
Theoretical and Experimental Application

of Grid in Computer Games

Kristian Kjems

Kgs. Lyngby 2004

IMM-THESIS-2004-80

Technical University of Denmark

Informatics and Mathematical Modelling

Building 321, DK-2800 Lyngby, Denmark

Phone +45 45253351, Fax +45 45882673

reception@imm.dtu.dk

www.imm.dtu.dk

IMM-THESIS: ISSN 1601-233X

Abstract

This thesis examines how applicable grid services are as a foundation for a computer
game server. The focus is primarily on server design for a Mass Multiplayer Online
Game (MMOG). The task of running a MMOG server is so big it cannot be run on a
single computer. Therefore the game server is divided into smaller sub-problems
according to the divide and conquer principle. This project describes how a game server
is divided into sub-problems, and how these sub-problems work together using grid
services. It is concluded that inter-service communication performance is a problem,
when used in a performance critical system like a game server. The problem can be
overcome by using normal IP communication between components where performance is
critical. Consequently grid services are best used for infrastructural purposes in a game
server design.

 3

 4

Resume

Dette eksamensprojekt undersøger hvor anvendelige grid services er som et fundament
for en computerspilsserver. Det primære fokus er på server design til et Mass Multiplayer
Online Game (MMOG). En MMOG kræver for mange ressourcer til at den kan køres på
en enkeltstående computer. Computerspilserveren er opdelt i mindre opgaver som divide
and conquer princippet beskriver det. Dette projekt beskriver hvordan
computerspilserveren er opdelt i mindre opgaver, og hvordan disse del-opgaver arbejder
sammen ved brug a grid services. Det er konkluderet at kommunikationen med grid
services forårsager et performace problem, når grid services bruges i et
performanceafhængigt system som en computerspilsserver. Problemet kan løses ved at
benytte normal IP kommunikation mellem del-opgaver i serverstrukturen der er
performanceafhængig. Resultatet er at grid services bedst anvendes til infrastruktur i
forbindelse med computerspilserver design.

 5

 6

CHAPTER 1 INTRODUCTION..11

1.1 INTRODUCTION TO GRID COMPUTING ..12
Relation to web services ...12
Generic calculations...12
Accounting and payment ..13
Grid compared to electric power..13
Hosting agreements..13
Standardization ..13
Platform for grids...14
Global research focus...14

1.2 RECENT DEVELOPMENTS IN COMPUTER GAMES..15
Singleplayer games...15
Multiplayer games..15
Evolution towards multiplayer games ..15
Console multiplayer Games ...16
Authenticity in computer games ...16
Security in computer games..16
Design requirements for authenticity and security...17
Broadband and Mass multiplayer games ...17
Development of Mass multiplayer online games ..18

1.3 APPLICATION OF GRID IN COMPUTER GAMES..19
Assumptions..19
Hosting economy ..19
Scalability...19
Simulation and AI calculations on the grid ..20
Current solutions using grid: ButterFly.Net...20

1.4 PROJECT SPECIFICATION ..22
1.5 TIME SCHEDULE ...22

Phase plan ..23
Overall Iteration plan...23

1.6 CHAPTER OVERVIEW..24
CHAPTER 2 DESCRIPTION OF TECHNOLOGIES USED IN THIS PROJECT.............................27

2.1 UNIFIED MODELING LANGUAGE ..28
UML ...28

2.2 DESIGN PATTERNS ...30
Strategy Pattern..31
Memento Pattern ..31
Observer Pattern ..32
Proxy Pattern ...33
Singleton Pattern..34
Transformation Pattern ..35

2.3 GRID SERVICES USING WSRF ..39
Technical documents this project is based on ..40
Web Services Fundamentals...40
Web Service example: SimpleMath ...41
Web Services as a Foundation for WSRF...42
Implied Resource Pattern ...43
Endpoint Reference Type..43
Lifetime of Web Service Resources...44
Notifications in WSRF ..44

2.4 NUNIT..45
Examples ..45

2.5 SUMMARY..47

 7

CHAPTER 3 DESIGN PRINCIPLES OF COMPUTER GAME AND GRID SOFTWARE49
3.1 GRID DESIGN ...50

Grid software design elements ...50
Grid application start-up..51
Grid service components ..51
Grid component interaction ...52

3.2 COMPUTER GAME ELEMENTS ...53
Game Components ...53
Game Objects and states ..53
Distributing Object states...54
Relevant Set ..54

3.3 SUMMARY..56
CHAPTER 4 CASE STUDY: APPLICATION OF GRID IN COMPUTER GAMES57

4.1 SYSTEM DESCRIPTION ..58
Definition of game object in this case study ...58
Simulation of the virtual world...58
Game client ..59

4.2 ANALYSIS ..60
Benefits of using grids in a game serve ..60
Problems with using grids in game server ...61
Scalability in Massively Multiplayer Online Games ..61
Security in Massively Multiplayer Online Games ..61
The game server fundamental design idea ...63
Database Cache ...65
Zone Simulation..65
Player Agent ...65
Zone Simulation and Player Agent interaction in relation to relevant set algorithm..................65

4.3 DESIGN AND IMPLEMENTATION..67
Game Object...68
Game Actions ...74
XMLFactory ...76
Zone Simulation..78
Network Communication ..82
Player Agent ...87
Test game client..93
Service Checker..95
Grid Services ..96
ZoneSimulationWorker...98
PlayerAgentWorker ..99
PlayerAgentManager and ZoneSimulationManager..100
GridInGamesManager and GridInGamesConnector...101
Code Documentation..103

4.4 TEST...106
Introduction..106
Unit Testing ..106
Performance Testing ..109
Functionality Testing..111

4.5 SUMMARY..112
CHAPTER 5 CONCLUSION ..113

5.1 A SHORT SUMMARY ...114
Chapter 1: Introduction..114
Chapter 2: Descriptions of technologies used in this project...114
Chapter 3: Design Principles ...114

 8

Chapter 4: Case study: Application of grid in computer games ..114
5.2 CONCLUDING REMARKS...115
5.3 FUTURE RESEARCH AND DEVELOPMENT ..117

CHAPTER 6 BIBLIOGRAPHY..119

 9

 10

Chapter 1

Introduction

This section will consist of six parts. The first part will be a non-technical

introduction to grid computing. The second part will be an introduction to

computer games, focusing on the problems with hosting and development of

multiplayer games. The third part will be about application of grid in computer

games, and how grids may solve some of the problems discussed in the second

part of this introduction. The fourth part will describe the purpose of this thesis.

The fifth part will be a time schedule for the entire thesis. The sixth part will be

a chapter overview.

1.1 Introduction to Grid Computing

1.2 Recent developments in computer games

1.3 Application of grid in computer games

1.4 Project specification

1.5 Time schedule

1.6 Chapter overview

 11

1.1 Introduction to Grid Computing

This section is a non-technical introduction to grid computing.

Grid computing is a promising and fast growing technology, which without a

doubt will be an important part of the future information technology. The

general goal of grid computing, is to enable diverse resources to be brought

together to form a united system. The goal is accomplished by encapsulating

resources to conform to a general interface. The encapsulation is what makes

each resource into a grid service. New grid services can be constructed using a

variety of other grid services.

 Relation to web services

There are different implementations of the grid service principle of

encapsulating resources. The most common implementations are based on web

service technology. Web services can loosely be defined as a description of how

messages are exchanged over a network. Web services typically use the http

protocol as media for message transfers. A web service is unable to store

information making it stateless. In many applications, state is important making

it much less desirable to use web services. Grid services add a resource to a web

service. The resource can be elements in a database making the otherwise

stateless web service able to contain a state. Grid services are more than just an

added state, but the state is one of the most important additions to web services.

 Generic calculations

There is a large variety of possibilities of grid computing, but the primary focus

will be on grids that provide calculation power and storage for use in computer

games. In order to increase the amount of calculation power several computers

work together and it will examined how grids can be used to manage these

computers. Such a set of computers is called a grid cluster. Grid clusters are

able to host arbitrary many different grid applications. That means two different

companies can run their grid applications/services on the same grid cluster.

 12

 Accounting and payment

The grid has an architecture that makes it possible to make accounting on

resource use. It is therefore possible for the provider of a grid cluster, to bill the

user in accordance to the used resources. The grid architecture provides access

control to grid services. Some services can be accessed by all users, while other

services are only accessible to a selected group.

 Grid compared to electric power

Grid computing has many similarities with electric power, and can in many

cases be thought of as the same. The only difference is that in grid computing

we want computational power and in electric systems, we want electric power.

The consumer has a socket in his wall allowing him to draw power from the

net. The provider of power can make statistical prediction on how much power

his consumers are going to use in the future. The consumer pays for the amount

of power he is using. The provider can buy power from other providers, if he at

some point is lacking power to satisfy all his consumers.

 Hosting agreements

Because of the standardization, a grid application can be hosted by any grid

provider that uses the same standard. This implies a loose coupling between the

company that wants a grid application published and the company that hosts the

grid application. This form of loose coupling is very desirable in a dynamic

business world, where company policy and pricing can change and companies

can go bankruptcy. It is an important feature for the consumer of a grid cluster

that it will be easy to change from one grid provider to another.

 Standardization

For grid services to be able to talk to each other, a general standardization is

required. The most common used standard today is the Open Grid Services

Architecture (OGSA) and Open Grid Services Infrastructure (OGSI). OGSA

defines protocols and formats, to enable grid services to interoperate in a large-

scale format. OGSI defines how the OGSA should be implemented using

 13

current technology. The latest invention or emerging standard in the world of

grid and web services is the (Web Service Reference Framework) WSRF. The

WSRF is based on the latest developments in web service technology. The

WSRF is developed using the knowledge learned from the development of

OGSA/OGSI.

 Platform for grids

Grid technology is still a very young, and rapid developments are seen

everywhere. The most mature implementation of the OGSI standard is called

Globus Toolkit. Globus Toolkit works on any Linux platform. An OGSI

implementation for the windows platform is being worked on in two active

projects. The projects are called OGSI.NET [OGSI.NET] and MS .NET grid

[MS.NET]. The WSRF is still only implemented in one project called

WSRF.NET. The first technology preview of WSRF.NET was published late

June 2004. Just as web services, grid services can communicate across

platforms, and programming languages, which makes them very versatile. The

only limitation for a grid service to run on a certain platform is the platforms

ability to execute the grid service as a process.

 Global research focus

The worldwide focus on grid computing is considerable. An example is the

global e-Science collaboration that has founded £236M in the period from 2001

to 2006 on grid computing research [e-Science]. The focus on grid computing

in Denmark increased when the Danish Center for Grid Computing [DCGC]

was opened in November 2003.

 14

1.2 Recent developments in computer games

This section will describe some fundamentals in computer games. The focus

will be on the problems with hosting and developing multiplayer games.

The industry of creating and publishing computer games has been growing fast.

Sales of both singleplayer games and multiplayer games are increasing. A

multiplayer game is by definition played by multiple players simultaneously,

while singleplayer games are played by a single player.

 Singleplayer games

Singleplayer games are played with only one interacting human being called the

player of the game. The player interacts with the game for entertainment. Most

modern computer games present a virtual world, where the player acts as some

important identity solving different tasks. Computer games can be grouped into

genres like movies. The grouping of computer games into genres makes it

easier to talk about and understand. A brief description of the different game

genres can be found in [Games-Genres].

 Multiplayer games

Multiplayer games are typically played over the internet by multiple players

simultaneously. The two most common technologies used to connect players in

multiplayer games are client-server. The client-server technology lets the server

keep track of all the game related information. The server sends all relevant

game information to each of its clients. It is a demanding task to perform the

job of a server, so it is usually implied that the server cannot perform the job of

a client as well. This leaves a problem of who should host game server.

 Evolution towards multiplayer games

Multiplayer games are becoming increasingly more popular. The interaction

with other humans through a virtual reality is a lot more challenging and

satisfying than most singleplayer games. Most multiplayer games are

competitive making individuals or teams fight against each other.

 15

 Console multiplayer Games

A console is a special computer designed for computer games. Most consoles

are connected to the television. The most common consoles are: Playstation

(PS), Playstation2 (PS2), XBOX and GameCube.

Console games have just begun to support network games over the internet. The

fact that most consoles are now able to play multiplayer games will generate a

huge demand for console multiplayer games. Sony has released their PS2

Online, and Microsoft has released their Xbox Live. Xbox Live provides

network infrastructure and online customer service for the publisher/developer

[Consoles]. That means developers have to provide server code, and then Xbox

live will run the server code on their servers. The Xbox live system does

however have some limitations in flexibility. Xbox Live charges a monthly fee

from its customers, while PS2 Online is free. PS2 Online does not provide

network infrastructure, so the publisher/ developer has to host and maintain

their games themselves. Developing server code for Xbox Live and PS2 Online

is different, so a lot of time is used on developing the same thing on two

platforms.

 Authenticity in computer games

Authenticity in computer games is provided by a validation mechanism

between the virtual and the real world. In most cases, a player has to use a login

and password to gain access to the virtual world. Authenticity can be used to

enable all kinds of game related features like: Player ranking, character

development, penalties for cheating. Player ranking makes a game more

competitive as players can compare themselves to each other. Character

development makes a stronger connection between the virtual character and the

human player. With authentication, it is possible to punish a player if he is

caught cheating or misbehaving in other ways.

 Security in computer games

The security in computer games is made so cheating will be as hard as possible.

Cheating in singleplayer games, only affect the cheating player, so no need to

 16

worry much about that. The cheating in multiplayer games affects other players

making security very important. The concept behind many multiplayer games is

the competition between players. Cheating in any form of competition makes

participation a lot less fun. The sad truth of people playing computer games is

that some will cheat if it is possible. If the players host the game servers, it is

almost impossible to prevent cheating, because the players will have access to

all game data and communication. If a trusted party provides the players with

all the game servers, it is much less likely that they will be able to cheat.

 Design requirements for authenticity and security

Authenticity and high security have some requirements to the hosting

environment, if they are to work in an appropriate way. The game server has to

be hosted by a trusted party and an authentication service like a login has to be

provided.

 Broadband and Mass multiplayer games

The online game experience can quickly become an expensive one, if

connection to the internet is made with a modem charged by the minute.

Broadband networking enables anyone to gain relatively fast and cheap access

to the internet for a fixed monthly cost. A large penetration of broadband in a

game market is an important factor for the success of online games. The

penetration of broadband on the Korean market has been very good, with

approximately 70% of all households having broadband [Korea-BB]. The

broadband market growth has had a dramatic impact on the popularity of online

games in Korea. Especially Mass Multiplayer Online Role Playing games

(MMORPG) [Games-Genres] have been successful. The MMORPG Linage

[Linage1],[Linage2] is played by almost 2 million Koreans, which is 4% of the

total population. Linage alone is generating an impressive $100 million in

annual sales.

 17

 Development of Mass multiplayer online games

Game research indicates that MMOG has the potential to make good revenue

for the game developer and publisher [Online-Gaming1], [Online-Gaming2].

However for a MMOG to be successful a lot of technical obstacles have to be

overcome. Many developers have attempted to make an economic successful

MMOG game, but have barely had their expenses covered. The most common

genre of MMOG today is Role Playing Game (RPG) [Game-Genres], and is

called MMORPG. Developing a MMORPG is one of the most challenging

tasks a game developer team can take. One of the problematic technical

elements of a MMORPG is the network infrastructure. The network

infrastructure has to be able to host large games with thousands of interacting

players, making it necessary that several computers work together. It can be

very expensive for developers/publisher to buy and maintain a network

infrastructure that is required to host a MMORPG.

 18

1.3 Application of grid in computer games

In this chapter, it will be describe how grid can be used to solve some of the

problems with multiplayer games described in the previous chapter. The

application of grid in computer games also grants new possibilities, which will

also be discussed.

 Assumptions

Grid technology is well suited for hosting computer games, but requires the

availability of a grid cluster. The availability of grid clusters today (Q4 2004) is

very low. In this section, it will be assumed that the availability of grid clusters

is good. The grid technology is still very young, and might not yet be suited for

game server development. In this section it is assumed that the grid technology

is matured making it suitable for MMOG servers.

 Hosting economy

Under normal circumstances, publishing a computer game with trusted servers

will require a lot of investing in equipment. The publisher has to buy a

computer park able to host the game when a maximum number of players are

playing the game. It is hard to determine exactly how many are going to play a

certain game, so the publisher has to buy a little more computer power than

necessary. Both the initial investment in a computer park and the following

maintenance will be expensive and inefficient.

Grid technology is able to reduce these expenses. The publisher makes an

agreement, with a grid hosting company already owning a grid cluster able to

host the game. The expenses from hosting a game using a grid cluster will be

substantially lower than the traditional methods.

 Scalability

Grid technology is a tool that can help developers make server code scalable

more easily. Grid technology can only help to provide scalability with regard to

hosting the game. Other scalability restrictions may apply, as for instance the

 19

graphics engine. Most engines will not be able to show 1000 players on the

screen at the same time on current game platforms. Another restriction is the

network bandwidth. If a player A is in a near vicinity of other players B, C and

D, it is required that the positional information of the players B, C and D are

sent to player A. If player A is in a near vicinity of 1000 other players, the

information required to update the positional information of all these players

would exceed the bandwidth of most users. This leaves a problem not solvable

by grid computing.

 Simulation and AI calculations on the grid

Hosting a game on a grid cluster, makes it easier to do all kinds of heavy game

related calculations on the grid. Some restrictions or requirements apply to the

calculations that can be made on the grid. The amount of data sent to each client

from a grid-based simulation, is limited by the speed of the client’s internet

connection. Suitable calculations will not require large amount of data

transferred between the clients and the grid. The time it takes for a client to

make the calculation locally should in general be longer than the time it takes to

send it to the grid, and get a result back. In some cases a lot of game related

data is stored on the grid running the game. In these cases, clients may not be

able to perform the calculations themselves, because they lack the necessary

information to do so. An example of this attribute is the shortest path problem

where the task is to find the shortest path between to points while not colliding

with any obstacles. Only the server know where all the obstacles are positioned,

and is for that reason the only one able to perform the shortest path calculation.

The amount of data sent between the grid and the client is small. The client

sends two points A and B to the grid and the grid replies with a list of points

representing the shortest path between A and B.

 Current solutions using grid: ButterFly.Net

A commercial solution based on OGSA optimized for computer games does

exist under the name of Butterfly.Net [ButterFly]. Butterfly.Net provides both a

development framework and a hosting solution for a grid-based solution. There

 20

currently exists no information on how they use grid technology in their server

solution.

 21

1.4

1.5

Project specification

A. Grid computing has to be explained. OGSA, OGSI and WSRF must be

presented. The Unified Process (UP), Unified Modeling Language (UML)

and design patterns must be described.

B. A framework for a multiplayer game server has to be developed. The

framework must be constructed as a grid application where scalability is

important.

C. A test application able to simulate a simple running computer game must

be created. The test application must use the framework from B.

D. Various tests of the running game server simulation of a running computer

game must be made using the test application from C. The tests should

help clarify if grid technology is applicable in a computer game server.

E. It must be examined how applicable the Unified Modeling Language and

design patterns are in the development of grid applications.

Time schedule

The project will be divided into several iterations divided by a set of milestones.

The end of each of the iterations defines a new milestone. The time schedule

defines a set of dates to which the milestones must finished. The creation of the

time schedule is divided into two parts. A phase plan and an overall iteration

plan. The phase plan is a macro level plan where milestones dates and

objectives are defined. The overall iteration plan is defined using eight

categories, how the workload should be distributed in all iterations. This form

of development plan is closely related to the time schedule defined in the

Unified Process [UML-Larman].

 22

 Phase plan

The purpose of the phase plan is to define the dates and roughly describe the

goals for each milestone. The phase plan will remain consistent and unchanged

throughout the project period.

Iteration 1: March 2004 Start-up phase

Iteration 2: April 2004 Technology preview

Iteration 3: May 2004 Analysis and design

Iteration 4: June 2004 Design and implementation

Iteration 5: July 2004 Design and implementation

Iteration 6: August 2004 Implementation and Test

Iteration 7: September 2004 Test and Documentation

 Overall Iteration plan

The iteration plan below, show a rough distribution of the workload split

between eight categories. The workload from each of the categories, sum up to

100% over the seven iterations.

Iteration: 1 2 3 4 5 6 7

Project management 50% 10% 10% 10% 10% 5% 5%

Requirements 25% 75% 0% 0% 0% 0% 0%

Analysis 0% 0% 75% 15% 10% 0% 0%

Architecture 0% 0% 70% 10% 10% 10% 0%

Design 0% 0% 30% 40% 30% 0% 0%

Documentation 5% 10% 5% 5% 5% 30% 40%

Implementation 0% 0% 0% 20% 20% 50% 10%

Test 0% 0% 0% 0% 0% 20% 80%

 23

1.6 Chapter overview

Chapter 1: Introduction

The chapter introduces fundamental concepts of grid technology and computer

games. Some of the problems with hosting and developing a computer game

server are described. It is suggested how grid technology can be used to solve

some the problems with the hosting and development of a computer game

server.

Chapter 2: Description of technologies used in this project

This chapter describes the technologies used in this thesis. The following will

be described:

• Unified Modeling Language (UML)

• The Open Grid Service Architecture (OGSA)

• Open Grid Service Infrastructure (OGSI)

• The Web Service Reference Framework (WSRF)

• NUnit framework for unit tests

The chapter will also contain a presentation of the design patterns used in this

project [GoF].

Chapter 3: Design principles of computer games and grid software

This chapter will describe some of the general and fundamental design

principles and algorithms used in this project. This includes a grid application

design principle called the Manager-Worker design. The Manager-Worker

design is made to solve problems using the divide and conquer strategy. A

game server specific algorithm used for distributing game object state will also

be described.

 24

Chapter 4: Case Study: Application of grid in computer games

This chapter will describe how the technologies from chapter 2 combined with

the design principles of chapter 3 can be used to solve some of the problems

with computer game servers described in chapter 1.

The chapter will describe how the framework and test application is

implemented. Key elements from the source-code will be examined. This

chapter will also contain both unit tests and performance tests. The test

application will be tested according to the project specification.

Chapter 5: Conclusion

A short resume of the chapter summaries will be made. The project

specification will be examined to outline how each of the requirements is met.

Future work and improvements on this project will be discussed.

 25

 26

Chapter 2

Description of technologies used in this project

This chapter describes the technologies used in this thesis. The following will

be described:

• Unified Modeling Language (UML)

• The Open Grid Service Architecture (OGSA)

• Open Grid Service Infrastructure (OGSI)

• The Web Service Reference Framework (WSRF)

• NUnit framework for unit tests

The chapter will also contain a presentation of the design patterns used in this

project [GoF].

2.1 Unified Modeling Language

2.2 Design Patterns

2.3 Grid services using WSRF

2.4 NUnit

2.5 Summary

 27

2.1 Unified Modeling Language

The Unified Modeling Language (UML) is a notation that can be used to

describe structure, state and behavior in software. UML is a raw notation that

can be used as a tool when designing object oriented software. The Unified

Process (UP) describes a set of activities done to transform a set of

requirements into a final product. Neither UML or UP guarantee a good object

oriented result when making software, but if applied correctly they can be

helpful tools for achieving the goal. The UML is a huge language containing

more notation than most people will ever need when designing object oriented

software. It is practical to choose a subset of UML that suites the project at

hand. Not all the activities described in the UP are relevant to each project, so it

is also practical to choose a subset of the UP to use. The subset of UP was

described in 1.5 Time schedule. The subset of UML used in this thesis will be

introduced below.

 UML

The subset of UML used in this thesis will be sequence diagrams and class

diagrams. For more information about UML see [UML-Larman]. The diagrams

will be created in Borland Together 6.1. Two simple examples of a sequence

and class diagram can be seen on Figure 2-1 and Figure 2-2

 28

Figure 2-1, Sequence diagram

Figure 2-2, Class diagram

 29

2.2 Design Patterns

Design patterns are a very important tool in modern software development. The

“bible” of design patterns “Design Patterns, Elements of Reusable Object-

Oriented Software” written by Erich Gamma, Richard Helm, Ralph Johnson

and John Vlissides [GoF]. The four authors of the book are also known as the

Gang of Four.

A design pattern is said to be a solution to a problem in a context. A design

pattern can be used repeatedly in the same context, but with different problems.

Design patterns are thoroughly tested design components constructed by

experienced developers as a good practice for less experienced software

designers. Design patterns are an abstraction of the details otherwise necessary

to describe a solution to a problem in a context. This abstraction makes it easier

to understand and discuss otherwise complex software designs.

In software development, design patterns are divided into 3 groups:

• Creational Patterns

• Structural Patterns

• Behavioral Patterns

The design patterns used in this thesis, will shortly be presented in this chapter.

For a thorough description of the design patterns, see the reference [GoF].

There will be presented one new design pattern called the Transformation

Pattern, and it has been developed during this project. It would almost be

blasphemy to imply that this “home made” pattern can match it self against the

patterns presented in [GoF], but it does have its application in this project. The

patterns used in this project are:

• Strategy

• Memento

• Observer

• Proxy

• Singleton

• Transformation

 30

 Strategy Pattern

The strategy pattern is a behavioral pattern. It defines a common interface for a

family of strategies, letting the context be able to exchange them easily.

Figure 2-3, Strategy pattern class diagram

The class diagram on the pattern can be seen on Figure 2-3. The strategy pattern

is typically used when something can be done in many different ways, and it

should be easy to change how they are done.

 Memento Pattern

The memento pattern is a behavioral pattern. The pattern makes it possible to

extract internal state of an object without violating the encapsulation. The

object can be restored to a previous state by inserting a memento extracted

earlier.

Figure 2-4, Memento pattern class diagram

The class diagram of the memento pattern can be seen on Figure 2-4. In a

distributed system, the pattern can also be used to keep two objects

 31

synchronized. The internal state can be extracted from a source object, send

over the network and inserted into the target object thus keeping the two objects

in same internal state.

 Observer Pattern

The observer pattern is a behavioral pattern, which notifies objects that have

subscribed to be notified when changes occur to a source object. The source

object is called the subject.

Figure 2-5, Observer class diagram

The class diagram on Figure 2-5 show the structure of the pattern, and the

naming used for the different structural parts.

 32

Figure 2-6, Observer sequence diagram

Figure 2-6 shows the sequence diagram of the observer pattern in function.

When a change happens to the ConcreteSubject, the Notify method is invoked.

The Notify method calls the Update method in all the subscribed observers. All

of the observers use the GetState to retrieve the new updated state from the

subject.

 Proxy Pattern

The Proxy Pattern is a structural pattern. It enables the user to hide or protect

the Client from the details of accessing a subject, by providing a placeholder or

proxy to the subject.

 33

Figure 2-7, Proxy pattern class diagram

The Figure 2-7 shows the class diagram of the pattern containing the naming of

the structural elements.

 Singleton Pattern

The Singleton pattern is a creational pattern. It ensures that only one instance of

an object exist, and provides global access to it.

Figure 2-8, Singleton class diagram

Figure 2-8 shows the simple class diagram of the singleton pattern. The

constructor is private, and access to the object is achieved using the static

method Instance. The object is created the first time the Instance method is

called and subsequent calls to the Instance method returns the original object.

 34

 Transformation Pattern

The transformation pattern is homemade and not tested or documented

elsewhere. The transformation pattern is a structural pattern.

Intent:

Change an interface to another granting access to different part of a class.

Transformation pattern hides part of a class interface, which given a certain

internal state, is undesirable that clients get access to.

Motivation:

Sometimes classes give access to methods that should not be called unless some

internal state constraint is fulfilled. The following simple example illustrates

how this can be a problem for a class used to send data over the network. The

class for sending data over the network is called UDPSend and has a default

constructor. The class has two methods: Open and Send. Open is used for

opening a connection to a remote peer, and Send is used to send data to the

connected peer. It is problematic that is possible to call the Send method before

being connected to the remote peer, thus causing a fault at execution-time. The

objective of the transformation pattern is to move this fault to compile-time by

making a compile error if Send is called before a connection is established.

The transformation pattern uses interfaces or pure abstract classes to expose

certain parts of an underlying object. Look at Figure 2-9, where the

transformation pattern has been applied to the UDPSend class.

 35

Figure 2-9, Class diagram over transformation pattern

The constructor of UDPSend is private and there is no way to gain access to the

object directly. UDPSend has a static method called Create that creates a new

UDPSend object but returns it as an IClosed interface. This way only the subset

of methods defined in the IClosed interface is available after creation. See

Figure 2-10 for the UDPSend source. IClosed supports one method called Open

that takes an IP-address and port number as argument and returns the UDPSend

object as an IOpen interface. IOpen gives access to the Send method that sends

a string given as argument to the connected remote peer.

namespace TransformationPattern
{
 public interface IOpen
 {
 void Send(string s);
 }
 public interface IClosed
 {
 IOpen Open(string address, int port);
 }

 public class UDPSend : IOpen, IClosed
 {
 private UdpClient client;
 private UDPSend(){}
 ~UDPSend()
 {

 36

 client.Close();
 }
 public static IClosed Create()
 {
 return new UDPSend();
 }
 public IOpen Open(string address, int port)
 {
 client = new UdpClient(address, port);
 return this;
 }
 public void Send(string s)
 {
 byte[] bytes = Encoding.ASCII.GetBytes(s);
 client.Send(bytes, bytes.Length);
 }
 }
}

Figure 2-10, Example code of the transformation pattern
The source on Figure 2-11 shows what is possible and what gives a compile

error. The lines of code starting with “//” is commented out and would cause a

compilation error.
// UDPSend udpSend = new UDPSend();
// UDPSend udpSend = UDPSend.Create();
// IOpen openConnection = UDPSend.Create();
IClosed closedConnection = UDPSend.Create();
// closedConnection.Send("Hello World");
IOpen openConnection = closedConnection.Open("127.0.0.1", 9999);
openConnection.Send("Hello World!");

Figure 2-11, Application of the UDPSend class

Application:

Use the transformation pattern when:

• You only want to expose methods in a class that is reasonable to call

given a certain internal state of the class.

• You want to make sure that improper sequence of method invocations

on a class yields an error at compilation rather than under execution.

 37

Structure:

Figure 2-12, Transformation structure

Participants:

• Transformer (UDPSend)

- The Transformer uses the Forms to show itself, and never reveals its true

form.

• Form (IOpen, IClosed)

- How the Transformer is viewed by outsiders.

 38

2.3 Grid services using WSRF

Grid technology is specified and implemented in various ways. The

implementation used in this project is the Web Service Reference Framework

WSRF. The WSRF is an evolution from the Open Grid Service Architecture

OGSA [OGSA-Spec] and Open Grid Service Infrastructure OGSI[OGSI-Spec].

The following figure depicts how the original grid technology is merging with

the web technology. The two technologies started far apart, but have now

merged together in WSRF:

Figure 2-13, Merging web and grid technologies [GT-Presentation]

Because WSRF is a result of two merging technologies it is both a web service

and a grid service.

Grid technology and web technology has merged in the work on the Web

Service Reference Framework WSRF. The term “grid service” and “WS-

Resource” denote the same. Both terms will be used in this chapter so

remember the relation.

 39

 Technical documents this project is based on

There is a series of important documents describing the technology used in this

project. OGSA and OGSI is respectively described in [OGSA-Spec] and

[OGSI-Spec]. WSRF is described in [WSRF-Spec] that contains four

documents, but only WS-ResourceProperties and WS-ResourceLifetime will be

used in this project. The four documents are a refactoring of the design

principles of the [OGSI-Spec] using newer web service standards. The four

specifications can be used independently making solutions that are more

lightweight possible.

 Web Services Fundamentals

Web service is a new software development technology that abstracts the way

software can be constructed. Web services are stateless programmable

constructs, in the sense that they are only able to hold session based data. Web

services are meant to make the abstraction of how things are done, and where

they are done. Web services are black-box constructs, so the user does not know

nor care how the job is done. The only thing that defines the web service is the

messages generated and accepted. Web services communicate by standard high

level protocols like HTML and XML. Any host able to send messages in XML

and HTML over the internet is a potential host for web services. A web service

is described in a language called Web Services Description Language (WSDL).

A WSDL document describes a set of messages, encodings and protocols

needed to communicate with the service. When web services are deployed they

are also typically published into a registry, so potential users can easily find it.

Users search the registry for a suitable web service according to the description

of the web service in the registry. After the web service is found a binding is

made between the client and web service, as described in the WSDL document.

See Figure 2-14 for a state chart that describes this principle.

 40

Figure 2-14, Web service registry model

In the classical version of web services, only one instance of a web service can

exist.

 Web Service example: SimpleMath

To illustrate how a web service works, an example of a very simple one is given

here. The web service is called SimpleMath and is only able to add two integer

values together. The source code for SimpleMath can be seen on Figure 2-15.
Namespace SimpleMath
{
 [WebService(Namespace="http://www.kjems.org/webservices/")]
 public class SimpleMathService : System.Web.Services.WebService
 {
 public SimpleMathService()
 {
 InitializeComponent();
 }
 #region Component Designer generated code
 // Default designer generated code left out
 #endregion

 [WebMethod(Description=
 "Adds two integer values together and return the result")]
 public int Add(int x, int y)
 {
 return x+y;
 }
 }
}

Figure 2-15, SimpleMath web service code

 41

The web service can be found on:

http://www.kjems.org/webservices/SimpleMath/SimpleMath.asmx

A test form using the web service can be found on:

http://www.kjems.org/webservices/SimpleMathClient/SimpleMathForm.aspx

 Web Services as a Foundation for WSRF

After a short introduction to the added features in WSRF, the following sections

will look into more details about each of the features.

WSRF is an extension of web services that defines a standardized way of

dealing with stateful resources:

• WS-Resource: Defines way to handle web service resources.

• WS-ResourceLifetime: Defines mechanisms to destroy WS-Resources.

• WS-ResourceProperties: Defines method to change, retrieve and delete

resource properties.

• WS-Notifications: Defines mechanisms for event subscription and

notification using the idea of the Observer Pattern[GoF].

• WS-RenewableReferences: Defines a way that an Endpoint Reference can

be renewed if the old one has been invalidated.

• WS-ServiceGroup: Defines a way to handle collections of WS-Resources

• WS-BaseFaults: Defines a fault schema for returning errors in a web service

using XML.

 42

http://www.kjems.org/webservices/SimpleMath/SimpleMath.asmx
http://www.kjems.org/webservices/SimpleMathClient/SimpleMathForm.aspx

 Implied Resource Pattern

WSRF manages resources using the implied resource pattern. The implied

resource pattern is defined as the following quote [WSRF-Expl]:

The implied resource pattern refers to the mechanisms used to associate a
stateful resource with the execution of message exchanges implemented by
a Web service.
• The term implied is used because the stateful resource associated with a

given message exchange is treated as implicit input for the execution of
the message request. By implicit, we mean to say that the requestor does
not provide the stateful resource identifier as an explicit parameter in the
body of the request message. Instead, the stateful resource is implicitly
associated with the execution of the message exchange. This can occur in
either a static or a dynamic way. We say that the stateful resource is
associated with the Web service statically in the situation where the
association is made when the Web service is deployed. We say that the
stateful resource is dynamically associated with the Web service when the
association is made at time of message exchange execution. When
performed dynamically, the stateful resource identifier used to designate
the implied stateful resource may be encapsulated in the WS-Addressing
endpoint reference used to address the target Web service at its
endpoint.

• We use the term pattern to indicate that the relationship between Web
services and stateful resources is codified by a set of conventions on
existing Web services technologies, in particular XML, WSDL, and WS-
Addressing.

WSRF.Net uses static association between a web service and resource, meaning

the association is made when the web service is deployed.

 Endpoint Reference Type

The Endpoint Reference Type EPR is used to address a specific web service

resource. There is a one-to-one relation between and EPR and a web service

resource. The sequence of actions needed to create a new web service resource

can be seen on Figure 2-16. It is possible to make more than one instance of a

web service resource, but they will all have different EPRs.

 43

Figure 2-16, Web service creation sequence diagram

 Lifetime of Web Service Resources

A web service resource instance is created with a lifetime. If the lifetime of the

instance expires, then the instance is considered not longer needed, and may be

destroyed to free up resources. The lifetime of a web service resource can be

extended if needed. It is good programming practice to let the client of a web

service resource extend the lifetime in a recurring manner. If something goes

wrong in the client, the web service resource will stop getting life extensions

and the resource can be freed. The importance of lifetime management is

obvious in large-scale grid systems where resources would clutter up, if unused

resources were not closed down in the occasion of the inevitable errors.

 Notifications in WSRF

Notifications in grid services work like the observer pattern from [GoF]. In grid

service terminology, the objects that subscribe to be notified are called sinks

and the object that sends out notifications on a change is called the source.

 44

2.4 NUnit

NUnit is a unit-testing framework designed for the .Net languages. The

framework is designed to make it easy to perform and define unit tests. NUnit

uses a series of attributes to denote the type of the code in the unit test. Assert

statements are inserted into the code, so that if an assertion fails, the test of that

code unit or component will fail. The newest version of Visual Studio called

Whidbey/2005 has incorporated NUnit directly, making it very easy to perform

unit tests. A class or method is simply marked to be unit tested, and Visual

Studio generates most of the code necessary to perform the tests.

 Examples

An example of how NUnit is used can be seen on Figure 2-17.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

namespace UnitTestingExamples
{
 using System;
 using NUnit.Framework;

 [TestFixture]
 public class ExampleTests
 {
 private string testString;
 [SetUp]
 public void Setup()
 {
 testString = "";
 }

 [TearDown]
 public void TearDown()
 {
 // explicit destruction
 }

 [Test]
 public void TestMethod()
 {
 Assert.IsNotNull(testString, "testString was null");
 Assert.AreEqual("", testString, "testString was not empty");
 testString = "Hello";
 Assert.AreEqual("Hello", testString, "testString was not 'Hello'");
 testString += " World!";
 Assert.AreEqual("Hello World!", testString,
 "testString was not 'Hello World!'");
 }

 [Test]
 public void TestMethod2()
 {
 int i = 2;
 int j = (int)Math.Pow(i,10);
 Assert.AreEqual(1024, j, "j was not 1024");
 Assert.AreEqual(1025, j, "j was not 1025");
 }
 }
}

 45

Figure 2-17, Example code used for NUnit
The [TestFixture] attribute on class ExampleTests on line 6 is used to indicate

that the class contains methods that should be tested with the test runner

application. The [Test] attribute on line 22 and 34 indicates that these methods

should be included as tests. The [SetUp] attribute on line 10 indicates a method

that should be called before each of the [Test] methods. The [TearDown]

attribute on line 16 indicates a method that should be run after each of the [Test]

methods.

Figure 2-18, NUnit Test Runner GUI

The result from executing the test code from Figure 2-17 can be seen on Figure

2-18.

 46

2.5 Summary

The sections describing UML and design patterns are merely a presentation on

the subjects. The following books describe the subject more thoroughly: [UML-

Larman], [GoF]. Grid service technology is a new technology in rapid

development. Even through the period of this project, groundbreaking events

have taken place. The work on this project started out using OGSA and OGSI

as a foundation for the grid services. During the project period, the WSRF

specification was released and was clearly the way grid services would be made

in the future. WSRF combined the technologies of OGSI and the new web

service standards making a much smoother implementation. It was decided to

use WSRF instead of OGSI for this project. The WSRF specification was made

public February 2004 and the first technology preview implementation

(WSRF.NET) was made public in July 2004. There was no documentation of

the first technology preview, so the source of information was the source code.

NUnit has been used as a unit test method, and it gives an easy method of unit

testing software.

 47

 48

Chapter 3

Design principles of computer game and grid software

This chapter will describe some of the general and fundamental design

principles and algorithms used in this project. This includes a grid application

design principle called the Manager-Worker design, which will be explained in

the section Grid Design. The Manager-Worker design is made to solve

problems using the divide and conquer strategy. A game server specific

algorithm used for distributing game object state will be described in the section

Computer game elements.

3.1 Grid Design

3.2 Computer game elements

3.3 Summary

 49

3.1 Grid Design

Note: Some of the grid service features discussed in this chapter are still under

development.

Software design using grid services requires a different way of thinking. The

abstraction of grid services being distributed resource managers give a new way

of designing software. Large grid software applications are composed from a

set of more fundamental services. Some fundamental grid services can be

shared between several different higher-level services. The WSDL description

of services interfaces advocate reusability and interoperability in grid software

design. Scalability is an important feature of grid service designs. To solve the

scalability problem a divide and conquer model can be used. If a specific grid

service instance is running low on resources on a specific host computer, it

should be able to move to another host, or split between two hosts. Grid

services are able to move and split between specific hosts or computers because

of the transparency to the underlying computers that actually run the grid

service. One grid service application might be using services on several

different machines, and one machine might be running services from several

different grid service applications. There is no coupling between a grid service,

and the host computer that executes the grid services.

The following list summarizes the important benefits of grid software design:

• Scalability (Divide and conquer)

• Transparency

• Interoperability and reusability

 Grid software design elements

To be able to accommodate the requirement for scalability in the game server,

grid based structural elements has to be found or invented. The structural

elements are some sort of untested grid design pattern, or a way of how a

 50

certain problem will be solved in this project. The grid software design

elements are generic building blocks for grid applications.

Grid technology is still very young and a lot of work will be done to

standardization and development of fundamental tools. As the technology

matures, aspects like the simple structural elements created for this project will

be obsolete due to the global development effort in this field.

 Grid application start-up

When the game server start, an initiator grid service will be responsible for

starting and keeping all basic grid services alive. The basic grid services are

those fundamental for a server. If one of the basic grid services fails to respond

due to computer malfunction or other errors, it is the initiator grid services job

to start it again on a suitable computer. The initiator grid service uses a

configuration file for the basic functions of starting up, running and shutting

down the game server. The existence of some sort of start-up or global manager

service is very common in large-scale grid applications.

 Grid service components

The grid service component is a design idea developed for this project, but

could also be applicable in other scenarios. A grid service component is a set of

grid services with a manager service in charge. The grid service component

serves to solve a common problem using the divide and conquer principle. The

manager grid service is in charge of the lifetime and assignments of jobs to its

worker grid services. The manager will create a new grid service instance to

solve a specific problem, and kill it if it is no longer needed. The workers can

communicate directly with other grid services without the intervention of the

manager. To get a better understanding of the dynamics in a grid service

component an example will be used as seen on Figure 3-1.

 51

Figure 3-1, A manager and B manager interaction

 Grid component interaction

Some of the grid component managers have to interact according to some

specified logic. The A Manager(AM) and B Manager(BM) from Figure 3-1

shows an example of the interaction between two grid components. The nature

of the interactions is a part of the application logic. That means the logic behind

the interactions is a part of the final application, so the design principle will not

dictate how the interactions should be done. The instances managed by the

Manager will be called Workers.

 52

3.2 Computer game elements

 Game Components

A game server consists of a set of logical components that has to be modeled.

For the system to be scalable, each of the components should be designed with

a possibility of splitting the work into two separate grid service instances in

accordance with the divide and conquer principle.

The following game components have been identified in a typical large-scale

computer game:

• Object management (Active data/game rules)

• Player management

• Database management (Static/Persistent data)

• World simulations

• Path finding

The three core components: Object management, player management and

database management is critical for the functionality of a large-scale game

server. The two other components world simulation and path finding is not

critical for the functionality of the game server, but gives some added tools for a

good game experience. In this project, the focus will be on the object

management and player management of both computer and human controlled

players. It will be investigated how these two components can be implemented

with grid service technology.

 Game Objects and states

Most games consist of game objects, and each of these objects can have a set of

states. The understanding of the terms objects and states is easier with a few

examples.

Examples of objects are:

• A player character (PC)

 53

• A monster

• A box made of wood

• A weather condition

• A non playing character (NPC)

Examples of object states are:

• A player character is moving from point A to point B.

• A monster is shooting in a direction.

• A box made of wood is positioned at a location pointing in a direction.

• A weather condition is currently raining.

• A player character is trading with a non playing character.

An object can have multiple states, and states can include interaction with

multiple objects. A running game simulation will constantly change states of

objects to make the game world a dynamic environment for players to interact

with. In multiplayer games, these constantly changing states have to be

distributed to the clients.

 Distributing Object states

Computer games are getting increasingly more complex, and the number of

objects and states required to create the game world is growing. It is important

to keep the amount of object states that have to be communicated over the

network in multiplayer games to a minimum. To accommodate the requirement

for reducing the communication between clients and servers, an algorithm for

distributing game objects states is going to be used [Object-State].

 Relevant Set

The relevant set algorithm is defined as the set of objects that is relevant for a

given client at a given time. If an object is relevant to the client, it needs to be

distributed to that client. Relevant sets typical consist of game objects in a near

 54

vicinity of a client, but they can also be other things like in-game weather

conditions relevant for the client.

This simplified pseudo code will illustrate how the idea works.

• Extract the relevant set from the game world representation.

• Send data needed to update the objects in the relevant set to the client.

• The client applies the relevant set data to the local game world

representation.

Figure 3-2, The relevant set algorithm

This algorithm works in both ways, so the client also extracts relevant data and

sends it to the server.

 55

3.3 Summary

This chapter has investigated the two aspects of this project: Grid services and

game server design. Grid technology is a new technology, so there is not much

written material on grid application design. The Manager-Worker design

principle is developed for use in this project. It is a design made for solving

large problems using the divide and conquer principle. The manager controls a

set of workers, working on a common problem. The problem has been divided

into n parts, where the workers solve a part each. The manager is in charge of

the work process and controls the lifetime of the workers.

Formulating general theories of game server design is very hard, because game

design differ a lot. The area of theories for game server design becomes very

wide and is in most cases specialized solutions to a specific game. One thing

that most MMOG type of games share is some sort of information filtering, so

only relevant information is sent to the client computer. The algorithm for doing

that in this project is called the Relevant Set algorithm and is described above.

 56

Chapter 4

Case Study: Application of grid in computer games

This chapter will describe how the technologies from chapter 2 combined with

the design principles of chapter 3 can be used to solve some of the problems

with computer game servers described in chapter 1.

The chapter will describe how the framework and test application are

implemented. Key elements from the source-code will be examined. This

chapter will also contain both unit tests and performance tests. The test

application will be tested according to the project specification.

4.1 System description

4.2 Analysis

4.3 Design and implementation

4.4 Test

4.5 Summary

 57

4.1 System description

The purpose of the case study is to examine, if and how applicable grid services

are as a foundation for a MMOG server. To make the examination, a simplified

test a game server will be made along with a very simplified game client. The

game server will be tested to clarify how a game server will benefit from a grid

service foundation, and where it will be a disadvantage.

 Definition of game object in this case study

A game object as described in section 3.2 will consist of the following:

• A current location

• A destination location

• A movement speed

• A unique identification

• A set of interaction rules called Actions that define a behavior

The game object exist in a 2-dimensional world, so all locations are defined in

(X,Y) coordinates. Game objects can be many things, from a box of wood to an

animal moving around in the virtual world. The interaction rules is what makes

each object behave differently.

 Simulation of the virtual world

Section 3.2 described how a simplified game server works. A game server

constantly changes the state of the game objects. The rules of how the game

objects change state, is game specific, and details concerning that have no

relevance for this project. The simplification of the game server in this case

study will primarily be on the rules of how objects change state. The simulation

is constantly changing the states of the game objects according to the world

rules and the objects interaction rules. The clients should only be updated with

 58

changed states that are relevant to them, so the information flow between server

and client is kept to a minimum.

 Game client

The game client will be very simplified as it is not the focus of this case study.

The game client should be able to display the position of the game objects in a

2D virtual world. It should also be possible to move around.

 59

4.2 Analysis

This section analyses how a game server should be designed and implemented

using grid services.

 Benefits of using grids in a game serve

A grid based game server solution should if possible support following set of

important features:

• Scalability

• Robustness

• Easy maintenance

• Low equipment cost

These are all features desirable in any server based solution. The grid services

provide an infrastructure that is well suited to form a fundament for a game

server that supports the features above.

Scalability: Scalability is possible because grid service instances are created

and managed so the grid application is transparent to the computers that

actually run the grid application.

Robustness: Robustness can be achieved using the lifetime management and

heartbeat abilities that grid services provide. Lifetime management is typically

used to shut down services that are no more needed. Heartbeats are used to

check if specific grid services are always running.

Easy maintenance: A well-designed grid application will not fail under a

computer breakdown or shutdown, but continue after relocating some

components to another computer.

Low equipment cost: Because the price of a computer increases exponential in

compared to the computer speed, it is beneficial to use a lot of small computer

rather than few big ones. Spreading the load of a grid application over many

computers, will reduce the equipment compared to using only one big

computer.

 60

 Problems with using grids in game server

Some of the aspects that might become problematic when using grid services

for a game server are:

• Higher development cost (because grid is a new technology)

• Lower performance in regard to response time

The development cost when using a new technology is higher because everyone

who works with the new technology has to learn it first. New technology also

tend to change as it matures, so work done in the start of the development phase

might become obsolete in the end. All the infrastructural benefits that grid

services can provide come with a price. The marshalling and interacting grid

services causes an overhead that might have a negative impact on the response-

time of the application. Computer games are a type of application where the

response-time is critical. Bringing the response-time to a minimum is one of the

biggest challenges developing a grid based game server.

 Scalability in Massively Multiplayer Online Games

The complexity of the work that a MMOG server is doing depends upon the

following factors:

• Number of players

• Number of objects

• Number of interactions

It is important to make the MMOG server scalable in relation to the complexity

elements above.

 Security in Massively Multiplayer Online Games

As described in chapter 1.2, the security in computer games is very important.

The fundamental server design should be made so it is possible to achieve a

high level of security. Encrypting data between server and client is problematic

as seen on Figure 4-1.

 61

Figure 4-1, Security issues with game server/client communication

The malicious user in the scenario of computer game security is the cheating

player. The malicious user has access to the game data before it reaches his

computer by letting another computer on the network make a passive listening

to the data flow. This kind of security issue is called a passive eavesdropping. If

the key negotiation between the server and client is done correctly, and the data

is encrypted, the passive eavesdropper attack is impossible. The game client

receives encrypted data from the server, and will have to decrypt the data before

it can be used. That causes two security problems: The client must have the

decryption key, and the un-encrypted data must reside in the memory

somewhere. The malicious user has access to both the key and the un-encrypted

data making him able to listen in on the information sent between the game

server and game client.

Another type of problem with cheating, is tampering or infusion of malicious

packets into the network stream between the server and client. The server

should be resilient to attacks like this by enforcing integrity control on the

communication.

 62

 The focus in this case study is not game security, but it should be noted that

security in computer games is very important.

 The game server fundamental design idea

The game server is composed of three main grid components, two auxiliary grid

components and a database as seen on Figure 4-2. The three main grid

components are essential for the operation of the game server. The main grid

components are Player Agent, Zone Simulation and Database Cache and they

are marked with bold on the figure. The other two grid components on the

figure are given as examples of auxiliary grid components. It is also possible to

come up with other auxiliary grid components that can solve specific game

related problems. The focus in this project will primarily be on the two basic

grid components: Player Agent and Zone Simulation. The number of game

objects in this case study is very low, so there is no need for a Database Cache.

 63

Figure 4-2, Game server

 64

 Database Cache

The database cache(DC) grid component works as a cache for the global

persistent database. Data retrieved from the global database will be stored until

a specified cache size has been filled. In most cases, other grid component

instances using a specific DC instance will need the same information

repeatedly over a given period. The purpose of the DC is to decrease the

workload of the global database and to improve response performance.

 Zone Simulation

A Zone Simulation(ZS) instances handle all interaction between game objects

in a specific area of the game. Game objects can be other players, monsters,

boxes, doors and so on. The ZS instance only handle a small subset of the entire

game world the players can interact with. Each ZS instance is associated with

one DC instance, and all static game information is retrieved through that ZS

instance.

 Player Agent

The Player Agent(PA) manager is in charge of all the PA instances that handle

the communication with players and AI Players. A PA instance receives data

from a ZS instance that is relevant to a specific player. It then makes necessary

filtering and marshalling of the data before it is sent to the player. A PA

instance only has to subscribe to data from the ZS instance that the player exists

in. If a player moves from ZS instance A to B, it is the job of the ZS to make

sure the PA instance get an updated reference to ZS instance B.

 Zone Simulation and Player Agent interaction in relation to relevant set algorithm

The relevant set algorithm is performed by the Zone Simulation(ZS) and Player

Agent(PA) in collaboration. A ZS instance is sending all state changes to

subscribing PA instances. The PA instances filters the data sent to them, so only

what is relevant is being sent to the client or player. Any encoding, marshalling

or encryption will also be done in the player manager. Complex game objects

 65

on the server might hold more information than the client need, so a PA

instance will also extract only relevant data from complex game objects. A PA

instance will know what the client knows, and will only send state changes

compared to the current state of the client. It is important for game servers that

only the necessary data is sent to the client because of the low bandwidth of

clients.

 66

4.3 Design and implementation

This chapter describes how the game server is implemented using grid services

in the form of WSRF. At the time of writing, there was only one

implementation of WSRF available and it was called WSRF .Net v1.0.

[WSRF.Net]. WSRF.Net v 1.0 is based on C# and Microsoft’s .Net framework

v. 1.1. The WSRF.Net implementation is only partial, but the most essential

things are included. In section 3.1, it was described how grid services were

transparent to the physical computer they were executed from. This is not the

case for this very young version of WSRF.NET. There still needs to be done a

lot of work in the service utility layer. The way WSRF services is made

transparent to the physical computer has to be standardized so all WSRF

implementations use the same method. Bottom line is that the implementation

in this case study is made assuming among others, transparency to physical

computers is working even though they are still being worked on.

 67

 Game Object

Figure 4-3, GameObject and Action class diagram

 68

The following description of the requirements is used as a fundament for how

the construction of the GameObject and Action was made. The GameObject

contains information to describe a game object. Action has an Execute method,

that when invoked will change the internal state in the coupled GameObject,

according to the logic of the action. The GameObject and Action objects are

tightly coupled, as neither of them is fully functional without the coupling.

Action describes an abstract object that all the concrete actions inherit from.

The GameObject and Action is coupled using the strategy design pattern.

GameObject is the context, Action is the strategy and the concrete strategies are

Move and Idle (see Figure 4-3). The Action that the GameObject is performing

can be changed with the SetAction method. It should not be possible

accidentally to invoke the Execute method, if the GameObject and Action has

not been coupled. To avoid accidentally invocation of the Execute method, the

Transformation pattern is used. IExecutable, Action and IOriginator are Forms.

The concrete actions Move and Idle are Transformers. See section 2.2 for a

description of the transformation pattern. First, an interface called IExecutable

is made.
public interface IExecutable
{
 void Execute();
 void Finalize();
}

Figure 4-4, IExecutable interface
The concrete actions will now both inherit from Action and IExecutable. The

constructor of the concrete actions is made private and a Create method is made

to construct an object of the concrete type, returned as the abstract type Action.

An example of this can be seen on Figure 4-5 where the Create method from the

Move class is shown.
public static Action Create(Location toLoc)
{
 return new Move(toLoc) as Action;
}

Figure 4-5, Create method in Move class
As the abstract class Action does not have an Execute method, it is not possible

to accidentally execute a concrete action without having a coupling to a

GameObject.

 69

The GameObject is part of a large distributed system, and it will be necessary to

work with identical copies of GameObjects in different parts of the system. The

easy solution would be to send the entire GameObject each time a change was

made. That would however cause a lot of overhead as GameObjects change

constantly and they contain more information than needs to be sent. To reduce

the overhead, the memento design pattern will be used. The Action contained in

the GameObject is an abstract type, so it will be necessary to implement the

memento pattern in both the GameObject and concrete actions. The interfaces

seen in Figure 4-6 will be used in the implementation of the memento pattern.
public interface IMemento
{
}

public interface IOriginator
{
 IMemento CreateMemento();
 void SetMemento(IMemento memento);
}

Figure 4-6, Memento interfaces
The IMemento interface is empty because the memento should not be used or

modified by external holders. The CreateMemento method extracts the essence

of the state of the originator and stores it in a memento. The SetMemento

method restores the state of the originator based on the information in the

memento given as argument.

The implementation of the memento pattern in the class Move can be seen on

Figure 4-7. The Memento class is a nested class in the Move class.

CreateMemento and SetMemento are methods for supporting the IOriginator

interface that Move inherits from. Note that the strategy- and memento design

patterns are mixed together as the GameObject is the context, IOriginator is the

strategy and Move is a concrete strategy in the strategy pattern.

#region Memento Pattern
[Serializable]
public class Memento : IMemento
{
 private Location toLoc;
 private Location fromLoc;
 private TimeSpan timeSpan;
 private bool bExecuted;
 public Memento(){}
 public Location ToLoc{get{return toLoc;}set{toLoc=value;}}
 public Location FromLoc{get{return fromLoc;}set{fromLoc=value;}}

 70

 public TimeSpan TimeSpan{get{return timeSpan;}set{timeSpan=value;}}
 public bool Executed{get{return bExecuted;}set{bExecuted=value;}}
}
public IMemento CreateMemento()
{
 Memento mem = new Memento();
 mem.ToLoc=user.LocVec.To;
 mem.TimeSpan=DateTime.Now-executedAt;
 mem.FromLoc=user.LocVec.From;
 mem.Executed=this.Executed;
 return mem;
}

public void SetMemento(IMemento memento)
{
 Memento mem = memento as Memento;
 this.executedAt=DateTime.Now-mem.TimeSpan;
 user.LocVec.To=this.toLoc=mem.ToLoc;
 user.LocVec.From=mem.FromLoc;
 this.Executed=mem.Executed;
}
#endregion

Figure 4-7, Memento implementation in the concrete class Move
Note that CreateMemento returns an object of type IMemento(empty interface)

and not Memento, so it will not be possible to modify or read any of the

information contained inside the returned memento. There is a scenario to be

aware of when using the memento this way: What if a created IMemento is

given as argument to a SetMemento method in another type of object than it

was created from? That is a problem and it should be made impossible to do by

accident. The solution is the transformation design pattern discussed in chapter

 71

Design Patterns on page 30. The concrete actions, Move and Idle are

transformers and IExecutable, IOriginator and Action are forms. The only way

of creating a concrete action is by using the Create method that returns the

object masked as the abstract type Action. Action does not have the

CreateMemento or SetMemento methods.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

public class Memento : IMemento
{
 public Memento(){}
 private Action action;
 private IMemento actionMemento;
 public Action Action
 {
 get{return action;}
 set{action=value;}
 }
 public IMemento ActionMemento
 {
 get{return actionMemento;}
 set{actionMemento = value;}
 }
}

public IMemento CreateMemento()
{
 Memento memento = new Memento();
 IOriginator actionOriginator = action as IOriginator;
 memento.ActionMemento = actionOriginator.CreateMemento();
 memento.Action = action;
 return memento;
}

public void SetMemento(IMemento memento)
{
 Memento mem = memento as Memento;
 this.SetAction(mem.Action);
 IOriginator actionOriginator = action as IOriginator;
 actionOriginator.SetMemento(mem.ActionMemento);
}

Figure 4-8, Memento implementation in the GameObject class
The memento implementation in the concrete Action classes (Move and Idle) is

only used by the GameObjects memento implementation as seen on Figure 4-8.

The GameObject memento is made using the CreateMemento method on line

18-25. First the memento from the coupled Action is extracted and saved in the

GameObject.Memento on line 22. Then the action itself is saved on line 23,

and the memento is returned as an IMemento. If the GameObject is coupled to

an Action of one concrete type, and the ActionMemento is created from an

Action of another concrete type an runtime error will occur. To avoid the error

from being able to happen, the Action stored in the GameObject.Memento is

 72

coupled with the GameObject before the SetMemento in the Action memento is

called.

The entire construct is composed of 3 strategy-, 2 memento- and 1

transformation design pattern.

The GameObject class is modeling a game object. Game objects in this project

are described by the following:

• Id : Unique identification

• Speed: Travelspeed when moving

• TravelTime: Calculated traveltime based on speed and distance

• Description: Name of the game object

• GameAction: The game action is executed when the game object is

executed.

• Zone: String identifying the zone the game object exists in.

• LocVec: Vector describing the movement of the game object.

• CurrentLoc: Calculated based on time/speed/direction where the game

object is currently located in the virtual world.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

public Location CurrentLoc
{
 get
 {
 if (locVec.Distance==0) return locVec.From;
 Location currentLoc = locVec.From.Clone() as Location;
 TimeSpan delta = DateTime.Now-action.ExecutedAt;
 double distance = delta.TotalSeconds*speed;
 double modifier = distance/locVec.Distance;
 if (modifier>1) modifier=1;
 if (modifier<0) modifier=0;
 currentLoc.X+=(locVec.To.X-locVec.From.X)*modifier;
 currentLoc.Y+=(locVec.To.Y-locVec.From.Y)*modifier;
 return currentLoc;
 }
}

Figure 4-9, CurrentLoc calculation
The CurentLoc property can be seen above in Figure 4-9. On line 5 it is

checked that the object is actually moving, and if it is not then locVec.From is

returned. On line 7-9 it is calculated how far in percent the object has moved

from the start location locVec.From, to the end location locVec.To. On line 10

and 11 it is checked that the object has not moved beyond the boundary of the

 73

locVec. On line 12 and 13 the current location is calculated, and the result is

returned at line 14.

A GameObject can be executed with the Execute method as it adheres to the

IExecutable interface. The Execute in GameObject calls the Execute method in

the coupled Action. The GameObject can be set to use a new Action with the

SetAction method.

 Game Actions

Game actions support the IExecutable interface. Each action is able to be

executed when the Execute method is invoked. The Execute method alters the

internal state of the Action, and alters the internal state of the GameObject that

it was called from. The simplified game server in this project only supports two

actions: Move and Idle action. The concrete game actions Move and Idle are

basic actions. Complex actions can be performed by AI players by composing

them from the basic ones. It should only very rarely be necessary to add new

basic game actions to the system.

[Serializable]
public abstract class Action : XMLObject
{
 #region Private Member Variables
 [NonSerialized]protected GameObject user;
 [NonSerialized]protected DateTime executedAt;
 protected bool bExecuted;
 #endregion

 #region Constructor
 public Action():this(null){}
 public Action(GameObject gameObject)
 {
 this.user = gameObject;
 executedAt=new DateTime(0);
 bExecuted = false;
 }
 #endregion

 #region Public Properties
 public DateTime ExecutedAt{get{return executedAt;}}
 public GameObject User{get{return user;}set{user=value;}}
 public bool Executed{get{return bExecuted;}}
 #endregion
}

Figure 4-10, Abstract Action class

 74

The abstract Action class can be seen on Figure 4-10. The [Serializable]

attribute on line 1 is necessary if Action objects have to be serialized to XML.

Elements marked with [NonSerialized] will be omitted from the serialization as

seen on line 4 and 5. The executedAt remembers when an action was executed.

If the action is on a timer it will be possible with the executedAt to se how

much of the action has been performed. CurrentLoc from Figure 4-9 uses

executedAt. The Executed property of type bool, indicates if the Action has

been executed yet and is used to prevent an action from be executed twice.

#region IExecutable
public void Execute()
{
 if(this.User!=null && !Executed)
 {
 User.LocVec.To=toLoc;
 executedAt=DateTime.Now;
 bExecuted = true;
 }
}
public void Finalize()
{
 if(this.User!=null && Executed)
 {
 User.LocVec.From = User.CurrentLoc;
 }
}
#endregion

Figure 4-11, IExecutable implementation in class Move
The implementation of the IExecutable interface can be seen on Figure 4-11.

The Finalize method in a concrete Action should be called just before the action

is replaced by another.
public bool Relevant(GameObject gameObject)
{
 // Simple example Relevance critera
 const double relevantDistance = 10;
 double dis = Math.Min(
 Math.Min(Location.Distance(fromLoc, gameObject.LocVec.From),
Location.Distance(fromLoc, gameObject.LocVec.To)),
 Math.Min(Location.Distance(toLoc, gameObject.LocVec.From),
Location.Distance(toLoc, gameObject.LocVec.To)));
 return (dis<relevantDistance);
}

Figure 4-12, Relevance criteria in the Move class
The relevance criteria seen in Figure 4-12 is a simple example, and in a real

game server more refined relevance calculations should be done. If the action is

relevant to an object it must either move from or to the objects relevance radius.

 75

 XMLFactory

The XMLFactory is a method of constructing objects from XML. The ability to

store objects as string-based XML is very important in this project. It makes it

possible to communicate objects throughout the system using the network. It

also makes it possible to store objects in a database. Some of the objects in this

project are only constructed based on information stored in an xml-based

database. The construction information in the database is stored in XML, so it

makes sense XMLFactory takes an xml-based string as parameter. If the xml-

based string can represent several different objects, it is necessary to use the

XMLFactory to analyse the XML and create the right type of object. Some

objects are partly contained in the XML, while others are completely contained.

The Move action seen in Figure 4-13 illustrates an object that is completely

contained in the XML. An object completely contained in XML can at any state

be deconstructed to XML and then reconstructed to the original object and state

again.
<Move>
 <toLoc>
 <X>5</X>
 <Y>5</Y>
 </toLoc>
</Move>

Figure 4-13, Move object in XML
The code for the XMLActionFactory can be seen on Figure 4-14. It analyses the

root node of the XML, and creates a new object of the type of the root using

XML serialization based on the XML given as parameter. This is possible

because the Move object is completely contained in the XML. If Move had only

been partly contained in the XML, the object should have been manually

reconstructed instead. XMLActionFactory throws an ArgumentException if the

reconstruction fails.
public class XMLActionFactory
{
 protected XMLActionFactory(){}
 public static Action Create(string parms)
 {
 XmlDocument xmlParms = new XmlDocument();
 try
 {
 xmlParms.LoadXml(parms);
 XmlNode root = xmlParms.LastChild["Action"].FirstChild;

 76

 string s = root.LocalName;
 switch(s)
 {
 case "Move":
 return (Move)ObjectXMLSerializer.StringToObject(
 root.OuterXml,typeof(Move));

 case "Idle":
 return new Idle();

 default:
 throw new ArgumentException("Object specified for creation does not
 exsist: "+s);
 }
 }
 catch(XmlException e)
 {
 throw new ArgumentException(string.Format("Parameters passed to XMLFactory
 is not valid XML:{0}.\n{1}",parms,e.Message));
 }
 }
}

Figure 4-14, XMLActionFactory
The implementation of the generic StringToObject used in Figure 4-14 can be

seen on Figure 4-15. Note that the type needs to be known. In the case where

the XML describes an abstract object like Action, the XMLFactory has to be

used to determine the concrete object type. In the case of Action, the concrete

object types are Move and Idle.
public class ObjectXMLSerializer
{
 private ObjectXMLSerializer(){}
 public static object StringToObject(string s, Type type)
 {
 XmlSerializer xmlSerializer = new XmlSerializer(type);
 StringReader stringReader = new StringReader(s);
 return xmlSerializer.Deserialize(stringReader);
 }
}

Figure 4-15, ObjectXMLSerializer
All classes that inherit from abstract class XMLObject is able to convert itself

into a string. The string can be based on either XML or SOAP. As seen on

Figure 4-10, Action inherits from XMLObject. The implementation of

XMLObject can be seen on Figure 4-16.
public abstract class XMLObject
{
 public string XML
 {
 get
 {
 XmlSerializer xmlSerializer = new XmlSerializer(this.GetType());
 StringWriter stringWriter = new StringWriter();
 xmlSerializer.Serialize(stringWriter,this);
 return stringWriter.ToString();
 }
 }

 77

 public string SOAP
 {
 get
 {
 return ObjectSoapSerializer.ObjectToString(this);
 }
 }
}

Figure 4-16, Abstract class XMLObject
The source code in Figure 4-17 illustrates how the different types of

XML/Object conversions can be used. An Action object of concrete type Move

is converted into an XML-based string on line 2. The string is then converted

back to the original object on line 3.
1
2
3

Action action = Move.Create(new Location(5,5));
string actionXml = action.XML;
Action action2 = XMLActionFactory.Create(actionXml);

Figure 4-17, Examples of XML/Object conversions

 Zone Simulation

The Simulation class is running the actual simulation, by invoking the execute

method on game objects. A queue of game objects that has an action to perform

is maintained by the ActionSequenceSingleton class. The Simulation and

ActionSequenceSingleton are the internal parts of the grid component

ZoneSimulation shown on Figure 4-2.

 78

Figure 4-18, Simulation class diagram

Singletons are very easy to make in C# as it can be done with only one line of

code as seen on Figure 4-19. There is small difference between the

implementation of the singleton pattern seen on Figure 4-19 and the one

described in the [GoF] book. The difference is that the [GoF] singleton instance

is first created when the instance is requested the first time, while the singleton

instance used here will be created at the start of the program.
public static readonly ActionSequenceSingleton Instance =
 new ActionSequenceSingleton();

Figure 4-19, ActionSequenceSingleton declaration

The ActionSequenceSingleton maintains an internal queue of type Queue. The

queue is accessed from different threads so it is necessary to synchronize the

queue.
private void initialization()
{
 actionSequence = ActionSequenceSingleton.Instance;
 queueResetEvent = actionSequence.QueueResetEvent;
}

Figure 4-20, Using the ActionSequenceSingle

 79

Synchronization of all C# collection classes including the Queue is very easy,

and can be done with the code seen in Figure 4-21.
private ActionSequenceSingleton()
{
 unsyncedActionSequence = new Queue();
 actionSequence = Queue.Synchronized(unsyncedActionSequence);
 gameObjects = new Hashtable();
}

Figure 4-21, ActionSequenceSingleton constructor
The BroadCasterSingleton seen on Figure 4-22 is used for sending information

from the Simulation to all subscribed listeners.
public class BroadcasterSingleton
{
 public static readonly BroadcasterSingleton Instance =
 new BroadcasterSingleton();
 private IPSender sender;
 BroadcasterSingleton()
 {
 sender = new IPSender();
 }
 public IPSender Sender
 {
 get{return sender;}
 }
 public void AddRecipient(ISendStrategy sendStrategy)
 {
 sender.AddRecipient(sendStrategy);
 }
}

Figure 4-22, BroadcasterSingleton
The simulation is started by calling the public method start, from the simulation

class. The simulation is stopped by calling the stop method. Start and stop

methods can be seen on Figure 4-23.
public void start()
{
 running = true;
 run();
}
public void stop()
{
 running = false;
 queueResetEvent.Set();
}

Figure 4-23, Start and Stop methods
The simulation is running inside the private run method as seen on Figure 4-24.

To avoid using busy-wait where the actionSequence is pulled for new

information constantly, an AutoResetEvent is used. Whenever a change is made

to the queue, or if the run method should wake up for other reasons then

queueResetEvent.Set() is called. Line 6 in the run method is waiting for a signal

 80

from .Set() before it continues. On line 9 and 10, a GameObject that has an

action to be executed is de-queued and executed. The new updated GameObject

memento is broadcasted to all listeners on a specified UDP multicast group on

line 11.
1
2
3
4
5
6
7
8
9
10
11
12
13
14

private void run()
{
 GameObject gameObject;
 while(running)
 {
 queueResetEvent.WaitOne();
 while (actionSequence.Count>0)
 {
 gameObject = actionSequence.Dequeue();
 gameObject.Execute();
 broadcastSender.Sender.Send(gameObject.CreateMemento());
 }
 }
}

Figure 4-24, Simulation run method
The Enqueue method in ActionSequenceSingleton takes a

GameObject.Memento as argument as seen on Figure 4-25. The

ActionSequenceSingleton maintains a Hashtable with the key being the ID and

the body being the GameObject. The Hashtable contains all the GameObjects

that exist in its zone.
public void Enqueue(GameObject.Memento memento)
{
 GameObject gameObject = gameObjects[memento.Id] as GameObject;
 gameObject.SetAction(memento.Action);
 actionSequence.Enqueue(gameObject);
 queueResetEvent.Set();
}

Figure 4-25, ActionSequence Enqueue method

The sequence diagram on Figure 4-26 show the actions performed when a

GameObject or Action is added to the simulation. The GridInGamesConnector

and ZoneSimulationWorker in the figure will be described later.

 81

Figure 4-26, Simulation sequence diagram

 Network Communication

A small custom-made network library is made for sending and receiving data

with TCP and UDP protocols. The IPReciever class can receive data from both

UDP and TCP depending on how it is constructed. The received data is put into

a local Queue as it arrives. Users of the IPReciever class can Dequeue the

information as they see fit. The IPSender class is able to send data over the

network using UDP, TCP or UDP multicast protocol. A class diagram of

IPSender class can be seen on Figure 4-27. The type of protocol is chosen at

construction of the object. The strategy pattern is used where IPSender is the

context, ISendStrategy is the strategy and UDPSend, TCPSend and

UDPMulticast are the concrete strategies.

 82

IPReceiver

+IPReceiver
+IPReceiver
+Start:void
+Stop:void
+Dequeue:object
+UDP:void
+UDPMulticast:void
+TCP:void

+NetworkProtocol

 Count:int
 QueueResetEvent:AutoRese

XMLIPReceiverFacto

+Create:IPReceiver

UDPMulticast

+UDPMulticas
+Send:void

TCPSend

+TCPSend
+Send:void

UDPSend

+UDPSend
+Send:void

IPSender

+IPSender
+IPSender
+AddRecipient:voi
+Send:void

interface
ISendStrategy

+Send:void

XMLIPSenderFactor

+Create:ISendStrateg

Figure 4-27, Network Communication

The ISendStrategy supports three functions all named Send that takes a string,

byte-array or object as an argument.

 83

public interface ISendStrategy
{
 void Send(string s);
 void Send(byte[] bytes);
 void Send(Object obj);
}

Figure 4-28, ISendStrategy interface
UDPSend, TCPSend and UDPMulticast have very similar implementation, so

only UDPSend will be shown here. UDPSend uses the UdpClient from the

.NET framework, which makes the class very simple and straightforward. The

string to be send is converted to a byte array with the build-in encoding

conversions on line 14 in Figure 4-29.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

public class UDPSend : ISendStrategy
{
 private UdpClient client;
 ~UDPSend()
 {
 client.Close();
 }
 public UDPSend(string address, int port)
 {
 client = new UdpClient(address, port);
 }
 public void Send(Byte[] bytes)
 {
 client.Send(bytes, bytes.Length);
 Thread.Sleep(0);
 }
 public void Send(String s)
 {
 Send((Object)s);

 }
 public void Send(Object obj)
 {
 Send(ObjectSoapSerializer.ObjectToBinary(obj));
 }
}

Figure 4-29, UDPSend strategy class
The IPSender seen on Figure 4-30 maintains a list of recipients to which the

class must send to when the Send method is invoked. To add a recipient the

AddRecipient method is called and to remove a recipient the RemoveRecipient

method is called. When the Send method is invoked, the argument is sent to all

“subscribed” recipients on the list.
public class IPSender
{
 private ArrayList recipients;
 public IPSender()
 {
 recipients = new ArrayList();
 }
 public IPSender(ISendStrategy sendStrategy): this()
 {
 AddRecipient(sendStrategy);

 84

 }
 public void AddRecipient(ISendStrategy sendStrategy)
 {
 recipients.Add(sendStrategy);
 }
 public void RemoveRecipient(ISendStrategy sendStrategy)
 {
 recipients.Remove(sendStrategy);
 }
 public void Send(byte[] bytes)
 {
 foreach(ISendStrategy recipient in recipients)
 {
 recipient.Send(bytes);
 }
 }
 public void Send(Object obj)
 {
 foreach(ISendStrategy recipient in recipients)
 {
 recipient.Send(obj);
 }
 }
 public void Send(string s)
 {
 foreach(ISendStrategy recipient in recipients)
 {
 recipient.Send(s);
 }
 }
}

Figure 4-30, IPSender class
The XMLIPSenderFactory on Figure 4-31 is similar to the other XMLFactories

seen. It constructs an IPSender object with a specific send strategy and

parameters based on an XML argument.
public class XMLIPSenderFactory
{
 protected XMLIPSenderFactory(){}
 public static ISendStrategy Create(string parms)
 {
 XmlDocument xmlParms= new XmlDocument();
 try
 {
 xmlParms.LoadXml(parms);
 XmlNode root = xmlParms.LastChild;

 if (root.Name!="IPSender") root = root["IPSender"];
 string s = root["protocol"].InnerText;
 string address = root["IP"].InnerText;
 int port = int.Parse(root["port"].InnerText);
 switch(s)
 {
 case "UDP":
 return new UDPSend(address, port);

 case "TCP":
 return new TCPSend(address, port);

 case "UDPMulticast":
 return new UDPMulticast(address, port);

 default:
 throw new ArgumentException("Object specified for creation does not
exsist: "+s);
 }

 85

 }
 catch(XmlException e)
 {
 throw new ArgumentException(string.Format("Parameters passed to XMLFactory
 is not valid XML:{0}.\n{1}",parms,e.Message));
 }
 }
}

Figure 4-31, IPSenderFactory
IPReceiver can receive data from TCP, UDP or UDPMulticast protocols. The

type of protocol is selected at creation by selecting one of three functions that

adhere to the NetworkProtocol delegate signature. The constructor and delegate

declaration can be seen on Figure 4-32.
public delegate void NetworkProtocol();
private NetworkProtocol protocol;
// Rest of member declaration left out

public IPReciever(NetworkProtocol protocol, string _address, int _port)
{
 this.protocol=protocol;
 // Rest of constructor body left out
}
public void Start()
{
 done=false;
 listenThread = new Thread(new ThreadStart(protocol));
 listenThread.Start();
}

Figure 4-32, IPReciever construction and startup
An example of the protocol selection can be seen on Figure 4-33, where the

UDP protocol is selected.
IPReciever listener =
 new IPReciever(new IPReciever.NetworkProtocol(IPReciever.UDP), port);

Figure 4-33, External construction of IPReciever class using UDP
There are three Protocol delegates in the IPReciever class and they are much

alike, so only the UDP version it shown here. It can be seen on Figure 4-34.

 86

public static void UDP()
{
 UdpClient listener = new UdpClient(port);
 IPEndPoint endpoint = new IPEndPoint(address, port);
 try
 {
 while (!done)
 {
 byte[] bytes = listener.Receive(ref endpoint);

 syncMessageQueue.Enqueue(bytes);
 queueResetEvent.Set();
 }
 listener.Close();
 }
 catch (Exception e)
 {
 Console.WriteLine(e.ToString());
 }
}

Figure 4-34, UDP delegate function
The IPReciever class maintains a local Queue of objects containing the

incoming data. The Queue is synchronized using the same method as in the

ActionSequenceSingleton shown on Figure 4-19. External users of the

IPReciever can use the queueResetEvent to avoid using busy-wait methods

getting data from the queue.

 Player Agent

The PlayerAgent class serves as an agent for the player. The PlayerAgent and

the concrete players AIPlayer and HumanPlayer are internal parts of the grid

component named Player Agent on Figure 4-2.

 87

Figure 4-35, Class diagram of the PlayerAgent
Any information recived in the PlayerAgent is passed on to the Player’s React

method with the information as an argument. The information is processed in

the respective concrete Player classes. There are two very different Player’s in

this project: AIPlayer and HumanPlayer. The HumanPlayer class handles the

communication with the game client. The information relevant is sent to the

game client. The response from the human player using his game client is

received by HumanPlayer and passed on to the simulation. The interface to the

simulation is through a WSRF webservice. The AIPlayer is the artificial

intelligence of game objects. The AIPlayer in this project is very simple, but in

a real computer game, the calculations made in the AIPlayer could potentially

be very heavy and complex. The XMLPlayerFactory creates instances of either

AIPlayer or HumanPlayer based on an XML-based string. Both the AIPlayer

and HumanPlayer are private inner classes in XMLPlayerFactory. They are

made private inner classes because then only the XMLPlayerFactory can create

those two objects.

Note that the strategy design pattern is used. Player is the strategy while

AIPlayer and HumanPlayer are the concrete strategies. PlayerAgent is the

Context.

 88

The PlayerAgent class seen on Figure 4-36 takes three arguments at

construction. The first argument IPlayer, can be either a HumanPlayer or

AIPlayer. The second argument is an IPReceiver that receive the data sent from

the ZoneSimulation. The third argument is the EPR for the

GridInGamesManager service that keeps track of all services in the system. The

GridInGamesManager service is used when connecting to a ZoneSimulation

instance. The PlayerAgent is oblivious to what kind of player it is agent for.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

bool done = false;
private IPReceiver ipReceiver;
private AutoResetEvent queueResetEvent;
private IPlayer player;

public PlayerAgent(IPlayer player, IPReceiver ipReceiver, string
gridInGamesEPR)
{
 this.ipReceiver = ipReceiver;
 queueResetEvent = ipReceiver.QueueResetEvent;
 this.player = player;
 player.Connect(gridInGamesEPR);
}

private void Initialize()
{
 ipReceiver.Start();
 player.Start();
}

public void Stop()
{
 done=true;
}

Figure 4-36, PlayerAgent class constructor and startup
The Run method seen on Figure 4-37 uses the queueResetEvent to avoid a

busy-wait. Information received is dequeued on line 9, and sent on to the

Players React method.
1
2
3
4
5
6
7
8
9
10
11
12
13

public void Run()
{
 done=false;
 Initialize();
 while(!done)
 {
 while(ipReceiver.Count>0)
 {
 player.React(ipReceiver.Dequeue());
 }
 queueResetEvent.WaitOne();
 }
}

Figure 4-37, Run method in PlayerAgent

 89

IPlayer seen on Figure 4-38 defines the interface of the objects created by

XMLPlayerFactory. The interface defines the method React that is called from

PlayerAgent when information is received. The Connect method is used for

connecting the Player to the ZoneSimulation grid service. The Start method is

used to activate the Player, by sending the GameObject of the Player to the

ZoneSimulation .
public interface IPlayer
{
 void React(Object obj);
 void Connect(string url);
 void Start();
}

Figure 4-38, IPlayer interface used with XMLPlayerFactory
The XMLPlayerFactory creates objects that inherit from IPlayer. The two

classes HumanPlayer and AIPlayer are both private inner classes of

XMLPlayerFactory as seen on Figure 4-39. This way HumanPlayer and

AIPlayer can only be constructed using XMLPlayerFactory. The safety

measures to catch errors from a faulty XML parameter are put in the

XMLPlayerFactory.
public class XMLPlayerFactory
{
 protected XMLPlayerFactory(){}
 public static IPlayer Create(string parms)
 {
 XmlDocument xmlParms= new XmlDocument();
 try
 {
 GameObject gameObject;
 xmlParms.LoadXml(parms);
 XmlNode root = xmlParms.LastChild;
 string s = root.LocalName;
 switch(s)
 {
 case "HumanPlayer":
 gameObject = new GameObject(root["name"].InnerText,
 root["zone"].InnerText);
 return
 new HumanPlayer(gameObject, new IPSender(
XMLIPSenderFactory.Create(root["ClientCommunication"]["IPSender"].OuterXml)),
XMLIPReceiverFactory.Create(root["ClientCommunication"]["IPReceiver"].OuterXml));

 case "AIPlayer":
 gameObject = new GameObject(root["name"].InnerText,
 root["zone"].InnerText);
 return new AIPlayer(gameObject);

 default:
 throw new ArgumentException("Object specified for creation does not
 exsist: "+s);
 }
 }
 catch(XmlException e)
 {

 90

 throw new ArgumentException(string.Format("Parameters passed to XMLFactory
 is not valid XML: {0}.\n{1}",parms,e.Message));
 }
 private class HumanPlayer : IPlayer
 {
 // Content of the HumanPlayer class
 }
 private class AIPlayer : IPlayer
 {
 // Content of the AIPlayer class
 }
}

Figure 4-39, XMLPlayerFactory class
The HumanPlayer constructor seen on Figure 4-40 takes three arguments. The

first argument is the GameObject that contains the information about the player.

The second argument is the IPSender for sending data to the user’s game client.

The third argument is the IPReceiver that receives data from the user’s game

client.
public HumanPlayer(GameObject _gameObject, IPSender _sender, IPReceiver
_receiver)
{
 gameObject = _gameObject;
 sender = _sender;
 listener = _receiver;

}

Figure 4-40, HumanPlayer constructor
The Connect method seen on Figure 4-41 connects the HumanPlayer to the

zone or ZoneSimulation instance that the player resides in.
public void Connect(string gridInGamesURL)
{
 zoneSimulationConnect = new
 GridInGamesConnector.ZoneSimulationConnect(gridInGamesURL);
 zoneSimulationConnect.ConnectToWorker(gameObject.Zone);
}

Figure 4-41, HumanPlayer Connect
The Start method on Figure 4-42 sends the GameObject of the HumanPlayer to

the ZoneSimulation.
public void Start()
{
 zoneSimulationConnect.AddGameObject(gameObject);
}

Figure 4-42, HumanPlayer Start

The React method uses the Relevant method in the Action from the incoming

GameObject.Memento to determine if the information is relevant to the player.

The HumanPlayer.React sends on all GameObject’s and only relevant

GameObject.Memento’s (performed actions) to the client.

 91

public void React(Object obj)
{
 if (obj is GameObject.Memento)
 {
 GameObject.Memento memento = (GameObject.Memento)obj;
 if (memento.Id==gameObject.Id)
 {
 gameObject.SetMemento(memento);
 }
 if ((memento.Action as IAction).Relevant(gameObject))
 {
 sender.Send(obj);
 }
 else
 {
 EventDebug.Send("Non-relevant action received");
 }
 }
 if (obj is GameObject)
 {
 sender.Send(obj);
 }
}

Figure 4-43, React method in HumanPlayer
It would be possible to lower the bandwidth requirements of server/client

communication in two ways: Instead of using a SOAP serializer a binary one

could be used. Secondly, the data could be compressed. It would also be

possible to apply encryption to avoid passive listening attacks.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

public static void ResponseReceiverProc()
{
 done=false;
 AutoResetEvent queueResetEvent = listener.QueueResetEvent;
 listener.Start();

 Object obj;
 while(!done)
 {
 queueResetEvent.WaitOne();
 while(listener.Count>0)
 {
 obj = listener.Dequeue();
 if (obj is GameObject.Memento)
 {
 GameObject.Memento memento = obj as GameObject.Memento;
 zoneSimulationConnect.AddGameAction(memento.Id, memento.Action);
 }
 }
 }
}

Figure 4-44, HumanPlayers ResponseReceiverProc thread
The ResponseReceiverProc thread seen on Figure 4-44, receives information

from the game client. The information received is analysed and acted upon

typically by sending it to the ZoneSimulation.

 92

Figure 4-45, PlayerAgent sequence

The sequence diagram on Figure 4-45 shows the interaction between the

Simulation and the PlayerAgent. Later it will be described how both the

Simulation and PlayerAgent are encapsulated inside the grid service.

 Test game client

The test game client is able to display information from the game server. It is

also able to send a Move action with the location taken from a mouse-click to

the game server. The class diagram of the test game client can be seen on

Figure 4-46. The game client uses the observer pattern where

GameObjectModel is the subject. ViewArea and GridInGamesGUI are

observers.

 93

Figure 4-46, Test Game Client class diagram

The graphical user interface (GUI) of the test game client can be seen on Figure

4-47. The line represents the From and To Location of a GameObject. The

Location of the dot on the line is repeatedly calculated using the CurrentLoc

method in the local GameObject.

 94

Figure 4-47, Test Game Client GUI

 Service Checker

The Service Checker is used to monitor the grid services that compose the game

server. It is possible to retrieve information about each of the services. In this

early version, only the service EPR is given, but it could easily be evolved to

include more of the grid service information. The Service Checker is also able

to start all the services of the game server, and close them down again. The

Service Checker is a hollow construct not containing much else than what the

Visual Studio project wizard and GUI editor has made. The Service Checker

can be seen on Figure 4-48.

 95

Figure 4-48, Service checker GUI

 Grid Services

Until now, this Design chapter has only been working with non-grid based

software development. It will now be described how the code explained until

now can be used as components for a grid based server solution. Figure 4-2 on

page 64 shows how the game server is constructed, using a number of grid

components. Not all grid components on the figure have been implemented in

this project, but those that have will be described here. The code needed to

make a grid service is somewhat different from the code seen until now.

Attributes are used to augment the code with extra information for the grid

service compiler to use.
1
2
3
4
5
6
7
8
9
10
11
12

namespace ZoneSimulationManager
{
 [WsdlBaseName("ZoneSimulationManagerService",
 "http://www.kjems.org/GridInGames")]
 [WebService(Description="Manager for ZoneSimulationWorker instances")]
 [WebServiceBinding]
 [WSRFPortType(typeof(ImmediateResourceTerminationPortType))]
 [WSRFPortType(typeof(GCGResourceFactoryPortType))]
 [ResourceInitializerType(typeof(string))]
 public class ZoneSimulationManagerService : ServiceSkeleton,
IManagerService
 {

Figure 4-49, Grid Service header

 96

The attributes of the grid services in this project can be seen on Figure 4-49.

The three first attributes seen on line 3, 5 and 6 are web service attributes. The

following three attributes on line 7, 8 and 9 are WSRF web service (grid

service) specific. The attribute on line 3 defines the name of the service, and it

will be used in the WSDL description of the service. The attribute on line 5 add

additional information to the web service. In this case a description of the web

service is added. The attribute on line 6 declares the binding of web service

methods defined in the web service. The functionality is somewhat similar to

inheriting from an interface in traditional C# code. The attributes on line 7 and

8 are what is called port type aggregation [WSRF.Net-Tur]. A port type is

typically able to perform some standard functionality. By aggregating a port

type in a WSRF web service, the service gains the functionality defined in the

port type. The port type on line 7 makes it easier to destroy a WSRF web

service, and the port type on line 8 makes it easier to create a WSRF web

service. The attribute on line 9 declares the types used for initialization of the

web service. In this case, a single parameter of type string is used.
[Resource]
private Hashtable EPRList;

Figure 4-50, WSRF Resource declaration in WSRF.NET
The thing that makes a WSRF web service (grid service) different from a

normal web service is the ability to manage persistent resources. The

WSRF.Net implementation has done the declaration of persistent resources

incredibly easy. It is simply done by putting a [Resource] attribute on the

member variable that should be persistent as seen on Figure 4-50. The

WSRF.Net framework manages communication with a database to store the

resource. When a WSRF session start, the resource is loaded from the database,

and when the session stops the resource is saved back to the database if it was

changed.

[WebMethod]
[SoapDocumentMethodAttribute(
 "http://www.kjems.org/GridInGames" + "/getEPR",
 Use=System.Web.Services.Description.SoapBindingUse.Literal,
 ParameterStyle=SoapParameterStyle.Bare)]
[return: XmlElementAttribute(
 "getEPRResponse", Namespace="http://www.kjems.org/GridInGames")]

 97

public string getEPR(string ident)
{
 return EPRList[ident] as string;
}

Figure 4-51, WSRF web service method declaration
The WSRF method declaration can be seen on Figure 4-51. The attribute header

of the web method describes the formatting of the incoming arguments and the

returned results. The method returns the EPR of the service with identity given

as argument. The list of identification and EPR-string relations are stored in the

Hashtable EPRList shown in Figure 4-50.

The ZoneSimulationWorker and PlayerAgentWorker both start a new thread

executing the actual Simulation and PlayerAgent. These threads are executed

under the security permissions of the IIS webserver. If the threads are not

closed down manually when a ZoneSimulationWorker or PlayerAgentWorker

resources is destroyed, they will continue running as ghosts. The only way to

destroy the ghost threads is by restarting the web server. This is very

undesirable, and is a matter that should be handled safely by the WSRF.

 ZoneSimulationWorker

The ZoneSimulationWorker service works in close relation to the

ZoneSimulation described on page 78. A new thread running the simulation is

started when the start method is invoked. The simulation is executed on the

privilege of the web servers host environment that, in the case of WSRF.Net is

the Internet Information Service IIS [IIS]. The ZoneSimulationWorker service

is responsible for closing the thread when it is no longer needed. If it is not

closed, it will keep running as a ghost process in the web server. The interface

of the ZoneSimulationWorker can be seen on Figure 4-52.

 98

The following list describes the methods of the ZoneSimulationWorker:

• create: Creates a new instance of the WSRF service

• getManagerEPR: Returns the service EPR as a string.

• getGridInGamesEPR: Returns the EPR for the GridInGamesManager

service.

• setGridInGamesEPR: Sets the EPR for the GridInGamesManager

service.

• addGameObject: Adds a GameObject to the Simulation.

• addGameAction: Adds a new Action to a GameObject in the

Simulation.

• subscribe: Adds a recipient to the information broadcasted from the

Simulation.

• start: Start a new thread running the simulation.

• stop: Stop the thread running the simulation.

Figure 4-52, ZoneSimulationWorker interface

 PlayerAgentWorker

The PlayerAgentWorker works much like the ZoneSimulationWorker. It

manages a thread running a PlayerAgent. See page 88 for a description of the

 99

PlayerAgent class. The interface of the PlayerAgentWorker can be seen on

Figure 4-53. The following list describes the methods in PlayerAgentWorker:

• create: Creates a new instance of the WSRF service.

• getGridInGamesEPR: Returns the EPR for the GridInGamesManager

service.

• setGridInGamesEPR: Sets the EPR for the GridInGamesManager

service.

• startPlayer: Start thread running the PlayerAgent.

• stop: Stops the thread running the PlayerAgent.

Figure 4-53, PlayerAgentWorker interface

 PlayerAgentManager and ZoneSimulationManager

The two manager services are identical besides the name, so only one of them

will be described here. The interface of the manager services can be seen on

Figure 4-54. The manager service creates new instances of the workers and

saves a reference as an EPR in a local resource. Following list describes the

methods of the manager services:

• create: Creates a new instance of the WSRF service.

• getWorkerCounter: Returns the number of worker managed

• getGridInGamesEPR: Returns the EPR for the GridInGamesManager

service.

 100

• setGridInGamesEPR: Sets the EPR for the GridInGamesManager

service.

• getEPR: Returns the EPR of the service

• createWorker: Creates a new worker and stores a reference to the EPR

Figure 4-54, Manager Service interface

 GridInGamesManager and GridInGamesConnector

The code for actually creating and using WSRF web services is complicated,

and it requires a lot of specialized code. To avoid that the user of the services

has to know or write that code, the (remote) Proxy design pattern is used to

mask the details.

The GridInGamesManager service is the (remote) Proxy and

GridInGamesConnector is the RealSubject. The Proxy and RealSubject both

inherit from the same interface Subject, but that is not suitable here. Some of

the return types from the GridInGamesManager service that acts as the proxy

need to be processed before returning to the user. The result is that eventhough

both the GridInGamesManager service and GridInGamesConnector conceptual

support the same interface there are subtle differences. Figure 4-55 Show the

interface of GridInGamesConnector.
public interface IGridInGamesConnector
{
 string CreateService(string ident, string URL);
 string GetEPR(string ident);

 101

 void SetEPR(string ident, string epr);
 string GetThisEPR();
 void DestroyService(string ident);
 int DestroyAllServices();
 Hashtable GetEPRList();
}

Figure 4-55, IGridInGamesConnector interface
One of the subtle differences between GridInGamesManager and

GridInGamesConnector is the implementations of GetEPRList(). Because a

Hasbtable is unable to be transferred from GridInGamesManager using web

services, it must be converted into a SOAP string before sending. The

Hashtable is then reconstructed in GridInGamesConnector using the SOAP

string. The user of the WSRF web service GridInGamesManager will never

know the problems with Hashtable’s not being an eligible web service return

type because he only sees the GridInGamesConnector. The two

implementations of GetEPRList can be seen on: Figure 4-56 and Figure 4-57.

public Hashtable GetEPRList()
{
 return ObjectSoapSerializer.StringToObject(_gridInGamesProxy.GetEPRList()) as
Hashtable;
}

Figure 4-56, GetEPRList implementation in GridInGamesConnector

[WebMethod]
[SoapDocumentMethodAttribute(
 "http://www.kjems.org/GridInGames" + "/GetEPRList",
 Use=System.Web.Services.Description.SoapBindingUse.Literal,
 ParameterStyle=SoapParameterStyle.Bare)]
[return: XmlElementAttribute("GetEPRList",
 Namespace="http://www.kjems.org/GridInGames")]
public string GetEPRList()
{
 return ObjectSoapSerializer.ObjectToString(EPRList);
}

Figure 4-57, GetEPRList implementation in GridInGamesManager

 102

The following list describes the methods in the GridInGamesConnector:

• CreateService(ident, URL): Creates a new instance of the service with

the URL given as argument. GridInGamesManager saves the EPR of the

created service instance under the name of ident.

• GetEPR(ident): Returns the EPR of the service saved under the name

of ident.

• SetEPR(ident, EPR): If a service was created externally, a reference

can be added to the GameObjectManager database of that service.

• GetThisEPR(): Returns the EPR of the service itself.

• DestroyService(ident): Destroys the service saved under the name of

ident.

• DestroyAllServices(): Destroys all the services saved in the database,

effectively closing down the server.

 Code Documentation

Code documentation in the .Net languages can be done using XML tags. All

public identities are tagged with some information describing it. In this project I

use 4 of the tags available:

• <summary> : Short description.

• <returns> : Description of the return value from method

• <remarks> : Detailed description containing special considerations.

• <param name=”name”>: Description of input parameter name.

The information added in the XML tags can be used to a lot of different things.

The information is available as ToolTips so if the mouse is hovering over an

identity the relevant information is showed as a small popup textbox as seen on

Figure 4-58.

 103

Figure 4-58, Tooltip example
It is also possible to generate a series of documentation web pages using the

XML tags as source. The XML tags are compiled into an .xml file that can be

shipped with an associated library .dll file.

Figure 4-59, Document! X generated documentation

 104

Reflection combined with the XML tag file contains a lot of useful information

to the user of the library. An example of a third party program that uses the

XML tags and reflection to generate documentation is Document! X

[Document-X]. Document! X generates documentation very similar to the

MSDN documentation. An example of the generated documentation can be

seen on Figure 4-59. A partial example of the code used to generate the

documentation in Figure 4-59 can be seen on Figure 4-60
/// <summary>
/// Concrete class Idle of type Action. Constructor is private
/// because the object should be created with the Create method.
/// </summary>
/// <remarks>
/// This is part of the strategy design pattern.
/// GameObject is context, Action is strategy, Move is concrete strategy,
/// Idle is concrete strategy. This is part of the memento design pattern.
/// Action is the Originator, Action.Memento is the memento.
/// The constructor is private to avoid construction of this concrete Action.
/// The reason why a conrete object of this type is undesireable is
/// because it would be possible to invoke methods in the IExecutable
/// interface on an Action decoupled from a GameObject.
/// Use the Create method to create an instance
/// of the Idle object as an abstract Action.
/// </remarks>
[Serializable]
public class Idle : Action, IOriginator, IExecutable, IAction
{
 #region Constructor
 /// <summary>
 /// This is the only way to create an Idle action.
 /// The Constructor is private.
 /// </summary>
 /// <returns>
 /// Abstract Action containing the concrete Idle object
 /// </returns>
 public static Action Create()
 {
 return new Idle() as Action;
 }
 private Idle():base(){}
 #endregion

 // Rest of the Idle implementation is left out.

}

Figure 4-60, Code Documentation example

 105

4.4 Test

 Introduction

The testing of the written code in this project will be done in three ways: A unit

test, performance test and functionality test. The unit test uses the NUnit

framework explained in 2.4.

A unit test, tests the fundamental building blocks of the system. If small

implementation changes are made, the unit tests can be rerun to ensure that the

code still behaves like expected.

The performance test in this project will primarily be a test on a WSRF grid

service method invocation. The overhead of using grid services in this project is

the most crucial to the system performance.

The functionality testing should prove that the system as a whole is working.

The test will simply be to test different situations, and ensure that the program

reacts like expected.

 Unit Testing

Unit test is done to the public part of classes. Unit tests can be used to test if

fundamental building blocks are functioning as intended. It can also be used to

retest part of a program if implementation changes have been made, to ensure

everything is still functioning as intended. The NUnit framework described in

section 2.4 is used to perform the unit tests. Three examples of unit tests will be

shown here, and the rest can be found in the appendix with the source code.

CurrentLoc

The CurrentLoc property uses system time to calculate how far an object has

moved in a certain period. Results based on a system timer are not entirely

exact, so it has to be insured that it lies within an acceptable range. The

conceptual steps of the test can be seen on Figure 4-61 and the source code for

the test can be seen on Figure 4-62.

 106

CurrentLoc 1. Make a new GameObject at location (1,1).
2. Add a move action to the GameObject to locatation (5,5).
3. Execute the action and wait half the travel time.
4. Test that object is located at (3,3) which is halfway

between (1,1) and (5,5).

Figure 4-61, CurrentLoc Unit test steps

[Test]
public void CurrentLoc()
{
 const string str = "Monster";
 GameObject ma = new GameObject(str,"TestZone");
 ma.Speed=2;
 ma.LocVec.From=new Location(1,1);
 ma.SetAction(Move.Create(new Location(5,5)));
 ma.Execute();
 Thread.Sleep((int)(ma.TravelTime*1000/2));
 Location loc = ma.CurrentLoc;
 Console.WriteLine("CurrentLoc: ({0},{1})", loc.X, loc.Y);
 Assert.IsTrue(loc.X>2.9, "X < 2.9");
 Assert.IsTrue(loc.X<3.1, "X > 3.1");
 Assert.IsTrue(loc.Y>2.9, "Y < 2.9");
 Assert.IsTrue(loc.Y<3.1, "Y > 3.1");
}

Figure 4-62, CurrentLoc test source code

XML Serialization

The test of XML serialization is relatively easy, because and object can be

converted to and from XML. The test steps can be seen on Figure 4-63, and the

source code can be seen on Figure 4-64.

XMLSerialization 1. Make a new LocationVector from (1,2) to (3,4)
2. Convert the LocationVector to XML
3. Convert the XML back to a new LocationVector
4. Test that the content of the two LocationVector are the

same.

Figure 4-63, XML Serialization test steps

 107

[TestFixture]
public class XMLTest
{
 [Test]
 public void Test()
 {
 LocationVector locVec = new LocationVector();
 locVec.From=new Location(1,2);
 locVec.To=new Location(3,4);
 string xmlLocVec = locVec.XML;
 LocationVector locVec2 = (LocationVector)ObjectXMLSerializer.StringToObject(
 xmlLocVec, typeof(LocationVector));
 Assert.IsTrue(locVec.From.X==locVec2.From.X&&locVec.From.Y==locVec2.From.Y);
 Assert.IsTrue(locVec.To.X==locVec2.To.X && locVec.To.Y==locVec2.To.Y);
 }
}

Figure 4-64, XML Serialization test source code

IPSender and IPReceiver

The IPSender and IPReceiver are a little more difficult to test because they use

the network. To test the functionality an object is sent over the network, and it

is checked that the object is the same after it has been received. This test

assumes the serialization from Figure 4-63 is working.

IPSender,

IPReceiver

1. Make a new IPSender, and IPReceiver so they can
communicate with each other.

2. Create a new GameObject with ToLoc equal to (5.5)
3. Send the GameObject to the local receiver.
4. Dequeue an object from the receiver.
5. Check that the object is a GameObject
6. Check that the ToLoc of the GameObject is (5,5)

Figure 4-65, IPsender and IPReceiver test steps
The source code for the unit test of the IPSender and IPReceiver can be seen on

Figure 4-66.
[TestFixture]
public class UDPTest
{
 private IPReceiver receiver;
 private IPSender sender;
 [SetUp]
 public void Initialize()
 {
 sender = new IPSender(new UDPSend("127.0.0.1",25000));
 receiver = new IPReceiver(
 new IPReceiver.NetworkProtocol(IPReceiver.UDP), "127.0.0.1", 25000);
 receiver.Start();
 }
 [TearDown]
 public void TearDown()
 {
 receiver.Stop();
 }

 108

 [Test]
 public void Test()
 {
 GameObject gameObject = new GameObject("Broadcast","TestZone");
 gameObject.LocVec.To=new Location(5,5);
 sender.Send(gameObject);
 Thread.Sleep(500);
 Assert.AreEqual(1, receiver.Count);
 Object obj = receiver.Dequeue();
 Assert.IsTrue(obj is GameObject);
 if(obj is GameObject)
 {
 GameObject gameObject2 = obj as GameObject;
 Assert.AreEqual(5,gameObject.LocVec.To.X);
 Assert.AreEqual(5,gameObject.LocVec.To.Y);

 }
 }
}

Figure 4-66, IPSender and IPReceiver test source code

 Performance Testing

The performance of a game server is important because it dictates the response

time of the server under heavy load. Having a quick response time is important

for the game experience.

Grid Service Invocation

The critical point in this implementation of a game server using grid services is

the invocation of grid service methods. A test has been made to determine the

invocation time of grid service method. The grid service method tested is the

AddGameAction in ZoneSimulationWorker, which is the grid service method,

used the most in a running simulation. The AddGameAction calls the Enqueue

method in ActionSequenceSingleton. The simulation is not running, so none of

the added actions are executed. The invocation time of both methods was tested

to determine the difference:

Method Total invocations Used time Invocation time

AddGameAction 1.000 17,6s 17,6ms

Enqueue 10.000.000 7,5s 0,00075ms

The overhead of the grid service invocation is clearly the dominant part when

adding a new action to the simulation. It is not surprising that a grid service

 109

method invocation is so heavy compared to a local method invocation, but it

gives an idea of how many actions the system can handle per second.

Running Simulation

To test the running simulation, n actions are added to the simulation and all the

actions are executed. The actions used will be Move. Instead of moving to the

same location repeatedly, two different locations are used to move between.

 Total actions Used time Time per Action

Simulation 1.000.000 4,9s 0,0049ms

Sending information from the Simulation to the subscribers is relatively

demanding, because the GameObject.Memento has to be converted into a

SOAP string and send via UDP. Figure 4-67 shows the time used when running

the Simulation in relation to how many that has subscribed to the Simulation.

The relation is clearly linearly.

Time used per subscriber

0

1
2

3
4

5

6
7

8
9

10

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Number of subscribers

Ti
m

e
us

ed
 in

 m
s

UDPMulticast
UDPSend

Figure 4-67, Time used for one action per subscriber
When using UDPSend the GameObject.Memento has to be converted into

SOAP and send to each of the subscribers in contrast to the UDPMulticast that

only have to do it once. Imagine a simulation having 60 subscribers and using

 110

the UDPSend: The time needed to send an action to all subscribers would

approximately be the same as adding one action through the grid service

method.

The grid service invocation is as seen considerable and should in some cases be

avoided by using traditional network coding instead. An example of where

traditional coding is used, is the broadcasting to all subscribers in the

Simulation. The Simulation would have been very slow if all the PlayerAgents

should have been notified using grid service invocation. With the test results

seen here, the AddGameAction would also be a subject that could be changed

to traditional network code instead. It is however hard to predict how the

performance of grid service invocations using the WSRF will evolve in the

future. WSRF is merely a technology preview, and there has not been done

anything to improve the performance yet. The primary use of WSRF is typically

applications with few service invocations and where performance is not an

issue.

 Functionality Testing

This test uses the final system to ensure that the provided functionality is

working. The test game client that provides the interface for the functionality

test is very simple, so the functionality test is also very simple. The things that

can be tested are:

• Is it possible to move the player represented by a small dot around the

client area?

• Do the AIPlayers move around the screen as expected?

• Do the simple relevance criteria work?

The basic functionality of the game server is working as expected.

 111

4.5 Summary

The goal of the case study was to investigate if grid services are applicable in

the development of a MMOG server. The grid service implementation used was

based on Web Service Reference Framework WSRF. The task of making a fully

functional MMOG is larger than what can be accomplished during the project

period of a master thesis done by one person. The partial implementation seen

here does however reveal many of the benefits and problems when using grid

services. The problems are primarily related to performance, and an alternative

method has been used to solve the problem. Instead of using, the relatively slow

inter grid service communication, normal UDP is used instead. The

ZoneSimulation broadcasting information is an example of that. Server/Client

communication is also done using the UDP protocol. One of the bottlenecks of

the system is the grid service interface that the ZoneSimulation is accessed

through. Each time a new action is added to the ZoneSimulation, it is done

through the grid service interface. The WSRF.Net implementation used as grid

service is still very young, and not at all minded towards good performance, so

future versions may improve the performance tremendously. One of the benefits

from grid services is that a large problem can be divided into smaller pieces and

solved on different computers using the principle of Divide and Conquer. The

challenge when designing a system using grid services is to determine where

the problem should be divided. Each time a problem is divided some

performance will be lost in the overhead. Not dividing a problem can result in a

problem being too large for one grid service instance to handle. The fact that the

WSRF does not handle the lifetime of threads created in a service is

troublesome. If the developer of a WSRF service uses a thread and makes a

resource destruction error, the thread will continue running as a ghost process in

the web server. The handling of threads or computational resources in the

WSRF is defiantly an area where future research can be made.

 112

Chapter 5

Conclusion

A short resume of the chapter summaries will be made. The project

specification will be examined to outline how each of the requirements is met.

Future work and improvements on this project will be discussed.

5.1 A short summary

5.2 Concluding remarks

5.3 Future research and development

 113

5.1 A short summary

This project has analyzed how applicable grid technology is as a fundament for

a game server. The WSRF is used as grid technology implementation. A simple

game server have been developed using the WSRF as a foundation.

 Chapter 1: Introduction

This chapter introduces fundamental concepts of grid technology and computer

games. The problems with hosting and developing a computer game server are

investigated. It is suggested that grid technology can be used to solve some of

the problems with the hosting and development of a computer game server.

 Chapter 2: Descriptions of technologies used in this project

Technologies used in the project are described. A new design pattern named

Transformation pattern is developed. The problems using a very new

technology like the WSRF is explained.

 Chapter 3: Design Principles

This chapter describes two general concepts, one for grid application and one

for computer games. The first concept describes how a grid application is

designed if it should be used to solve problems using the divide and conquer

method. The divide and conquer design principle is named Manager-Worker.

The second design concept called Relevant Set is used to improve the

distribution of game object states in a computer game server

 Chapter 4: Case study: Application of grid in computer games

This chapter contains the major part of the work in this project. The chapter

describes how the technologies from chapter 2 combined with the design

principles of chapter 3 can be used to solve some of the problems with

computer game servers described in chapter 1. It is concluded that grid services

are applicable as a foundation for a game server, but it has to be designed in a

way that avoids some of the performance related drawbacks. Grid services are

 114

especially well suited for problems that can be divided into small parts by using

the divide and conquer design principle. It is concluded that grid services in the

form of WSRF services is still too young a technology to base a final large

product upon.

5.2 Concluding remarks

The job of making a game server using grid technology is very big and the time

available when making a master thesis is simply not enough to cover all the

details.

The true strength of grid service development will first be seen when a

foundation of core services and tools have become available to the developer.

Because the technology is so new, most of these tools are still on the drawing

board. In the future one of the main reasons for using grid services in a game

server design will be the vast availability of tools. There is a lot of focus on web

development, and big companies like Microsoft and IBM are focusing many of

their resources in this field. Grid- or web services will very likely be the

fundament of many distributed applications in the future.

The following results are some of the most important in this project:

• Algorithms for game servers and the divide and conquer principle of

grid applications were combined into a simple but functional game

server.

• The use of design patterns proved to be very beneficial when creating

the fundamental components of the game server.

• UML was a helpful tool when planning the project and to document

different aspects of the development throughout the written report.

• The development of a game server based on grid services using the

WSRF. The WSRF is not yet practically ready to be used in a fully

functional game server. It was however demonstrated that the concept of

using grid services in game server design is suitable.

 115

Review of Project Specification

The project specification from chapter one, can be seen below with a remark on

how each of the specification points have been reached:

A. Grid computing has to be explained. OGSA and OGSI must be presented.

The WSRF must be presented. The Unified Process (UP), Unified

Modeling Language (UML) and design patterns must be described.

OGSA, OGSI and WSRF are explained in section 2.3. UP is briefly described

in section 1.5. UML is described in section 2.1 and design patterns in section

2.2.

B. A framework for a multiplayer game server has to be developed. The

framework must be constructed as a grid application where scalability is

important.

The scalability of the multiplayer game server framework is archived using

the design principle divide and conquer explained in section 3.1. The entire

development of the framework is described in the case study of Chapter 4.

C. A test application able to simulate a simple running computer game must

be created. The test application must use the framework from B.

The simple test application is explained in section 4.3 in the subsection called

Test Game Client.

D. Various tests of the running game server simulation of a running computer

game must be made using the test application from C. The tests should

help clarify if grid technology is applicable in a computer game server.

The various tests on the server simulation are explained in section 4.4. The

clarification of the grid technology being applicable in a game server is

discussed in section 4.5 and in this chapter.

 116

E. It must be examined how applicable the Unified Modeling Language and

design patterns are in the development of grid applications.

UML and design patterns have been used throughout the case study. UML is

good to describe structure and behavior of software components. Design

patterns are good as guidelines for how software components should be created,

structured and behave.

5.3 Future research and development

There is a lot of future research and development that can be done in this

project. Many aspects of creating a computer game server have only been

partially dealt with. The technology of grid services and web services used for

calculations like in a computer game will still change and develop a lot in the

future. The following list shows the most important areas where future work

can be done:

• Security protection against passive and active listening server/client

communication.

• Security protection against network packet infusion or altering of the

packets sent between sever and client.

• Algorithms solving problems with the time difference between client

and server.

• Development of the Database Cache service

• Development of artificial intelligence for non-playing characters.

• Development of performance minded serialization methods for sending

GameObjects and GameObject Mementoes over the network.

• Development of game specific features like more Actions and more

complex GameObjects.

 117

The WSRF is not currently designed to handle heavy calculations and spawning

of new threads in the hosting environment. One of the most important areas of

future research related to this project is to make WSRF services able to handle

thread lifetime management better. So if WSRF is to be used, as a grid service

that provides computational power, it will be required that thread management

is supported or another mechanism for managing computational resources is

provided.

 118

Chapter 6

Bibliography

[XML]
Flexible text format used to store information in a hierarchy manner.
http://www.w3.org/XML

[SOAP]

The fundamental message enveloping mechanism used in Web services.
http://www.w3.org/TR/SOAP.

[OGSA-Spec]

C. K. Ian Foster, Jeffrey M. Nick, Steven Tuecke, "The Physiology of the Grid,"
[online], 2002,
http://www.gridforum.org/ogsi-wg/drafts/ogsa_draft2.9_2002-06-22.pdf

[OGSI-Spec]

C. K. Ian Foster, Jeffrey M. Nick, Steven Tuecke, “Open Grid Services Infrastructure
(OGSI)” [online], 2003, http://www.gridforum.org/ogsi-wg/

[GT]

Globus Toolkit [online], http://www.globus.org/

[OGSI.NET]

OGSI.NET, [online], http://www.cs.virginia.edu/~humphrey/GCG/ogsi.net.html

[MS.NET]

MS .NET Grid, [online]
http://www.nesc.ac.uk/action/projects/project_action.cfm?title=145

[AA]

U.S. Army, ”America’s Army”,[online], http://www.americasarmy.com/

[Butterfly]

IBM, “Butterfly.net: Powering Next-Generation Gaming with Computing On-
Demand”, [online], 2002, http://www.butterfly.net/platform/technology/idc.pdf

[GoF]

E. Gamma, R. Helm, R. Johnson, J. Vlissides, ”Design Patterns, Elements of Reusable
Object-Oriented Software”, 1995.

 119

http://www.w3.org/XML
http://www.w3.org/TR/SOAP
http://www.gridforum.org/ogsi-wg/drafts/ogsa_draft2.9_2002-06-22.pdf
http://www.gridforum.org/ogsi-wg/
http://www.globus.org/
http://www.cs.virginia.edu/~humphrey/GCG/ogsi.net.html
http://www.nesc.ac.uk/action/projects/project_action.cfm?title=145
http://www.americasarmy.com/
http://www.butterfly.net/platform/technology/idc.pdf

[UML-Larman]
Craig Larman, “Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design and the Unified Process”, 2002

[Web Services]

Ferguson, D., Lovering, B., Shewchuk, J., Storey, T. Secure, Reliable Transacted Web
Services
http://www-106.ibm.com/developerworks/webservices/library/wssecurtrans/

[WS-Addressing]

WS-Addressing, an XML serialization and standard SOAP binding for representing
network wide “pointers” to services.
http://www.ibm.com/developerworks/webservices/library/ws-add/

[WS-Arch]

The W3C Web Services Architecture working group, public draft, August 2003.
http://www.w3.org/TR/2003/WD-ws-arch-20030808/

[WSRF-Spec]

The Web Service Reference Framework specification. March 2004
http://www-106.ibm.com/developerworks/library/ws-resource/

[WSE-Spec]

Microsoft Web service Enhancement
http://msdn.microsoft.com/webservices/building/wse/

[GT-Presentation]

Globus Toolkit presentation of WSRF
http://www.ogsadai.org.uk/docs/OtherDocs/GridsAndWebServices.pdf

[WSRF.Net]

WSRF implementation in C# and .Net.
http://www.cs.virginia.edu/~gsw2c/wsrf.net.html

[WSRF-Expln]

Modeling stateful resources with web services
http://www-106.ibm.com/developerworks/library/ws-resource/ws-
modelingresources.pdf

[Event]

Event driven programming paradigm
http://www.fact-index.com/e/ev/event_driven_programming.html

[WSRF.Net-Tur]

WSRF.NET developer tutorial
www.cs.virginia.edu/~gsw2c/WSRFdotNet/WSRF.NET_Developer_Tutorial.pdf

 120

http://www-106.ibm.com/developerworks/webservices/library/wssecurtrans/
http://www.ibm.com/developerworks/webservices/library/ws-add/
http://www.w3.org/TR/2003/WD-ws-arch-20030808/
http://www-106.ibm.com/developerworks/library/ws-resource/
http://msdn.microsoft.com/webservices/building/wse/
http://www.ogsadai.org.uk/docs/OtherDocs/GridsAndWebServices.pdf
http://www.cs.virginia.edu/~gsw2c/wsrf.net.html
http://www-106.ibm.com/developerworks/library/ws-resource/ws-modelingresources.pdf
http://www-106.ibm.com/developerworks/library/ws-resource/ws-modelingresources.pdf
http://www.fact-index.com/e/ev/event_driven_programming.html
http://www.cs.virginia.edu/~gsw2c/WSRFdotNet/WSRF.NET_Developer_Tutorial.pdf

[NUnit]
NUnit Framework and documentaion
http://www.nunit.org/

[DCGC]

Dansk Center for Grid Computing
http://www.dcgc.dk/

[e-Science]

e-Science budget distribution on grid computing.
http://www.nesc.ac.uk/talks/mpa/ResearchGridExperiencesPanelMPA20040609.pdf

[Game-Genres]

Description of the most common computer games genres
http://en.wikipedia.org/wiki/Computer_game_genres

[Korea-BB]

Operator Source, “South Korea”, [online], 2003, http://www.point-
topic.com/content/operatorSource/profiles/South+Korea/South+Korea+broadband+ov
erview+0310.htm&comp_id=612

[Linage1]

John Barrett, “Koreans know how to play”, [online], 2003,
http://www.eurescom.de/message/messageSep2003/Online_gaming_Koreans_know_h
ow_to_play.asp

[Linage2]

Benjamin Fulford, “Koreas weird wired world”, [online], 2003,
http://www.forbes.com/technology/free_forbes/2003/0721/092.html?partner=newsco
m

[Consoles]

David Carnoy, “The game developer’s take on Xbox Live vs. PS2 Online”, [online],
2002, http://att.com.com/4520-3423_7-5021357-2.html?legacy=cnet

[Online-Gaming1]

Jessica Mulligan, “Online Gaming: Why Won’t They Come?”, [online], 1998,
http://www.gamasutra.com/features/business_and_legal/19980227/online_gaming_wh
y_intro.htm

[Online-Gaming2]
Paul Palumbo, “Online vs. Retail Game Title Economics”, [online], 1998,
http://www.gamasutra.com/features/business_and_legal/19980109/online_retail.htm

 121

http://www.nunit.org/
http://www.dcgc.dk/
http://www.nesc.ac.uk/talks/mpa/ResearchGridExperiencesPanelMPA20040609.pdf
http://en.wikipedia.org/wiki/Computer_game_genres
http://www.point-topic.com/content/operatorSource/profiles/South+Korea/South+Korea+broadband+overview+0310.htm&comp_id=612
http://www.point-topic.com/content/operatorSource/profiles/South+Korea/South+Korea+broadband+overview+0310.htm&comp_id=612
http://www.point-topic.com/content/operatorSource/profiles/South+Korea/South+Korea+broadband+overview+0310.htm&comp_id=612
http://www.eurescom.de/message/messageSep2003/Online_gaming_Koreans_know_how_to_play.asp
http://www.eurescom.de/message/messageSep2003/Online_gaming_Koreans_know_how_to_play.asp
http://www.forbes.com/technology/free_forbes/2003/0721/092.html?partner=newscom
http://www.forbes.com/technology/free_forbes/2003/0721/092.html?partner=newscom
http://att.com.com/4520-3423_7-5021357-2.html?legacy=cnet
http://www.gamasutra.com/features/business_and_legal/19980227/online_gaming_why_intro.htm
http://www.gamasutra.com/features/business_and_legal/19980227/online_gaming_why_intro.htm
http://www.gamasutra.com/features/business_and_legal/19980109/online_retail.htm

[Object-State]
Rick Lambright, “Distributing Object State for Networked Games Using Object
Views”, 2002, [online],
http://www.gamasutra.com/resource_guide/20020916/lambright_01.htm

[Document-X]

Third-party software that generates documentation files based on reflection and XML
tags.
http://www.innovasys.co.uk/products/documentx.asp

[IIS]

Microsoft Internet Information Server.
http://en.wikipedia.org/wiki/IIS

 122

http://www.gamasutra.com/resource_guide/20020916/lambright_01.htm
http://www.innovasys.co.uk/products/documentx.asp
http://en.wikipedia.org/wiki/IIS

	Introduction
	Introduction to Grid Computing
	Recent developments in computer games
	Application of grid in computer games
	Project specification
	Time schedule
	Chapter overview

	Description of technologies used in this project
	Unified Modeling Language
	Design Patterns
	Grid services using WSRF
	NUnit
	Summary

	Design principles of computer game and grid software
	Grid Design
	Computer game elements
	Summary

	Case Study: Application of grid in computer games
	System description
	Analysis
	Design and implementation
	Test
	Summary

	Conclusion
	A short summary
	Concluding remarks
	Future research and development

	Bibliography

