the subspace operations were described by means of
matrix multiplications with V and VT. However, if we select a specific subspace
V then the multiplications can often be done more cheaply by means of “fast
transforms.” Two examples come to mind.

• The wavelet transform; in this paper we use the Daubechies wavelets [4].

• The Fourier transform and variations thereof; to avoid complex results we
restrict ourself to the use of the cosine transform denoted DCT-2 in [16].

Both transforms have the desired property that the basis vectors have higher
frequency as the column index grows. This is obviously true for the cosine
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Figure 4.1: The first four basis vectors for DCT-2 (left) and wavelets (right).

transform, which is spanned by the vectors

(4.1) Vi,j =
(n

2

)

−1/2

cos
(

(i + 1/2)(j − 1)
π

n

)

, divided by
√

2 if j = 1.

The Daubechie wavelets, on the other hand, have a local nature and oscillate only
in their domain of support. The wavelet basis is composed of several subspaces
of increasing detail,

R
n = V0

k
⊕

j=1

Wj , k = log2 n.

Because all vectors spanning Wj must be included to describe all details at the
given level, the subspace dimension k should preferably be a power of 2. Figure
4.1 shows the first four basis vectors of the two fast transforms.

The use of these fast transforms will benefit the Schur complement CG algo-
rithm because V is used twice in each iteration. In the preconditioned LSQR
algorithm, V only appears in the initialization and finalization stages.

For comparison we also created preconditioning subspaces from

• The SVD; the optimal subspace is created from the principal k right sin-
gular vectors of K.

• regutm; the Regularization Tools package [7] includes a test problem gener-
ator regutm that produces random singular vectors with j−1 sign changes
(where j is the column index).

5 Numerical Results.

The numerical tests were performed using Matlab [10] with double preci-
sion IEEE arithmetic. The wavelet routines are from the wavelet package by
Nielsen [11], and the discrete cosine transform is from Matlab’s Signal Pro-
cessing Toolbox. The test problem heat is from Regularization Tools [7] and was
selected because an unpreconditioned CG method shows slow convergence for
this problem.
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We also test the algorithms on an inverse geomagnetic problem originating
from geoscience [1], where the goal is to compute the distribution of magnetic
dipole moment from remote measurements. The relationship is described by a
Fredholm integral equation of the first kind

∫

Ω

K(x, y, z, x′, y′, z′) f(x, y, z) dx dy dz = g(x′, y′, z′)

where the kernel K is given by

K(x, y, z, x′, y′, z′) =
3(z − z′)

r5
−

1

r3

with r =
(

(x − x′)2 + (y − y′)2 + (z − z′)2
)1/2

.
The solution to the discretized problem consists of samples of f on a 3-D grid

with n = N3 points. The right-hand side consists of data measured at P layers,
each layer consisting of N2 data points and thus leading to a total of m = PN 2

data. The problem used here has parameters N = 12 and P = 13 leading to a
matrix K of dimensions 1872× 1728.

This formulation of the problem gives us the option to create a smaller un-
derdetermined problem with P = 1, i.e., only one layer of data points, leading
to a matrix of dimensions 144× 1728. We use the right singular vectors of this
matrix to create a preconditioning subspace for the overdetermined system.

More extensive numerical experiments with the Schur complement CG algo-
rithm are available in [9], while experiments with our new method in geomagnetic
problems can be found in [1].

5.1 Condition numbers.

Even though the condition number does not tell the entire truth about the
convergence of CG and LSQR, it still carries information on what to expect.
Furthermore it is independent of the right-hand side and we are able to draw
conclusions on a more general level. The actual convergence depends on the
distribution of all the singular values, i.e., not only the extreme singular values,
as well as the actual right-hand side.

Figure 5.1 shows the condition number of the Schur complement S for the
heat problem, as a function of the dimension k of the preconditioning subspace.
The condition number using the wavelet basis decreases each time a detail level
is “completed,” while the other subspace types lead to smoother decay of the
condition number. The basis derived from the SVD gives the smallest condition
number, as expected.

5.2 Precision of subspace precondition LSQR vs. Schur CG.

It is known that LSQR often achieves higher precision than symmetric CG on
the normal equations, even though the two methods are algebraically equivalent.
Figure 5.2 shows the convergence histories and, as expected, we see that LSQR
converges a bit faster than Schur CG. We emphasize that the LSQR algorithm
is much faster, as the cost per iteration is about half that of Schur CG.
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Figure 5.1: Condition number of the Schur complement S as a function of sub-

space dimension k. The test problem is heat with m = n = 1024, L = I and

λ = 10−4.
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5.3 Convergence with different subspace types.

Figure 5.3 shows convergence histories for the heat problem with fixed sub-
space dimensions 32. We see that the SVD-based preconditioner is fastest, fol-
lowed by a DCT-2 based subspace. Compared to the unpreconditioned LSQR,
convergence is very fast for this problem.

Turning to the geomagnetic problem we obtain the convergence history shown
in Figure 5.4. Without the preconditioner convergence is almost non-existent,
while LSQR with subspace preconditioning does converge. The DCT-2 subspace
works nicely even though it does not take the structure of the problem into
account. We also tried the SVD-based subspace from the small version of the
problem, which yields even faster convergence.

5.4 Preconditioned LSQR on the unregularized problem.

Some iterative methods in their unpreconditioned version exhibit “semi-con-
vergence” on unregularized ill-posed problems; i.e., during the initial iterations
the solution approaches a regularized solution but at some point starts to con-
verge towards the unwanted least squares solution, cf. §6 in [6]. This implies that
early termination of the CG iterations is sometimes a regularization method in
itself. CG and hence LSQR in their unpreconditioned versions are known to
posses this semi-convergence property. Figure 5.5 illustrates that this is also the
case for the preconditioned version of LSQR. Note that the smallest error of
the preconditioned method is slightly larger than that of the plain (unprecondi-
tioned) version, but it is reached in fewer iterations.
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Figure 5.3: Relative error with respect to the regularized solution (not the true
solution) as a function of iterations for three different subspace types with k = 32.
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Table 5.1: Timings on the heat problem with m = n = 1024, L = I, λ = 10−5

and a DCT-2 basis of dimension k = 8. The iteration numbers are selected to
give a relative error of 10−3 in the solution. All operations are dense, and the
LSQR implementation is from Regularization Tools [7].

LSQR Schur CG Schur CG Precond.
with g(i) without g(i) LSQR

Initialization (sec) ≈ 0 3 3 3
No. iterations 378 33 33 33
Iteration time (sec) 74 29 13 6
Finalization (sec) 0 0 0 ≈ 0
Total time (sec) 74 32 16 9

5.5 Timings.

In the previous sections we only took the iteration numbers into account when
evaluating the algorithms. However, the time per iteration is also vital. In
addition, the initialization phase, i.e., the creation and factorization of K̂V,
should be taken into account.

If the subspace transformations are implemented with matrix multiplications
we see that the initialization phase costs at least k multiplications with K̂ to
construct K̂V. This corresponds to k/2 iterations with a standard LSQR or
CGLS. Using more efficient subspace transformations like the DCT reduces this
startup penalty and is to be recommended. However, if K̂ is sparse the matrix
multiplication approach could be the best choice. Furthermore the initialization
phase includes a QR factorization of K̂V.

In situations where the same system is to be solved several times one can save
and reuse the factorized K̂V, thus eliminating the initialization step.

Table 5.1 shows timings for LSQR without preconditioning, Schur complement
CG and subspace preconditioned LSQR, broken into three phases. The problem
size was selected so that everything was contained in memory. In the Schur
complement CG algorithm one can skip step 11 and the variable g(i) when
L = I, which saves substantial time in our Matlab implementation.

We see that the time for the initialization phase is equal for the two imple-
mentations of the two-level methods—essentially they both require the creation
of K̂V and a factorization of this matrix. The finalization stages are negligible.

In the iteration phase we see the strength of the new implementation; a pre-
conditioned LSQR iteration is between two to four times faster than a Schur CG
iteration, depending on the matrix L and the implementation of step 11. Both
implementations require 33 iterations to achieve the desired accuracy, while plain
LSQR requires 378 iterations.

Note that for preconditioned LSQR, the algorithm of section 3.2 was used
throughout. The same graphs would be obtained with the section 3.3 modifica-
tions, but the operations with W would increase the timings slightly.
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6 Conclusion.

Least squares problems may be preconditioned on the left by any orthogonal
matrix, and on the right by any nonsingular matrix. Here we are using QT and
[V W ] respectively to decouple the problem into two parts: (3.2) and (3.3).
We have shown that the resulting preconditioned LSQR method is equivalent to
Schur complement CG. Both methods are adapted to avoid operations with W,
but the implementation is simpler for subspace preconditioned LSQR and the
work per iteration is halved.

The subspace V must be chosen wisely for the preconditioning to give fast
convergence. The DCT-2 subspace produced good results, while the wavelet
subspace turned out to be weaker for the problems we considered. We have
illustrated that in some cases a good subspace can be derived from a simpler
problem. Because the initialization phase can be expensive in terms of opera-
tions, the subspace dimension should be chosen small.

We also observed that the Schur complement CG and subspace preconditioned
LSQR algorithms both exhibit semi-convergence on unregularized problems.
Thus, regularization can be achieved by early termination of the iterations.
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