

Master Thesis

Design and Implementation of a Database for Recipes

November 2004

 LinLin Wang (s020953)

 Supervisor: Paul Fischer

 Informatics and Mathematical Modelling
 Technical University of Denmark

 Kgs Lyngby, Denmark

IMM – THESIS – 2004 - 82

 1

 2

Abstract

With the rapid growth of the Internet technology, the information boom has occurred in
the human world with the irresistible trend. When the accumulation speed of the
information is faster than the digestion speed of that, the database came into being to
store the information. How to search and extract the useful content from the Internet and
store them into what kind of databases are the most interesting topics for the database
programming. According to the evolution trend of the Internet, the intelligent analysis
engine is a powerful and efficient tool to establish a structural semantic-oriented web.

This project takes the recipe storage system as an example for looking into the design of
the semantic-oriented extraction. The objective of this project is to establish a database
for recipes and to fill it with some data. During the project, I designed and implemented
two solutions to achieve the above objective. One is based on the traditional thought and
relies on some artificial marks to extract the target content; the other one is introduced
into some thoughts of the semantic-oriented extraction, and able to extract the recipe files
more intelligently and accurately. The test results prove that the semantic-oriented
extraction is more effective.

 3

Acknowledgements

First I would like to thank my supervisor--- Paul Fischer, the professor from Informatics
and Mathematical Modelling at the Technical University of Denmark. He helped me to
set up the definition of my project, and gave me the illuminative guidance throughout the
project. And then I want to thank Jens Thyge Kristensen, who is also a professor from
IMM, DTU. He gave me the kind help on the area of java programming and object-
oriented design. I also appreciate one of my special friends who provide me many useful
advice and kind help during the project.

In addition, I want to thank my parents for their support and encouragement during my
study in Denmark, and all my friends who have been sharing the joys and tears with me!

The last but not least, I also want to thank my boyfriend, Bo Jiang, thank for his
considerate care and generous support!

 4

Terminology

Recipe Data The content of the recipe, such as the recipe tile,

ingredients and direction.
Ingredient Description Line A piece of ingredient description, which normally

consists of quantity, unit and ingredient description.
Quantity The numerical description of the ingredient, e.g. ‘5’
Unit The unit used for measuring the ingredient, e.g. ‘cup’
Ingredient Description The text used for describing the ingredient in an

ingredient description line
Entire Paragraph A paragraph text without any empty lines in between
Word An English word or an Arab number or a text string

which doesn’t contain any spaces, e.g. one, 3, 1/4, and
1.5

Signature the words that indicate the ingredient or direction of
the recipe, e.g. ‘Ingredient’ and ‘Direction’

Material The name of the specific ingredient, e.g. ‘milk’

 5

 6

Table of Contents

1. Introduction..9
1.1 Project Statement ...9
1.2 Problem Analysis ...9
1.3 Report Structure ...10

2. Solution 1 ..11
2.1 Requirement Analysis ..11

2.1.1 User Requirement Analysis ..11
2.1.2 Data Requirement Analysis ..11

2.2 System Analysis and Specification..19
2.2.1 Import Functionality ...19
2.2.2 Database System ...24
2.2.3 Graphics User Interface ..35

2.3 System Implementation ...37
2.3.1 System Architecture..37
2.3.2 Microsoft Access Databases Design and Implementation..........................39
2.3.2 Model Implementation..42
2.3.3 View Implementation..61
2.3.4 Controller Implementation..62

2.4 System Test and Results ..70
2.5 Summary ..84

3. Solution 2 ...85
3.1 Analysis..85

3.1.1 HTML Document Analysis...85
3.1.2 External Recipe Files Analysis ...86

3.2 Design and Specification ...90
3.2.1 Parsing the HTML Document...90
3.2.2 Extraction..91
3.2.3 Inserting the Recipe into the Database..93

3.3 Implementation ..94
3.3.1 The Overview of the Implementation ...94
3.3.2 The Implementation of Parsing the HTML Document...............................96
3.3.3 Extraction..100
3.3.4 Inserting the Recipe into the Database..104

3.4 Results and Test ...106
3.4.1 Import the Invalid Recipe File ..106
3.4.2 Import the Valid Recipe File...107

3.5 Summary ..113
4. Conclusion ...115

4.1 Future Work ...115
4.2 Personal Conclusion...115

Reference ...117
List of Figures..119
List of Tables ...121
Appendix I Installation Guide ...122
Appendix II Configuration of Source Code125
Appendix II Test Results..127

 7

 8

1. Introduction

1.1 Project Statement
The objective of this project is to design and implement a recipe system. The core of the
system is a database which is used to store the recipe information; the front-end of the
system is a set of GUI (Graphical User Interface) applications which act as a bridge in
between the end users and the system.

Generally speaking, the recipe database should be able to store the recipe information,
which normally includes the title, the category, the ingredients and the direction of the
recipes. The database should also support the following functions:

− Insert a new recipe record manually
− Modify the items of the recipe record manually
− Delete the recipe record manually
− Import the external recipe files automatically
− Search the recipe by the category manually
− Search the recipe by the ingredients manually
− Search the recipe by the title manually

In addition, as the recipe system supports two kinds of users (the general user and the
super user) and offers them different access rights, the database should be able to store the
user information (the user name and password) and provide the functions like:

− Modification of the password of the super user

In the front-end client side, the system should offer the “win-form” based GUIs, which
allow the users easily fill in the input, select and choose the functions of interest, and read
the results. For the general user, the GUI application should provide all the search
functions and display the search results. For the super user (administrator), the GUI
application should provide the authentication window which is used to authenticate and
authorise the super user. Moreover, the super user should be able to manage an update the
recipe database and have the access for the full functions of the system, such as inserting,
modifying and deleting the recipe.

1.2 Problem Analysis
From the project statement, we can see the most interesting topics for this project are how
to search and extract the recipe content from the external files and store them into what
kind of databases. As the external files can be in various formats and the layout of the
recipe content can be quite different, it is necessary to design a general extraction system,
which can handle as more as possible recipe files.

The general extraction method, in essence, is based on the principle of the semantic-
oriented analysis. Here the semantic-oriented analysis means the system can understand
the ‘organic’ structure of the recipe files and know what the recipe files are describing
about. Thus, the system can easily handle all kinds of recipe files in the right way.

In order to achieve the semantic-oriented analysis, the system should first be able to
‘read’ and ‘recognize’ the recipes. In other word, the system should know the recipes
normally consist of the following parts: the title, ingredients and direction. In the further

 9

step, the system should understand which words are describing the ingredients or
direction and what the ingredient or direction description really means.

Therefore, in this project, I put my main effort on the work of solving how to design and
implement an intelligent extraction system, which is able to read and understand the
recipe files like the human being.

1.3 Report Structure
The outline of the rest content is:

Chapter 2 – Solution 1 mainly describes how this recipe database system is specified,
designed and implemented. It includes requirement analysis, design and specification,
implementation, results and test, and summary.

Chapter 3 – Solution 2 mainly describes how the import function is improved and
optimized. It includes analysis, design and specification, implementation, results and test,
and summary.

Chapter 4 – Conclusion summarizes the report and project work from the general
perspective and gives a view about the future work.

 10

2. Solution 1

2.1 Requirement Analysis

The objectives of this requirement analysis are:

• What is this recipe database used for?
• What kind of functions does the database offer?
• How to specify the access right for the database?
• Browse plenty of recipe web sites, and analyze the recipe file structures, distinctions,

contents etc.
• What kind of affects can be reached to the Import function?
• What kind of Graphic User Interface can be supplied?

2.1.1 User Requirement Analysis

Generally speaking, there are two user groups that will use this recipe database system:
general user and administrator.

2.1.1.1 General User

General User here points to all the people who will use this database system.
It should include all the internal staffs if the system is used for some local area and it
should include all the internal and external persons if the system is used in public. The
general user will search corresponding recipes depending on their interest by inputting all
kinds of criteria, such as: recipe title, recipe category, and some ingredients.

2.1.1.2 Administrator

Administrator, i.e. the super-user, includes those peoples who are authorized to this
database system and are permitted to modify this database. The administrator can manage
and manipulate this database freely. The administrator can do the following operations to
this database: insert recipe, edit recipe, delete recipe, import recipe and modify user’s
settings.

2.1.2 Data Requirement Analysis

In this recipe database system, an import function should be implemented. Below, let’s
discuss the problem of it.

2.1.2.1 Import Functionality Analysis

 11

Import function is one of the most important functions of this system. It should include
the information extraction technology, which is researched for developing and
implementing human languages extraction. The import function should enable
administrator to import recipes into database from external recipe files automatically. So
in this section, I focus on analyzing external recipe files, including its structure, contents,
and other attributes.

Generally, recipe files might be obtained from many places, such as floppy disk, CD, and
internet; it may be stored in different formats (such as Doc, Html, txt and etc.). In solution
1, we just assume all the recipe files are searched and downloaded from the web site, and
then should be saved as *.txt format into the local hard disk.

Because the recipe files were obtained from the web sites, plenty of text information
might exist, not only the recipe description, but also the information like advertisements
and some other links. For the recipe database, the recipe files consist of both useful and
useless information (of course sometimes just useless information exist). What the system
has to do is to recognize the useful information and extract them.

Before extracting information, we have to analyze the external recipe source files. After
analyzing plenty of recipe web pages on the internet, some general rules of recipe files
were concluded as below (all the recipe files have been saved as *.txt into the local
place):

 Content:

1. Almost all the recipe files consist of four main parts: the title, the category, the

ingredient, and the direction. A few recipe files include some comments.

2. The recipe title appears at the random place but not some fixed place.

3. Recipe category is partitioned in all kinds of ways, such as: depending on the recipe

region or the recipe main ingredient etc. The recipe category might be pointed out in
some files or might be not in others.

4. Several recipe files include special signatures to indicate ingredient and
 direction paragraphs1, the special words might be ‘ingredient’ or ‘direction’ or
 ‘instruction’ or ‘procedure’.

 Refer to

5. Recipe ingredient description consists of 3 parts: quantity, unit and the ingredient

description.

1 Refer to http://cake.allrecipes.com
 http://search.yumyum.com/recipe.htm?ID=8632
 http://cookbook.rin.ru/cookbook_e/recipes/0838985.html
 http://www.recipecenter.com/Recipe.asp?Code=27
 http://www.ichef.com/recipe.cfm/

 12

6. Most of the direction parts are displayed in one paragraph2; a few exceptions exist as
well.

 Structure:

1. In the recipe files, the recipe description is always displayed in this order:

The recipe title
The recipe category (some recipe file doesn’t offer the recipe category)
The recipe ingredient description
The recipe direction description
Some recipe files also include some comments somewhere.

2. Almost all the recipe ingredient part is displayed in one
paragraph; this means there are no empty lines in between the descriptions.

3. Almost all the recipe ingredient description is written in following order:
quantity, unit, some ingredient descriptions.

4. Almost all the first words are numerical in each line of the

recipe ingredient description. For example:

1 1/3 cups flour
1/2 tsp salt
1 1/3 tsp baking powder
1 1/3 tsp baking soda

Some exceptions also exist, for example:

Dash each salt and black pepper
Thickly sliced homemade-style white bread

2 Refer to http://www.recipesource.com/

 http://www.allrecipes.com/
 http://www.recipelink.com/
 http://www.recipecenter.com/

 13

The normal text recipe file is shown below:

Figure 1 Normal Text Recipe File

The further analysis on the elements of recipe files is shown as below:

• itle

wever the structure of the title is irregular and it just can be recognized by
 human, not by the computers, when it appears at the random place in the file. Because

s are the Html pages obtained from the web sites and the Html pages use
gs to markup the content, it seems that we can search the “title” through the special tag

herefore, in solution 1, the recipe file’s name will be extracted as recipe title. It is

Rec an vary a lot, and it can be partitioned in many ways. Recipe category
ma

T

Every recipe must have one title. Generally, titles can represent the recipe main
distinction. Ho
a
all recipe file
ta
pair “<Title></Title>” in the file. However, as the web pages are saved as *.txt files, all
the tag information will lose and the title can’t be recognized by any keywords.

T
reasonable that the recipe files can be renamed to recipe titles when somebody saves the
recipe file.

• Category

ipe category c
ybe pointed out in some recipe files and maybe not in others.

 14

In t
ma

•

Through browsing many web sites, some general rules and principles for the recipe
ing
sen

1 c

The t
des dient’s descriptive sentence consist of three
ma ely Quantity; Unit; Ingredient.

The reason to subdivide the recipe ingredient description is to decrease the system query
tim

In the following, we analyse these three parts in details.

ll the Quantity is represented by numbers. It maybe consists of one numerical word
 1, 2, 3…) or two numerical words (such as 2 1/4, 5 1/8…). So we can make

ure that the Quantity words are always made up of one or two words which include

 cup water

e kind of measure unit, such as ‘cup’, ‘tablespoon’, ‘ml’ etc.
 our real life, the general unit words are finite and standard. So if the system

nother situation we have to note that sometimes there are one or more adjuncts in

ystem should extract ‘(12 ounce) can’ and ‘glass cup’ as one entire dataset and put
em together into the database.

ation also should be considered is that the there are no unit words existing

eggs

The system should return a null value when the unit words can’t be found out.

− Ingredient

his recipe database, the recipe category should be indicated depending on the recipe
in ingredients. For example: beef, pork, chicken, seafood etc.

Ingredient

redients description can be obtained. The basic structure of the ingredient’s descriptive
tences is:

up water

se three words can be treated as quantity description, unit description, and ingredien
cription. This means one general ingre
in parts, nam

e when the user search recipes through the ingredients.

− Quantity
A
(such as
s
numbers. For example:
1
1 1/2 cup water

− Unit
The Unit word means on
In
establishes a Unit database in advance which includes all the unit words, then the
program can query the Unit database, match and recognize which words are Unit.

A
front of the unit word. For example:

1 (12 ounce) can corn and 1 glass cup water

S
th

The last situ
in a piece of ingredients. For example:

2

 15

Ingredient here means recipe materials description. The materials can be some kinds
of seasoning such as a spice, herb, salt, or pepper and some kinds of human food such

rest words as materials dataset after
extracting Quantity, Unit. For example:

2 tablespoons softened butter, hot water

The butter, hot water’ these
ree groups of datasets as Quantity, Unit, and Ingredient.

• Dir
Most recipe direction part is contained by one whole paragraph. It is not necessary to
sub
part.

as beef, eel, or spinach.

Obviously, it is infeasible to subdivide the ingredient description further. The best
way to extract materials part is to treat all of the

 program should extract out ‘2’, ‘tablespoons’, ‘softened

th

ection

divide the recipe direction though we always treat the recipe direction as one whole

 16

2.1.2.2

The aim of creating recipe database system is to query recipe data conveniently and
qui
through
one spe

This R

1. ore the recipe data, such as: recipe title,
cipe category, recipe ingredient, and recipe direction.

2. pecify different access right for general users and administrators.

3. eneral users can search recipes by inputting various conditions, for example: title,

4. te

5. this recipe database system, an import function will be implemented.

6. As the standard ingredient description line consists of three parts: quantity, unit
and the ingredient description, the storage of the ingredient should be detail to
those parts level, i.e. store the quantity, unit and the ingredient description
respectively.

7. One supplementary administrator record database should exist. It can be used for

managing and checking out administrator’s information. It should include
administrator’s name and password.

2.1.2.3 Graphic User Interface Requirement Analysis

Graphic User Interface should meet the following requirements:

1. General users and administrators have different access right. So two different
interfaces should be offered, that are: the user interface and the administrator
interface.

2. One main interface should exist as recipe database system’s entrance. Users have

different access right can log in this recipe database respectively from this main
interface.

3. The user interface provides general users a query interface. Users can get the

corresponding recipe information through inputting the keywords. These
keywords can be recipe title, recipe category, and some recipe ingredients.

4. One recipe display window is needed to display those recipes which the user is

looking for. Since there is probably more than one recipe were found out, this
window should include the recipe detail information: recipe ID, title, category,

 Database System Requirement Analysis

ckly for the general users. This database system also can be managed and controlled
 doing some operations by administrators. About this Recipes Database System,
cial import function should be highlighted.

ecipe Database System should meet following requirements:

This database system should be able to st
re

S

G
category, and some ingredients etc.

Administrators can do the basic operations such as insert, edit, or delete to upda
the data to the database.

In

 17

ingredient, direction and one recipe name list which can link to other recipes

vide one database update interface. Administrator can

do INSERT, EDIT, DELETE, IMPORT and PERSONAL SETTING operations to

ormation into database from the external recipe files

ory should be selected from
one category list by users, then one category table should be needed in the

ase in advance.

information.

5. Administrator interface pro

the database system.

Insert -- manually insert recipe data like: title, category, ingredient and direction.

Edit -- modify the recipe information

Delete -- delete the recipe from the database

Import -- import recipe inf

Personal Setting -- change administrator’s password.

Note: In Insert and Edit interfaces, the recipe categ

datab

 18

2.2 System Analysis and Specification

2.2

The rec btained from the web sites. Before

erforming the import function, the program should remove the Html formatting and tags,

,
 is

e Extraction

gular. It is infeasible that let the program
cognize which string is recipe title from the recipe file.

 way.

eb site, probably some
dundant, useless information exist in the files. As most of the recipe ingredient

scription part are included in two separate
aragraphs, in solution 1, my idea for extracting ingredient and direction is to follow the

ingredient and direction paragraph can be named:

times these key words don’t appear alone, e.g. appear as part of one sentence,
for example:

.1 Import Functionality

ipe files normally are the Html pages o
p
and save the recipe files as .txt format. There may be one or more recipes in these files.

We all know that a general, normal recipe basically consists of four main parts: title
category, ingredients and direction. The main task of implementing the import function
to extract those four parts from the recipe files and then put them into the database.

2.2.1.1 Recipe Titl

First of all, the program should extract the recipe title. The recipe title maybe appear at
any random places in the file, and its name is irre
re

My idea is:
Extract the recipe file name as recipe name. The precondition for this is that the recipe file
was renamed as the recipe title when it was saved into the hard disk. The system can
import the recipe title successfully in this

2.2.1.2 Paragraph Extraction

Because the external recipe source files are downloaded from w
re
description part and recipe direction de
p
next two steps:

• First, extract the two useful paragraphs: ingredient paragraph and direction
paragraph.

• Then, extract the detail information from these two paragraphs, e.g. extract the
quantity, unit and descriptive sentences of the ingredients.

The way I used to recognize the
signature way or keyword way.

First, we can assume that the two key words such as ‘ingredient’ and ‘direction’ exist in
front of the ingredient paragraph and direction paragraph respectively.

About these two special key words, there are many situations to be discussed:

1. The ingredient description part is always indicated by the string ‘ingredient’, and
the direction description part maybe indicated by many strings ‘direction’ or
‘instruction’ or ‘procedure’,

2. Some plural format maybe appears like: ingredients, procedures etc.
3. Some

 19

 --- Amount Measure Ingredient -- Preparation Method ---------------

, there maybe many such key words exist
uld be needed for recognizing which

e extraction.

nce string to appear before

r s the key word for

hrough the analysis above, we know all the ingredient part is displayed in one whole
aragraph and most direction description is displayed in one whole paragraph. Then in

 ingredient and direction part are included in one entire
 can assume the ingredient and direction description

two valid paragraphs, another text file (we can call it ‘paragraph
e

 materials.

s:
food, Soup, Sweet & Dessert,

 Fruit, and Others.

xtract the category is:

 the
ction

s the elements have been
ry respectively, if any of them is found, the program will

s

cipe category). If none of the key words is found, the recipe category will be set
to ‘Others’.

4. Before the right key words shown up

somewhere in the file, so one judgement sho
keywords are used for th

Clearly, the extraction key word “ingredient” is the last occurre
the other extraction key words ‘direction’. So after the string ‘ingredient’ appears, the
program should continue to search. If another string ‘ingredient’ appears, then the
previous ‘ingredient’ will be treated as invalid and then it should be ignored. Until the
string ‘direction’ appears, the previous ‘ingredient’ will be treated as the right key word

extraction. At the same time, the string ‘direction’ will be treated afo
extraction as well.

After finding out the correct extraction key word, the program should treat the paragraph
immediately after it as the extraction paragraph.

T
p
solution 1, we will assume all the

aragraph. Likewise, the programp
terminate when the empty line appears.

fter recognizing these A
file’) will be generated for storing these two useful paragraphs. The new text file will b
used for doing the detail extraction conveniently in the future.

2.2.1.3 Recipe Category Extraction

After extracting the recipe ingredient and direction paragraph, the program will extract
the recipe category. In this recipe database, the recipe category will be partitioned in the
most common way, the category can be ‘Beef’, ‘Pork’, ‘Chicken’, ‘Lamb’, ‘Seafood’ etc
ccording to recipe maina

One category table should be created in advance, which includes the following categorie

eef, Bread, Chicken, Duck, Lamb, Pasta & Pizza, Pork, SeaB
Vegetable &

The way to e

First, the program defines the elements in the ‘name’ column of the material table as
query keywords. Then, the program searches these keywords in the title and the dire

aragraphs got from the last step – the initial extraction. Ap
mapped to some specific catego
set the category which the found keyword belongs to as the recipe category (As long a
the program found one keyword existed in the searching area, it will stop the query and
set the re

 20

The possible materials which belong to one of the recipe category are listed as below:

 Beef: beef and stake

titoes, griskin.
fret.

t: Cookie, cake, biscuit, tortoni, chocolate, choc-ice, nougatine, nicy,

e same as the one contained in the recipe text file, the recipe

tion for

riptions exist in one entire paragraph, so the program
terminate when the space line appears.

, Unit, and Ingredient parts. So the program should extract these 3 parts from
ectively.

e that the ingredients description always display in this

art always numerical words, the second part always some words

 – Quantity extraction

•
• Bread: Crust, bread, toast and crumb.
• Chicken: Chook, drumstick, turkey, and wing.
• Lamb: mutton and lamb.
• Pork: Pig, hog, pet
• Seafood: Fish, shark fin, sturgeon, chub, crucian, pom
• Sweet & Desser

ice-cream, and coffee.
• Vegetable & Fruit: Salad, celery, cucumber, pawpaw, aubergine, tomato, potato,

apple, orange, banana, pear, peach, grape, cherry, and strawberry.

In the database, a material table is needed, which is used to store the name of above
common ingredients. When the program looks through the material table and finds out the

aterial in the table is just thm
category can be specified.

2.2.1.4 Ingredients Extraction

The next step that the program should do is to perform the detail ingredient extrac
the new paragraph file.

Now that all the ingredients desc
onsider ingredients description c

According to project’s statement, the program should extract recipe ingredients
description from file, and then convert them to special dataset, at last put them into the
recipe database. Now we know, every recipe ingredients description line consists of

uantitiesQ
each line resp

s mentioned before, we assumA
order: quantity, unit, ingredients description. For example:

1 cup water
500 g butter

amely, the first pN
describing measure units; the rest part is material description. The program should
recognize these 3 parts and extract them from every line.

Fist part

rmal situation, the quantity of ingredient description is always written in this
rmat:

In the no
fo

 21

1, 1.5, 1/2 or 2 1/2

o numerical words (two numbers with some blanks in
etween each other; the fraction number is considered one word) used for describing

ity

al,

t into the database as one string. If the

econd word isn’t numerical, the program just treats the first numerical words as Quantity
atabase.

So I can assume that at most tw
b
quantity. Practically never more than two numbers were used for describing quant
contribution like this:

2 2 1/2 cup water

The extraction procedure for the quantity is: first I can assume the first word is numeric
and the program should continue to check the second word. If the second word is also
numerical, the second word should be appended to the first word to generate one string as
Quantity. Eventually these two words should be pu
s
and put it into the d

Second part – Unit extraction
Given the words describing unit are finite and standard, one unit table can be created in

cipe database in advance. This unit table should contain all the unit words which may
n (include these words’ plural and abbreviations

rmat), such as cup, cups, spoon, tb, g, and ml etc.

ccording to ingredients description rule, for example:

rocedure of the unit is: scan the ingredients line from the left to the right.
 a unit words was found, the program should continue to check its previous word. The

 be two types: numerical word and descriptive word. For
xample:

 small package nuts

 there isn’t any unit words exist, return null, namely a null value will be put into

re
be appearing at any ingredients descriptio
fo

One situation should be noted that an adjective might exist before the unit words
a

Small cup, middle package etc.

The extraction p
If
string before the unit word can
e

2 cup water
2

If the previous word is numerical word, like 2 cup, ignore it and just put this individual
unit word into the database; if it isn’t numerical word, the program will consider this
string as one descriptive word like ‘small’, ‘glass’ etc, and append it in front of the unit
word to generate one string. Eventually, the program will put them together into the
database as Unit.

If
database as Unit, for example:

 2 eggs

 22

Last part – Ingredients extraction

The last part is recipe material description; it often consists of some recipe materials and
some additional descript

ions.

y
od

 cup white sugar

ted out ‘2’, ‘cup’ and ‘sugar’ from this sentence. However,
ow should the program process the rest word ‘white’? let’s see another example:

 tablespoons softened butter, hot water

s

2.2.1.5 Direction Extraction

ng to my experience on the direction structure, generally speaking, most of the
directions are written in the consecutive, plain text style (only some minors are formatted

to bullets; But these bullets are still context related.). Therefore it makes no sense to
separate the direction paragraph into many parts, the recipe direction part can be treated
s one whole string. The program should extract this entire paragraph out, and then put

them together into the database as Direction.

.2.1.6 Same Recipe Estimation

iven the possibility of repeat inputting the same recipe, one additional judgment

As we all know, people can judge whether the two recipes are the same or not according
to the recipe title or direction. Two recipes with the same title maybe have entirely

On the surface, the way to recognize recipe materials words can be: first create a
materials database, and then extract the material words from the lines. However people
will find the way mentioned above is impossible or is not the best to solve this problem
after reading my following analysis.

First of all, there are more than 10 thousand kinds of human food. It is impossible and
makes no sense to make one statistic on the various human foods for a simple, ordinar
recipe database system. Even imagine we have made the perfect statistic for human fo
and seasonings, please see the following example:

2

Suppose the program has extrac
h

2

Suppose the program can extract out ‘2’, ‘tablespoons’, ‘butter’, ‘water’ from this
sentence, and then ‘softened’ and ‘hot’ will be left. Where should they be put into?

Therefore the best way is to treat all the rest strings as one whole string even though it i
meaningless to partition the ingredient description into parts. After extracting quantity
words and unit words, the program will put all the rest parts of this line into the database
as Ingredients.

This process is very similar to the previous ingredient extraction; the program should
extract the direction part from the new paragraph file as well.

Accordi

in

a

2

G
procedure should be needed.

 23

different directions and two recipes with the same direction maybe have different titles.
ve at the conclusion that the key judgment for two same recipes should

depend on the recipe direction. These recipes will be treated as different recipes if their
directions are different.

Here, the program will check the directions through the rule of string comparison. The
checking algorithm is: first follow the order from the left to the right, from the top to the
bottom to check whether each word existed in direction A also exists in direction B. Once
a word has been found also existed in direction B, a counter will automatically increase
by 1. The program will continue this check until the last word in direction A has been
checked. Then, the program will divide the total number of the words in direction A by
the number of that counter and get the results AR. After that, the program will do the
same operations and calculation on all the words in direction b and check how many
percent (BR) of them has also existed in direction A. If both AR and BR exceed 80%,
these two recipes will be treated as the same.

2.2.2 Database System

2.2.2.1 Development Environment

In this project, Microsoft Access 2000 is chosen as the relational database management
system. The reason to use the relational database instead of other kinds of databases, such
as the XML database, is that the data in the relational database is more structural, and the
redundancy of the system can be very low. In addition, the relational database provides
much stronger query function and is more extendable. For the XML database (e.g. the
Native XML Database3), it stores the whole documents as a unit and may cause some
redundancy. Although the XED (XML Enabled Database4) can reduce the redundancy by
introducing the fine-grained data model, it, in essence, is still based on the relational
database.

The data is stored in row and column style in the relational database system. The
collection of the rows and columns is called Table, and a group of tables constitutes s
database system. In the relational database system, all the data are organized and linked
by their relationship. We can present and manipulate the data in the relational database
freely.

So we can arri

r to the link: http://www.xml.com/pub/a/2001/10/31/nativexmldb.html3 refe

4 refer to the link: http://www.tongyi.net/article/20031012/200310123737.shtml

 24

 25

-R Diagram
2.2.2.2 E-R Model
E

Figure 2 E-R Diagram

BelongTo

Recipe

Rec_ID DirectionTitle

Category

Category

Ingredient Ing_ID Rec_ID

Quantity Unit Ingredient

Unit

Name

Admin

PasswordName

Material

Category

Category

Title

BelongTo

 25

2.2.2.3 Use Case Model

se case modelling from the user view or event flow view; which covers a problem and
solutions which involves use case diagrams to use case descriptions.

To successfully apply use case diagrams, the types of elements used should be aware of.

Actor: are used for modelling and representing users’ role to a system, which maybe
human users or other systems.

Use case: are used for modelling and representing the system behaviours from the user
view and it also can be explained to one kind of visible external actions of a system.

Below, the use case model was used for specifying the recipe database system.

Actors:

User-gen -- General user, search recipes from database system

User-adm -- Administrator, manage and manipulate the data in database, which involves
 modify data, insert data, update database etc.

U

 26

Use Case Diagram:

Login

Logout

Search Recipe

Figure 3 Use Case Diagram

Search Recipe
by Title

Search Recipe
by Category

Search Recipe
by Ingredient

Modify Recipe
Information

Insert Recipe

Delete Recipe Import Recipe

Edit Recipe

Modify Password

 27

Use

ssword.

bout
recipe title.

• Search the Recipes by the Category

Users (User-gen and User-adm

arch Recipe by In nt

 (User-gen and U earch recipes by inputting some keywords about
ients.

inistrator

th m will detect user’s
s name and password

reje d when either the name or the password wrong.

• Modify the Recipe Database

Users (User-adm) can the new recipes, edit
ecipes, delete t port the new recipes.

ert the Recipe

adm) inser information
in: the title

• Edit the Recipe

Users (User-adm) can m dify

• Delete the Recipe

an d

• Import the Recipe

r Cases Description:

• Login of general user

Users can enter the Recipe Query Page without any pa

• Search the Recipes

Users (User-gen and User-adm) search the recipes by inputting keywords.

• Search the Recipes by the Title

Users (User-gen and User-adm) search the recipes by inputting some keywords a

) search the recipes by inputting recipe category.

• Se gredie

Users ser-adm) s
recipe ingred

• Login of adm

Users (User-adm) do
name and password. U

e login operation to the system. Syste
er will login the system when both the

correct and will be cte

modify the recipe database, include insert
the old r he old recipes, and im

• Ins

Users (User-
should conta

t new recipes data to the database, the recipe
, the category, the ingredient, and the direction.

o the information of the old recipes in the database.

Users (User-adm) c elete the useless recipes from the database.

 28

Users (User-adm) can import .

ify the Passwo

User-adm) can modify their passwords freely.

 general u

er-gen) can d o en they are out of the system

• Logout of administrator

 d operations when they are out of the system.

Use Case Table:

Use Case Table: Login of the general user

Login of the general user

 the recipes from the external files

• Mod rd

Users (

• Logout of ser

Users (Us o the l gout operations wh

Users (User-adm) can o the logout

Use Case

Number UC01

Actors User-gen

Preconditions User visit the Recipe Query System entrance page

Description Step Branching Action

 1 T utton 'General User' directly without any
p

he user click on the b
assword

Success End Condition e useTh r enter the Recipe Query page

Failed End Condition

Table 1Login of the general user

Use Ca tor

Use Case Login of administrator

se Table: Login of the administra

Number UC02

Actors User-adm

Preconditions The user visits the Recipe Query System page

Description Step Branching Action

 1
The user
wind

click on the button 'Administrator', and then a dialog
ow will appear

 It indicate the user to input the name and the password

 2 The user input the name and the password

Success End Condition
e tor page when both the name and the The us r enter the administra

password right

Failed End Condition
e erro e
sswor

Th r message will be returned when either the name or th
pa d wrong

Table 2 Login of the administrator

 29

Use Case Table: Search the Recipe

Use Case: Search the Recipe

Number: UC03

Actors: User-adm, User-gen

Preconditions: User has entered the Recipe Query page

Description Step Branching Action

 1 Click on 'Ok' button to search recipes or

 click on 'Back' button to return back the previous page

Success End Condition
The Recipe Display page will be sho
been found

wn out when one or more recipes have

Failed End Condition e matched The ‘No recipes was found!' message will be returned if no recip

Table 3 Search the recipe

Use Ca

Use Case

se Table: Search the Recipe by the Title

Search the Recipe by the Title

Number UC04

Actors User-adm, User-gen

Preconditions The user has entered the Recipe Query page

De cription Step Branching Action s

 1 The user input some keywords of the recipe title

 es or 2 Click on the 'Ok' button to search recip

 click on the 'Back' button for returning to the previous page

Success End Condition
e shown out when one or more recipes have

nd
The Recipe Display page will b
been fou

Failed End Condition pes was found!' message will be returned if no recipe matched The ‘No reci

Table 4 Search the Recipe by the Title

Use Case Table: Search the Recipe by the Ingredient

Use Case Search the Recipe by the Ingredient

Number UC05

Actors User-adm, User-gen

Preconditions The user has entered the Recipe Query page

De cription Step Branching Action s

 1 The user can input some keywords of the ingredient

 2 Click on the 'Ok' button to search the recipes or

 click on the 'Back' button for returning to the previous page

 30

Success End Condition
The Re ut when one or more recipes
hav

cipe Display page will be shown o
e been found

Failed End Condition s found!' message will be returned if no recipe matched The ‘No recipes wa

T arch the Recipe by the Ingredient

Use Ca ory

e Case e Ca

able 5 Se

se Table: Search the Recipe by the Categ

Us Us se: Search the Recipe by the Category

Number umberN : UC06

Actors ors:Act User-adm, User-gen

Preconditions ry page Preconditions: The user has entered the Recipe Que

Description Step Branching Action

 1 The user select one kind of recipe category from the category list

 2 Click on the 'Ok' button to search recipes or

 click on the 'Back' button for returning to the previous page

Success End Condition
ne or more recipes The Recipe Display page will be shown out when o

have been found

Failed End Condition atched The ‘No recipes was found!' message will be returned if no recipe m

Table 6 ategory

Use Case Table: Modify the Recipe Database

Use Case Modify the Recipe Database

Search the Recipe by the C

Number UC07

Actors User-adm

Preconditions ntered the Administrator page User has e

Description Step Branching Action

 1 T ny panels to modify the database, he user can choose a

 su ch as the InsertPanel, EditPanel, DeletePanel, ImportPanel,

 and the PersonSettingPanel.

Success End Condition e correTh sponding panel will be lay out.

Failed End Condition

Table 7

 Modify the Recipe Database

 31

Use Case Table: Insert the Recipe

Use Case Insert the Recipe

Number UC08

Actors User-adm

Preconditions The user has chosen the InsertPanel

Description Step Branching Action

 1 The user should completely fill in the recipe information,

 Including the title, ingredient, direction and the category

 2
Click on the 'Save' button to save the new recipe in th
database or

e

 Click on the 'Clear' button to clear the panel

Success End Condition new A recipe is saved in database

 when the new recipe information is valid

Failed End Condition An error message should be returned

 when etely filled in or the new recipe is not compl

 when the new recipe information is invalid

Another error message should be returned when the new recipe is
filled in the wrong format.

Table 8 Insert the Recipe

se Table: Edit the Recipe Use Ca

Use Case Edit the Recipe

Number UC09

Actors er-a Us dm

Preconditions e us as chosen the EditPanel Th er h

Description Step Branching Action

 1 The user chooses the recipe ID

 the panel
Then the corresponding recipe information is displayed on

 2 The user can modify the recipe information

such as: the title, ingredient, d
ID.

irection, category except the

 3 n to update the recipe data or Click on the ‘Update' butto

 Click on the 'Clear' to initialize the panel

Success End Condition The old recipe is updated f the new data is valid

Failed End Condition An error message will be returned if the new recipe information

 is invalid , such as wrong format.

Table 9 Edit the Recipe

 32

Use Case Table: Delete the Recipe

 DUse Case elete the Recipe

Number UC10

Actors User-adm

Preconditions The user has chosen the DeletePanel

Description Step Branching Action

 1 The user chooses the recipe ID

 th n the panel e recipe information is displayed o

 An ble d all the data fileds displayed are non-edita

 2
C the
da

lick on the 'Delete' button to delete the recipe from
tabase or

 Click on the 'Clear' to initialize the panel

Success End Condition The old recipe will be deleted from the database

Failed End Condition

Table 10 Delete the Recipe

e

 I

Use Case Table: Import the Recip

Use Case mport the Recipe

Number UC11

Actors User-adm

Preconditions The user has chosen the ImportPanel

Description S Brtep anching Action

 1 Th e from the local disk e user chooses one recipe fil

 2
Cl atabase ick on the 'Import' to import this new recipe into the d
or

 Click on the 'Cancel' to initialize this panel

Success End Condition
T is
v

he new recipe that has been chosen is imported if the recipe file
alid.

Failed End Condition An e pe file is invalid rror message will be returned if the reci

 such as: there isn't any recipe information existing in the recipe file

 or the recipe information is incomplete

Table 11 Import the Recipe

 33

Use Case T ssword

e Modi th

able: Modify the Pa

Use Cas fy e Password

Number 2 UC1

Actors r-adm Use

Preconditions The user has chosen the PersonSettingPanel

Description Step Branching Action

 1 The user name has been displayed and it is non-editable

 2 Input the original password and

 input the new password twice for ensuring

 3 Click on the 'Modify' to change the password or

 Click on the ‘Clear' to initialize this panel

Success End Condition The password will be changed if all the input data is correct

Failed End Condition

Table 12 Modify the Password

Use Case Table: Logout of the general user

Use Case Use Case: Logout of general user

Number Number: UC13

Actors Actors: User-gen

Preconditions Preconditions: The user has entered the Recipe Query page

Description Step

 1 The user click on the button 'Logout'

 A dialog window will appear

 It indicates the user to confirm the logout operation

Success End Condition The user logout the system,

 And the GUI returns back to initial page when 'Yes' is selected

Failed End Condition The page will be remained when the 'No' is selected

Table 13 Modify the Password

Use Case Table: Logout of the administrator

e Case Logout of the administrator Us

Number UC14

Ac s User-adm tor

Preconditions The user has entered the Administrator page

 34

Description Step Branching Action

 1 The user click on the button 'Logout'

 A dialog window will appear

 It indicates the user to confirm the logout operation

Success End Condition The user logout the system,

 And the GUI returns back to initial page when 'Yes' is selected

Fa s page will be remained when the 'No' is selected iled End Condition Thi

.2.3 Graphics User Interface

he graphics user interface’s component specification are following:

* E

Con
adm

Gen a
admini ct user-id and password for entering enter the
Ad

 Users Interface

ontains two TextFields and one CombBox. One TextField is for inputting recipe title
and the other is for inputting recipe ingredient; The CombBox is for displaying recipe
category list, which allows the users select the category manually.

* Administrator Interface

Contains one TabbedPane on which there are InsertPanel, EditPanel, DeletePanel,
ImportPanel and PersonSettingPanel.

• InsertPanel
Contains a TextField for inputting recipe title; A CombBox display recipe category
users can select; A Table for inputting ingredient elements; And a TextArea for
inputting recipe direction.

• EditPanel
Contains a CombBox display recipe ID which users can select; a TextField for
displaying recipe title which also can be used for modifying recipe title; and a Table
for displaying recipe ingredient which also can be used for editing recipe ingredient.

• DeletePanel

2

T

ntrance Interface

tains two Buttons. One is the entry button for general users, and the other is for
inistrators.

er l users can enter the Recipe Query page without any password, while the
strator has to input the corre

ministrator page.

*

C

 35

Contains a CombBox display recipe ID can be selected; a non-editable TextField for
isplaying recipe ingredient; and a TextFiled for

displaying recipe direction

Contains a Button for browsing the recipe file will be imported; And a ComBox

aking sure the new password correct or not.

le
 ingredient and recipe direction; three

Con

p

displaying recipe title; a Table for d

• ImportPanel

displaying recipe category can be selected.

• PersonSetting interface
Contains four TextFields, one is non-editable for displaying the administrator’s name,
one for inputting original password, one for inputting new password, and the last one
for re-entering new password for m

* Recipe Display Interface

Two types Recipe Display Interface should be offered

• One for displaying the recipe which has been imported into the database from
external recipe fi

Contains two TextAreas for displaying recipe
TextLables for displaying recipe title, recipe ID, recipe category.

• The other Recipe Display Interface for displaying those recipes which was

searched by general users
tains two TextAreas for displaying recipe ingredient and recipe direction; three

TextLables for displaying recipe title, recipe ID, recipe category; And a List for
dis laying those recipes’ name.

 36

 37

2.3 System Implementation

2.3.1 System Architecture

This recipe database system is based on the Model-View-Controller architecture. The
Model-View-Controller (MVC) is a powerful commonly used architecture for GUIs. The
MVC paradigm is a way of separating an application into three parts: the model, the view,
and the controller. MVC was originally developed to map the traditional input, processing,
output roles into the GUI realm:

 Input --> Processing --> Output
Controller --> Model --> View

In the MVC paradigm the user input, the modeling of the external world, and the visual
feedback to the user are explicitly separated and handled by three types of object, each
specialized for its task.

• View manages the graphical and/or textual output to the display that is assigned to
its application.

• Controller interprets the mouse and keyboard inputs from the user, maps these
user actions into commands that are sent to the model and/or view to effect the
appropriate change.

• Model manages the behavior and one or more data elements of the application,
responds to requirement for information about its situation and responds to
instructions to change state.

The basic Model-View-Controller can be illustrated by the following picture:

Figure 4The MVC model

 37

2.3 System Implementation

2.3.1 System Architecture

This recipe database system is based on the Model-View-Controller architecture. The
Model-View-Controller (MVC) is a powerful commonly used architecture for GUIs. The
MVC paradigm is a way of separating an application into three parts: the model, the view,
and the controller. MVC was originally developed to map the traditional input, processing,
output roles into the GUI realm:

 Input --> Processing --> Output
Controller --> Model --> View

In the MVC paradigm the user input, the modeling of the external world, and the visual
feedback to the user are explicitly separated and handled by three types of object, each
specialized for its task.

• View manages the graphical and/or textual output to the display that is assigned to
its application.

• Controller interprets the mouse and keyboard inputs from the user, maps these
user actions into commands that are sent to the model and/or view to effect the
appropriate change.

• Model manages the behavior and one or more data elements of the application,
responds to requirement for information about its situation and responds to
instructions to change state.

The basic Model-View-Controller can be illustrated by the following picture:

Figure 4The MVC model

Model

Controller View

Model

ExtractionInformation

ExtractInformation()
Extract(fr: FileReader,
title:String)

ModifyRecipe

insert(title: String, categ: String, direction:
String , ingredient: String[][])
edit(id: int, title: String, categ: String,
direction: String, ingredient: String[][])
delete(id: int)
searchRecipe(title: String, ingredient: String,
 categ: String, id: Vector, names: Vector)

ModifyRecipe ()

Figure 5 UML Class Diagram

Controller

ButtonListener

actionPerformed (event: ActionEvent)

ComboListener

itemStateChanged(e: ItemEvent)

 A uses B

RecipeDisplay

RecipeDisplay(id: int,
username: String, code:String)
showIt(x: int, y: int)

A B

View

InsertPanel

InsertPanel()
init()

EditPanel

EditPanel()
init()

DeletePanel

DeletePanel()
init()

ImportPanel

ImportPanel()
init()

RecipeQueryFrame

RecipeQueryFrame ()
showIt(x: int, y: int)

AdminFrame

AdminFrame (username:
String, code: String)
showIt(x: int, y: int)

RecipeFrame

RecipeFrame(id: Vector,
 titles: Vector)
showIt(x: int, y: int)

RecipeQuerySystem

Main()
UserFrame

UserFrame()
showIt(x: int, y: int)
init()

 38

2.3.2 Microsoft Access Databases Design and Implementation

The procedure of database design and implementation was illustrated by following picture:

Database System Function Analysis

Database Requirement Analysis

Identification of the data objects and relationships

Design the ER diagram with the entities and relationships

Add key attributes to the diagram

Diagramming Generalization Hierarchies

Validating the model through normalization

Adding business and integrity rules to the Model

Generate the Recipe Database

Figure 6 the procedure of the design and implementation of the database

 39

The table is the central element in Access, which consists of data records that contain all
the data information. Each table is composed by many fields which have different data
types. Each row in the table is a record of the database. The procedure of implementing
the database is to convert the E-R diagram to the tables. Every entity can be converted to
one table and their attributes can be converted to the fields. Refer to my E-R diagram
above; six tables are built in my database.

1. The Recipe Table

Table 14 the Recipe Table

In the recipe table, the recip key, because in the recipe
database, some different recipes might have the same title names and only the recipe

ted
. The data types of the field ‘Title’ and

‘Category’ were set Text and the data type of the field ‘Direction’ was set Memo.

2. The Ingredient Table

e ID was set as the primary

ID is unique. The program offered an automatic import function and the ‘Rec_ID’
field’s data type was set AutoNumber which means the recipe ID will be genera
automatically when a new recipe was imported

T

In the ingredient table, the ingredient’s ID was set as the primary key. The field
hed to the ‘Rec_ID’ field in the recipe table. The reason for the

‘Ing_ID’ field’s data type was set AutoNumber is the same as the one for ‘Rec_ID’
field in recipe table. When a new recipe was imported into the database, the ingredient
description items of the recipe its were filled into the ingredient table automatically.

3. The Category Table

able 15 The Ingredient Table

‘Rec_ID’ here is matc

 40

Table 16 The Category Table

Refer to the requirement specification; a category table is needed in my database. The
‘Category’ fields in the recipe table and in the material table as below are both

atched to the ‘Category’ field in this table.

4. The Material Table

m

Table 17 The Material Table

5. The Unit Table

The ‘Name’ field was set as the primary key and the ‘Category’ field is match to the
‘Category’ field in the category table

 41

Table 18 The Unit Table

rds that represent the units should be filled into the unit table as many as
 will extract the unit word from the recipe file

a his table.

6. The Admin Table

The wo
possible in advance. The program
ccording to the values in t

Table 19 The Admin Table

The admin table was used to store the administrators’ records. The ‘Name’ was set as

.3.2 Model Implementation

There are two classes contained in the system model part, they are: ExtractionInformation
and ModifyRecipe.

the primary key.

2

 42

The E ethod in the ExtractionInformation class will be
called when the import operation was perform contains insert,
edit, delete, researchRecipe methods.

enting these models. In the
llowing sections, I will give a brief introduction about them.

• SQL Introduction5

SQL is a kind of ANSI (American National Standards
Institute) standard computer languag anipulating database systems;
now it is widely used as one kind of s query languages. SQL consists

ry and manipulate the database. The

ble.

xtract(FileReader fr, String title) m
ed. The ModfiyRecipe class

SQL and JDBC techniques are primarily used for implem
fo

(Structure Query Language)
es for accessing and m

 relational database
of four functions such as: query, manipulate, definition and control. It integrates Data
Manipulation Language (DML) and Data Definition Language (DDL).

Data Manipulation Language (DML) is used to que
basic commands are shown below:

SELECT – is used to select data from a ta

Syntax --

SELECT column_name(s)
FROM table_name

Table 20 Select

UPDATE –is used to modify the data in a table.

Syntax --

UPDATE table_name
SET column_name = new_value
WHERE column_name = some_value

Table 2

1 UPDATE

s in a table.

DELETE FROM table_name

DELETE –is used to delete row

Syntax –

5 refer to the link: http://www.w3schools.com/sql/default.asp

 43

WHERE column_name = some_value

Table 22 Delete

INS

yntax –

e

ERT INTO –is used to insert new rows into a table.

S

INSERT INTO table_nam
VALUES (value1, value2,....)

Table 23 Insert Into

he Data Definition Language (DDL) is used to create and delete the database. We can
also d
database tables. The commands are shown below:

CREATE – to create a database: index

DROP ase:

In my used to connect the SQL engine
by us

•

JDBC (Java Data Base Conne t provide Java programs
with a way to connect to and use relationa BC API makes it easy to

d
 powerful database solution.

 driver.

C drivers. They are:

Type 3:

Type 4:

T
efine indexes (keys), specify links between tables, and impose constraints between

 create a table and create

 – drop index, table and datab

ALTER TABLE –is used to add or drop columns in an existing table.

 project, Data Manipulation Language (DML) was
ing JDBC.

JDBC Introduction6

ctivity) is a set of Java APIs tha
l databases. The JD

send SQL statements to relational database systems. The combination of Java's JDBC an
standard SQL provides a simple and

To make JDBC work, the first thing is to install Java and JDBC. The JDBC has been
included in the JDK.

The Next step is to install a JDBC

The SUN Company has defined four types of JDB

Type 1: JDBC-ODBC Bridge

Type 2: Native-API/partly Java driver

 Net-protocol/all-Java driver

 Native-protocol/all-Java driver

6 refer to the link: http://www.w3schools.com/sql/default.asp

 44

In my project, the type1 (JDBC-ODBC) was selected as my JDBC driver, because the
Access

•
Esta DBMS involves two steps: (1) loading the driver
and (2) establishing the connection.

1.

The cod

adopts ODBC as the interface of its database.

Establish a connection
blishing a connection with the

Loading the Drivers

e used for loading the driver is:

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

Table 24 Load the Drivers

2. Establishing the Connection

After loading a driver, it is ready for establishing the connection with the DBMS.

String url="jdbc:odbc:driver={Microsoft Access
 Driver(*.mdb)};DBQ=Recipes.mdb";
con = DriverManager.getConnection(url, "mylogin",
 "mypassword");

Table 25 Establis the Connection

A S t SQL statement, is the object that the program
sends to the DBMS. The

Statement stmt = con.createStatement();

he or

Con is an open connection and I used it to retrieve values from ResultSets (The dataset
that contains the querying results).

ta ement object, which includes the
 working procedure of it is:

First, create a Statement object

T n, assign the target SQL statement and invoke the appropriate execution method. F
instances, for a SELECT statement, the method to use is executeQuery; For statements
that create or modify tables, the method to use is executeUpdate.

String update = “UPDATE table_name SET column_name = new_value

 WHERE column_name = some_value”;

stmt.executeUpdate(update);

Table 26 Execute the Update

 45

String delete = “DELETE FROM table_name

 WHERE column_name = some_value”;

stmt.executeUpdate(delete);

Table 27 Execute the Delete

String insert = “INSERT INTO table_name

 VALUES (value1, value2,....)”;

stmt.executeUpdate(insert);

Table 28 Execute the Insert

String query = “ SELECT column_name(s) FROM table_name”;

ResultSet rs = stmt.executeQuery(query);

Table 29 Execute the Query

Every time the invoked method requires the return results from the remote Database,
JDBC returns the results in a ResultSet object. The variable rs, the instance of
ResultSet , contains the rows of the columns. In order to access the values of it, the
program should address each row and retrieve the values according to their data types.
The method next is used to move the pointer to the data row. The first time to call the
next method of the rs, the pointer is moved to the first row. And the later successive
invocations of that method move the pointer one row down at a time, from the top to the
bottom.

To retrieve the values in a ResultSet object, the method getString should be called; it is
possible to retrieve all the basic SQL types with it.

• Key Functions Implementation

My recipe database offers the main functions: insert recipe, edit recipe, delete recipe,
research recipe and im of them are listed

elow:

1. Insert the Recipe (insert values into the recipe table and the ingredient table)

nts into the ingredient table. The ingredients are split into three parts and stored,
amely quantity, unit, and ingredient. The implementation code is shown below:

port recipe automatically. The implementations
b

When the operator inserts the recipe information manually, the recipe title, category,
direction values will be filled into the recipe table and the recipe ingredient descriptions
will be filled into ingredient table. The procedure is: first insert the recipe title, category
and direction into the recipe table and get a recipe ID (assigned by the program
automatically). After the recipe ID is obtained, insert the recipe ID and the recipe
ingredie
n

 46

Figure 7 the Code for the method ‘Insert the Recipe’

cord in the recipe table can be found. And then the field values such as title, category
rectly. In the ingredient table, the

s matched to the target recipe ID
rst, and then insert the new values into the table. The implementation code is shown

below:

Class ModifyRecipe

public boolean insert (String title, String categ, String direction, String[][] ingredient)
{
 try{
 stmt = con.createStatement();
 String insert1 = "INSERT INTO Recipe (Title, Category, Direction) VALUES ('"
 + title +"', '"+categ+"', '"+direction+"') ";
 stmt.executeUpdate(insert1);
 String IDquery = ("SELECT Rec_ID FROM Recipe")
 rs1 = stmt.executeQuery(IDquery);
 int Rec_ID;
 rs1.next();
 do{
 String Rec_ID = rs1.getString("Rec_ID");
 Rec_ID = Integer.parseInt(Rec_ID1);
 } while(rs1.next());
 String s1 = "", s2 = "", s3 = "";
 for(int i = 0; i < 20; i++)
 {
 s1 = ingredient[i][0];
 s2 = ingredient[i][1];
 s3 = ingredient[i][2];
 }

 String insert2 = "INSERT INTO Ingredient (Rec_ID, Quantity, Unit, Ingredient)"
 + "VALUES (" + Rec_ID +", '" + s1 + "', '"+ s2 + "', '"+ s3 +"')";
 stmt.executeUpdate(insert2);
 return true;
 }
 catch (Exception e){return false; }
 }

2. Edit the Recipe (Modify the values in the recipe table and the ingredient table)

The users could modify the values in the recipe table and the ingredient table through
selecting the recipe ID. According to the recipe ID selected by the user, the target recipe
re
and direction could be replaced by the new values di
program will delete all the ingredient description record
fi

 47

Figure 8 The code for the method 'edit the recipe'

te the values in the recipe table and the ingredient table)

ccording to the recipe ID selected by the user, the corresponding records in the recipe
table and in the ingredient table can be found and deleted easily by using SQL statement:

"DELETE FROM Recipe WHERE Rec_ID = "+id;
"DELETE FROM Ingredient WHERE Rec_ID = "+id;

Class ModifyRecipe

public boolean edit (int id,
String title, String categ, String direction, String[][] ingredient)
{
 try {
 stmt = con.createStatement();
 String update = "UPDATE Recipe SET Title = '"+title+"', "+
 "Category ='"+categ+"', "+"Direction =
 '"+direction+"'"+"WHERE Rec_ID = "+id;
 stmt.executeUpdate(update);
 String s1 = "", s2 = "", s3 = "";
 String delete = "DELETE FROM Ingredient "+
 "WHERE Rec_ID = "+id;
 stmt.executeUpdate(delete);
 for(int i = 0; i < 20; i++)
 {
 s1 = in
 s2 = ingredient[i][1];
 s3 = ingredient[i][2];

 }
 String insert = "INSERT INTO Ingredient (Rec_ID, Quantity, Unit,
 Ingredient)"+ "VALUES ("+ id+", '"+s1 +"', '"+ s2 +

 "', '"+ s3 +"')";
 stmt.executeUpdate(insert);

gredient[i][0];

 return true;
 }
 catch (Exception e){return false; }
 }

3. Delete the Recipe (dele

A

 48

Figure 9 The code for the method 'delete the recipe'

4. Search Recipes

As mentioned above, the users can search for a recipe by their interests such as the title,
the ingredient and the category of the recipe. In my query algorithm, firstly the program
checks if the recipe category is specified by the users. If the recipe category was specified,
those recipes matched by this specified category can be found. Then the program checks
which recipes contain the keywords input by the users in the title and ingredients. At last
the program put those matched recipe IDs and titles into two Vector objects: “id” and
“names”, and then invoke the RecipeFrame class to display them.

Here, an ‘isElement(a, b)’ method was used to check if String b contains String a. In this
program, ‘isElement(a,b)’ was used to check if the recipe title and ingredient contain the
keywords input by the users.

Class ModifyRecipe

public void delete (int id)
{
 try{
 stmt = con.createStatement();
 String delete1 = "DELETE FROM Recipe "+
 "WHERE Rec_ID = "+id;
 stmt.executeUpdate(delete1);
 String delete2 = "DELETE FROM Ingredient "+
 "WHERE Rec_ID = "+id;
 stmt.executeUpdate(delete2);
 }
 catch (Exception e) {}
}

 49

Figure 10 The code for the method 'search the recipe'

Class ModifyRecipe

public void searchRecipe(String title, String ingredient, String categ,
Vector id, Vector names)
{

try{
 if (categ != null)
 {

 String get_ID = ("SELECT Rec_ID, Title, Direction FROM Recipe "+

 "WHERE Category ='" + categ + "'");

 String get_ID = ("SELECT Rec_ID, Title, Direction FROM Recipe ");

ent(ingredient, ring))

etString("Rec_ID");

d(rtitle)}
 }
 }
 }
 }
 catch (Exception e) {}
}

 stmt = con.createStatement();
 rs = stmt.executeQuery(get_ID);
 while(rs.next())
 {
 String rtitle= rs.getString("Title");
 String ring = rs.getString("Direction");
 if (isElement(title, rtitle)&&isElement(ingredient, ring))
 {
 String ID = rs.getString("Rec_ID");
 id.add(ID);
 names.add(rtitle);
 }
 }
 }
 else {

 stmt = con.createStatement();
 rs = stmt.executeQuery(get_ID);
 while(rs.next())
 {
 String rtitle = rs.getString("Title");
 String ring = rs.getString("Direction");
 if (isElement(title, rtitle) && isElem
 {
 String ID = rs.g
 id.add(ID);
 names.ad

 50

5. Import External Recipe

Referring to the requirement specification as mentioned before, the algorithm for
implementing the import function is quite complicated. Therefore it is better to explain
the algorithm by some flow charts.

Chart [Flow01] explains how the primary model for the import function is implemented.
This primary model is implemented in the method: Extract (), which returns a value of the
int type. The implementations of other models are illustrated in detail by the following
flow charts.

Chart [Flow02] explains how the model used for checking if the external recipe file valid
is implemented. This model is implemented in the method: ValidRecipe (), which returns
a value of the boolean type.

Chart [Flow03] explains how the model for extracting the useful paragraphs from the file
is implemented. This model is implemented in the method: ExtractParagraph (), which
doesn’t return any value but generate a file which holds the extracted paragraphs.

Chart [Flow04] explains how the model for extracting the recipe direction part is
implemented. This model is implemented in the method: ExtractDirection (), which
returns a value of the String type.

Chart [Flow05] explains how the model for extracting the recipe category is implemented.
This model is implemented in the method: ExtractCategory (), which returns a value of
String type.

Chart [Flow06] explain how the model for extracting the recipe ingredient part is
implemented. This model was implemented in the method: ExtractIngredient (), which
doesn’t return any value but put the recipe ingredient into the database directly.

First, two private fields are defined in the ExtractInformation class:

private final static int RecipeExist = -1;
private final static int InvalidRecipe = -2;

The Flow charts are shown below:

 51

Read external recipe file

Extract useful paragraph, generate new
 file: ‘paragraph’ [Flow03]

If file contains
completed (valid)
recipe [Flow02]

Extract recipe direction from file: ‘paragraph’ [Flow04]

External recipe file and file’s name are transferred into this method
from the Controller (We suppose the file’s name is recipe title)

If recipe has existed in
database

Extract recipe category [Flow05]

Put recipe title, category and direction into
database, this recipe ID was generated

automatically by the DBMS

Extract the recipe ingredient and put them into database
(Extract the quantity, unit and ingredient from every ingredient

description line respectively), return 0. [flow06]

Return
InvalidRecipe

Return
RecipeExist

Figure 11 Flow01

 52

 Yes

 No

 Yes

 No

 No

 Yes

 No

 Yes

 No

 Yes

Define signatures: kw1= ingredient, kw2=direction, kw3=procedure, kw4=instruction

External recipe file was transferred into this method

Read recipe file into BufferReader object: br

if br is empty

Read next line

If br contains at least 3 lines

Read next line

Read next line

While this line contains
kw2 or kw3 or kw4

Return true

While this line contains kw1

If br contains at least one line

Return false

Figure 12 Flow02

 53

Figure 13 Flow03-a

 Yes

 No

 No

 Yes A

 Yes

 No

 No

 Yes

 No
 B

Append this line to a Vector object v1

Read recipe file into BufferReader object: br

Define signatures: kw1= ingredient, kw2=direction, kw3=procedure, kw4=instruction

if br is empty

Read next line

While this line
contains kw1

While br is empty

Read next line

If this line contains kw1 Clear v1

 54

Figure 14 Flow03-b

 B

 No A

 Yes

 Yes

 No

 No

 Yes

Write the contents in v1 on
the new file ‘paragraph’

Write the contents in v2 on
the new file ‘paragraph’

Read next line

Append this line to a Vector object v2

While br is empty

While this line contains
kw2 or kw3 or kw4

While br is empty

 55

Figure 15 Flow04

 Yes

 No

 No

 Yes
 Yes

 No

 Yes

 No

 Yes

Define signatures: kw2=direction, kw3=procedure, kw4=instruction

Read recipe file into BufferReader object: br

While br is empty

Read next line

While this line contains
kw2 or kw3 or kw4

While br is empty

Read next line

Append this line to a String: sum

Space line

While br is empty

Read next line

Return sum

 56

Figure 16 Flow05

 Yes

 No

 No

 Yes

 Yes

 No

 No

 Yes

Retrieve ‘Name’ and ‘Category’ values from the Material
table, and put these values into a ResultSet object: rs

If cursor point to the last row in rs

Cursor move to next row

Recipe title contains materials
name at this row

Get the category values in this row
Return category values

Retrieve ‘Name’ and ‘Category’ values from the Material
table, and put these values into a ResultSet object: rs

If cursor point to the last row in rs

Cursor move to next row

Recipe direction contains
materials name at this row

Get the category values in this row
Return category value

Define category=”Others”
return category value

 57

 Yes

 No

 No

 Yes

 Yes

 No

 Yes

 No

 D A

Read file ‘paragraph’ into BufferReader object: br

While br is empty

Read next line

Define signatures: kw1=ingredient

If this line contains kw1

While br is empty

Read next line

Space line

Retrieve ‘Name’ values from the Unit table put
these values into a ResultSet object: rs

Exit

Figure 17 Flow06-a

 58

Figure 18 Flow06-b

 A
 D

 No
 No

 Yes

 No No

 Yes

 No

 No

 Yes

 No

 Yes

 D B C

This line contains
unit word

Append it to a Vector object: v2

Append it to Vector object: v1

Second token is numerical

Append it to Vector object: v1

First token is numerical

The previous token
is numerical

 59

Figure 19 Flow06-c

 D B C

Append it to v2

Append the entire rest tokens to Vector object: v3

Convert all the elements in v1, v2 and v3 to String data type.

Insert them into Ingredient table as ‘quantity’, ‘unit’ and
‘ingredient’ contributes respectively

 60

2.3.3 View Implementation

Figure 20 GUI Component Hierarchy Tree

 Click A to Open B B Belong to A

JFrame
RecipeQueryFrame

JFrame
UserFrame

JFrame
AdminFrame

JFrame
RecipeFrame

JTabbedPanel
Entire Interface

JLabel JButton JComboBox

JPanel
EditPanel

JPanel
DeletePanel

JPanel
ImportPanel

JPanel
InserPanel

JPanel
PersonSetting

JLabel JButton JTable

JComboBox

JLabel JButton JTable

JComboBox

JLabel JButton JTable

JComboBox

JLabel JButton

JComboBox

JLabel JButton

A B A B

 61

2.3

The implementations of the key controllers are illustrated by the UML sequence diagrams
as below.

.4 Controller Implementation

The controller acts as the bridge between the user and the application. The controller
receives the input from the user and informs the model and view to perform the
corresponding actions. For example, when the user clicks the mouse button or chooses a
menu item, it is the controller that determine how the application should response.

 62

• Diagram 01 – controller for system entrance frame

When the ‘General User’ button is clicked by the user, the UserFrame class was called
and then the search recipe window is opened. When the ‘Administrator’ button is clicked,
the RecipeQueryFrame class will check the administrator’s id and password. If bo
and password are correct, the AdminFrame class is called and then the modify recipe
database window is opened. Otherwise, an error message will be shown to the user.

th the id

Figure 21 Diagram 01: System Entrance Frame Sequence Diagram

 Users

 Entrance
 frame

 Click‘Administrator’ Check
 Button r password

 Click ‘General User’
 Button

 Search recipe window open

 Modify database window open

RecipeQuery
Frame

UserFrame

AdminFrame

 63

• Diagram 02 – controller for inserting new recipe panel

When the ‘Insert’ button is clicked by the user, the InsertPanel class firstly checks if the
s

method

therwise, a ‘false’ value will be returned and the message ‘This recipe has existed in
database’ will be shown to the user. The ‘Clear’ button is used for initializing this panel.

Fig m

recipe data input by the user completed or not. The ‘insert’ method in ModifyRecipe clas
will be called to insert the new recipe into the database if the input recipe data is
completed. If the insert action is successful, a ‘true’ value will be returned by the
and the message ‘New recipe has been inserted into database’ will be shown to the user.
O

 Users

 Go to Save
 Panel

 completed
 Click ‘Insert’ Button recipe
 Data

 Insert new recipe
 into database

 Return result Return result
 messages

 Click ‘Clear’ Button Initialize Insert
 panel recipe

InsertPanel

ModifyRecipe

ure 22 Diagram 02: Insert New Recipe Sequence Diagra

 64

• Diagram 03 – controller for editing recipe panel

he
ss

cipe data is
ompleted. The message ‘Recipe has been updated in database’ will be shown to the user.

When the ‘Update’ button is clicked by the user, the EditPanel class firstly checks if t
recipe data input by the user completed or not. The ‘edit’ method in ModifyRecipe cla
will be called to edit the old recipe data in the database if the input re
c

 Users

 Go to Edit
 Panel

 completed
 Click ‘Update’ recipe
 Button data

 Update recipe data
 in database

 Return messages Return void

 Click ‘Clear’ Button Initialize
 panel

EditPanel

ModifyRecipe

Figure 23 Diagram 03: Edit Recipe Sequence Diagram

 65

• Diagram 04 – controller for delete recipe panel

When the ‘Delete’ button is clicked by the user, the DeletePanel class firstly checks if the
recipe ID is selected by the user. The ‘delete’ method in ModifyRecipe class will be
called to delete the recipe from the database if the recipe ID is selected. The message
‘Recipe has been deleted from database’ will be shown to the user.

Figure 24 Diagram 04: Delete Recipe Sequence Diagram

 Users

 Go to Delete
 Panel

 get
 Click ‘Delete’ recipe
 Button ID

 Delete recipe data
 in database

 Return void
 Return messages

 Click ‘Clear’ Button Initialize
 panel

DeletePanel

ModifyRecipe

 66

• Diagram 05 – controller for importing external recipe panel

led to
d by this

e shown to the
ser. If the external file was imported successfully, the RecipeDisplay class will be called

to display this recipe information.

Figure 25 Diagram 05: Import Recipe Sequence Diagram

When the ‘Browse’ button is clicked by the user, a dialog for browsing and choosing file
is opened. When the ‘Import’ button is clicked, the ImportPanel class will check if any
external file is selected. The ‘Extract’ method in ExtractInformation class will be cal
import the recipe data from the file. The corresponding value, which is returne
method, will decide whether the ‘Successful’ or ‘Fail’ message should b
u

 Users
 Go to Import
 Panel

 Click ‘Browse’
 Button Select a
 external
 Click ‘Import’ recipe file
 Button

 Extract recipe

 data, import them
 into database
 Return result
 Return messages

 Click ‘Cancel’ Button Initialize
 panel

 Display recipe information

ImportPanel

ExtractInf
ormation

Recipe
Display

 67

• Diagram 06 – controller for search recipe frame

When the ‘Ok’ button is clicked by the user, the ‘searchRecipe’ method in ModifyRecipe

Figure 26 Diagram 06: Search Recipe Frame Sequence Diagram

class will be called to search recipes from the database according to the input data by the
user. The message ‘No recipe matched’ will be shown to the user if there aren’t any
matched recipes found in the database. If some matched recipes is found, the
RecipeFrame class will be called to display these recipes’ information.

 Users
 Go to User
 Frame

 Click ‘Ok’
 Button Search recipe

 from database

 Corresponding
 Return result recipes was
 Return message found out

 Initialize
 Click ‘Clear’ Button panel

 Display recipes’ information

UserFrame

ModifyRecipe

Recipe
Frame

 68

• Diagram 07 – controller for changing password panel

rd entered by the user are correct. If both the

Figure 27 Diagram 07: Change Password Panel Sequence Diagram

When the ‘Modify’ button is clicked by the user, the PerPanel class will check if both the
riginal password and the new passwoo

original password and the new password are correct, the message ‘New password has
een admitted’ will be returned. Otherwise, an error message will be returned. b

Users

 panel

 Go to Personal Setting panel

 Check old password
 Click ‘Modify’ Button new password

 Return message

 Click ‘Clear’ Button Initialize

PerPanel

 69

2.4 System Test and Results

nce the entire system has been implemented, it has to be fully tested to check if it meet
e qu t.

In essence the system testing focuses on the whole system, not the individual parts.

There are two types of Software System Test: functional test and structural test.

• Functional Test

The functional test is to separate the program into many function models and then based
on the abstract data check the generated test results from each function models. The
functional test is to check if all the functions can be performed normally and never
considers the program’s internal structure.

• Structural Test

Structural test is designed and performed according to the internal structures of the program. The
tester should check every branch in the program and get the test results. Compared to the
functional test, the structural te the program. Although the

ser prefers to do the functional test based on program specification guide, some latent errors can
e found out through the structural test rather than the functional test.

 this chapter, I will give out some key functional tests and their results, the system
ructure test will be shown in the appendix.

irst, I will give an overview about the GUI (Graphic user Interfaces) of the system.

O
th re irement specification or no

st focuses on the internal structure of

u
b

In
st

F

• System Entrance Interface

Figure 28 the System Entrance Interface

 70

• General User Interface

Figure 29 the General User Interface

• Administrator Interface (Insert Panel, Edit Panel, Delete Panel, Import Panel,
Personal Setting Panel)

Figure 30 the Administrator Interface-Insert Panel

 71

Figure 31 the Administrator Interface-edit panel

Figure 32 the Administrator Interface-delete panel

 72

Figure 33 the Administrator Interface-import panel

Figure 34 the Administrator Interface-personal setting panel

 73

The recipe database system offers some basic functions such as: login, search recipe,
modify recipe database, modify administrator’s information etc. Here, I focused on the
functions: Administrator Login, Search Recipes and Modify Database.

• Search the Recipes

Assume that there are 4 recipes already exist in the database.

Fig le

When the user clicks the ‘General User’ button on the system entrance interface, the
sea

. Test 1:

The input ingredient’s keyword is pepper and the recipe category is beef:

ure 35 the example recipe tab

rch recipe interface will appear.

1

Figure 36 input for the test 1

Press the Ok button, two matched recipes in the database have been found.

 74

The Recipe information display result is shown as below:

Figure 37 result of the test 1

. Test 2:

 the recipe ingredient keyword is ‘banana’,
nd the recipe category is not specified.

2

The input recipe title keyword is ‘cake’,
a

Figure 38 the input for the test 2

 75

Press the Ok button, we can get the following result:

Figure 39 the result of the test 2

No recipe is matched by those input keywords.

• Administrator Login

Assume that there is one administrator record already exist in the database. The name is:
linlinwang and the password is: 19781130.

Figure 40 the example admin table

hen the user clicks the ‘Administrator’ button on the system entrance interface, a check

administrator’s information window will appear which indicates the user to input name
and password.

W

Figure 41 the input for the test ‘admin. login’

 76

Click Ok button, the administrator’s interface will be shown.

• Import External Recipe

I will test the following three conditions for importing the external recipe files:

1. The recipe file is valid and it can be imported successfully.
2. The recipe file is invalid.
3. The recipe that will be imported has existed in the database

The import interface is:

Figure 42 the import panel

 77

Click ‘Browse’ button, an open file window will appear:

Figure 43 the window for selecting files

1. Test 1 – valid recipe file is imported successfully

Assume that an external recipe file named “Whipping Cream Pound Cake.txt” was
selected.

Figure 44 a valid recipe file is selected

 78

This recipe file’s content was shown below (.txt format):

Figure 45 the text content of the file ‘Whipping Cream Pound Cake.txt’

Clearly, this is a valid and completed recipe file because the key words, both ‘ingredient’
and ‘direction’, exist and the recipe ingredient and direction description exist as well.

When the ‘Import’ button is clicked, the message: “New Recipe has been added into the
Database” is shown to the user.

 79

Figure 46 successfully insert the recipe 'Whipping Cream Pound Cake'

Then a recipe information window will appear to display this imported recipe:

Figure 47 the display of the recipe “Whipping Cream Pound Cake"

 80

We can find that the recipe category is set to ‘Sweets & Desserts’, because the keyword
‘Cake’ which can match the ‘Sweets & Desserts’ category through the ‘Material table’ in
the database has been found in the recipe title.

Figure 48 the example material table

Moreover, a text file named ‘paragraph.txt’ was generated by the program:

Figure 49 thetemparory paragraph generated during the import

Afte s
records are created in the ‘Recipe table’ and ‘Ingredient table’ respectively.

r the recipe data is imported into the database, one recipe record and 6 ingredient’

 81

Figure 50 the target recipe has been inserted into the recipe table

Figure 51 the ingredients of the targed recipe has been inserted into the ingredient table

2. Test 2 – recipe has existed in the database

Import the recipe file named “Whipping Cream Pound Cake.txt” again. A message
‘Recipe has already existed in database’ will be returned to the user.

Figure 52 the recipe 'Whipping Cream Pound Cake.txt' has already stored in the database

 82

 3. Test 3 – invalid external recipe file
n be two types: the one that lost the keywords information and the one

at doesn’t have the description of the ingredient or direction. Assume that the test file
t.

The invalid files ca
th
we used here has lost the ingredient description part: Mom Best Peanut Brittle.tx

Figure 53 the example invalid file which loses the ingredient description

Then the message: ‘Recipe File is Valid’ will be returned.

Figure 54 the response indicates that the file is invalid

 83

2.5 Summary

In solution 1, the recipe system have been analysed, designed and implemented.

ccording to the “project statement” listed in chapter 1, the recipe system is designed to

 manually
− Import the external recipe files automatically

ul and has achieved the objective of this project.

owever, there are still some limitations in solution 1.

rogram can only import the recipe files which are saved as *.txt format.
The recipe file must contain the special signatures which indicates the start of the recipe

n’ because the system uses these two signatures
 locate where the ingredient and direction description are. In addition, in the original

ragraph’, i.e. the paragraph immediately after the special signature words is

ription or the direction.

ve, the system can only handle a few
number of the recipe files which exactly meet the system requirement. For the rest types

em

improvement and optimization made for the system, especially for the import functions.
That is the motivation for introducing the solution 2!

A
offer the following functions:

− Insert a new recipe record manually
− Modify the items of the recipe record manually
− Delete the recipe record

− Search the recipe by the category manually
− Search the recipe by the ingredients manually
− Search the recipe by the title manually
− Modify the password of the super user

It has fulfilled the requirements defined in the “project statement”, therefore we can say
the solution 1 is successf

H

In solution 1, the p

contents such as ‘ingredient’ and ‘directio
to
recipe files, both the ingredient part and the direction part of the recipe should be
described in the individual paragraphs since the extraction of such contents is based on
the ‘pa
considered as either the ingredients desc

In solution 1, the system simply treats the name of the recipe file as the recipe title since
the recipe title is located randomly in the file and can’t be recognized by the system. For
the category extraction, the accuracy can be increased by filling in as more as possible
ingredients and their categories into the Material table.

As solution 1 still has the limitations listed abo

of the recipe files, the system can only discard them directly. In order to make the syst
more flexible and handle more types of the recipe files, there should be some

 84

3. Solution 2

The solution 2 is a kind of improvement for the solution 1.

As we have known, in solution 1 the user has to manually save the recipe files as *.txt
format and the program can only recognize the recipe file which contains two special
keywords: the ‘ingredient’ and the ‘direction’. And the program simply treats the file’s
name as the title of the recipe.

In solution 2, HTML format recipe files saved on the local disk can be imported directly
without any modification. This means a new algorithm should be found out to extract the
recipe data without the need of any special keywords. And the recipe title should be

he tag
 angle-brackets is the actual name of the tag being discussed. The content within

 the tag. For instance, the
ne has to be mentioned is

me tags such as the line-break tag don’t have
the end tag. Such tags are called empty tags.

The pairs of tag set could include another pairs of tag set. Therefore it is important to
keep the tag set nested within each other. The following figure shows such an example.

found and imported automatically in solution 2.

Obviously, the solution 2 is more convenient and practical, as it can recognize and import
much more recipe files.

3.1 Analysis

3.1.1 HTML Document Analysis

HTML (HyperText Markup Language) consists of tags, which are enclosed in angle-
brackets (< >). The tags typically occur in begin-end pairs, as shown in the following
form:
 <tag> ...content... </tag>

The <tag> indicates the beginning of a tag pair, and the </tag> indicates the end. T
nside thei

a tag pair are formulated according to the rules that defined by
ext within a pair of <I></I> is displayed in the Italian style. Ot

that not all the tags in HTML are paired. So

 85

Figure 55 the nested tag pairs

As the pairs of tag set has defined the rules for formulating and displaying the content, it
is often the case that the arrangement of text within a tag set is irrelevant for the display
on the screen. It means the blank areas in a text file, such as empty lines and extra spaces,
sometimes will be neglected by the HTML parsers. For example, within a “paragraph” tag
set, the text can be stored in one line, or in several separate lines, or with every word on
its own line. However the display of it on the screen will be exactly the same.

3.1.2 External Recipe Files Analysis

Parsing HTML file can be a difficult job, especially in the case that the semantic parsing
is requested. Since the HTML specification is loosely defined and almost no HTML
designer follows it, there could be dozens of ways for implementing a single HTML page.
For instances, the tag name may be uppercase, lowercase or mixed case. Element names
may be uppercase or lowercase, and some end tags may or may not be used (such as </p>,
). Therefore in order to quested, the analysis on as

ore as possible HTML file structures is a must and the design will be a long term
rocess.

 <tag1>
 <tag2>
 ….
 ….

 <\tag2>
 <\tag1>

 well design a HTML parser as re
m
p

A normal recipe web page looks like the following example:

 86

Figure 56 the example HTML page

The source code for that HTML page is displayed as below:

Figure 57 the HTML source code (a) for the example page

 87

Figure 58 the source code (b) for the example HTML page

Figure 59 the source code (c) for the example HTML page

ince the general structure of the recipe has been discussed in solution 1, here I only
nalyze some special distinctions about the HTML recipe file.

• recipe tile

As we all know, each web page has its own title. For the web pages that describe the
recipes, the title of the web page normally contains the recipe title. The title of the HTML
page is encompassed by a pair of HTML tag, such as:
<TITLE>RecipeCenter: Arizona Brown Rice Pilaf</TITLE>

S
a

 88

e by extracting the title of the web page.

ince there are no special tags in the HTML files indicating the recipe category, the
category extraction algorithm here still uses the one adopted in solution 1.

ritten in one single paragraph which consists of many ingredient description lines.

Therefore, we can get the title of the recip

• recipe category

S

• recipe ingredient

The recipe ingredients can be written in any place of the HTML page, so we can’t extract
them according to the special HTML tags. Still, in most the cases, the recipe ingredients
re wa

As analyzed in solution 1, in the paragraph that describes the recipe ingredients, the first
word of each line usually is numerical. The normal, completed ingredient description line
contains quantity, unit and ingredient descriptions.

 89

3.2 Design and Specification

The import process can be separated into three parts: Parsing the HTML Document,

xtraction and Inserting the Recipe into the Database.

.2.1 Parsing the HTML Document

irst of all, the program should extract the text parts from the HTML file (this process can

bviously, it is much more difficult to parse a loose defined language like HTML than a

 javax.swing.HTML.HTMLEditorKit.Parser is one of the key classes for

le. Every time the parser class meets one of those five items, it invokes the relevant

public void parse(Reader in, HTMLEditorKit.ParserCallback callback,

s used to enable or disable the throw of
a urs in the case that a META tag was found.

.2.1.2 HTMLEditorKit.ParserCallback

o

)

 attributes, int position)
ublic void handleError(String errorMessage, int position)

E

3

F
be called parsing HTML). Then a plain text recipe file which doesn’t contain any HTML
tags will be generated and the program will extract the recipe data from this text recipe
file.

O
clearly defined language which doesn’t allow any ambiguous spelling and syntax errors,
such as Java and XML. Fortunately, the javax.swing.text.HTML and
javax.swing.text.HTML.parser packages include classes which can do part of the hard
work.

3.2.1.1 HTMLEditorKit.Parser

The inner class
paring HTML file. The instance of this class reads the HTML file from a Reader (the I/O
class). It looks for the start tags, end tags, empty tags, text and comments in the HTML
fi
callback method in the javax.swing.text.HTML.HTMLEditorKit.ParserCallback class.
The way to connect the instance of the parser class with the instance of ParserCallback
class is to call the public method provided by the parser class:

boolean ignoreCharacterSet) throws IOException

The boolean argument ignoreCharacterSet i
Ch ngedCharSetException, which occ

3

The javax.swing.text.HTML.HTMLEditorKit.ParserCallback class takes charge of how t
parse a HTML file. It provides six callback methods:

public void handleText(char[] text, int position)
public void handleComment(char[] text, int position)
public void handleStartTag(HTML.Tag tag,MutableAttributeSet attributes, int position
public void handleEndTag(HTML.Tag tag, int position)
public void handleSimpleTag(HTML.Tag tag,MutableAttributeSet
p

 90

These methods need to be overridden and put into specific source code to handle the
 care tag set and process the text in between

 a special way.

the HTML document is always encompassed by a pair of
TML tags: <TITLE> and <\TITLE>, and most of titles of the HTML recipe documents

e HTML

 only the title of the recipe but also the information like the
eb site or recipe category. For the latter case, the extra information and the title of the

E>

herefore, in order to extract the title of the recipe much precisely, the program should

.2.2.2 Extraction of the recipe ingredients paragraph

he program checks each line of the HTML recipe file to see whether it meets the

ins one unit word.

h
n
is

that any line which can meet those three conditions is
onsidered as one piece of the recipe ingredient description and any paragraph of the

at least such a line. Therefore when a line

corresponding parsing work. E.g. find out the
in

3.2.2 Extraction

3.2.2.1 Extraction of the recipe title

As analyzed above, the title of
H
contain the recipe titles, therefore the program should extract the title of the HTML
document according to the HTML tag: ‘TITLE’.

Through analyzing plenty of the HTML recipe pages, I found out that most of th
recipe pages have put the title of the recipes into their title. In some cases the title of the
recipe document is just the title of the recipe, and in some other situation the title of the
HTML document contains not
w
recipe are separated by some special signs, such as such as colon ‘:’ or bar ‘|’ or line ‘-’.

For example:

<TITLE>iChef.com Free Recipes - Soups and Stews: Albuquerque Corn Soup</TITL

T
only extract the string after those special signs from the title of the HTML document.

3

T
following conditions:

− The first word of the line is numerical.
− This line conta
− This line contains at most 7 words.

A piece of the common, completed ingredient description usually meets above conditions.
The third condition is used for excluding the exception that some irrelevant lines whic
may meet the first two conditions but doesn’t belong to the recipe ingredient (Based o
my experience, normally the ingredient description lines contain less than 8 words). It
reasonable to make an assumption
c
recipe ingredients description must contain
meets those three conditions is found, then the paragraph where the line belongs to will be
considered as the paragraph of the recipe ingredients description.

 91

3.2.2.3 Extraction of the recipe direction

ection must contain
is word as well. Therefore a complementary table will be established in the database to

store the items of the recipe ingredients like: water, milk, beef etc.

When the program extracts the quantity, unit and ingredients from the ingredients
lementary

table. This is done as follows:

ill
 should

check whether this word belongs to the words group such as article (i.e. the, a),

group, it will be extracted as the recipe ingredient word and put into the complementary
ble (named TempMaterial).

to the

omplementary table--TempMaterial, the program will continually check the rest parts of
e recipe HTML file line by line. If there is any word in the line can be matched by a
ord listed in the TempMaterial table, this line will be extracted as part of the recipe
irection.

owever, some exceptions should be considered: the recipe direction may not contain any
cipe ingredients. For example:

rease a large cookie sheet. Set aside.

Obviously, most of the recipe directions contain the item of the recipe ingredients. For
example, if the recipe ingredient contains ‘milk’, then the recipe dir
th

description line, the ingredient word(s) will be extracted and put into that comp

Check every words of the ingredient description line from the left to the right to see
whether it is numerical or unit word. If it is numerical or unit word, the program w
ignore this word and continue to check the next word. Otherwise the program

conjunction (i.e. and) and adjectives (i.e. such). If this word doesn’t belong to those words

ta

As mentioned before, in most of the cases, the recipe direction is written after the recipe
ingredient. After extracting the ingredient word(s) and filling them in
c
th
w
d

H
re

G

or extracting this kind of recipe direction, another complementary table (named
ommonWord) should be created in the database in advance for storing plenty of typical
erbs which can represent recipe direction, such as: pour, preheat, bake, grease, oil, butter,
tir, mix, fry etc.

 there isn’t any word in the TempMaterial table found in this line, the program will
heck whether there is any word in the CommonWord table found in this line. If there is,
is line is considered as part of the recipe direction and the program will continue to

heck the next line. The extraction program of recipe direction should stop when it
ncounters a line which contains neither any word in the TempMaterial table nor any
ord in the CommonWord table.

.2.2.4 Extraction of the recipe category
The way to extract the recipe category in solution 2 is the same as the way used in
solution 1, so please refer to solution 1.

F
C
v
s

If
c
th
c
e
w

3

 92

3

.2.2.5 Validation of Recipe File

edients paragraph extracted from the HTML recipe file, or
ion can be found after the extraction of the recipe ingredients

.2.3 Inserting the Recipe into the Database

 into the Recipe table

fter extracting the recipe title, category and direction, the program should convert these
alues into the proper data types which are consistent with the data types defined in the

database, and then insert them into the recipe table in the database. The process of
inserting data into the database is the same as the process in the solution 1.

3.2.3.2 Inserting the recipe ID and recipe ingredient’s quantity, unit, and ingredient

into the Ingredient table

After extracting the ingredient description paragraph, the program will extract the
quantity, unit and ingredient these three parts. The algorithm of extracting the quantity,
unit and ingredient is similar with the algorithm used in solution 1.

If there isn’t any recipe ingr
ere isn’t any recipe directth

paragraph, the recipe file will be considered as invalid recipe file.

3

ection3.2.3.1 Insert the recipe title, category and dir

A
v

 93

3.3 Implementation

In solution 2, the key improvement of the system is to re-write the extraction model part:
ExtractInformation class. Here I name the new class as ExtractInformation02 .

3.3.1 The Overview of the Implementation
The UML class diagram is illustrated as below:

Figure 60 the UML class diagram for the extraction class

Next, I will focus on how the algorithm of extracting and importing the recipe data is
implemented.

The procedure of the import process is illustrated by the following flow chart:

 94

Figure 61 the procedure of the import process

Parse HTML recipe file, extract the recipe title
and generate a new text recipe file.

Extract recipe ingredient and direction from the
text recipe file.

Define the recipe category depending on
recipe title or direction.

Is this file valid recipe
file?

Does this recipe exist in
database?

Put the data of recipe ingredients into the
Ingredient Table in the database.

Put the recipe title, category and direction into
the Recipe Table in the database.

Exit

Exit

 95

Through the ExtractInformation02 class diagram, we can see the key function models,
Parsing the HTML Document, Extraction and Inserting the recipe into the Database, are
implemented by the methods in the ExtractionInformation02 class. I will use the flow
charts to explain these key models.

3.3.2 The Implementation of Parsing the HTML Document
The implementation process of parsing the HTML document is illustrated by the
following flow chart:

 96

Figure 62 the flow chart for parsing the HTML Document

 97

According to the specification of parsing the HTML documentation, the Outliner class is
esigned to inherit the abstract class--HTMLEditorKit.ParserCallback and override the
llowing three methods:

L.Tag tag, MutableAttributeSet attributes, int position)
g tag, int position)

)

Callback
allback, Boolean ignoreCharSet) method will be invoked and the parsing action will be

en the beginning HTML tag is encountered, the handStartTag () method will be called;
 tag is encountered, the handleEndTag () method will be called and the

 encountered.

ored in an instance of Vector
ile with the content of v for

 the one of the
 some special operations when

e encountered.

urrently there are four kinds of HTML tags need to be handled specially in

g. Once the beginning TITLE tag encountered, the
ner class), named “level”, equal to 1.

ag. If level == 1, the
the HTML document and

aragraph needed. These tags
cate a new paragraph will be generated in

e HTML document. Consequently, when these tags are encountered, an empty line
ext follow the corresponding structure.

nt there should be a new line started. These tags are: BR
ered, the program sets the flag variable (belongs to

he handleText () method, the program
e text as a new items into the

 will treat the text as part of one line which will be

TR” tag which indicates a table row occurs. Some HTML recipe
rmat the layout of the ingredients, i.e. the amount, unit and

e pair of “TR” tags. And there will be
 of tags, such as font style and size, in between the pair of “TR” tags, i.e.

ere are HTML tags nested. In order to keep one piece of ingredients in one line, here the
rogram should be able to neglect all the tag pairs except “BR”, and “LI” in between, and
ppend the text together and store them into the vector v.

d
fo

handleStartTag(HTM
handleEndTag(HTML.Ta
handleText(char[] int position

When parsing a HTML document, the parse (Reader r, HTMLEditorKit.Parser
c
performed by the second argument, the instance of HTMLEditorKit.ParserCallback class.
Wh
when the closing
handleText () will be called when the text is

During the parsing work, all of the text encountered is st
class, named v. After that the program will generate a text f
the later extraction. In order to keep the layout of the text file the same as
previous HTML document, here the program should do
some special tags ar

C
handleStartTag () method.

The first one is the “TITLE” ta
program sets a flag variable (belongs to the outli
Thus in the later handleText () method, the program will check this fl
program knows the text within this pair of tags is the title of
will be stored.

The Second one is the beginning tags that indicate a new p
are: BODY, TABLE, P and UL. These tags indi
th
should be added into v to insure the layout of the t

The Third is the tags that represe
and LI. Once these two tags encount
outliner class), named “on”, equal to 2. Thus in t
will check this flag. If on ==2, the program will insert th
vector v. Otherwise, the program
appended with the next text.

The fourth one is the “
pages use “table” to fo
ingredient name are separated in each cell within on
some other pairs
th
p
a

 98

The source code of the Outliner class is shown as below:

rivate Writer out;
private String title=null;
private int level =0, on = 0;
private Vector v=new Vector();
public String line = System.getProperty("line.separator", "\r\n"), line1 = “”;

public void handleStartTag(HTML.Tag tag,MutableAttributeSet attributes, int position)
 {
 this.level =0;
 if (tag == HTML.Tag.TITLE) level = 1;
 if (tag == HTML.Tag.BODY || tag == HTML.Tag.TABLE || tag == HTML.Tag.P||
 tag == HTML.Tag.HR || tag == HTML.Tag.DIV)
 { v.add (this.line1); v.add(this.line); this.line1="";}
 else if (tag == HTML.Tag.BR || tag == HTML.Tag.LI) this.on = 1;
 else if (tag == HTML.Tag.TR) this.line1="";
 try{out.flush();}
 catch (IOException e) {System.err.println(e);}} // end method

public void handleEndTag(HTML.Tag tag, int position)
 {
 if (tag == HTML.Tag.TR)
 { this.on=2; v.add(this.line1); line1="";}
 else if (tag == HTML.Tag.BODY || tag == HTML.Tag.TABLE ||
 tag == HTML.Tag.P || tag == HTML.Tag.UL)
 v.add(this.line);

 //work around bug in the parser that fails to call flush
 if (tag == HTML.Tag.HTML) this.flush();

public void handleText(char[] text, int position)
{
 String s = new String(text);
 if (this.level ==1) this.title= s;
 else{if (this.on==1){v.add(s); this.on = 0;}
 else this.line1 = this.line1+" "+s; } // end else
 try {out.flush();} // end try
 catch (IOException e) {System.err.println(e);}} // end method

public void flush() {
 try {out.flush();}
 catch (IOException e) {System.err.println(e);}
} // end method

private class Outliner extends HTMLEditorKit.ParserCallback {
p

Figure 63 the source code of the Outliner class

 99

3.3.3 Extraction
The implementation process of the extraction modules is shown as below:

Figure 64 the flow chart for Extraction

The flow chart of the method for extracting an entire paragraph is shown as below:

 100

Figure 65 the flow chart for extracting an entire paragraph

aragraph is shown as below:

The flow chart of the method for checking if the paragraph is the recipe ingredient
p

 101

Figure 66 the flow chart for checking the recipe ingredient paragraph

The flow chart of the method for extracting the recipe direction is shown as below:

 102

Figure 67 the flow chart for extracting the recipe direction

 103

3.3.4 Inserting the Recipe into the Database
The flow chart of the method for inserting the recipe ingredient into the TempMaterial
table is shown as below:

Figure 68 the flow chart for inserting the recipe ingredient into the TempMaterial table

 104

As the algorithm for inserting the recipe data into the database is similar with the one
art for that method could also refer to the one in solution 1. used in solution 1, the flow ch

 105

3.4 Results and Test

I will test the import function from the following three conditions:

4. The recipe file is invalid.
5. The recipe file is valid and it can be imported successfully.
6. The recipe that will be imported has already existed in the database

3.4.1 Import the Invalid Recipe File

The following web page is the index page of the CNN website, obviously it is not a recipe
file.

Figure 69 the example page 'CNN website'

 106

Wh box is returned:

en the Import button is clicked, the error message

Figure 70 the error message is pop out when dealing with the invalid recipe file

3.4
The id recipe file. One is to test on a
ommon valid HTML recipe file; the other is to test on a valid HTML recipe file of which

the ingredient description part is written in the table format. Here the tests on both of
these two cases have been done.

3.4.2.1 Test 1
The test 1 is to test on the common valid HTML recipe file. The title of the recipe is is
‘Brocco Taco Salad’, as shown in the following figure.

.2 Import the Valid Recipe File
re are two cases for testing the import of the val

c

 107

Figure 71 the example HTML page 'Brocco Taco Salad'

The source code for the example HTML page is:

Figure 72 the source code for the example HTML page 'Brocco Taco Salad'

The title of the HTML file is: All Recipes | Salad | Brocco Taco Salad, the program
should extract the recipe title ‘Brocco Taco Salad’, which is presented after the last
sign ‘|’.

This recipe title contains a material keyword, salad, which can be matched to the one
in Material table; the recipe category also can be defined, through the relationship
between th

e Material table and Category table.

Figure 73 the example material table

 108

The HTML source code of the recipe ingredient and direction parts is shown as below:

Figure 74 th ection parts

e newly generated text recipe file. It
is show as below:

e source code of the recipe ingredient and dir

The recipe ingredient description is written in list format. As mentioned above, the
HTML ‘LI’ tag can be handled specially during parsing the HTML document, so the
layout of the recipe ingredient paragraph is kept in th

Figure 75 the newl generated txt paragraph

 109

The recipe title is: ‘Brocco Taco Salad’ and its category should be Vegetable & Fruit.

he imported recipe display result is shown as below:

T

Figure 76 the display of the imported recipe

3.4.2.2 Test 02
Here is another valid HTML recipe file (as shown in the following figure), of which the
recipe ingredients are written in the ‘table’ format.

Figure 77 the HTML page, of which the recipe ingredients are written in the table format

 110

The ingredient description is written in the table format.

Figure 78 the HTML source code of the ingredient description

We can find that the quantity, unit and ingredient are separated in each cell within one
pair of “TR” tags. And there are some other pairs of tags, such as font style and size, in
between the pair of “TR” tags. Through handling the ‘TR’ tag in special way, each piece
of the ingredient description is kept in one line (Otherwise, the quantity, unit and
ingredient will be separated in different lines). The new generated recipe text file is
shown as below:

Figure 79 the extracted txt paragraph of the ingredient description

 111

The display result of the imported recipe is:

Figure 80 the display result of the imported recipe (test 2)

 112

3.5 Summary
The solution 2 is a kind of upgrade version for solution 1. Compared to solution 1, the

ajor improvement of solution 2 is to introduce a new import function. A new algorithm
ake the system capable of importing the external HTML recipe files

rectly.

enerally speaking, solution 2 indeed conquers some limitations existing in solution 1
d enhances the flexibility and compatibility of the system.

he process of the importing is implemented by the following three steps:
1. Parse the HTML document into a text file called: RecipeFile.txt,
2. Extract the recipe data from RecipeFile.txt
3. Insert the extracted recipe data into the database.

, the system can recognize and extract the recipe title by locating the pair of
TML tags: <Title> and </Title>. Compared to the title extraction method used in
lution 1, this way is more intelligent and can increase the accuracy.

he extraction of the recipe ingredients follows the rules that: there must be at least one
andard ingredient descriptive item (line) which consists of quantity, unit and ingredient
scription in the recipe ingredient description paragraph, for example:

When a standard ingredient descriptive item (line) is found out, the program will treat the
ragraph which this item (line) belong to as the paragraph describing the recipe

or the direction part, the system extracts it according to the recipe feature ingredients
uch as beef, pork, flour and etc.) and some typical words which may appear in the
rection such as mix, stir, grease and etc. By using this method, the extraction of the
rection part is elaborated to the line based level. Compared to the ‘paragraph’ based
traction used in solution 1, this method make the system more semantic oriented and

e accuracy.

Although solution 2 has been able to import more kinds of recipe files and achieve higher
curacy on the recipe extraction than solution 1 does, there are still some weaknesses in

s mentioned above, the HTML specification is loosely structured and there are many
fferent ways (by using different tag pairs) to describe the content but display in the
me way. Therefore, in some cases when the HTML recipe files are encoded in some
formal or uncommon ways, the system cannot recognize and import them.

e reason, right now the system can only handle the HTML
cipe file with a single frame. The development of handling the HTML recipe file with

multiple frames inside would be part of the future work.

m
is adopted to m
di

G
an

T

In solution 2
H
so

T
st
de
1 cup hot water

pa
ingredient.

F
(s
di
di
ex
increase th

ac
it.

A
di
sa
in

In addition, due to the tim
re

 113

 114

4. Conclusion

n this report, II introduced the development procedure of a recipe system, which includes

lemented in this project. The main difference between

 can automatically import the HTML recipe file
hich is downloaded from the web site. Moreover, the HTML recipe file doesn’t need to

ontain the special signature key words, which makes the system be able to handle more
kinds of recipe files.

The improvement from solution 1 to solution 2 actually reflects the effects of the
semantic oriented programming. In solution 1, the algorithm of the recipe extraction
mechanically relies on some artificial marks, which are unstable and only existed in some
kinds of recipe files. Solution 2 addressed on the discipline of the recipe content and tried
to find out the semantic essence of it. Therefore, compared to the former, solution 2
provides a more general method, which can handle most of the recipe files.

In a word, the objectives of this project have been fully achieved.

4.1 Future Work
Strictly speaking, the recipe system is still in the prototype version. There are lots of
supplementary works to do. In order to increase the accuracy of the recipe extraction and
make the system more flexible and compatible, the following aspects should be addressed
as the future work:

Firstly, the system may add as more as possible ingredient names into the Material table
in order to make the program be able to accurately recognize the categories for more
recipes. In addition, such a completed Material table can be used in the extraction of the
ingredients as well, which in turn increase the accuracy of the extraction.

Secondly, the system can add a new table in the database to store the descriptive words
which are served as the adjectives of the ingredients. This will accelerate the positioning
of the ingredients and facilitate the ingredients extraction.

Thirdly, as mentioned before, the system should be able to handle the HTML recipe files
with multiple frames in side. The main challenge behind that is how to locate the recipe
frame.

4.2 Personal Conclusion
Through this project, I have gained lots of practical experience and knowledge about the
object-oriented programming, the design of the relational database, and HTML

four major steps: system analysis, design, implementation, and test. The development
process strictly follows the principle of the software engineering.

here are two solutions impT
solution 1 and solution 2 is the type of the recipe files and the import algorithm. In
solution 1, the program can only import the external recipe file which is saved in *.txt
format and must contain some special signature key words such as ‘ingredient’ and
direction’; In solution 2, the system‘

w
c

 115

specification. This helps me well understand the development procedure of the software
ccumulate rich experience for doing further R&D work in computer

icating and

t
oth the specific techniques

engineering and a
cience field. s

In addition, my ability on how to seek, collect, analyze and utilize the information was
nhanced from this project and I better understand the importance of commune

sharing ideas with others.

n a word, as an intending engineer of the computer science, I should say this projecI

definitely gave me the most valuable practical trainings on b
nd the methodology of thinking. a

 116

Reference

 Database and Access
Publishing Company Beijing, 2003

sity Version 1.2, October 2003

gramming’, 2nd Edition

Database Systems, Third Edition’, ADDISON

] Harvery Deitel, Paul Deitel, ‘Java How to Pragram’, Fifth Edition, Pearson Prentice
Hall, 2003

[7] Walter Savitch, ‘JAVA, An Introduction to Computer Science & Programming’,
International Edition, Pearson Prentice Hall, 2004

 [8] Jeffery D. Ullman & Jennifer Widom, ‘A First Course in Database System’, Pearson
Prentice Hall, 1997

[9] Ian Summerville, ‘Software Engineering’, Sixth Edition, ADDISON WESLEY, 2001

[10] H. Garcia-molina, Jeffery D. Ullman & Jennifer Widom, ‘Database Systems, The
Complete Book’, Pearson Prentice Hall, 2002

[11] Bob Villareal, ‘Access 2002 Programming by Example’, Queen, 2002

[12] Philip M. Lewis, Arthur Bernstein & Michael Kifer, ‘Databases and Transaction
Processing, An application-Oriented Approach’, ADDISON WESLEY, 2002

[13] Khawar Zaman Ahmed & Cary E. Umrysh, ‘Developing Enterprise Java Application
with J2EE and UML’, Addison Wesley, 2001

[14] Krik Knoernschid, ‘Java Design: Objects, UML, and Process’, Addison Wesley,
2001

[15] David C. Hay, ‘Requirements Analysis: From Business Views to Architecture’
Pearson Prince Hall, 2002

Web Recourses:

[16] The page of J2SE 1.4.2 API from Sun Java Official web-site
http://java.sun.com/j2se/1.4.2/docs/api/

1] Gonghe Chen & Hanxin Wang & Linrui Liu, ‘The Basic of[

Application Tutorial’, Higher Education

2] Paul Fischer, ‘Introduction to Graphics with JAVA-Swing using the Model-View-[

Control concept’, IMM, Denmark Technical Univer

4] OReilly, ‘Java Networking Pro[

[5] Thomas Connolly & Carolyn Begg, ‘

ESLEY, 2002 W

[6

[17] The page of JAVA Swing Components

 117

http://java.sun.com/docs/books/tutorial/uiswing/components/components.html

[18] The page of JDBC Techniques from Sun Java official web-site
http://java.sun.com/docs/books/tutorial/jdbc/basics/index.html

[19] The page of Software Engineering
http://www.sawin.com.cn/satech.asp?class=UML

[20] The page of Microsoft Office official web-site
http://office.microsoft.com/home/

[21] Database Technologies
http://www.develop.com/us/technology/

 118

List of Figures
Figure 1 Normal Text Recipe File ...14
Figure 2 E-R Diagram..25
Figure 3 Use Case Diagram ..27
Figure 4The MVC model...37
Figure 5 UML Class Diagram..38
Figure 6 the procedure of the design and implementation of the database........................39
Figure 7 the Code for the method ‘Insert the Recipe’ ...47
Figure 8 The code for the method 'edit the recipe'...48
Figure 9 The code for the method 'delete the recipe' ...49
Figure 10 The code for the method 'search the recipe'...50
Figure 11 Flow01...52
Figure 12 Flow02...53
Figure 13 Flow03-a..54
Figure 14 Flow03-b..55
Figure 15 Flow04...56
Figure 16 Flow05...57
Figure 17 Flow06-a..58
Figure 18 Flow06-b..59
Figure 19 Flow06-c..60
Figure 20 GUI Component Hierarchy Tree ...61
Figure 21 Diagram 01: System Entrance Frame Sequence Diagram63
Figure 22 Diagram 02: Insert New Recipe Sequence Diagram...64
Figure 23 Diagram 03: Edit Recipe Sequence Diagram...65
Figure 24 Diagram 04: Delete Recipe Sequence Diagram ..66
Figure 25 Diagram 05: Import Recipe Sequence Diagram..67

8 Figure 26 Diagram 06: Search Recipe Frame Sequence Diagram.....................................6
Figure 27 Diagram 07: Change Password Panel Sequence Diagram69

igure 32 the Administrator Interface-delete panel ...72
Figure 33 the Administrator Interface-import panel ..73
Figure 34 the Administrator Interface-personal setting panel ...73
Figure 35 the example recipe table ..74
Figure 36 input for the test 1..74
Figure 37 result of the test 1 ..75
Figure 38 the input for the test 2..75
Figure 39 the result of the test 2...76
Figure 40 the example admin table..76
Figure 41 the input for the test ‘admin. login’ ..76
Figure 42 the import panel ...77
Figure 43 the window for selecting files..78
Figure 44 a valid recipe file is selected..78
Figure 45 the text content of the file ‘Whipping Cream Pound Cake.txt’79
Figure 46 successfully insert the recipe 'Whipping Cream Pound Cake'80
Figure 47 the display of the recipe “Whipping Cream Pound Cake"80
Figure 48 the example material table...81

Figure 28 the System Entrance Interface ...70
Figure 29 the General User Interface...71
Figure 30 the Administrator Interface-Insert Panel ...71

igure 31 the Administrator Interface-edit panelF ...72
F

 119

Figure 49 thetemparory paragraph generated during the import81
ipe has been inserted into the recipe table82

igure 80 the display result of the imported recipe (test 2) ...112

Figure 50 the target rec
Figure 51 the ingredients of the targed recipe has been inserted into the ingredient table 82
Figure 52 the recipe 'Whipping Cream Pound Cake.txt' has already stored in the database

..82
Figure 53 the example invalid file which loses the ingredient description........................83
Figure 54 the response indicates that the file is invalid ...83
Figure 55 the nested tag pairs ..86
Figure 56 the example HTML page...87
Figure 57 the HTML source code (a) for the example page...87
Figure 58 the source code (b) for the example HTML page..88
Figure 59 the source code (c) for the example HTML page...88
Figure 60 the UML class diagram for the extraction class ..94
Figure 61 the procedure of the import process ..95
Figure 62 the flow chart for parsing the HTML Document...97
Figure 64 the flow chart for Extraction..100
Figure 65 the flow chart for extracting an entire paragraph ..101
Figure 66 the flow chart for checking the recipe ingredient paragraph...........................102
Figure 67 the flow chart for extracting the recipe direction ..103
Figure 68 the flow chart for inserting the recipe ingredient into the TempMaterial table

..104
Figure 69 the example page 'CNN website' ...106
Figure 70 the error message is pop out when dealing with the invalid recipe file...........107
Figure 72 the source code for the example HTML page 'Brocco Taco Salad'108
Figure 73 the example material table...108
Figure 74 the source code of the recipe ingredient and direction parts109
Figure 75 the newl generated txt paragraph...109
Figure 76 the display of the imported recipe ...110
Figure 77 the HTML page, of which the recipe ingredients are written in the table format

..110
Figure 78 the HTML source code of the ingredient description......................................111

igure 79 the extracted txt paragraph of the ingredient descriptionF111
F

 120

List of Tables
Table 1Login of the general user ...29

tor ..29
able 3 Search the recipe...30

 by the Title ..30
..31

b 31
b tabase...31
b ..32

32
.33
.33

...34
b rd ..34

...40
able 15 The Ingredient Table...40

le ..41
able 17 The Material Table..41
ab ...42

Tab42
Tab 2 .43
Table 2 .43
Tab44
Tab 2 ..44
Table 24 Load the Drivers 45
Table 2 ...45
Tab45
Tab 2 ...46
Table 2
Table 2

Table 2 Login of the administra
T
Table 4 Search the Recipe
Table 5 Search the Recipe by the Ingredient

cipe by the Category ...Ta le 6 Search the Re
Ta le 7 Modify the Recipe Da

a le 8 Insert the RecipeT
Table 9 Edit the Recipe..
Table 10 Delete the Recipe ...
Table 11 Import the Recipe...
Table 12 Modify the Password ...
Ta le 13 Modify the Passwo
Table 14 the Recipe Table
T
Table 16 The Category Tab
T
T le 18 The Unit Table ...

le 19 The Admin Table ...
le 0 Select..

1 UPDATE..
le 22 Delete ...
le3 Insert Into...

...
5 Establis the Connection

le 26 Execute the Update ...
le 7 Execute the Delete ...

8 Execute the Insert..46
9 Execute the Query...46

 121

Appendix I Installation Guide

E e en

Hardware requirements:
− Intel Pentium III, 600 MHz or equivalent CPU
− 1
− 1 0Mb Network Card

Software requirements:
− J dition, S ment Kit)
− HyperText Markup Language (HTML) version 4.01
− Microsoft Access 2000
− Java Virtual Machine

Execution Indication

1. Double click the soluton1. jar (or solution2.jar)
2. The database system entrance interface appears. When click on the

istrator’ button, a ndow appears and indicate the user to input

3 ng Admi sword
1: linlinwang Password: 19781130

me2: bojiang Password: 19790702
4 port the example recipe . All the recipe files are st n the folder:

s. Th rnal recip nd
solution 2 are stored in the two child folders of External Recipe Files: Recipes for

lution1 and Recipes for information of the recipe files is
show in the following table:

Examples of External Recipe File for Solu

 File Name Location Prope

x cution Requirem ts

 28 Mb of RAM
 0/10

2EE 1.4.2 SDK (Java 2 Platform, Enterprise E oftware Develop

‘Admin dialog wi
name and password.

. Input the followi nistrator name and pas
Name
Or
Na

. Im files ored i
External Recipe File e example files of exte e for solution 1 a

So Solution2. The detail

tion 1

rty

1 Beef Pepper Steak.txt .\External Recipe Files Valid re les cipe fi

 \Reci Can b sfully pes for Solution 1 e imported succes

2 Dutch Oven Buttermilk .\Ex Recipe Files Valid recipe files ternal

 Cornbread.txt \Rec Can b sfully ipes for Solution 1 e imported succes

3 Apple PIe Parfaits .\External Re Valid cipe Files recipe files

 122

 Recipe.txt \Rec 1 Can b orted successfully ipes for Solution e imp

4 f .\Ex Valid Golden Harvest Bee ternal Recipe Files recipe files

 Recipe.txt \Recipes for Solution 1 Can b ccessfully e imported su

5 Soups and Stews.txt .\External Recipe Files Valid recipe files

 \Recipes for Solution 1 Can be imported successfully

6 Whipping Cream Pound .\External Recipe Files Valid recipe files

 Cake.txt \Recipes for Solution 1 Can be imported successfully

Examples of External Recipe File for Solution 2

 File Name Location Property

1 Arizona Brown Rice .\External Recipe Files Valid recipe files

 Pilaf.htm \Recipes for Solution 2
Can be imported
successfully

2 Brocco Taco Salad.htm .\External Recipe Files Valid recipe files

 \Recipes for Solution 2
Can be imported
successfully

3 Frank's Famous Spaghe .\External Recipe Files Valid recipe files

 tti Sauce.htm \Recipes for Solution 2
Can be imported
successfully

4 Meals For You Peach .\External Recipe Files Valid recipe files

 Pan Dowdy II.htm \Recipes for Solution 2
Can be imported
successfully

5 Mom's Best Peanut .\External Recipe Files Valid recipe files

 Brittle.htm \Recipes for Solution 2
Can be imported
successfully

 123

6 Salad Chutney .\External Recipe Files Valid recipe files

 Chicken Salad.htm \Recipes for Solution 2
Can be imported
successfully

 124

Appendix II Configuration of Source Code

Th recipe database system consists of two parts : e

A

e the unit words could appear in the recipe ingredient description
− Material: To save some key materials may be used for matching recipe category
− CommonWord(only in Solution 2): To save some common words may appear in

the recipe direction
− MaterialTemp(Just in Solution 2): To save the temporary materials of the

imported recipe
− Admin : To save the administrator name and password

2. Java Program

• Solution 1
There are 6 Classes defined in this solution:

− RecipeQuerySystem.java: The main driver which can call the RecipeQueryFrame

class.
− RecipeQueryFrame.java: The system entrance interface which can call the UserFrame
− and AdminFrame class.
− UserFrame.java: The general user interface which includes an inner class-

RecipeFrame.
− AdminFrame.java: The administrator interface which includes the following inner

class: InsertPanel, EditPanel, DeletePanle, ImportPanle , PerPanel and RecipeDisplay.
− ModifyRecipe.java: It is used to handle the common operations such as inserting the

new recipe into the database. .
− ExtractInformation.java: It is used to handle the importing operations from the users.

• Solution 2

There in one function package and 7 classes defined in solution 2:
The Packege – MyUtils includes two classes:
− MyUtil.class: It includes the complementary methods such as: isElement(),

similarString() and etc.
− ParserGetter.class: It is used to get the parser to parse the HTML document.

The rest of classes defined in solution 2 are:

1. ccess Database

There are 8 tables in the database:

− Recipe: To save the recipe ID, title, category and direction
− Ingredient: To save the ingredient quantity, unit and ingredient description
− Category: To save the recipe category
− Unit: To sav

 125

 driver which can call the RecipeQueryFrame

e.java: The system entrance interface which can call the UserFrame

class: InsertPanel, EditPanel, DeletePanle, ImportPanle , PerPanel and RecipeDisplay.
ava: It is used to handle the common operations such as inserting the

tabase.
.java: It is used to handle the importing operations from the

− RecipeQuerySystem.java: The main
class.

 RecipeQueryFram−
and AdminFrame class.

− UserFrame.java: The general user interface which includes an inner class,
RecipeFrame.

− AdminFrame.java: The administrator interface which includes the following inner

− ModifyRecipe.j
new recipe into the da

− ExtractInformation02
users.

 126

Appendix II Test Results

Final Thesis Project Author: s020953 LinLin Wang

pe.java 16.August 2004
ging database

im ort java.util.*;
i

 g.*;
 avax.swing.border.*;
 rt javax.swing.table.* ;

 pr d;

tleQuery = ("SELECT Title FROM Recipe");

c:driver={Microsoft Access Driver (*.mdb)}; DBQ =

 c.JdbcOdbcDriver");
ger.getConnection(url, "linlin", "19781130");

h (Exception e){} // end catch

ction, String[][] ingredient)

CT Direction FROM Recipe ");
teQuery(directionQuery);

 # 1

ModifyRecipe.java

//**
//
// ModifyReci
// Implements operation functions of chan
//***************************************

p
mport java.awt.*;

 import java.awt.event.*;
 import javax.swin
 import j
 impo
 import java.sql.*;

public class ModifyRecipe
{
 private ResultSet rs, rs1, rs2, rs3, rs4;
 private Connection con;

ivate ResultSetMetaData rsm
 private DatabaseMetaData dma;
 private Statement stmt;
 private String ti

 public ModifyRecipe ()
 {
 try{
 String url="jdbc:odb
 + Recipes.mdb";

 Class.forName("sun.jdbc.odb
 con = DriverMana
 }//end try
 catc
 }

// ------------------------------
// Insert New Recipe Into the Database
// ------------------

public boolean insert (String title, String categ, String dire
{
 int num, num1, num2;
 try{
 stmt = con.createStatement();
 String directionQuery = ("SELE
 rs4 = stmt.execu
 rs4.next();
 do{

 127

 num2=rs4.getRow();
t());

tions[]= new String[num2];
Query);

++) # 2
{

ction");

if (ExtractInformation.SameRecipe(direction, directions)) # 3

 = ExtractInformation.correctString(title);
ng categ1 = ExtractInformation.correctString(categ);

g direction1 = ExtractInformation.correctString(direction);
TO Recipe (Title, Category, Direction) VALUES ('"

1+"')";

 do{ # 4
ing("Rec_ID");

.parseInt(Rec_ID1);

;

oolean b= true;
; i++) # 5

ient[i][2];
= null) # 6

TO Ingredient (Rec_ID, Quantity, Unit, Ingredient)"
 + "VALUES ("+ Rec_ID+", '"+s11 +"', '"+ s22 +"', '"+ s33 +"')";
teUpdate(insert);

i

 }while(rs4.nex
 String direc
 rs4 = stmt.executeQuery(direction
 for(int i=0; i<num2; i

 rs4.next();
 directions[i]=rs4.getString("Dire

} //end for

 // new recipe doesn't exist in database

 return false;
 else
 {
 String title1
 Stri
 Strin
 String insert1 = "INSERT IN
 + title1 +"', '"+categ1+"', '"+direction
 stmt.executeUpdate(insert1);

// get new recipe's ID
 String IDquery = ("SELECT Rec_ID FROM Recipe");
 rs2 = stmt.executeQuery(IDquery);
 int Rec_ID;
 rs2.next();

 String Rec_ID1=rs2.getStr
 Rec_ID =Integer
 } while(rs2.next());
 String s1="", s2="", s3=""

// get new recipe's ingredien
 b
 for(int i=0; i<20 && b
 {
 s1 = ingredient[i][0];
 s2 = ingredient[i][1];
 s3 = ingred
 if(s3 =
 b = false;
 else {
 String s11 = ExtractInformation.correctString(s1);
 String s22 = ExtractInformation.correctString(s2);
 String s33 = ExtractInformation.correctString(s3);
 String insert = "INSERT IN

 stmt.execu
 } // end else
 } // end for
 return true;

 128

 } // end else
 }//end try

od

 boolean edit (int id, String title, String categ, String direction, String[][] ingredient)

ing s=ingredient[0][0];

 # 1

{

t = con.createStatement();
n.correctString(title);

correctString(categ);

te1 = "UPDATE Recipe SET Title = '"+title1+"', "+"Category = '"
tion = '"+direction1+"'"+"WHERE Rec_ID =

date(update1);
redient

mt.executeUpdate(del);
 # 2

= ingredient[i][1];

 # 3

{
tString(s1);

tractInformation.correctString(s2);
formation.correctString(s3);

ng insert = "INSERT INTO Ingredient (Rec_ID, Quantity, Unit, Ingredient)"
ES ("+ id+", '"+s11 +"', '"+ s22 +"', '"+ s33 +"')";

eturn true;

ch (Exception e) return false;

 catch (Exception e) return false;
} // end insert meth

//
// Edit recipe data in the database
// --------

public
{
 Str
 if((title.compareToIgnoreCase(""))==0 || (direction.compareToIgnoreCase(""))==0
 title==null || direction == null)
 return false
 else
 try {
 stm
 String title1 = ExtractInformatio
 String categ1 = ExtractInformation.
 String direction1 = ExtractInformation.correctString(direction);
 String upda
 +categ1+"', "+"Direc
 "+id;
 stmt.executeUp

// get new recipe's ing
 String s1="", s2="", s3="";
 boolean b= true;
 String del = "DELETE FROM Ingredient "+"WHERE Rec_ID = "+id;
 st
 for(int i=0; i<20 && b; i++)
 {
 s1 = ingredient[i][0];
 s2
 s3 = ingredient[i][2];
 if(s1==null)
 b = false;
 else
 String s11 = ExtractInformation.correc
 String s22 = Ex
 String s33 = ExtractIn
 Stri
 + "VALU
 stmt.executeUpdate(insert);
 } // end else
 } // end for i
 r
 } // end try
 cat

 129

 } // end else
} // end edit method

// ---

ing ingredient, String categ, Vector id, Vector

 # 1

 Category ='"+categ+ "'");

 # 2

 {

 # 4

 String rtitle= rs.getString("Title");
);

);
);

 end while(rs.next())
)

 # 5

tement();
 = stmt.executeQuery(get_ID);

 # 6

 String rtitle= rs.getString("Title");

 if (ExtractInformation.isElement(ingredient, ring)) # 7

ID");

s.add(rtitle);

 } // end if (ingredient!=null)
 } // end if(title==null)

 # 8

// Search Recipe
// ---

public void searchRecipe(String title, Str
names)
{
 try{
 if (categ!=null)
 {
 String get_ID= ("SELECT Rec_ID, Title, Direction FROM Recipe "+"WHERE

 if(title==null)
 {
 if (ingredient == null) # 3

 stmt = con.createStatement();
 rs = stmt.executeQuery(get_ID);
 while(rs.next())
 {

 String ID= rs.getString("Rec_ID"
 id.add(ID
 names.add(rtitle
 } //
 } // if (ingredient == null
 if (ingredient!=null)

 {
 stmt = con.createSta
 rs
 while(rs.next())
 {

 String ring = rs.getString("Direction");

 {
 String ID= rs.getString("Rec_
 id.add(ID);
 name
 }
 } // end while(rs.next())

 if(title!=null)
 {
 if (ingredient == null) # 9
 {

 130

 stmt = con.createStatement();

ile(rs.next()) # 10

le)) # 11

ing ID= rs.getString("Rec_ID");

tle);

nd while(rs.next())

 # 12

 = stmt.executeQuery(get_ID);

e");
n");

(rtitle);

ext())
ll)

f(title!=null)

null) # 15

 # 16

 con.createStatement();

 # 17

 ID= rs.getString("Rec_ID");

;

ngredient == null)
 # 18

 rs = stmt.executeQuery(get_ID);
 }
 wh
 String rtitle= rs.getString("Title");
 if (ExtractInformation.isElement(title, rtit
 {
 Str
 id.add(ID);
 names.add(rti
 }
 } // e
 } // if (ingredient != null)
 if(ingredient != null)
{
 stmt = con.createStatement();
 rs
 while(rs.next()) # 13
 {
 String rtitle= rs.getString("Titl
 String ring = rs.getString("Directio
 if (ExtractInformation.isElement(title, rtitle) &&
 ExtractInformation.isElement(ingredient, ring)) # 14
 {
 String ID= rs.getString("Rec_ID");
 id.add(ID);
 names.add
 }
 } // end while(rs.n
 } // end if(ingredient != nu

} // end i
 } // end if (categ!=null)
 else {
 String get_ID= ("SELECT Rec_ID, Title, Direction FROM Recipe ");
 if(title==
 {
 if (ingredient == null)
 {
 stmt =
 rs = stmt.executeQuery(get_ID);
 while(rs.next())
 {
 String rtitle= rs.getString("Title");
 String

 id.add(ID);
 names.add(rtitle)

 }// end while(rs.next())
 } // if (i
 if (ingredient!=null)
 {

 131

 stmt = con.createStatement();
cuteQuery(get_ID);

ext()) # 19

 rs.getString("Title");
 String ring = rs.getString("Direction");

 id.add(ID);

 }
 end while(rs.next())

 # 21

 # 22

ment();
ry(get_ID);

 while(rs.next()) # 23

 {
 String rtitle= rs.getString("Title");
 if (ExtractInformation.isElement(title, rtitle)) # 24
 {
 String ID= rs.getString("Rec_ID");
 id.add(ID);
 names.add(rtitle);
 }
 } // end while(rs.next())
 } // if (ingredient != null)
 if(ingredient != null) # 25
 {
 stmt = con.createStatement();
 rs = stmt.executeQuery(get_ID);
 while(rs.next()) # 26
 {
 String rtitle= rs.getString("Title");
 String ring = rs.getString("Direction");
 if (ExtractInformation.isElement(title, rtitle) &&
 ExtractInformation.isElement(ingredient, ring)) # 27
 {
 String ID= rs.getString("Rec_ID");
 id.add(ID);
 names.add(rtitle);
 }
 } // end while(rs.next())
 } // end if(ingredient != null)

 rs = stmt.exe
 while(rs.n
 {
 String rtitle=

 if (ExtractInformation.isElement(ingredient, ring)) # 20
 {
 String ID= rs.getString("Rec_ID");

 names.add(rtitle);

 } //
 } // end if (ingredient!=null)
 } // end if(title==null)
if(title!=null)
{
 if (ingredient == null)
 {
 stmt = con.createState
 rs = stmt.executeQue

 132

 } // end if(title!=null)
 } // end else

e from the database

--

nt();
 Recipe "+"WHERE Rec_ID = "+id;

M Ingredient "+"WHERE Rec_ID = "+id;

 } // end try
 catch (Exception e) {}
} // end method

// ------------------------------
// Delete old recip
// ---------------------------------

public void delete (int id)
{
 try{

e stmt = con.createStatem
 String del = "DELETE FROM
 stmt.executeUpdate(del);
 String del2 = "DELETE FRO
 stmt.executeUpdate(del2);

 // end try }
 catch (Exception e) {}
} // end delete method

} // end class

 133

ExtractInformation.java

/ Extract recipe data from external file and put them into database

.IOException;

port

 priva

-5;

ecipes.mdb";

 try

ge driver
river");

81130");

(Exception
 tem ormation constructor!");

retur

//***
// Final Thesis Project Author: s020953 LinLin Wang
// ExtractInformation.java 16.August 2004
/
//***************************************

import java.sql.*;

; import java.util.*
java.ioimport

mport i java.io.FileNotFoundException;
im java.util.StringTokenizer;
import java.io.File;
import java.io.FileReader;
mport i java.io.FileWriter;

import java.io.BufferedReader;
import java.io.BufferedWriter;

public class ExtractInformation
{

 pr ivate int Rec_ID=0 ;
 = -1; te final static int RecipeExist

 private final static int InvalidRecipe = -2;
 private final static int FileNotFound = -3;

 = -4; private final static int IOExcep
p = private final static int Exce

 private Connection con;
 private String url=

river(*.mdb)};DBQ=R "jdbc:odbc:driver={MicrosoftAccessD
tion() public ExtractInforma

{
 {

rid // load JDBC-ODBC b
 Class.forName("sun.jdbc.odbc.JdbcOdbcD
 // connect to database
 con = DriverManager.getConnection(url, "linlin", "197

d try } // en
 catch e)
 Sys .out.println(e+ " Exception From ExtractInf
}

---// -------------------------------------
D // Get the imported recipe I

----------------// ---------------

public int getID()
{
 n Rec_ID;
}

 134

// ---

--

, v3=new Vector();

try{
h.txt");

 ExtractP
 // check i

 # 1
 nvalid

 F eader(paragraph);
 F ph);

dReader(fr1);

 S rection=ExtractDirection(br);
// s e and direction into database

m2;
 Stateme atement();

LECT Direction FROM Recipe ");
ecuteQuery(directionQuery);

 # 2

g[num2];
 rs4 mt.e

 # 3
 {

 ion");

 if ameR (direction, directions)) # 4
 // Recipe

 else

 Str irection1 = correctString(direction);

// Extract recipe ingredient and direction and put them into database
// --

public int Extract(FileReader fr, String title)
{
 Vector v1=new Vector(), v2= new Vector()
 String cat;

 File paragraph = new File("paragrap
 FileWriter fw = new FileWriter(paragraph);

aragraph(fr, fw);
f the recipe file valid

 if(!ValidRecipe(paragraph))
 // recipe file is i
 return InvalidRecipe;
 else{
 ileReader fr1 = new FileR
 ileReader fr2 = new FileReader(paragra
 BufferedReader br = new Buffere
 String kw1 = "ingredient";
 tring di

tore recipe's titl
 ResultSet rs1, rs2, rs3, rs4;
 int num, num1, nu

nt stmt = con.createSt
 String directionQuery = ("SE
 rs4 = stmt.ex
 rs4.next();
 do{
 num2=rs4.getRow();
 }while(rs4.next());
 String directions[]= new Strin
 = st xecuteQuery(directionQuery);
 for(int i=0; i<num2; i++)

 rs4.next();
 directions[i]=rs4.getString("Direct
 } //end for
 (S ecipe
 has exist
 return RecipeExist;

 {
 // set recipe category
 cat = ExtractCategory(title, direction);
 String title1 = correctString(title);
 String cat1 = correctString(cat);
 ing d

 135

 st cuteUpdate("INSERT INTO Recipe (T mt.exe itle,Category, Direction) VALUES
 "+ t

 Str IDq = ("SELECT Rec_ID FROM Recipe");
 rs1 tmt

ID =Integer.parseInt(Rec_ID1);

en2;
 String unit = ("SELECT Name FROM Unit");

// ju

 rs2.next();
 # 6

w();

 units[]= new String[num];

 {
);

etString("Name");

// Extract Ingredient
 er(fr2);

dy()) # 8
 {
 li br.readLine();

 while

y()) # 10

er(line1);

2 = new StringTokenizer(line1);

okenizer(line1);

 (' itle1 +"', '"+ cat1 +"', '"+direction1+"')");
 ing uery
 = s .executeQuery(IDquery);
 rs1.next();
 do{ # 5
 String Rec_ID1=rs1.getString("Rec_ID");
 Rec_
 } while(rs1.next());
 String line1;
 StringTokenizer token1, tok

dge if this line contains exist units, if it exist, extract it.
// Read data from database

 rs2 = stmt.executeQuery(unit);

 do{
 num=rs2.getRo
 }while(rs2.next());
 String
 rs2 = stmt.executeQuery(unit);
 for(int i=0; i<num; i++) # 7

 rs2.next(
 units[i]=rs2.g
 }//end for

 br = new BufferedRead
 String [] words;
 while(br.rea

 ne1=

(!isElement(kw1,line1) && br.ready()) # 9
 line1= br.readLine();
 if(br.read
 line1= br.readLine();
 line1.trim();
 token2 = new StringTokeniz
 int cou =token2.countTokens() ;
 while(cou==0 && br.ready()) # 11
 {
 line1= br.readLine();
 token
 cou =token2.countTokens() ;
 }

 line1.trim();
 token1 = new StringTokenizer(line1);
 token2 = new StringT

 while(token2.hasMoreTokens()) # 12
 {

 136

 String first2=token2.nextToken();
 while(br.ready()) # 13

gTokenizer(line1);
true;

) && a) # 14
 {

ector(); v3=new Vector();

tokens into string array "words"
 # 15

 ords[tToken();
 the first word always numerical

 # 16

 we will find another part ")"
 rAt(i)==40) # 17

"("

 f (int m <words.length) && c; m++) # 19

 {
 // f

)==41) # 21

r(int ((i<words.length+1) && d); i++) # 22

 {
24

harAt(x)>=48) && # 26

 {
 line1=br.readLine();
 token1=new Strin
 boolean a=
 if(token1.hasMoreTokens(

 v1=new Vector(); v2=new V
 int count = token1.countTokens();
 words = new String[count];

// store the contents in
 for(int i=0; i<count; i++)
 w i] = token1.nex

// suppose
 v1.add(words[0]);
 boolean b=true;
 for(int i=0; i<words[0].length() && b; i++)
 {
 // first token contain "(",
 if(words[0].cha
 b=false;
 } // end for
 //first token contain
 if (!b) # 18
 {
 boolean c=true;
 or =1; (m
 {
 for(int n=0; (n<words[m].length()) && c; n++) # 20

 irst token contain "(", we have to find another part ")"
 if(words[m].charAt(n
 {
 v1.add(words[m]);
 c=false;
 boolean d=true;
 // judege whether unit word exist in the line
 fo i=m+1;

 {
 for(int j=0; (j<units.length)&& d; j++) # 23

 if(words[i].compareToIgnoreCase(units[j])==0)
 {

 // judge if adjective word exist before unit word
 for(int x=0; (x<words[i-1].length())&& d; x++) # 25
 {

 // when it's numeric or exist ")", we ingnore it
 if(((words[i-1].c

 137

 (words[i-1].charAt(x) <= 57)) ||
 ((words[i-1].charAt(x)==41)))

]);

}
//if

 // end or n
 (c) # 28

ntain "("
 e e

 (wor # 29

ds[1].length() && a); e++) # 30

 // s contain "("
 if(w 40) # 31

 c=true;

) # 34

in "(", we have to find another part ")"

ther unit word exist in the line
th+1) && d); i++) # 36

.length)&& d; j++) # 37

 {
 v2.add(words[i]);
 d=false;

 } //end if
 } // for x
 if(d) # 27
 {
 v2.add(words[i-1
 v2.add(words[i]);
 d=false;

 }
 } // for j
 } //for i
 } // if
 } f
 if
 v1.add(words[m]);
 } // for m
 } // if !b
 // first token doesn't co
 ls
 {
 if ds.length>1)
 {
 for(int e=0; (e<wor
 {
 econd token
 ords[1].charAt(e)==

 {
 if(words[1].charAt(words[1].length()-1)!=41) # 32
 {
 a=false;
 boolean
 for(int m=1; (m<words.length) && c; m++) # 33
 {

 for(int n=0; (n<words[m].length()) && c; n++
 {

 // first token conta
 if(words[m].charAt(n)==41) # 35

 {
 c=false;
 boolean d=true;

 // judege whe
 for(int i=m+1; ((i<words.leng
 {
 for(int j=0; (j<units
 {

 138

 if(words[i].compareToIgnoreCase(units[j])==0) # 38

efore unit word
s[i-1].length()&&d; x++) # 39

or exist ")", we ingnore it
-1].charAt(x)>=48) &&

 (words[i-1].charAt(x)<=57)) ||
 rds[i-1].charAt(x)==41))) # 40

 } // for x
 if(d) # 41

 v2.add(words[i-1]);
i]);

lse;

arAt(words[1].length()-1)!=41)

 # 42

 fo ; (j<units.length)&& d; j++) # 43

ase(units[j])==0) # 44

 // judge if express word exist before unit word
ords[i-1].length())&& d; x++) # 45

nore it
>=48) &&

<=57) ||
 arAt(x)==41)) # 46

s[i]);

 {
 // judge if express word exist b

 for(int x=0;x<word
 {

 // when it's numeric
 if(((words[i

 ((wo
 {
 v2.add(words[i]);

 d=false;
 } //end if

 {

 v2.add(words[
 d=fa
 }

 } //if
 }// for j
 }//for i
 } // if(words[m].charAt(n)==41)
 } // end for n
 } // for m
 }// if(words[1].ch

 else
 {
 a=false;

 boolean d=true;
 // judege whether unit word exist in the line

 for(int i=1; (i<words.length)&& d; i++)
 {
 r(int j=0
 {
 if(words[i].compareToIgnoreC
 {

 for(int x=0; (x<w
 {

 // when it's numeric or exist ")", we ing
 if((words[i-1].charAt(x)
 (words[i-1].charAt(x)
 (words[i-1].ch
 {
 v2.add(word
 d=false;
 } //end if

 else

 139

 {
 v2.add(words[i-1]);

i]);

for x

 } // for j

/ end else

At(e)<=57)) # 47

ds[1]);

e;
ther unit word exist in the line

.length)&& d; i++) # 48

 j++) # 49

ase(units[j])==0) # 50

ess word exist before unit word
ords[i-1].length())&& d; x++) # 51

s numeric or exist ")", we ingnore it
 rds[i-1].charAt(x)>=48) &&
 rds[i-1].charAt(x)<=57) ||
 [i-1].charAt(x)==41)) # 52

v2.add(words[i]);
false;

 {
d(words[i-1]);

=fals

// for
//if

 // second token is nether numeric nor "("

 v2.add(words[

 d=false;
 } // else
 } //
 } //if

 } //for i
 } /

 } // end if(words[1].charAt(e)==40)
 // second token doesn't contain "("

 else
 {

 // next token is numeric
 if((words[1].charAt(e)>=48) && (words[1].char
 {
 v1.add(wor
 a=false;
 boolean d=tru

 // judege whe
 for(int i=1; (i<words
 {
 for(int j=0; (j<units.length)&& d;
 {
 if(words[i].compareToIgnoreC
 {

 // judge if expr
 for(int x=0; (x<w
 {

 // when it'
 if((wo
 (wo
 (words
 {

 d=

 } //end if
 else

 v2.ad
 v2.add(words[i]);
 d e;
 } // else
 } x
 }
 } // for j
 } //for i
 } // end if((words[1].charAt(e)>=48) &&(words[1].charAt(e)<=57))

 140

 else
 {
 boolean g=true;

 // ju ege w
rds.length && g && a); i++) # 53

gth && g); j++) # 54

 # 55

 // judge if express word exist before unit word

 >=4) &&

 41)) # 57

// en if (g)
f

// end else

 // for e
 e

/ store ingredient description into v3
ngth ; i++) # 59

true;
t j=0; j<v1.size() && o; j++) # 60

.compareToIgnoreCase((v1.elementAt(j)).toString())==0) # 61

 o=false;

 for(int x=0; x<v2.size() && o ; x++) # 63

 d hether unit word exist in the line
 for(int i=1; (i<wo
 {
 for(int j=0; (j<units.len
 {
 if(words[i].compareToIgnoreCase(units[j])==0)
 {

 for(int y=0; (y<words[i-1].length() && g); y++) # 56
 {

 // when it's numeric or exist ")", we ingnore it
 if(((words[i-1].charAt(y) 8
 (words[i-1].charAt(y)<=57)) ||
 (words[i-1].charAt(y)==
 {
 v2.add(words[i]);
 g = false;
 a = false;
 } //end if
 } // for y
 if(g) # 58
 {
 v2.add(words[i-1]);
 v2.add(words[i]);
 g=false;
 a=false;
 } d
 } //i
 } // for j
 } //for i
 } // end else
 }
 }
 }// end els

 /
 for(int i=0; i<words.le
 {
 boolean o=
 for(in
 {
 if(words[i]

 }// for j
 if(o) # 62
 {

 {

 141

 if(words[i].compareToIgnoreCase(v2.elementAt(x)).toString()==0) # 64
 o=false;

 } // for x
 if(o) # 65

);
 o=false;

 } // if o

database
 // first, convert the contents of v1, v2, v3 to string format
 3="";
 for(int i=0 ;i<v1.size(); i++) # 66

 for(int i=0 ;i<v2.size(); i++) # 67

 s2=s2+v2.elementAt(i)+" ";
 for(i i=0 ;i<v3.size(); i++) # 68

 // store the new ingredient description into database , updata database
 g s11 = correctString(s1);
 String s22 = correctString(s2);

 String query = "INSERT INTO Ingredient (Rec_ID, Quantity,
 +"', '"+ s22 +"', '"+ s33 +"')";

 stmt.executeUpdate(query);
xecuteQuery(unit);

 else
;

 } // while(token2.hasMoreTokens())
.ready())

/ end else

rn FileNotFound;
ch(IOException ioe)

ethod

 ------ ------- ---
tract the specific paragraph which contain Ingredient and Direction description

--

te static void ExtractParagraph(FileReader fr, FileWriter fw)

 {
 v3.add(words[i]

 } // if o

 } // for i

 // store the data to

 String s1="", s2="", s

 s1=s1+v1.elementAt(i)+" ";

 nt
 s3=s3+v3.elementAt(i)+" ";

 Strin

 String s33 = correctString(s3);

Unit, Ingredient)" + "VALUES ("+ Rec_ID+", '"+s11

 rs1 = stmt.e
 } // if (words.length>1)
 }// if(token1.hasMoreTokens() && a)

 return 0
 } // while(br.ready())

 } // while(br
 } // end else
 } /
 return InvalidRecipe;
 } // end try
 catch(FileNotFoundException e)
 retu
 cat
 return IOExcep;
 catch (Exception e)
}// end Extract m

// -- ---
// Ex
// ----

priva

 142

{
 try{

er token1, token2;

riter bw = new BufferedWriter(fw);
ader (fr);

"";
1 = "ingredient", kw2 = "direction", kw3 = "procedure", kw4 =

ector v1=new Vector(), v2 = new Vector();
 # 1

r.readLine();
while(!isElement(kw1,line1) && br.ready()) # 2

 # 3

 v1.add(line1);

 if(isElement(kw1,line1)) # 4

eAllElements();

 if(isElement(kw2,line1) || isElement(kw3,line1) || isElement(kw4,line1) &&

token2 = new StringTokenizer(line1);
.countTokens()==0&& br.ready()) # 6

ine());

)

oken1 = new StringTokenizer(line1);
ns()!=0&& br.ready()) # 7

 v2.add(line1);

 token2=new StringTokenizer(line1);}

 } // end if
ile (br.ready)

 }
1.size(); i++) # 8

 {

 StringTokeniz
 boolean a = true;
 BufferedW
 BufferedReader br = new BufferedRe
 String line1=
 String kw
"instruction";
 V
 if(br.ready())
 line1= b

 line1= br.readLine();
 while(br.ready() && a)
 {

 line1 = br.readLine();

 {
 v1.remov
 } // end if

br.ready())
 { # 5
 v2.add(line1);
 line1= br.readLine();

 while(token2
 {
 line1=(br.readL
 token2=new StringTokenizer(line1);
 }
 v2.add(line1);
 if(br.ready()
 {
 line1=(br.readLine()); }
 t
 while(token2.countToke
 {

 line1=(br.readLine());

 a =false;

 } // end wh
 }

 for(int i=0; i<v

 143

 bw.write((String)v1.elementAt(i));

2.size(); i++) # 9

rite((String)v2.elementAt(i));

}

 --

aragraph) throws IOException

 line_count=0;

 t

w BufferedReader (fr);

1 = "ingredient", kw2 = "direction", kw3 = "procedure", kw4 =

 Strin en2;
 # 1

 # 2

 line br.readLine();

 # 4

}
isElement(kw3,line1)&& !isElement(kw4,line1)) # 5

 # 6

 line_count ++;
r.readLine();

if(line_count>1) # 7

 bw.newLine();
 }
 for(int i=0; i<v
 {
 bw.w
 bw.newLine();
 }
 bw.close();

 catch(IOException ioe) {}
} // end method

//
// Check Whether Recipe File Valid
// -

private boolean ValidRecipe(File p
{
 StringTokenizer token1;
 int
 boolean valid = false;

ry{
 FileReader fr = new FileReader(paragraph);

 BufferedReader br = ne
 String line1="";
 String kw
"instruction";
 gTokenizer tok
 if(br.ready())
 line1 = br.readLine();
 while(!isElement(kw1,line1) && br.ready())
 line1 = br.readLine();
 if(br.ready()) # 3
 1 =
 token2 = new StringTokenizer(line1);
 while(token2.countTokens()==0 && br.ready())
 {
 line1= br.readLine();
 token2 = new StringTokenizer(line1);

 while(!isElement(kw2,line1) &&!
 {
 if (br.ready())
 {

 line1=b
 }
 }

 144

 {
 if (br.ready()) # 8
 valid = true;
 } // end if (2)

 // end try

cipe method

der br) throws IOException

String 2 = "direction", kw3 = "procedure", kw4 = "instruction";

 # 1
{

whil !isElement(kw4,line1))
 # 2

ew StringTokenizer(line1);
 StringTokenizer(line1);

()!=0) # 4
=sum+line1+"\n";

()) # 5

 String first2=token2.nextToken();

 token1=new StringTokenizer(line1);
7

 sum=sum+line1+"\n";
eturn sum;

} // while(token2.hasMoreTokens())

ctDirection

 return valid;
 }
 catch(IOException ioe) {);
 return valid;
} // end ValidRe

// --
// Extract Direction part from the file
// ---

private static String ExtractDirection(BufferedRea
{
 kw
 StringTokenizer token1, token2;
 String sum="", line1, line2;
 while(br.ready())

 line1= br.readLine();

e(!isElement(kw2,line1) && ! isElement(kw3,line1) &&

 line1= br.readLine();
 while(br.ready()) # 3
 {
 line1= br.readLine();
 line1.trim();
 token1 = n
 token2 = new
 if (token2.countTokens
 sum
 while(token2.hasMoreTokens
 {

 while(br.ready()) # 6
 {
 line1=(br.readLine()).trim();

 if(token1.hasMoreTokens()) #

 else r
 } //while(br.ready())

 }
 } // while(br.ready()
 return sum;
}// end Extra

 145

// ---
 Define Category Depending on Recipe’s Title or Direction

// --

private String ExtractCategory(String title, String direction)
{
 String get_keywords = ("SELECT Name, Category FROM Material");
 String category = "Others", line = “”;
 ResultSet rs1;
 try{
 Statement stmt = con.createStatement();
 rs1 = stmt.executeQuery(get_keywords);
 while (rs1.next()) # 1
 {
 String material = rs1.getString("Name");
 if (isElement(material, title)) # 2
 {
 category = rs1.getString("Category");
 return category;
 } // end if
 } // end while
 rs1 = stmt.executeQuery(get_keywords);
 while (rs1.next()) # 3
 {
 String material = rs1.getString("Name");
 if (isElement(material, direction)) # 4
 {
 category = rs1.getString("Category");
 return category;
 } // end if
 } // end while
 return category;
 } // end try
 catch (Exception e) return category;
} // end ExtractCategory method

// ---
// Check whether the two recipe is the same recipe
// --

public static boolean SameRecipe(String direction, String[] directions)
{
 boolean a2 = false;
 for(int j=0; j<directions.length && !a2; j++)
 {
 if(SameDirection(direction, directions[j]))
 a2 = true; // recipe has exist in database
 } // end for(int j=0; j<directions.length && a2; j++)
 return a2;
} // end method

//

 146

 147

ExtractInformation02.java

**

roject Author: s020953 LinLin Wang
tion02.java 16.August 2004

 Extract recipe data from external file and put them into database
//**

tml.parser.*;

public class ExtractInform
{

pr
pr
pr
pr
private String direc
pri tegories, materialTemp, commonWord;
priva

ccess Driver +

priva
priva
priva p = -3;

 = 0;

 null;

//
// Final Thesis P
// ExtractInforma
//

port java.sql.*; im

import java.util.*;
import java.io.*;
import javax.swing.text.*;

port javax.swing.text.html.*; im
import javax.swing.text.h

port MyUtils.*; im

ation02 extends Observable

ivate FileReader fr;
ivate File f;
ivate Connection con;
ivate Vector ingredient;

tion, title, category;
vate String[] units, direct, material, ca

te int Rec_ID ;
 private final static String url="jdbc:odbc:driver={Microsoft A

Q=Recipes.mdb"; (*.mdb)};DB
te final static int RecipeExist = -1;

inal static int InvalidRecipe = -2; te f
te final static int IOExce

xtractInformation02() public E

{
try{

); this.f = new File ("RecipeFile.txt"
this.fr = null;

 this.Rec_ID
 direction = "";
 title = "";
 category = "Others";
 ingredient = new Vector();

ll; units = nu
 materialTemp = null;

 = null; commonWord
ull; direct = n

 erial =mat
 categories = null;
 connectToDatabase();
 getUnitWord();

getDirect();
 getMaterial();

 148

} // end try
catch (Exception e) {}

}
public int getID()

--

redReader br = new BufferedReader(fr);

while (br.ready()&& !check # 1
{

ents();
eadLine().trim();

r token1 = new StringTokenizer(line);
 int count = token1.countTokens();
 while(count>0) # 2
 {
 i
 if(br.ready()) # 3

 token1 = n
nt = token1.countTokens();

 }
 else count=
 } // en

edientParagraph(ingredient);
 } // e
 if (!c
 {

 }

p();
 Stateme eateStatement();
 for(int i= ; i++) # 5
 {
 Strin g) ingredient.elementAt(i);

{
return Rec_ID;

} // end method

// ---
// Extract ingredient and direction
// ---

private boolean extract()
{

boolean check = false, valid = false;
try{

FileReader fr = new FileReader(this.f);
Buffe

// search ingredient paragraph

)

 ingredient.removeAllElem
 String line = br.r
 StringTokenize

ngredient.add(line);

 {
line = br.readLine().trim();

ew StringTokenizer(line);
 cou

0;
d while

 check = ingr
nd while br.ready
heck) # 4

 ingredient.removeAllElements();
 return valid;

else{
 clearMaterialTem

nt stmt = con.cr
0; i<ingredient.size()

g line =(Strin

 149

 Strin
 int count = token2.countTokens();
 for(int j=0; j<count; j++) # 6

 S
til.checkFirstChar(word)) && ! (MyUtil.contain(this.units, word)) # 7

 && ! (word.compareToIgnoreCase("or") == 0)

 0)

 &&! (word.compareToIgnoreCase("with") == 0)
)

 &&! (word.compareToIgnoreCase("any") ==0)

 &&! (word.compareToIgnoreCase("as") == 0)

ToIgnoreCase("from") == 0)

 {

tString02(word);
 terialTemp (Name) VALUES ('" + word01

 } // end if

getMaterialTemp();
get
wh # 8
{

 ring l ().trim();
 (line, this.materialTemp) ||

yUtil.contain(line, this.commonWord)) # 9

n = this.direction+line+"\n";
this.direction.trim();

ile
boolean b = false;

 if (MyUtil.contain (line, this.materialTemp) ||
ntain(line, this.commonWord)) # 11

 this.direction = this.direction+line+"\n";
 else b = true;

this.direction.trim();

 else

gTokenizer token2 = new StringTokenizer(line);

 {
tring word =token2.nextToken();

 if (! (MyU

 &&! (word.compareToIgnoreCase("a") == 0)
 &&! (word.compareToIgnoreCase("the")==
 &&! (word.compareToIgnoreCase("to") == 0)

 &&! (word.compareToIgnoreCase("such") == 0

 &&! (word.compareToIgnoreCase("other") == 0)

 &&! (word.compare
 && !(word.compareToIgnoreCase("and") == 0))

 String word01 = MyUtil.correc
 String insert1 = "INSERT INTO Ma

+ "')";
 stmt.executeUpdate(insert1);

 } // end for j
 } // end for i

// extract direction

CommonWord();
ile (br.ready() && this.direction == "")

 St ine = br.readLine
 if (MyUtil.contain

M
 {

this.directio

} // end if
 } // end wh

while (br.ready() && !b) # 10
{

 String line = br.readLine().trim();

MyUtil.co

} // end while

get_category();
} // end

 150

if (this.direction!="") # 12
 true;
lid;

} // end method

// ---

ublic redientParagraph(Vector paragraph)

boolean valid=false;

er token ;
for(int i=0; i<paragraph.size() && !valid; i++) # 1

;

 int count = token.countTokens();
har(line)&& count<7) // first char is numerical # 2

 {
 boolean check=false;

(line);
k) # 3

 String s2 = token.nextToken();
ain(this.units, s2);

 # 4

}
catch (Exception e) {return valid;}

 ------ ------- -----
y

rivate oid ge

alse;
0; i<this.material.length && !b; i++) # 1

{

valid =
return va

 } // end try
catch (Exception e) {return valid; }

// Check if this paragraph is ingredient description
// ------------------

p boolean ing
{

try{
 StringTokeniz

{
 String line =(String)paragraph.elementAt(i)
 token = new StringTokenizer(line);

 if (MyUtil.checkFirstC

 token = new StringTokenizer
 while(token.hasMoreTokens() && !chec
 {

 check =MyUtil.cont
 if (check)

 valid = true;
 } // end while
 } // end if
 } // end for i
 return valid;

} // end method

// -- ---
// Extract recipe's categor
// ---

p v t_category()
{

boolean b=f
for(int i=

 if (MyUtil.isElement(material[i],this.title)) # 2
 {

 151

 this.category = this.categories[i];

} // end fo
 # 3

{
 !b; i++) # 4

{
rial[i], this.direction)) # 5

tegories[i];

 }
} //

} // en

 Put r

{
{

 eateStatement();
 ("SELECT Unit FROM Ingredient");

 for (int i=0; i<this.ingredient.size(); i++) # 1

 ((String)this.ingredient.elementAt(i)).trim());
ns()) # 2

 v1.add(token.nextToken());
 String w1="", w2 = "";
 tAt(0)))) # 3

 ean b = true;
 # 4

 if (MyUtil.contain(this.units, ((String)v1.elementAt(j)))) # 5

g)v1.remove(j);

 } // end if

 } // end if
 else {

lementAt(0))) # 6
 "+(String)v1.remove(0);

 b = true;
 } // end if

r i
if (!b)

for (int i=0; i< this.material.length &&

 if (MyUtil.isElement(mate
 {
 this.category = this.ca
 b = true;

 // end if
 end for i
d if

} // end method

// --------------
// ecipe's ingredient data into Ingredient Table
// ------

private void storeIngredient()

try
 Statement stmt = con.cr

 String query =

 {
 Vector v1 = new Vector();
 StringTokenizer token = new StringTokenizer (

 while (token.hasMoreToke

 if (! (MyUtil.checkFirstChar((String)v1.elemen
 {

 bool
 for (int j=0; j<v1.size() &&b ; j++)

 {

 {
 w2 = (Strin
 b = false;

 } // end for j

 w1 = (String)v1.remove(0) ;
 if (MyUtil.checkFirstChar((String)v1.e
 w1 = w1 + "

 152

 boolean b = true;
 ; j<v1.size() && b; j++) # 7

if (MyUtil.contain (this.units, (String)v1.elementAt(j))) # 8

ove(j);

 } // end if

 } // end else
 String s="";

9

tring02(w2);
ectString02(s);

 "INSERT INTO Ingredient (Rec_ID, Quantity, Unit,

ALUES ("+ this.Rec_ID+", '"+word1 +"', '"+ word2 +"', '"+ word3
"')";

);
(query);

} //
}

on e) {}

--
// Connect the program to Database
// --

rivate void connectToDatabase()

con = DriverManager.getConnection(url, "linlin", "19781130");

catch (Exception e) {}
} // end method

 Initi

--

lTemp()

 MaterialTemp ";
Statement();

 stmt

 for (int j =0
 {

 {
 w2 = (String)v1.rem
 b = false;

 } // end for j

 for(int a=0 ;a<v1.size(); a++) #
s=s+v1.elementAt(a)+" ";

 String word1 = MyUtil.correctString02(w1);
 String word2 = MyUtil.correctS
 String word3 = MyUtil.corr
 String query1 =
Ingredient)"
 + "V
+
 stmt.executeUpdate(query1
 ResultSet rs1= stmt.executeQuery

 end for i

catch (Excepti
} // end method

// ---------------------

p
{

try{
Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

} // end try

// --
// alize MaterialTemp table
// ---

public void clearMateria
{

try{
String del = "DELETE FROM

 Statement stmt = con.create
 .executeUpdate(del);

 153

 } // end try
catch

--
om the database

// ---

nitWord()

 Unit");

ResultSet rs1 = stmt.executeQuery(get_unit);
token ;

boolean valid=false;
 int num;

teQuery(get_unit);
; i++)

tring("Name");

}
catch

d word in recipe's direction from the database

// ---

ommonWord()

me FROM CommonWord");

ResultSet rs1 = stmt.executeQuery(get_commonWord);
ken ;

boolean valid=false;
 int num;

ing[num];

 (Exception e) {}
} // end method

// ---
// Get Unit word fr

private void getU
{

try{
 String get_unit= ("SELECT Name FROM
 Statement stmt = con.createStatement();

 StringTokenizer

rs1.next();
do{

 num=rs1.getRow();
 } while(rs1.next());
 this.units= new String[num];
 rs1 = stmt.execu
 for(int i=0; i<num
 {
 rs1.next();
 this.units[i]=rs1.getS
 } //end for

 (Exception e) {}
} // end method

// --
// Get common use

private void getC
{

try{
 String get_commonWord= ("SELECT Na
 Statement stmt = con.createStatement();

 StringTokenizer to

rs1.next();
 do{
 num=rs1.getRow();
 } while(rs1.next());
 this.commonWord= new Str

 154

 rs1 = stmt.executeQuery(get_commonWord);
; i++)

getString("Name");

}
catch

--

public void getDirect()
{

String get_direct= ("SELECT Direction FROM Recipe");

boolean valid=false;

rs1.next();
 do{

rect);

i]=rs1.getString("Direction");

eyword from Material table

public void getMaterial()
{

StringTokenizer token ;

 for(int i=0; i<num
 {
 rs1.next();
 this.commonWord[i]=rs1.
 } //end for

 (Exception e) {}
} // end method

// ----------------------
// Get all the recipe's direction from the database
// ---

try{

Statement stmt = con.createStatement();
 ResultSet rs1 = stmt.executeQuery(get_direct);
 StringTokenizer token ;

 int num;

num=rs1.getRow();
 } while(rs1.next());
 this.direct= new String[num];
 rs1 = stmt.executeQuery(get_di
 for(int i=0; i<num; i++)
 {
 rs1.next();
 this.direct[
 } //end for

}
catch (Exception e) {}

} // end method

// ------------------
// Get the material k
// --

try{
String get_mate= ("SELECT Name, Category FROM Material");

 Statement stmt = con.createStatement();
 ResultSet rs1 = stmt.executeQuery(get_mate);

 boolean valid=false;

 155

 int num;
 rs1.next();

 num=rs1.getRow();

erial= new String[num];
 gories = new String[num];
 t.executeQuery(get_mate);

0; i<num; i++)
{

tring("Name");

} //end for

catch (Exception e) {}
}

// ---

 Name FROM MaterialTemp");
Statement stmt = con.createStatement();

);
ken ;

 rs1.getRow();

p= new String[num];
rs1 = stmt.executeQuery(get_m);

 this.materialTemp[i]=rs1.getString("Name");

}
 (Exception e) {}

} // e

 Retu

 do{

 } while(rs1.next());
 this.mat

this.cate
rs1 = stm

 for(int i=

 rs1.next();
 this.material[i]=rs1.getS
 this.categories[i] = rs1.getString("Category");

}

// end method

// Get the temprary material word from the MaterialTemp table
// --

public void getMaterialTemp()
{

try{
String get_m= ("SELECT

 ResultSet rs1 = stmt.executeQuery(get_m
 StringTokenizer to
 boolean valid=false;
 int num;
 rs1.next();
 do{

 num=
} while(rs1.next());

 this.materialTem

 for(int i=0; i<num; i++)
 {
 rs1.next();

 } //end for

catch
nd method

// --
// rn true if this recipe has already existed in database
// ---

private boolean sameRecipe()

 156

{
bool

xist; i++)

urn exist;
}

rivate void parserHtml()

ParserGetter kit = new ParserGetter();
itorKit.Parser parser = kit.getParser();

 Outliner callback = new Outliner (new OutputStreamWriter(System.out));

k.get_title();
 Vector v1 = callback.get_v();

1 = new FileWriter ("TempFile.txt");
 Bu BufferedWriter (fw1);

ize(); i++)

 ing)v1.elementAt(i));
 e();

 eader fr1 = new FileReader ("TempFile.txt");

tTextFile(fr1, this.f);
} // end try

 put the recipe's data into the Recipe Table

private void storeRecipeTable()
{

 con.createStatement();
 ring02(this.title);
 correctString02(this.direction);
 , Direction) VALUES
('"
 + tt +"', '"+ this.category +"', '"+dd+"')");

ean exist = false;
for(int i=0; i<this.direct.length && !e
{

 if (MyUtil.similarString(this.direction, direct[i]))
 exist = true;

} // end for i
ret

// end method

//
// Parse the html file to text file
// --

p
{

HTMLEd
try {

 parser.parse(this.fr, callback, true);
 this.title = callbac

 FileWriter fw
fferedWriter bw1 = new

 for(int i=0; i<v1.s
 {

 bw1.write((Str
 bw1.newLin
}

 bw1.close();
FileR

 MyUtil.correc

catch (IOException e) {}
} // end main

// ---
//
// ---

try{
Statement stmt =

String tt = MyUtil.correctSt
String dd = MyUtil.
stmt.executeUpdate("INSERT INTO Recipe (Title,Category

 157

 St ("SELECT Rec_ID FROM Recipe");
 ResultSet rs1 = stmt.executeQuery(IDquery);

 do{
 ec_ID1=rs1.getString("Rec_ID");
 this.Rec_ID =Integer.parseInt(Rec_ID1);

catch (Exception e) {}
} // end method

Import a html recipe file into database , return 0 if import suncessfuly

// ---

publ t_file(FileReader fr)
{

int i
 this.fr=fr;

// * F ml file into text file , this.f "RecipeFile.txt" was overwriten by the
text

rserHtml();
 i

dRecipe;
 if (

store

notifyObservers();

/ end method

// ---
// In tliner inherit HTMLEditorKit.ParserCallback
// override handleStartTag(), handleEndTag() and handleText() methods
// --- ---

pr
{

pr
pr
priva

vate int on = 0;
private Vector v=new Vector();

blic String line = System.getProperty("line.separator", "\r\n");
pu

ring IDquery =

rs1.next();

 String R

 } while(rs1.next());
}

// ---
//

ic int impor

=0;

irstly, parse the ht
 recipe file * //

pa
f (!extract())

return Invali
sameRecipe())

 return RecipeExist;
storeRecipeTable();

Ingredient();
setChanged();

return i;
} /

ner class Ou

ivate class Outliner extends HTMLEditorKit.ParserCallback

ivate Writer out;
ivate String title=null;

te int level =0;
pri

private String line1="";
pu

blic Outliner(Writer out)
{

 158

th

publ)
{

re
}
publ
{

}

public void handleStartTag(HTML.Tag tag,MutableAttributeSet attributes, int position)
{

this.
.Tag.TITLE)

 HTML.Tag.BODY || tag == HTML.Tag.TABLE || tag == HTML.Tag.P
|| tag == HTML.Tag.HR || tag == HTML.Tag.DIV)

{
v.add (this.line1);
v.add(this.line);
this.line1="";

}
else if (tag == HTML.Tag.BR || tag == HTML.Tag.LI)

this.on = 1;
else if (tag == HTML.Tag.TR)

 this.line1="";
 try{out.flush();}
 catch (IOException e) {}
} // end method

public void handleEndTag(HTML.Tag tag, int position)
{

if (tag == HTML.Tag.TR)
{

this.on=2;
v.add(this.line1);
line1="";

}
else if (tag == HTML.Tag.BODY || tag == HTML.Tag.TABLE ||

tag == HTML.Tag.P || tag == HTML.Tag.UL)
v.add(this.line);
// work around bug in the parser that fails to call flush

 if (tag == HTML.Tag.HTML) this.flush();
}

public void handleText(char[] text, int position)
{

String s = new String(text);
 if (this.level ==1)

is.out = out;
}

ic String get_title(

turn title;

ic Vector get_v()

return v;

level =0;
if (tag == HTML

level = 1;
if (tag ==

 159

 this.title= MyUtil.correctTitle(s);

 v.add(s); this.on = 0;
 else this.line1 = this.line1+" "+s;
 // end el
 ry {out.flush();} // e try
 (IOException e }

nd method

 void flush()

.flush();}
 catch (IOException e }

ethod
 class

} // end all

else{
 if (this.on==1)

} se
t nd
catch

} // e
) {

public
{

try {out
) {

} // end m
} // end

 160

S
Structural Test -- ModifyRecipe class: insert
tructural Test Table

 method

le of te

 Input data set In

Tab st cases

Choice put property
1 once A th rd in the Recipe table ere isn't any recipe reco
1 more than
once B th ecipe

table
ere is at least one recipe record in the R

2 zero time A th le ere isn't any recipe record in the Recipe tab

2 once C th e
ta ere is only one recipe record in the Recip

ble
2 more than B th s in the

Ronce ere are more than one recipe record
ecipe table

3 true D the insert recipe has already existed in the
Recipe table

3 false E hasn't existed in the Recipe
table
the insert recipe

4 A there isn't any recipe record in the Recipe table once
4 more than
once

th t one recipe record in the Recipe
ta lB ere is at leas

b e
5 zero time th nt no available ere isn't any item of recipe ingredie
5 once there is o cipe ingredient F nly one item of re
5 more than
once

there are more than one items of recipe
inG gredient

6 true thH e ingredient description is empty
6 false I the ingredient description isn't empty

 put d Table of in ata sets

Input data
set Contents Output

A R is empty return 0 ecipe table

B insert one or more
records return 1or 2, 3 …

 into Recipe table
C insert one record into return one direction of recipe
 Recipe table

D repeat insert one same return false
 records into Recipe table

E insert new record into return true
 Recipe table

F insert one item of
ingredient add one ingredient record into Ingredient table

G insert more than one item
of

add more than one ingredients into Ingredient
table

 ingredient
H insert empty ingredient exit from the loop
 description
I insert some ingredient run in the loop
 description

 161

Structural Test -- ModifyRecipe class: edit method

Table of test cases

Choice Input data rty set Input prope

1 true A uncompleted recipe data
1 false B e data completed recip
2 zero time no available of recipe ingredient there isn't any item

2 once C e item of recipe ingredient there is only on
2 more than D re than one items of recipe
once

there are mo
ingredient

3 true E n is empty the ingredient descriptio

3 false F isn't empty the ingredient description

T le of inp

et Contents

ab ut data sets

Input data s Output
A insert empty dire on or cti return false
 title

B insert a completed recipe return true
 data

C insert one item o
ingredient t record into Ingredient table

f
add one ingredien

D insert more than one item
of

dients into Ingredient add more than one ingre
table

 ingredient
E insert empty ing ient red exit from the loop
 description

F insert some ingre ient d run in the loop
 description

 162

est -- ModifyRecipe class: sStructural T earchRecipe method

Table of

Input data set

test cases

Choice Input property

1 true A category seleted
1 false B category unseleted
2 true C title uninserted
2 false D title inserted
3 true E ingredient uninserted
3 false F ingredient inserted
4 zero time G no record in Recipe table
4 once H only one record in Recipe table
4 more than once ecord in Recipe table I more than one r
5 zero time G no rec cipe table ord in Re
5 H only o le once ne record in Recipe tab
5 more n once I more tha one record in Recipe table tha n
6 true J input ingredient is matched
6 false input ingredient isn't matched K

7 true E ingredient uninserted
7 false F ingred inserted ient
8 zero time G no rec Recipe table ord in
8 once only o le H ne record in Recipe tab
8 more n once I more tha e table tha n one record in Recip
9 true L input title is matched
9 false input title isn't matched M

10 zero time G no record in Recipe table
10 onc H only one record in Recipe table e
10 more than onc I more tha one record in Recipe table e n
11 true both ti tched N tle and ingredient is ma
11 fals O either title or ie ngredient isn't matched
12 true C title uninserted
12 fals title inserted D e
13 true E ingred ient uninserted
13 fals F ingred inserted e ient
14 zero time G no rec Recipe table ord in
14 onc nly oH oe ne record in Recipe table
14 more than onc I more e than one record in Recipe table
15 zero time G no rec Recipe table ord in
15 onc cord in Recipe table H only one ree
15 more than onc I more table e than one record in Recipe
16 true J input ingredient is matched
16 fals F input ingredient isn't matched e
17 true dE ingre ient uninserted

 163

17 fals F ingrede ient inserted
18 zero time G no rec Recipe table ord in
18 once H only one record in Recipe table
18 more than onc I more thae n one record in Recipe table
19 true J input title is matched
19 false D input title isn't matched
20 zero time G no record in Recipe table
20 onc H only o le e ne record in Recipe tab
20 more than onc I more tha one record in Recipe table e n
21 true D both title and ingredient is matched
21 fals F either e title or ingredient isn't matched

Table of input data sets

Input data set Contents Output
A category = c no recipe is matched
 title = null
 ingredient = null
 no record in Recipe table

B category = null no recipe is matched
 title = null
 ingredient = null
 no record in Recipe table

C category = c no recipe is matched
 title = t
 ingredient = null
 no record in Recipe table

D category = c no recipe is matched
 title = null
 ingredient = i
 no record in Recipe table

E category = c no recipe is matched
 title = t
 ingredient = i
 no record in Recipe table

F category = c recipe is matched with category = c
 title = null
 ingredient = null
 many records in Recipe table

G category = c recipe is matched with category = c
 title = t title contains 't', ingredient contains 'I'
 ingredient = i
 many records in Recipe table

H category = null recipe is matched with
 title = t title contains 't', ingredient contains 'I'
 ingredient = i
 many records in Recipe table
I category = null recipe is matched with

 164

 title = null ingredient contains 'I'
 ingredient = i
 many records in Recipe table
J category = null is matched with title contains 't' recipe
 title = t
 ingredient = nu ll
 many records in Reci le pe tab

K category = c reci th category = c pe is matched wi
 title = null ingredient contains 'I'
 ingredient = i
 many records in Reci table pe
J category = c recipe is matched with category = c
 title = t title contains 't'
 ingredient = null
 many records in Reci le pe tab

 165

 ExtractInforma class: ExtraStructural Test -- tion ctCategory method

Ta e of test case
Input data set

bl s
Choice Input property
1 true A invalid recipe file

1 false B valid recipe file

2 zero time C no record in Recipe table

2 once D only one record in Recipe table

2 more than once rd in Recipe table D more than one reco

3 zero time E no record in Recipe table

3 once F only one record in Recipe table

3 more than once cord in Recipe table G more than one re

4 true A recipe already exists

4 false B recipe not exists

5 zero time C no record in Recipe table

5 once D only one record in Recipe table

5 more than once E more than one record in Recipe table

6 zero time F no record in Recipe table

6 once G only one record in Recipe table

6 more than once E more than one record in Recipe table

7 zero time cipe table F no record in Re

7 once H only one record in Recipe table

7 more than once ne record in Recipe table I more than o

8 zero time empty J buffer reader

8 once A only one line in buffer reader

8 more than once r reader B more than one line in buffe

9 zero time C no empty line

9 once D only one empty line

9 more than once one empty line E more than

10 true F buffer reader not empty

10 false G buffer reader empty

11 zero time e H no empty lin

11 once I only one empty line

11 more than once e J more than one empty lin

12 zero time K no empty line

12 once L only one empty line

12 more than once e A more than one empty lin

13 zero time B no empty line

 166

13 once C only one empty line

13 more than once D more than one empty line

14 true E no empty line

14 false E empty line

15 zero time F no empty line

15 once F only one empty line

15 more than once e empty line H more than on

16 zero time I empty string

16 once er J only one charact

16 more than once e characters K more than on

17 true L character '('

17 false G not character '('

18 true A character '('

18 false B not character '('

19 zero time C one token

19 once E two tokens

19 more than once o tokens D more than tw

20 zero time D empty string

20 once E only one character

20 more than once F more than one characters

21 true G character ')'

21 false H not character ')'

22 zero time I two tokens

22 once J three tokens

22 more than one K more than three tokens

23 zero time E no unit word in database

23 once F only unit word in database

23 more than once G more than one unid word in database

24 true H unit word

24 false I not unit word

25 zero time J one token

25 once K two tokens

25 more than once L more than two tokens

26 true G number or character ')'

26 false H neither number nor character ')'

27 true G neither number nor character ')'

27 false H number or character ')'

28 true E character ')'

 167

28 false F not character ')'

29 true G more than one characters

29 false H no or only one character

30 zero time J empty string

30 once K only one character

30 more than once E more than one characters

31 true F character ')'

31 false G not character ')'

32 true H not character ')'

32 false I character ')'

33 zero time J one token

33 once K two tokens

33 more than once L more than two tokens

34 zero time G empty string

34 once H only one character

34 more than once G more than one characters

35 true H character ')'

35 false E not character ')'

36 zero time F one token

36 once J two tokens

36 more than once K more than two tokens

37 zero time E no unit word in database

37 once F only unit word in database

37 more than once G more than one unid word in database

38 zero time H empty string

38 once I only one character

38 more than once J more than one characters

39 true K number or character ')'

39 false L neither number nor character ')'

40 true G neither number nor character ')'

40 false H number or character ')'

41 zero time G one token

41 once H two tokens

41 more than once E more than two tokens

42 zero time F empty string

42 once J only one character

42 more than once K more than one characters

43 true E unit word

 168

43 false F not unit word

44 zero time G one token

44 once H two tokens

44 more than once I more than two tokens

45 true J number or character ')'

45 false K neither number nor character ')'

46 true L number

46 false G not number

47 zero time H one token

47 once G two tokens

47 more than once H more than two tokens

48 zero time E no unit word in database

48 once F only unit word in database

48 more than once H more than one unid word in database

49 true G unit word

49 false H not unit word

50 zero time E one token

50 once F two tokens

50 more than once J more than two tokens

51 true K number or character ')'

51 false E neither number nor character ')'

52 zero time F one token

52 once G two tokens

52 more than once H more than two tokens

53 zero time H no unit word in database

53 once G only unit word in database

53 more than once H more than one unid word in database

54 true E unit word

54 false F not unit word

55 zero time J one token

55 once K two tokens

55 more than once E more than two tokens

56 true F number or character ')'

56 false G neither number nor character ')'

57 true H neither number nor character ')'

57 false H number or character ')'

58 zero time G one token

58 once H two tokens

 169

58 more than once E more than two tokens

59 zero time F no number

59 once J one number

59 more than once K two numbers

60 true E number

60 false F not number

61 true G not number

61 false H number

62 zero time H no unit word

62 once G one unit word

62 more than once H two unit words

63 true E unit word

63 false F not unit word

64 true J not unit word

64 false K unit word

65 zero time E no number

65 once F one number

65 more than once G two numbers

66 zero time H no unit word

66 once J one unit word

66 more than once K two unit words

67 zero time E no ingredient description

67 once F one ingredient description

67 more than once G more than one ingredient description

Table of input data sets

Input data set Contents Output
A empty file return InvalidRecipe (-2)

B one record in Recipe return RecipeExist (-1)
 table , imported recipe
 is same as this one
 record

C first word is number return 1
 second word is unit
 the rest word is
 ingredient description

D first word isn't number return 1
 the rest word is

 170

 ingredient description

E first word is number return 1
 second word is number
 third word is unit word
 the rest word is
 ingredient description

F first word is number return 1
 second word is ajective
 word, third word is unit
 word, the rest word is
 ingredient description

G first word is number return 1
 second word is number
 third word is ajective
 word, forth word is unit
 rest word is ingredient
 description

H first word contains return 1
 (', second word
 contains ')'
 rest word is ingredient
 description

I first word is number return 1
 and with '(', second
 word contains ')', the
 rest word is ingredient
 description

J first word is number return 1
 and with '(', second
 word contains ')',third
 word is unit word, the
 rest word is ingredient
 description

K first word is number return 1
 and with '(', second
 word contains ')' third
 word is ajective word
 forth word is unit word
 rest word is ingredient

 171

 description

L first word is number return 1
 rest word is ingredient

 description

 172

Structural Test -- ExtractInformation class: ExtractCategory method

Table of test cases

Choice Input data set Input property

1 zero time A no record in Recipe table

1 once B only one record in Recipe table

1 more than once B more than one record in Recipe table

2 true B title contains key material

2 false C title not contains key material

3 zero time A no record in Recipe table

3 once B only one record in Recipe table

3 more than once B more than one record in Recipe table

4 true D direction contains key material

4 false E direction not contains key material

Table of input data sets

Input data set Contents Output

A empty Recipe table return 'Others'

B title = 'Onion Beef' return 'Beef'
 (Beef is key material)

C title = 'mom's best' return 'Chicken'
 direction contains
 chichen'

D title = 'mom's best' return 'Others'
 direction not contains
 any key materials

 173

Structural Test -- ExtractInformation class: ExtractDirection method

Table of test cases

Choice Input data set Input property

1 zero time A buffer reader empty

1 once B only one line in buffer reader

1 more than once B more than one line in buffer reader

2 zero time C no empty line

2 once D only one empty line

2 more than once D more than one empty line

3 zero time A buffer reader empty

3 once B only one line in buffer reader

3 more than once B more than one line in buffer reader

4 true C no empty line

4 false D empty line exists

5 zero time D empty line exists

5 once D only one empty line

5 more than once D more than one empty line

6 zero time A buffer reader empty

6 once B only one line in buffer reader

6 more than once B more than one line in buffer reader

7 true D empty line exists

7 false C no empty line

Table of input data sets

Input data set Contents Output

A empty file return null

B file isn't empty return null
 but without keyword

C file isn't empty return null
 and with keyword
 but without direction

D file isn't empty return direction
 and with keyword
 and direction

 174

 175

Structural Test -- ExtractInformation class: ValidRecipe method

Table of test cases
Choice Input data set Input property

1 true A buffer reader not empty

1 false B buffer reader empty

2 zero time C keyword1 appear

2 once D keyword1 not appear once

2 more than once D
keyword1 not appear more than
once

3 zeto time B buffer reader empty

3 once A buffer reader has only one line

3 more than once A buffer reader has more than one line

4 true C keyword1 appear

4 false D keyword1 not appear

5 true E keyword2 appear

5 false F keyword2 not appear

6 zero time A no empty line

6 once B only one empty line

6 more than once B more than one empty line

7 true A buffer reader not empty

7 false B buffer reader empty

8 zero time B more than one empty line

8 once B only one empty line

8 more than once C no empty line

9 zero time D no ingredient

9 once C only one item of ingredient

9 more than once D more than one item of ingredient

10 zero time E no direction

10 once C only one line of direction

10 more than once D more than one line of direction

Table of input data sets

Input data set Contents Output

A empty file Invalid Recipe File

B file without ingredient Invalid Recipe File

 176

C file with keyword1 Invalid Recipe File
 but without ingredient

D file with keyword1 Invalid Recipe File
 and ingredient but
 without keyword2

E file with keyword1 Invalid Recipe File
 and ingredient and key
 word2 but
 without direction

F file with keyword1 Valid Recipe File
 and ingredient and key
 word2 and direction

 177

Structural Test -- ExtractInformation02 class: Extract method

Table of test cases
Choice Input data set Input property

1 zero time A empty buffer

1 once B one line in buffer reader

1 more than once B more than one line in reader

2 zero time B empty line

2 once B one token

2 more than once B more than one token

3 true A empty buffer

3 false B not empty buffer

4 true B invalid paragraph

4 false C valid paragraph

5 zero time no available empty ingredient

5 once C one item in ingredient

5 more than once C more than one item in ingredient

6 zero time A empty line

6 once B one token

6 more than once B more than one token

7 true B ingredient word

7 false C not ingredient word

8 zero time A empty buffer

8 once B one line in buffer reader

8 more than once B more than one line in reader

9 true C contain keyword

9 false D not contain keyword

10 zero time A empty buffer

10 once B one line in buffer reader

10 more than once B more than one line in reader

11 true B contain keyword

11 false C not contain keyword

12 true D empty direction

12 false D not empty direction

Table of input data sets

Input data set Contents Output

 178

A empty file return false

B file without ingredient return false

C file with ingredient return false
 but without direction

D file with ingredient return true
 and direction

Structural Test -- ExtractInformation02 class:ingredientParagraph method

Table of test cases
Choice Input data set Input property

1 zero time no available empty line

1 once A one line

1 more than once B more than one line

2 true B ingredient line

2 false A not ingredient line

3 zero time A empty line

3 once B ingredient line

3 more than once A not ingredient line

4 true B ingaredient paragraph

4 false A not ingredient paragraph

Table of input data sets

Input data set Contents Output

A paragraph without return false
 ingredient

B paragraph with return true
 ingredient

 179

Structural Test -- ExtractInformation02 class:get_category method

Table of test cases
Choice Input data set Input property

1 zero time A empty Material table

1 once B only one record Material table

1 more than once B more than one record in Material table

2 true B title contains keyword of material

2 false C title not contains keyword

3 true C title not contains keyword

3 false B title contains keyword of material

4 zero time C empty Material table

4 once A only one record Material table

4 more than once B more than one record in Material table

5 true C direction contains keyword of material

5 false C direction not contain keyword

Table of input data sets

Input data set Contents Output

A title not contain category = 'Others'
 keyword of
 material, direction
 not contain key
 word of material

B title = "Onion Beef" category = 'Beef'

C title not contain category = 'Chichek'
 keyword of
 material, direction
 contains "chicken"

 180

Structural Test -- ExtractInformation02 class:storeIngredient method

Table of test cases
Choice Input data set Input property

1 zero time A empty line

1 once B one line

1 more than once B more than one line

2 zero time A empty line

2 once B one token

2 more than once B more than one token

3 true C number

3 false D not number

4 zero time D empty

4 once D one element

4 more than once D two elements

5 true E unit word

5 false F not unit word

6 true D number

6 false E not number

7 zero time A empty

7 once B one element

7 more than once B two elements

8 true D unit word

8 false E not unit word

9 zero time A empty

9 once B one element

9 more than once B two elements

Table of input data sets

Input data set Contents Output

A only one item of add one record in Ingredient table
 ingredient

B more than one item of add more than one record in Ingredient
 ingredient table

C first token is number add number in Quantity field,
 rest is ingredient add rest ingredient in Ingredient field

D first token is number add number in Quantity field,

 181

 182

 second is unit word add unit in Unit field,
 rest is ingredient add rest ingredient in Ingredient field

E first token is number add first and second number in
 second is number Quantity field, add unit in Unit
 third is unit word field, add rest ingredient in Ingredient
 rest is ingredient field,

F first token is number add first and second number in Quantity
 second token is number field, add ajective and unit word in
 third is ajective word Unit field, add rest ingredient in
 fouth is unit word Ingredient field
 rest is ingredient

	1. Introduction
	1.1 Project Statement
	1.2 Problem Analysis
	1.3 Report Structure

	2. Solution 1
	2.1 Requirement Analysis
	2.1.1 User Requirement Analysis
	2.1.2 Data Requirement Analysis

	2.2 System Analysis and Specification
	2.2.1 Import Functionality
	2.2.2 Database System
	2.2.3 Graphics User Interface

	2.3 System Implementation
	2.3.1 System Architecture
	2.3.2 Microsoft Access Databases Design and Implementation
	2.3.2 Model Implementation
	2.3.3 View Implementation
	2.3.4 Controller Implementation

	2.4 System Test and Results
	2.5 Summary

	3. Solution 2
	3.1 Analysis
	3.1.1 HTML Document Analysis
	3.1.2 External Recipe Files Analysis

	3.2 Design and Specification
	3.2.1 Parsing the HTML Document
	3.2.2 Extraction
	3.2.3 Inserting the Recipe into the Database

	3.3 Implementation
	3.3.1 The Overview of the Implementation
	3.3.2 The Implementation of Parsing the HTML Document
	3.3.3 Extraction
	3.3.4 Inserting the Recipe into the Database

	3.4 Results and Test
	3.4.1 Import the Invalid Recipe File
	3.4.2 Import the Valid Recipe File

	3.5 Summary

	4. Conclusion
	4.1 Future Work
	4.2 Personal Conclusion

	Reference
	List of Figures
	List of Tables
	Appendix I Installation Guide
	Appendix II Configuration of Source Code
	Appendix II Test Results

