Master Thesis

Design and Implementation of a Database for Recipes

November 2004

LinLin Wang (s020953)

E[g

oo

o

Supervisor: Paul Fischer

Informatics and Mathematical Modelling
Technical University of Denmark
Kgs Lyngby, Denmark

IMM — THESIS — 2004 - 82

Abstract

With the rapid growth of the Internet technology, the information boom has occurred in
the human world with the irresistible trend. When the accumulation speed of the
information is faster than the digestion speed of that, the database came into being to
store the information. How to search and extract the useful content from the Internet and
store them into what kind of databases are the most interesting topics for the database
programming. According to the evolution trend of the Internet, the intelligent analysis
engine is a powerful and efficient tool to establish a structural semantic-oriented web.

This project takes the recipe storage system as an example for looking into the design of
the semantic-oriented extraction. The objective of this project is to establish a database
for recipes and to fill it with some data. During the project, | designed and implemented
two solutions to achieve the above objective. One is based on the traditional thought and
relies on some artificial marks to extract the target content; the other one is introduced
into some thoughts of the semantic-oriented extraction, and able to extract the recipe files
more intelligently and accurately. The test results prove that the semantic-oriented
extraction is more effective.

Acknowledgements

First I would like to thank my supervisor--- Paul Fischer, the professor from Informatics
and Mathematical Modelling at the Technical University of Denmark. He helped me to
set up the definition of my project, and gave me the illuminative guidance throughout the
project. And then | want to thank Jens Thyge Kristensen, who is also a professor from
IMM, DTU. He gave me the kind help on the area of java programming and object-
oriented design. | also appreciate one of my special friends who provide me many useful
advice and kind help during the project.

In addition, I want to thank my parents for their support and encouragement during my
study in Denmark, and all my friends who have been sharing the joys and tears with me!

The last but not least, | also want to thank my boyfriend, Bo Jiang, thank for his
considerate care and generous support!

Terminology

Recipe Data

The content of the recipe, such as the recipe tile,
ingredients and direction.

Ingredient Description Line

A piece of ingredient description, which normally
consists of quantity, unit and ingredient description.

Quantity

The numerical description of the ingredient, e.g. ‘5’

Unit

The unit used for measuring the ingredient, e.g. ‘cup’

Ingredient Description

The text used for describing the ingredient in an
ingredient description line

Entire Paragraph

A paragraph text without any empty lines in between

Word An English word or an Arab number or a text string
which doesn’t contain any spaces, e.g. one, 3, 1/4, and
1.5

Signature the words that indicate the ingredient or direction of
the recipe, e.g. ‘Ingredient’ and ‘Direction’

Material The name of the specific ingredient, e.g. ‘milk’

Table of Contents

I 1 011 oo [0 [ox £ o] o USRS 9
I o (] ot] = (=] 0 1 | SRR 9
1.2 Problem ANGIYSIScoeiiiiieiiiese e e 9
1.3 REPOM SITUCTUIE ..ottt ettt 10

2. SOIULION L .o 11
2.1 Requirement ANAIYSIS........ccouiiieiiiie et 11

2.1.1 User Requirement ANAIYSISccouiiiiiieieiesie e 11
2.1.2 Data Requirement ANAIYSISccoiveieiieii e 11
2.2 System Analysis and SPecifiCationccocooeiiriiiiinineee e 19
2.2.1 Import FUNCHIONANILY ...cooiieeee e 19
2.2.2 Database SYSTEIMcuiiiiiiiiiiiiieee e 24
2.2.3 Graphics USer INtErfacecccvvveveeieiicse e 35
2.3 System Implementation ... 37
2.3.1 SYStEM ATICRITECIUIE.....cuvi e 37
2.3.2 Microsoft Access Databases Design and Implementation..............c.ccco..... 39
2.3.2 Model Implementation.............ccocveiieiieiie e 42
2.3.3 VIeW IMPIementation.cccooiiiiiiieieieesesie e 61
2.3.4 Controller Implementation...........cccocveeiiieieeie e 62
2.4 System Test and RESUILSooviiiiiiiiieeee e 70
2.5 SUMIMATY ...ttt e bbb e e b e s e e st e e st e e e nnbe e e nnneas 84

3. SOIULION 2 1.t 85

3L ANAIYSIS. ..ttt 85
3.1.1 HTML Document ANAIYSIS.........ccoeiverieiieiieiesie e esie e e e sae e 85
3.1.2 External Recipe Files ANalYSIS ... 86

3.2 Design and SPeCIfiCatioNcccveieiiiie e 90
3.2.1 Parsing the HTML DOCUMENT........cciiiiiiiriiriiseeieiee e 90
322 EXITACTION ...ttt sttt bbbttt sttt neeneas 91
3.2.3 Inserting the Recipe into the Database............coovvvieienenenc s 93

3.3 IMPIEMENTALION ... s 94
3.3.1 The Overview of the Implementationccoveiiinenenc s 94
3.3.2 The Implementation of Parsing the HTML Document.............cccccccevveneenee. 96
KRG G b4 - Uod 1 o USSR 100
3.3.4 Inserting the Recipe into the Database.............ccccceevvevieviiiie e 104

3.4 RESUITS ANU TESE...eivviiieiicie et sre e e 106
3.4.1 Import the Invalid Recipe Fileccooveiiiiiiecececee e 106
3.4.2 Import the Valid Recipe File.......ccoooiiiiiii 107

3.5 SUMMIAIY ..ttt sb et e e b e e e b e e e nnneeens 113

7 o] (o1 [Y o] o [115
A1 FULUIE WOTK .ttt sttt teaneenna e e 115
4.2 Personal CONCIUSION.ccoiiiiiiiieieeee e 115

RETEIENCE ... e 117

LSt OF FIQUIES....oeceee e 119

LISt Of TabIES ..o 121

Appendix | Installation Guide..........cccooeeiiiniii e 122

Appendix Il Configuration of Source Code.........cccoceviiiiiiniiennnnn, 125

Appendix T TeSt RESUITS........ccoviiiiiieiecec e 127

1. Introduction

1.1 Project Statement

The objective of this project is to design and implement a recipe system. The core of the
system is a database which is used to store the recipe information; the front-end of the
system is a set of GUI (Graphical User Interface) applications which act as a bridge in
between the end users and the system.

Generally speaking, the recipe database should be able to store the recipe information,
which normally includes the title, the category, the ingredients and the direction of the
recipes. The database should also support the following functions:

— Insert a new recipe record manually

— Modify the items of the recipe record manually

— Delete the recipe record manually

— Import the external recipe files automatically

— Search the recipe by the category manually

— Search the recipe by the ingredients manually

— Search the recipe by the title manually

In addition, as the recipe system supports two kinds of users (the general user and the
super user) and offers them different access rights, the database should be able to store the
user information (the user name and password) and provide the functions like:

— Modification of the password of the super user

In the front-end client side, the system should offer the “win-form” based GUIs, which
allow the users easily fill in the input, select and choose the functions of interest, and read
the results. For the general user, the GUI application should provide all the search
functions and display the search results. For the super user (administrator), the GUI
application should provide the authentication window which is used to authenticate and
authorise the super user. Moreover, the super user should be able to manage an update the
recipe database and have the access for the full functions of the system, such as inserting,
modifying and deleting the recipe.

1.2 Problem Analysis

From the project statement, we can see the most interesting topics for this project are how
to search and extract the recipe content from the external files and store them into what
kind of databases. As the external files can be in various formats and the layout of the
recipe content can be quite different, it is necessary to design a general extraction system,
which can handle as more as possible recipe files.

The general extraction method, in essence, is based on the principle of the semantic-
oriented analysis. Here the semantic-oriented analysis means the system can understand
the “organic’ structure of the recipe files and know what the recipe files are describing
about. Thus, the system can easily handle all kinds of recipe files in the right way.

In order to achieve the semantic-oriented analysis, the system should first be able to
‘read’ and ‘recognize’ the recipes. In other word, the system should know the recipes
normally consist of the following parts: the title, ingredients and direction. In the further

step, the system should understand which words are describing the ingredients or
direction and what the ingredient or direction description really means.

Therefore, in this project, | put my main effort on the work of solving how to design and
implement an intelligent extraction system, which is able to read and understand the
recipe files like the human being.

1.3 Report Structure
The outline of the rest content is:

Chapter 2 — Solution 1 mainly describes how this recipe database system is specified,
designed and implemented. It includes requirement analysis, design and specification,
implementation, results and test, and summary.

Chapter 3 — Solution 2 mainly describes how the import function is improved and
optimized. It includes analysis, design and specification, implementation, results and test,
and summary.

Chapter 4 — Conclusion summarizes the report and project work from the general
perspective and gives a view about the future work.

10

2. Solution 1

2.1 Requirement Analysis

The objectives of this requirement analysis are:

What is this recipe database used for?

What kind of functions does the database offer?

How to specify the access right for the database?

Browse plenty of recipe web sites, and analyze the recipe file structures, distinctions,
contents etc.

e What kind of affects can be reached to the Import function?

e What kind of Graphic User Interface can be supplied?

2.1.1 User Requirement Analysis

Generally speaking, there are two user groups that will use this recipe database system:
general user and administrator.

2.1.1.1 General User

General User here points to all the people who will use this database system.

It should include all the internal staffs if the system is used for some local area and it
should include all the internal and external persons if the system is used in public. The
general user will search corresponding recipes depending on their interest by inputting all
kinds of criteria, such as: recipe title, recipe category, and some ingredients.

2.1.1.2 Administrator

Administrator, i.e. the super-user, includes those peoples who are authorized to this
database system and are permitted to modify this database. The administrator can manage
and manipulate this database freely. The administrator can do the following operations to

this database: insert recipe, edit recipe, delete recipe, import recipe and modify user’s
settings.

2.1.2 Data Requirement Analysis

In this recipe database system, an import function should be implemented. Below, let’s
discuss the problem of it.

2.1.2.1 Import Functionality Analysis

11

Import function is one of the most important functions of this system. It should include
the information extraction technology, which is researched for developing and
implementing human languages extraction. The import function should enable
administrator to import recipes into database from external recipe files automatically. So
in this section, | focus on analyzing external recipe files, including its structure, contents,
and other attributes.

Generally, recipe files might be obtained from many places, such as floppy disk, CD, and

internet; it may be stored in different formats (such as Doc, Html, txt and etc.). In solution
1, we just assume all the recipe files are searched and downloaded from the web site, and

then should be saved as *.txt format into the local hard disk.

Because the recipe files were obtained from the web sites, plenty of text information
might exist, not only the recipe description, but also the information like advertisements
and some other links. For the recipe database, the recipe files consist of both useful and
useless information (of course sometimes just useless information exist). What the system
has to do is to recognize the useful information and extract them.

Before extracting information, we have to analyze the external recipe source files. After
analyzing plenty of recipe web pages on the internet, some general rules of recipe files
were concluded as below (all the recipe files have been saved as *.txt into the local
place):

= Content:

1. Almost all the recipe files consist of four main parts: the title, the category, the
ingredient, and the direction. A few recipe files include some comments.

2. The recipe title appears at the random place but not some fixed place.

3. Recipe category is partitioned in all kinds of ways, such as: depending on the recipe
region or the recipe main ingredient etc. The recipe category might be pointed out in
some files or might be not in others.

4. Several recipe files include special signatures to indicate ingredient and
direction paragraphs®, the special words might be “ingredient’ or “direction’ or
‘instruction’ or ‘procedure’.

Refer to

5. Recipe ingredient description consists of 3 parts: quantity, unit and the ingredient
description.

! Refer to http://cake.allrecipes.com
http://search.yumyum.com/recipe.htm?1D=8632
http://cookbook.rin.ru/cookbook _e/recipes/0838985.html
http://www.recipecenter.com/Recipe.asp?Code=27
http://www.ichef.com/recipe.cfm/

12

6. Most of the direction parts are displayed in one paragraph?; a few exceptions exist as

well.

Structure:

. In the recipe files, the recipe description is always displayed in this order:

The recipe title

The recipe category (some recipe file doesn’t offer the recipe category)
The recipe ingredient description

The recipe direction description

Some recipe files also include some comments somewhere.

. Almost all the recipe ingredient part is displayed in one

paragraph; this means there are no empty lines in between the descriptions.

. Almost all the recipe ingredient description is written in following order:

quantity, unit, some ingredient descriptions.

. Almost all the first words are numerical in each line of the

recipe ingredient description. For example:

1 1/3 cups flour

1/2 tsp salt

1 1/3 tsp baking powder
1 1/3 tsp baking soda

Some exceptions also exist, for example:

Dash each salt and black pepper
Thickly sliced homemade-style white bread

2

Refer to http://www.recipesource.com/
http://www.allrecipes.com/
http://www.recipelink.com/
http://www.recipecenter.com/

13

The normal text recipe file is shown below:

Cake Satiny Chocolate Glaze.txt - Notepad i _O] =]
File Edit Format View Help
wour name:foptionall) « Please check: error text |

wour email address:&laguo; Please check: it appears that wou
may
have entered an incorrect email address.
add a personal note:
{optional) « Please check: error text

also send a copy to wourself
email format:

CumE1ete Recipe

Link _on]

Customize this Recipe

Change to serwvings

Conwert to: U.5 Standard 0 mMetric
about scaling and Conwersions

wgight Management
piahetes

High Blood Pressure
High Cholesterol
General wellness

Recipe Notes
what's Cooking
Healthy Bites

Figure 1 Normal Text Recipe File

The further analysis on the elements of recipe files is shown as below:
e Title

Every recipe must have one title. Generally, titles can represent the recipe main
distinction. However the structure of the title is irregular and it just can be recognized by
a human, not by the computers, when it appears at the random place in the file. Because
all recipe files are the Html pages obtained from the web sites and the Html pages use
tags to markup the content, it seems that we can search the “title” through the special tag
pair “<Title></Title>" in the file. However, as the web pages are saved as *.txt files, all
the tag information will lose and the title can’t be recognized by any keywords.

Therefore, in solution 1, the recipe file’s name will be extracted as recipe title. It is
reasonable that the recipe files can be renamed to recipe titles when somebody saves the
recipe file.

e Category

Recipe category can vary a lot, and it can be partitioned in many ways. Recipe category
maybe pointed out in some recipe files and maybe not in others.

14

In this recipe database, the recipe category should be indicated depending on the recipe
main ingredients. For example: beef, pork, chicken, seafood etc.

e Ingredient

Through browsing many web sites, some general rules and principles for the recipe
ingredients description can be obtained. The basic structure of the ingredient’s descriptive
sentences is:

1 cup water

These three words can be treated as quantity description, unit description, and ingredient
description. This means one general ingredient’s descriptive sentence consist of three
main parts, namely Quantity; Unit; Ingredient.

The reason to subdivide the recipe ingredient description is to decrease the system query
time when the user search recipes through the ingredients.

In the following, we analyse these three parts in details.

— Quantity

All the Quantity is represented by numbers. It maybe consists of one numerical word
(suchas 1, 2, 3...) or two numerical words (such as 2 1/4,5 1/8...). So we can make
sure that the Quantity words are always made up of one or two words which include
numbers. For example:

1 cup water

1 1/2 cup water

— Unit

The Unit word means one kind of measure unit, such as ‘cup’, ‘tablespoon’, ‘ml’ etc.
In our real life, the general unit words are finite and standard. So if the system
establishes a Unit database in advance which includes all the unit words, then the
program can query the Unit database, match and recognize which words are Unit.

Another situation we have to note that sometimes there are one or more adjuncts in
front of the unit word. For example:

1 (12 ounce) can corn and 1 glass cup water

System should extract ‘(12 ounce) can’ and ‘glass cup’ as one entire dataset and put
them together into the database.

The last situation also should be considered is that the there are no unit words existing
in a piece of ingredients. For example:

2 eggs
The system should return a null value when the unit words can’t be found out.

— Ingredient

15

Ingredient here means recipe materials description. The materials can be some kinds
of seasoning such as a spice, herb, salt, or pepper and some kinds of human food such
as beef, eel, or spinach.

Obviously, it is infeasible to subdivide the ingredient description further. The best
way to extract materials part is to treat all of the rest words as materials dataset after
extracting Quantity, Unit. For example:

2 tablespoons softened butter, hot water

The program should extract out ‘2’, “tablespoons’, ‘softened butter, hot water’ these
three groups of datasets as Quantity, Unit, and Ingredient.

e Direction

Most recipe direction part is contained by one whole paragraph. It is not necessary to
subdivide the recipe direction though we always treat the recipe direction as one whole
part.

16

2.1.2.2 Database System Requirement Analysis

The aim of creating recipe database system is to query recipe data conveniently and
quickly for the general users. This database system also can be managed and controlled
through doing some operations by administrators. About this Recipes Database System,
one special import function should be highlighted.

This Recipe Database System should meet following requirements:

1.

This database system should be able to store the recipe data, such as: recipe title,
recipe category, recipe ingredient, and recipe direction.

Specify different access right for general users and administrators.

General users can search recipes by inputting various conditions, for example: title,
category, and some ingredients etc.

Administrators can do the basic operations such as insert, edit, or delete to update
the data to the database.

In this recipe database system, an import function will be implemented.

As the standard ingredient description line consists of three parts: quantity, unit
and the ingredient description, the storage of the ingredient should be detail to
those parts level, i.e. store the quantity, unit and the ingredient description
respectively.

One supplementary administrator record database should exist. It can be used for
managing and checking out administrator’s information. It should include
administrator’s name and password.

2.1.2.3 Graphic User Interface Requirement Analysis

Graphic User Interface should meet the following requirements:

1.

General users and administrators have different access right. So two different
interfaces should be offered, that are: the user interface and the administrator
interface.

One main interface should exist as recipe database system’s entrance. Users have
different access right can log in this recipe database respectively from this main
interface.

The user interface provides general users a query interface. Users can get the
corresponding recipe information through inputting the keywords. These
keywords can be recipe title, recipe category, and some recipe ingredients.

One recipe display window is needed to display those recipes which the user is

looking for. Since there is probably more than one recipe were found out, this
window should include the recipe detail information: recipe ID, title, category,

17

ingredient, direction and one recipe name list which can link to other recipes
information.

. Administrator interface provide one database update interface. Administrator can
do INSERT, EDIT, DELETE, IMPORT and PERSONAL SETTING operations to
the database system.

Insert -- manually insert recipe data like: title, category, ingredient and direction.
Edit -- modify the recipe information

Delete -- delete the recipe from the database

Import -- import recipe information into database from the external recipe files
Personal Setting -- change administrator’s password.

Note: In Insert and Edit interfaces, the recipe category should be selected from

one category list by users, then one category table should be needed in the
database in advance.

18

2.2 System Analysis and Specification

2.2.1 Import Functionality

The recipe files normally are the Html pages obtained from the web sites. Before
performing the import function, the program should remove the Html formatting and tags,
and save the recipe files as .txt format. There may be one or more recipes in these files.

We all know that a general, normal recipe basically consists of four main parts: title,
category, ingredients and direction. The main task of implementing the import function is
to extract those four parts from the recipe files and then put them into the database.

2.2.1.1 Recipe Title Extraction

First of all, the program should extract the recipe title. The recipe title maybe appear at
any random places in the file, and its name is irregular. It is infeasible that let the program
recognize which string is recipe title from the recipe file.

My idea is:

Extract the recipe file name as recipe name. The precondition for this is that the recipe file
was renamed as the recipe title when it was saved into the hard disk. The system can
import the recipe title successfully in this way.

2.2.1.2 Paragraph Extraction

Because the external recipe source files are downloaded from web site, probably some
redundant, useless information exist in the files. As most of the recipe ingredient
description part and recipe direction description part are included in two separate
paragraphs, in solution 1, my idea for extracting ingredient and direction is to follow the
next two steps:

o First, extract the two useful paragraphs: ingredient paragraph and direction
paragraph.

e Then, extract the detail information from these two paragraphs, e.g. extract the
quantity, unit and descriptive sentences of the ingredients.

The way | used to recognize the ingredient and direction paragraph can be named:
signature way or keyword way.

First, we can assume that the two key words such as ‘ingredient’ and “direction’ exist in
front of the ingredient paragraph and direction paragraph respectively.

About these two special key words, there are many situations to be discussed:

1. The ingredient description part is always indicated by the string ‘ingredient’, and
the direction description part maybe indicated by many strings “direction’ or
‘instruction’ or ‘procedure’,

2. Some plural format maybe appears like: ingredients, procedures etc.

3. Sometimes these key words don’t appear alone, e.g. appear as part of one sentence,
for example:

19

--- Amount Measure Ingredient -- Preparation Method ---------------

4. Before the right key words shown up, there maybe many such key words exist
somewhere in the file, so one judgement should be needed for recognizing which
keywords are used for the extraction.

Clearly, the extraction key word “ingredient” is the last occurrence string to appear before
the other extraction key words ‘direction’. So after the string ‘ingredient’ appears, the
program should continue to search. If another string ‘ingredient” appears, then the
previous ‘ingredient” will be treated as invalid and then it should be ignored. Until the
string “direction’ appears, the previous ‘ingredient” will be treated as the right key word
for extraction. At the same time, the string “direction’ will be treated as the key word for
extraction as well.

After finding out the correct extraction key word, the program should treat the paragraph
immediately after it as the extraction paragraph.

Through the analysis above, we know all the ingredient part is displayed in one whole
paragraph and most direction description is displayed in one whole paragraph. Then in
solution 1, we will assume all the ingredient and direction part are included in one entire
paragraph. Likewise, the program can assume the ingredient and direction description
terminate when the empty line appears.

After recognizing these two valid paragraphs, another text file (we can call it ‘paragraph
file”) will be generated for storing these two useful paragraphs. The new text file will be
used for doing the detail extraction conveniently in the future.

2.2.1.3 Recipe Category Extraction

After extracting the recipe ingredient and direction paragraph, the program will extract
the recipe category. In this recipe database, the recipe category will be partitioned in the
most common way, the category can be ‘Beef’, ‘Pork’, ‘Chicken’, ‘Lamb’, ‘Seafood’ etc
according to recipe main materials.

One category table should be created in advance, which includes the following categories:
Beef, Bread, Chicken, Duck, Lamb, Pasta & Pizza, Pork, Seafood, Soup, Sweet & Dessert,
Vegetable & Fruit, and Others.

The way to extract the category is:

First, the program defines the elements in the ‘name’ column of the material table as the
query keywords. Then, the program searches these keywords in the title and the direction
paragraphs got from the last step — the initial extraction. As the elements have been
mapped to some specific category respectively, if any of them is found, the program will
set the category which the found keyword belongs to as the recipe category (As long as
the program found one keyword existed in the searching area, it will stop the query and
set the recipe category). If none of the key words is found, the recipe category will be set
to ‘Others’.

20

The possible materials which belong to one of the recipe category are listed as below:

Beef: beef and stake

Bread: Crust, bread, toast and crumb.

Chicken: Chook, drumstick, turkey, and wing.

Lamb: mutton and lamb.

Pork: Pig, hog, pettitoes, griskin.

Seafood: Fish, shark fin, sturgeon, chub, crucian, pomfret.

Sweet & Dessert: Cookie, cake, biscuit, tortoni, chocolate, choc-ice, nougatine, nicy,
ice-cream, and coffee.

e Vegetable & Fruit: Salad, celery, cucumber, pawpaw, aubergine, tomato, potato,
apple, orange, banana, pear, peach, grape, cherry, and strawberry.

In the database, a material table is needed, which is used to store the name of above
common ingredients. When the program looks through the material table and finds out the
material in the table is just the same as the one contained in the recipe text file, the recipe
category can be specified.

2.2.1.4 Ingredients Extraction

The next step that the program should do is to perform the detail ingredient extraction for
the new paragraph file.

Now that all the ingredients descriptions exist in one entire paragraph, so the program
consider ingredients description terminate when the space line appears.

According to project’s statement, the program should extract recipe ingredients
description from file, and then convert them to special dataset, at last put them into the
recipe database. Now we know, every recipe ingredients description line consists of
Quantities, Unit, and Ingredient parts. So the program should extract these 3 parts from
each line respectively.

As mentioned before, we assume that the ingredients description always display in this
order: quantity, unit, ingredients description. For example:

1 cup water
500 g butter

Namely, the first part always numerical words, the second part always some words
describing measure units; the rest part is material description. The program should
recognize these 3 parts and extract them from every line.

Fist part — Quantity extraction
In the normal situation, the quantity of ingredient description is always written in this
format:

21

1,15,1/20r21/2

So | can assume that at most two numerical words (two numbers with some blanks in
between each other; the fraction number is considered one word) used for describing
quantity. Practically never more than two numbers were used for describing quantity
contribution like this:

2 2 1/2 cup water

The extraction procedure for the quantity is: first I can assume the first word is numerical,
and the program should continue to check the second word. If the second word is also
numerical, the second word should be appended to the first word to generate one string as
Quantity. Eventually these two words should be put into the database as one string. If the
second word isn’t numerical, the program just treats the first numerical words as Quantity
and put it into the database.

Second part — Unit extraction

Given the words describing unit are finite and standard, one unit table can be created in
recipe database in advance. This unit table should contain all the unit words which may
be appearing at any ingredients description (include these words’ plural and abbreviations
format), such as cup, cups, spoon, tb, g, and ml etc.

One situation should be noted that an adjective might exist before the unit words
according to ingredients description rule, for example:

Small cup, middle package etc.

The extraction procedure of the unit is: scan the ingredients line from the left to the right.
If a unit words was found, the program should continue to check its previous word. The
string before the unit word can be two types: numerical word and descriptive word. For
example:

2 cup water
2 small package nuts

If the previous word is numerical word, like 2 cup, ignore it and just put this individual
unit word into the database; if it isn’t numerical word, the program will consider this
string as one descriptive word like ‘small’, ‘glass’ etc, and append it in front of the unit
word to generate one string. Eventually, the program will put them together into the
database as Unit.

If there isn’t any unit words exist, return null, namely a null value will be put into
database as Unit, for example:

2 eggs

22

Last part — Ingredients extraction

The last part is recipe material description; it often consists of some recipe materials and
some additional descriptions.

On the surface, the way to recognize recipe materials words can be: first create a
materials database, and then extract the material words from the lines. However people
will find the way mentioned above is impossible or is not the best to solve this problem
after reading my following analysis.

First of all, there are more than 10 thousand kinds of human food. It is impossible and
makes no sense to make one statistic on the various human foods for a simple, ordinary
recipe database system. Even imagine we have made the perfect statistic for human food
and seasonings, please see the following example:

2 cup white sugar

Suppose the program has extracted out ‘2’, “‘cup’ and ‘sugar’ from this sentence. However,
how should the program process the rest word ‘white’? let’s see another example:

2 tablespoons softened butter, hot water

Suppose the program can extract out ‘2’, ‘tablespoons’, ‘butter’, “water’ from this
sentence, and then “softened” and *hot” will be left. Where should they be put into?

Therefore the best way is to treat all the rest strings as one whole string even though it is
meaningless to partition the ingredient description into parts. After extracting quantity
words and unit words, the program will put all the rest parts of this line into the database
as Ingredients.

2.2.1.5 Direction Extraction

This process is very similar to the previous ingredient extraction; the program should
extract the direction part from the new paragraph file as well.

According to my experience on the direction structure, generally speaking, most of the
directions are written in the consecutive, plain text style (only some minors are formatted
into bullets; But these bullets are still context related.). Therefore it makes no sense to
separate the direction paragraph into many parts, the recipe direction part can be treated
as one whole string. The program should extract this entire paragraph out, and then put
them together into the database as Direction.

2.2.1.6 Same Recipe Estimation

Given the possibility of repeat inputting the same recipe, one additional judgment
procedure should be needed.

As we all know, people can judge whether the two recipes are the same or not according
to the recipe title or direction. Two recipes with the same title maybe have entirely

23

different directions and two recipes with the same direction maybe have different titles.
So we can arrive at the conclusion that the key judgment for two same recipes should
depend on the recipe direction. These recipes will be treated as different recipes if their
directions are different.

Here, the program will check the directions through the rule of string comparison. The
checking algorithm is: first follow the order from the left to the right, from the top to the
bottom to check whether each word existed in direction A also exists in direction B. Once
a word has been found also existed in direction B, a counter will automatically increase
by 1. The program will continue this check until the last word in direction A has been
checked. Then, the program will divide the total number of the words in direction A by
the number of that counter and get the results AR. After that, the program will do the
same operations and calculation on all the words in direction b and check how many
percent (BR) of them has also existed in direction A. If both AR and BR exceed 80%,
these two recipes will be treated as the same.

2.2.2 Database System

2.2.2.1 Development Environment

In this project, Microsoft Access 2000 is chosen as the relational database management
system. The reason to use the relational database instead of other kinds of databases, such
as the XML database, is that the data in the relational database is more structural, and the
redundancy of the system can be very low. In addition, the relational database provides
much stronger query function and is more extendable. For the XML database (e.g. the
Native XML Database®), it stores the whole documents as a unit and may cause some
redundancy. Although the XED (XML Enabled Database®) can reduce the redundancy by
introducing the fine-grained data model, it, in essence, is still based on the relational
database.

The data is stored in row and column style in the relational database system. The
collection of the rows and columns is called Table, and a group of tables constitutes s
database system. In the relational database system, all the data are organized and linked
by their relationship. We can present and manipulate the data in the relational database
freely.

% refer to the link: http://www.xml.com/pub/a/2001/10/31/nativexmldb.html
4 refer to the link: http://www.tongyi.net/article/20031012/200310123737.shtml

24

2.2.2.2 E-R Model

E-R Diagram
Recipe
Category

Material

Ingredient

/ L \

Unit Admin

Figure 2 E-R Diagram

25

2.2.2.3 Use Case Model

Use case modelling from the user view or event flow view; which covers a problem and
solutions which involves use case diagrams to use case descriptions.

To successfully apply use case diagrams, the types of elements used should be aware of.

Actor: are used for modelling and representing users’ role to a system, which maybe
human users or other systems.

Use case: are used for modelling and representing the system behaviours from the user
view and it also can be explained to one kind of visible external actions of a system.

Below, the use case model was used for specifying the recipe database system.

Actors:
User-gen -- General user, search recipes from database system

User-adm -- Administrator, manage and manipulate the data in database, which involves
modify data, insert data, update database etc.

26

Use Case Diagram:

Search Recipe
by Ingredient

Search Recipe
by Category

A

Search Recipe
by Title

Insert Recipe
Delete Recipe

Modify Recipe
Information

Edit Recipe

Import Recipe

A 4

Modify Password

Figure 3 Use Case Diagram

27

User Cases Description:
e Login of general user
Users can enter the Recipe Query Page without any password.
e Search the Recipes
Users (User-gen and User-adm) search the recipes by inputting keywords.
e Search the Recipes by the Title

Users (User-gen and User-adm) search the recipes by inputting some keywords about
recipe title.

e Search the Recipes by the Category
Users (User-gen and User-adm) search the recipes by inputting recipe category.
e Search Recipe by Ingredient

Users (User-gen and User-adm) search recipes by inputting some keywords about
recipe ingredients.

e Login of administrator

Users (User-adm) do the login operation to the system. System will detect user’s
name and password. User will login the system when both the name and password
correct and will be rejected when either the name or the password wrong.

e Modify the Recipe Database

Users (User-adm) can modify the recipe database, include insert the new recipes, edit
the old recipes, delete the old recipes, and import the new recipes.

e Insert the Recipe

Users (User-adm) insert new recipes data to the database, the recipe information
should contain: the title, the category, the ingredient, and the direction.

e Edit the Recipe

Users (User-adm) can modify the information of the old recipes in the database.
e Delete the Recipe

Users (User-adm) can delete the useless recipes from the database.

e Import the Recipe

28

Users (User-adm) can import the recipes from the external files.

e Modify the Password

Users (User-adm) can modify their passwords freely.

e Logout of general user

Users (User-gen) can do the logout operations when they are out of the system

e Logout of administrator

Users (User-adm) can do the logout operations when they are out of the system.

Use Case Table:

Use Case Table: Login of the general user

Use Case Login of the general user
Number uco1
Actors User-gen

Preconditions

User visit the Recipe Query System entrance page

Description

Step | Branching Action

The user click on the button 'General User' directly without any

1 password

Success End Condition

The user enter the Recipe Query page

Failed End Condition

Table 1Login of the general user

Use Case Table: Login of the administrator

Use Case Login of administrator
Number uco2
Actors User-adm

Preconditions

The user visits the Recipe Query System page

Description

Step | Branching Action

The user click on the button 'Administrator', and then a dialog
1 | window will appear

It indicate the user to input the name and the password

2 | The user input the name and the password

Success End Condition

The user enter the administrator page when both the name and the
password right

Failed End Condition

The error message will be returned when either the name or the
password wrong

Table 2 Login of the administrator

29

Use Case Table: Search the Recipe

Use Case: Search the Recipe
Number: uco3
Actors: User-adm, User-gen

Preconditions:

User has entered the Recipe Query page

Description

Step | Branching Action

1 Click on 'Ok’ button to search recipes or

click on 'Back’ button to return back the previous page

Success End Condition

The Recipe Display page will be shown out when one or more recipes have
been found

Failed End Condition

The ‘No recipes was found! message will be returned if no recipe matched

Table 3 Search the recipe

Use Case Table: Search the Recipe by the Title

Use Case Search the Recipe by the Title
Number uco4
Actors User-adm, User-gen
Preconditions The user has entered the Recipe Query page
Description Step Branching Action

1 The user input some keywords of the recipe title

2 Click on the 'Ok’ button to search recipes or

click on the 'Back’ button for returning to the previous page

Success End Condition

The Recipe Display page will be shown out when one or more recipes have
been found

Failed End Condition

The ‘No recipes was found! message will be returned if no recipe matched

Table 4 Search the Recipe by the Title

Use Case Table: Search the Recipe by the Ingredient

Use Case Search the Recipe by the Ingredient
Number UCo5
Actors User-adm, User-gen
Preconditions The user has entered the Recipe Query page
Description Step Branching Action

1 The user can input some keywords of the ingredient

2 Click on the 'Ok’ button to search the recipes or

click on the 'Back’ button for returning to the previous page

30

The Recipe Display page will be shown out when one or more recipes
Success End Condition | have been found

Failed End Condition The ‘No recipes was found!" message will be returned if no recipe matched

Table 5 Search the Recipe by the Ingredient

Use Case Table: Search the Recipe by the Category

Use Case Use Case: Search the Recipe by the Category

Number Number: UC06

Actors Actors: User-adm, User-gen

Preconditions Preconditions: The user has entered the Recipe Query page
Description Step | Branching Action

1 | The user select one kind of recipe category from the category list

2 | Click on the 'Ok’ button to search recipes or

click on the 'Back’ button for returning to the previous page

The Recipe Display page will be shown out when one or more recipes
Success End Condition | have been found

Failed End Condition The ‘No recipes was found! message will be returned if no recipe matched

Table 6 Search the Recipe by the Category

Use Case Table: Modify the Recipe Database

Use Case Modify the Recipe Database
Number ucov
Actors User-adm
Preconditions User has entered the Administrator page
Description Step | Branching Action
1 The user can choose any panels to modify the database,

such as the InsertPanel, EditPanel, DeletePanel, ImportPanel,

and the PersonSettingPanel.

Success End Condition | The corresponding panel will be lay out.

Failed End Condition

Table 7 Modify the Recipe Database

31

Use Case Table: Insert the Recipe

Use Case Insert the Recipe
Number uCo08
Actors User-adm

Preconditions

The user has chosen the InsertPanel

Description

Step | Branching Action

1 The user should completely fill in the recipe information,

Including the title, ingredient, direction and the category

Click on the 'Save' button to save the new recipe in the
2 database or

Click on the 'Clear’ button to clear the panel

Success End Condition

A new recipe is saved in database

when the new recipe information is valid

Failed End Condition

An error message should be returned
when the new recipe is not completely filled in or

when the new recipe information is invalid
Another error message should be returned when the new recipe is
filled in the wrong format.

Table 8 Insert the Recipe

Use Case Table: Edit the Recipe

Use Case Edit the Recipe
Number uco9
Actors User-adm
Preconditions The user has chosen the EditPanel
Description Step Branching Action
1 The user chooses the recipe ID
Then the corresponding recipe information is displayed on
the panel
2 The user can modify the recipe information
such as: the title, ingredient, direction, category except the
ID.
3 Click on the ‘Update' button to update the recipe data or
Click on the 'Clear to initialize the panel

Success End Condition

The old recipe is updated f the new data is valid

Failed End Condition

An error message will be returned if the new recipe information

is invalid , such as wrong format.

Table 9 Edit the Recipe

32

Use Case Table: Delete the Recipe

Use Case Delete the Recipe
Number UC10
Actors User-adm

Preconditions

The user has chosen the DeletePanel

Description Step | Branching Action
1 The user chooses the recipe ID
the recipe information is displayed on the panel
And all the data fileds displayed are non-editable
Click on the 'Delete' button to delete the recipe from the
2 database or

Click on the 'Clear to initialize the panel

Success End Condition

The old recipe will be deleted from the database

Failed End Condition

Table 10 Delete the Recipe

Use Case Table: Import the Recipe

Use Case Import the Recipe
Number UC11
Actors User-adm

Preconditions

The user has chosen the ImportPanel

Description Step | Branching Action
1 The user chooses one recipe file from the local disk
Click on the 'Import' to import this new recipe into the database
2 or

Click on the 'Cancel' to initialize this panel

Success End Condition

The new recipe that has been chosen is imported if the recipe file is

valid.

Failed End Condition

An error message will be returned if the recipe file is invalid

such as: there isn't any recipe information existing in the recipe file

or the recipe information is incomplete

Table 11 Import the Recipe

33

Use Case Table: Modify the Password

Use Case Modify the Password
Number uciz
Actors User-adm

Preconditions

The user has chosen the PersonSettingPanel

Description Step | Branching Action
1 The user name has been displayed and it is non-editable
2 Input the original password and

input the new password twice for ensuring

3 Click on the 'Modify' to change the password or

Click on the ‘Clear to initialize this panel

Success End Condition

The password will be changed if all the input data is correct

Failed End Condition

Table 12 Modify the Password

Use Case Table: Logout of the general user

Use Case Use Case: Logout of general user
Number Number: UC13
Actors Actors: User-gen

Preconditions

Preconditions: The user has entered the Recipe Query page

Description

Step

1 The user click on the button ‘Logout'

A dialog window will appear

It indicates the user to confirm the logout operation

Success End Condition

The user logout the system,

And the GUI returns back to initial page when 'Yes' is selected

Failed End Condition

The page will be remained when the 'No' is selected

Table 13 Modify the Password

Use Case Table: Logout of the administrator

Use Case Logout of the administrator
Number ucl14
Actors User-adm

Preconditions

The user has entered the Administrator page

34

Description Step Branching Action

1 | The user click on the button 'Logout'

A dialog window will appear

It indicates the user to confirm the logout operation

Success End Condition The user logout the system,

And the GUI returns back to initial page when 'Yes' is selected

Failed End Condition This page will be remained when the 'No' is selected

2.2.3 Graphics User Interface

The graphics user interface’s component specification are following:
* Entrance Interface

Contains two Buttons. One is the entry button for general users, and the other is for
administrators.

General users can enter the Recipe Query page without any password, while the
administrator has to input the correct user-id and password for entering enter the
Administrator page.

* Users Interface

Contains two TextFields and one CombBox. One TextField is for inputting recipe title
and the other is for inputting recipe ingredient; The CombBox is for displaying recipe
category list, which allows the users select the category manually.

* Administrator Interface

Contains one TabbedPane on which there are InsertPanel, EditPanel, DeletePanel,
ImportPanel and PersonSettingPanel.

e InsertPanel

Contains a TextField for inputting recipe title; A CombBox display recipe category
users can select; A Table for inputting ingredient elements; And a TextArea for
inputting recipe direction.

e EditPanel

Contains a CombBox display recipe ID which users can select; a TextField for
displaying recipe title which also can be used for modifying recipe title; and a Table
for displaying recipe ingredient which also can be used for editing recipe ingredient.

e DeletePanel

35

Contains a CombBox display recipe ID can be selected; a non-editable TextField for
displaying recipe title; a Table for displaying recipe ingredient; and a TextFiled for
displaying recipe direction

e ImportPanel
Contains a Button for browsing the recipe file will be imported; And a ComBox
displaying recipe category can be selected.

e PersonSetting interface

Contains four TextFields, one is non-editable for displaying the administrator’s name,
one for inputting original password, one for inputting new password, and the last one
for re-entering new password for making sure the new password correct or not.

* Recipe Display Interface

Two types Recipe Display Interface should be offered
e One for displaying the recipe which has been imported into the database from
external recipe file
Contains two TextAreas for displaying recipe ingredient and recipe direction; three
TextLables for displaying recipe title, recipe ID, recipe category.

e The other Recipe Display Interface for displaying those recipes which was
searched by general users

Contains two TextAreas for displaying recipe ingredient and recipe direction; three

TextLables for displaying recipe title, recipe 1D, recipe category; And a List for

displaying those recipes’ name.

36

2.3 System Implementation

2.3.1 System Architecture

This recipe database system is based on the Model-View-Controller architecture. The
Model-View-Controller (MVC) is a powerful commonly used architecture for GUIs. The
MVC paradigm is a way of separating an application into three parts: the model, the view,
and the controller. MVC was originally developed to map the traditional input, processing,
output roles into the GUI realm:

Input --> Processing --> Output
Controller --> Model --> View

In the MVC paradigm the user input, the modeling of the external world, and the visual
feedback to the user are explicitly separated and handled by three types of object, each
specialized for its task.

e View manages the graphical and/or textual output to the display that is assigned to
its application.

e Controller interprets the mouse and keyboard inputs from the user, maps these
user actions into commands that are sent to the model and/or view to effect the
appropriate change.

e Model manages the behavior and one or more data elements of the application,
responds to requirement for information about its situation and responds to
instructions to change state.

The basic Model-View-Controller can be illustrated by the following picture:

Model

View Controller

Figure 4The MVC model

37

Model

ModifyRecipe

ExtractIinformation()
Extract(fr: FileReader,

ExtractionInformation ModifyRecipe ()

insert(title: String, categ: String, direction:
String , ingredient: String[][])

edit(id: int, title: String, categ: String,
AR direction: String, ingredient: String[][])
title:String) delete(id: int)

searchRecipe(title: String, ingredient: String,

categ: String, id: Vector, names: Vector)

: RecipeDisplay Controller
View
RecipeDisplay(id: int, ButtonListener
username: String, code:String) >
showlt(x: int, y: int) actionPerformed (event: ActionEvent)
y
- ComboL.istener
InsertPanel EditPanel
) itemStateChanged(e: ItemEvent)
InsertPanel() EditPanel()
init() init()
DeletePanel ImportPanel
DeletePanel() | | ImportPanel() | |q AdminFrame
initQ init(v AdminFrame (username:
~7| String, code: String)
; showlt(x: int, y: int)
RecipeQueryFrame
RecipeQueryFrame () RecipeFrame
showlt(x: int, y: int))
y Tl RecipeFrame(id: Vector,
titles: Vector)
) showlt(x: int, y: int)
RecipeQuerySystem
Main() A
UserFrame
UserFrame()
showlt(x: int, y: int
A uses B init() (y)
A » B

Figure 5 UML Class Diagram

38

2.3.2 Microsoft Access Databases Design and Implementation

The procedure of database design and implementation was illustrated by following picture:

Database System Function Analysis

Database Requirement Analysis

Identification of the data objects and relationships

Design the ER diagram with the entities and relationships

v
Add key attributes to the diagram

Diagramming Generalization Hierarchies
Validating the model through normalization

Adding business and integrity rules to the Model

Generate the Recipe Database

Figure 6 the procedure of the design and implementation of the database

39

The table is the central element in Access, which consists of data records that contain all
the data information. Each table is composed by many fields which have different data
types. Each row in the table is a record of the database. The procedure of implementing
the database is to convert the E-R diagram to the tables. Every entity can be converted to
one table and their attributes can be converted to the fields. Refer to my E-R diagram
above; six tables are built in my database.

1. The Recipe Table

B Recipe : Table

Category Direction

(Aut oHumber)

Table 14 the Recipe Table

In the recipe table, the recipe ID was set as the primary key, because in the recipe
database, some different recipes might have the same title names and only the recipe
ID is unique. The program offered an automatic import function and the ‘Rec_ID’
field’s data type was set AutoNumber which means the recipe ID will be generated
automatically when a new recipe was imported. The data types of the field ‘Title’ and
‘Category’ were set Text and the data type of the field ‘Direction’ was set Memo.

2. The Ingredient Table

E Ingredient : Table

Ingredient

(AutoFumber)

Table 15 The Ingredient Table

In the ingredient table, the ingredient’s ID was set as the primary key. The field
‘Rec_ID’ here is matched to the ‘Rec_ID’ field in the recipe table. The reason for the
‘Ing_ID’ field’s data type was set AutoNumber is the same as the one for ‘Rec_ID’
field in recipe table. When a new recipe was imported into the database, the ingredient
description items of the recipe its were filled into the ingredient table automatically.

3. The Category Table

40

] AL e (=

djv

Categorzy

Eread

Chichen

DNuaclc

Lamb

Other=

Fas=ta & Fizza
Forlc

—Seafood

Sweets & Nez=zerts
Yezetable & Fruit

FoEtF ottt ottt

Table 16 The Category Table

Refer to the requirement specification; a category table is needed in my database. The
‘Category’ fields in the recipe table and in the material table as below are both
matched to the “Category’ field in this table.

4. The Material Table

— - E E E . g E m

Hame Category

Table 17 The Material Table

The ‘Name’ field was set as the primary key and the ‘Category’ field is match to the
‘Category’ field in the category table

5. The Unit Table

41

Catn=

Table 18 The Unit Table

The words that represent the units should be filled into the unit table as many as
possible in advance. The program will extract the unit word from the recipe file
according to the values in this table.

6. The Admin Table

E Admin : Table |:| |E| |E|

Fassword

Table 19 The Admin Table

The admin table was used to store the administrators’ records. The ‘“Name’ was set as
the primary key.

2.3.2 Model Implementation

There are two classes contained in the system model part, they are: ExtractionInformation
and ModifyRecipe.

42

The Extract(FileReader fr, String title) method in the ExtractionInformation class will be
called when the import operation was performed. The ModfiyRecipe class contains insert,
edit, delete, researchRecipe methods.

SQL and JDBC techniques are primarily used for implementing these models. In the
following sections, | will give a brief introduction about them.

e SQL Introduction®
SQL (Structure Query Language) is a kind of ANSI (American National Standards
Institute) standard computer languages for accessing and manipulating database systems;
now it is widely used as one kind of relational databases query languages. SQL consists
of four functions such as: query, manipulate, definition and control. It integrates Data
Manipulation Language (DML) and Data Definition Language (DDL).

Data Manipulation Language (DML) is used to query and manipulate the database. The
basic commands are shown below:

SELECT —is used to select data from a table.

Syntax --

SELECT column_name(s)
FROM table_name

Table 20 Select

UPDATE —is used to modify the data in a table.

Syntax --

UPDATE table_name
SET column_name = new_value
WHERE column_name = some_value

Table 21 UPDATE

DELETE —is used to delete rows in a table.

Syntax —

DELETE FROM table_name

5 refer to the link: http://www.w3schools.com/sgl/default.asp

43

WHERE column_name = some_value

Table 22 Delete

INSERT INTO —is used to insert new rows into a table.

Syntax —

INSERT INTO table_name
VALUES (valuel, value2,....)

Table 23 Insert Into
The Data Definition Language (DDL) is used to create and delete the database. We can
also define indexes (keys), specify links between tables, and impose constraints between
database tables. The commands are shown below:
CREATE - to create a database: create a table and create index
DROP - drop index, table and database:
ALTER TABLE —is used to add or drop columns in an existing table.

In my project, Data Manipulation Language (DML) was used to connect the SQL engine
by using JDBC.

e JDBC Introduction®
JDBC (Java Data Base Connectivity) is a set of Java APIs that provide Java programs
with a way to connect to and use relational databases. The JDBC API makes it easy to
send SQL statements to relational database systems. The combination of Java's JDBC and
standard SQL provides a simple and powerful database solution.

To make JDBC work, the first thing is to install Java and JDBC. The JDBC has been
included in the JDK.

The Next step is to install a JDBC driver.

The SUN Company has defined four types of JDBC drivers. They are:
Type 1: JDBC-ODBC Bridge

Type 2: Native-APl/partly Java driver

Type 3: Net-protocol/all-Java driver

Type 4: Native-protocol/all-Java driver

® refer to the link: http://www.w3schools.com/sgl/default.asp

44

In my project, the typel (JDBC-ODBC) was selected as my JDBC driver, because the
Access adopts ODBC as the interface of its database.

e Establish a connection
Establishing a connection with the DBMS involves two steps: (1) loading the driver
and (2) establishing the connection.

1. Loading the Drivers

The code used for loading the driver is:

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

Table 24 Load the Drivers

2. Establishing the Connection

After loading a driver, it is ready for establishing the connection with the DBMS.

String url="jdbc:odbc:driver={Microsoft Access
Driver(*.mdb)};DBQ=Recipes.mdb";

con = DriverManager.getConnection(url, "mylogin”,
"mypassword");

Table 25 Establis the Connection

Con is an open connection and | used it to retrieve values from ResultSets (The dataset
that contains the querying results).

A Statement object, which includes the SQL statement, is the object that the program
sends to the DBMS. The working procedure of it is:

First, create a Statement object

Statement stmt = con.createStatement();

Then, assign the target SQL statement and invoke the appropriate execution method. For
instances, for a SELECT statement, the method to use is executeQuery; For statements
that create or modify tables, the method to use is executeUpdate.

String update = “UPDATE table_name SET column_name = new_value
WHERE column_name = some_value”;

stmt.executeUpdate(update);

Table 26 Execute the Update

45

String delete = “DELETE FROM table_name
WHERE column_name = some_value”;

stmt.executeUpdate(delete);

Table 27 Execute the Delete

String insert = “INSERT INTO table_name
VALUES (valuel, value2,....)”;
stmt.executeUpdate(insert);

Table 28 Execute the Insert

String query = “ SELECT column_name(s) FROM table_name”;

ResultSet rs = stmt.executeQuery(query);

Table 29 Execute the Query

Every time the invoked method requires the return results from the remote Database,
JDBC returns the results in a ResultSet object. The variable rs, the instance of
ResultSet , contains the rows of the columns. In order to access the values of it, the
program should address each row and retrieve the values according to their data types.
The method next is used to move the pointer to the data row. The first time to call the
next method of the rs, the pointer is moved to the first row. And the later successive
invocations of that method move the pointer one row down at a time, from the top to the
bottom.

To retrieve the values in a ResultSet object, the method getString should be called; it is
possible to retrieve all the basic SQL types with it.

e Key Functions Implementation

My recipe database offers the main functions: insert recipe, edit recipe, delete recipe,
research recipe and import recipe automatically. The implementations of them are listed
below:

1. Insert the Recipe (insert values into the recipe table and the ingredient table)

When the operator inserts the recipe information manually, the recipe title, category,
direction values will be filled into the recipe table and the recipe ingredient descriptions
will be filled into ingredient table. The procedure is: first insert the recipe title, category
and direction into the recipe table and get a recipe ID (assigned by the program
automatically). After the recipe ID is obtained, insert the recipe ID and the recipe
ingredients into the ingredient table. The ingredients are split into three parts and stored,
namely quantity, unit, and ingredient. The implementation code is shown below:

46

Class ModifyRecipe

public boolean insert (String title, String categ, String direction, String[][] ingredient)

{

try{
stmt = con.createStatement();

String insertl = "INSERT INTO Recipe (Title, Category, Direction) VALUES (™"
+ title +, "+categ+™, "'+direction+") *;
stmt.executeUpdate(insertl);
String IDquery = ("SELECT Rec_ID FROM Recipe™)
rs1 = stmt.executeQuery(IDquery);
int Rec_ID;
rs1.next();
do{
String Rec_ID = rsl.getString("Rec_ID");
Rec_ID = Integer.parselnt(Rec_ID1);
} while(rs1.next());
Stringsl="",s2=""83="",
for(inti=0;i<20; i++)

{
s1 = ingredient[i][0];
s2 = ingredient[i][1];
s3 = ingredient[i][2];
}

String insert2 = "INSERT INTO Ingredient (Rec_ID, Quantity, Unit, Ingredient)"
+"VALUES (" +Rec_ID +",™ +s1 + ", "+ 2 + ", "+ 53 +™)";

stmt.executeUpdate(insert2);

return true;

¥

catch (Exception e){return false; }

¥

Figure 7 the Code for the method ‘Insert the Recipe’

2. Edit the Recipe (Modify the values in the recipe table and the ingredient table)

The users could modify the values in the recipe table and the ingredient table through
selecting the recipe ID. According to the recipe ID selected by the user, the target recipe
record in the recipe table can be found. And then the field values such as title, category
and direction could be replaced by the new values directly. In the ingredient table, the
program will delete all the ingredient description records matched to the target recipe ID
first, and then insert the new values into the table. The implementation code is shown
below:

47

Class ModifyRecipe

public boolean edit (int id,
String title, String categ, String direction, String[][] ingredient)
{

try {
stmt = con.createStatement();

String update = "UPDATE Recipe SET Title = "'+title+™, "+
"Category =""+categ+"", "+"Direction =
"'+direction+""+"WHERE Rec_ID = "+id;

stmt.executeUpdate(update);

Stringsl="",s2=""83="",

String delete = "DELETE FROM Ingredient "+
"WHERE Rec_ID = "+id;

stmt.executeUpdate(delete);

for(inti=0;i<20; i++)

{
s1 = ingredient[i][O];
s2 = ingredient[i][1];
s3 = ingredient[i][2];
}

String insert = "INSERT INTO Ingredient (Rec_ID, Quantity, Unit,
Ingredient)"+ "VALUES ("+ id+", "'+s1 +", "'+ s2 +
"M s34+

stmt.executeUpdate(insert);

return true;

¥

catch (Exception e){return false; }

¥

Figure 8 The code for the method ‘edit the recipe’

3. Delete the Recipe (delete the values in the recipe table and the ingredient table)

According to the recipe ID selected by the user, the corresponding records in the recipe
table and in the ingredient table can be found and deleted easily by using SQL statement:

"DELETE FROM Recipe WHERE Rec_ID = "+id;
"DELETE FROM Ingredient WHERE Rec_ID = "+id;

48

Class ModifyRecipe
public void delete (int id)
{
try{
stmt = con.createStatement();
String deletel = "DELETE FROM Recipe "+
"WHERE Rec_ID = "+id;
stmt.executeUpdate(deletel);
String delete2 = "DELETE FROM Ingredient "+
"WHERE Rec_ID = "+id;
stmt.executeUpdate(delete2);
}
catch (Exception e) {}
}

Figure 9 The code for the method "delete the recipe'

4. Search Recipes

As mentioned above, the users can search for a recipe by their interests such as the title,
the ingredient and the category of the recipe. In my query algorithm, firstly the program
checks if the recipe category is specified by the users. If the recipe category was specified,
those recipes matched by this specified category can be found. Then the program checks
which recipes contain the keywords input by the users in the title and ingredients. At last
the program put those matched recipe 1Ds and titles into two Vector objects: “id” and
“names”, and then invoke the RecipeFrame class to display them.

Here, an “isElement(a, b)” method was used to check if String b contains String a. In this

program, ‘isElement(a,b)’ was used to check if the recipe title and ingredient contain the
keywords input by the users.

49

Class ModifyRecipe

public void searchRecipe(String title, String ingredient, String categ,
Vector id, Vector names)

{

try{
if (categ != null)

String get_ID = ("SELECT Rec_ID, Title, Direction FROM Recipe "+
"WHERE Category =" + categ + "");

stmt = con.createStatement();

rs = stmt.executeQuery(get_ID);

while(rs.next())

String rtitle= rs.getString("Title");
String ring = rs.getString("Direction");
if (isElement(title, rtitle)&&isElement(ingredient, ring))
{
String ID = rs.getString("Rec_ID");
id.add(ID);
names.add(rtitle);
}
}
¥
else {
String get_ID = ("SELECT Rec_ID, Title, Direction FROM Recipe ");
stmt = con.createStatement();
rs = stmt.executeQuery(get_ID);
while(rs.next())
{
String rtitle = rs.getString("Title™);
String ring = rs.getString("Direction");
if (isElement(title, rtitle) && isElement(ingredient, ring))
{
String ID = rs.getString("Rec_ID");
id.add(ID);
names.add(rtitle)}
}
}
¥
}
catch (Exception e) {}
}

Figure 10 The code for the method 'search the recipe’

50

5. Import External Recipe

Referring to the requirement specification as mentioned before, the algorithm for
implementing the import function is quite complicated. Therefore it is better to explain
the algorithm by some flow charts.

Chart [Flow01] explains how the primary model for the import function is implemented.
This primary model is implemented in the method: Extract (), which returns a value of the
int type. The implementations of other models are illustrated in detail by the following
flow charts.

Chart [Flow02] explains how the model used for checking if the external recipe file valid
is implemented. This model is implemented in the method: ValidRecipe (), which returns
a value of the boolean type.

Chart [Flow03] explains how the model for extracting the useful paragraphs from the file
is implemented. This model is implemented in the method: ExtractParagraph (), which
doesn’t return any value but generate a file which holds the extracted paragraphs.

Chart [Flow04] explains how the model for extracting the recipe direction part is
implemented. This model is implemented in the method: ExtractDirection (), which
returns a value of the String type.

Chart [Flow05] explains how the model for extracting the recipe category is implemented.
This model is implemented in the method: ExtractCategory (), which returns a value of
String type.

Chart [Flow06] explain how the model for extracting the recipe ingredient part is
implemented. This model was implemented in the method: Extractingredient (), which
doesn’t return any value but put the recipe ingredient into the database directly.

First, two private fields are defined in the Extractinformation class:

private final static int RecipeExist =-1;
private final static int InvalidRecipe = -2;

The Flow charts are shown below:

51

External recipe file and file’s name are transferred into this method
from the Controller (We suppose the file’s name is recipe title)

A 4

Read external recipe file

If file contains
completed (valid)
recipe [Flow02]

Return
InvalidRecipe

Extract useful paragraph, generate new
file: ‘paragraph’ [FlowO03]

v

Extract recipe direction from file: *paragraph’ [Flow04]

If recipe has existed in
database

Return
RecipeExist

Extract recipe category [Flow05]

A
Put recipe title, category and direction into
database, this recipe ID was generated
automatically by the DBMS

v

Extract the recipe ingredient and put them into database
(Extract the quantity, unit and ingredient from every ingredient
description line respectively), return 0. [flow06]

Figure 11 Flow01

52

External recipe file was transferred into this method

\ 4

Define signatures: kwl= ingredient, kw2=direction, kw3=procedure, kw4=instruction

A
Read recipe file into BufferReader object: br

Yes

if br is empty

No
Read next line

While this line contains kw1l

No

Read next line

i

If br contains at least 3 lines No
.| Read next line
While this line contains
kw2 or kw3 or kw4
No

If br contains at least one line

Return false
Return true

Figure 12 Flow02

53

Read recipe file into BufferReader object: br

v

Define signatures: kwl= ingredient, kw2=direction, kw3=procedure, kw4=instruction

Yes
if br is empty
No
Read next line
While this line No
contains kw1l
A
Yes

While br is empty

A 4

Append this line to a Vector object v1

v
Read next line

If this line contains kw1l

Clear v1

Figure 13 Flow03-a

54

- - - - No
While this line contains

kw2 or kw3 or kw4

Yes
While br is empty
» Read next line
A 4
Append this line to a VVector object v2
No
While br is empty Yes

&

l

\ 4

Write the contents in v1 on
the new file “paragraph’

y

Write the contents in v2 on
the new file “paragraph’

Figure 14 Flow03-b

55

Read recipe file into BufferReader object: br

v

Define signatures: kw2=direction, kw3=procedure, kw4=instruction

Yes

While br is empty

No

Read next line

While this line contains
kw2 or kw3 or kw4

Yes

While br is empty

No
Read next line

A
Append this line to a String: sum

\ 4

Yes

While br is empty

No

Read next line

l Yes

\ 4

A 4

Space line Return sum

Figure 15 Flow04

56

Retrieve “‘Name’ and “Category’ values from the Material
table, and put these values into a ResultSet object: rs

If cursor point to the last row in rs

No

Cursor move to next row

Recipe title contains materials
name at this row

Get the category values in this row
Return category values

Retrieve “‘Name’ and “Category’ values from the Material
table, and put these values into a ResultSet object: rs

If cursor point to the last row in rs

No

No Cursor move to next row

Recipe direction contains
materials name at this row

\ 4

Define category="0Others”
return category value

Get the category values in this row
Return category value

Figure 16 Flow05

57

Read file ‘paragraph’ into BufferReader object: br

A

Define signatures: kwl=ingredient

A

Retrieve “Name’ values from the Unit table put
these values into a ResultSet object: rs

Yes

While br is empty

No
Read next line

If this line contains kw1l

. . Y
While br is empty €
Read next line
Yes
Space line
No
A

Exit

Figure 17 Flow06-a

58

First token is numerical

Append it to Vector object: v1

Second token is numerical

Append it to Vector object: v1

A

This line contains No

unit word

Append it to a Vector object: v2

The previous token
is numerical

Figure 18 Flow06-b

59

] C

Append it to v2

A

Append the entire rest tokens to Vector object: v3

Convert all the elements in v1, v2 and v3 to String data type.
Insert them into Ingredient table as ‘quantity’, “unit’ and
‘ingredient’ contributes respectively

Figure 19 Flow06-c

60

2.3.3 View Implementation

JFrame
RecipeQueryFrame

\ 4 \ 4

JFrame JFrame
UserFrame AdminFrame
\ 4
JFrame JTabbedPanel
RecipeFrame Entire Interface
JLabel JButton JComboBox
JPanel JPanel
InserPanel EditPanel
JLabel JButton JTable JLabel JButton JTable
JComboBox JComboBox
JPanel JPanel JPanel
DeletePanel ImportPanel PersonSetting
JLabel JButton JTable JLabel JButton JLabel JButton
JComboBox JComboBox
A B A B
Click A to Open B B Belong to A

Figure 20 GUI Component Hierarchy Tree

61

2.3.4 Controller Implementation

The controller acts as the bridge between the user and the application. The controller
receives the input from the user and informs the model and view to perform the
corresponding actions. For example, when the user clicks the mouse button or chooses a
menu item, it is the controller that determine how the application should response.

The implementations of the key controllers are illustrated by the UML sequence diagrams
as below.

62

e Diagram 01 — controller for system entrance frame

When the “‘General User’ button is clicked by the user, the UserFrame class was called
and then the search recipe window is opened. When the *Administrator’ button is clicked,
the RecipeQueryFrame class will check the administrator’s id and password. If both the id
and password are correct, the AdminFrame class is called and then the modify recipe
database window is opened. Otherwise, an error message will be shown to the user.

Users
Click‘ Administrator Check
Button > password

AdminFrame

Click ‘General User’

Button - . UserFrame

I
Search recipe window open .
I
|
I
|
|

Modify database Wlndow open
1

Figure 21 Diagram 01: System Entrance Frame Sequence Diagram

63

e Diagram 02 — controller for inserting new recipe panel

When the “Insert’ button is clicked by the user, the InsertPanel class firstly checks if the
recipe data input by the user completed or not. The “insert” method in ModifyRecipe class
will be called to insert the new recipe into the database if the input recipe data is
completed. If the insert action is successful, a ‘true’ value will be returned by the method
and the message ‘New recipe has been inserted into database’ will be shown to the user.
Otherwise, a “false’ value will be returned and the message ‘This recipe has existed in
database’ will be shown to the user. The ‘Clear’ button is used for initializing this panel.

Users
Go to Save InsertPanel
Panel
1
. completed
Click “Insert’ Button recipe
> Data
Insert new recipe - ModifyRecipe
into database
1
Return result Return result L
g
e —— B
Click “Clear’ Button Initialize Insert
<+— panel recipe
L T :
1
1 1
1 1

Figure 22 Diagram 02: Insert New Recipe Sequence Diagram

64

e Diagram 03 — controller for editing recipe panel

When the ‘Update’ button is clicked by the user, the EditPanel class firstly checks if the
recipe data input by the user completed or not. The ‘edit” method in ModifyRecipe class
will be called to edit the old recipe data in the database if the input recipe data is
completed. The message ‘Recipe has been updated in database” will be shown to the user.

Users
Go to Edit EditPanel
Panel
, completed
Click “Update’ recipe
Button > data
Update recipe data > ModifyRecipe
in database
) 1
Return messages Return void :
) B
-
Click “Clear’ Button Initialize
panel
I I
[I

Figure 23 Diagram 03: Edit Recipe Sequence Diagram

65

e Diagram 04 — controller for delete recipe panel

When the ‘Delete’ button is clicked by the user, the DeletePanel class firstly checks if the
recipe ID is selected by the user. The ‘delete’ method in ModifyRecipe class will be
called to delete the recipe from the database if the recipe ID is selected. The message
‘Recipe has been deleted from database’ will be shown to the user.

/" \

Users

Go to Delete | DeletePanel
Panel

get

Click ‘Delete’ recipe
Button > :' ID

Delete recipe data - ModifyRecipe
in database

I

Return void :
Return messages ~ J

g
Click “Clear’ Button Initialize
> panel

Figure 24 Diagram 04: Delete Recipe Sequence Diagram

66

e Diagram 05 — controller for importing external recipe panel

When the ‘Browse’ button is clicked by the user, a dialog for browsing and choosing file
is opened. When the ‘Import’ button is clicked, the ImportPanel class will check if any
external file is selected. The “Extract’ method in ExtractInformation class will be called to
import the recipe data from the file. The corresponding value, which is returned by this
method, will decide whether the *Successful’ or ‘Fail’ message should be shown to the
user. If the external file was imported successfully, the RecipeDisplay class will be called

to display th

is recipe information.

Users

Go to ImporL ImportPanel

Panel

Click ‘Browse’

Button

Click “Import’

\ 4

Button

Return messages

Click “Cancel’ Button

Select a
external
recipe file
_ ExtractInf
Extract recipe ormation

[

data, import the
into database

-

Return result 1

Display recipe informatjon

N

Initialize Recipe
panel Display

Figure 25 Diagram 05: Import Recipe Sequence Diagram

67

e Diagram 06 — controller for search recipe frame

When the “‘Ok’ button is clicked by the user, the ‘searchRecipe’ method in ModifyRecipe
class will be called to search recipes from the database according to the input data by the
user. The message ‘No recipe matched” will be shown to the user if there aren’t any
matched recipes found in the database. If some matched recipes is found, the
RecipeFrame class will be called to display these recipes’ information.

Users
GotoUser | UserFrame
Frame
I
Click ‘Ok’ N '
Button Search reC|pe> ModifyRecipe
from database |
I
1
! Corresponding
Return result recipes was
Return message - found out
-
Initialize F‘E
Click “Clear’ Button panel rrame
“ ™ I
L]
Display recipes’ info:rmation :
< T T
I 1
1 |]
| I |
1 1 1

Figure 26 Diagram 06: Search Recipe Frame Sequence Diagram

68

e Diagram 07 — controller for changing password panel

When the “Modify’ button is clicked by the user, the PerPanel class will check if both the
original password and the new password entered by the user are correct. If both the
original password and the new password are correct, the message ‘New password has
been admitted” will be returned. Otherwise, an error message will be returned.

Go to Personal Setting panel N PerPanel

Check old password
Click “Modify’ Button new password

Return message

A

Click “Clear’ Button Initialize
> panel

Figure 27 Diagram 07: Change Password Panel Sequence Diagram

69

2.4 System Test and Results

Once the entire system has been implemented, it has to be fully tested to check if it meet
the requirement specification or not.

In essence the system testing focuses on the whole system, not the individual parts.
There are two types of Software System Test: functional test and structural test.
e Functional Test

The functional test is to separate the program into many function models and then based
on the abstract data check the generated test results from each function models. The
functional test is to check if all the functions can be performed normally and never
considers the program’s internal structure.

e Structural Test
Structural test is designed and performed according to the internal structures of the program. The
tester should check every branch in the program and get the test results. Compared to the
functional test, the structural test focuses on the internal structure of the program. Although the
user prefers to do the functional test based on program specification guide, some latent errors can
be found out through the structural test rather than the functional test.

In this chapter, | will give out some key functional tests and their results, the system
structure test will be shown in the appendix.

First, I will give an overview about the GUI (Graphic user Interfaces) of the system.

e System Entrance Interface

& Recipe Query System! E@g|

Welcome to Linlin's Recipe Database System |

General User

Adminstrator

— |

Figure 28 the System Entrance Interface

70

e General User Interface

Recipe Query |

Title : |

Ingredient : |

Category : | Choose Category

Figure 29 the General User Interface

e Administrator Interface (Insert Panel, Edit Panel, Delete Panel, Import Panel,
Personal Setting Panel)

Recipe Database Update

Title : [choose category - |

Cuantity | | Ingredient Direciton :

| Sawve || Clear |

Figure 30 the Administrator Interface-Insert Panel

71

Figure 31 the Administrator Interface-edit panel

Figure 32 the Administrator Interface-delete panel

72

Figure 33 the Administrator Interface-import panel

Figure 34 the Administrator Interface-personal setting panel

73

The recipe database system offers some basic functions such as: login, search recipe,
modify recipe database, modify administrator’s information etc. Here, | focused on the
functions: Administrator Login, Search Recipes and Modify Database.

e Search the Recipes

Assume that there are 4 recipes already exist in the database.

& Recipe : Table : @@

Ree 1T ‘ Title Categary Direct

| Beef Pepper Steak txt Beef In 2 snall, momporous bowl, combine the peppercorns, 1

B 2 Tntch Oven Buttermilk Cornbread. txt Others In a larze bowl, mix the dry ingredients together, and

B 3 Ground steak Nexican Style txt Beef In a larze nonstick skallet, eook and stir ground beef

B 4 Macaront ¥1th Beans txt Vegetable § Fruit Prepare pasts according to packaze diveetions. Yhile p
ITtoHumber]

Figure 35 the example recipe table

When the user clicks the ‘General User’ button on the system entrance interface, the
search recipe interface will appear.

1. Test1:

The input ingredient’s keyword is pepper and the recipe category is beef:

Recipe Query !

Title :
Ingredient :

Category :

Ok Clear Back

Figure 36 input for the test 1

Press the Ok button, two matched recipes in the database have been found.

74

The Recipe information display result is shown as below:

Recipe Display

I0:1 Title : Beef Pepper Steak.brd
Category : Beef

rRecipe list:-
Beef Pepper Steak b 2 tahlespoons tamari In & small, nonporous bhowl, combine the pepper
Ground steak Mexica 1 cllmre gar!lc, minced garlllc, sugar and salt. Ad.d the.beefﬂlet gnd coat
1 pinchwhite sugar all sides. Cover and marinate in the refrigeratar fi
1 pinch salt haur.
10 ounces beeffilat melt butter in & medium sadcepan over medium
2 tahlespoons butter Flace the beeffilet in the pan and saute forGto 8

per side, or until internal temperature reaches at
degrees F (65 degreas).

IC

Figure 37 result of the test 1

2. Test2:

The input recipe title keyword is ‘cake’, the recipe ingredient keyword is ‘banana’,
and the recipe category is not specified.

Recipe Query !

Title : \
Ingredient : /

Category : | Choose Category -

Ok Clear Back

Figure 38 the input for the test 2

75

Press the Ok button, we can get the following result:

Recipe Query!

Title : cake

Ingredient : hanana

Category :

Mo Recipe Matched !

Ok £048

Figure 39 the result of the test 2

No recipe is matched by those input keywords.

e Administrator Login

Assume that there is one administrator record already exist in the database. The name is:
linlinwang and the password is: 19781130.

B Admin : Table

Password
19731130

Figure 40 the example admin table

When the user clicks the ‘Administrator’ button on the system entrance interface, a check
administrator’s information window will appear which indicates the user to input name
and password.

Enter Hame and Password, Separate by space
linlirvang 19781130 |

OK Cancel

Figure 41 the input for the test ‘admin. login’

76

Click Ok button, the administrator’s interface will be shown.

e Import External Recipe

I will test the following three conditions for importing the external recipe files:
1. The recipe file is valid and it can be imported successfully.

2. The recipe file is invalid.

3. The recipe that will be imported has existed in the database

The import interface is:

Recipe Database Update

Import File

Import | | Cancel

Figure 42 the import panel

77

Click *Browse’ button, an open file window will appear:

Look In; | My Computer - | @ @ @ E@

3" Floppy (&)

=3 Local Disk (C3)

=3 CD Drive (D)

=3 Local Disk (E3)

&2 Shared Documents

= lhsystem's Documents
=2 My Documents

File Name: | |

= |

Files of Type: | Al Files

Open || Cancel ‘

Figure 43 the window for selecting files

1. Test 1 - valid recipe file is imported successfully

Assume that an external recipe file named “Whipping Cream Pound Cake.txt” was
selected.

Recipe Database Update -

Import File : ;Whipping Cream Pound Cake.tﬂ;

Import Cancel

Figure 44 a valid recipe file is selected

78

This recipe file’s content was shown below (.txt format):

B Whipping Cream Pound Cake.txt - Notepad
File Edit Format Wiew Help

error text ~
wour mame: (opticonall &lagueo; Please check: error text
wour email address:&laguo; Flease check: it appears that wou maw
hawe entered an incorrect email address.
add a personal note:

Coptional) « FPlease check: error text

Alzo send a copy to wourself
email format:
Complete Recipe

= white sugar
TUp butter
egags
tablespoons cornstarch
5/8 cups all-purpose flour
cup heawvy whipping cream
tablespoons wvanilla extract

RS el SR e Rt

en to 350 degrees FUL175 degrees C). Grease and flour a
10 9rnch tube pan. Set aside.
Cream together the sugar and butter until light. Continue beating
and add ¥ eggs, one at a time; beating well after each egg
Tn a separate bowl, mix together flour and cornstarch. Beat half
aof the Flour mixture into the egg and sugar mixture.
Ecat in 1/2 cup whipping cream, and then beat in the remainder of
the flour mixture. Finish by beating in 1/2 cup more of whipping
cream and wanilla.
Four into prepared pan and bake for about 60 to 75 minutes. Cool
an rack for 10 minutes before turning it out onto a serving plate.

Customize this Recipe

Change to serwvings

Conwvert to: U.S Standard / Metric
About Scaling and Conwversions

weight Management v

Figure 45 the text content of the file “Whipping Cream Pound Cake.txt’

Clearly, this is a valid and completed recipe file because the key words, both ‘ingredient’
and “direction’, exist and the recipe ingredient and direction description exist as well.

When the ‘Import’ button is clicked, the message: “New Recipe has been added into the
Database” is shown to the user.

79

Recipe Database Update

=dit | Delete | Import | Personal Setting |

Import File : | Whipping Cream Pound Cake.txt

Impaort | | Cancel

Mew Recipe has been added into Database |

4 S

Figure 46 successfully insert the recipe "Whipping Cream Pound Cake'

Then a recipe information window will appear to display this imported recipe:

Recipe Display!

ID:7 Title : Whipping Cream Pound Cake.txt
Category : Sweets & Desserts

1 cup butter Preheat oven to 350 degrees F(175 degrees C). Greag™
T eggs 10 inch tube pan. Set aside. B
fi tablespoons cornstarch Cream together the sugar and butter until light. Cantinue bea
288 cups all-purpose flour and add ¥ eggs, one at atime; heating well after each egy

1 cup heawwhipping cream In a separate howl, mix together flour and cornstarch. Beatha

Z tahlespoons vanilla extract of the flour mixture into the egg and sugar mixure.

Beatin 1/2 cupwhipping cream, and then beat in the remain
the flour mixure. Finish by heating in 142 cup more of whippin
cream and vanilla. B
Pour into prepared pan and bake far about 60 to 75 minutes. 4|
on rack for 10 minutes before turning it out onto a sening platEE
4]

Figure 47 the display of the recipe “Whipping Cream Pound Cake"

80

We can find that the recipe category is set to ‘Sweets & Desserts’, because the keyword
‘Cake’ which can match the *Sweets & Desserts’ category through the ‘Material table’ in
the database has been found in the recipe title.

B Material : Table [Z| E| rg|
Hame Category
Bean Vegetable & Fruit
___Beef Beef
= —
| Chi cken Chi chen
[|Filet Seafoond
___-Fuit Vegetable & Fruit
[[Lamb Lank
___Peanut Vegetable & Fruit
i Fork
___Pnrk Fork
___Pntatn Vegetable & Fruit
[R VositabletiFinit
4

Figure 48 the example material table

Moreover, a text file named *paragraph.txt’ was generated by the program:

[} paragraph.ixt - Notepad

File Edit Format ‘iew Help

IMGREDIEMNTS:

1/2 cups white sugar

cup butter

eggs

tablespoons cornstarch

5/8 cups all-purpose flour
cup heavy whipping cream
tablespoons wvanilla extract

P T T D

DIRECTIONS:
Preheat owen to 350 degrees F({1L75 degrees C). Grease and flour a
10 dinch tube pan. Set aside.
Cream together the sugar and butter until light. Continue beating
and add 7 eggs, one at a time; beating well after each egg
In a separate bowl, mix together flour and cornstarch. Beat half
of the flour mixture into the egg and sugar mixture.
Beat in 1/2 cup whipping cream, and then beat in the remainder of
the flour mixture. Finish by beating in 1/2 cup more of whipping
cream and wanilla.
Four into prepared pan and bake for about 60 to 75 minutes. Cool
on rack for 10 minutes before turning it out onto a serwving plate.

Figure 49 thetemparory paragraph generated during the import

After the recipe data is imported into the database, one recipe record and 6 ingredient’s
records are created in the ‘Recipe table’ and ‘Ingredient table’ respectively.

81

& Recipe : Table |Z”E|®

Rec ID Title Category
3]Beef Pepper Steal txt Beef In a small, nonporcous bowl, combine
] 2/ Dutch Owen Buttermill Cornbread. txt Others In a large bowl, mix the dry ingredi
[3 Ground steak Mexican Style. txt Baef In a largze nenstick skillet, cook an
[4 Macaroni With Beans. txt Vegetable & Fruit Prepare pasta according to package d

5 Soups and Stews fat WES N 1 Melt butter in a 5-6 gt pan over

CE I
#* |tolumber

Figure 50 the target recipe has been inserted into the recipe table

B Ingredient : Table -_”E”z|

Ingredient

[hut ofumber)

Figure 51 the ingredients of the targed recipe has been inserted into the ingredient table

2. Test 2 — recipe has existed in the database

Import the recipe file named “Whipping Cream Pound Cake.txt” again. A message
‘Recipe has already existed in database’ will be returned to the user.

Recipe Database Update

Import File : Whipping Cream Pound Cake.txt

Impaort | | Cancel

Recipe has already existed in database!

Figure 52 the recipe "Whipping Cream Pound Cake.txt' has already stored in the database

82

3. Test 3 —invalid external recipe file
The invalid files can be two types: the one that lost the keywords information and the one
that doesn’t have the description of the ingredient or direction. Assume that the test file
we used here has lost the ingredient description part: Mom Best Peanut Brittle.txt.

[Mom Best Peanut Brittle.txt - Notepad

File Edit Format WYiew Help

eDiets? The Grill Store ~
iPads. com

Sunset Magazine

Taste of Home Magazine

Southern Living Magazine

Cooking Light Magazine

;HS;FUC;'I ons:

1Grease a large cookie sheet. Set aside.

2In a heawy 2 quart saucepan, owver medium heat, bring to
a boil, sugar, corn syrup, salt, and water. Stir until
sugar 1s dissolwved. Stir 1n peanuts. Set candy
thermometer in place and continue cooking. Stir
frequently until temperature reaches 300 degrees F (150
degrees CJ, or until a small amount of mixture dropped
into wvery cold water separates into hard and brittle
threads.

IrRemove from heat; immediately stir in butter or
margarine and baking soda; pour at once onto cookie
sheet. with 2 forks, 1ift and pull peanut mixture into
rectangle about 14x12 inches; cool. Snap candy into
pieces.

Makes 16 servings MORE recipes Tike this

Hutrition Info
Servings Per Recipe: 16

Amount Per Serwving

Calories: 143

Total Fat: Bg

Cholesterol: 4mg

Sodium: 143mg

Total Carbphydrates: 22.3g v

Figure 53 the example invalid file which loses the ingredient description

Then the message: ‘Recipe File is Valid” will be returned.

ﬁ - Becipe file is imsalid !

oK

Figure 54 the response indicates that the file is invalid

83

2.5 Summary

In solution 1, the recipe system have been analysed, designed and implemented.
According to the “project statement” listed in chapter 1, the recipe system is designed to
offer the following functions:

— Insert a new recipe record manually

— Modify the items of the recipe record manually

— Delete the recipe record manually

— Import the external recipe files automatically

— Search the recipe by the category manually

— Search the recipe by the ingredients manually

— Search the recipe by the title manually

— Modify the password of the super user

It has fulfilled the requirements defined in the “project statement”, therefore we can say
the solution 1 is successful and has achieved the objective of this project.

However, there are still some limitations in solution 1.

In solution 1, the program can only import the recipe files which are saved as *.txt format.
The recipe file must contain the special signatures which indicates the start of the recipe
contents such as ‘ingredient’ and “direction’ because the system uses these two signatures
to locate where the ingredient and direction description are. In addition, in the original
recipe files, both the ingredient part and the direction part of the recipe should be
described in the individual paragraphs since the extraction of such contents is based on
the ‘paragraph’, i.e. the paragraph immediately after the special signature words is
considered as either the ingredients description or the direction.

In solution 1, the system simply treats the name of the recipe file as the recipe title since
the recipe title is located randomly in the file and can’t be recognized by the system. For
the category extraction, the accuracy can be increased by filling in as more as possible
ingredients and their categories into the Material table.

As solution 1 still has the limitations listed above, the system can only handle a few
number of the recipe files which exactly meet the system requirement. For the rest types
of the recipe files, the system can only discard them directly. In order to make the system
more flexible and handle more types of the recipe files, there should be some
improvement and optimization made for the system, especially for the import functions.
That is the motivation for introducing the solution 2!

84

3. Solution 2

The solution 2 is a kind of improvement for the solution 1.

As we have known, in solution 1 the user has to manually save the recipe files as *.txt
format and the program can only recognize the recipe file which contains two special
keywords: the ‘ingredient’ and the “direction’. And the program simply treats the file’s
name as the title of the recipe.

In solution 2, HTML format recipe files saved on the local disk can be imported directly
without any modification. This means a new algorithm should be found out to extract the
recipe data without the need of any special keywords. And the recipe title should be
found and imported automatically in solution 2.

Obviously, the solution 2 is more convenient and practical, as it can recognize and import
much more recipe files.

3.1 Analysis

3.1.1 HTML Document Analysis

HTML (HyperText Markup Language) consists of tags, which are enclosed in angle-
brackets (< >). The tags typically occur in begin-end pairs, as shown in the following

form:
<tag> ...content... </tag>

The <tag> indicates the beginning of a tag pair, and the </tag> indicates the end. The tag
inside the angle-brackets is the actual name of the tag being discussed. The content within
a tag pair are formulated according to the rules that defined by the tag. For instance, the
text within a pair of <I></I> is displayed in the Italian style. One has to be mentioned is
that not all the tags in HTML are paired. Some tags such as the line-break tag don’t have
the end tag. Such tags are called empty tags.

The pairs of tag set could include another pairs of tag set. Therefore it is important to
keep the tag set nested within each other. The following figure shows such an example.

85

— <tagl>
— <tag2>

<\tag2>
<\tagl>

Figure 55 the nested tag pairs

As the pairs of tag set has defined the rules for formulating and displaying the content, it
is often the case that the arrangement of text within a tag set is irrelevant for the display
on the screen. It means the blank areas in a text file, such as empty lines and extra spaces,
sometimes will be neglected by the HTML parsers. For example, within a “paragraph” tag
set, the text can be stored in one line, or in several separate lines, or with every word on
its own line. However the display of it on the screen will be exactly the same.

3.1.2 External Recipe Files Analysis

Parsing HTML file can be a difficult job, especially in the case that the semantic parsing
is requested. Since the HTML specification is loosely defined and almost no HTML
designer follows it, there could be dozens of ways for implementing a single HTML page.
For instances, the tag name may be uppercase, lowercase or mixed case. Element names
may be uppercase or lowercase, and some end tags may or may not be used (such as </p>,
</L1>). Therefore in order to well design a HTML parser as requested, the analysis on as
more as possible HTML file structures is a must and the design will be a long term
process.

A normal recipe web page looks like the following example:

86

R RecipeCenter: Arizona Brown Rice Pilaf - Microsoft Internet Explorer

File Edit ‘Yiew Favortes Took Help :;
_)\') @ @ ;j)__j Search ‘?:1:‘(Favorites ﬁ‘} [_:v :_\; - _J Q‘P @ ﬂ "‘a. B 'ﬁ
ﬂddress‘@E:\recipes source0021Arizana Brown Rice Pilaf, htm v‘ Gu Assistant v @ @Fi\ted:??zz

GOOSIQ v ¥| fhsearchwed - @ @ 42 blocked fE] AutoFil E Options

T Tew : . l | ® Wragazie 3
& Sohvare Arizona Brown Rice Pilaf Y ——
—— Courtesy of Ortega?/h> :
@ Top 40 Recipes ; 7
= B = = i
(&) Viewer's Redpes
% Add Your Redpe Category: American, Main Dishes, Rice & Grains
e My Favorite Recpes
& Redpe Gallery
—_— H Wiew largerimage
m Book Gollery
{9 Expert Chefs Yield: [servings @
£ Wi)
——— Ingredients: : Rate this
& Games 4 cups chicken broth Recipe!' |
? FAQ's 4bsp butter or margarine * (@ fantastic &)
@ Tellufiiend 1 clove garhc,f!ne\y chopped O very good (1)
S . = 304 cup brown rice ¢ Ogood (3)
£ Guesthook 34 cup barley Ojust 0K ()
0 Links 1 can (4-0z.) ORTEGA?Diced Green Chiles : O had M
B B 13 cup pine nuts, toasted : 1
R, Ferines 1 thsp chopped fresh cilantro ¢ Your Hame
B Contact Us :
. Procedures: ' our Email
® Medio fit 1 COMBIME chicken brath, butter and garlic in medium :
Bookstore saucepan, bring to a ball. Add rice and barley; reduce
| heat to low. Cook for 40 to 45 minutes or until tender. Your Comment
Add chiles, pine nuts and cilantro. Let stand, coverad, for
5 minutes. Add salt and black ground pepper to taste. -
f w ¥

=% T ———

Figure 56 the example HTML page

The source code for that HTML page is displayed as below:

I Arizona Brown Rice Pilaf. htm - Notepad
File Edit Format Wiew Help

|<|DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"= ~
<l-- saved from url=(00500http: //www. recipecenter.com/Recipe.asp?Code=301274 --=
<HTML><HEAD=<TITLE=RecipeCenter: Arizona Brown Rice Pilaf</TITLE=>

P o o kT 1 e e i
<META

content="Recipe Center has more than 100,000 recipes. Download the RecipeCenter
Software to manage wour recipes, import recipe from our collection and exchange
recipes with friends. Recipe features on line recipe sizing that calculates the

quantity of recipe ingredients needed. Excellent for chefs, cooks or anyone."
name=rde<rrintinns

Figure 57 the HTML source code (a) for the example page

87

I Arizona Brown Rice Pilaf. htm - Notepad
File Edit Format ‘“iew Help

<TR=> &
<TD walign=top><FONT face=arial
size=2»<BrIngredients: </B»

<

Figure 58 the source code (b) for the example HTML page

AL WML = LD A
<TEODY =
<TR:=
<TD walign=top align=right=<FONT face=Arial,Helvetica
size=3»1</FONT=></TD>
<TD wAlign=top=COMBINE
chicken broth, butter and garlic in medium saucepan;
bring to a boll. Add rice and barley; reduce heat to
Tow. Cook for 40 to 45 minutes or until tender. Add
chiles, pine nuts and cilantro. Let stand, covered, for
5 minutes. Add salt and black ground pepper to
taste. «/FONT></TD></TR></TEODY > </TAELE></TD>
<TD vAlign=top width=5><IMG
src="Arizona Brown Rice Pilaf_files/separator.gif"»<BR»
</TD>

B T Y Py Ry I T P

Figure 59 the source code (c) for the example HTML page

Since the general structure of the recipe has been discussed in solution 1, here I only
analyze some special distinctions about the HTML recipe file.

e recipetile
As we all know, each web page has its own title. For the web pages that describe the
recipes, the title of the web page normally contains the recipe title. The title of the HTML

page is encompassed by a pair of HTML tag, such as:
<TITLE>RecipeCenter: Arizona Brown Rice Pilaf</TITLE>

88

Therefore, we can get the title of the recipe by extracting the title of the web page.

e recipe category

Since there are no special tags in the HTML files indicating the recipe category, the
category extraction algorithm here still uses the one adopted in solution 1.

e recipe ingredient

The recipe ingredients can be written in any place of the HTML page, so we can’t extract
them according to the special HTML tags. Still, in most the cases, the recipe ingredients
are written in one single paragraph which consists of many ingredient description lines.
As analyzed in solution 1, in the paragraph that describes the recipe ingredients, the first
word of each line usually is numerical. The normal, completed ingredient description line
contains quantity, unit and ingredient descriptions.

89

3.2 Design and Specification

The import process can be separated into three parts: Parsing the HTML Document,
Extraction and Inserting the Recipe into the Database.

3.2.1 Parsing the HTML Document

First of all, the program should extract the text parts from the HTML file (this process can
be called parsing HTML). Then a plain text recipe file which doesn’t contain any HTML
tags will be generated and the program will extract the recipe data from this text recipe
file.

Obviously, it is much more difficult to parse a loose defined language like HTML than a
clearly defined language which doesn’t allow any ambiguous spelling and syntax errors,
such as Java and XML. Fortunately, the javax.swing.text. HTML and
javax.swing.text. HTML.parser packages include classes which can do part of the hard
work.

3.2.1.1 HTMLEditorKit.Parser

The inner class javax.swing.HTML.HTMLEditorKit.Parser is one of the key classes for
paring HTML file. The instance of this class reads the HTML file from a Reader (the 1/0
class). It looks for the start tags, end tags, empty tags, text and comments in the HTML
file. Every time the parser class meets one of those five items, it invokes the relevant
callback method in the javax.swing.text HTML.HTMLEditorKit.ParserCallback class.
The way to connect the instance of the parser class with the instance of ParserCallback
class is to call the public method provided by the parser class:

public void parse(Reader in, HTMLEditorKit.ParserCallback callback,
boolean ignoreCharacterSet) throws IOException

The boolean argument ignoreCharacterSet is used to enable or disable the throw of
ChangedCharSetException, which occurs in the case that a META tag was found.

3.2.1.2 HTMLEditorKit.ParserCallback

The javax.swing.text. H-TML.HTMLEditorKit.ParserCallback class takes charge of how to
parse a HTML file. It provides six callback methods:

public void handleText(char[] text, int position)

public void handleComment(char[] text, int position)

public void handleStartTag(HTML.Tag tag,MutableAttributeSet attributes, int position)
public void handleEndTag(HTML.Tag tag, int position)

public void handleSimpleTag(HTML.Tag tag,MutableAttributeSet attributes, int position)
public void handleError(String errorMessage, int position)

90

These methods need to be overridden and put into specific source code to handle the
corresponding parsing work. E.qg. find out the care tag set and process the text in between
in a special way.

3.2.2 Extraction

3.2.2.1 Extraction of the recipe title

As analyzed above, the title of the HTML document is always encompassed by a pair of
HTML tags: <TITLE> and <\TITLE>, and most of titles of the HTML recipe documents
contain the recipe titles, therefore the program should extract the title of the HTML
document according to the HTML tag: ‘TITLE’.

Through analyzing plenty of the HTML recipe pages, | found out that most of the HTML
recipe pages have put the title of the recipes into their title. In some cases the title of the
recipe document is just the title of the recipe, and in some other situation the title of the
HTML document contains not only the title of the recipe but also the information like the
web site or recipe category. For the latter case, the extra information and the title of the
recipe are separated by some special signs, such as such as colon “:” or bar ‘|” or line *-’.

For example:
<TITLE>iChef.com Free Recipes - Soups and Stews: Albuquerque Corn Soup</TITLE>

Therefore, in order to extract the title of the recipe much precisely, the program should
only extract the string after those special signs from the title of the HTML document.

3.2.2.2 Extraction of the recipe ingredients paragraph

The program checks each line of the HTML recipe file to see whether it meets the
following conditions:

— The first word of the line is numerical.
— This line contains one unit word.
— This line contains at most 7 words.

A piece of the common, completed ingredient description usually meets above conditions.
The third condition is used for excluding the exception that some irrelevant lines which
may meet the first two conditions but doesn’t belong to the recipe ingredient (Based on
my experience, normally the ingredient description lines contain less than 8 words). It is
reasonable to make an assumption that any line which can meet those three conditions is
considered as one piece of the recipe ingredient description and any paragraph of the
recipe ingredients description must contain at least such a line. Therefore when a line
meets those three conditions is found, then the paragraph where the line belongs to will be
considered as the paragraph of the recipe ingredients description.

91

3.2.2.3 Extraction of the recipe direction

Obviously, most of the recipe directions contain the item of the recipe ingredients. For
example, if the recipe ingredient contains ‘milk’, then the recipe direction must contain
this word as well. Therefore a complementary table will be established in the database to
store the items of the recipe ingredients like: water, milk, beef etc.

When the program extracts the quantity, unit and ingredients from the ingredients
description line, the ingredient word(s) will be extracted and put into that complementary
table. This is done as follows:

Check every words of the ingredient description line from the left to the right to see
whether it is numerical or unit word. If it is numerical or unit word, the program will
ignore this word and continue to check the next word. Otherwise the program should
check whether this word belongs to the words group such as article (i.e. the, a),
conjunction (i.e. and) and adjectives (i.e. such). If this word doesn’t belong to those words
group, it will be extracted as the recipe ingredient word and put into the complementary
table (named TempMaterial).

As mentioned before, in most of the cases, the recipe direction is written after the recipe
ingredient. After extracting the ingredient word(s) and filling them into the
complementary table--TempMaterial, the program will continually check the rest parts of
the recipe HTML file line by line. If there is any word in the line can be matched by a
word listed in the TempMaterial table, this line will be extracted as part of the recipe
direction.

However, some exceptions should be considered: the recipe direction may not contain any
recipe ingredients. For example:

Grease a large cookie sheet. Set aside.

For extracting this kind of recipe direction, another complementary table (named
CommonWord) should be created in the database in advance for storing plenty of typical
verbs which can represent recipe direction, such as: pour, preheat, bake, grease, oil, butter,
stir, mix, fry etc.

If there isn’t any word in the TempMaterial table found in this line, the program will
check whether there is any word in the CommonWord table found in this line. If there is,
this line is considered as part of the recipe direction and the program will continue to
check the next line. The extraction program of recipe direction should stop when it
encounters a line which contains neither any word in the TempMaterial table nor any
word in the CommonWord table.

3.2.2.4 Extraction of the recipe category
The way to extract the recipe category in solution 2 is the same as the way used in
solution 1, so please refer to solution 1.

92

3.2.2.5 Validation of Recipe File

If there isn’t any recipe ingredients paragraph extracted from the HTML recipe file, or
there isn’t any recipe direction can be found after the extraction of the recipe ingredients
paragraph, the recipe file will be considered as invalid recipe file.

3.2.3 Inserting the Recipe into the Database

3.2.3.1 Insert the recipe title, category and direction into the Recipe table

After extracting the recipe title, category and direction, the program should convert these
values into the proper data types which are consistent with the data types defined in the
database, and then insert them into the recipe table in the database. The process of
inserting data into the database is the same as the process in the solution 1.

3.2.3.2 Inserting the recipe ID and recipe ingredient’s quantity, unit, and ingredient
into the Ingredient table

After extracting the ingredient description paragraph, the program will extract the

quantity, unit and ingredient these three parts. The algorithm of extracting the quantity,
unit and ingredient is similar with the algorithm used in solution 1.

93

3.3 Implementation

In solution 2, the key improvement of the system is to re-write the extraction model part:
ExtractInformation class. Here | name the new class as Extractinformation02 .

3.3.1 The Overview of the Implementation
The UML class diagram is illustrated as below:

Exfractinformation02

Hr: FileReader

Hf: File
Foon:Connection
Hngredient:Vector
Hithe : String =""
Ldirection @ String =
rcategory @ String = "Others”

HRec 1D int=0

~url + String = "jdboodbe:driver={Microsoft Access Driver (*.mdb) . DBG=Recipes. mdb®;
FRecipeExist 1int = -1

HinvalidRecipe : int= -2

FIOExcept : int = -3

“Z|5agEE
T

#Extractinformation02()
timport_file() © int
rparserHtml() - void
Fextract() : bool
HngredientParagraph() : boal
roanneciToDatabase() : vold
rzameRecipe() : bool
roetCategory) - void
FstoreRecipeTable() : void
rstorelngredient() © void

MyLitls::MyUtil

—e
+earractString(1() : String

+correctSting02() : String

+checkFirstChar() : bool
" TextFilel) - voi

+'§E EIIIEEH] . bEE

<<i5pE>>

MyUtils:: ParserGetter extends HTMLEditorKit

+oetParser: HTMLEditorKit Parser()

I
=<Usas>>

ExtractinformationDZ:: Outliner extends HTMLEditor.ParserCallback

-outWriter

+0utliner)

#get_titlel) - Siring
+handleStar Tag() ; void
handleEndTag() : void
HhanleText() : void

Figure 60 the UML class diagram for the extraction class

Next, | will focus on how the algorithm of extracting and importing the recipe data is

implemented.

The procedure of the import process is illustrated by the following flow chart:

94

Parse HTML recipe file, extract the recipe title
and generate a new text recipe file.

\ 4

Extract recipe ingredient and direction from the
text recipe file.

Is this file valid recipe
file?

Exit

Does this recipe exist in
database?

Define the recipe category depending on
recipe title or direction.

\ 4

Put the recipe title, category and direction into
the Recipe Table in the database.

A

Put the data of recipe ingredients into the
Ingredient Table in the database.

Figure 61 the procedure of the import process

95

Through the Extractinformation02 class diagram, we can see the key function models,
Parsing the HTML Document, Extraction and Inserting the recipe into the Database, are
implemented by the methods in the ExtractionInformation02 class. | will use the flow
charts to explain these key models.

3.3.2 The Implementation of Parsing the HTML Document

The implementation process of parsing the HTML document is illustrated by the
following flow chart:

96

Parse Html Document

Read html recipe file into FileReader object: fr
create a instance of Vector: v to store the text of this himl
file, define a checker : lever =0

Yes

While fr is empty

No

Yes
If html start tag is encountered? If this tag is: TITLE? Set level =1
Yes
If html text is enclountered? Get the title
No
Append the text to v
Y
Yes
If html end tag is encountered? If this tag is: TITLE? Set level =0

Write the text contents of v in a new file : RecipeFile.txt

{This text recipe file will be used to do the further extraction)

Figure 62 the flow chart for parsing the HTML Document

97

According to the specification of parsing the HTML documentation, the Outliner class is
designed to inherit the abstract class--HTMLEditorKit.ParserCallback and override the
following three methods:

handleStartTag(HTML.Tag tag, MutableAttributeSet attributes, int position)
handleEndTag(HTML.Tag tag, int position)
handleText(char[] int position)

When parsing a HTML document, the parse (Reader r, HTMLEditorKit.ParserCallback
callback, Boolean ignoreCharSet) method will be invoked and the parsing action will be
performed by the second argument, the instance of HTMLEditorKit.ParserCallback class.
When the beginning HTML tag is encountered, the handStartTag () method will be called,
when the closing tag is encountered, the handleEndTag () method will be called and the
handleText () will be called when the text is encountered.

During the parsing work, all of the text encountered is stored in an instance of Vector
class, named v. After that the program will generate a text file with the content of v for
the later extraction. In order to keep the layout of the text file the same as the one of the
previous HTML document, here the program should do some special operations when
some special tags are encountered.

Currently there are four kinds of HTML tags need to be handled specially in
handleStartTag () method.

The first one is the “TITLE” tag. Once the beginning TITLE tag encountered, the
program sets a flag variable (belongs to the outliner class), named “level”, equal to 1.
Thus in the later handleText () method, the program will check this flag. If level == 1, the
program knows the text within this pair of tags is the title of the HTML document and
will be stored.

The Second one is the beginning tags that indicate a new paragraph needed. These tags
are: BODY, TABLE, P and UL. These tags indicate a new paragraph will be generated in
the HTML document. Consequently, when these tags are encountered, an empty line
should be added into v to insure the layout of the text follow the corresponding structure.

The Third is the tags that represent there should be a new line started. These tags are: BR
and LI. Once these two tags encountered, the program sets the flag variable (belongs to
outliner class), named “on”, equal to 2. Thus in the handleText () method, the program
will check this flag. If on ==2, the program will insert the text as a new items into the
vector v. Otherwise, the program will treat the text as part of one line which will be
appended with the next text.

The fourth one is the “TR” tag which indicates a table row occurs. Some HTML recipe
pages use “table” to format the layout of the ingredients, i.e. the amount, unit and
ingredient name are separated in each cell within one pair of “TR” tags. And there will be
some other pairs of tags, such as font style and size, in between the pair of “TR” tags, i.e.
there are HTML tags nested. In order to keep one piece of ingredients in one line, here the
program should be able to neglect all the tag pairs except “BR”, and “LI” in between, and
append the text together and store them into the vector v.

98

The source code of the Outliner class is shown as below:

private class Outliner extends HTMLEditorKit.ParserCallback {

private Writer out;

private String title=null;

private int level =0, on = 0;

private Vector v=new Vector();

public String line = System.getProperty("line.separator”, "\r\n"), linel = **;

public void handleStartTag(HTML.Tag tag,MutableAttributeSet attributes, int position)
{
this.level =0;
if (tag == HTML.Tag.TITLE) level =1;
if (tag == HTML.Tag.BODY || tag == HTML.Tag.TABLE || tag == HTML.Tag.P||
tag == HTML.Tag.HR || tag == HTML.Tag.DIV)
{ v.add (this.linel); v.add(this.line); this.linel="";}
else if (tag == HTML.Tag.BR || tag == HTML.Tag.LI) this.on = 1;
else if (fag == HTML.Tag.TR) this.linel="";
try{out.flush();}
catch (IOException e) {System.err.printin(e);}} // end method

public void handleEndTag(HTML.Tag tag, int position)
{
if (tag == HTML.Tag.TR)
{this.on=2; v.add(this.linel); linel="";}
else if (tag == HTML.Tag.BODY || tag == HTML.Tag.TABLE ||
tag == HTML.Tag.P || tag == HTML.Tag.UL)
v.add(this.line);

/lwork around bug in the parser that fails to call flush
if (tag == HTML.Tag.HTML) this.flush();

public void handleText(char[] text, int position)
{
String s = new String(text);
if (this.level ==1) this.title=s;
else{if (this.on==1){v.add(s); this.on = 0;}
else this.linel = this.linel+" "+s; } // end else
try {out.flush();} // end try
catch (IOException e) {System.err.printin(e);}} // end method

public void flush() {

try {out.flush();}

catch (IOException e) {System.err.printin(e);}
} // end method

Figure 63 the source code of the Outliner class

99

3.3.3 Extraction
The implementation process of the extraction modules is shown as below:

Read the racipe taxt file;: RecipaFile
into a object of BufferedReader br

If br is empty

Mo

-
-

Extract a entire paragraph from br

No

If this paragraph is recipe's ingredient
description paragraph?

Put the recipe’s ingredient into
TempMaterial table

Yes

If br is empty

Extract recipe’s direction depending on the
TempMaterial and CommonWord table

A

If succeed to extract recipe’s
ingredient and direction?

Return false

Return true

Figure 64 the flow chart for Extraction

The flow chart of the method for extracting an entire paragraph is shown as below:

100

Extract a entire paragraph

Read the recipe text file: RecipeFile into a object of
BufferedReader br, define a object of vector: ingredient

Yes

While br is empty

N¢¢

Empty ingredient

'

Read a line

If this is empty line

Append this line to ingredient

i

Exit -

i

Ingredient contains a entire paragraph

Figure 65 the flow chart for extracting an entire paragraph

The flow chart of the method for checking if the paragraph is the recipe ingredient
paragraph is shown as below:

101

Check if the paragraph is
ipe's ingredien ragraph

Get a object of Vector: ingradient which contains one
paragraph

o o Yes
_ | While ingredient is

empty

Mo

Y
Read next element
{String jof ingredient

No If first word of this element {String) is numerical,
and there is a unit word in this element and the amount of word

in this element less than 77

Return true Return false

Figure 66 the flow chart for checking the recipe ingredient paragraph

The flow chart of the method for extracting the recipe direction is shown as below:

102

Extract recipe’s direction

Read stream from br after extracting ingredient, define
a object of String: direction to store recipe’s direction

Yes

While br is empty

ND¢

Read next line

If this line can be m Mo
atched the word in TempMaterial

table of CommonWord table?

Append this line to direction

'

Exit e

'

direction contains the recipe's direction

Figure 67 the flow chart for extracting the recipe direction

103

3.3.4 Inserting the Recipe into the Database
The flow chart of the method for inserting the recipe ingredient into the TempMaterial
table is shown as below:

Put recipe’s ingredient into
TempM ial tabl

Empty TempMatarial table, gat the object of Vector:
ingredient which has contained the recipe’s ingredient

A

= \While ingredient is empty

Yes

Mo

Y

Read next element (String jJof ingredient, Define a
object of String: line which contains this element

Yes 7

While this line is empty

Y
Y

Mo

Read next token of this line Exit

If this token is numerical or unit word?

Yes
f this token is one of the following word (which maybe occur in the

ingredient description but make na sense): "ar", "a", “the”, "ta",
“with”, “such"”, *from", "any”, “other", "as”, “and"?

Insert this token (String) to TempMaterial table

Figure 68 the flow chart for inserting the recipe ingredient into the TempMaterial table

104

As the algorithm for inserting the recipe data into the database is similar with the one
used in solution 1, the flow chart for that method could also refer to the one in solution 1.

105

3.4 Results and Test

I will test the import function from the following three conditions:
4. The recipe file is invalid.

5. The recipe file is valid and it can be imported successfully.
6. The recipe that will be imported has already existed in the database

3.4.1 Import the Invalid Recipe File

The following web page is the index page of the CNN website, obviously it is not a recipe

file.

1 CNN.com - MylE2
COIE RIEE EE(N WL HEEE ERe TAD 'wHAM FFBhl

0 0 © RO ¥ i@ @-ME" 200 2 -

S HidE @] http: e, cnn,com] - B~ ik P
© 9 @] Customize Links @ | Free Hotmail @ | Windaws Media @ Windows @] Yahoo! Bookmarks -

CNM.com |

CINN Nov. 2

AMERICA VOTES * 2004 /% ,3 See ttai on

6 days until Election Day!

SEARCH () The web () CNN.com ._ : Powered by “WREHOO! sea

rch

 Home Page Updated: 02:33 p.m. EDT {18:33 GMT) October 27, 2004
World
u.s.
Weather
Business ot ConMoney

SHOWDOWN STATES POLLTRACKER ~ CANDIDATE TRACKER CAMPAIGN ADS ELECTORAL COLLEGE ~ SENATE HOUSE GOVE

Oevc: AMERI OTES20O04

Sports ot Sicom
e MORE TOP STORIES

Paolitics

Lawr

Bush. Kerry blitz for votes

Technology + Aides: 9411 reforms won't pass Conagress by election

Science & Space

Health
Entertainment + Study: Americans arowing taller and wider

Travel ; + Scientists find bones of "hobbit-sized” ancient humans

Education B .l + Web kidney donor says he'll take polyaraph
I

EpecialHepdats 3 : - Report: Pregnant Julia Roberts in hospital
€ ; + Company taking orders for hypoallergenic kittens

AMERICA-VOTES?OO4 » & DAYS
+ Londg lines for early Georgia voters
+ Electoral College | Showdown Game | The Issues

RNOR

+ Al-Zarqawi group threatens Japanese hostage | 4 Video

+ Man accused of trving to run down Rep. Katherine Harris

Py
m International Edition | @ Netscape -
.com MEMBER SERVICES ® MAKE CNN.com YOUR HOME PAGE

4 WO | © (% %D

Microsoft P,

Figure 69 the example page "CNN website’

106

When the Import button is clicked, the error message box is returned:

Recipe Database Update

Import File : CHH.htm

‘ Import | ‘ Cancel |

Recipe file is imesalid !

Figure 70 the error message is pop out when dealing with the invalid recipe file

3.4.2 Import the Valid Recipe File

There are two cases for testing the import of the valid recipe file. One is to test on a
common valid HTML recipe file; the other is to test on a valid HTML recipe file of which
the ingredient description part is written in the table format. Here the tests on both of
these two cases have been done.

3.42.1Test1
The test 1 is to test on the common valid HTML recipe file. The title of the recipe is is

‘Brocco Taco Salad’, as shown in the following figure.

5 All Recipes | Salad | Brocco Taco Salad - MylEZ
IHE HRIRE EFW W@ REEG ORI TAO 'O /i

D010 © NRG kb3 @ MEF =209 :-

Btk @] File:f/EiStudyihtmis20parser Brocco20Taco%205alad. hem - B iix O =
59 @] Customize Links @] Free Hotmail @] Windows Media @] Windows @] ¥ahoo! Bookmarks I <1 [
Al Fscipes |5 |
= RECIFE SHOPPING i
PRINT =) eman Allrecipes, Learn More! J R
- —. eeox 2 aus'r = | P Elegant, Great Tasting. 2

Favorite Food Lists:
= Chicken Salads for all
occasions o
a list by: Squidly
= Budget Meals
5 list by: therern
 Summer Bites!
5 list by: DavidP

* More lists...
« Create your own...

Nutrition Info

Servings Per Recipe: 8

Search by Nutrition
| Find recipes that match
wour nutritional gaals!

Amount Per Serving

Calories: 493

s Total Fat: 32.3g i g
Serve-with ideas
b e e AL Find a dish that goes with
.) . sodium: §21mg this recipe.
| Customize this Recipe = Ee e =) G
M L RS PO 86k

Figure 71 the example HTML page '‘Brocco Taco Salad’

107

The source code for the example HTML page is:

B Brocco Taco Salad. htm - Notepad
File Edit Format Wiew Help

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"= =
<l -- saved from url=C(00400http: //salad.allrecipes.com/az/74234. asp --»

<HTML=<HEAD=><TITLE=A11 Recipes | Salad | Brocco Taco Salad</TITLE:=
<META http—equiv=CdHTEHTETyBE'E3ﬁTEHT!'TE?T7ﬂfm7f'fﬂ3?§€fgﬁﬁ??ff'9<!——
MUST USE globalimageserver for global.css -- used on ecommerce and is set
to
to local in secure site --»<LINK media=all
href="Brocco Taco sSalad_files/global.css" type=text/css
rel=sStylesheet><L INK
media=all href="Brocco Taco Salad_files/recipe.css' type=text/css
ral=5tylesheets>
<STYLE type=text/css=A:hover {

COLOR: #cc0000; TEXT-DECORATION: underline

Figure 72 the source code for the example HTML page 'Brocco Taco Salad'

The title of the HTML file is: All Recipes | Salad | Brocco Taco Salad, the program
should extract the recipe title “‘Brocco Taco Salad’, which is presented after the last
sign ‘|’.

This recipe title contains a material keyword, salad, which can be matched to the one
in Material table; the recipe category also can be defined, through the relationship
between the Material table and Category table.

h =
Category
» Yegetable & Fruit
Beef
Bread
oweets & Desserts
Chicken Chichen
Filet Seafood
Fuit “egetable & Fruit
Lamb Larnb
macaroni Pasta & Pizza
Feanut “egetable & Fruit
Pig Fork
Paork Pork
Jﬂglalp ——— T N
T ——
=almon Y =F=) (af
*

Figure 73 the example material table

108

The HTML source code of the recipe ingredient and direction parts is shown as below:

I Brocco Taco Salad. htm - Notepad E]@

File Edit Format ‘Yiew Help

4.0 o' pD AR Th DT T . D ALOTE | CCT. . D ALOTHR DoTT o Je . [DOTIMNG-TOP: sz“) ~

DING-TOFP: Gpx"=

<DIV style="MARGIN: Opx Upx 8px"=<A name=convert:</ax

Figure 74 the source code of the recipe ingredient and direction parts

The recipe ingredient description is written in list format. As mentioned above, the
HTML ‘LI’ tag can be handled specially during parsing the HTML document, so the
layout of the recipe ingredient paragraph is kept in the newly generated text recipe file. It
is show as below:

File Edit Format Wiew Help

B }empFile.lxt - Notepad [:L_]@E]

cups Mann's Broccoli Cole Slaw

ounces red kidney beans, drained

cup Cheddar cheese, =shredded

large tomato, diced

ounces black oliwves, drained and s1liced

1/4 cup red onion, finely chopped

1/2 cup thousand island salad dressing

1/4 cup salsa

1 pound ground beef or ground turkey Coptional)
(10.5 ounce) bag corn chips, such as Fritos® or tortilla chips

salt and pepper, to taste

(SRl e v L}

INGREDIENTS:

In a large skillet over medium-high heat, cook ground beef and onions,
stirring to break up the chunks of meat, until nicely browned on the
outside and no trace of pink remains, 8-10 minutes. Let cool

In a large bowl, combine Mann's Broccoli Cole =law, kidney beans,
Cheddar cheese, tomato and oliwves tossing to mix well. Add salsa,
tossing again to coat. (Salad can be made up to this point 24 hours in
adwvance, cowver, and refrigerate.) Add meat and onions; toss well. Add
salad dressing and chips; toss well to mix.

DIRECTIONS:

Figure 75 the newl generated txt paragraph

109

The recipe title is: “‘Brocco Taco Salad’ and its category should be Vegetable & Fruit.

The imported recipe display result is shown as below:

Recipe Display

ID : 81 Title : Brocco Taco Salad
Category : Vegetable & Fruit

3 cups hann's Broceoli Cole Slaw

g ounces red kidney beans, drained

1 cup Cheddar cheese, shredded

1 large tomato, diced

2 ounces hlack olives, drained and sliced
1id cup red anion, finely chopped

152 cup thousand island salad dressing
1/4 cup salsa

1 bag (10.5 ounce) corn chips, such as Fri

1 pound ground beef or ground turkey (optl_ |

In & large skillet over medium-high heat, cook graund beef
and anions, stirring to break up the chunks of meat, unti

| nicely browned on the outside and no trace of pink remai
ns, 8-10 minutes. Let coal.

In a large howl, combine Mann'

= Broceoli Cole Slaw, kidney heans, Cheddar cheese, tomata
and olives tossing to mixwell. Add salsa, tossing again

to coat (Salad can be made up ta this paint 24 hours in a
dvance, cover, and refrigerate) Add meat and onions; toss
well Add salad dressing and chips; toss well to mix.

L]

Figure 76 the display of the imported recipe

3.4.2.2 Test 02
Here is another valid HTML recipe file (as shown in the following figure), of which the
recipe ingredients are written in the “‘table’ format.

¥ iChef.com Free Recipes - Soups and Stews: Albuguerque Corn Soup - MylE2
COEMHE HRIEE EFW W BEHE BN TAD #ow %EEJ(J

& J o IJC“I “ii(is%ElEI[ﬁ] BO®% 2 -
) TR - . : T éj - imm P —
© [@] Customize Links @ Free Hotmail @ | Windows Media ﬂ windows @] Yahoo! Bookmarks ‘H-B8

[iChef.cam Free | |

G
Il ter
gil address:

@@L

Click category for more recipes: Soups and Stews
Average Rating: & # # « % (2 votes)

Yield: 6 servings

Ingredients
114 ¢ Butter IChefs Cookboolk Store -
312 ¢ Cormcutfram the cob Lots of great
: cookbooks and
Clove garlic 5

. readers' comments

4 Chicken broth
[ilk
I you ve the great chef you clairn 10 b, FREE STUFF

ts Dryoregano
oz Green chiles

should be able ta come up with

then you
something better than canned dog

1
1
2
i =
. Looking for great
il

for me.” [3“ FREE product
¢ Monterey Jack cheese & samples!
Salt [Click here]

-y

Instructions RECIPE SEARCH L]

keywordis):
1. Meltbutter in a 5-8 gt pan over medium heat. Add corn and M
garlic; cook, stirring until corn is hot and darker golden _
(about 2 min) Remove from heat. YWhirl broth and 2 ¢ of the ingredient(s):

cornin a blender or food processor until pureed; return to

pan. Stir in milk, oregano, and chiles. Bring to a boil stiring

over medium heat. Remove from heat. Stirin cheese. m
Season to taste with salt, and enjoy. Makes B senings.

NEW iChef FEATURE

S | Bl
Figure 77 the HTML page, of which the recipe ingredients are written in the table format

110

The ingredient description is written in the table format.

B Albuquerque Corn Soup. htm - Notepad E@@
File Edt Format ‘iew Help

aruving QT <EQNT

=

Figure 78 the HTML source code of the ingredient description

We can find that the quantity, unit and ingredient are separated in each cell within one
pair of “TR” tags. And there are some other pairs of tags, such as font style and size, in
between the pair of “TR” tags. Through handling the ‘TR’ tag in special way, each piece
of the ingredient description is kept in one line (Otherwise, the quantity, unit and
ingredient will be separated in different lines). The new generated recipe text file is
shown as below:

I TempFile.txt - Notepad
File Edit Format View Help

Albuguerque Corn Saup ~
click category for more recipes: Soups and Stews

Average Rating: (2 votes)

vield: B serwvings Ingredients

1/4 ¢ Butter

1/2 < Corn cut from the cob
Clove garlic m
c Chicken broth

c Milk

ts Dry oregano

oz Green chiles

C Monterey Jack cheese

salt

e b P L

Figure 79 the extracted txt paragraph of the ingredient description

111

The display result of the imported recipe is:

Recipe Display !

ID : 82 Title : Albuquerque Corn Soup
Category : Others

174 ¢ Butter 1. Melt butter in a 5-6 at pan over medium heat. Add corn
3172 ¢ Corncutfrom the cob and garlic; cook, stirring until corn is hot and darker g
1 Clove garlic alden (ahout 2 min.) Remave fram heat Whirl broth and 2 ¢
1 ¢ Chicken hroth ofthe corn in a blender or food processor until pureed,
2 ¢ Milk return to pan. Stirin milk, oreganoa, and chiles. Bring to
1 ts Dry oregano a boil stirring over medium heat. Remove from heat. Stir
4 0z Green chiles in cheese. Season to taste with salt, and enjoy. Makes 6 s
1 ¢ Monterey Jack cheese ervings.

Salt

Figure 80 the display result of the imported recipe (test 2)

112

3.5 Summary

The solution 2 is a kind of upgrade version for solution 1. Compared to solution 1, the
major improvement of solution 2 is to introduce a new import function. A new algorithm
is adopted to make the system capable of importing the external HTML recipe files
directly.

Generally speaking, solution 2 indeed conquers some limitations existing in solution 1
and enhances the flexibility and compatibility of the system.

The process of the importing is implemented by the following three steps:
1. Parse the HTML document into a text file called: RecipeFile.txt,
2. Extract the recipe data from RecipeFile.txt
3. Insert the extracted recipe data into the database.

In solution 2, the system can recognize and extract the recipe title by locating the pair of
HTML tags: <Title> and </Title>. Compared to the title extraction method used in
solution 1, this way is more intelligent and can increase the accuracy.

The extraction of the recipe ingredients follows the rules that: there must be at least one
standard ingredient descriptive item (line) which consists of quantity, unit and ingredient
description in the recipe ingredient description paragraph, for example:

1 cup hot water

When a standard ingredient descriptive item (line) is found out, the program will treat the
paragraph which this item (line) belong to as the paragraph describing the recipe
ingredient.

For the direction part, the system extracts it according to the recipe feature ingredients
(such as beef, pork, flour and etc.) and some typical words which may appear in the
direction such as mix, stir, grease and etc. By using this method, the extraction of the
direction part is elaborated to the line based level. Compared to the ‘paragraph’ based
extraction used in solution 1, this method make the system more semantic oriented and
increase the accuracy.

Although solution 2 has been able to import more kinds of recipe files and achieve higher
accuracy on the recipe extraction than solution 1 does, there are still some weaknesses in
it.

As mentioned above, the HTML specification is loosely structured and there are many
different ways (by using different tag pairs) to describe the content but display in the
same way. Therefore, in some cases when the HTML recipe files are encoded in some
informal or uncommon ways, the system cannot recognize and import them.

In addition, due to the time reason, right now the system can only handle the HTML

recipe file with a single frame. The development of handling the HTML recipe file with
multiple frames inside would be part of the future work.

113

114

4. Conclusion

In this report, | introduced the development procedure of a recipe system, which includes
four major steps: system analysis, design, implementation, and test. The development
process strictly follows the principle of the software engineering.

There are two solutions implemented in this project. The main difference between
solution 1 and solution 2 is the type of the recipe files and the import algorithm. In
solution 1, the program can only import the external recipe file which is saved in *.txt
format and must contain some special signature key words such as ‘ingredient’ and
‘direction’; In solution 2, the system can automatically import the HTML recipe file
which is downloaded from the web site. Moreover, the HTML recipe file doesn’t need to
contain the special signature key words, which makes the system be able to handle more
kinds of recipe files.

The improvement from solution 1 to solution 2 actually reflects the effects of the
semantic oriented programming. In solution 1, the algorithm of the recipe extraction
mechanically relies on some artificial marks, which are unstable and only existed in some
kinds of recipe files. Solution 2 addressed on the discipline of the recipe content and tried
to find out the semantic essence of it. Therefore, compared to the former, solution 2
provides a more general method, which can handle most of the recipe files.

In a word, the objectives of this project have been fully achieved.

4.1 Future Work

Strictly speaking, the recipe system is still in the prototype version. There are lots of
supplementary works to do. In order to increase the accuracy of the recipe extraction and
make the system more flexible and compatible, the following aspects should be addressed
as the future work:

Firstly, the system may add as more as possible ingredient names into the Material table
in order to make the program be able to accurately recognize the categories for more
recipes. In addition, such a completed Material table can be used in the extraction of the
ingredients as well, which in turn increase the accuracy of the extraction.

Secondly, the system can add a new table in the database to store the descriptive words
which are served as the adjectives of the ingredients. This will accelerate the positioning
of the ingredients and facilitate the ingredients extraction.

Thirdly, as mentioned before, the system should be able to handle the HTML recipe files
with multiple frames in side. The main challenge behind that is how to locate the recipe
frame.

4.2 Personal Conclusion

Through this project, | have gained lots of practical experience and knowledge about the
object-oriented programming, the design of the relational database, and HTML

115

specification. This helps me well understand the development procedure of the software
engineering and accumulate rich experience for doing further R&D work in computer
science field.

In addition, my ability on how to seek, collect, analyze and utilize the information was
enhanced from this project and | better understand the importance of communicating and
sharing ideas with others.

In a word, as an intending engineer of the computer science, | should say this project

definitely gave me the most valuable practical trainings on both the specific techniques
and the methodology of thinking.

116

Reference

[1] Gonghe Chen & Hanxin Wang & Linrui Liu, ‘The Basic of Database and Access
Application Tutorial’, Higher Education Publishing Company Beijing, 2003

[2] Paul Fischer, “Introduction to Graphics with JAVA-Swing using the Model-View-
Control concept’, IMM, Denmark Technical University Version 1.2, October 2003

[4] OReilly, ‘Java Networking Programming’, 2nd Edition

[5] Thomas Connolly & Carolyn Begg, ‘Database Systems, Third Edition’, ADDISON
WESLEY, 2002

[6] Harvery Deitel, Paul Deitel, ‘Java How to Pragram’, Fifth Edition, Pearson Prentice
Hall, 2003

[7] Walter Savitch, ‘JAVA, An Introduction to Computer Science & Programming’,
International Edition, Pearson Prentice Hall, 2004

[8] Jeffery D. Ullman & Jennifer Widom, ‘A First Course in Database System’, Pearson
Prentice Hall, 1997

[9] lan Summerville, ‘Software Engineering’, Sixth Edition, ADDISON WESLEY, 2001

[10] H. Garcia-molina, Jeffery D. Ullman & Jennifer Widom, ‘Database Systems, The
Complete Book’, Pearson Prentice Hall, 2002

[11] Bob Villareal, ‘Access 2002 Programming by Example’, Queen, 2002

[12] Philip M. Lewis, Arthur Bernstein & Michael Kifer, ‘Databases and Transaction
Processing, An application-Oriented Approach’, ADDISON WESLEY, 2002

[13] Khawar Zaman Ahmed & Cary E. Umrysh, ‘Developing Enterprise Java Application
with J2EE and UML’, Addison Wesley, 2001

[14] Krik Knoernschid, ‘Java Design: Objects, UML, and Process’, Addison Wesley,
2001

[15] David C. Hay, ‘Requirements Analysis: From Business Views to Architecture’
Pearson Prince Hall, 2002

Web Recourses:

[16] The page of J2SE 1.4.2 API from Sun Java Official web-site
http://java.sun.com/j2se/1.4.2/docs/api/

[17] The page of JAVA Swing Components

117

http://java.sun.com/docs/books/tutorial/uiswing/components/components.html

[18] The page of JDBC Techniques from Sun Java official web-site
http://java.sun.com/docs/books/tutorial/jdbc/basics/index.html

[19] The page of Software Engineering
http://www.sawin.com.cn/satech.asp?class=UML

[20] The page of Microsoft Office official web-site
http://office.microsoft.com/home/

[21] Database Technologies
http://www.develop.com/us/technology/

118

List of Figures

Figure 1 Normal Text ReCIPe File ..o 14
FIQUIE 2 E-R DIAGIAMiciiiiieiie ettt steeeesraesteesneaneenaeeneesnes 25
Figure 3 Use Case DIAgIaMccueiuiiiiriiieriieiieieieie ettt 27
Figure 4The MV C MOUEL.........ooi it sre e enes 37
Figure 5 UML Class DIagram.......cccoeoireiininieieiesie ettt 38
Figure 6 the procedure of the design and implementation of the database........................ 39
Figure 7 the Code for the method “Insert the ReCIPe™ccoviieiiiie e 47
Figure 8 The code for the method 'edit the reCipe’.........cccovveiieie i 48
Figure 9 The code for the method 'delete the reCipe’ccooceeveiiiiiiie i 49
Figure 10 The code for the method 'search the reCipe’..........cccovvvieieiveciesiccc e 50
FIQUIE 11 FIOWOL ...ttt nb e nreas 52
FIQUIE 12 FIOWOZ ...ttt et e e s e nne e s naentaeneennes 53
FIQUIE L3 FIOWO3-..... ettt ettt nb e nreas 54
FIQUIE 14 FIOWO3-D.....eeeiece ettt nte e s e e nneeneenne s 55
FIQUIE L5 FIOWOA ...ttt nneas 56
FIQUIE 16 FIOWOS ...ttt e e ente e s neennaeneennes 57
FIQUIE 17 FIOWOGB-Q......cciuieniiiiieiieee sttt sttt nb e neenneas 58
FIQUIE 18 FIOWOGB-D.......ccuieieieieciece sttt nre e enbaeneennes 59
FIQUIE 19 FIOWOB-C......eovieiiiciie ettt ettt st nb e nreas 60
Figure 20 GUI Component HIerarchy Treeccviueiviieiieseeie e 61
Figure 21 Diagram 01: System Entrance Frame Sequence Diagramccccceoeerveiuennnnn 63
Figure 22 Diagram 02: Insert New Recipe Sequence Diagram...........cccoeevveveiieesneiennnnn, 64
Figure 23 Diagram 03: Edit Recipe Sequence Diagram........ccccoveerverereenenieseeniesieesenns 65
Figure 24 Diagram 04: Delete Recipe Sequence Diagramc.cccccveverivereeiiesieesnsieennnns 66
Figure 25 Diagram 05: Import Recipe Sequence Diagram.........c.ccocveveerieenienieeseenesinenenns 67
Figure 26 Diagram 06: Search Recipe Frame Sequence Diagram...........cccccveveevverveinennn. 68
Figure 27 Diagram 07: Change Password Panel Sequence Diagramccccceeveereeeenennn 69
Figure 28 the System Entrance INterface.........cccovveiiiie i 70
Figure 29 the General USer INtEIrfaCe.........coviiiiiiiieiice e 71
Figure 30 the Administrator Interface-Insert Panelc.cccovvveiiviie i 71
Figure 31 the Administrator Interface-edit panel...........cccoooviiiiiiiiie i 72
Figure 32 the Administrator Interface-delete panel...........cccccovevieiiie i, 72
Figure 33 the Administrator Interface-import panel...........cccccoveiiiiiiiinc e, 73
Figure 34 the Administrator Interface-personal setting panelccccevevveieiieieccieennn, 73
Figure 35 the example reCipe tableoo i 74
Figure 36 iNPUt fOr the tEST L........cuiiieciee e 74
Figure 37 result Of the tEST Lc.eeieiieeee e 75
Figure 38 the INput TOr the tEST 2........eeii e 75
Figure 39 the result Of the tEST 2......c.eo i 76
Figure 40 the example admin table..........ccooovviiiii e 76
Figure 41 the input for the test “admin. 10giN"cccoiiiiiiie e 76
Figure 42 the IMPOrt PANEL.......coveieieceee e 77
Figure 43 the window for selecting files..........cooviiiiiiiiii e 78
Figure 44 a valid recipe file iS SEIECted..........coviieiieiice e 78
Figure 45 the text content of the file *Whipping Cream Pound Cake.txt’..........ccccccoeuennen. 79
Figure 46 successfully insert the recipe "Whipping Cream Pound Cake'c.cccoeveneen. 80
Figure 47 the display of the recipe “Whipping Cream Pound Cake"ccccoooveririnnnnn 80
Figure 48 the example material table...........cccoovei e 81

Figure 49 thetemparory paragraph generated during the importccccoocveveiieniiinnnnn, 81
Figure 50 the target recipe has been inserted into the recipe tableccccceeevvveeveinnen, 82
Figure 51 the ingredients of the targed recipe has been inserted into the ingredient table 82
Figure 52 the recipe 'Whipping Cream Pound Cake.txt' has already stored in the database

.. 82
Figure 53 the example invalid file which loses the ingredient description.............c.......... 83
Figure 54 the response indicates that the file is invalid..........c.cccoooiiiiiiinii, 83
Figure 55 the Nested tag PAITSvcveieeiieie e see sttt esraeneenres 86
Figure 56 the example HTML PagE.......cooiiiiiiiiieiieiiee et 87
Figure 57 the HTML source code (a) for the example page........cccocvevevieerveiiesiiesneiiennnn, 87
Figure 58 the source code (b) for the example HTML page.......c.ccoovvevriiieneniienieenicienenn 88
Figure 59 the source code (c) for the example HTML Page.......cccocvevereeneeriesieesineiiennnns 88
Figure 60 the UML class diagram for the extraction Class.........c.ccocvvveiinninienieniiieninn 94
Figure 61 the procedure of the IMPOIt ProCESSccevvevieiiieieeie e 95
Figure 62 the flow chart for parsing the HTML DOCUMENT..........coovrieiirnenienieniceie e 97
Figure 64 the flow chart for EXIraCtion...........ccccoveviiiieeiieie e 100
Figure 65 the flow chart for extracting an entire paragraphccccccevvevenienennesennnenn, 101
Figure 66 the flow chart for checking the recipe ingredient paragraph...........ccccccoven..... 102
Figure 67 the flow chart for extracting the recipe direCtionc.ccoccveviiinieniesinnnnnn, 103
Figure 68 the flow chart for inserting the recipe ingredient into the TempMaterial table

.. 104
Figure 69 the example page 'CNN WEDSITEcoeiiieiiiii e 106
Figure 70 the error message is pop out when dealing with the invalid recipe file........... 107
Figure 72 the source code for the example HTML page '‘Brocco Taco Salad' 108
Figure 73 the example material table...........ccovoiiiiiii e 108
Figure 74 the source code of the recipe ingredient and direction parts...........c.ccccccueneen. 109
Figure 75 the newl generated tXt paragraph............cccccvevveieiicie e, 109
Figure 76 the display of the ImpPOrted reCIPecoeveieririiieeeee e 110
Figure 77 the HTML page, of which the recipe ingredients are written in the table format

.. 110
Figure 78 the HTML source code of the ingredient description...........cccccoeevivevieiienenn, 111
Figure 79 the extracted txt paragraph of the ingredient descriptionc.cccceevviiernene. 111
Figure 80 the display result of the imported recipe (teSt 2)ccccvvievvereiiieieeeceeen, 112

120

List of Tables

Table 1L0ogin Of the gENEral USENccooiiiiiiieiee e 29
Table 2 Login of the adminiStratorccooeiieii e 29
Table 3 Search the reCIPEcvoe e 30
Table 4 Search the Recipe by the Titleccooviiiiii i 30
Table 5 Search the Recipe by the Ingredient ..., 31
Table 6 Search the Recipe by the Categoryccceveiieieeie i 31
Table 7 Modify the Recipe Database...........cccoeieiiriiiiinisieiee e 31
Table 8 INSErt the RECIPEecveieie et sre e ens 32
Table 9 Edit the RECIPE......oiieeee e e 32
Table 10 Delete the RECIPEccuviieieeecie ettt e e eeenes 33
Table 11 IMPOrt the RECIPE. ...cui it 33
Table 12 Modify the PaSSWOITcccoveiieieciesiece e 34
Table 13 Modify the PaSSWOITccooiiiiiiiieiiee e s 34
Table 14 the ReCIPe TaDIEccuvoieiieece e 40
Table 15 The INgredient Table..........cooiiiiiiiece e e 40
Table 16 The Category Tablecvoiiie i 41
Table 17 The Material Table..........ccooiiiiii s 41
Table 18 The Unit TabIeoovoiie e 42
Table 19 The AdMIN TabIe ..o e 42
TADIE 20 SEIBCT......oeiiieieicieee e et 43
TADIE 21 UPDATE ..ottt sttt sttt e beene e e e neens 43
TADIE 22 DEIETE ...t 44
TabIE 23 INSEIT INTOccveiiiie ettt et sb et enes 44
Table 24 L0ad the DIIVELSc..coeiiieiiieieseeee ettt 45
Table 25 Establis the CONNECLIONccuiiiiiiiiiieee s 45
Table 26 EXeCute the UPUALeceeiviiieiice et 45
Table 27 EXECULE the DEIELEc..eoieieeecie e e 46
Table 28 EXECULE The INSEIT......cc.oiiiiiiiieeee e 46
Table 29 EXECULE the QUETYcoeiiieiieie ettt 46

121

Appendix | Installation Guide

Execution Requirements

Hardware requirements:

— Intel Pentium 111, 600 MHz or equivalent CPU

— 128 Mb of RAM

— 10/100Mb Network Card

Software requirements:

— J2EE 1.4.2 SDK (Java 2 Platform, Enterprise Edition, Software Development Kit)

— HyperText Markup Language (HTML) version 4.01
— Microsoft Access 2000

— Java Virtual Machine

Execution Indication

1. Double click the solutonl. jar (or solution2.jar)

2. The database system entrance interface appears. When click on the
‘Administrator’ button, a dialog window appears and indicate the user to input

name and password.

3. Input the following Administrator name and password
Namel: linlinwang Password: 19781130

Or
Name2: bojiang

Password: 19790702

4. Import the example recipe files. All the recipe files are stored in the folder:
External Recipe Files. The example files of external recipe for solution 1 and

solution 2 are stored in the two child folders of External Recipe Files: Recipes for

Solutionl and Recipes for Solution2. The detail information of the recipe files is
show in the following table:

Examples of External Recipe File for Solution 1

File Name

Location

Property

1 | Beef Pepper Steak.txt

\External Recipe Files

\Recipes for Solution 1

Valid recipe files

Can be imported successfully

2 | Dutch Oven Buttermilk

Cornbread.txt

\External Recipe Files

\Recipes for Solution 1

Valid recipe files

Can be imported successfully

3 | Apple Ple Parfaits

\External Recipe Files

122

Valid recipe files

Recipe.txt

\Recipes for Solution 1

Can be imported successfully

Golden Harvest Beef

Recipe.ixt

\External Recipe Files

\Recipes for Solution 1

Valid recipe files

Can be imported successfully

Soups and Stews.txt

\External Recipe Files

\Recipes for Solution 1

Valid recipe files

Can be imported successfully

Whipping Cream Pound

\External Recipe Files

Valid recipe files

Cake.txt \Recipes for Solution 1 Can be imported successfully
Examples of External Recipe File for Solution 2
File Name Location Property

Arizona Brown Rice

Pilaf.htm

\External Recipe Files

\Recipes for Solution 2

Valid recipe files

Can be imported

successfully

Brocco Taco Salad.htm

\External Recipe Files

\Recipes for Solution 2

Valid recipe files

Can be imported

successfully

Frank's Famous Spaghe

tti Sauce.htm

\External Recipe Files

\Recipes for Solution 2

Valid recipe files

Can be imported

successfully

Meals For You Peach

Pan Dowdy Il.htm

\External Recipe Files

\Recipes for Solution 2

Valid recipe files

Can be imported

successfully

Mom's Best Peanut

Brittle.htm

\External Recipe Files

\Recipes for Solution 2

123

Valid recipe files

Can be imported

successfully

Salad Chutney

Chicken Salad.htm

\External Recipe Files

\Recipes for Solution 2

Valid recipe files

Can be imported

successfully

124

Appendix Il Configuration of Source Code

The recipe database system consists of two parts :
1. Access Database
There are 8 tables in the database:

— Recipe: To save the recipe ID, title, category and direction

— Ingredient: To save the ingredient quantity, unit and ingredient description

— Category: To save the recipe category

— Unit: To save the unit words could appear in the recipe ingredient description

— Material: To save some key materials may be used for matching recipe category

— CommonWord(only in Solution 2): To save some common words may appear in
the recipe direction

— MaterialTemp(Just in Solution 2): To save the temporary materials of the
imported recipe

— Admin : To save the administrator name and password

2. Java Program

e Solution 1
There are 6 Classes defined in this solution:

— RecipeQuerySystem.java: The main driver which can call the RecipeQueryFrame
class.

— RecipeQueryFrame.java: The system entrance interface which can call the UserFrame

— and AdminFrame class.

— UserFrame.java: The general user interface which includes an inner class-
RecipeFrame.

— AdminFrame.java: The administrator interface which includes the following inner
class: InsertPanel, EditPanel, DeletePanle, ImportPanle , PerPanel and RecipeDisplay.

— ModifyRecipe.java: It is used to handle the common operations such as inserting the
new recipe into the database. .

— ExtractInformation.java: It is used to handle the importing operations from the users.

e Solution 2

There in one function package and 7 classes defined in solution 2:

The Packege — MyUTtils includes two classes:

— MyuUtil.class: It includes the complementary methods such as: isElement(),
similarString() and etc.

— ParserGetter.class: It is used to get the parser to parse the HTML document.

The rest of classes defined in solution 2 are:

125

RecipeQuerySystem.java: The main driver which can call the RecipeQueryFrame
class.

RecipeQueryFrame.java: The system entrance interface which can call the UserFrame
and AdminFrame class.

UserFrame.java: The general user interface which includes an inner class,
RecipeFrame.

AdminFrame.java: The administrator interface which includes the following inner
class: InsertPanel, EditPanel, DeletePanle, ImportPanle , PerPanel and RecipeDisplay.
ModifyRecipe.java: It is used to handle the common operations such as inserting the
new recipe into the database.

ExtractInformation02.java: It is used to handle the importing operations from the
users.

126

Appendix Il Test Results
ModifyRecipe.java

S R ke kb kbbb kbbb bbbk bbbk bbbk bk
// Final Thesis Project Author: s020953 LinLin Wang
// ModifyRecipe.java 16.August 2004

// Implements operation functions of changing database

S K R ke kbbb bbb bbbk bbbk bk

import java.util.*;

import java.awt.*;

import java.awt.event.*;
import javax.swing.*;
import javax.swing.border.*;
import javax.swing.table.* ;
import java.sql.*;

public class ModifyRecipe
{
private ResultSet rs, rs1, rs2, rs3, rs4;
private Connection con;
private ResultSetMetaData rsmd;
private DatabaseMetaData dma;
private Statement stmt;
private String titleQuery = ("SELECT Title FROM Recipe");

public ModifyRecipe ()

{

try{

String url="jdbc:odbc:driver={Microsoft Access Driver (*.mdb)}; DBQ =
+ Recipes.mdb™;

Class.forName(*sun.jdbc.odbc.JdbcOdbcDriver™);
con = DriverManager.getConnection(url, "linlin", *19781130");

Hlend try

catch (Exception €){} // end catch

/I Insert New Recipe Into the Database
J mm

public boolean insert (String title, String categ, String direction, String[][] ingredient)
{

int num, num1, num2;
try{
stmt = con.createStatement();
String directionQuery = ("SELECT Direction FROM Recipe ");
rs4 = stmt.executeQuery(directionQuery);
rs4.next();
do{ #1

127

num2=rs4.getRow();
Iwhile(rs4.next());
String directions[]= new String[num2];
rs4 = stmt.executeQuery(directionQuery);

for(int i=0; i<num2; i++) #2
{
rs4.next();
directions[i]=rs4.getString("Direction");
} //end for
/I new recipe doesn't exist in database
if (ExtractInformation.SameRecipe(direction, directions)) #3
return false;
else
{

String titlel = ExtractInformation.correctString(title);
String categl = ExtractInformation.correctString(categ);
String directionl = Extractinformation.correctString(direction);
String insertl = "INSERT INTO Recipe (Title, Category, Direction) VALUES (™
+ titlel +™, "'+categl+"™, "'+direction1+™)";
stmt.executeUpdate(insertl);
Il get new recipe's ID
String IDquery = ("SELECT Rec_ID FROM Recipe");
rs2 = stmt.executeQuery(IDquery);
int Rec_ID;
rs2.next();
do{ #4
String Rec_ID1=rs2.getString("Rec_ID");
Rec_ID =Integer.parselnt(Rec_ID1);
} while(rs2.next());
String s1="", s2="", s3="";
/I get new recipe's ingredien
boolean b= true;
for(int i=0; i<20 && b; i++) #5
{
s1 = ingredient[i][0];
s2 = ingredient[i][1];
s3 = ingredient[i][2];

if(s3 == null) #6
b = false;
else {

String s11 = Extractinformation.correctString(sl);
String s22 = Extractinformation.correctString(s2);
String s33 = Extractinformation.correctString(s3);
String insert = "INSERT INTO Ingredient (Rec_ID, Quantity, Unit, Ingredient)"
+ "VALUES ("+ Rec_ID+", ™+s11 +™, "'+ s22 +" "+ s33 +")";
stmt.executeUpdate(insert);
} // end else
}//end fori
return true;

128

}// end else
}/end try
catch (Exception e) return false;
} // end insert method

public boolean edit (int id, String title, String categ, String direction, String[][] ingredient)

{
String s=ingredient[0][0];
if((title.compareTolgnoreCase(""))==0 || (direction.compareTolgnoreCase(""))==0

title==null || direction == null) #1
return false
else{
try {

stmt = con.createStatement();
String titlel = ExtractInformation.correctString(title);
String categl = ExtractInformation.correctString(categ);
String direction1 = Extractinformation.correctString(direction);
String updatel = "UPDATE Recipe SET Title = "'+title1+", "+"Category =™
+categl+", "+"Direction = "'+direction1+""'+"WHERE Rec_ID =
"+id;
stmt.executeUpdate(updatel);
Il get new recipe's ingredient
String s1="", s2="", s3="";
boolean b= true;
String del = "DELETE FROM Ingredient "+"WHERE Rec_ID = "+id;
stmt.executeUpdate(del);
for(int i=0; i<20 && b; i++) #2
{
s1 = ingredient[i][0];
s2 = ingredient[i][1];
s3 = ingredient[i][2];
if(s1==null) #3
b = false;
else {
String s11 = Extractinformation.correctString(sl);
String s22 = ExtractInformation.correctString(s2);
String s33 = ExtractInformation.correctString(s3);
String insert = "INSERT INTO Ingredient (Rec_ID, Quantity, Unit, Ingredient)"
+"VALUES ("+ id+", "'+s11 +™, "'+ s22 +"', "'+ s33 +")";
stmt.executeUpdate(insert);
} // end else
}// end for i
return true;
}// end try
catch (Exception e) return false;

129

} // end else
} // end edit method

/I Search Recipe
[= e

public void searchRecipe(String title, String ingredient, String categ, Vector id, Vector
names)

{
try{
if (categ!=null) #1
{
String get_ID= ("SELECT Rec_ID, Title, Direction FROM Recipe "+"WHERE
Category ="'+categ+ "");

if(title==null) #2
{
if (ingredient == null) #3
{

stmt = con.createStatement();
rs = stmt.executeQuery(get_ID);
while(rs.next()) #4
{
String rtitle= rs.getString("Title");
String ID= rs.getString("Rec_ID");
id.add(ID);
names.add(rtitle);
} /I 'end while(rs.next())
} /1 if (ingredient == null)
if (ingredient!=null) #5
{
stmt = con.createStatement();
rs = stmt.executeQuery(get_ID);
while(rs.next()) #6

String rtitle= rs.getString("Title");
String ring = rs.getString("Direction™);
if (ExtractInformation.isElement(ingredient, ring)) #7
{
String ID= rs.getString(""Rec_ID");
id.add(1D);
names.add(rtitle);
}
} // end while(rs.next())
} /1 end if (ingredient!=null)
}// end if(title==null)

if(title!=null) #8
{

if (ingredient == null) #9
{

130

stmt = con.createStatement();
rs = stmt.executeQuery(get_ID);

while(rs.next())
String rtitle= rs.getString("Title");
if (Extractinformation.isElement(title, rtitle))
{
String ID= rs.getString("Rec_ID");
id.add(ID);
names.add(rtitle);
}
} // end while(rs.next())
} /1 if (ingredient !'= null)
if(ingredient !'=null)
{
stmt = con.createStatement();
rs = stmt.executeQuery(get_ID);
while(rs.next())
{
String rtitle= rs.getString("Title");
String ring = rs.getString("Direction™);

if (ExtractInformation.isElement(title, rtitle) &&
ExtractInformation.isElement(ingredient, ring))

{
String ID= rs.getString("Rec_ID");
id.add(1D);
names.add(rtitle);

}
} 1/ end while(rs.next())
} // end if(ingredient !'=null)
} /1 end if(title!=null)
}/l'end if (categ!=null)
else {

String get_ID= ("SELECT Rec_ID, Title, Direction FROM Recipe ");

if(title==null)
{
if (ingredient == null)
{
stmt = con.createStatement();
rs = stmt.executeQuery(get_ID);
while(rs.next())
{
String rtitle= rs.getString("Title™);
String ID= rs.getString("Rec_ID");
id.add(1D);
names.add(rtitle);
I/ end while(rs.next())
} /1 if (ingredient == null)
if (ingredient!=null)

{

131

#10

#11

#12

#13

#14

#15

#16

#17

#18

stmt = con.createStatement();
rs = stmt.executeQuery(get_ID);
while(rs.next())

String rtitle= rs.getString("Title");
String ring = rs.getString("Direction™);
if (Extractinformation.isElement(ingredient, ring))
{
String ID= rs.getString("Rec_ID");
id.add(ID);
names.add(rtitle);
}
} // end while(rs.next())
} // end if (ingredient!=null)
} // end if(title==null)
if(title!=null)
{
if (ingredient == null)
{
stmt = con.createStatement();
rs = stmt.executeQuery(get_ID);
while(rs.next())

{
String rtitle= rs.getString("Title");
if (Extractinformation.isElement(title, rtitle))
{
String ID= rs.getString("Rec_ID");
id.add(1D);
names.add(rtitle);
}
} /I 'end while(rs.next())
} /1 if (ingredient !'= null)
if(ingredient !=null)
{
stmt = con.createStatement();
rs = stmt.executeQuery(get_ID);
while(rs.next())

String rtitle= rs.getString("Title");

String ring = rs.getString("Direction™);

if (ExtractInformation.isElement(title, rtitle) &&
ExtractInformation.isElement(ingredient, ring))

{

String ID= rs.getString("Rec_ID™);
id.add(ID);
names.add(rtitle);
b
} 1/ end while(rs.next())
} //'end if(ingredient != null)

132

#19

20

#21

#22

#23

#24

25

26

#27

} /1 end if(title!=null)
} // end else
}//end try
catch (Exception e) {}
} // end method

/I Delete old recipe from the database
J mm

public void delete (int id)

{

try{
stmt = con.createStatement();

String del = "DELETE FROM Recipe "+"WHERE Rec_ID = "+id,
stmt.executeUpdate(del);
String del2 = "DELETE FROM Ingredient "+"WHERE Rec_ID = "+id;
stmt.executeUpdate(del2);
}//end try
catch (Exception e) {}
} // end delete method

} // end class

133

ExtractInformation.java

S R R ke kb kb kbbb ke ek ke
// Final Thesis Project Author: s020953 LinLin Wang
// ExtractInformation.java 16.August 2004

// Extract recipe data from external file and put them into database
//**

import java.sql.*;

import java.util.*;

import java.io.lOException;

import java.io.FileNotFoundException;
import java.util.StringTokenizer;
import java.io.File;

import java.io.FileReader;

import java.io.FileWriter;

import java.io.BufferedReader;

import java.io.BufferedWriter;

public class Extractinformation

{
private int Rec_ID=0;
private final static int RecipeExist =-1,;
private final static int InvalidRecipe = -2;
private final static int FileNotFound = -3;
private final static int IOExcep = -4;
private final static int Excep = -5;
private Connection con;
private String url=
"jdbc:odbc:driver={MicrosoftAccessDriver(*.mdb)};DBQ=Recipes.mdb";
public Extractinformation()

{
try{
// load JDBC-ODBC bridge driver
Class.forName("sun.jdbc.odbc.JdbcOdbcDriver™);
// connect to database
con = DriverManager.getConnection(url, "linlin*, "19781130");
}//end try
catch (Exception e)
System.out.printin(e+ " Exception From ExtractInformation constructor!™);
}
e
/I Get the imported recipe ID
B

public int getID()
{

return Rec_ID;

¥

134

public int Extract(FileReader fr, String title)
{
Vector vl=new Vector(), v2= new Vector(), v3=new Vector();
String cat;
try{
File paragraph = new File("paragraph.txt™);
FileWriter fw = new FileWriter(paragraph);
ExtractParagraph(fr, fw);
/I check if the recipe file valid
if('ValidRecipe(paragraph)) #1
I/ recipe file is invalid
return InvalidRecipe;
else{
FileReader fr1 = new FileReader(paragraph);
FileReader fr2 = new FileReader(paragraph);
BufferedReader br = new BufferedReader(frl);
String kw1l = "ingredient";
String direction=ExtractDirection(br);
/] store recipe's title and direction into database
ResultSet rs1, rs2, rs3, rs4;
int num, num1, numz2;
Statement stmt = con.createStatement();
String directionQuery = ("SELECT Direction FROM Recipe ");
rs4 = stmt.executeQuery(directionQuery);
rs4.next();
do{ #2
num2=rs4.getRow();
Iwhile(rs4.next());
String directions[]= new String[num2];
rs4 = stmt.executeQuery(directionQuery);

for(int i=0; i<numz2; i++) #3
{
rs4.next();
directions[i]=rs4.getString("Direction");
} //end for
if(SameRecipe(direction, directions)) #4

// Recipe has exist
return RecipeExist;
else
{

/] set recipe category
cat = ExtractCategory(title, direction);
String titlel = correctString(title);
String catl = correctString(cat);
String directionl = correctString(direction);

135

stmt.executeUpdate("INSERT INTO Recipe (Title,Category, Direction) VALUES
("+ titlel +™, ™+ catl +™, "'+direction1+™)");
String IDquery = ("SELECT Rec_ID FROM Recipe");
rs1 = stmt.executeQuery(IDquery);
rs1.next();
do{ #5
String Rec_ID1=rsl.getString("Rec_ID");
Rec_ID =Integer.parselnt(Rec_ID1);
} while(rs1.next());
String linel;
StringTokenizer tokenl, token2;
String unit = ("SELECT Name FROM Unit");
/l judge if this line contains exist units, if it exist, extract it.
// Read data from database
rs2 = stmt.executeQuery(unit);
rs2.next();
do{ #6
num=rs2.getRow();
Jwhile(rs2.next());
String units[]= new String[num];
rs2 = stmt.executeQuery(unit);
for(int i=0; i<num; i++) #7
{
rs2.next();
units[i]=rs2.getString("Name");
}Hlend for
/I Extract Ingredient
br = new BufferedReader(fr2);
String [] words;
while(br.ready()) #8
{
linel= br.readLine();
while(lisElement(kw1,linel) && br.ready()) #9
linel= br.readLine();
if(br.ready()) #10
linel= br.readLine();
linel.trim();
token2 = new StringTokenizer(linel);
int cou =token2.countTokens() ;
while(cou==0 && br.ready()) #11
{
linel= br.readLine();
token2 = new StringTokenizer(linel);
cou =token2.countTokens() ;
¥
linel.trim();
tokenl = new StringTokenizer(linel);
token2 = new StringTokenizer(linel);
while(token2.hasMoreTokens()) #12

{

136

String first2=token2.nextToken();
while(br.ready()) #13
{

linel=br.readLine();
tokenl=new StringTokenizer(linel);
boolean a=true;
if(tokenl.hasMoreTokens() && a) #14
{
vl=new Vector(); v2=new Vector(); v3=new Vector();
int count = tokenl.countTokens();
words = new String[count];

/[store the contents in tokens into string array "words"
for(int i=0; i<count; i++) #15
words][i] = tokenl.nextToken();
I/ suppose the first word always numerical
v1.add(words[0]);
boolean b=true;
for(int i=0; i<words[0].length() && b; i++) #16
{
/I first token contain "(**, we will find another part ")"
if(words[0].charAt(i)==40) #17
b=false;
} // end for
[[first token contain "("
if (1b) #18
{
boolean c=true;
for(int m=1; (m<words.length) && c; m++) #19

{
for(int n=0; (n<words[m].length()) && c; n++) #20

/I first token contain "(**, we have to find another part ")"
if(words[m].charAt(n)==41) #21

v1.add(words[m]);

c=false;

boolean d=true;

Il judege whether unit word exist in the line

for(int i=m+1; ((i<words.length+1) && d); i++) # 22

for(int j=0; (j<units.length)&& d; j++) #23

{
if(words[i].compareTolgnoreCase(units[j])==0) # 24

/I judge if adjective word exist before unit word
for(int x=0; (x<words[i-1].length())&& d; x++) # 25
{
// when it's numeric or exist "')", we ingnore it
if(((words[i-1].charAt(x)>=48) && # 26

137

(wordsl[i-1].charAt(x) <= 57)) ||
((words[i-1].charAt(x)==41)))
{

v2.add(words[i]);
d=false;
} /lend if
} 1/ for x
if(d) # 27

v2.add(words[i-1]);
v2.add(wordsli]);
d=false;
}
}if
}// for j
} /ffori
Y if
} // end for n
if (c) #28
v1.add(words[m]);
}// form
Y/iflb
/I first token doesn't contain " ("
else

{
if (words.length>1) #29

{
for(int e=0; (e<words[1].length() && a); e++) #30
{
// second token contain "("
if(words[1].charAt(e)==40) #31

{
if(words[1].charAt(words[1].length()-1)!=41) # 32

a=false;
boolean c=true;
for(int m=1; (m<words.length) && c; m++) # 33

{
for(int n=0; (n<words[m].length()) && c; n++) # 34

/I first token contain "("*, we have to find another part)"
if(words[m].charAt(n)==41) # 35

{

c=false;

boolean d=true;

I/ judege whether unit word exist in the line

for(int i=m+1; ((i<words.length+1) && d); i++) # 36
{
for(int j=0; (j<units.length)&& d; j++) # 37
{

138

if(words[i].compareTolgnoreCase(units[j])==0) # 38

/I judge if express word exist before unit word
for(int x=0;x<words[i-1].length()&&d; x++) # 39
{
// when it's numeric or exist)", we ingnore it
if(((words[i-1].charAt(x)>=48) &&
(words[i-1].charAt(x)<=57)) ||
((words[i-1].charAt(x)==41))) #40
{
v2.add(words[i]);
d=false;
} /lend if
} 1/ for x
if(d) #41
{
v2.add(wordsl[i-1]);
v2.add(words[i]);
d=false;
}
}Iif
Y/ for j
Yifor i
} /1 if(words[m].charAt(n)==41)
} // end for n
}// form
I if(words[1].charAt(words[1].length()-1)!=41)
else
{
a=false;
boolean d=true;
/Il judege whether unit word exist in the line

for(int i=1; (i<words.length)&& d; i++) #42
{
for(int j=0; (j<units.length)&& d; j++) #43
{

if(words[i].compareTolgnoreCase(units[j])==0) # 44

/' judge if express word exist before unit word
for(int x=0; (x<words[i-1].length())&& d; x++) # 45
{
I/ when it's numeric or exist ")", we ingnore it
if((wordsJ[i-1].charAt(x)>=48) &&
(words[i-1].charAt(x)<=57) ||
(words[i-1].charAt(x)==41)) # 46

{
v2.add(words[i]);
d=false;

} /lend if

else

139

{
v2.add(words[i-1]);

v2.add(words[i]);
d=false;
} /] else
} 1/ for x
}Iif
}// forj
} /for i
} // end else
} // end if(words[1].charAt(e)==40)
// second token doesn't contain "(*
else
{
/I next token is numeric
if((words[1].charAt(e)>=48) && (words[1].charAt(e)<=57)) # 47
{
v1.add(words[1]);
a=false;
boolean d=true;
Il judege whether unit word exist in the line

for(int i=1; (i<words.length)&& d; i++) # 48
{
for(int j=0; (j<units.length)&& d; j++) #49
{
if(words[i].compareTolgnoreCase(units[j])==0) # 50
{

/ judge if express word exist before unit word
for(int x=0; (x<words[i-1].length())&& d; x++) # 51
{
// when it's numeric or exist)", we ingnore it
if((words[i-1].charAt(x)>=48) &&
(words[i-1].charAt(x)<=57) ||
(words[i-1].charAt(x)==41)) #52
{
v2.add(words[i]);
d=false;
} /lend if
else

v2.add(words[i-1]);
v2.add(words[i]);
d=false;
} // else
} // for x
}if
}// forj
} /ffori
} /1 end if((words[1].charAt(e)>=48) &&(words[1].charAt(e)<=57))
I/ second token is nether numeric nor "("

140

else

{

boolean g=true;
/I judege whether unit word exist in the line

for(int i=1; (i<words.length && g && a); i++) #53
{
for(int j=0; (j<units.length && g); j++) #54
{
if(words[i].compareTolgnoreCase(units[j])==0) #55
{

/I judge if express word exist before unit word
for(int y=0; (y<words[i-1].length() && g); y++) # 56
{
/I when it's numeric or exist)", we ingnore it
if(((words[i-1].charAt(y)>=48) &&
(words[i-1].charAt(y)<=57)) ||
(words[i-1].charAt(y)==41)) # 57
{
v2.add(words[i]);
g = false;
a = false;
}/lend if
}// fory
if(g) # 58
{
v2.add(words[i-1]);
v2.add(words[i]);
g=false;
a=false;
}//endif (g)
It
}// forj
} Ilfori
} // end else
} // end else
}// fore
Y/ end else
/I store ingredient description into v3
for(int i=0; i<words.length ; i++) #59
{
boolean o=true;
for(int j=0; j<vl.size() && 0; j++) # 60
{
if(words[i].compareTolgnoreCase((v1.elementAt(j)).toString())==0) # 61
o=false;
Y/ forj
if(0) #62
{
for(int x=0; x<v2.size() && 0 ; X++) #63
{

141

if(words[i].compareTolgnoreCase(v2.elementAt(x)).toString()==0) # 64
o=false;
} // for x
if(0) # 65
{
v3.add(words[i]);
o=false;
Y ifo
Y/ ifo
}// fori
/[store the data to database
/I first, convert the contents of v1, v2, v3 to string format

String s1="", s2="", s3="";

for(int i=0 ;i<vl.size(); i++) # 66
sl=sl+vl.elementAt(i)+" ";

for(int i=0 ;i<v2.size(); i++) #67
s2=s2+v2.elementAt(i)+" ";

for(int i=0 ;i<v3.size(); i++) # 68

s3=s3+v3.elementAt(i)+" ";
/I store the new ingredient description into database , updata database
String s11 = correctString(sl);
String s22 = correctString(s2);
String s33 = correctString(s3);
String query = "INSERT INTO Ingredient (Rec_ID, Quantity,
Unit, Ingredient)" + "VALUES ("+ Rec_ID+", "'+s11 +™, "'+ s22 +™, "'+ s33 +")";
stmt.executeUpdate(query);
rs1 = stmt.executeQuery(unit);
}/1'if (words.length>1)
Y/ if(tokenl.hasMoreTokens() && a)
else
return O ;
} 1/ while(br.ready())
} // while(token2.hasMoreTokens())
} // while(br.ready())
} // end else
} // end else
return InvalidRecipe;
}/end try
catch(FileNotFoundException e)
return FileNotFound,
catch(IOException ioe)
return 1OExcep;
catch (Exception e)
}/ end Extract method

/I Extract the specific paragraph which contain Ingredient and Direction description
J e

private static void ExtractParagraph(FileReader fr, FileWriter fw)

142

{
try{
StringTokenizer tokenl, token2;
boolean a = true;
BufferedWriter bw = new BufferedWriter(fw);
BufferedReader br = new BufferedReader (fr);
String linel="";
String kwl = "ingredient™, kw2 = "direction”, kw3 = "procedure”, kw4 =
"instruction™;
Vector vl=new Vector(), v2 = new Vector();
if(br.ready()) #1
linel= br.readLine();
while(lisElement(kwl,linel) && br.ready())
linel= br.readLine();
while(br.ready() && a) #3
{

vl.add(linel);

linel = br.readLine();

if(isElement(kw1,linel)) #4
{

v1l.removeAllElements();
}//end if

if(isElement(kw2,linel) || isElement(kw3,linel) || isElement(kw4,linel) &&
br.ready())

{ #5
v2.add(linel);
linel= br.readLine();
token2 = new StringTokenizer(linel);
while(token2.countTokens()==0&& br.ready()) #6

{
linel=(br.readLine());

token2=new StringTokenizer(linel);

}
v2.add(linel);
if(br.ready())

{
linel=(br.readLine()); }

tokenl = new StringTokenizer(linel);
while(token2.countTokens()!=0&& br.ready()) #7

{
v2.add(linel);
linel=(br.readLine());
token2=new StringTokenizer(linel);}

a =false;
}//end if
} // end while (br.ready)
}
¥
for(int i=0; i<vl.size(); i++) #8
{

143

bw.write((String)vl.elementAt(i));
bw.newL.ine();

for(int i=0; i<v2.size(); i++) #9
{
bw.write((String)v2.elementAt(i));
bw.newLine();

}

bw.close();
}
catch(IOException ioe) {}
} // end method

/I Check Whether Recipe File Valid
[e e e s

private boolean ValidRecipe(File paragraph) throws IOException
{
StringTokenizer tokenl;
int line_count=0;
boolean valid = false;
try{
FileReader fr = new FileReader(paragraph);
BufferedReader br = new BufferedReader (fr);
String linel="";
String kwl = "ingredient™, kw2 = "direction”, kw3 = "procedure”, kw4 =
"instruction™;
StringTokenizer token2;

if(br.ready()) #1
linel = br.readLine();
while(lisElement(kw1,linel) && br.ready()) #2
linel = br.readLine();
if(br.ready()) #3

linel = br.readLine();
token2 = new StringTokenizer(linel);
while(token2.countTokens()==0 && br.ready()) #4

linel= br.readLine();
token2 = new StringTokenizer(linel);

¥
while(lisElement(kw2,linel) &&!isElement(kw3,linel)&& lisElement(kw4,linel)) # 5

{

it (br.ready()) #6

{

line_count ++;
linel=br.readLine();

¥
¥
if(line_count>1) #7

144

{
if (br.ready()) #8

valid = true;
}/lendif (2)
return valid;
}// end try
catch(IOException ioe) {);
return valid;
} // end ValidRecipe method

/I Extract Direction part from the file
J e

private static String ExtractDirection(BufferedReader br) throws IOEXxception
{
String kw2 = "direction”, kw3 = "procedure", kw4 = "instruction";
StringTokenizer tokenl, token2;
String sum="", linel, line2;
while(br.ready()) #1
{

linel= br.readLine();
while(isElement(kw2,linel) && ! isElement(kw3,linel) &&!'isElement(kw4,linel))
#2
linel= br.readLine();
while(br.ready()) #3
{

linel= br.readLine();
linel.trim();
tokenl = new StringTokenizer(linel);
token2 = new StringTokenizer(linel);
if (token2.countTokens()!=0) #4
sum=sum-+linel+"\n";
while(token2.hasMoreTokens()) #5
{
String first2=token2.nextToken();
while(br.ready()) #6

linel=(br.readLine()).trim();
tokenl=new StringTokenizer(linel);
if(tokenl.hasMoreTokens()) #7
sum=sum+linel+"\n";
else return sum;
} /iwhile(br.ready())
} // while(token2.hasMoreTokens())

}
} /1 while(br.ready()

return sum;
}/ end ExtractDirection

145

private String ExtractCategory(String title, String direction)
{
String get_keywords = ("SELECT Name, Category FROM Material");
String category = "Others"”, line = *”;
ResultSet rs1;
try{
Statement stmt = con.createStatement();
rs1 = stmt.executeQuery(get_keywords);
while (rs1.next()) #1
{
String material = rs1.getString("Name");
if (isElement(material, title)) #2
{
category = rsl.getString("Category™);
return category;
}/end if
} // end while
rs1 = stmt.executeQuery(get_keywords);
while (rs1.next()) #3
{
String material = rs1.getString("Name");
if (isElement(material, direction)) #4
{
category = rsl.getString("Category");
return category;
}/endif
} // end while
return category;
} // end try
catch (Exception e) return category;
} // end ExtractCategory method

/I Check whether the two recipe is the same recipe
e

public static boolean SameRecipe(String direction, String[] directions)
{

boolean a2 = false;

for(int j=0; j<directions.length && 'a2; j++)

if(SameDirection(direction, directions[j]))
a2 = true; // recipe has exist in database
} /1 end for(int j=0; j<directions.length && a2; j++)
return az;
} // end method

146

147

ExtractInformation02.java

S R R ke kb kb kbbb ke ek ke
// Final Thesis Project Author: s020953 LinLin Wang
// ExtractiInformation02.java 16.August 2004

// Extract recipe data from external file and put them into database
//**

import java.sql.*;

import java.util.*;

import java.io.*;

import javax.swing.text.*;

import javax.swing.text.html.*;
import javax.swing.text.ntml.parser.*;
import MyUtils.*;

public class Extractinformation02 extends Observable

{
private FileReader fr;
private File f;
private Connection con;
private Vector ingredient;
private String direction, title, category;
private String[] units, direct, material, categories, materialTemp, commonWord,;
private int Rec_ID ;

private final static String url="jdbc:odbc:driver={Microsoft Access Driver +
(*.mdb)};DBQ=Recipes.mdb";

private final static int RecipeExist =-1;
private final static int InvalidRecipe = -2;
private final static int IOExcep = -3;

public Extractinformation02()

{
try{
this.f = new File ("RecipeFile.txt");
this.fr = null;
this.Rec_ID =0;
direction ="";
title =",

category = "Others";
ingredient = new Vector();
units = null;
materialTemp = null;
commonWord = null;
direct = null;

material = null;
categories = null;
connectToDatabase();
getUnitWord();
getDirect();
getMaterial();

148

}/'end try
catch (Exception e) {}

}
public int getID()
{

return Rec_ID;
} // end method

/I Extract ingredient and direction
J e

private boolean extract()

{

boolean check = false, valid = false;

try{
FileReader fr = new FileReader(this.f);
BufferedReader br = new BufferedReader(fr);

I/ search ingredient paragraph
while (br.ready()&& !check) #1
{

ingredient.removeAllElements();

String line = br.readLine().trim();

StringTokenizer tokenl = new StringTokenizer(line);
int count = tokenl.countTokens();

while(count>0) #2

ingredient.add(line);
if(br.ready()) #3

{
line = br.readLine().trim();
tokenl = new StringTokenizer(line);
count = tokenl.countTokens();
¥
else count=0;
} // end while
check = ingredientParagraph(ingredient);
} // end while br.ready
if (Icheck) #4
{
ingredient.removeAllElements();
return valid;
¥
else{
clearMaterial Temp();
Statement stmt = con.createStatement();
for(int i=0; i<ingredient.size(); i++) #5
{
String line =(String) ingredient.elementAt(i);

149

StringTokenizer token2 = new StringTokenizer(line);
int count = token2.countTokens();
for(int j=0; j<count; j++) #6

String word =token2.nextToken();

if (! (MyUtil.checkFirstChar(word)) && ! (MyUTtil.contain(this.units, word)) # 7
&& ! (word.compareTolgnoreCase("or") == 0)
&&! (word.compareTolgnoreCase("a™) == 0)
&&! (word.compareTolgnoreCase("the")==0)
&&! (word.compareTolgnoreCase("'to") == 0)
&&! (word.compareTolgnoreCase("with™) == 0)
&&! (word.compareTolgnoreCase("such™) == 0)
&&! (word.compareTolgnoreCase("any") ==0)
&&! (word.compareTolgnoreCase("other") == 0)
&&! (word.compareTolgnoreCase("as") == 0)
&&! (word.compareTolgnoreCase("from™) == 0)
&& '(word.compareTolgnoreCase("and™) ==0))

{
String word01 = MyUotil.correctString02(word);
String insertl = "INSERT INTO MaterialTemp (Name) VALUES (" + word01
+")"
stmt.executeUpdate(insertl);
} //end if
} // end for j
}//end for i
/I extract direction
getMaterial Temp();
getCommonWord();
while (br.ready() && this.direction =="") #8
{
String line = br.readLine().trim();
if (MyUtil.contain (line, this.materialTemp) ||

MyUtil.contain(line, this.commonWord)) #9
{
this.direction = this.direction+line+"\n";
this.direction.trim();
}//end if
} // end while
boolean b = false;
while (br.ready() && !'b) #10
{

String line = br.readLine().trim();
if (MyUtil.contain (line, this.material Temp) ||
MyUtil.contain(line, this.commonWord)) #11
this.direction = this.direction+line+"\n";
else b = true;
} // end while
this.direction.trim();
get_category();
}// end else

150

if (this.direction!="") #12

valid = true;
return valid;
}// end try

catch (Exception e) {return valid; }
} // end method

[o
/I Check if this paragraph is ingredient description
J] o -
public boolean ingredientParagraph(Vector paragraph)
{
boolean valid=false;
try{
StringTokenizer token ;
for(int i=0; i<paragraph.size() && !valid; i++) #1
{
String line =(String)paragraph.elementAt(i);
token = new StringTokenizer(line);
int count = token.countTokens();
if (MyUtil.checkFirstChar(line)&& count<7) // first char is numerical #2
{
boolean check=false;
token = new StringTokenizer(line);
while(token.hasMoreTokens() && !check) #3
{
String s2 = token.nextToken();
check =MyUtil.contain(this.units, s2);
if (check) #4
valid = true;
} // end while
}//end if
}//end fori
return valid;
¥

catch (Exception e) {return valid;}
} // end method

/I Extract recipe's category
L

private void get_category()

boolean b=false;

for(int i=0; i<this.material.length && 'b; i++) #1

{

if (MyUtil.isElement(material[i],this.title)) #2
{

151

this.category = this.categories[i];
b = true;
}//end if
}//end fori
if (1b) #3
{
for (int i=0; i< this.material.length && !b; i++) #4

{
if (MyUtil.isElement(material[i], this.direction)) #5

this.category = this.categories[i];
b = true;
}//end if
}// end for i
}//end if
} // end method

/I Put recipe's ingredient data into Ingredient Table
[= e oo

private void storelngredient()

{

try{
Statement stmt = con.createStatement();

String query = ("SELECT Unit FROM Ingredient");
for (int i=0; i<this.ingredient.size(); i++) #1

{
Vector v1 = new Vector();
StringTokenizer token = new StringTokenizer (
((String)this.ingredient.elementAt(i)).trim());

while (token.hasMoreTokens()) #2
v1.add(token.nextToken());

String wi1="", w2 ="";

if (! (MyUtil.checkFirstChar((String)v1l.elementAt(0)))) #3

{
boolean b = true;
for (int j=0; j<vl.size() &&b ; j++) #4

if (MyUtil.contain(this.units, ((String)v1.elementAt(j)))) #5

w2 = (String)v1.remove(j);
b = false;
}/endif
} // end for j
}//endif
else {
w1l = (String)v1l.remove(0) ;
if (MyUtil.checkFirstChar((String)v1.elementAt(0))) #6
w1l =wl + " "+(String)v1l.remove(0);

152

boolean b = true;
for (int j =0; j<vl.size() && b; j++) #7
{
if (MyUtil.contain (this.units, (String)v1.elementAt(j))) #8
{
w2 = (String)vl.remove(j);
b = false;
}/end if
}// end for j
} // end else
String s="";
for(int a=0 ;a<vl.size(); a++) #9
s=s+vl.elementAt(a)+" ";
String word1 = MyUTtil.correctString02(w1);
String word2 = MyUTtil.correctString02(wz2);
String word3 = MyUotil.correctString02(s);
String queryl = "INSERT INTO Ingredient (Rec_ID, Quantity, Unit,
Ingredient)"
+ "VALUES ("+ this.Rec_ID+", "'+wordl +™, "'+ word2 +™, "'+ word3
+)"
stmt.executeUpdate(queryl);
ResultSet rs1= stmt.executeQuery(query);
}// end fori
}
catch (Exception e) {}
} / end method

/I Connect the program to Database
L mm e

private void connectToDatabase()

{

try{
Class.forName(*'sun.jdbc.odbc.JdbcOdbcDriver™);

con = DriverManager.getConnection(url, "linlin", "19781130");
}// end try
catch (Exception e) {}
} // end method

/I Initialize Material Temp table
L e e e

public void clearMaterial Temp()

{

try{
String del = "DELETE FROM MaterialTemp ";

Statement stmt = con.createStatement();
stmt.executeUpdate(del);

153

} // end try
catch (Exception e) {}
} // end method

private void getUnitWord()

{

try{
String get_unit= ("SELECT Name FROM Unit");

Statement stmt = con.createStatement();
ResultSet rs1 = stmt.executeQuery(get_unit);
StringTokenizer token ;
boolean valid=false;
int num;
rs1.next();
do{
num=rsl.getRow();
} while(rs1.next());
this.units= new String[num];
rsl = stmt.executeQuery(get_unit);
for(int i=0; i<num; i++)
{
rsl.next();
this.units[i]=rs1.getString("Name");
} /lend for
}
catch (Exception e) {}
} / end method

/I Get common used word in recipe's direction from the database
L =

private void getCommonWord()

{

try{
String get_commonWord= ("SELECT Name FROM CommonWord");

Statement stmt = con.createStatement();

ResultSet rs1 = stmt.executeQuery(get_commonWord);
StringTokenizer token ;

boolean valid=false;

int num;

rs1.next();

do{

num=rsl.getRow();

} while(rs1.next());

this.commonWord= new String[num];

154

rs1 = stmt.executeQuery(get_commonWord);
for(int i=0; i<num; i++)
{
rsl.next();
this.commonWord[i]=rs1.getString("Name");
} /lend for
}
catch (Exception e) {}
} // end method

/I Get all the recipe's direction from the database
D e

public void getDirect()

{

try{
String get_direct= ("SELECT Direction FROM Recipe™);

Statement stmt = con.createStatement();
ResultSet rs1 = stmt.executeQuery(get_direct);
StringTokenizer token ;
boolean valid=false;
int num;
rsl.next();
do{
num=rsl.getRow();

} while(rs1.next());
this.direct= new String[num];
rsl = stmt.executeQuery(get_direct);
for(int i=0; i<num; i++)
{
rs1.next();
this.direct[i]=rs1.getString("Direction™);
} /lend for
}
catch (Exception e) {}
} / end method

/I Get the material keyword from Material table
L e e

public void getMaterial()

{

try{
String get_mate= ("SELECT Name, Category FROM Material™);

Statement stmt = con.createStatement();
ResultSet rs1 = stmt.executeQuery(get_mate);
StringTokenizer token ;

boolean valid=false;

155

int num;
rsl.next();
do{
num=rsl.getRow();
} while(rs1.next());
this.material= new String[num];
this.categories = new String[num];
rs1 = stmt.executeQuery(get_mate);
for(int i=0; i<num; i++)
{
rs1.next();
this.material[i]=rs1.getString("Name");
this.categories[i] = rs1.getString("Category");
} /lend for

catch (Exception e) {}
} // end method

public void getMaterial Temp()

{

try{
String get_m= ("SELECT Name FROM MaterialTemp");

Statement stmt = con.createStatement();
ResultSet rs1 = stmt.executeQuery(get_m);
StringTokenizer token ;
boolean valid=false;
int num;
rs1.next();
do{
num=rs1.getRow();
} while(rs1.next());
this.material Temp= new String[num];
rs1 = stmt.executeQuery(get_m);
for(int i=0; i<num; i++)
{
rs1.next();
this.material Temp[i]=rs1.getString(*Name");
} /lend for
}
catch (Exception e) {}
} / end method
Jf o
/I Return true if this recipe has already existed in database
J o

private boolean sameRecipe()

156

boolean exist = false;
for(int i=0; i<this.direct.length && lexist; i++)
{
if (MyUtil.similarString(this.direction, direct[i]))
exist = true;
} /[end fori
return exist;
} // end method

private void parserHtml()

{
ParserGetter kit = new ParserGetter();
HTMLEditorKit.Parser parser = kit.getParser();
try {
Outliner callback = new Outliner (new OutputStreamWriter(System.out));
parser.parse(this.fr, callback, true);
this.title = callback.get _title();
Vector v1 = callback.get_v();
FileWriter fwl = new FileWriter ("TempFile.txt™);
BufferedWriter bwl = new BufferedWriter (fwl);
for(int i=0; i<vl.size(); i++)

{
bwl.write((String)v1l.elementAt(i));
bwl.newLine();
¥
bwl.close();

FileReader frl = new FileReader ("TempFile.txt");
MyUltil.correctTextFile(frl, this.f);
}/end try
catch (IOException e) {}
} // end main

private void storeRecipeTable()

{

try{
Statement stmt = con.createStatement();

String tt = MyUtil.correctString02(this.title);

String dd = MyUgtil.correctString02(this.direction);

stmt.executeUpdate("INSERT INTO Recipe (Title,Category, Direction) VALUES
(Ill

+ 1t +", "'+ this.category +", "'+dd+")");

157

String IDquery = ("SELECT Rec_ID FROM Recipe");
ResultSet rsl1 = stmt.executeQuery(IDquery);
rsl.next();
do{

String Rec_ID1=rs1.getString("Rec_ID");
this.Rec_ID =Integer.parselnt(Rec_ID1);

} while(rs1.next());

¥

catch (Exception e) {}

} / end method

/I Import a html recipe file into database , return O if import suncessfuly
L e e

public int import_file(FileReader fr)
{
inti=0;
this.fr=fr;

Il * Firstly, parse the html file into text file , this.f "RecipeFile.txt" was overwriten by the
text recipe file * //
parserHtml();
if (Yextract())
return InvalidRecipe;
if (sameRecipe())
return RecipeExist;
storeRecipeTable();
storelngredient();
setChanged();
notifyObservers();
return i;
} // end method

/I Inner class Outliner inherit HTMLEditorKit.ParserCallback
/I override handleStartTag(), handleEndTag() and handleText() methods
Jf o

private class Outliner extends HTMLEditorKit.ParserCallback
{
private Writer out;
private String title=null;
private int level =0;
private int on = 0;
private Vector v=new Vector();
private String linel=""";
public String line = System.getProperty(*line.separator”, "\r\n");
public Outliner(Writer out)

{

158

this.out = out;

}
public String get_title()

{

return title;

}
public Vector get_v()

{

return v;

}

public void handleStartTag(HTML.Tag tag,MutableAttributeSet attributes, int position)
{

this.level =0;

if (tag == HTML.Tag.TITLE)

level = 1;
if (tag == HTML.Tag.BODY || tag == HTML.Tag.TABLE || tag == HTML.Tag.P
|| tag == HTML.Tag.HR || tag == HTML.Tag.DIV)
{

v.add (this.linel);
v.add(this.line);
this.linel="";
}
else if (tag == HTML.Tag.BR || tag == HTML.Tag.LI)
this.on = 1,
else if (tag == HTML.Tag.TR)
this.linel="";
try{out.flush();}
catch (IOException e) {}
} // end method

public void handleEndTag(HTML.Tag tag, int position)
{
if (tag == HTML.Tag.TR)
{
this.on=2;
v.add(this.linel);
linel="",

}
else if (tag == HTML.Tag.BODY || tag == HTML.Tag. TABLE ||
tag == HTML.Tag.P || tag == HTML.Tag.UL)
v.add(this.line);
// work around bug in the parser that fails to call flush
if (tag == HTML.Tag.HTML) this.flush();
}

public void handleText(char[] text, int position)

{
String s = new String(text);

if (this.level ==1)

159

this.title= MyUTtil.correctTitle(s);

else{
if (this.on==1)
v.add(s); this.on = 0;

else this.linel = this.linel+" "+s;

}// end else
try {out.flush();} // end try
catch (IOException e) {}

} // end method

public void flush()
{
try {out.flush();}
catch (IOException e) {}
} // end method
} // end class
} /[end all

160

Structural Test Table
Structural Test -- ModifyRecipe class: insert method

Table of test cases

Choice Input data set Input property
1 once A there isn't any recipe record in the Recipe table
1 more than B there is at least one recipe record in the Recipe
once table
2 zero time A there isn't any recipe record in the Recipe table
2 once c there is only one recipe record in the Recipe
table
2 more than B there are more than one recipe records in the
once Recipe table
3 true D the |_nsert recipe has already existed in the
Recipe table
3 false E the insert recipe hasn't existed in the Recipe
table
4 once A there isn't any recipe record in the Recipe table
4 more than B there is at least one recipe record in the Recipe
once table
5 zero time no available there isn't any item of recipe ingredient
5 once F there is only one item of recipe ingredient
5 more than G there are more than one items of recipe
once ingredient
6 true H the ingredient description is empty
6 false I the ingredient description isn't empty
Table of input data sets
Input data
P Contents Output
set
A Recipe table is empty return O
B insert one or more return 1or 2, 3 ...
records
into Recipe table
C insert one record into return one direction of recipe
Recipe table
D repeat insert one same return false
records into Recipe table
E insert new record into return true
Recipe table
£ insert one item of
ingredient add one ingredient record into Ingredient table
G insert more than one item | add more than one ingredients into Ingredient
of table
ingredient
H insert empty ingredient exit from the loop

description

insert some ingredient
description

run in the loop

161

Structural Test -- ModifyRecipe class: edit method

Table of test cases

Choice Input data set Input property

1 true A uncompleted recipe data

1 false B completed recipe data

2 zero time no available there isn't any item of recipe ingredient

2 once C there is only one item of recipe ingredient
2 more than D Fhere are more than one items of recipe
once ingredient

3 true E the ingredient description is empty

3 false F the ingredient description isn't empty

Table of input data sets

Input data set

Contents

Output

A insert empty direction or return false
title
B insert a completed recipe return true
data
c !nsert one item of _ _ _ _
ingredient add one ingredient record into Ingredient table
D insert more than one item add more than one ingredients into Ingredient
of table
ingredient
E insert empty ingredient exit from the loop
description
F

insert some ingredient
description

run in the loop

162

Structural Test -- ModifyRecipe class: searchRecipe method

Table of test cases

Choice Input data set Input property

1 true A category seleted

1 false category unseleted

2 true title uninserted

2 false title inserted

3 true ingredient uninserted

3 false ingredient inserted

4 zero time no record in Recipe table

4 once only one record in Recipe table

4 more than once

more than one record in Recipe table

5 zero time

no record in Recipe table

5 once

only one record in Recipe table

5 more than once

more than one record in Recipe table

6 true input ingredient is matched

6 false input ingredient isn't matched
7 true ingredient uninserted

7 false ingredient inserted

8 zero time no record in Recipe table

8 once only one record in Recipe table

8 more than once

more than one record in Recipe table

9 true input title is matched

9 false input title isn't matched

10 zero time no record in Recipe table

10 once only one record in Recipe table

10 more than once

more than one record in Recipe table

11 true both title and ingredient is matched
11 false either title or ingredient isn't matched
12 true title uninserted

12 false title inserted

13 true ingredient uninserted

13 false ingredient inserted

14 zero time no record in Recipe table

14 once only one record in Recipe table

14 more than once

more than one record in Recipe table

15 zero time

no record in Recipe table

15 once

only one record in Recipe table

15 more than once

more than one record in Recipe table

mTe —|I(OQ|—|IZ|QMMmMmoO|oZ|—|ZT|O|IZ|r|—|(Z|0omMMmMm|X|«|— IO —|IT|Q|MMOTOIO |

16 true input ingredient is matched
16 false input ingredient isn't matched
17 true ingredient uninserted

163

17 false F ingredient inserted
18 zero time G no record in Recipe table
18 once H only one record in Recipe table

18 more than once

more than one record in Recipe table

I
19 true J input title is matched
19 false D input title isn't matched
20 zero time G no record in Recipe table
20 once H only one record in Recipe table
20 more than once | more than one record in Recipe table
21 true D both title and ingredient is matched
21 false F either title or ingredient isn't matched

Table of input data sets

Input data set | Contents Output
A category = ¢ no recipe is matched
title = null

ingredient = null
no record in Recipe table

B category = null

title = null

ingredient = null

no record in Recipe table

no recipe is matched

C category = ¢

title =t

ingredient = null

no record in Recipe table

no recipe is matched

D category = ¢ no recipe is matched
titte = null
ingredient = i
no record in Recipe table
E category = ¢ no recipe is matched
title =t
ingredient = i
no record in Recipe table
F category = ¢ recipe is matched with category = ¢
titte = null

ingredient = null

many records in Recipe table

G category = ¢
titte =t
ingredient = i

many records in Recipe table

recipe is matched with category = ¢
title contains 't', ingredient contains 'I'

H category = null
titte =t
ingredient = i

many records in Recipe table

recipe is matched with
title contains 't', ingredient contains 'I'

I category = null

recipe is matched with

164

title = null
ingredient = i
many records in Recipe table

ingredient contains 'l'

category = null

title =t

ingredient = null

many records in Recipe table

recipe is matched with title contains 't'

category = ¢ recipe is matched with category = ¢
title = null ingredient contains 'l'

ingredient = i

many records in Recipe table

category = ¢ recipe is matched with category = ¢
title =t title contains 't'

ingredient = null
many records in Recipe table

165

Structural Test -- Extractinformation class: ExtractCateqgory method

Table of test cases

Choice Input data set Input property

1 true A invalid recipe file

1 false valid recipe file

2 zero time C no record in Recipe table

2 once D only one record in Recipe table

2 more than once D more than one record in Recipe table
3 zero time E no record in Recipe table

3 once F only one record in Recipe table

3 more than once G more than one record in Recipe table
4 true A recipe already exists

4 false B recipe not exists

5 zero time C no record in Recipe table

5 once D only one record in Recipe table

5 more than once E more than one record in Recipe table
6 zero time F no record in Recipe table

6 once G only one record in Recipe table

6 more than once E more than one record in Recipe table
7 zero time F no record in Recipe table

7 once H only one record in Recipe table

7 more than once | more than one record in Recipe table
8 zero time J buffer reader empty

8 once A only one line in buffer reader

8 more than once B more than one line in buffer reader

9 zero time C no empty line

9 once D only one empty line

9 more than once E more than one empty line

10 true F buffer reader not empty

10 false G buffer reader empty

11 zero time H no empty line

11 once I only one empty line

11 more than once J more than one empty line

12 zero time K no empty line

12 once L only one empty line

12 more than once A more than one empty line

13 zero time B no empty line

166

13 once C only one empty line

13 more than once D more than one empty line
14 true E no empty line

14 false E empty line

15 zero time F no empty line

15 once F only one empty line

15 more than once H more than one empty line
16 zero time I empty string

16 once J only one character

16 more than once K more than one characters
17 true L character '('

17 false G not character '(’

18 true A character '('

18 false B not character '('

19 zero time C one token

19 once E two tokens

19 more than once D more than two tokens

20 zero time D empty string

20 once E only one character

20 more than once F more than one characters
21 true G character ')’

21 false H not character ')’

22 zero time I two tokens

22 once J three tokens

22 more than one K more than three tokens
23 zero time E no unit word in database
23 once F only unit word in database
23 more than once G more than one unid word in database
24 true H unit word

24 false | not unit word

25 zero time J one token

25 once K two tokens

25 more than once L more than two tokens

26 true G number or character ')’

26 false H neither number nor character ')’
27 true G neither number nor character ')’
27 false H number or character ')’

28 true E character ")’

28 false F not character ')’

29 true G more than one characters
29 false H no or only one character
30 zero time J empty string

30 once K only one character

30 more than once E more than one characters
31 true F character')'

31 false G not character ')’

32 true H not character ')’

32 false | character ')’

33 zero time J one token

33 once K two tokens

33 more than once L more than two tokens

34 zero time G empty string

34 once H only one character

34 more than once G more than one characters
35 true H character ")’

35 false E not character ')’

36 zero time F one token

36 once J two tokens

36 more than once K more than two tokens

37 zero time E no unit word in database
37 once F only unit word in database
37 more than once G more than one unid word in database
38 zero time H empty string

38 once I only one character

38 more than once J more than one characters
39 true K number or character ')’

39 false L neither number nor character ')’
40 true G neither number nor character ')’
40 false H number or character ')’

41 zero time G one token

41 once H two tokens

41 more than once E more than two tokens

42 zero time F empty string

42 once J only one character

42 more than once K more than one characters
43 true E unit word

43 false F not unit word
44 zero time G one token
44 once H two tokens

44 more than once

more than two tokens

45 true

number or character ')’

45 false neither number nor character ')’
46 true number

46 false not number

47 zero time one token

47 once two tokens

47 more than once

more than two tokens

48 zero time

no unit word in database

48 once

only unit word in database

48 more than once

more than one unid word in database

49 true unit word

49 false not unit word
50 zero time one token
50 once two tokens

50 more than once

more than two tokens

51 true

number or character ')’

51 false neither number nor character ')’
52 zero time one token
52 once two tokens

52 more than once

more than two tokens

53 zero time

no unit word in database

53 once

only unit word in database

53 more than once

more than one unid word in database

54 true unit word

54 false not unit word
55 zero time one token
55 once two tokens

55 more than once

more than two tokens

IO|T|T||MM|X|l«|MMI|QIT|IT|OQ|MM|XN|«MMIG I M IGG INO|r|X|«

56 true number or character ')’

56 false neither number nor character ')’
57 true neither number nor character ')’
57 false number or character ')’

58 zero time one token

58 once two tokens

58 more than once

more than two tokens

59 zero time

no number

59 once

one number

59 more than once

two numbers

60 true number

60 false not number
61 true not number
61 false number

62 zero time no unit word
62 once one unit word

62 more than once

two unit words

63 true unit word

63 false not unit word
64 true not unit word
64 false unit word

65 zero time no number
65 once one number

65 more than once

two numbers

66 zero time

no unit word

66 once

one unit word

66 more than once

two unit words

67 zero time

no ingredient description

67 once

one ingredient description

67 more than once

QMM X|«|IT|O|MM|X|«|MMI|IQIT|T|IO|M|M|X|<|T|m

more than one ingredient description

Table of input data sets

Input data set Contents Output
A empty file return InvalidRecipe (-2)
B one record in Recipe return RecipeExist (-1)
table , imported recipe
is same as this one
record
C first word is number return 1
second word is unit
the rest word is
ingredient description
D first word isn't number return 1

the rest word is

170

ingredient description

first word is number
second word is number
third word is unit word
the rest word is

ingredient description

return 1

first word is number
second word is ajective
word, third word is unit
word, the rest word is

ingredient description

return 1

first word is number
second word is number
third word is ajective
word, forth word is unit
rest word is ingredient

description

return 1

first word contains

(', second word
contains ")’

rest word is ingredient

description

return 1

first word is number
and with '(’, second
word contains ')', the
rest word is ingredient

description

return 1

first word is number
and with '(, second
word contains ')',third
word is unit word, the
rest word is ingredient

description

return 1

first word is number
and with '(’, second
word contains ')' third
word is ajective word
forth word is unit word

rest word is ingredient

171

return 1

description

first word is number return 1
rest word is ingredient

description

172

Structural Test -- Extractinformation class: ExtractCategory method

Table of test cases

Choice Input data set Input property

1 zero time A no record in Recipe table

1 once B only one record in Recipe table

1 more than once B more than one record in Recipe table
2 true B title contains key material

2 false C title not contains key material

3 zero time A no record in Recipe table

3 once B only one record in Recipe table

3 more than once B more than one record in Recipe table
4 true D direction contains key material

4 false E direction not contains key material

Table of input data sets

Input data set

Contents

Output

A empty Recipe table return 'Others'

B title = 'Onion Beef' return '‘Beef’
(Beef is key material)

C title = 'mom's best' return 'Chicken'
direction contains
chichen'

D title = 'mom’'s best' return 'Others'

direction not contains

any key materials

173

Structural Test -- Extractinformation class: ExtractDirection method

Table of test cases

Choice Input data set Input property

1 zero time A buffer reader empty

1 once only one line in buffer reader

1 more than once B more than one line in buffer reader
2 zero time C no empty line

2 once D only one empty line

2 more than once D more than one empty line

3 zero time A buffer reader empty

3 once B only one line in buffer reader

3 more than once B more than one line in buffer reader
4 true C no empty line

4 false D empty line exists

5 zero time D empty line exists

5 once D only one empty line

5 more than once D more than one empty line

6 zero time A buffer reader empty

6 once B only one line in buffer reader

6 more than once B more than one line in buffer reader
7 true D empty line exists

7 false C no empty line

Table of input data sets

Input data set Contents Output
A empty file return null
B file isn't empty return null
but without keyword
C file isn't empty return null
and with keyword
but without direction
D file isn't empty return direction

and with keyword

and direction

175

Structural Test -- Extractinformation class: ValidRecipe method

Table of test cases

Choice Input data set Input property

1 true A buffer reader not empty

1 false B buffer reader empty

2 zero time C keyword1 appear

2 once D keyword1 not appear once

2 more than once b keyword1 not appear more than
once

3 zeto time buffer reader empty

3 once buffer reader has only one line

3 more than once

buffer reader has more than one line

4 true keyword1 appear

4 false keyword1 not appear
5 true keyword2 appear

5 false keyword2 not appear
6 zero time no empty line

6 once only one empty line

6 more than once

more than one empty line

7 true buffer reader not empty

7 false buffer reader empty

8 zero time more than one empty line
8 once only one empty line

8 more than once

no empty line

9 zero time

no ingredient

9 once

only one item of ingredient

9 more than once

more than one item of ingredient

10 zero time

no direction

10 once

only one line of direction

10 more than once

O/OmoOo|oj0O||m|®|>» W O|> M mMmOIO|>»|>» @

more than one line of direction

Table of input data sets

Input data set Contents Output
A empty file Invalid Recipe File
B file without ingredient Invalid Recipe File

176

file with keyword1

but without ingredient

Invalid Recipe File

file with keyword1
and ingredient but

without keyword2

Invalid Recipe File

file with keyword1
and ingredient and key
word2 but

without direction

Invalid Recipe File

file with keyword1
and ingredient and key

word2 and direction

Valid Recipe File

177

Structural Test -- Extractinformation02 class: Extract method

Table of test cases

Choice Input data set Input property

1 zero time A empty buffer

1 once B one line in buffer reader

1 more than once B more than one line in reader
2 zero time B empty line

2 once B one token

2 more than once B more than one token

3 true A empty buffer

3 false B not empty buffer

4 true B invalid paragraph

4 false C valid paragraph

5 zero time no available empty ingredient

5 once C one item in ingredient

5 more than once C more than one item in ingredient
6 zero time A empty line

6 once B one token

6 more than once B more than one token

7 true B ingredient word

7 false C not ingredient word

8 zero time A empty buffer

8 once B one line in buffer reader

8 more than once B more than one line in reader
9 true C contain keyword

9 false D not contain keyword

10 zero time A empty buffer

10 once B one line in buffer reader

10 more than once B more than one line in reader
11 true B contain keyword

11 false C not contain keyword

12 true D empty direction

12 false D not empty direction

Table of input data sets

Input data set

Contents

Output

178

empty file

return false

B file without ingredient return false
file with ingredient return false
but without direction

D file with ingredient return true

and direction

Structural Test -- Extractinformation02 class:ingredientParagraph method

Table of test cases

Choice Input data set Input property

1 zero time no available empty line

1 once A one line

1 more than once B more than one line

2 true B ingredient line

2 false A not ingredient line

3 zero time A empty line

3 once B ingredient line

3 more than once A not ingredient line

4 true B ingaredient paragraph
4 false A not ingredient paragraph

Table of input data sets

Input data set Contents Output
A paragraph without return false
ingredient
B paragraph with return true
ingredient

179

Structural Test -- Extractinformation02 class:get cateqgory method

Table of test cases

Choice Input data set Input property

1 zero time A empty Material table

1 once B only one record Material table

1 more than once B more than one record in Material table
2 true B title contains keyword of material

2 false C title not contains keyword

3 true C title not contains keyword

3 false B title contains keyword of material

4 zero time C empty Material table

4 once A only one record Material table

4 more than once B more than one record in Material table
5 true C direction contains keyword of material
5 false C direction not contain keyword

Table of input data sets

Input data set

Contents

Output

A

title not contain
keyword of
material, direction
not contain key

word of material

category = 'Others'

title = "Onion Beef"

category = 'Beef'

title not contain
keyword of
material, direction

contains "chicken"

category = 'Chichek'

180

Structural Test -- Extractinformation02 class:storelngredient method

Table of test cases

Choice Input data set Input property
1 zero time A empty line
1 once one line

1 more than once

more than one line

2 zero time

empty line

2 once

one token

2 more than once

more than one token

3 true number

3 false not number
4 zero time empty

4 once one element

4 more than once

two elements

5 true unit word

5 false not unit word
6 true number

6 false not number
7 zero time empty

7 once one element

7 more than once

two elements

8 true unit word

8 false not unit word
9 zero time empty

9 once one element

9 more than once

T|W|> MO >P MO MM OO0 |® |0 |>» | 0 ®

two elements

Table of input data sets

Input data set

Contents

Output

A only one item of add one record in Ingredient table
ingredient

B more than one item of add more than one record in Ingredient
ingredient table

C first token is number add number in Quantity field,
rest is ingredient add rest ingredient in Ingredient field

D first token is number add number in Quantity field,

181

second is unit word

rest is ingredient

add unit in Unit field,

add rest ingredient in Ingredient field

first token is number
second is number
third is unit word

rest is ingredient

add first and second number in
Quantity field, add unit in Unit

field, add rest ingredient in Ingredient
field,

first token is number
second token is number
third is ajective word
fouth is unit word

rest is ingredient

add first and second number in Quantity
field, add ajective and unit word in
Unit field, add rest ingredient in

Ingredient field

182

	1. Introduction
	1.1 Project Statement
	1.2 Problem Analysis
	1.3 Report Structure

	2. Solution 1
	2.1 Requirement Analysis
	2.1.1 User Requirement Analysis
	2.1.2 Data Requirement Analysis

	2.2 System Analysis and Specification
	2.2.1 Import Functionality
	2.2.2 Database System
	2.2.3 Graphics User Interface

	2.3 System Implementation
	2.3.1 System Architecture
	2.3.2 Microsoft Access Databases Design and Implementation
	2.3.2 Model Implementation
	2.3.3 View Implementation
	2.3.4 Controller Implementation

	2.4 System Test and Results
	2.5 Summary

	3. Solution 2
	3.1 Analysis
	3.1.1 HTML Document Analysis
	3.1.2 External Recipe Files Analysis

	3.2 Design and Specification
	3.2.1 Parsing the HTML Document
	3.2.2 Extraction
	3.2.3 Inserting the Recipe into the Database

	3.3 Implementation
	3.3.1 The Overview of the Implementation
	3.3.2 The Implementation of Parsing the HTML Document
	3.3.3 Extraction
	3.3.4 Inserting the Recipe into the Database

	3.4 Results and Test
	3.4.1 Import the Invalid Recipe File
	3.4.2 Import the Valid Recipe File

	3.5 Summary

	4. Conclusion
	4.1 Future Work
	4.2 Personal Conclusion

	Reference
	List of Figures
	List of Tables
	Appendix I Installation Guide
	Appendix II Configuration of Source Code
	Appendix II Test Results

