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Abstract

This report provides an introduction to Fourier series, the discrete Fourier trans-
form, complex geometry and Fourier descriptors for shape analysis. The content
is aimed at undergraduate and graduate students who wish to learn about Fourier
analysis in general, as well as its application to shape modelling and analysis.
The theory is based on and borrows largely from the excellent book Konkret
Analys [4], which is a Swedish text on complex analysis.

1 Fourier Analysis of Periodic Functions

Fourier analysis is due to the French mathematician Jean Baptiste Joseph
Fourier who presented his theory in 1807 and again in 1812. His work shows how
any function can be formulated as an infinite series of sines and cosines. The
original paper did not get a warm welcome, mainly because of Fourier’s state-
ment that an arbitrary function could be described as a trigonometric series.
Also, the proof supplied was vague. Furthermore, other scientists, including
Lagrange, Euler and Bernoulli, had contributed largely to the development of
the Fourier transform. Nevertheless, Fourier analysis has seen much use and
research over the last 200 years. An explanation for this is that sums of sines
and cosines are simple to work with and commonly describe separate physical
properties of a process.

This text presents how Fourier analysis can be used to describe outlines of
shapes in two dimensions. Starting from the definition of Fourier coefficients,
the theory of discrete Fourier analysis is explained step by step. This gives the
necessary background to properly understand how Fourier analysis can be used
in shape analysis.

1.1 Euler’s Formula

Trigonometric functions are commonly described by complex exponential func-
tions. This seemingly complicates things, however, exponential functions have a
number of advantages. For instance, they are compact and easy to integrate and
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Figure 1: Real and complex oscillations. Note that amplitude is the only pa-
rameter that has effect on the shape of complex periodic functions.

derivate. The link between the complex exponential function and trigonometric
functions is described by Euler’s formula.

{
eiθ = cos θ + i sin θ
e−iθ = cos θ − i sin θ

⇐⇒
{

cos θ = 1
2 (eiθ + e−iθ)

sin θ = 1
2i (e

iθ − e−iθ) (1)

1.2 Complex Trigonometric Functions

The common real harmonic function f(t) = A cos θt can be expressed using
Euler’s formulas as f(t) = Re(Aeiθt). But what kind of function is g(t) = Aeiθt?
Whereas f(t) is real and depends on the single variable t, g(t) is complex valued
and the dependent variable t can be interpreted as arc-length. Figure 1 shows
f(t) versus g(t) for amplitudes A and 2A, (angular) frequencies θ and 2θ and
phase shift δ. As can be seen, altering the angular frequency does not modify
the curve, it only changes the velocity with which the curve is drawn.

What about the phase shifts? This can be performed by multiplication with
the complex number A = Aeiδ since Aeiδeiθt = Aei(θt+δ) = A(cos(θt + δ) +
i sin(θt + δ)). This changes the start and end point positions along the curve
for g(t). As can be seen in figure 1, the shape of periodic curves are invariant
to phase shifts. The value A = Aeiδ is therefore denoted complex amplitude.
Despite this apparent simplification, phase shifts will play an important role
later in this text, when complex ellipses are dealt with.

Real harmonic functions have a number of representations. These are de-
picted in figure 2, and will be useful for deriving the different forms of the
Fourier transform.

The remainder of this text will look at periodic functions. The period is
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A = a− ib

a = ReA
b = −ImA

a = A cos δ

b = −A sin δ

A = |a− ib|
δ = arg(a− ib)

A = |A|
δ = argA

A = Aeiδ

Figure 2: Different forms of a simple, real, trigonometric function

assumed to be T = 2π/Ω where Ω is the angular frequency. The angular
frequency directly relates to the number of times a periodic function is run over
a length of 2π. Ω = 4 means that the function is run 4 times. A function with
period T is said to be T-periodic.

1.3 Fourier Series

The definition of the discrete Fourier transform used in most practical applica-
tions is closely related to Fourier series. This text will therefore begin with a
look at Fourier series, state an outline of a proof on the formula for the Fourier
coefficients and discuss some of the conditions under which the Fourier series
converges.

Theorem 1 Assume that f(t) is a (real or complex) function which can be
expanded according to Fourier’s principle.

f(t) =
k=∞∑

k=−∞
ckeikΩt

The coefficients ck are then given by

ck =
1
T

∫

P

e−ikΩtf(t)dt

where P is any interval over one period.

Proof (sketch) Multiply f(t) by e−ilΩt and integrate

∫

P

e−ilΩtf(t)dt =
∫

P

e−ilΩt
k=∞∑

k=−∞
ckeikΩtdt =
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k=∞∑

k=−∞
ck

∫

P

e−ilΩteikΩtdt =
k=∞∑

k=−∞
ck

∫

P

ei(k−l)Ωtdt

But g(t) =
∫

P
ei(k−l)Ωtdt is the integral over one period of pure sine and

cosine functions, i.e. g(t) = 0 for k 6= l. For k = l the integral g(t) is equal
to the wave length, T . This means that

∫

P

e−ilΩtf(t)dt =
k=∞∑

k=−∞
ck

∫

P

ei(k−l)Ωtdt = clT

Solving for cl and switching indices completes the proof.

1.3.1 Convergence

The question is under what conditions a periodic function can be described as
in theorem 1. The theory of convergence for Fourier series is still an active
area of research with many open questions remaining. The convergence condi-
tions stated here will cover a large class of periodic functions sufficient in most
practical applications.

A necessary condition for the Fourier series to converge, is that the coeffi-
cients ck are sufficiently small. This is clear seeing that |ckeikΩt| = |ck|. But
for what functions f(t) does this occur? To answer this we need a couple of
definitions.

A function is piecewise continuous on the interval P if it is continuous
over the whole interval except at a finite number of points where it is either
discontinuous or not defined. A function f is piecewise smooth if both f and
its derivative f ′ is piecewise continuous over the interval P . Piecewise continuity
implies the existence of one-sided limits

f(t+i ) = lim
h→0+

f(ti + h) and f(t−i ) = lim
h→0−

f(ti + h) (2)

Piecewise smoothness also implies the existence of one-sided derivatives

f ′(t+i ) = lim
h→0+

f(ti + h)− f(ti)
h

and f ′(t−i ) = lim
h→0−

f(ti + h)− f(ti)
h

(3)

With these definitions at hand it is possible to state the following useful
sufficient condition for the convergence of Fourier series.

Theorem 2 Let f(t) be a piecewise smooth function defined on an interval P .
Then the Fourier series

f(t) =
k=∞∑

k=−∞
ckeikΩt where ck =

1
T

∫

P

e−ikΩtf(t)dt (4)

converges for every t to the value

f(t+) + f(t−)
2

(5)

For a proof, consult e.g. [1, 4].
As it turns out, most functions possess the necessary properties for Fourier

analysis. This is shown by the great span of research areas benefiting from these
methods.
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1.3.2 Fourier’s Formula

We are now ready to formulate the main theorem of this text.

Theorem 3, Fourier’s formula If f(t) is T-periodic and fulfills certain rea-
sonable conditions, and the series ck is defined as

ck =
1
T

∫

P

e−ikΩtf(t)dt (6)

then

f(t) =
k=∞∑

k=−∞
ckeikΩt (7)

The set < ck > is called the Fourier transformation of f , and the
coefficients ck is called the Fourier coefficients of f . The series (7) is
called the Fourier series of f . Equation 6 is known as Fourier analysis
and equation 7 is referred to as Fourier synthesis.

1.3.3 Relation to the general Fourier transform

The definition of the Fourier series may easily be confused with the general
Fourier transformation

F (ω) =
∫ ∞

−∞
f(t)e−i2πωtdt (8)

and its inverse
f(t) =

∫ ∞

−∞
F (ω)ei2πωtdω (9)

which holds for any absolutely integrable function. In words, this definition
states that a function f(t) can be synthesized from combinations of all frequen-
cies ω.

1.4 Examples

In this section, two examples of periodic functions and their fourier coefficients
are given.

A simple complex harmonic function

The first example examines the complex function f(t) = cos t + i sin 1
5 t which

naturally can be described as a sum of harmonic functions. Using Euler’s func-
tions we get

f(t) =
1
2
(eit + e−it) + i

1
2i

(ei 1
5 t − e−i 1

5 t) =

1
2
(ei5 1

5 t + ei(−5) 1
5 t + ei1 1

5 t − ei(−1) 1
5 t)

Comparing this expression with equation 7 it is seen that the Fourier coefficients
for f(t) are

c±5 =
1
2
, c−1 = −1

2
, c1 =

1
2
, ck = 0, k /∈ {±5,±1}
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Figure 3: Functions in example one and two

The square waveform

The second example examines the square waveform defined as

f(t) =
{

1, 0 < t < T
2

−1, −T
2 < t < 0

We calculate the coefficients according to the definition,

ck =
1
T

∫

P

e−ikΩtf(t)dt =
1
T

∫ T/2

−T/2

e−ikΩtf(t)dt =

1
T

(−
∫ 0

−T/2

e−ikΩtdt +
∫ T/2

0

e−ikΩtdt) =

k6=0
=

1
T

(
[
−e−ikΩt

−ikΩ

]0

−T/2

+
[
e−ikΩt

−ikΩ

]T/2

0

) =
1
T

−1 + eikΩT/2 + e−ikΩT/2 − 1
−ikΩ

=

1
T

2(1− cos(kΩT/2))
ikΩ

=
1
T

T
1− cos kπ

ikπ
=

1− cos kπ

ikπ
⇐⇒

ck =
1− (−1)k

πik
=

{
2

πik k odd
0 k even or k = 0

The coefficient for k = 0 can be calculated directly from equation 6.

c0 =
1
T

∫

P

f(t)dt = 0

1.5 Trigonometric Fourier series

The complex exponential formulation of Fourier series that we’ve seen so far
is compact and easy to work with. However, on many occasions, real func-
tions are described and it may seem strange to use a complex expression. We
will therefore derive an alternative formulation which is quite common in the
literature.

Start with the exponential Fourier series.

f(t) =
k=∞∑

k=−∞
ckeikΩt
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Combine each pair of terms having the same angular frequency kΩ.

ckeikΩt + c−ke−ikΩt = (ck + c−k) cos kΩt + i ∗ (ck + c−k) sin kΩt =

ak cos kΩt + bk sin kΩt

where {
ak = ck + c−k

bk = i(ck − c−k) ⇐⇒
{

ck = 1
2 (ak − ibk)

c−k = 1
2 (ak + ibk) (10)

Inserting the equations for ck and simplifying, we get
{

ak = 2
T

∫
P

cos kΩtf(t)dt k ≥ 0
bk = 2

T

∫
P

sin kΩtf(t)dt k ≥ 1 (11)

It is seen that a0 = 2c0. The resulting trigonometric Fourier series is

1
2
a0 +

∞∑

k=1

ak cos kΩt + bk sin kΩt (12)

Using this formulation, it is clear that if f(t) is a real function, the coefficients
ak and bk are also real. Using the equations of section 1.2, we get a third
representation,

A0 +
∞∑

k=1

Ak cos(kΩt + δk) (13)

where A0 = 1
2a0, Ak = |ak − ibk| and δk = arg(ak − ibk), k > 0.

1.6 Discrete Fourier Transforms

After this rather long introduction to Fourier series we are well prepared to
tackle the discrete Fourier transform. The DFT is an approximation to the
Fourier series coefficients ck, a statement we will prove shortly.

In practical applications f(t) is seldom a continuous functions, most of the
times f(t) is represented by samples from some process we wish to model. To
emphasize this, f sampled at time k is denoted fk = f(tk). Assume f is a table
of N samples gathered over the interval length T at equally spaced time points
tk = k∆t, k = 0 . . . N−1 and ∆t = T/N . At intervals outside of the chosen one,
the function is assumed to repeat, something called the periodic extension
of f . According to theorem 2, the Fourier series converges to the average of
the endpoints at any discontinuity. In the discrete setting, f(0+) = f0 and
f(T−) = fN . Bearing this and the periodic extension in mind, it is seen that
the first and last value of fk must be averaged, f0 = fN = (f0 + fN )/2.

The integrand in equation 6 can be approximated using the trapezoid rule.
The area of a trapezoid consists of the sum of the area of a rectangle and a
triangle. Assume fk > fk+1. The total area of the trapezoid is then fk+1∆t +
(fk−fk+1)∆t/2 = ∆t(fk+fk+1)/2. The same result is reached when fk ≤ fk+1.

The trapezoid approximation works as follows

cj =
1
T

∫

P

e−ijΩtf(t)dt ≈ [
gk = e−ijΩtkfk

] ≈ 1
T

N−1∑

k=0

∆t

2
(gk + gk+1) =
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1
T

∆t

2

(
N−1∑

k=0

gk +
N∑

k=1

gk

)
=

1
T

∆t

2

(
g0 + 2

N−1∑

k=1

gk + gN

)
=

1
T

∆t

N−1∑

k=0

gk =
1
N

N−1∑

k=0

gk =
1
N

N−1∑

k=0

e−ijΩtkfk =
1
N

N−1∑

k=0

e−ij(2π/T )(kT/N)fk

We have arrived at the discrete Fourier transform.

Theorem 4, the DFT The discrete Fourier transform is an approximation of
the Fourier series coefficient and is given by

Fj =
1
N

N−1∑

k=0

e−2πijk/Nfk (14)

and its inverse is

fk =
N−1∑

j=0

e2πijk/NFj (15)

1.7 The Reciprocity Relations

To deepen the understanding of the discrete Fourier transform, something ought
to be mentioned about the reciprocity relations[1]. These shed some light on how
interval lengths, grid spacing and number of samples in spatial and frequency
space relate.

We have just seen how the spatial domain is sampled at N regular intervals
∆t over the whole interval T , that is, ∆t = T/N . For each time point tk there
will be a specific frequency γk in the frequency domain. According to the basic
Fourier assumption, the function to be analyzed is a sum of sines and cosines
in the spatial domain. The lowest possible frequency that still is periodic has
one whole period on the interval T . The so-called fundamental frequency is
therefore 1/T . Since this is the smallest unit of frequency, ∆γ = 1/T . This is the
grid spacing in frequency space. Since there are N samples, N∆γ = N/T = Γ,
where Γ denotes the entire frequency interval. Similarly, N∆t = T . This gives
the following.

Definition 1, The Reciprocity Relations

TΓ = N (16)

∆x∆γ =
1
N

(17)

These relations show for example that if the spatial interval T is made longer,
the frequency interval Γ will be shorter. If the number of samples N is doubled
and the spatial interval is fixed, the frequency interval will also be doubled.

1.8 The Fast Fourier Transform

The fast Fourier transform (FFT) is an implementation of the DFT. It is not
a separate transform and the results of an FFT are exactly the same as those
of a DFT on the same data. However, it reduces the computational effort from
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O(N2) (direct implementation from the definition of the DFT) to O(N logN ).
It is based on maxim of Machiavelli, ”divide and conquer”. This algorithm is
implemented in Matlab, Maple and many numerical analysis packages. It is
therefore neither of practical nor theoretical interest in this context. There are
many good books and web sites for the interested reader.

2 Shape Modelling

2.1 Complex Ellipses

To understand how shape outlines in two dimensions can be described in fre-
quency space using Fourier analysis it is necessary to understand how ellipses
may be represented using complex exponential functions. In section 1.2 we saw
how an exponential function can be used to describe a circle in the complex
plane. The function is

aeiθt = a (cos θt + i sin θt)

that is, a circle with radius a. If a is complex, the circle will have radius |a|
and a rotation of arg(a). Also in section 1.2, we proved that multiplication by a
complex number amounts to a scaling and a phase shift. In other words, phase
shifts and rotations are synonymous for complex exponential functions.

An ellipse is spanned by its major and minor axis, the major axis being the
longer of the two. These are usually orthogonal, but as we shall see, this is not
necessary. In the space of all possible ellipses, the circle is the subset with equal
length axes. To turn a circle into an ellipse, we simple change the length of one
axis.

a cos θt + c(ai sin θt), c 6= 0 ⇔
[

r1 = (a + ca)/2
r2 = (a− ca)/2

]
⇔

(r1 + r2) cos θt + (r1 − r2)i sin θt =

r1(cos θt + i sin θt) + r2(cos θt− i sin θt) =

r1e
iθt + r2e

−iθt (18)

This shows how an ellipse can be written using two exponentials of the same
frequency but with differing frequency signs.

What constrains apply to r1 and r2 for equation 18 to describe a proper
ellipse? Obviously, if r1 + r2 is purely real and r1 − r2 is purely imaginary, the
imaginary part will disappear and the ellipse will collapse into a line segment
along the real line. It is realized that the same phenomenon always occur if
r1 + r2 and i(r1 − r2) have the same argument. Let’s further study the general
case where r1 and r2 are arbitrary complex numbers.

r1e
iθt + r2e

−iθt ≡ r1 cos θt + ir2 sin θt

When r1 and r2 are complex numbers, the axes of the ellipse are rotated in-
dependently of each other. The right hand side of figure 4 shows the function
f(t) = (1 + 3i) cos θt + i(2 + i) sin θt. When the axes are no longer orthogonal
with respect to each other, will the resulting shape still be a perfect ellipse?
In that case, there should be a new set of axes that are orthogonal and that
spans the same ellipse. We have already seen that the shape of complex periodic
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functions are invariant to phase shifts. The shift will rotate both axes along the
ellipse curve. The angle between the axes will be different for different phase
shifts since an axis will move slowly past the first principal direction of the el-
lipse and fast past the second principal direction. Hopefully this will change the
angle between the axes such that they are orthogonal precisely when the axes
point in the principal directions.

Let’s start by adding a phase shift to the equation.

r1 cos(θt + δ) + ir2 sin(θt + δ) (19)

Using the trigonometric equalities

cos(x + y) = cos x cos y − sin x sin y (20)

sin(x + y) = cos x sin y + sin x cos y (21)

the equation can be expanded to

r1 (cos δ cos θt− sin δ sin θt) + ir2 (sin δ cos θt + cos δ sin θt) =

(r1 cos δ + ir2 sin δ) cos θt + i (r2 cos δ + ir1 sin δ) sin θt =

c1(δ) cos θt + ic2(δ) sin θt

As can be seen, the equation reduces to what we started with, a cosine and
a sine multiplied by complex numbers. The difference is that we now have a
parameter δ which can be chosen arbitrarily. We wish to find the δ for which
the angle between c1(δ) and ic2(δ) is π/2. This is true when the dot product
between c1(δ) and c2(δ) is zero. Denote the dot product function Ψ(δ) and set
r1 = a1 + ib1 and r2 = a2 + ib2 where a1,2, b1,2 ∈ <.
{

c1(δ) = r1 cos δ + ir2 sin δ = a1 cos δ + ib1 cos δ + ia2 sin δ − b2 sin δ
ic2(δ) = i(r2 cos δ + ir1 sin δ) = ia2 cos δ − b2 cos δ − a1 sin δ − ib1 sin δ

=⇒

Ψ(δ) = c1(δ).ic2(δ) = (a1 cos δ − b2 sin δ, b1 cos δ + a2 sin δ) .

(−b2 cos δ − a1 sin δ, a2 cos δ − b1 sin δ) =

(a2
2 + b2

2 − a2
1 − b2

1) cos δ sin δ − (a1b2 − a2b1)(cos2 δ − sin2 δ) =

1
2
(a2

2 + b2
2 − a2

1 − b2
1) sin 2δ − (a1b2 − a2b1) cos 2δ = 0 ⇔

1
2
(a2

2 + b2
2 − a2

1 − b2
1) tan 2δ − (a1b2 − a2b1) = 0 ⇔

δ =
1
2

arctan
2(a1b2 − a2b1)

a2
2 + b2

2 − a2
1 − b2

1

(22)

We have shown that by choosing the correct phase shift, it is possible to rectify
the axes of an ellipse, thus transforming it to a form without phase shifts and
where r1 and r2 differ only by magnitude.

How does this relate to Fourier analysis and shape modelling? Let’s recapit-
ulate on the equation of Fourier analysis.

f(t) =
k=∞∑

k=−∞
ckeikΩt
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Figure 4: Two representations of the same ellipse. The right one has orthogonal
axes

or the equivalent trigonometric form

1
2
a0 +

∞∑

k=1

ak cos kΩt + bk sin kΩt

With the newly acquired knowledge on complex ellipses, we see that Fourier
analysis of a periodic complex function results in a sum of ellipses of increasing
frequency. This helps a lot in understanding how shapes are formed.

Example

Consider the equation y = r1 cos θt + ir2 sin θt with r1 = 1 + 3i and r2 = 2 + i.
Therefore, we have a1 = 1, b1 = 3, a2 = 2 and b2 = 1. We now wish to calculate
the phase shift δ in the equation y = r1 cos(θt+ δ)+ ir2 sin(θt+ δ) such that we
get a standard ellipse with orthogonal axes. From the previous section we have

δ =
1
2

arctan
(

2(1 · 1− 2 · 3)
22 + 12 − 12 − 32

)
=

1
2

arctan 2 ≈ 0.55

We are now able to calculate the new complex numbers c1 and c2,

c1 = r1 cos p + ir2 sin p ≈ 0.32 + 3.6i

c2 = r2 cos p + ir1 sin p ≈ 0.12 + 1.4i ≈ 0.38c1

The new equation is

y = (0.32 + 3.6i) cos θt + i(0.12 + 1.4i) sin θt

Figure 4 shows the original ellipse next to its rectified counterpart. Note that
the ellipses have equal shape.

2.2 Fourier Representation of Shapes

Most two-dimensional shapes consist of outlines from projections of three-dimen-
sional objects. Many of these consist of a single closed curve. If not, the object
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Figure 5: A delineated corpus callosum

may be divided into several closed curves, and open curves can be closed. The
remainder of this text will focus on single closed curves. As we have seen, these
can be described as a complex periodic function. Usually, the function is not
known, instead we have the coordinates of discrete points along the shape out-
line. Figure 5 depicts a closed curve marking the outline of the corpus callosum.
This outline may be treated as a discretized periodic complex function. It is
therefore possible to perform Fourier analysis on the data using the DFT [5].
Some straight-forward Matlab-code that follows equation 14 closely is

f = complex(xCoordinates, yCoordinates);
N = length(f);
k = 0:N - 1;
j = 0:N - 1;
F = 1/N*exp(-2*pi*i*j*k’/N)*f;

F now holds the Fourier coefficients Fj of the shape f . Now let’s try to re-
late these to the Fourier coefficients ck of equations 6 and 7. The first coef-
ficient, F0, is the result of setting j = 0 which reduces the DFT equation to
F0 = 1/N

∑N−1
k=0 fk = f̄ . The first component is clearly the centroid of the

points in f . We also notice that F0 = c0. The following table shows the other
correspondences.

F0 F1 F2 F3 . . . Fk Fk+1 . . . FN−3 FN−2 FN−1

c0 c1 c2 c3 . . . ck c−k . . . c−3 c−2 c−1

The seemingly strange ordering is a result of the DFT summation going
from 0 to N − 1. This is equivalent to the more logical summation range
−N/2 + 1 : N/2 (N even). The out-of-range frequencies are folded and comes
out as the negative frequencies. This effect is called aliasing [1]. The 0 : N − 1
range is preferred since this handles an odd or even number of points similarly,
and since he first coefficient F0 will always be a pure translation. If another
form of the DFT is preferred, the following table (from [1]) gives an overview
over possible choices.
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ShapeEllipse 1

Ellipse 2

Ellipse 3

Ellipse 4

Centroid

Figure 6: A shape being drawn using a centroid and four ellipses, a total of 9
Fourier coefficients

Type Comments Summation range Highest
frequency
index

centered N even, N
points

−N/2 + 1 : N/2 N/2

centered N odd, N − 1
points

−(N−1)/2+1 : (N−1)/2 (N − 1)/2

non-
centered

N even, N
points

0 : N − 1 N/2

centered N even, N +1
points

−N/2 : N/2 ±N/2

centered N odd, N
points

−(N − 1)/2 : (N − 1)/2 ±(N−1)/2

non-
centered

N odd, N
points

0 : N − 1 (N ± 1)/2

Apparently, the Fourier transform of f consists of the centroid of f together
with coefficients [ck, c−k] of a series of ellipses of increasing frequency. Figure 6
shows a graphical interpretation of this property.

Shape Components of the Fourier Transform

The great advantage of the Fourier representation is the level-of-detail interpre-
tation of the frequency range. Low frequencies represents the coarse structure
of an object, while higher frequencies add the details. A certain frequency is
always dependent on all frequencies below to approximate a shape. Looking
at figure 6, this property is apparent. Figure 7 shows the outline of a corpus
callosum represented by one, two, five and 15 components (ellipses). The center
of gravity, or origin, of the shape is shown as a point.

2.3 Variance of Fourier Coefficients

In shape analysis, we deal mostly with a set of objects. If any statistical analysis
is to be meaningful, all objects must have a common representation, where the
only inter-object differences are derived from the actual shape. Differences due
to location, scale and rotation need to be filtered out, among other things. This
section investigates these differences, how they can be removed, and the effect
they have on the Fourier coefficients. The following table (from [2]) summarizes
how the Fourier coefficients are altered under certain transformations.
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Origin + five components

Figure 7: Shape components of a corpus callosum outline

Transformation Boundary Fourier Descriptor
Identity f(t) ck

Rotation eiθf(t) eiθck

Translation f(t) + T c0 + T
Scaling αf(t) αck

Starting point f(t + δ) eikΩδck = e2πikδ/Nck

Looking at this table, we realize that the inverse DFT under a general trans-
formation can be formulated as

fk = F0 + T +
N−1∑

j=1

αeiθe2πikδ/Ne2πijk/NFj =

F0 + T + αeiθe2πikδ/N
N−1∑

j=1

e2πijk/NFj

We will now go on to discuss and/or prove the results from the table above.

Sensitivity to Point Ordering and Starting Point

From our discussion above, we remember that a typical object outline marked
by a number of points is a discretization of a complex, periodic function. It is
therefore clear that the points must be ordered by arc-length. If the points are
scattered randomly along the outline, the resulting curve will visit these points
in turn, and the shape will make no sense.

The remaining free parameter is where on the outline the curve is drawn
from. This amounts to a phase shift of the curve function. Equation 6 becomes

ck =
1
T

∫

P

e−ikΩtf(t + δ)dt ⇔ [t̂ = t + δ] ⇔

14



ck =
1
T

∫

P

e−ikΩ(t̂−δ)f(t̂)dt ⇔ ck = eikΩδ 1
T

∫

P

e−ikΩ(t̂)f(t̂)dt

This shows that Fourier coefficients of the same frequency from the same contour
drawn with different starting points only differ by a factor eikΩδ.

Sensitivity to Number of Points

If the points along the boundary are subsampled, the Fourier coefficients will
change, but only slightly. As long as the remaining data points describe the out-
line reasonably well, the origin coefficient c0 and the ellipse coefficients [ck, c−k]
will be more or less unaffected.

Sensitivity to Translation

As we already have seen, the first Fourier coefficient c0 contains the origin of a
shape. If a shape f(t) is translated by f(t) + T where T ∈ =, this will transfer
directly to c0 as c0 + T . All other coefficients will remain unchanged.

Sensitivity to Scaling

A scaling of a shape f(t) is performed by multiplying f by a single real number
α. The scaled function is αf(t). Inserting this number into equation 6 we get

ĉk =
1
T

∫

P

e−ikΩtαf(t)dt ⇐⇒ ĉk = αck

This shows that a scaling α transfers directly onto the Fourier coefficients.

Sensitivity to Rotation

A rotation of f(t) can be carried out by multiplication by a complex number
eiθ. This assumes that f(t) is centered around the origin. As before, we insert
this into equation 6.

ĉk =
1
T

∫

P

e−ikΩteiθf(t)dt ⇐⇒ ĉk = eiθck

As shown, rotation also transfers directly onto the Fourier coefficients.

2.4 Invariance Methods

The Fourier coefficients may be used directly for e.g. classification purposes, but
we wish to rid ourselves of the hassle of removing the transformations discussed
above. One simple measure which is invariant to all four transformation is

ĉk+1ĉ−(k−1)

ĉ2
1

(23)

where ĉk = αeiθe2πikδ/Nck. Inserting this into the equation above, we get

ĉ1+k ĉ1−k

ĉ2
1

=
αeiθe2πi(1+k)δ/Nck+1αeiθe2πi(1−k)δ/Nc1−k

(αeiθe2πiδ/Nc1)2
=

e2πiδ/Ne2πikδ/Nck+1e
2πiδ/Ne−2πikδ/Nc1−k

(e2πiδ/Nc1)2
=

c1+kc1−k

c2
1

This was used in [3] for hand printed character recognition.
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