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Abstract

This paper presents a novel method for registration of single and multi-slice car-
diac perfusion MRI. Utilising off-line computer intensive analyses of variance and
clustering in an annotated training set, the presented method is capable of pro-
viding registration without any manual interaction in less than a second per frame.
Changes in image intensity during the bolus passage are modelled by a slice-coupled
active appearance model, which is augmented with a cluster analysis of the train-
ing set. Landmark correspondences are optimised using the MDL framework due
to Davies et al. Image search is verified and stabilised using perfusion specific prior
models of pose and shape estimated from training data. Qualitative and quantita-
tive validation of the method is carried out using 2000 clinical quality, short-axis,
perfusion MR slice images, acquired from ten freely breathing patients with acute
myocardial infarction. Despite evident perfusion deficits and varying image quality
in the limited training set, a leave-one-out cross validation of the method showed
a mean point to curve distance of 1.25± 0.36 pixels for the left and right ventricle
combined. We conclude that this learning-based method holds great promise for the
automation of cardiac perfusion investigations, due to its accuracy, robustness and
generalisation ability.
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1 Introduction

Within the last decade magnetic resonance imaging (MRI) has proved able
to assess myocardial perfusion in an accurate and safe manner, see e.g. Muh-
ling et al. (2003); Larsson et al. (1996). While scanning times have decreased
substantially, the amount of manual post-processing renders the method pro-
hibitive to clinical practice. Marking up points of correspondence on the my-
ocardium constitutes a major part of this manual labour, which is essential
to ensure compensation of motion during the perfusion sequence. This paper
presents a novel approach aiming at replacing this resource-demanding, te-
dious and error prone task with an automated image analysis method, which
provides a structured way of collecting and applying expert knowledge given
by medical doctors into a learning-based framework.

Equal to most problems within medical image analysis, registration of perfu-
sion MRI requires a very robust technique. This is partly due to the many
factors during the MR image acquisition that deteriorate image quality such
as resolution/time trade-offs, field inhomogeneity, susceptibility artefacts, flow
artefacts, motion artefacts, partial volume effects, chemical shift artefacts, et
cetera. Further, robustness is also required towards the severe biological inter-
subject variation as well as variations in scan planning and scanner configu-
ration. Finally, to be clinically viable, a registration technique should be able
to deal with pathologies – which in this case mostly include perfusion deficits
– without sacrificing accuracy or reliability.

In addition to the above requirements, we believe that methods – insofar pos-
sible – should be driven by the characteristics of the data, opposed to having
explicitly encoded constraints regarding the properties of the domain prob-
lem, e.g. size, position, intensity, et cetera. Consequently, we have based our
method on the Active Appearance Models (AAMs) framework by Edwards
et al. (1998); Cootes et al. (1998). The philosophy behind AAMs is that com-
putational analyses of annotated trainings sets should yield models capable
of automatically annotating new, independent examples. In this paper we
analyse the differences between the single-image oriented AAMs and time-
series of multi-slice perfusion MRI and propose a framework designed to meet
the stated requirements.

The clinical goal of this work is to automate the generation of perfusion maps 1

and ultimately; the actual perfusion measured in ml/(g·min), see e.g. Larsson
et al. (1996). However, our method is currently validated using the registration
accuracy, since this constitutes the core requirement for obtaining accurately

1 These include contrast enhancement ratio, transit time, maximum upslope, up-
slope integral and time-to-peak, et cetera. See e.g. Nagel et al. (2000); Breeuwer
et al. (2001b); Hsu et al. (2003); Bracoud et al. (2003).

2



motion compensated perfusion estimates.

The paper is organised as follows. A brief review of the existing body of work
pertinent to image analysis of perfusion MRI is given in Section 2. Section 3
describes the data used for this study. Section 4 treats the methodological
backgrounds and describes the proposed framework. Section 5 presents a qual-
itative and quantitative validation. Section 6 provides a discussion of the ob-
tained results, the merits and demerits of the method, and a view to future
work. Finally, Section 7 draws some concluding remarks.

This paper represents a direct extension of the work reported in Stegmann
and Larsson (2003).

2 Related Work

In this section, the current status of registration of MR cardiac perfusion
images will be considered. Refer to Table 1 for an overview of the methods
stated below.

Note that all the following approaches register one slice sequence at a time
independent of the remaining slices from the scan. Therefore computation
times apply to a single slice sequence, unlike what is presented in this work.

Yang et al. (1997, 1998) use the phase difference of the raw MR data between
successive image frames to correct for translational motion. Shape changes are
compensated for by using a deformable model. They evaluate their method
on 40 perfusion sequences from 20 patients. They compare their results to
SPECT data from the same patients. Furthermore, they provide a qualitative
evaluation by comparing signal-intensity (SI) curves before and after registra-
tion.

Behloul et al. (1997) simplify the problem of myocardial boundary detection
by adding a slice from functional MRI to the perfusion sequence. They seg-
ment the functional slice by fuzzy clustering and fuzzy inference systems and
warp the result to the perfusion sequence. The method requires manual defin-
ition of a rectangular region of interest (ROI) on each image of the perfusion
sequence. The authors claim that their method can be applied in real-time
but unfortunately it lacks validation.

Bidaut and Vallee (2001) use a multi resolution translation/rotation based reg-
istration minimising the mean squared differences (MSD) between each image
frame and a reference frame. They evaluate their method using 8 sequences
of 90 frames from 8 patients with stable coronary artery disease (CAD). The
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validation is based on a comparison of image correlation factors in addition
to motion reduction measurements for manual (ground truth) and automatic
registration. Their computation time is 5 minutes per 100 time frames. Dornier
et al. (2003) extend this work by defining cardiac masks with no signal inten-
sity changes throughout the perfusion sequence. Computation time is reduced
to 2.5 minutes per 100 time frames. Moreover, they improve the validation by
calculating absolute myocardial perfusion and compare to values derived from
manually registered sequences (ground truth).

Breeuwer et al. (2001a), Breeuwer et al. (2001b), Spreeuwers and Breeuwer
(2001) also use a translation/rotation based registration but with normalised
cross-correlation as a similarity measure. After the registration, an exact de-
tection of endocardial and RV boundaries is obtained by region growing on
feature images. The epicardial boundaries are detected by a deformable snake
model. In Breeuwer et al. (2001a), Breeuwer et al. (2001b), the method is
evaluated on 36 perfusion sequences from 12 patients by comparing the cal-
culated perfusion parameters to estimated values from X-ray angiograms of
the same patients. They obtain good correspondence for 11 of the patients.
Their computation time is less than 4 minutes per slice sequence. Spreeuwers
and Breeuwer (2001) evaluate qualitatively on 30 perfusion sequences from 14
scans. They succeed in 26 out of 30 sequences. Their computation time is 25
seconds per 70 time frames.

Gallippi and Gregg (2001) present a statistics based registration method us-
ing deformable template matching. The similarity measure depends on local
brightness variations and edge directions. They evaluate their method on 12
patients and measure its quality by means of motion reduction and comparison
of SI curves prior to and after registration.

Ablitt et al. (2002) use tissue tagging to correct for through-plane distortion
on a multi-slice sequence. The in-plane motion in each slice is corrected for
using free-form image registration with partial least squares regression (PLSR)
deformation learning. They evaluate their method on a set of 8 patients with
CAD and 5 healthy individuals in addition to a synthetic data set. The in-vivo
data sets include 3 slices with 50 frames per slice. The accuracy of the method
is measured relatively by comparing SI curves before and after registration.
Gao et al. (2002) do further studies on the PLSR deformation modelling. The
method is evaluated using 9 patients with CAD, each including 3 slices and
50 frames per slice, as well as a synthetic dataset. The accuracy of the method
is measured by comparing motion reduction for a free-form image registration
versus the proposed method.

Gupta et al. (2003), Bansal and Funka-Lea (2002) and Bracoud et al. (2003)
use translation based registration methods. Gupta et al. with cross-correlation
and the latter two with mutual information (MI) as a similarity measure. None
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of the methods compensate for rotation or deformable shape changes. Gupta
et al. validate on 10 patients, measuring motion reduction and comparing SI
curves. The computation time of 50 frames sequence is 5 seconds but 30 out
of 433 frames needed manual post processing. Bracoud et al. evaluate their
method on 5 patients (3 slices, 30 frames per sequence) with stable CAD.
They compare histograms before and after registration, inspect SI curves and
perfusion maps and measure motion reduction. Their method takes 8 minutes
for a 30 frame sequence including a manual definition of a rectangular ROI in
one image of the sequence.

Spreeuwers et al. (2002) present a refinement method to optimally place the
myocardial borders after manually (or automatically) tracing them. They in-
vestigate the effect of displacements of the myocardium in perfusion MRI and
use that information to correct the boundaries. They apply their method on
9 image sequences on which the myocardium has been traced, and compare
perfusion parameters before and after correction.

3 Data Material

The data material comprises 2500 myocardial perfusion, short-axis, magnetic
resonance images (MRI) obtained from ten freely breathing patients with acute
myocardial infarction. Five slices of the first 50 sequential frame images each
were selected before, during and after the bolus of contrast. The total sequence
length acquired was approximately 70 frames. This study is performed using
the 2000 images of the latter four slices of this set. The contrast agent was
gadolinium diethylenetriaminopentaacetic acid (Gd-DTPA). Registration rel-
ative to the heart-cycle was obtained using ECG-triggered acquisition from a
whole-body MR unit, Siemens Vision, operating at 1.5 Tesla. Slice acquisition
was restarted at every third R-peak, thus providing an approximate frame
time of three seconds, depending on the heart rate. MR pulse sequence: inver-
sion recovery turbo-FLASH (fast low-angle shot), matrix size=128×128, field
of view=300×300 mm, slice thickness=10 mm, inter slice gap=0 mm, storage
bit depth=16 bit. The inversion times for the four slices were TI=598 ms, 209
ms, 792 ms, 404 ms. See Figure 1 for an example multi-slice frame from the
first patient showing four slices in anatomical order (in basal-apex direction
from left to right). Notice the severe variation in contrast due to the inversion
time difference. All slice images in the following sections will also be shown as
a row of single images. The left digit in each slice shown in Figure 1 denotes
the frame number. The right digit denotes the order in which each slice was
acquired, see the inversion times above.
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Fig. 1. Four slice images of patient 1 prior to bolus arrival (frame 1). Inversion time,
TI=598 ms, 209 ms, 792 ms, 404 ms.

4 Methods

4.1 Myocardial Perfusion Imaging

Developments in MR-technology during the past decade have made it possible
to acquire physiological information about dynamic processes in the human
body. As an example of such, myocardial perfusion imaging encompasses as-
sessment of myocardial perfusion at rest and during stress (e.g. pharmacolog-
ical). By injecting a bolus of a paramagnetic contrast substance the myocar-
dial perfusion mechanism can be quantified. Thus, perfusion MR qualifies as
an essential instrument in the assessment of ischemic heart diseases. As the
contrast agent tags the blood stream and amplifies the MR signal by a short-
ening of the T1 relaxation time, areas of the myocardium served by diseased
arteries show a delayed and attenuated response. Acquisition is carried out
dynamically and registered to the heart cycle using ECG-triggering. Images
are typically acquired from one or more short-axis slices every n-th heart-
beat, where through-plane resolution is traded for temporal resolution and
vice versa. If the acquisition time-window is sufficiently short (typically < 40
seconds), breath-hold can be used to remove respiration artefacts.

We further mention that imperfect ECG-triggering can give rise to depiction
of erroneous heart-phases, in which tissue correspondences can be partially
shattered, due to the long-axis movement of the left ventricle during the heart
cycle.

In summary, the most prominent sources of variation in shape and appear-
ance found in perfusion MRI – aside from general MR acquisition artefacts
– include: biological inter-subject variation, scan planning, contrast passage,
contrast uptake, respiration and inaccuracies in ECG-triggering. Additionally,
when images are analysed on the basis of manual annotations, this mark-up
process introduces inter- and intra-subject variability.
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4.2 Active Appearance Models

Active Appearance Models (AAMs) Edwards et al. (1998); Cootes et al. (1998)
were introduced as a learning-based method for registration and interpretation
of face images. These models are built based on a set of order-less annotated
images. By being a generic approach for image registration and image inter-
pretation, medical applications were soon to follow. Refer to Stegmann et al.
(2003) for a summary of medical AAM applications.

Formally, AAMs establish a compact parameterisation of object variability,
as learned from a representative training set. The modelled object properties
are usually shape and pixel intensities. The latter is henceforward denoted
texture. From these quantities new images similar to the training set can be
generated. Objects are defined by marking up each example with points of
correspondence (i.e. landmarks) over the training set either manually, or by
semi- to completely automated methods (see e.g. Davies et al. (2002b)). Using
a learning-based optimisation strategy, AAMs can be rapidly fitted to unseen
images, thus providing image registration and interpretation.

Variability is modelled by means of a Principal Component Analysis (PCA),
i.e. an eigenanalysis of the dispersions of shape and texture. Let there be given
Q training examples for an object class, and let each example be represented
by a set of N landmark points and M texture samples. Shape examples are
aligned to a normalised common mean using a Generalised Procrustes Analy-
sis, Gower (1975). Texture examples are warped into correspondence using a
piece-wise affine warp, normalised, and subsequently sampled from this shape-
free reference. Typically, this geometrical reference frame is the Procrustes
mean shape. Let s and t denote a synthesised shape and texture and let s and
t denote the corresponding sample means. New instances are now generated
by adjusting the principal component scores, bs and bt in

s = s + Φsbs , t = t + Φtbt (1)

where Φs and Φt are eigenvectors of the shape and texture dispersions esti-
mated from the training set. To obtain a combined shape and texture para-
meterisation, c, the values of bs and bt over the training set are combined
into

b =



Wsbs

bt


 =



WsΦ

T
s (s− s)

ΦT
t (t− t)


 . (2)

A suitable weighting between pixel distances and pixel intensities is carried out
through the diagonal matrix Ws. To recover any correlation between shape
and texture the two eigenspaces are usually coupled through a third PC trans-
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form,

b = Φcc =



Φc,s

Φc,t


 c, (3)

obtaining the combined appearance model parameters, c, that generate new
object instances by

s = s + ΦsW
−1
s Φc,sc , t = t + ΦtΦc,tc. (4)

The object instance, {s, t}, is synthesised into an image by warping the pixel
intensities of t into the geometry of the shape s and applying the current pose
parameters p = [ tx ty s θ ]T where tx, ty and θ denotes in-plane translation
and rotation, and s denotes the shape size.

Using a least-squares criterion the model is matched to an unseen image by
an iterative updating scheme based on a fixed Jacobian estimate Cootes et al.
(2001) or a principal component regression Cootes et al. (1998). For this work
we have used the former approach, treated in further detail by Stegmann
et al. (2003). In brief, this allows model parameters, {c,p}, to be updated
based on the difference between the model texture, t, and image texture,
timage, the latter being the image texture covered by the model. Let R denote
a fixed update matrix pre-calculated from the training set. Updates are then
estimated by

[ δcT δpT ]T = R(timage − t). (5)

For further details on AAMs refer to Cootes et al. (1998, 2001); Cootes and
Taylor (2001).

In our application we mention that due to the inherent representation of tex-
ture vectors in AAMs, pose- and shape-compensated images are directly ob-
tained by projecting each texture vector into the shape-free reference frame.

Thereby a per-pixel correspondence over the complete perfusion sequence can
be obtained, ready to be analysed by a perfusion map, or by a perfusion model,
see e.g. Muhling et al. (2003); Larsson et al. (1996).

4.3 Shape Annotation and Landmark Correspondences

One important step towards a robust shape model is to generate a training
set of shapes with good landmark correspondence. A semi-automatic proce-
dure involves two steps: i) Extraction of shape contours from the images. ii)
Definition of marks at corresponding locations across the set of contours.

The first step is a manual procedure while the landmark correspondences
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can be obtained automatically by Minimum Description Length (MDL) shape
modelling introduced by Davies et al. (2001).

An annotation tool has been developed in order to achieve the first step, ex-
traction of the shape contours. The tool enables the user to extract the desired
object by marking points on the contour using a mouse or a digitiser. We use
a WACOM intuos2 tablet digitiser, which both gives faster and more accurate
annotation than using a mouse. The cardiac shape includes two anatomical
landmarks, the points where the RV border meets the epicardial, called ante-
rior junction and inferior junction as shown in Figure 2.

Fig. 2. Anatomical landmarks on the cardiac shape: Anterior junction and inferior
junction between right and left ventricle.

The anatomical landmarks are included in the manual process, i.e. the user
defines those while annotating. After placing points on the object, the contour
itself is given by an interpolating cubic spline between the points.

After this manual step of the procedure, MDL optimisation gives a reparame-
terisation, representing an optimal point correspondence, of the given shape
contours. The MDL approach is based on minimising the description length, a
quantity adopted from information theory. The description length in this case
is the cost of transmitting the PCA coded model parameters in addition to the
transmission cost of the encoded data values. This means that MDL balances
the complexity of the model against how well the model fits the data. For
further details of MDL shape modelling see Davies (2002) and Davies et al.
(2002a).

We have used the freely available MDL implementation from Thodberg (2003).
Roughly, his approach is to slide points on one shape at a time according to an
adaptive step length, align the set of shapes, do PCA of the set and calculate
the description length. For each move, the description length is compared to
the current best one. Based on comparison, this move is either accepted or
rejected.

MDL shape modelling cannot be applied directly to the cardiac shape, since
it is not possible to parameterise it. Furthermore, the fixed points (here, the
anatomical landmarks) can give rise to problems since they are not end points.
The approach used here was to split the shape into five open fixed-end sub-
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contours. The epicardial contour is split at the anatomical landmarks and the
endocardial contour is split at pseudo landmarks placed at minimum distance
from the anatomical landmarks. This is clarified in Figure 3.

Fig. 3. The cardiac shape split into five open fixed-end sub-contours. The MDL
approach is applied to each of the five sub-contour sets.

The MDL approach is applied to each of the five sub-contour sets. The aim
is to optimise each sub-contour set locally, but with influence from the full
shape. This is done in the alignment step where the full shape (all five sub-
contour sets) is included. The PCA and the optimisation itself, i.e. the sliding
of points, is performed on the local sub-contour set only.

With the large data set of 2000 shapes, the MDL optimisation process becomes
very slow. By noticing that the most shape variation occurs between patients
and between slices, the approach used here is to select the last frame of each
slice sequence for the MDL optimisation. This reduced the set to 40 shapes
(for each sub-contour type) which leads to an acceptable computation time.
The output from MDL is a set of parameterisation functions; one for each
of the shapes in each sub-contour sets. These parameterisation functions are
applied to the corresponding sub-contours from the remaining frames of the
sequence. Eventually, the five sub-contour sets are merged again to form the
full training set of cardiac shapes.

4.4 Modelling of Perfusion MRI Time-series

Since perfusion MRI sequences differ in structure from the single-image ori-
ented AAMs, this section will discuss the issues of data modelling.

First, one should recognise that the signal variation of the left ventricle (LV)
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and the right ventricle (RV) is very small prior to contrast arrival. Due to this
lack of image contrast, the standardisation of texture vectors normally used
in AAMs would result in severe amplification of scanner noise. Hence, only
the texture mean is removed in the following pre-processing of image texture
vectors.

Deviations from the assumptions in standard AAMs are not only encountered
with respect to texture normalisations. The relationship between shape and
texture also differs. It is safe to assume that the process generating shape
variation remains stationary throughout a sequence, contrary to the highly
non-stationary texture process. Consequently, shape and texture are treated
independently by removing the combined PCA, i.e. Φc = I. Treating each
perfusion sequence as one observation (as done on cardiac cine MRI in Mitchell
et al. (2001)) is not feasible due to the random fluctuations in pose and shape
induced by the variation sources mentioned in Section 4.1; whereof respiration
dominates.

However, joint modelling of texture – decoupled from changes in shape and
pose – for a complete sequence is possible by introducing an annotation of the
temporal relationship of each sequence frame. This may not be desirable, as
only a few proper temporal landmarks exist (during the actual bolus passage).
Further, building sequence models would require far more training examples
to model this behaviour properly, compared to a simpler and less constrained
frame-based model. Consequently, given the low number of subjects, we will
treat each frame in a sequence as an observation.

Circumventing the need for large training sets unfortunately violates a basic
assumption in AAMs. Namely, that the variation in texture is well modelled by
a single multivariate Gaussian model. Due to the radical changes in intensity
during contrast passage and uptake this is clearly not the case. On contrary,
five major time intervals can be identified in a perfusion sequence; i) pre-
contrast arrival, ii) contrast agent entering the RV, iii) contrast agent entering
the LV, iv) contrast agent entering the myocardium, and v) post-contrast
bolus.

Since the texture parameters of the texture model shown in Equation 1 are
ranked by their variance over the training set, this alleged clustered behaviour
should be confirmed by visual inspection of a few highly-ranked parameters
from bt. Figure 4 shows the three most significant texture parameters, {bt,i}3

1,
from a texture model built from the ten available perfusion sequences. This
figure exhibits a pronounced clustering and thus verifies our concerns. Mod-
elling this multimodal distribution with a multivariate Gaussian is clearly not
justified and gives rise to several problems. Most problematic is that the re-
sulting model is not specific to the given problem. Thus, it can easily generate
textures that are not plausible to occur during a perfusion bolus passage.
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Fig. 4. First, second and third principal component of 500 texture vectors from ten
perfusion sequences.

This would in turn lead to potential false positives during the model-to-image
matching and will be dealt with in the following.

4.5 Adding Cluster Awareness

To model the distribution of textures we propose an unsupervised learning
approach that models texture variation using an ensemble of linear subspaces
in lieu of the unimodal linear model employed in AAMs. This ensemble is
obtained by clustering and implies that the different time phases in perfu-
sion sequences are not explicitly modelled. Instead the sole structure of the
training data determines the partitioning. On contrary, subspaces could have
been given by an operator, which identifies different phases of each perfusion
sequence. However, to reduce, i) the tedious burden of training set generation,
and ii) inter- and intra-observer variability, supervised learning was rejected.
Further, we like to leave the option open to evaluate different ensemble sizes
in the future when more training data becomes available. This will obviously
be very tedious in the case of manual labelling.

Although the machine learning literature offers an abundance of clustering
methods, it is generally agreed upon that no silver bullet exists. We have
chosen a k-means clustering Forgey (1965) combined with a Monte Carlo sim-
ulation scheme where several clusterings are carried out, based on different
initial random class centres. The final clustering is chosen using a minimax
criterion, where the clustering having the smallest maximum distance to the
nearest class centre is chosen.
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Fig. 5. First, second and third principal component of 500 texture vectors from ten
perfusion sequences clustered into five classes.

The obtained clustering using five classes (k = 5) of the data set is shown in
Figure 5. From this clustering, a set of linear texture subspaces, {Φt,i}k

i=1, is ob-
tained directly by k separate texture PCAs. A corresponding set of model para-
meter update matrices, {Ri}k

i=1, is obtained following the procedure in Cootes
et al. (2001) using a displacement scheme specified in Stegmann et al. (2003).

As texture changes in a sequence are deemed to be unrelated to shape changes,
building a joint shape model, Φs, from all frames in all sequences will yield
the best estimate of inter- and intra-subject shape variability. We denote this
composition of a single shape model and an ensemble of texture models with
associated parameter update matrices for a Cluster-aware AAM (CAAM).
A CAAM can thus be applied to any domain problem that justifies uncou-
pled shape and texture eigenspaces and requires piecewise-linear modelling of
texture variability.

Fitting a CAAM to unseen images now involves choosing the appropriate
texture subspace. As a reasonable choice for k is typically fairly limited, model
selection is here performed by exhaustively trying all models and selecting the
model producing the best model-to-image fit, subject to a set of constraints
given later in this paper. To increase performance during model fitting, model
selection could be accomplished by a classification of the texture vector into
the set of training classes. However, this has not been tried in the current
work.

To choose k prior knowledge can be employed. However, being an optimisa-
tion problem in one positive integer variable, a data-driven method should
be preferred where k is estimated using cross-validation on the training set.
Unfortunately, one should also observe that the number of available training
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examples for model estimation within a single class is inversely proportional
with k. Due to this fact, we have fixed k to five classes (reflecting the five
major intervals mentioned in the previous section) for all experiments as a
reasonable compromise, since conclusions regarding the optimal number of
classes would remain fragile, due to the limited number of training subjects
available.

4.6 Modelling Object Interfaces

To add notion about the interface between the heart and the surrounding
tissue et cetera, we include intensity samples in the proximity of the heart
into the texture model.

This is carried out by sampling landmark normals relative to the current shape
size, similar to the approach by Active Shape Models, Cootes et al. (1995).
We denote these normals whiskers. In our application, this will include the
LV/lung interface and LV-RV/abdomen interface into the texture models and
thus require these to be present in the unseen image to provide a good model-
to-image fit. We have weighted whisker samples so that they constitute one
third of the texture variation in all of the subsequent experiments.

This approach has earlier been shown to have a positive, and significant, im-
pact on the registration accuracy, in a case study on corpus callosum registra-
tion in brain MRI, Stegmann et al. (2004).

4.7 Multi-slice Shape Modelling

Up to this point an observation has been associated to a single image. How-
ever, cardiac perfusion MRI is typically acquired as multi-slice images in a
spatial arrangement. This enables regional assessment of the perfusion mech-
anism both in plane as well as through plane. Modelling such slice images
independently will per se disregard any spatial and/or intensity coherence be-
tween slices. Conversely, a joint modelling of each set of slices will provide
a constrained basis, in which slices with well-defined appearance will restrict
slices with diffuse appearance from diverging.

Coupled AAMs were first explored by Cootes et al. (2000) for interpretation of
multi-view face images. Later Mitchell et al. (2001) coupled time-sequences of
cardiac MRI, an approach which was also pursued in Lelieveldt et al. (2001);
Sonka et al. (2001); Bosch et al. (2001a,b, 2002). Recently, long and short axis
MRI, and end-diastolic and end-systolic angiograms were fused by a similar
approach by Lelieveldt et al. (2003) and Oost et al. (2003), respectively.
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How coupled AAMs should be constructed is application specific. For our
application the following approach was taken. Let a shape consisting of N
points in two dimensions be defined by a 2N vector,

s = [ x1 y1 x2 y2 . . . xN yN ]T. (6)

A multi-slice observation consisting of a stack of C slices is then composed of
the set of shapes; {si}C

1 by simple concatenation of the unmodified slice image
shape coordinates prior to normalisation et cetera,

sframe =
[

sT
1 sT

2 . . . sT
C

]T

. (7)

Any subsequent shape analysis is left unchanged. Image sampling is carried
out using the appropriate slice for each related subpart of the combined shape
vector. This produces a model where inter-slice pose relations are modelled by
the shape changes, which is clearly desirable for our application. Should inter-
slice differences in pose not be constrained; then slice concatenation should be
applied to the Procrustes tangent space shape coordinates instead. This will
thus introduce the need for (C − 1)× 4 extra pose parameters into the model
(in the 2D case).

4.8 Estimating and Enforcing Pose and Shape Priors

The fact that changes in pose and shape are unrelated to the change of texture
is highly useful for initialising and constraining the model fitting process in
each frame. Further, it can validate the final registration results as well as
the intermediate results for each texture class. Consequently, if it is possible
to obtain reliable estimates of the shape and pose variation in a subpart of
the sequence these can be used as constraints in the remaining part of that
sequence. This is the case in the latter part of a bolus passage where the
contrast agent has been washed out of the RV and LV, only leaving the subtle
changes stemming from the perfusion mechanism in the myocardium. Hence,
we propose to estimate prior distributions of pose and shape from the latter
part of a perfusion sequence of P frames.

Let κ, γ, Dmax denote a set of user-selectable, dimensionless, constants con-
trolling the influence of the priors. Then, let Σ denote the dispersion matrix of
the sequence pose parameters and let σ denote the standard deviations of the
sequence shape parameters. How these two quantities are estimated is treated
in Appendix A. Further, let Ft denote the t-th frame. Let the set of frames
{Ft}S−1

t=1 denote the unstable period, and the frames {Ft}P
t=S denote the stable

period. A formal scheme for exploiting these priors can then be formulated as
shown in Algorithm 1.
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Algorithm 1 Sequence Prior Augmented CAAM Search

Require: S, κ, γ, Dmax, Σ and σ
1: p = initialisation
2: bs = initialisation
3: for t = P down to S do
4: {pt,bs,t} = CAAM search started at {p,bs} in Ft

5: p = 1
P−t+1

∑P
j=t pj

6: bs = 1
P−t+1

∑P
j=t bs,j

7: end for
8: for t = S − 1 down to 1 do
9: {pt,bs,t} = Constrained CAAM search started at {p,bs} in Ft

(constrain using κ, γ, Dmax, Σ, bs, σ)
10: end for

During CAAM search in the unstable period, pose and shape priors are used to
stabilise parameter updates by limiting the maximal update step. To simplify
notation, the time index t is omitted from this point on. Let Σij denote the
element in the i-th row and j-th column of Σ, and let pi denote the i-th element
of p. Pose parameter updates can now be constrained using the following
simple clamping approach:

δpi =





sign(δpi)κ
√

Σii if |δpi| > κ
√

Σii

δpj otherwise.
(8)

The constant κ acts thus as a clamping constant given in units of standard
deviations of pose variation as estimated from the training sequences. As an
alternative to this hyper cuboid constraint we could use a projection onto
the hyper ellipsoid given by an eigenanalysis of Σ. We have used κ = 0.5 in
all experiments as a reasonable compromise between damping and number of
updates until convergence.

Likewise, we also exploit the prior knowledge of sequence shape variation, σ,
(as obtained from the training set) in a similar clamping approach,

bs,i =





bs,i + sign(bs,i − bs,i)γσi if |bs,i − bs,i| > γσi

bs,i otherwise,
(9)

where γ denotes the maximally accepted distance from the mean in units of
standard deviations. We have used γ = 3 in our experiments, which accounts
for more than 99 percent of the probability mass of a univariate Gaussian
distribution.

After ended CAAM search in the unstable period, pose prior enforcement is
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determined by testing the Mahalanobis distance to the pose distribution:

{p,bs} =




{p,bs} if D2

max < (p− p)TΣ−1(p− p)

{p,bs} otherwise
(10)

Again, under the assumption of normally distributed pose parameters, we
have chosen to use Dmax = 3. Hence, implausible pose solutions are discarded
and replaced with the maximum likelihood of the prior; the mean configu-
ration. Such solutions are flagged and the system operator can be prompted
for manual assistance. This pose prior enforcement is also employed during
texture model selection so that solutions failing the above condition are ex-
cluded from the competition of being the selected for the current frame. This
step is essential, since highly deviating pose configurations easily can produce
model-to-image fits that will outperform the true positives.

4.9 Model Initialisation

The initial pose, shape and texture parameter configuration of the CAAM,
in frame P , is determined by exploiting the convergence radius of the AAM
search. Within this radius the AAM will converge to a plausible fit. Parameters
with variation outside this radius over the training set are semi-exhaustively
searched, with grid spacing less than twice the radius, by starting the AAM
search at each grid point. Each search result represents a potential initialisa-
tion candidate. To add robustness this is implemented in a candidate scheme,
where several candidates compete in an evolutionary process to become the
initial configuration. See Stegmann (2001) for the details of this algorithm.

Similar to the normal CAAM search, initialisation is performed exhaustively
for all texture models and subsequently choosing the model providing the best
fit.

5 Experimental Results

To evaluate the proposed method an implementation was made and subse-
quently validated using the data set described in Section 3. The implementa-
tion was done in C++ as an extension of our AAM framework (see Stegmann
et al. (2003)) and executed on a 2.4 GHz Pentium PC. The stable period was
set manually to the last 25 frames of each sequence, i.e. S = 26, except for
patient 1 who had a delayed bolus passage, S = 36 was used. (This parameter
can presumably easily be set automatically using the extremum of the tem-
poral image derivative.) Due to the limited data set size, a leave-one-out cross
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Table 2
Mean shape errors (shown in pixels).

Mean Std.dev. Median Min Max

Pt.pt. 2.81 0.71 2.68 1.51 6.69

Pt.crv. 1.25 0.36 1.17 0.66 3.79

Table 3
Shape errors for each patient (shown in pixels).

Patient 1 2 3 4 5 6 7 8 9 10

Pt.pt.

Mean 2.50 2.81 3.45 3.23 2.68 2.53 2.62 3.26 2.75 2.26

Std.dev. 0.46 0.71 0.44 0.83 0.41 0.73 0.63 0.39 0.90 0.35

Median 2.45 2.74 3.45 2.99 2.62 2.40 2.52 3.28 2.59 2.21

Min 1.51 1.76 2.53 2.21 1.90 1.52 1.73 2.49 1.74 1.73

Max 3.50 4.56 4.39 5.13 3.72 5.34 5.14 4.06 6.69 3.72

Pt.crv.

Mean 1.29 1.07 1.62 1.31 1.03 1.18 1.35 1.21 1.35 1.10

Std.dev. 0.23 0.15 0.35 0.22 0.21 0.48 0.39 0.16 0.54 0.24

Median 1.27 1.03 1.68 1.26 0.97 1.05 1.27 1.18 1.21 1.06

Min 0.78 0.85 0.86 1.03 0.75 0.66 0.98 0.94 0.80 0.83

Max 1.82 1.50 2.20 1.83 1.69 2.98 3.26 1.67 3.79 2.21

validation was carried out. This resulted in ten test scenarios where a model
was built on nine examples and tested on the independent example that was
left out. Each model was automatically initialised in the P -th frame using the
approach described above.

Two performance benchmarks were calculated for each model landmark: pt.pt.,
which measures the Euclidean distance between corresponding landmarks of
the model and the ground truth; and pt.crv., which measures the shortest
distance to the ground truth curve. These are referred to as landmark errors
in the following. When these are grouped into mean values for a shape, then
they are referred to as shape errors. The initialisation strategy successfully
located the heart in all patients, but number nine. The CAAM for this patient
was subsequently manually initialised and included on equal terms with the
remaining nine.

Table 2 summarises the shape errors for all patients, while Table 3 expands on
these numbers to show errors for each patient. Computation timings for the
initialisation and the image search are given in Table 4. Summerising perfor-
mance into a single measure, Table 2 shows a mean point to curve distance of
1.25± 0.36 pixels.

Shape errors versus frame number are depicted in Figure 6 and 7 as mean
values with error bars and as box plots, respectively. Notice the consistent
increase of the shape error during the unstable period. Plotting shape errors
versus patient number in Figure 8 shows approximately 14 apparent search
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Table 4
Timings (shown in seconds).

Sequence time Mean frame time

Initialisation 34.0 0.7

CAAM search 9.9 0.2

Total 43.9 0.9
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Fig. 6. Pt.crv. shape errors for each frame. Error bars are one std. dev.
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Fig. 7. Box plots of the pt.crv. shape errors for each frame (IQR=1.5).

failures out of 500 frames (14/500=2.8%). From Figure 6 it is seen that all of
these occurred during the unstable period. As indicated by circles in Figure 8,
seven of these were detected and flagged by Equation 10. For patients 1–3
the replaced mean estimator was close to the ground truth shape, contrary to
patient 9.

To give a qualitative impression of the accuracy Figure 9 and 10 show regis-
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Fig. 8. Box plots of the pt.crv. shape errors for each patient (IQR=1.5). Pose prior
enforcements are shown using circles.

tration results before, during and after the bolus passage for patient 10 and 8,
respectively. Notice the dark region showing a severe perfusion deficit present
in the anterior and inferior septal wall of patient 8 in Figure 10.

To complete the quantitative overview, Figure 11 shows the distribution of
pt.crv. landmark errors in addition the their cumulative frequency. It is seen
that approximately 80 percent of the landmark errors are below two pixels.
Finally, Figure 12 illustrates the spatial distribution of the landmark errors
by showing circles with radii proportional to the mean landmark error on the
mean shape. Errors on RV dominate together with errors on the LV endocar-
dial contour in proximity of the papillary muscles, i.e. near the anterior and
inferior lateral wall, of the first and third slice.

6 Discussion

Registration of perfusion MRI remains a challenge to medical image analysis.
However, we believe that the presented method holds promise for the future,
although conclusions based on the limited data material will remain fragile.
This optimism is partly due to the ability to produce useable results on patho-
logical cases – all patients were diagnosed with acute myocardial infarction –
from MRI scans exhibiting an image quality below average compared to recent
developments in MR cardiac imaging.

Registration results were produced without manual interaction in nine out of
ten cases, due to the described initialisation method. This strategy failed for
patient 9, for whom the heart was poorly centred in the slice field-of-view.
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Fig. 9. Registration results for patient 10 before, during and after bolus passage.

Further, and more importantly, slices were shifted heavily towards the apex
compared to the remaining nine patients, which obstructed a good fit of the
LV-RV model in the initialisation process. We consider this patient an outlier
and accept the observed limitations.

In general, less than three percent model fit failures were observed judged
from Figure 8. All occurred prior to, or during the bolus passage. Half of these
were not detected by Equation 10. We consider this performance convincing,
although it indicates that registrations based on this limited training data
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Fig. 10. Registration results for patient 8 before, during and after bolus passage.

should be reviewed by the operator, prior to making judgements upon auto-
matically generated perfusion maps. The operator workload involved herein
corresponds approximately to performing manual annotation of a single frame.
In summary, a mean point to curve distance of 1.25±0.36 pixels was obtained
by our method.

Figure 12 reveals that a substantial part of the landmark error stems from
imperfections in the localisation of the right ventricle. LV registration errors
are consequently smaller than the reported averages in the previous section.
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Fig. 11. Distribution of pt.crv. landmark errors for all frames.

Fig. 12. Mean pt.crv. landmark errors plotted as circles on the mean shape of each
slice.

Although the inclusion of the RV adds specificity to the presented model, a
hierarchical approach using a separate LV model initialised from the converged
RV-LV model is straightforward and should be well worth to pursue.

Since only weak assumptions regarding sequence length and bolus passage
position are present in the method, this is easily adapted to arbitrary-length
perfusion sequences. The method only requires a coarse indication of the bo-
lus passage position and a stable period of a reasonable number of frames
after the bolus, the latter being a standard requirement in perfusion MRI. As
stated earlier, the former should be possible to obtain automatically from the
extremum of the temporal image derivative.

We believe that the presented method has a noteworthy set of merits compared
to other approaches. i) It is based upon a well-understood and well-described
framework; the Active Appearance Models, which also has a freely available
implementation. ii) It has met the robustness requirements crucial when deal-
ing with perfusion MRI. iii) The implementation showed that results could
be produced within a reasonable time frame. iv) Imperfect ECG-triggering is
handled by allowing the model to perform complex deformations. This further
enables detection of mis-triggered slices and the possibility of subsequently
excluding these due to the movement of the heart during the cardiac cycle.
This could be an issue for patients with arrhythmia. v) Although current
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MR pulse sequences do not allow for multi-slice perfusion sequences without
ECG-triggering, this can also be handled by the deformation properties of
our method. Finally, vi) To let our method generalise to new data, very few
assumptions concerning the data content have been made. Except for a few
scalar parameters – which are dimensionless indices relating to the statistics
of the actual data – all values are estimated from training data, rather than
being explicitly coded into the method. We believe this to be a very fruitful
approach, as the method easily adapts to new expert knowledge given by med-
ical doctors. Knowledge, that typically already exists in the form of manually
annotated training data from previous studies.

However, the above virtues come at a price. Image annotation is not avoided
altogether. A training set needs to be carefully crafted in a similar process to
the one this method is aiming at eliminating. However, we have taken steps
to alleviate this part significantly by introducing spline-based curve fitting
and MDL shape modelling into the annotation process. Further, even if a
method requires no training data, a validation set still needs to be established.
In summary, we do not consider this issue a major Achilles heel. Secondly,
this framework is built upon assumptions of correspondence. Consequently,
papillary muscles, which are present in some cases and seemingly not in others,
cannot be modelled and thus provides a limit on the level of detail obtainable
by such methods. This implies that shape models working on data sets of
similar quality only apply to the clinical convention of including papillary
muscles into the blood pool and thereby obtaining a much simpler geometry.

Additionally, compared to other approaches given in Table 1 our method has
the advantage of modelling all slices simultaneously. Furthermore, our compu-
tation times are well competitive, keeping in mind that they apply to modelling
of four slices instead of one. Some of the approaches only correct for trans-
lational motion, disregarding rotation and deformable shape changes. Our
deformable modelling approach gives an accurate registration – a dense point
correspondence through the whole sequence. Further, we have given both qual-
itative and quantitative validation of our method involving comparison with
manually defined (ground truth) myocardial boundaries. This is a clear ad-
vantage to most of the other approaches, which rely on relative comparison of
parameters derived from the raw and the registered data.

Compared to our previous work in Stegmann and Larsson (2003) several ex-
tensions have been introduced. A larger data set containing multiple slices
from patients, compared to single slices from controls, has been obtained.
Image annotation and shape models are substantially improved using spline
interpolation and MDL optimised shape models. Slice coherence is modelled
compared to single slice-oriented models. Models are utilising the full dynamic
range of the MR scanner compared to the reduced 8-bit representation avail-
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able previously. 2 Automated model initialisation is introduced to avoid the
need for any manual interaction. Cardiac interfaces to the upper abdomen and
the lung are now included into the texture model to improve specificity.

The initialisation part aside, all presented results here are produced reasonably
rapidly, albeit not as rapid as in the previous work. This has several reasons.
Models are substantially larger as they encompass several slices and include
the cardiac interfaces as well. Images have twice the bit depth, which means
more memory transfer, less CPU cache consistency, et cetera. Finally, there
has been put far less emphasis on code optimisation compared to the previous
work. We anticipate that substantial improvements can be achieved on this
level alone.

We intend to expand the current work in the following areas. While the need for
clustered texture models is obvious, the presented results still leave room for
improvement. This is also true for the brute force model selection used, which
makes search time (approximately) linear in the number of classes. Model ini-
tialisation could be improved by sampling the pose distribution of the training
set and by using a multi-resolution implementation, which both will decrease
the initialisation time substantially. Further, the claims regarding automatic
bolus detection should be proven correct. But most importantly, a clinical val-
idation on a much larger training set should be carried out to demonstrate the
true capabilities of the presented statistical approach and its alleged adaptive
properties. In addition, it should be explored to what extent LV sub models –
as mentioned earlier – will improve the accuracy of myocardium registration.
Performance evaluation should be extended to include the clinical end goal; the
various generated perfusion maps. Consequently, estimated perfusion parame-
ters should be compared as obtained from automatic versus hand-registered
sequences.

7 Conclusion

We have described a novel, data-driven method for registration and motion-
compensation of multi-slice cardiac perfusion MRI. Preliminary validation of
the method on ten patients with acute myocardial infarction showed promising
results. In nine cases results were obtained without manual interaction. Despite
evident perfusion deficits and varying image quality in the limited training set
our method yielded a mean point to curve distance of 1.25±0.36 pixels for the
left and right ventricle combined. We conclude that this learning-based method
holds great promise for the automation of cardiac perfusion investigations, due

2 Reconstructed MR data was only available to the earlier study in an 8-bit storage
format.
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to its accuracy, robustness and generalisation ability.

A Estimation of Σ and σ

The dispersion matrix of the pose parameters, Σ, and the standard deviations
of the shape parameters, σ, can be estimated from the stable period. However,
in order to obtain more reliable estimates we propose to use the training
sequences, since many additional samples are available. To avoid confusion of
inter- and intra-sequence variability, we filter out sequence-specific information
(such as mean shape size) prior to the estimation. Now, let R denote the
number of sequences, each containing P frames. Further, let ¯ denote the
Hadamard, i.e. element-wise, product. Then the estimation of Σ and σ can be
specified as shown in Algorithm 2.

Algorithm 2 Estimation of Pose and Shape Variation

1: for i = 1 to R (for each training sequence) do
2: pt ← pt ¯ ( 1

s
[ 1 1 1 s ]T) ∀ t Normalise pose w.r.t. mean size

3: pi = 1
P

∑P

t=1
pt Estimate pose seq. mean

4: Σi = 1
P−1

∑P

t=1
(pt − pi)(pt − pi)

T Estimate pose dispersion matrix

5: bs,i = 1
P

∑P

t=1
bs,t Estimate shape mean

6: σi =

√
1

P−1

∑P

t=1
(bs,t − bs,i)¯ (bs,t − bs,i) Estimate seq. shape std. dev.

7: end for
8: Σ = 1

R

∑R

i=1
Σi Calculate pooled estimate for all sequences

9: σ = 1
R

∑R

i=1
σi Calculate pooled estimate for all sequences

Further, to maintain simplicity, normalisation with respect to rotation has
not been included in the above algorithm. However, if sequences differ sub-
stantially in orientation, this should be taken into account when estimating
tx and ty. Finally, during CAAM search, appropriate normalisation and de-
normalisation using the stable period mean size (and orientation) of the cur-
rent sequence must be carried out.
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