
Speaker Recognition

Ling Feng

Kgs. Lyngby 2004

IMM-THESIS-2004-73

Speaker Recognition

Ling Feng

Kgs. Lyngby 2004

Technical University of Denmark

Informatics and Mathematical Modelling

Building 321, DK-2800 Lyngby, Denmark

Phone +45 45253351, Fax +45 45882673

reception@imm.dtu.dk

www.imm.dtu.dk

IMM-THESIS: ISSN 1601-233X

 i

Preface

The work leading to this Master thesis was carried out in the Intelligent Signal
Processing group at Institute of Informatics and Mathematical Modelling, IMM, at
Technical University of Denmark, DTU, from 15th of February to 22nd of September
2004. It serves as a requirement for the degree Master of Science in Engineering. The
work was supervised by Professor Lars Kai Hansen, and co-supervised by Ph.D student
Peter Ahrendt.

Kgs Lyngby, September 22, 2004

Ling Feng s020984

 ii

Acknowledgement

The work would not be carried out so smoothly without the help, assistance and support
from a number of people. I would like to thank the following people:

Supervisor, Lars Kai Hansen, for always having moment to spare, as well as inspiring
and motivating me throughout my project period.

Co-supervisor, Peter Ahrendt, for sharing knowledge without reservation, and patient
guidance.

Secretary, Ulla Nørhave, for her great help and support on my speech database
recording work. She gathered many staffs and Ph.D students from IMM as my recoding
subjects. Her kindness always reminds me my mother.

Master students, Slimane, Rezaul and Mikkel, for discussing variance issues and idea
sharing. They made the hard working period interesting and relaxing. Special thank
goes to Slimane for his proofreading and inspiration.

All the people who supported my speech database building work, for their kindness,
their voice messages and time dedication.

Last but not the least, I wish to thank my Wei for his boundless love, support and
caretaking throughout this project. I will never forget those days he took care of me
when I was sick and lying in the bed.

 iii

Abstract

The work leading to this thesis has been focused on establishing a text-independent
closed-set speaker recognition system. Contrary to other recognition systems, this
system was built with two parts for the purpose of improving the recognition accuracy.
The first part is the speaker pruning performed by KNN algorithm. To decrease the
gender misclassification in KNN, a novel technique was used, where Pitch and MFCC
features were combined. This technique, in fact, does not only improve the gender
misclassification, but also leads to an increase on the total performance of the pruning.
The second part is the DDHMM speaker recognition performed on the ‘survived’
speakers after pruning. By adding the speaker pruning part, the system recognition
accuracy was increased 9.3%.
During the project period, an English Language Speech Database for Speaker
Recognition (ELSDSR) was built. The system was trained and tested with both TIMIT
and ELSDSR database.

Keywords: feature extraction, MFCC, KNN, speaker pruning, DDHMM, speaker
recognition and ELSDSR.

 iv

Nomenclature

Below shows the most used symbols and abbreviations in this thesis.

)(⋅ℵ Gaussian density
)(⋅Ed Euclidean distance

)(⋅Y Output of filter in mel-frequency
)(⋅Ω i Sampled magnitude response of the ith channel filterbank
)(itα Forward variables of forward-backward algorithm
)(itβ Backward variables of forward-backward algorithm

ija Transition coefficients

jkb Emission coefficients
A State transition matrix
B Emission probability matrix
�={�1,…, �N} Initial start distribution vector
O=o1,o2,…,oT A observations sequence

S={s1,…sN} A set of states
X(*) (Optimal) state sequence
xt Random variables for Markov sequence

);(mna LP coefficients

pdf Probability density function
stCC Short-term Complex Cepstrum
stRC Short-term Real Cepstrum);(mncs
ANN Artificial Neural Network
AUTOC Autocorrelation
CDHMM Continuous-Density HMM
CEP Cepstrum
CC Complex Cepstrum
DDHMM Discrete-Density HMM
DMFCC Delta Mel-frequency cepstral coefficients
DDMFCC Delta-Delta Mel-frequency cepstral coefficients
DTFT Discrete Time Fourier Transform
DTW Dynamic Time Warping
ELSDSR English Language Speech Database for Speaker Recognition
EM Expectation and Maximization algorithm
FIR Finite Impulse Response
GMM Gaussian Mixture Model
HMM Hidden Markov Model
HPS Harmonic Product Spectrum
ICA Independent Component Analysis
KNN K-Nearest Neighbor

 v

LLD Low-Level audio descriptors
LPA Linear Prediction analysis
LPCC LP based Cepstral Coefficients
MFCC Mel-frequency cepstral coefficients
ML Maximum Likelihood
MMI Maximum Mutual Information
NN Neutral Network
PCA Principal Component Analysis
RC Real Cepstrum
SI(S) Speaker Identification (System)
SR(S) Speaker Recognition (System)
SV(S) Speaker verification (System)
VQ Vector Quantization

 - 1 -

Contents
Chapter 1 Introduction .. 5

1.1 Elementary Concepts and Terminology .. 5
 1.1.1 Speech Recognition.. 6
 1.1.2 Principles of Speaker Recognition.. 6
 1.1.3 Phases of Speaker Identification... 9

1.2 Development of Speaker Recognition Systems... 10
1.3 Project Description... 12

Chapter 2 Speech Production .. 15
2.1 Speech Production.. 15

 2.1.1 Excitation Source Production ... 15
 2.1.2 Vocal Tract Articulation.. 17

2.2 Discrete-time Filter Modeling .. 18
Chapter 3 Front-end Processing .. 21

3.1 Short-term Spectral Analysis .. 21
 3.1.1 Window Functions ... 22
 3.1.2 Spectrographic Analysis ... 23

3.2 Sub-processes of Front-end Processing... 25
3.3 Preemphasis ... 25

 3.3.1 The First Order FIR Filter .. 25
 3.3.2 Kaiser Frequency Filter .. 26

3.4 Feature Extraction .. 28
 3.4.1 Short-Term Cepstrum... 29
 3.4.2 LP based Cepstrum .. 31
 3.4.3 Mel-frequency Cepstrum.. 32
 3.4.4 Delta and Delta-Delta Coefficients ... 35
 3.4.5 Fundamental Frequency ... 37

Chapter 4 Speaker Modeling ... 39
4.1 Markov Chain .. 40
4.2 Hidden Markov Model ... 41

 4.2.1 Elements and Terminology of HMM .. 41
 4.2.2 Three Essential Problems of an HMM.. 42
 4.2.3 Types of HMM... 46

Chapter 5 Speaker Pruning ... 49
5.1 K-Nearest Neighbor ... 49
5.2 Speaker Pruning using KNN .. 51

Chapter 6 Speech Database-ELSDSR ... 55
6.1 Recording Condition and Equipment Setup .. 55
6.2 Corpus Speaker Information... 56
6.3 Corpus Text & Suggested Training/Test Subdivision 56

 - 2 -

6.4 ELSDSR Directory and File Structure .. 57
Chapter 7 Experiments and Results .. 59

7.1 Preemphasis ... 59
7.2 Feature Extraction .. 60

 7.2.1 Feature Selection.. 61
 7.2.2 Feature Dimensionality .. 65
 7.2.3 Recognition Error Improvement for KNN .. 68
 7.2.4 Combining fundamental frequency Information with MFCC 69

7.3 Speaker Pruning ... 77
 7.3.1 Training Set Size.. 77
 7.3.2 Feature Dimensionality in Speaker Pruning.. 79
 7.3.3 Determining the Other Parameters.. 79

7.4 Speaker Modeling and Recognition.. 81
 7.4.1 Speaker Modeling .. 81
 7.4.2 Speaker Recognition .. 85

Chapter 8 Conclusion and Future Work... 87
A Essential Problems in HMM .. 91

A1 Evaluation Problem.. 91
 A1.1 Forward Algorithm... 91
 A1.2 Backward Algorithm... 92

A2 Optimal State Sequence Problem.. 93
B Normalized KNN .. 95
C Database Information .. 96

C1 Detailed Information about Database Speakers ... 96
C2 Recording Experiment Setup .. 97

 C2.1 3D Setup .. 97
 C2.2 2D Setup with Measurement... 98

D Experiments.. 99
D1 Text-dependent Case for Binary KNN .. 99
D2 Pitch Accuracy for Gender Recognition.. 100
D3 Time consumption of recognition with/without speaker pruning................... 101

References... 103

 - 3 -

List of Figures

Fig. 1.1 Automatically extract information transmitted in speech signal........................ 5
Fig. 1.2 Basic structure of Speaker Verification .. 7
Fig. 1.3 Basic structure of Speaker Identification.. 8
Fig. 1.4 Speech processing taxonomy... 9
Fig. 1.5 Enrollment phase for SI ... 10
Fig. 1.6 Classification paradigms used in SRS during the past 20 years....................... 12

Fig. 2.1 Anatomical structure of human vocal system... 16
Fig. 2.2 Discrete-time speech production model (based on [16] Chapter 3)................. 18
Fig. 2.3 Estimated speech production model (based on [16] Chapter 5) 19

Fig. 3.1 Hamming and Hanning windows... 22
Fig. 3.2 Wideband and narrowband spectrograms... 24
Fig. 3.3 Magnitude response and Phase response of a first order FIR filter 26
Fig. 3.4 Magnitude response of Kaiser frequency filter... 27
Fig. 3.5 Motivation behind RC (taken from [16] Fig. 6.3)... 30
Fig. 3.6 Raised sine lifter.. 30
Fig. 3.7 Computation of the stRC using DFT.. 30
Fig. 3. 8 Computation of MFCC... 32
Fig. 3.9 The triangular Mel-frequency scaled filter banks ... 33
Fig. 3.10 LPCC vs. MFCC for speaker separation using TIMIT 34
Fig. 3.11 Original Signal with MFCC, DMFCC and DDMFCC.................................. 36
Fig. 3.12 F0 information for eight speakers from TIMIT... 37

Fig. 5.1 KNN algorithm with NK =5 ... 50

Fig. 7.1 Before and after preemphasis... 59
Fig. 7.2 Spectrogram before and after Preemphasis .. 60
Fig. 7.3 LPCC vs. MFCC for speaker separation using PCA 62
Fig. 7.4 LPCC vs. MFCC using KNN .. 64
Fig. 7.5 24 MFCC vs. 48 MFCC for speaker separation using PCA............................ 66
Fig. 7.6 24 MFCC vs. 48 MFCC using KNN.. 66
Fig. 7.7 Q iterations for searching optimal Q .. 67
Fig. 7.8 Recognition accuracy improvement... 69
Fig. 7.9 Cepstral coefficients .. 71
Fig. 7.10 F0 information for 22 speakers from ELSDSR... 71
Fig. 7.11 Effect of weight parameter � on test errors... 73
Fig. 7.12 Searching desired training set size ... 78
Fig. 7.13 NK iteration for finding optimal NK.. 80
Fig. 7.14 Test errors with different combination of N and K.. 84

 - 4 -

 - 5 -

Chapter 1 Introduction

Fig. 1.1 Automatically extract information transmitted in speech signal
The main structure is taken from [1]. The speech signal contains rich messages,
and three main recognition fields from speech signal, which are of most interest
and have been studied for several decades, are speech recognition, language
recognition and speaker recognition. In this thesis, we focus our attention on
speaker recognition field.

In our everyday lives there are many forms of communication, for instance: body
language, textual language, pictorial language and speech, etc. However amongst those
forms speech is always regarded as the most powerful form because of its rich
dimensions character. Except for the speech text (words), the rich dimensions also refer
as the gender, attitude, emotion, health situation and identity of a speaker. Such
information is very important for an effective communication.

From the signal processing point of view, speech can be characterized in terms of the
signal carrying message information. The waveform could be one of the representations
of speech, and this kind of signal has been most useful in practical applications.
Extracting from speech signal, we could get three main kinds of information: Speech
Text, Language and Speaker Identity [1], shown in Fig.1.1.

1.1 Elementary Concepts and Terminology

We notice from Fig. 1.1 there are three recognition systems: speech recognition systems,
language recognition systems and speaker recognition systems. In this thesis, we
concentrate ourselves on speaker recognition systems (SRS). In the mean while, for the
purpose of fixing the idea about SRS, speech recognition will be introduced, and the
distinctions between speech recognition and SR will be given too.

 - 6 -

1.1.1 Speech Recognition

During the past four decades, a large number of speech processing techniques have
been proposed and implemented, and a number of significant advances have been
witted in this field during the last one to two decades, which are spurred by the high
speed developing algorithms, computational architectures and hardware. Speech
recognition refers to the ability of a machine or program to recognize or identify spoken
words and carry out voice. The spoken words are digitized into sequence of numbers,
and matched against coded dictionaries so as to identify the words.

Speech recognition systems are normally classified as to following aspects:
Whether system requires users to train it so as to recognize users’ speech patterns;

 Whether system is able to recognize continuous speech or discrete words;
 Whether system is able to recognize small vocabulary or large one1.

A number of speech recognition systems are already available on the market now. The
best can recognize thousands of words. Some are speaker-dependent, others are discrete
speech systems. With the development of this field speech recognition systems are
entering the mainstream, and are being used as an alternative to keyboards.

1.1.2 Principles of Speaker Recognition

However nowadays more and more attention has been paid on speaker recognition field.
Speaker recognition, which involves two applications: speaker identification and
speaker verification, is the process of automatically recognizing who is speaking on the
basis of individual information included in speech waves. This technique makes it
possible to use the speaker's voice to verify their identity and control access to services
such as voice dialing, banking by telephone, telephone shopping, database access
services, information services, voice mail, security control for confidential information
areas, and remote access to computers [2].

Speaker verification (SV) is the process of determining whether the speaker identity is
who the person claims to be. Different terms which have the same definition as SV
could be found in literature, such as voice verification, voice authentication,
speaker/talker authentication, talker verification. It performs a one-to-one comparison
(it is also called binary decision) between the features of an input voice and those of the
claimed voice that is registered in the system.

Fig. 1.2 shows the basic structure of SV system (SVS). There are three main components:
Front-end Processing, Speaker Modeling, and Pattern Matching. Front-end processing
is used to highlight the relevant features and remove the irrelevant ones.

1 Small vocabulary approximately includes tens or at most hundreds of words; on the contrary,
large vocabulary refers thousands of words.

 - 7 -

Front-end
processing

Voice from
unknown speaker

Feature vectors

Speaker Model

Pattern
Matching Decision

Accept
or

Reject

Match
scorces

Claimed Speaker

Speaker
Database

Fig. 1.2 Basic structure of Speaker Verification

Three main components shown in this structure are: Front-end Processing,
Speaker Modeling, and Pattern Matching. To get the feature vectors of
incoming voice, front-end processing will be performed, and then depending
on the models used in Pattern Matching, match scores will be calculated. If
the score is larger than a certain threshold, then as a result, claimed speaker
would be acknowledged.

After the first component, we will get the feature vectors of the speech signal. Pattern
Matching between the claimed speaker model registered in the database and the
imposter model will be performed then, which will be described in detail in Chapter 4.
If the match is above a certain threshold, the identity claim is verified. Using a high
threshold, system gets high safety and prevents impostors to be accepted, but in the
mean while it also takes the risk of rejecting the genuine person, and vice versa.

Speaker identification (SI) is the process of finding the identity of an unknown
speaker by comparing his/her voice with voices of registered speakers in the database.
It’s a one-to-many comparison [3]. The basic structure of SI system (SIS) is shown in
Fig. 1.3. We notice that the core components in SIS are the same as in SVS. In SIS, M
speaker models are scored in parallel and the most-likely one is reported.

In different situations, speaker recognition is often classified into closed-set recognition
and open-set recognition. Just as their names suggest, the closed-set refers to the cases
that the unknown voice must come from a set of known speakers; and the open-set
means unknown voice may come from unregistered speakers, in which case we could
add ‘none of the above’ option to this identification system.

Moreover in practice speaker recognition systems could also be divided according to
the speech modalities: text-dependent recognition, text-independent recognition. For
text-dependent SRS, speakers are only allowed to say some specific sentences or words,
which are known to the system. In the bargain, the text-dependent recognition is sub-

 - 8 -

Front-end
processing

Feature

vectors

Speaker Model M

Maximum
Selection

.

.

.

Pa
tte

rn
 M

at
ch

in
g

Decision

Speaker ID

Voice from
unknown speaker

Speaker Model 2

Speaker Model 1

Speaker
Database

Fig. 1.3 Basic structure of Speaker Identification

The core components in SIS are the same as in SVS. In SIS, M speaker
models are scored in parallel and the most-likely one is reported, and
consequently decision will be one of the speaker’s ID in the database, or will
be ‘none of the above’ if and only if the matching score is below some
threshold and it’s in the case of a open-set SIS.

divided into fixed phrase and prompted phrase. On the contrary, as for the
text-independent SRS, they could process freely spoken speech, which is either user
selected phrase or conversational speech. Compared with text-dependent SRS,
text-independent SRS are more flexible, but more complicated.

The detailed taxonomy of speech processing is shown in Fig. 1.4, so as to give a
general view.

 - 9 -

Speech Processing

Analysis/Synthesis Recognition Coding

Speech
Recognition

Speaker
Recognition

Language
Recognition

Speaker
Identification

Speaker
Verification

Text-dependent Text-indepedent Text-dependent Text-indepedent

Closed-set Open-set Closed-set Open-set

Fig. 1.4 Speech processing taxonomy
Speech signal processing could be divided into three different tasks: Analysis,
Recognition and Coding. Shown in Fig. 1.1, recognition research fields
could be subdivided into three parts: Speech, Speaker and Language
recognition. Into the bargain, according to the different applications and
situations that recognition systems work in, Speaker recognition is classified
into text-dependent, -independent, closed-set and open-set.

Before processing, it’s important to emphasize the difference between SV and speech
recognition. The aim of speech recognition system is to find out what the speaker is
saying, and to assist the speaker in accomplishing what he/she wants to do. However
speaker verification system is often used for security. The system will ask speakers to
say some specific words or numbers, but unlike speech recognition system, the system
doesn’t know whether the speakers have said what they are expected to say. Moreover
in some literature voice recognition is mentioned. Voice recognition is ambiguous, and
it usually refers to speech recognition, but sometimes it is also used as a synonym for
speaker verification.

1.1.3 Phases of Speaker Identification

For almost all the recognition systems, training is the first step. We call this step in SIS
enrollment phase, and call the following step identification phase. Enrollment phase is
to get the speaker models or voiceprints for speaker database. The first phase of
verification systems is also enrollment. In this phase we extract the most useful features
from speech signal for SI, and train models to get optimal system parameters.

 - 10 -

Speaker
Database

Front-end
processing

Speaker
Modeling

Speaker 1

Speaker 2

Speaker 3

Feature
vectors

Speaker
models

Fig. 1.5 Enrollment phase for SI
Enrollment phase is to get the speaker models or voiceprints to make a
speaker database, which could be used later in the next phase, i.e.
identification phase. The front-end processing and speaker modeling
algorithms in both phases of SIS (SVS) should be consistent respectively.

In identification phase, see Fig. 1.3, the same method for extracting features as in the
first phase is used for the incoming speech signal, and then the speaker models getting
from enrollment phase are used to calculate the similarity between the new speech
signal model and all the speaker models in the database. In closed-set case the new
speaker will be assigned to the speaker ID which has the maximum similarity in the
database. Even though the enrollment phase and identification phase are working
separately, they are still closely related. The modeling algorithms used in the enrollment
phase will also work on the identification algorithms.

1.2 Development of Speaker Recognition Systems

The first type of speaker recognition machine using spectrograms of voices was
invented in the 1960’s. It was called voiceprint analysis or visible speech. Voiceprint is
acoustic spectrum of the voice, and it has similar definition as fingerprint. Both of them
belong to biometrics 2 . However voiceprint analysis could not realize automatic
recognition. Human’s manual determination was needed. Until now a number of feature
extraction techniques, which are commonly used in Speech Recognition field, have
been used to distinguish from individuals. Since the mid-1980s, this field has been
steadily getting matured that commercial applications of SR have been increasing, and
many companies currently offer this technology.

2 Biometrics is the technology of measuring and analyzing uniquely identifiable physical
human characteristics: handwriting, fingerprint, finger lengths, eye retina, iris and voiceprint.

 - 11 -

For speaker recognition problem, different representations of the audio signal using
different features have been addressed. Features can be calculated in time domain,
frequency domain [4], or in both domains [6]. [6] started from the system illustrated in
[5], and used features calculated in both domains. For their own database which was
extracted from Italian TV news, the system achieved 99% recognition rate when 1.5
seconds was used to identify.

Furthermore, different classification paradigms using different modeling techniques
(see Fig. 1.6) for SRS could be found, such as Gaussian Mixture Model (GMM) [5] and
Hidden Markov Model (HMM), which are prevalent techniques in SR field. The system
in [5] has been frequently quoted. It uses Mel-scale cepstral coefficients, which is
cepstral analysis in the frequency domain. Based on [5], transformations have been
done. One example can be seen in [7], which transformed Mel cepstral features for
compensating the noise components in the audio channel, and then formants features
were calculated and used in classification. In [8], Principal Component Analysis (PCA)
was used on the features based on [5]. PCA was to reduce the computational
complexity of the classification phase, and it will be described in detail in Chapter 7.
Moreover, speaker recognition applications have distinct constraints and work in
different situations. Following the applications requests, recognition systems are
divided into closed-set [7], open-set, text-independent [6], [7] and text-dependent [8].
According to the usage of applications, systems are designed for single speaker, and
also for multi-speaker [10]. As a part of information included in spoken utterance,
emotions get more and more attention at present, and vocal emotions have been studied
as a separate topic. [13] shows that the average fundamental frequency increased and
the range of fundamental frequency enlarged when the speaker was involved in a
stressful situation.

Until now, MPEG-7 as a new technique is used for speaker recognition [11]. MPEG-7,
formally named “Multimedia Content Description Interface”, is a standard for
describing the multimedia content data that supports some degree of interpretation of
the information’s meaning, which can be passed onto, or accessed by, a device or a
computer code. MPEG-7 is not aimed at any one application in particular; rather, the
elements that MPEG-7 standardizes support as broad a range of applications as possible
[12]. In [11] for speaker recognition problem, MPEG-7 Audio standard were used.
MPEG-7 Audio standard comprises descriptors and description schemes. They are
divided into two classes: generic low-level tools and application-specific tools. There
are 17 low-level audio descriptors (LLD). [11] used a method of projection onto a
low-dimensional subspace via reduced-rank spectral basis functions to extract speech
features. Here two LLDs were used: AudioSpectrumBasisType and
AudioSpectrumProjectionType. Using Independent Component Analysis (ICA) in [11],
the speaker recognition accuracy for small set is 91.2%, for large set is 93.6%; and the
gender recognition accuracy for small set is 100%.

 - 12 -

������� �������

NN

VQ

HMM

NN

VQ

HMM NN

VQGMM

Fig. 1.6 Classification paradigms used in SRS during the past 20 years
(taken from CWJ’s presentation slides [31]) VQ, NN, HMM and GMM
represent Vector Quantization, Neutral Network, Hidden Markov
Model and Gaussian Mixture Model respectively. It has been shown
that a continuous ergodic HMM method is superior to a discrete
ergodic HMM method and that a continuous ergodic HMM method is
as robust as a VQ-based method when enough training data is available.
However, when little data is available, the VQ-based method is more
robust than a continuous HMM method [9].

1.3 Project Description

Although a lot of work has been done in SRS field, many realistic problems still need to
be solved, and as far as we know, no work has been done in hearing aid application.
This research work is to make general overview of the techniques have been utilized in
practice, and to design a SIS and do preparation work in lab for people with hearing loss.
As long as we know the speakers ID, the task for speech enhancement will become
comparably easy.

For most people in their everyday lives, the number of people whom they contact with
is limited. For example the number is approximately around 30-50 for people with
many social doings, and it’s probably around 10 to 20 in regular cases. For the people
with hearing loss, those 10 to 20 people could be the ones whom the patient is most
familiar with. Therefore according to our purpose, a speech database will be built,
which enrolls 22 people’s voice messages, for details see Chapter 6.

In this project we concentrate ourselves on Speaker Identification System (SIS) since a
large work has been done in SV field. For detailed condition, we will work in the
closed-set, text-independent situations.

The report is organized in the following chapters:

• Chapter 2 gives the general overview of human speech production, and
consequently introduces the speech model and the estimated model.

• Chapter 3 mainly describes the front-end processing. Before going to the main
topic, short-term spectral analysis is introduced with some basic concepts of
framing and windowing, etc. The description of front-end processing is divided

 - 13 -

into three parts: preemphasis; feature extraction; and channel compensation,
more attention and efforts are put into feature extraction techniques commonly
used in SRS.

• Chapter 4 presents some speaker modeling and recognition techniques and
algorithms. Moreover HMM is introduced in details beginning with the basic
form, Markov chain.

• Chapter 5 introduces the idea of our speaker pruning and the pruning algorithm.
• Chapter 6 describes the speech database (ELSDSR) made in the period of my

project.
• Chapter 7 presents experiments and results. First preemphasis and feature

extraction are executed and comparisons amongst features are made using
different techniques. A new method is invented to combine the pitch
information with MFCC features for calculating the similarity in KNN
algorithm with the purpose of improving speaker pruning accuracy. Finally
experiments on HMM modeling and recognition are given with different setups.
Moreover error rate with and without speaker pruning are compared.

• Chapter 8 summarizes this project results, and discusses the improvement could
be achieved in the future work.

 - 14 -

 - 15 -

Chapter 2 Speech Production

Front-end processing, the first component in the basic structure of SR system
(subsection 1.1.2) is a key element of the recognition process. The main task of
front-end processing in SRS is to find the relevant information from speech, which
could represent speaker’s individual voice characters, and help achieve good
classification results. However in order to get desired features for speaker recognition
task, it is crucial to understand the mechanism of speech production, the properties of
human speech production model, and the articulators which have speaker-dependent
characters.

There are two main sources of speaker-specific characteristics of speech: physical traits
and learned traits [14]. Learned traits include speaking rate, timing patterns, pitch
patterns, prosodic effects, dialect, idiosyncratic word/phase usage, etc. They belong to
high-level cues for speaker recognition. Although the high-level cues (learned traits) are
more robust and are not much affected by noise and channel mismatch, we limit our
scope in the low-level cues (physical traits) because they are easy to be automatically
extracted and suitable for our purpose.

2.1 Speech Production

Speech is human being’s primary means of communication, and it contents essentially
the meaning of information from a speaker to a hearer, individual information
representing speaker’s identity and gender, and also sometimes the emotions. For a
complete account of speech production, the properties of both articulators, which
produce the sound, and auditory organs, which perceive the sound, should be involved.
Nonetheless auditory organs are beyond the scope of this paper.

Speech production process begins with a thought which shows the initial
communication message. Following the rules of the spoken language and grammatical
structure, words and phrases are selected and ordered. After the thought constructs into
language, brain sends commands by means of motor nerves to the vocal muscles, which
move the vocal organs to produce sound [16].

Speech production can be divided into three principal components: excitation
production, vocal tract articulation, and lips' and/or nostrils' radiation.

2.1.1 Excitation Source Production

Excitation powers the speech production process. It is produced by the airflow from
lungs, and then carried by trachea through the vocal folds, see Fig. 2.1. During
inspiration, air is filled into lungs, and during expiration the energy will be
spontaneously released. The trachea conveys the resulting air stream to the larynx.

 - 16 -

Fig. 2.1 Anatomical structure of human vocal system

(Adapted from ‘How language works’, Indiana University and Michael
Gasser, Edition 2.0 2003 www.indiana.edu/~hlw/PhonUnits/vowels.html)
This figure was made according to the human vocal system introduced in
[14]. The organs are (from the bottom up): lungs (not shown in this
picture) which is the source of air; trachea (also called windpipe); vocal
folds/vocal cords at the base of larynx is the most important part of
larynx, and the area between vocal folds is glottis; epiglottis; pharynx;
velum (also called soft palate) which allows air passing through the nasal
cavity; nasal cavity (nose); oral cavity; palate (hard palate) which
enables consonant articulation; tongue; teeth; lips.

Larynx refers as an energy provider to serve inputs to the vocal tract, and the volume of
air determines the amplitude of the sound. The vocal folds at the base of larynx, and
glottis triangular-shaped space between the vocal folds are the critical parts from
speech production point of view. They separate the trachea from the base of vocal tract.
The types of sounds are determined by the action of vocal folds, and we call it
excitation. Normally excitations are characterized as phonation, whispering, friction,
compression, vibration, or a combination of these. Speech produced by phonated
excitation is called voiced, produced by the cooperation between phonation and
frication is called mixed voiced, and produced by other types of excitation is called
unvoiced [14].

Voiced speech is generated by modulating the air stream from the lungs, and the
generation is performed by periodically open and close vocal folds. The oscillation
frequency of vocal folds is called the fundamental frequency, F0, and it depends on the
physical characters of vocal folds. Hence fundamental frequency is an important

 - 17 -

physical distinguishing factor, which has been found effective for automatic speech and
speaker recognition. Vowels and nasal consonants belong to voiced speech.

Mixed voiced speech is produced by the phonation plus frication. Actually unlike the
phonation that is placed in vocal folds (the vibration of vocal folds), the place of
frication is inside the vocal tract (subsection 2.1.2).

Unvoiced speech is generated by a constriction of the vocal tract narrow enough to
cause turbulent airflow, which results in noise or breathy voice [15]. It includes
fricatives, sibilants, stops, plosives and affricates. Unvoiced speech is often regarded
and modeled as white noise.

2.1.2 Vocal Tract Articulation

Vocal tract is generally considered as the speech production organ above the vocal folds,
which is formerly known as vocal cords, and its shape is another important physical
distinguishing factor. Fig. 2.1 pictures the anatomical structure of human vocal system.
It includes both the excitation organs and vocal tract organs. Lungs, trachea and vocal
folds are regarded as organs responsible for excitation production. The combination of
Epiglottis, pharynx, velum (soft palate), hard palate, nasal cavity, oral cavity, tongue,
teeth and lips in the picture is referred to the vocal tract. The articulators included in
vocal tract are group into: [14]

� Laryngeal pharynx (beneath the epiglottis);
� Oral pharynx (behind the tongue, between the epiglottis and velum);
� Oral cavity (forward of the velum and bounded by the lips, tongue and palate);
� Nasal pharynx (above the velum, rear end of nasal cavity);
� Nasal cavity (above the palate and extending from the pharynx to the nostrils).

While the acoustic wave produced by excitations is passing through the vocal tract,
depending on the shape of the vocal tract, wave will be altered in a certain way and
interferences will generate resonances. The resonances of vocal tract are called
formants. Their location largely determines the speech sound which is heard [15].

The vocal tract works as a filter to shape the excitation sources. The uniqueness of
speaker voice not only depends on the physical features3 of the vocal tract, but the
speaker’s mental ability to control the muscles of the organs in the vocal tract. It is not
easy for speaker to change the physical features intentionally. However, these physical
features are possible to be changed with ageing.

3 Physical features of the vocal tract normally refer to vocal tract length, width and breadth,
size of tongue, size of teeth and tissue density, etc [13].

 - 18 -

2.2 Discrete-time Filter Modeling

Random Noise
Generator

Pitch period P

Voiced

Unvoiced

Vocal tract
filter

Lip radiation
filter

Speech
s(n)

Voiced/unvoiced
switch

Impulse
Generator

e(n))(ϖH)(ϖR

Fig. 2.2 Discrete-time speech production model (based on [16] Chapter 3)

Assuming speech production can be separated into excitation production,
vocal tract articulation and lips' and/or nostrils' radiation three linear and
planar propagation components, discrete-time speech production model
was built.

Mentioned before, speech production is normally divided into three principal
components: excitation production, vocal tract articulation and lips' and/or nostrils'
radiation. As we separate speech production process into three individual parts, which
have no coupling between each other, we assume that these three components are linear,
separately and planar propagation 4 [16]. Further more let’s think about speech
production in terms of an acoustic filtering operation. Consequently we could construct
a simple linear model, discrete-time filter model, for speech production, which consists
of excitation production part, vocal tract filter part and radiation part separately [16],
shown in Fig. 2.2. The excitation part corresponds to the vibrating of the vocal cords
(glottis) causing voiced sounds, or to a constriction of the vocal tract causing a
turbulent air-flow and thus causing the noise-like unvoiced excitation.

By using this model, a voiced speech, such as vowel, can be computed as the product of
three respective (Fourier) transfer functions:

)()()()(ϖϖϖϖ RHES = (2.1)

where the excitation spectrum E(�) and radiation R(�) are mostly constant and well
known a priori, the vocal tract transfer function H(�) is the characteristic part to
determine articulation [15]. Therefore it deserves our special attention on how it can be
modeled adequately.

4 Planar propagation assumes that when the vocal folds open, a uniform sound pressure wave is
produced that expands to fill the present cross-sectional area of the vocal tract and propagates
evenly up through the vocal tract to the lips [16].

 - 19 -

White-Noise
Generator

Pitch period P

Voiced

Unvoiced

All-pole filter Speech
s(n)

Voiced/unvoiced
switch

Impulse
Generator

e(n)

Fig. 2.3 Estimated speech production model (based on [16] Chapter 5)

By using all-pole filter to replace the vocal tract filter and lip radiation models,
corrected magnitude spectrum could be achieved, but phase information in
speech signal will be lost. Since human ear is fundamentally ‘phase deaf’, the
LP estimated model (all-pole model) could also work well.

In time-domain, relation 2.1 will be presented as a convolution5 combination of
excitation sequence, the vocal system impulse response, and the speech radiation
impulse response:

)()()()(nrnhnens ⊗⊗= (2.2)

where excitation sequence has the following definition:

caseunvoiced

casevoiced

0)()(

,1))((0

),(

)(

�
�
�

�

��
�

�

�

=−

==

−

=

�

�

∞

−∞=

∞

−∞=

k

q

knene

neVar,Exp(e(n))

qPn

ne

δ

 (2.3)

where Exp is the expectation operator, Var is the variance operator, and P is the pitch
period.

As we know, the magnitude spectrum can be exactly modeled with stable poles, and the
phase characteristics can be modeled with zeros. However with respect to speech
perception, the speech made by a speaker walking around ‘sounds the same’ given
sufficient amplitude since the human ear is fundamentally ‘phase deaf’ [16].

5 A convolution is an integral that expresses the amount of overlap of one function g as it is
shifted over another function f. It therefore "blends" one function with another. The
mathematical expression for the convolution of two discrete-time functions f(n) and g(n) over
an infinite range is given by:

�
∞

−∞=
−=⊗

k

kngkfngnf)()()()(

 - 20 -

Hence as an estimation for the true speech production model shown in Fig. 2.2, an
all-pole model is valid and useful. LP model (all-pole model) has the correct magnitude
spectrum, but minimum-phase characteristic compared with true speech model. Fig. 2.3
shows the estimated model using LP analysis, which is also called the source-filter
model.

The transfer function of an all-pole filter is represented by:

�
=

−

=Θ
p

i
i ja

0

1)(

1
)(

ϖ
ϖ (2.4)

where p is the number of poles; a0=1; and ai are the Linear Prediction Coefficients [16]
chosen to minimize the mean square filter prediction error summed over the analysis
window.

As a result of this estimation, speech signal then can be presented as the product of two
transfer functions:

)()()(ϖϖϖ Θ= ES (2.5)

where E(�) is the excitation spectrum, and �(�) is represented by (2.4). Consequently
in time domain, the speech signal is as follows:

)()()(nnens θ⊗= (2.6)

 - 21 -

Chapter 3 Front-end Processing

In Chapter 2, we discussed the human speech production with the purpose of finding
the speaker-specific characteristics for speaker recognition task. To make the human
speech production processable from the signal processing point of view, discrete-time
modeling was discussed to model the process as a source-filter model, where the vocal
tract is viewed as a digital filter to shape the sound sources from vocal cords. The
speaker-specific characteristics, as we introduced in Chapter 2, include two main
sources: physical (low-level cues) and learned (high-level cues). Although high-level
features have been recently exploited successfully in speaker recognition, especially in
noise environments and channel mismatched cases, our attention is on the low-level
spectral features because they are widely spread, easy to compute and model, and are
much more related to the speech production mechanism and source-filter modeling.
With an overview of the mechanism of speech production, the aim of the front-end
processing becomes explicit, which is to extract the speaker discriminative features.

We begin Chapter 3 with an introduction to short-term spectral analysis which will be
used throughout our project. Then the sub-processes of front-end processing will be
presented. More strength will be put in feature extraction sub-process. We start from the
theoretical background of each feature extraction technique. Brief discussion on
selection of appropriated features will then be given.

3.1 Short-term Spectral Analysis

Speech signal changes continuously due to the movements of vocal system, and it is
intrinsically non-stationary. Nonetheless, in short segments, typically 20 to 40ms, speech
could be regarded as pseudo-stationary signal. Speech analysis is generally carried out in
frequency domain with short segments across which the speech signal is assumed to be
stationary, and this kind of analysis is often called short-term spectral analysis, for
detailed explanation, see [16] Chapter 4.

Short-term speech analysis could be summarized as following sequences:

1. Block the speech signal into frames with the length of 20 to 40ms, and overlap of
50% to 75% (the overlap is to prevent lacking of information);

2. Windowing each frame with some window functions (windowing is to avoid
problem brought by truncation of the signal);

3. Spectral analyzing frame by frame to transfer speech signal into short-term
spectrum;

4. Features extraction to convert speech into parameter representation.

 - 22 -

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

Sample number

A
m

pl
itu

de

Hamming and Hanning Windows

Hanning
Hamming

0 0.5 1 1.5 2 2.5 3

-100

-50

0

M
ag

ni
tu

de
 (d

B
)

Angular Frequncy(rad/s)

Hanning
Hamming

Fig. 3.1 Hamming and Hanning windows

Fig. 3.1 shows the waveforms and magnitude responses of Hamming
window (red and solid line) and Hanning window (blue and dash line) with
64 samples. In time domain, Hamming window does not get as close to zero
near the edges as the Hanning window does. In frequency domain, the main
lobes of both Hamming and Hanning have the same width which is 8�/N;
whereas the Hamming window has lower side lobes adjacent to the main
lobe than the Hanning window has, and side lobes farther from the main lobe
are lower for the Hanning window.

3.1.1 Window Functions

Windowing is to reduce the effect of the spectral artifacts from framing process [17]. In
time domain, windowing is a pointwise multiplication between the framed signal and the
window function. Whereas in frequency domain, the combination becomes the
convolution between the short-term spectrum and the transfer function of the window. A
good window function has a narrow mainlobe and low sidelobe levels in their transfer
function [17]. The windows commonly used during the frequency analysis of speech
sounds are Hamming and Hanning window. They both belong to raised cosine windows
family. These windows are formed by inverting and shifting a single cycle of a cosine so
that to constrain the values in a specific range: [0, 1] for Hanning window; [0.054, 1] for
Hamming window. Based on the same function, shown as follow:

 - 23 -

)
1

2
cos()1()(

−
⋅−−=

N
n

nW
πϕϕ (3.1)

Hamming window chooses �=0.54, and Hanning window, instead, chooses �=0.5.

Fig. 3.1 shows the waveforms and magnitude responses of Hamming and Hanning
window function. Notice that the Hamming window does not get as close to zero near
the edges as the Hanning window does, and it could be seen effectively as a raised
Hanning window. In magnitude response, the main lobes of both Hamming and
Hanning have the same width which is 8�/N; whereas the Hamming window has lower
side lobes adjacent to the main lobe than the Hanning window has, and side lobes
farther from the main lobe are lower for the Hanning window.

3.1.2 Spectrographic Analysis

Spectrogram for speech signal, the sonogram, is a visual representation of acoustic
signal in frequency domain. It belongs to time-dependent frequency analysis.
Spectrogram computes the windowed discrete-time Fourier transform (DTFT) of a
signal using a sliding window. The mathematical representation of windowed DTFT is

 �
∞

−∞=

−−=
m

mj
n emnwmsS ωω)()()((3.2)

where � � (-�, �) denotes the continuous radian frequency variable, s(m) is the signal
amplitude at sample number m, and w(n-m) is the window function [17]. Spectrogram
is a two dimensional plot of frequency against time, where the magnitudes at each
frequency is represented by the grey scale darkness or of color in position (t, f) in the
display, and the darker regions correspond to higher magnitudes.

Because of the inverse proportional relation between time and frequency resolution,
trade-off exists. If the time resolution is high, then as a result, the frequency resolution
will be poor. Depending on the size of the Fourier analysis window, there are two types
of spectrograms: wideband and narrowband spectrograms [18], shown in Fig. 3.2. A
long window results a narrowband spectrogram, which reveals individual harmonics,
shown as red horizontal bars in voiced portions in Fig. 3.2 (b). On the contrary, a small
window results a wideband spectrogram with better time resolution, but smeared
adjacent harmonics.

 - 24 -

Time (s)

F
re

qu
en

cy
 (H

z)

Wideband Spectrogram

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

1000

2000

3000

4000

5000

Voiced speech

(a)

Time (s)

F
re

qu
en

cy
 (H

z)

Narrowband Spectrogram

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1000

2000

3000

4000

5000

6000

F0
F1
F2

(b)

Fig. 3.2 Wideband and narrowband spectrograms
(a) (b) show the spectrogram of the same utterance with different size of
windows. (a) is the wideband spectrogram with 56 samples at 16 kHz,
corresponding the time spacing is 3.5 ms. (b) is the narrowband spectrograms
with 512 samples at 16 kHz, corresponding the time spacing is 32 ms. The
pointed part in (a) shows the voice speech. Therefore wideband spectrograms can
be used to track the voiced speech. Whereas in (b) harmonics, the red horizontal
bars, can be clearly identified. The three arrows from bottom up in (b) point out
the fundamental frequency F0, the first formant F1, and the second formant F2.
Thus narrowband spectrograms can be used to reveal individual harmonics, and
to estimate F0.

 - 25 -

3.2 Sub-processes of Front-end Processing

Front-end processing is the first component in SRS, therefore the quality of the
front-end processing will greatly determine the quality of the later two components:
speaker modeling and pattern matching. In a word, features extracted from speech
signals are vital for SRS.

Front-end processing generally consists of three sub-processes:

• Preemphasis is to compensate for the spectral damping of the higher
frequencies w.r.t. the lower frequencies;

• Feature extraction is to convert speech waveform to some type of parametric
representation. This sub-process is the key part in front-end processing, and
always be viewed as a ‘replacer’ of front-end processing.

• Channel compensation is to compensate the different spectral characteristics
on the speech signal induced by different input devices.

For the case of our own database created for specific purpose, channel compensation
sub-process is not necessary because the recording situation and devices are the same
for all the speakers, training, and test data set.

3.3 Preemphasis

Due to the characters of the human vocal system introduced in Chapter 2, glottal
airflow and lip radiations make the higher frequency components of the voiced sounds
dampened. For the voice sound, the glottal source has approximately -12db/ octave
slope [19]. When the sound wave is radiated from lips, spectrum will be boosted
+6db/octave. As a result, a speech signal has -6db/octave slope downward compared to
the spectrum of vocal tract [18]. To eliminate this effect and prevent lower frequency
components from dominating the signal, preemphasis should be performed before
feature extraction. By preemphasizing, dynamic range will be decreased so as to let
spectral modeling methods capture details at all frequency components equally.

In human auditory systems, the frequency response at a given spot along the cochlear
membrane is like a high pass filter, which is tuned to a particular frequency that
increases as speaker moves along the membrane [17]. This works just like the
preemphasis processing.

3.3.1 The First Order FIR Filter

Generally preemphasis is performed by filtering the speech signal (original signal) with
the first order FIR filter, which has the form as follow:

 - 26 -

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

Normalized Frequency (×π rad/sample)

P
ha

se
 (
de

gr
ee

s)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-40

-30

-20

-10

0

10

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (
dB

)

First order FIR filter

-3dB

0.233

Fig. 3.3 Magnitude response and Phase response of a first order FIR filter
The first order FIR filter with 0.97 preemphasis factor works as a high pass
filter. The cut-off frequency can be calculated when magnitude goes –3dB.
Notice the magnitude beyond the 0db frequency in the upper panel, it
shows that the high frequency components of the filtered signal will be
enhanced a little bit. Notice the lower panel, the phase response, it shows
that FIR filters with odd order cannot get linear phase.

()101)(1 <<−= − kkzzF (3.3)

where k is the preemphasis factor, and the recommended value is 0.97 [18, 19]. The
magnitude response and phase response of the first order FIR filter with 0.97
preemphasis factor is shown in Fig. 3.3.

Consequently the output is formed as follow:

)1()()(−⋅−= nsknsny (3.4)

where s(n) is the input signal and y(n) is the output signal from the first order FIR filter.

3.3.2 Kaiser Frequency Filter

Notice the magnitude beyond the 0db frequency in the upper panel in Fig. 3.3 shows
that the high frequency components of the filtered signal will be enhanced a little bit.
To avoid this problem, we tried to use a frequency filter to achieve the high-pass effect.
Frequency filtering is based on the Fourier Transform. Instead of doing convolution
between signal and filter as spatial filter does, the operator does the multiplication
between the transformed signal and the filter transfer function:

 - 27 -

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Angular Frequency

M
ag

ni
tu

de

Kaiser Filter

Fig. 3.4 Magnitude response of Kaiser frequency filter

Notice frequency part higher than the cut-off frequency f0
remains unchanged since the magnitude is 1.

)()()(ϖϖϖ FSY = (3.5)

where S(�) is the transformed signal, F(�) is the filter transfer function, and Y(�) is the
filtered signal. To obtain the resulting signal in the time domain, inverse Fourier
Transform needs to be done on Y(�).
Since the multiplication in the frequency domain is identical to the convolution in the
time domain, theoretically all frequency filters can be implemented as a spatial filter.
However, in practice, the frequency filter function can only be approximated by the
filtering mask in real space. The straight forward high pass filter is the ideal high pass
filter. It suppresses all frequencies lower than the cut-off frequency f0 = �0 /2� and
leaves the higher frequencies unchanged:

�
�
�

>
<

=
0

0

 1

 0
)(

ϖϖ
ϖϖ

ϖF (3.6)

However it has many drawbacks which make it impossible to realize and use in practice.
The ringing effect which occurs along the edges of the filtered time domain signal is
one drawback. Due to the multiple peaks in the ideal filter in the time domain, the
filtered signal produces ringing along edges in the time domain.

Better results can be achieved with a Kaiser Filter. The advantage is that it does not
incur as much ringing effect in the real space of the filtered signal as the ideal high pass
filter does. Moreover it doesn’t enhance the high frequency part as the first order FIR
does. The magnitude response of the Kaiser Filter is shows in Fig. 3.4.

 - 28 -

3.4 Feature Extraction

As we know feature extraction influences the recognition rate greatly, it is vital for any
recognition/ classification systems. Feature extraction is to convert an observed speech
signal (speech waveform) to some type of parametric representation for further analysis
and processing. Features derived from spectrum of speech have proven to be the most
effective in automatic systems [1]. However it is widely known that direct
spectrum-based features are incompatible with recognition applications because of their
high dimensionality and their inconsistency. Therefore the goal of features extraction is
to transform the high-dimensional speech signal space to a relatively low-dimensional
features subspace while preserving the speaker discriminative information to
application. For example, during feature extraction, the features of the same
pronunciations will be unified by removing the irrelevant information, and the features
of different pronunciations will be distinguished by highlighting relevant information.

Another issue worth attention is the dimensionality of extracted features. We may think
that the more relevant features, the better the recognition results. Unfortunately, things
are always not as simple as we thought. The phenomenon, the curse of dimensionality
[27], should cost our attention. The curse of dimensionality shows that the needed data
for training and testing grow exponentially with the dimensionality of the input space,
otherwise the representation will be very poor.

The desirable features for SIS should possess the following attributes: [1], [13]
• Easy to extract, easy to measure, occur frequently and naturally in speech
• Not be affected by speaker physical state (e.g. illness)
• Not change over time, and utterance variations (fast talking vs. slow talking

rates)
• Not be affected by ambient noise
• Not subject to mimicry

Nevertheless, no feature has all these attributes. One thing we are sure about is that
spectrum based features are the most effective in automatic recognition systems.

Before our own sound database becomes available, we will use TIMIT database which
has been designed for the development and evaluation of automatic speech recognition
systems. It contains 6300 sentences, 10 sentences spoken by each of 630 speakers from
8 major dialect regions of the United States. (In our case we neglect the dialect regions’
influence.) Although TIMIT database was primarily designed for speech recognition in
the noiseless environment, we could still use its’ voice messages to perform different
feature extraction methods so as to have a general idea about which methods are
superior than others for the purpose of speaker recognition. Noise robustness is an
important issue in real applications, however it is out of the scope of this thesis.

 - 29 -

3.4.1 Short-Term Cepstrum

According to the source-filter model introduced in Section 2.2, speech signal s(n) can
be represented as the convolved combination of the quickly varying part--excitation
sequence and the slowly varying part--impulse response of the vocal system model, [16]
shown as follow:

)()()(nnens θ⊗= (3.7)

where e(n) denotes the excitation sequence, and �(n) denotes the impulse response of
the vocal system model.

It is always desired for engineers to work with linearly combined signals. The cepstral
analysis appeared to resolve this problem, in addition the representatives in cepstrum
are separated. The definition of real cepstrum (RC) of speech signal s(n) is:

 { }{ } �−
− =ℑℑ=

π

π
ω ωω

π
deSnsnc nj

s)(log
2
1

)(log)(1 (3.8)

where)()()(ωωω Θ= ES (3.9)

)()()(log)(log)(log ωωωωω θCCES e +=Θ+= (3.10)

and {}⋅ℑ denotes the DTFT, {}⋅ℑ−1 denotes IDTFT.

Fig. 3.5 shows the motivation behind RC. By transferring the time domain speech
signal into frequency domain, the convolved combination of e(n) and �(n) changes to
multipliable combination. Moreover, by logarithming the spectral magnitude, the
multipliable combination changes to additive combination. Because the inverse Fourier
transform is a linear operator and would operate individually on two additive
components, cs(n) can be rewritten as the linear combination:

)()()(ncncnc es θ+= (3.11)

where { })()(1 ωee Cnc −ℑ= (3.12)

{ })()(1 ωθθ Cnc −ℑ= (3.13)

The domain of the new signal ce (n) and c� (n) is named as quefrency to describe the
‘frequencies’ in this new ‘frequency domain’ [16]. More detailed explanation can be
found in [16].

 - 30 -

Fig. 3.5 Motivation behind RC (taken from [16] Fig. 6.3)

Raised Sine Lifter
1+Q/2

Q/2 Q 1

Fig. 3.6 Raised sine lifter

Framing Windowing DFT

Log|.|IDFT

Speech
signal

frames

stRC

Fig. 3.7 Computation of the stRC using DFT
Following the short-term spectral analysis introduced in
Section 3.1, speech signal should be framed and windowed
into short time periods. In trun, as we described above the
processure for RC, the DFT, logorithm and IDFT will be
performed.

 - 31 -

To eliminate one of the components, linear filtering can be used in the quefrency
domain, where the filter is called lifter. Some low-time lifters are usually used, such as
rectangular lifter and raised sine lifter. The analytical form of the second lifter is:

Qn
Q
nQ

nw ,...,1),sin(
2

1)(=+= π
 (3.14)

Fig. 3.6 shows the figure of the raised sine lifter function. By adjusting the value of Q,
which determines the length of lifter and is also the number of coefficients, we could
separate the low quefrency part which represents vocal system impulse response and the
high quefrency which represents excitation part. Later in Chapter 7 we will show how
Q effects the features and recognition results.

As we described in Section 3.1, in practice the speech processing is performed on short
terms. For the short-term Real Cepstrum (stRC), framing and windowing becomes the
first step. The procedure of stRC is shown in Fig. 3.7.

Before processing, the author wants to emphasize that by real cepstrum (RC) we mean
the Bogert-Tukey-Healy cepstrum, and it is equivalent to the even part of the Complex
Cepstrum (CC), or homomorphic cepstrum, on the region over which the RC is defined.
By simplified the CC into RC, we discard the phase information in homomorphic
cepstrum. This simplification does no harm in phase-insensitive applications, and as we
mentioned before that human ear is fundamentally ‘phase deaf’, the phase information
becomes less important in speech signal. The relation between RC and CC is:

)()(, nnc evenss γ= (3.15)

where cs(n) is the RC, and �s,even(n) is the even part of CC.

3.4.2 LP based Cepstrum

Linear Prediction analysis (LPA) has been commonly used as a spectral representation
of speech signal for years. However, since LPA does not represent the vocal tract
characteristics from the glottal dynamics [16], Linear Prediction (LP) coefficients are
seldom used as features for SRS, and even for speaker-independent speech recognition
systems. Efforts for improvement on LPA have been offered, and success has been
achieved, which was to convert the LP coefficients to the cepstral coefficients. From the
theoretical point of view, it is comparably easy to convert LP coefficients to stCC, and
then convert stCC to stRC, in the case of minimum-phase signals. Given the LP

coefficients);(mna , where m denotes the short-term analysis with m length window,

the converting relation is presented by the recursive formula:

Qnmknamk
n
k

mnamn
n

k

:1,);(),();();(
1

1

=−�
�

	

�

�+= �
−

=
γγ (3.16)

Given the stCC, stRC can be calculated by (3.15) in the short-term analysis case.

 - 32 -

3.4.3 Mel-frequency Cepstrum

Until now, Mel-frequency cepstral coefficients (MFCC) are the best known and most
commonly used features for not only speech recognition, but speaker recognition as
well. The computation of MFCC is based on the short-term analysis introduced in
Section 3.1, and it is similar to the computation of Cepstral Coefficients described in
subsection 3.4.1. The significant difference lays on the usage of critical bank filters to
realize mel-frequency warping. The critical bandwidths with frequency are based on the
human ears perception. The block diagram for computing MFCC is given in Fig. 3.8.

A mel is a unit of measure based on the human ear’s perceived frequency. According to
[16], it is defined as the following way:

• First 1000 Hz is defined as 1000 Mels as a reference,
• Secondly listeners are asked to change the physical frequency until they

perceive it is twice of the reference, or 10 times or half or one tenth of the
reference, and so on.

• Thirdly those frequencies are then labeled as 2000 mels, 10,000 mels, 500 mels,
100 mels, and so on.

The mel scale is approximately a linear frequency spacing below 1000Hz, and a
logarithmic spacing above 1000Hz. The approximation of Mel from frequency can be
expressed as:

)7001(log2595)(10 ffmel +⋅= (3.17)

where f denotes the real frequency, and)(fmel denotes the perceived frequency.

Framing Windowing DFT

LogIDFT

Speech
signal

frames

MFCC Mel-frequency
warping

spectrum

Fig. 3. 8 Computation of MFCC

The computation of Mel-frequency cepstrum is similar to that of Cepstral
Coefficients. The difference lays on mel-frequency warping before doing
logarithm and inverse DFT. The warping transfers the real frequency scale to
the human perceived frequency scale called mel-frequency scale. The new
scale spaces linearly below 1 kHz, and logarithmically above 1kHz.

 - 33 -

Fig. 3.9 The triangular Mel-frequency scaled filter banks

Notice the spacing of triangles: below 1 kHz, they are linearly distributed; and
above 1 kHz they become logarithmically distributed.

The Mel-frequency Warping is normally realized by Filter banks. Filter banks can be
implemented in both time domain and frequency domain. For the purpose of MFCC
processor, filter banks are implemented in frequency domain before the logarithm and
inverse DFT, see Fig. 3.8. The center frequencies of the filters are normally evenly
spaced on the frequency axis. However, in order to mimic the human ears perception,
the warped axis according to the non-linear function (3.17), is implemented. The most
commonly used filter shaper is triangular, and in some cases the Hanning filter can be
found. The triangular filter banks with mel-frequency warping is given in Fig.3.9.

The output of the ith filter Y(i) is given by [18]:

 �
=

Ω=
N

j
i jjSiY

1

)()()((3.18)

where S(j) is an N-point magnitude spectrum (j=1:N), and �i(j) is the sampled
magnitude response of an M-channel filterbank (i=1:M). The output of the ith filter can
be regarded as the magnitudes response of speech signal in that frequency region
weighted by the filter response.

The last step before getting mel-cepstral coefficient is the IDFT. Normally the Discrete
Cosine Transform (DCT) will be performed instead of IDFT since the output of the
second last block in Fig. 3.8, log(Y(i)), is symmetrical about the Nyquist frequency.
Therefore MFCC is calculated as:

�
=

�

�
��

�
′

=
M

i
s n

N
iiYmnc

1

2
cos))((log),(

π
 (3.19)

where N’ is the number of points used to compute the stDFT.

Notice that zeroth coefficient (when n=0) is often excluded since it represents the
average log-energy of the input signal, which only carries little speaker-specific
information.

 - 34 -

-5 -4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

0

1

2

3

4

F
FF

F F
FFFF

F

F
FF F

F
F

F
FF

F

FF

F

F
F
F

F

FFF
F

FFFF

F

F
F

F
F
FFF
F

F

F

F

FF
F

FFF

F
FF

FF
FFFFF

F
FF

F

F F

F F
F

F

F
F

F

F
FF

F

FF

FF
F

FF
FFFFFFFFFFF
F
FFF

FF
FFF

F

F F

F
F F

FF

F

F
F
F

F
F

F
F

FFFF

F
F

F
F
F F FFFFFF

FF
F

F F F

F

F F
F
F F

FF F
FF

F

FFF
F

F
F

F
FF

FF
FFF

FFF
F
FFF

F F F F F F
F

F F

F
F F

F

FF
F

F
FFF F

F

F
F

F

F
F

F
F F

F

F
FF

F
F

F

F

F
FF

F

F
FF

F F
F

F
F

FFFFF
FFF
F

F
FFFF

F
F F FF

FF F
F
F
FFFF

F
FFFF FFF

FF
FF

FFF
FF
FF

F
F

F
FF

F

F
F F

FF
F

F F

FF

F
F

F

F
F
F
F

F F
FFFF

F
FFF
F
FFF

F
F

FF

F

F

F

F

F
F F

F

F

F
F

F

F

FF

F

F

F
F

F

F

F

F

F
FF
F

FFF
FF

FF
FFFF

FFF
FFFFF

FF
F

F
F

FF
F

F

F

F

F
FFF

FFF
F
F

F F
F
FFF
F

F

F

F F

F

F

F

FFF
F

F
FF

F
F

F
F

FF

F
F

F F
F F

FFFF

F

F

F

FF

FFF
FFFFFF FF

F
F
F

F

FF
F F

F
F

F

F
F

F F
F
F

FFF

FF
F

F

FF

F
F

F

F
F

F

FF F

FF

F

F
FFF

FF
FF

FF
FFFF FF

FF F
F

F F

F
F F

F F F
F
F F

FFFF
FFF FFFFF

FFFF
FF

FFFF
F

FFFF
FFF

F

FF
F

F
F

F

FF
F

F
FF

FF F F

FFF
FF F

F
FFF

F
F

FF
F F

F

FF

F

F

FF

F
F

F
F

F

F F

M
M

M
MM
MMMM

M
M

M

M M
M

M
M

M M
M

MM
M

M

M
M

M
M

M

M
M
M

M

M M

M
M
MM

M
M

MM M
M

MM

M

M

M

MM

M
MM

MM
MM

M

M
M

M

MM
MMM

M
M

M
M

M

MMMMMMM
M
M
M
MMMMMM

M
MMM

M M

M

M
M
MM

MM
M

MM
M M

M

M
M

MM
M

M

M

M

MM

MM
M

MM
MMM

M
M

M M

MMM
MM

M
MMM

M
MM

M

M

M M
M

M
M

MMMM

M

MM
MM

M
MM
M

MMMM M
MM M M
M

M
M

M

MM

M

MMM

M

M M
M

M

M
M

M

M M

M

M

M
M

M
M

M

M

M
MMM

M
M

M

M
M

MM
M
MMM

M
M

MM
MM
M

M
M

M
M

MMM
M

M
M

M M

M
M

M

M
MMMM

MMMMMM
MMMMM MMMMM

MMMM
M
M

M
MM

M MM

M M

M

M M M

M

M M M

M

MMMMM
MM

MMMMM
M

M

M
MMM

M
M

M
M

M
M

M
MMMM

M
M M

M

M
M

M M M
M

M
M M

M
M

M

M

M
M

MMM

M
M

MMM
MMM
MMM
M

M
MMM

M

M
M

M

M

M

MM
M

M MM
M

M
M

M

M

M

MMM
M

M
M

MM M

M

M

MM
M
MM

M

M

M

M

M

M

M MM

M

M
M
M

MM
MM

M
M M

M
M

M
M

M

M

M

M
M

M
MMM

MM
MMM

M M

M M
M M

M
M

M

M

M
M

M

M
MMM

M
M

M
MM

M

M
M

M
M

M
M

M
M

M
M

MM
MM

MM
M

M

MM
M

M

MM MM
M

MMMM
M MM

MM
MM

M
M

M M M
M M

M

M M
M
M

M

M

M
MMM

M
MMMM

M
M

M
M

M
MM

M

M

M

M

MM

M

MMM

M

M
MM

M

M
MM

MMMMM

M
MMM

MM
MMM

M

MM

MM

MM

M M M
M

M
M M

MM

M M
MM

MM

M

M
M

M
M
MMM

M
MMM

M
MM
M
M
M

MM
MMM

MMMM
M

M
MM

M

MMM
M

M

M
MM
M
M

M

M
M

M

M

MM
M

M
MMMMM M M

M

M
M

M
M

M
M

M
M

M

M

MM
MM

M
M

MM

M
M M
MM

M
MM

M

M

M
MM

M
M

M

M
M

M
M

MM
MM
M

M

M

M

M

M

MM

M

M

M

M

Data projected on two most variant directions

Principal component 1

P
rin

ci
p

al
 c

om
po

ne
n

t 2

(a)

(b)

Fig. 3.10 LPCC vs. MFCC for speaker separation using TIMIT
FCJF0_SA1.wav and MGSHO_SA1.wav from TIMIT were experimented. (a)
shows the LPCC. (b) shows MFCC. In both cases, frame size = 320 samples
(20ms @ 16 kHz), overlap = 240 samples. No. of LPCC = 12 converted from 12
LP coefficients. No. of MFCC = 12. Then high dimensional data were projected
into two principal components in order to observe the separation between two
speakers. F denotes the female speaker, M denotes the male.

 - 35 -

Fig. 3.10 gives the comparison between LP based Cepstral Coefficients (LPCC) and
MFCC for speaker separation. The experimental samples are selected from TIMIT
database: FCJF0_SA1.wav and MGSHO_SA1.wav, which represents one female and
one male speaker saying the same sentence SA1. In both the LPCC and MFCC cases,
the size for each frame is 320 samples (20ms @ 16 kHz), overlap is 240 samples. 12
cepstral coefficients converted from 12 LP coefficients were calculated. As well, 12
MFCC were computed to keep the number of coefficients consistent and comparable.
12 dimensional data were then projected into two most variant directions (two principal
components) in order to observe the separation between two speakers. We notice from
this figure that MFCC works better than LPCC on speaker separation in text-dependent
case. More comparison experiments will come in Chapter 7.

3.4.4 Delta and Delta-Delta Coefficients

Until now no time evolution information is included in either cepstral coefficients or
MFCC. However dynamic information in speech signal is also different from speaker to
speaker. This information is often included in the feature set by cepstral derivatives.
The first order derivative of cepstral coefficients is called Delta coefficients, and hereby
the second order derivative of cepstral coefficients is called Delta-Delta coefficients.
Delta coefficients tells us somehow the speech rate, and Delta-Delta coefficients gives
us something similar to acceleration of speech.

Suppose);(mncl are the cepstral coefficients or MFCC after liftering, the Delta

coefficients can be calculated as:

))1;()1;((
2
1

);(−−+=∆ mncmncmnc lll (3.20)

Delta-Delta coefficients could use the same Equation as (3.20) applied to Delta
coefficients.

Fig.3.11 gives the figures of the original signal with its first MFCC, delta-coefficient,
and delta-delta-coefficient.

 - 36 -

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

-0.1

0

0.1

sample number

am
p

lit
ud

e

-100

0

100

-10

0

10

20

0 100 200 300 400 500 600
-5

0

5
MFCC delta-delta c(1)

frame number

MFCC delta c(1)

MFCC c(1)

original signal

frame number

frame number

c
(1

)
de

lta
 c

 (1
)

de
lta

-d
el

ta
 c

 (1
)

Fig. 3.11 Original Signal with MFCC, DMFCC and DDMFCC

Figure is divided into 4 panels: the first panel gives the original signal
FCJF0_SA1.wav from TIMIT, which lasts around 3 seconds; the second panel
shows the first MFCC from this signal: c(1); the third one shows the first
DMFCC: dc(1)/dt; the last one shows the first DDMFCC: d^2c(1)/dt^2.

 - 37 -

3.4.5 Fundamental Frequency

Fig. 3.12 F0 information for eight speakers from TIMIT

Speaker FCJ FDA FDM and FEC are 4 female; MCP, MDA, MDP and
MED are 4 male. This figure shows the maximum (blue bar), median
(green bar) and minimum (red bar) F0 values for each speaker. The F0
range for female lays on approximately 180Hz to 232 Hz; and the F0 range
for male lays on 86.5Hz to136Hz.

As introduced in subsection 2.1.1, the vibration frequency of vocal folds is defined as
fundamental frequency, an important feature for automatic speech and speaker
recognition. Fundamental frequency, or pitch period is robust to noise and channel
distortions. SRS based exclusively on pitch information work well with small number of
speakers, but error rate increases significantly with the number of speaker increases.
Therefore work has been done combining pitch information with other speaker specific
features for SR [20].

There are many existing techniques for pitch extraction. For example: Cepstrum
method (CEP); Autocorrelation method (AUTOC) which is in the time domain;
Weighted Autocorrelation [21]; and Harmonic Product Spectrum (HPS) which is in the
frequency domain [22]. According to [21], CEP is known as the best pitch extraction
method in noiseless environments, and weighted autocorrelation method works well in
noise environments.

 - 38 -

In our cases, the CEP method was used in noiseless environment. Fig. 3.12 gives the
maximum, median and minimum pitches for eight speakers: speaker No. 1 to 4 are
female, and the rest are male. Notice the pitch range for female--180Hz to 232 Hz is
obviously higher than that of male--86.5Hz to136Hz. Therefore pitch information is
useful to classify speakers coarsely into broad groups (e.g., female, male), but is not so
efficient to classify the speakers with same genders.

 - 39 -

Chapter 4 Speaker Modeling

In Chapter 1, we introduced the enrollment phase for Speaker Identification (Fig. 1.5).
The enrollment phase can be divided into two main components: front-end processing
and Speaker modeling. In other words, during enrollment the speech signals from
speakers will be first passed through front-end processing, described in Chapter 3, and
the output of the first component--feature vectors will be used to create speaker models,
which will be stored into speaker database for future use.

Nowadays the most prevalent speaker modeling techniques are:

• Template Matching;
• Artificial Neural Networks (ANNs);
• Vector Quantization (VQ);
• Hidden Markov Models (HMMs);
• K-Nearest Neighbor (KNN).

For Template Matching technique, the model is composed of a template, which is a
sequence of feature vectors from a fixed phrase. Then Dynamic Time Warping (DTW)
is used to calculate the match score between the test phrase and the speaker templates.
However, this technique is almost only for text-dependent applications [23]. ANNs
consist of numbers of interconnected elements, and these elements are tied together
with weights. Given the input and output training data to the networks, and the training
algorithm, weights could be learned. However, there are also limitations of ANNs that it
is computationally expensive for training, and models are sometimes not generalizable
[23]. VQ is a process of mapping vectors from a large vector space to a finite number of
regions in that space. This process may be included in discrete HMMs. HMM is a
Markov chain where each state generates an observation, the observations are visible
and the state sequences are hidden which need to be inferred. KNN is a simple
algorithm comparing to the above algorithms. It stores all the available examples from
the training set to classify the new instances based on a similarity measure.

In this project, the HMM and KNN approaches will be used. KNN is proposed to be
used as a speaker pruning technique. The goal of adding speaker pruning step in our
SIS is to increase the identification accuracy with the cost of a little growing of the
identification time. The trade-off between the identification speed and the accuracy
should be adjustable according to the different usages and requests. The detailed
descriptions for speaker pruning will be given in Chapter 5. HMM, as one of the most
statistically mature methods for classification, will be used in speaker modeling.

We begin this chapter with the original model of HMM--the discrete Markov chain, and
then extend to the concept of ‘hidden’. Later HMM’s applications to speaker modeling
will be presented, along with the solving of the three problems of HMM.

 - 40 -

4.1 Markov Chain

Markov chain can be viewed as one branch of Markov sequence. Before we describe
the Markov chain, let’s have a look at the Markov sequence first. Markov sequence
consists of a collection of random variables {xt}, where t is the time notation. The
probabilistic description of Markov sequence requires specification of the current
variable (at time t), as well as the previous variable (at time t-1, t-2,…,1). For special
cases we make the assumption, first-order Markov assumption [25], where the
probability of the future is independent of the past and only related with the present:

)(),...,,(111111 tttttttt ixjxPixixixjxP ======= +−−+ (4.1)

where the process is called the Markov process.

By giving only discrete values s1,…sN to the random variables {xt}, we convert the
Markov sequence to Markov chain, which is a discrete Markov process. The discrete
values s1,…sN is called states. Following the first-order Markov assumption, the
probabilistic description of Markov chain goes from state si immediately to state sj is
denoted by aij, transition coefficients:

)(1 itjtij sxsxPa === + (4.2)

where Nji ≤≤ ,1 , 0≥ija and 1
1

=�
=

N

j
ija .

The collection of the transition coefficients forms a N-by-N transition matrix A:

�

�

�
�
�
�

�

�

=

NNNN

N

N

aaa

aaa

aaa

A

�

����

�

�

21

22221

11211

 (4.3)

The outcome of the stochastic process of the first-order Markov chain is a sequence of
observations O = o1, o2,…, oT, and they belong to a finite set of states S = {s1,…sN}. In
other words, if the outcome at time t is ot = si, then at this time t, the model is in state si.
Given the transition matrix A and initial start distribution � = {�1,…, �N}, the
observation sequence can be precisely defined. To fix ideas of Markov chain, an
example is shown below.

Example 4.1: We assume there are N balls with different colors (discrete values),
s1=red, s2=green, s3=blue,…,sN=white, in one box. The physical process for obtaining
the observation sequence is as follow. At time t, one ball is chosen randomly, and the
color is recorded as observation. Then the ball is replaced back into the box, and
another random selection will be performed to get the observation of next time t+1. We
notice that the states are the different colors, and are observable. Given �=(A, �), the
observation sequence O = o1, o2,…, oT will be determined.

 - 41 -

4.2 Hidden Markov Model

In Section 4.1 we introduced the first-order Markov chain, where the states are
observable. However many complex problems cannot be modeled by this simple model.
Extension needs to be made where the observation is not states but the probabilistic
function of the states, which gives the Hidden Markov Model (HMM). Therefore HMM
is a doubly stochastic process: one is the stochastic process producing the sequence of
observation; the other is the stochastic process describing the state evolution [24]. To
set ideas of HMM, another example extended from example 4.1 is given.

Example 4.2: Same as example 4.1, there are numbers of different colored balls, and
the number of distinct colors is U. Instead of putting them into one box, we separate
them into N boxes randomly. Thus in each box there are numbers of different colored
balls. The physical process for obtaining the observation sequence is as follow. First an
initial box is chosen. From this box, one ball is chosen randomly, and the color is
recorded as the observation. Then the ball is replaced back into the box. In the next
round, a new box is selected based on the stochastic process describing the state
evolution. In this new box, stochastic process selecting the ball is repeated. After T
times processes, a finite observation sequence O = o1, o2,…, oT will be generated as the
output of HMM, and the hidden states correspond to the boxes. The selection of new
boxes is determined by A, the state transition matrix of HMM; and the selection of the
balls in one box (state) is determined by B, the emission probability matrix of HMM.

4.2.1 Elements and Terminology of HMM

An HMM is specified by the following:
• N, the number of states in the HMM;
• �i = P(x1=si), the prior probability of state si being the first state of a state

sequence. The collection of �i forms the vector � = {�1,…, �N};
• aij = P(xt+1=sj| xt=si), the transition coefficients gives the probability of going

from state si immediately to state sj. The collection of aij forms the transition
matrix A. If any state can be reached directly from any other states, we call this
model the ergodic HMM. If in the model the interconnection from any state
only goes to itself and its followers, it’s called left-right HMM.

• Emission probability of a certain observation o, when the model is in state si.
The observation o can be either discrete (example 4.2) or continuous [25]:
1. Discrete observations },,{ 1 Uvvo �∈ , where U is the number of distinct

observation symbols per state. The emission probability having the form
)|(, itutui sxvoPb === (Ni ≤≤1 and Uu ≤≤1) indicates the probability

to observe vu if the current state is xt = si. The collection of uib , is a U-by-N

emission probability matrix B.
2. Continuous observations Do ℜ∈ .)|(itti sxopb == indicates the probability

density function (pdf) over the observation space for the model being in state si.
The collection of ib is called emission pdf.

 - 42 -

4.2.2 Three Essential Problems of an HMM

In the above section, we introduced the elements contained in an HMM. Having an
HMM, there are three essential problems need to be solved:

� Evaluation Problem: Given an HMM �=(A, B, �) and an observation sequence O =
o1, o2,…, oT , compute the probability of the O generated by �, P(O|�)=? This
problem will be solved in the recognition step to find out the most suitable model
for the given O.

� Optimal State sequence Problem: Given an HMM �=(A, B, �) and an observation
sequence O = o1, o2,…, oT , find out the most likely state sequence for generating the
observations.

� Estimation Problem: Given an observation sequence O = o1, o2,…, oT , train the
model parameters A, B, � to get maximize P(O|�). This problem will be solved in
the training (learning) step to get the optimal model for training set.

In this subsection we will focus on solving these three essential problems for HMMs
having discrete observations, which is also called Discrete-Density HMM (DDHMM).

Solution for Evaluation Problem

The procedure of solving this problem is just like the procedure of using an HMM.
Given � and O, we compute the probability P(O|�) for all the HMMs we have, then we
can find out which is the most likely model for generating observation O.

Given �, O and a state sequence X, the naive way to calculate the probability of the
observation sequence generated by model � is to sum the probability over all possible
state sequence in a model for the observation sequence, i.e. to marginalize of the hidden
states X. According to Bayes rules, the probability can also be expressed by the sum of
two terms, shown as follows:

�� ==
ss

XPXOPXOPOP)(),(),()(λλλλ (4.4)

The two terms in the right-hand side of (4.4) have the forms below:

)()()(),(21 21 Txxx obobobXOP
T

�=λ (4.5)

211 ,)(xxx aXP πλ = (4.6)

therefore we can rewrite (4.4) as:

� −
π=λ

s
Txxxxxxxx obaobaobOP

TTT
)()()()(,2,1 122111

� (4.7)

However (4.7) is computationally expensive. The alternative and more efficient
solution is what we called forward-backward algorithm, which reduces computational
complexity. Given the HMM �, the forward variables are defined as the joint

 - 43 -

probability of having seen the partial observation (o1, o2,…, ot) and being in state si at
time t:

),()(21 λα ittt sxoooPi == � (4.8)

where i in)(itα stands si for simplification, hereinafter we will keep the representation.

Then the probability P(O|�) we are looking for becomes as follow:

�
=

α=λ
N

i
T iOP

1

)()((4.9)

The detailed derivation of (4.9) is given in appendix A1.

For solving the evaluation problem, the forward recursion is enough. However we’d
like to introduce the backward recursion as well for the preparation of solving problem
2 and 3. Given the model � and the model is in state si at time t, the backward variables
are defined as the probability of having seen the partial observations from time t+1 until
the end:

),()(21 λβ itTttt sxoooPi == ++ � (4.10)

Solution for Optimal State Sequence Problem

The second problem is also called decoding. It is to decode (discover) the hidden
components of the model in order to find out the best state sequence for the given
observation sequence. Since the different definition of optimal state sequence, there are
different optimal criteria and methods. The most common method is the Viterbi
algorithm [16].

Viterbi algorithm can be viewed as a special form of the forward-backward algorithm
where only the maximum path at each time is taken into account instead of all paths.
The definition of �t(i) is based on the definition of forward variable, but with some
constraint. It’s defined as the probability of having seen the partial observation (o1, o2,…,
ot) and being in state si at time t by the most likely path, which means the �t(i) is the
highest likelihood of the a single path among all the paths ending in state si at time t.

),(max)(2121
121

λδ itt
xxx

t sxxxoooPi
t

==
−

��
�

 (4.11)

In addition, a variable �t(i) is defined to keep track of the best path ending in the state si
at time t:

),(maxarg)(2121
121

λψ itt
xxx

t sxxxoooPi
t

==
−

��
�

 (4.12)

The steps of Viterbi algorithm are similar to those of forward-backward algorithm (see
appendix A1), except that instead of doing a sum of all possible sequences, the
maximum is recorded at each step. By doing this optimization, the computational

 - 44 -

expense is reduced, and the most likely state sequence can be discovered by
backtracking:

{ }**
2

*
1

*
TxxxX �= and)(*

11
*

++= ttt xx ψ t = T-1, T-2,…,1 (4.13)

For detailed explanations of Viterbi algorithm, see appendix A2.

Solution for Estimation Problem

The solving of estimation problem, in other words, is the design/training procedure of
an HMM. For discrete observation HMM, first the number of states N and the number
of distinct observation symbols per state K should be chosen, and then normally a
randomly generated model �={A, B, �} should be specified. During the training
procedure, the model parameters will be adjusted to maximize the P(O|�).

Since the different reqirements of applications, there is no one specific method to solve
all kinds of optimization problems. It means several methods which focus on different
optimization criteria are available. Maximum Likelihood (ML) and Maximum Mutual
Information (MMI) are the two main criteria. Here we will only describe the ML
method which is most commonly used in HMM training. However there is not
analytically solution for adjusting the model parameters �={A, B, �} to get the global
maximum, P(O|�) can only be locally maximized by some iteration procedures, such as
Baum-Welch algorithm. The Baum-Welch algorithm is a special case of the EM
algorithm (Expectation and Maximization). For the explanation of EM algorithm, see
[27].

Before decribing the Baum-Welch algorithm, two varibles should be defined, which
will be used together with forward and backward variables. First, let’s define the
probability of model being in state si at time t, and then going to state sj at next time
period, given O and � as follows:

)(

),,(
),,(),(1

1 λ
λ

λξ
OP

OsxsxP
OsxsxPji jtit

jtitt

==
==== +

+ (4.14)

From the definition of forward and backward variables, (4.14) can be expressed in
terms of 	 and
:

��

= =
++

++=
N

i

N

j
ttjijt

ttjijt
t

jobai

jobai
ji

1 1
11

11

)()()(

)()()(
),(

βα

βα
ξ (4.15)

Secondly, let’s define the probability of model being in state si at time t, given O and �
as follows:

),()(λγ OsxPi itt == (4.16)

 - 45 -

Similarly, (4.16) can be rewritten in terms of 	 and
:

�
=

=
N

i
tt

tt
t

ii

ii
i

1

)()(

)()(
)(

βα

βαγ (4.17)

Now we are ready to introduce the Baum-Welch algorithm. Suppose we have used the
last step of (A.1.3) and (A.1.8) to calculate the recursion of forward and backward
variables, and have used (4.15) and (4.17) to calculate the two new variables. Then we
can derivate the following equations (4.18a) to (4.18c) as re-estimation formulas:

)(ˆ 1 ii γπ = (4.18a)

�

�
−

=

−

==
1

1

1

1

)(

),(
ˆ

T

t
t

T

t
t

ij

i

ji
a

γ

ξ
 (4.18b)

�

�

−

=

−

=
=

= 1

1

1

1

)(

)(

)(ˆ
T

t
t

T

vo
t

t

tj

i

j

ob ut

γ

γ

 (4.18c)

1) From the definition of the second new variable (4.16) we know that when t=1 it
gives the expected number of times of state si being the first state of a state sequence,
therefore �t (i)| t+1 is used to express �i. 2) The summation of �t (i) over t, which is from
t=1 to t=T-1, gives the expected number of trainsitions from state si. The summation of
�t (i,j) over t, which also excludes t=T, gives the expected number of trainsitions from
state si to state sj. Further more, we notice that the expected number of trainsitions from
state si to state sj out of the expected number of trainsitions from state si gives the
forward variables. 3) the numerator of (4.18c) gives the expected number of times
being in state sj and observing vu. Moreover, the denominator gives the expected
number of times being in state sj. The dividsion between them gives the emission
probability of model being in state sj and observing vu.

After the re-estimation, if the new model paramters are more likely than the old ones,
which means P(O|�new) > P(O|�old), then the new model will replace the old one. The
iteration (re-estimation) will continue until some limiting point is reached or the
maximum iterations are fulfilled.

 - 46 -

4.2.3 Types of HMM

In this subsection, some types of HMM will be introduced. More emphasis will be put
into Continuous-Density HMM (CDHMM).

Ergodic and left-eight HMMs

As we have already mentioned in subsection 4.2.1, we can divide the type of HMMs
into ergodic and left-right HMMs. The ergodic HMMs are fully connected HMMs. All
the elements in the state transition matrix A have non-zero values. It means any state
can be reached by any other state (including itself) directly. The left-right HMMs have
different definitions according to the interconnections amongst states. The general
definition is that any state is only connected to itself and its followers. If the
connections are only allowed to itself and its immediate follower, then the transition
matrix A of this model has only non-zero values on diagonal and one subdiagonal. A
transition matrix of the above model having 4 states is shown as follow:

�

�

�
�
�
�

�

�

=

44

3433

2322

1211

000
00

00
00

a

aa

aa

aa

A

It is obvious that for the last state of the left-right HMMs, the transition coefficients are
aNN=1 and aNi=0 (i<N).

DDHMM and CDHMM

The previous discussion about HMM and its three problems is limited into discret
observation HMM. The features from speech signal are quantized by a
vector-quantization (VQ) procedure, such as K-means algorithm. The VQ procedure
aims at partitioning the acoustic space into nonoverlapping regions, and each region is
representated by one codeword wk. The collection of these K codewords makes the
codebook {wk}. Therefore in the DDHMM cases, the bj(ot) is approximated by bj(wk)
where wk is the codeword closest to ot. The quality of the codebook is measured in
terms of distortion, which has the form as follow:

 ��
= =

−=
K

k

T

t
kty

1 1

2)(distortion µ (4. 19)

where K is the number of codewords, �k is the centroid of the k’th codeword and yt is
the feature vector. The distortion depends not only on the training samples, but the
number of codeword as well. Here the author would like to emphasis that the
generation of codebooks is done before training and recognition processes, and they are
stored for later use.

Sometimes when delta, or delta-delta coefficients (3.4.4) are used, multiple codebooks

 - 47 -

will be generated (one for the basic cepstrum parameters c, one for �c coefficients, and
one for ��c coefficients). The probabilities for all codebooks are calcultaed by simply
doing the multiplication of the probabilities of each codebook with the independent
assumption of codevbooks [28].

For CDHMM, the observations are continuous, and can be expressed by continuous pdf,
where the pdf is governed by its parameters. The most commonly used pdf is Gaussian
mixture density function, and the whole mixture density is:

∏ �
= =

�

�
�
�

� Σℵ=
R

r
jmjmt

M

m
jmtj oCob

1 1

),;()(µ (4.20)

where R is the number of codebooks;
M is the number of Gaussian mixture components;
�jm is the mean vectors of the m’th Gaussian pdf;
�jm is the covariance matrix of the m’th Gaussian pdf.
Cjm is the weighting coefficients for m’th Gaussian pdf, and satisfy the

stochastic constrains: 0≥jmC , and 1
1

=�
=

M

m
jmC (MmNj ≤≤≤≤ 1,1)

For each Gaussian component, the density is:

�
�
�

�
�
� −Σ−−

Σ
=Σℵ −)()(

2
1

exp
)2(

1
),;(1

jmtjmjmtdjmjmt ooo µµ
π

µ τ (4.21)

where d is the dimensionality of observation o.

Compared with DDHMM, in the CDHMM systems, no codebooks need to be generated
and stored in advance. However during training and recognition, the probability for
each observation should be calculated using (4.20). Therefore conclusions can be made
that DDHMM needs more memory for storing codebooks, whereas it spends less
computation time than CDHMM [28].

In Matsui and Furui’s work [9], comparisons amongst CDHMM, DDHMM and VQ for
text-independent speaker recognition have been made. It shows that an ergodic
CDHMM is superior to an ergodic DDHMM. They also showed that the information on
transitions between different states is ineffective for text-independent speaker
recognition. Moreover the speaker recognition rates using a continuous ergodic HMM
are strongly correlated with the total number of mixtures irrespective of the number of
states.

 - 48 -

 - 49 -

Chapter 5 Speaker Pruning

In Chapter 4, we introduced the HMMs for speaker modeling, and we notice that for
each speaker in the database, there is a corresponding HMM. Learned from Fig. 1.3, the
Basic Structure of Speaker Identification (Identification Phase), assuming there are M
speakers in the database, Speaker Identification has to perform M pattern matching
between the unknown speaker and M known speakers. With a large number of speakers
in the database, the performance of speaker recognition will decrease. Moreover since
HMM is a doubly stochastic process, this models are too flexible and hard to train. As a
result the high recognition accuracy is hard to be achieved with a large number of
speaker models to compare with. Speaker pruning appears to be one solution to
increase the identification accuracy with the cost of increasing a little bit recognition
time.

See Fig. 1.3 again, the speaker pruning performs before the pattern matching to reduce
amount of speaker models in the matching process, and those pruned speakers are the
ones who are most dissimilar with the unknown speaker. By doing this, we notice the
pattern matching between the unknown speaker’s feature vectors and all the speakers in
the database is reduced to the matching between the unknown feature vectors and the
‘survived’ candidates after pruning.

The simple algorithm KNN is used here for speaker pruning. In this chapter we first
introduce the theory of KNN, and then its application as speaker pruning will be given.

5.1 K-Nearest Neighbor

K-Nearest Neighbor is a kind of non-parametric algorithm []. KNN stores all the given
data examples {fvi, li}, where fvi denotes the feature vectors in our pruning system and li
denotes the class label. It uses these examples to estimate lnew for the new example fvnew.
The lnew is assigned to the class having the largest representatives amongst the K nearest
examples, which fvnew are similar to. Here we use NK to denote the number of nearest
neighbors to distinguish the number of codewords in one codebook K defined in
subsection 4.2.3.

Fig. 5.1 presents the KNN algorithm in the case of 5 nearest neighbors, and the
procedure of KNN is as follows:

• Instead of building a model, all the training examples {fvi, li}are stored;
• Calculate the similarity between the new example fvnew and all the examples in

the training set fvi;
• Determine the K-nearest examples to fvnew;
• Assign lnew to the class that most of the K-nearest examples belong to.

 - 50 -

? D1

D2

D3

D4

D5

Speaker 1

Speaker 2

Speaker 3

? Unknown example

Fig. 5.1 KNN algorithm with NK =5
First, all the examples from training speakers are stored. Red triangles stand
Speaker 1, blue squares stand Speaker 2, and yellow stars stand Speaker 3. The
pentagon denotes an example from an unknown speaker. Secondly, calculate
the Euclidean distances between the unknown example and all the examples in
the training set dE = {dE1,…,dEN}. Thirdly, sort the distances and find out the
NK=5 nearest neighbors D1,…,D5, which are included in the light blue circle.
At last, assign unknown example to the class that most of the 5 examples
belong to, which is blue square (Speaker 2) in this case.

Commonly the similarity between examples refers to the Euclidean distance, and the
Euclidean distance between example vectors M = (m1,m2,…,mj) and N = (n1,n2,…,nj)
is defined as:

 �
=

−=
j

l
llE nmNMd

1

2)(),((5.1)

where j is the dimension of vectors.
To get a better understanding of KNN, we give one simple example as follows.

Example 5.1
Suppose we know some grades of 6 people in different subjects and their ages, and
know which of them are qualified for a contest. Then according to the limited
information we have to decide one new students’ qualification by KNN algorithm. The
data is shown in table 5.1. Now we can define the training set as {fvi, li} (61 ≤≤ i),
where vector fvi= {Agei, Mathi, Physicsi, Chemistryi}, and li is the conclusion, either
qualified or not. The information of George forms the new example xnew = {27, 13, 11,
11}. The Euclidean distances between fvnew and all fvi in the training set need to be
calculated using (5.1). The calculation is shown beside Table 5.1. Following the
procedure of KNN algorithm, we find out the NK=3 nearest neighbors for George,
which are Lisa, Jerry and Tom. Due to the majority voting, lnew of George is assigned to
be Yes, which means George is qualified.

 - 51 -

Table 5.1 Data for KNN algorithm

Name Age Math Physics Chemistry Qualified Euclidean distances from George

Alice 18 10 10 10 Yes
[(27-18)2 + (13-10) 2 + (11-10) 2 + (11-10)2]½

= 9.59

Tom 25 7 8 9 No
[(27-25)2 + (13-7) 2 + (11-8) 2 + (11-9) 2]½

= 7.28 (3rd)

Jerry 22 9 10 11 Yes
[(27-22)2 + (13-9) 2 + (11-10) 2 + (11-11) 2]½

= 6.48 (2nd)

Homer 40 5 3 6 No
[(27-40)2 + (13-5) 2 + (11-3) 2 + (11-6) 2]½

= 19

Lisa 23 11 13 10 Yes
[(27-23)2 + (13-11) 2 + (11-13) 2 + (11-10) 2]½

= 5 (1st)

Bart 35 6 7 5 No
[(27-35)2 + (13-6) 2 + (11-7) 2 + (11-5) 2]½

= 14.53

George 27 13 11 11 ?

One thing needs to be emphasized here is the normalization of variables in the example
vectors. It is not so obvious in Example 5.1, however in some other cases, the distance
between neighbors may be dominated by some variables with large variance. (Notice
here the variance of age is relatively larger than the other variables.) Thus, it’s
necessary to normalize each variable with its largest value before executing KNN to
avoid the domination. The table with normalized variables for this example is shown in
appendix B.

KNN is a simple algorithm and easy to implement, and by choosing higher value of NK,
the noise vulnerability in the training set will be reduced. Nevertheless, since KNN
doesn’t build any model and just stores all the training data, a lot of computer storage
will be needed. Moreover sometimes the Euclidean distance is not so suitable for
finding similar examples when there are irrelevant attributes in training set.

5.2 Speaker Pruning using KNN

The proposal of inventing and introducing speaker pruning in our SRS is to increase the
recognition accuracy. Therefore it’s different from the commonly defined speaker
pruning [26], where the pruning process will be continuously performed until the
unknown speaker ID is found out. Our pruning process only perform once to find out
the similarity between unknown speaker and all the known speakers in the database; by
choosing the most similar speakers, we eliminate the dissimilar speakers. The
‘survived’ speakers will then be modeled in the next step—HMM speaker modeling to
find out the unknown speaker ID.

 - 52 -

Before going to the pruning method, some issues should be kept in our mind during
implementing KNN into speaker pruning algorithm:

• Which features will be used;
• How to calculate the matching score;
• Number of nearest neighbors
• Pruning criterion (how many speaker will be pruned)
• Time consumption

The number of speakers/candidates we will keep after pruning should be adjustable
with the requirements of recognition system. If more speakers are kept, for HMM more
pattern recognition has to be performed, which decreases the HMM recognition
accuracy. On the other hand, by keeping more speakers we ensure the accuracy rate of
having the true speaker in those kept ones. The trade-off accuracy between pruning and
HMM can be solved by observing the total recognition accuracy of the system with
different combinations to find out the desired number of ‘survived’ candidates.

By using KNN algorithm, the pruning matching score becomes the Euclidean distances
between unknown speaker examples and all the examples in the training database. The
features we are going to use as data points are MFCC. In Chapter 7, we will show the
experimental verification of choosing MFCC. In order to improve the performance of
KNN in speaker recognition, we invented a new method to introduce the pitch
information into KNN algorithm. Here we briefly introduce the invented method, for
details see Chapter 7.

First using pitch estimation technique introduced in subsection 3.4.5, we can find out
the probability of the unknown speaker being a female. According to the gender
probability, we set a parameter �:

4.0%)50(×−= fPκ []%100,0∈fP , []2.0,2.0−∈κ (5.2)

where Pf is the probability of unknown speaker being a female speaker. The range of
parameter � is decided by the experimental experience.

Secondly we introduce the parameter into the Euclidean distances calculated by using
MFCC as follows:

 MFCCnew dd ⋅±=)1(κ 10 <≤ α (5.3)

dMFCC is the Euclidean distance calculated by only using MFCC, and dnew is the
distance after adding pitch influence. This method depends on the accuracy of pitch in
separating genders. The (1- �) factor will be multiplied with the Euclidean distances
between the new speaker and female speakers in database, and for the rest male
speakers the Euclidean distances will multiply a (1+ �) factor. Therefore if the
probability is less than 50%, which means speaker is more possible to be a male, �
becomes negative, and the distance between the new speaker and female speakers will
be increased, vise versa. If the probability of being a female and male are equal, in this

 - 53 -

case, pitch doesn’t help and will not be taken into account.

The time issue in our pruning is critical since by introducing the speaker pruning step,
we decrease a little bit the recognition speed. Therefore we should keep the time
consumption as low as possible. The factors which have effect on time are training set
size, test set size, feature dimensionality and the number of nearest neighbors NK.
However in the mean while we also expect to have higher accuracy after pruning. Here
the accuracy refers to the probability of including the true speaker into the ‘survived’
candidates.

 - 54 -

 - 55 -

Chapter 6 Speech Database-ELSDSR

English Language Speech Database for Speaker Recognition

ELSDSR corpus of read speech has been designed to provide speech data for the
development and evaluation of automatic speaker recognition system. ELSDSR corpus
design was a joint effort of the faculty, Ph. D students and Master students from
department of Informatics and Mathematical Modeling (IMM) at Technical University
of Denmark (DTU). The speech language is English, and spoken by 20 Dane, one
Icelander and one Canadian. Due to the usage of this database and some realistic factors,
perfect or even correct pronunciation is not required and necessary for getting the
specific and uniquely identifiable characteristics for individual.

6.1 Recording Condition and Equipment Setup

The recording work has been carried out in a chamber (room 133) in building 321, 1st
floor at DTU. The chamber is an 8.82*11.8*3.05 m3 (width*length*height) computer
room. The recording is manipulated in, approximately, the middle of this chamber, with
one microphone, one 70*120*70 cm3 table in front of speakers. In order to deflect the
reflection, two deflection boards with measure of 93*211.5*6 cm3 were placed at tilted
angles facing each other, and were infront of the table and speakers. For details see the
setup drawing, drawing of the room and position of recording, etc., in appendix C2.

The equipment for recording work is MARANTZ PMD670 portable solid state recorder.
PMD670 can record in a variety of compression algorithm, associated bit rate, file
format, and recording type (channels recorded) parameters. It supports two kinds of
recording format: compressed recording, which includes MP2 and MP3; uncompressed
recording, which includes linear pulse code modulation (PCM). The recording type can
be stereo, mono or digital, and the file can be recorded into .wav .bwf .mpg or .mp3
format according to user need. In this database, the voice messages are recorded into
the most commonly used file type--.wav. The algorithm used is PCM. Since nearly all
information in speech is in the range 200 Hz-8 kHz, and according to Nyquist theorem,
the sampling frequency is chosen to be 16 kHz, and the bit rate is 16. Table 6.1 shows
the initial setup for the recorder, for details see PMD670 user guide.

Table 6.1: Recorder Setup
Setup

Input Auto
Mark

Pre
Rec

Analog
Out

MIC
Atten Repeat ANC EDL

Play
Level
Cont. S. Skip

MIC

(MONO)
OFF ON OFF 20dB OFF FLAT OFF

MANUA

L

ON

20dB

 - 56 -

6.2 Corpus Speaker Information

ELSDSR contains voice messages from 22 speakers: 10 female, 12 male, and the ages
are covered from 24 to 63. Most of them are faculty and Ph. D students working at
IMM, and 5 of them are Master students including 1 international Master student.

Due to the practical problem of uneven gender distribution at the experiment site, the
average age of female subjects is higher than that of male, and around half of the
female subjects are secretaries in IMM. The detailed information about the speakers ID,
speakers’ ages with average for each gender, and nationalities is included in appendix
C1.

Actually even though the subjects of this database are from different countries and
different places of one country, the dialect of speaking or reading English language in
this database plays a very slim role for the purpose of speaker recognition, since the
features which are interesting for this particular intention are language independent.

6.3 Corpus Text & Suggested Training/Test Subdivision

Part of the text, which is suggested as training subdivision, was made with the attempt
to capture all the possible pronunciation of English language, which includes the
vowels, consonants and diphthongs. And with the suggested training and test
subdivision, seven paragraphs of text are constructed and collected for training, which
includes 11 sentences; and fourth-four sentences for test (each speaker reads two of
these sentences) from NOVA Home [32] were collected for test text. In a word, for the
training set, 154 (7*22) utterances were recorded; and for test set, 44 (2*22) utterances
were provided.

Table 6.2: Duration of reading training text and test text

No. Male Train(s) Test(s) Female Train(s) Test(s)
1 MASM 81.2 20.9 FAML 99.1 18.7

2 MCBR 68.4 13.1 FDHH 77.3 12.7

3 MFKC 91.6 15.8 FEAB 92.8 24.0

4 MKBP 69.9 15.8 FHRO 86.6 21.2

5 MLKH 76.8 14.7 FJAZ 79.2 18.0

6 MMLP 79.6 13.3 FMEL 76.3 18.2

7 MMNA 73.1 10.9 FMEV 99.1 24.1

8 MNHP 82.9 20.3 FSLJ 80.2 18.4

9 MOEW 88.0 23.4 FTEJ 102.9 15.8

10 MPRA 86.8 9.3 FUAN 89.5 25.1

11 MREM 79.1 21.8

12

MTLS 66.2 14.05

 - 57 -

On average, the duration for reading the training data is: 78.6s for male; 88.3s for
female; 83s for all. And the duration for reading test data, on average, is: 16.1s (male);
19.6s (female); 17.6s (for all). Table 6.2 shows the time spend on reading both training
text and test text individually.

6.4 ELSDSR Directory and File Structure

The voice messages are organized according to the following hierarchy:

CORPUS := = ELSDSR
USAGE := = train | test
SPEAKER ID := = FXXX | MXXX |
 where,
 F or M indicates the speaker’s gender;
 XXX indicate the speakers’ initials

Sentence ID := = XXXX_SM or XXXX_SrN
 where,
 XXXX indicate speaker ID;
 S indicates training sentence, M indicates the alphabetic number of paragraphs

in training text, which is from a to g;
 Sr indicates test sentence N indicates sentences number in test text, from 1 to

44.
The associated documentation is located in the ‘ELSDSR /DOC’ directory:

where,
 training text.pdf
 test text.pdf
 phonetic alphabet.pdf6

readme.pdf

6 Phonetic alphabet.pdf shows the captured vowels, consonants and diphthongs in each
paragraph of training data.

 - 58 -

 - 59 -

Chapter 7 Experiments and Results

0 2 4 6 8 10 12 14 16

x 104

-0.4

-0.2

0

0.2

0.4

am
pl

itu
de

sample number

Before preemphasis

0 2 4 6 8 10 12 14 16

x 104

-0.4

-0.2

0

0.2

0.4

After preemphasis

am
pl

itu
de

sample number

Fig. 7.1 Before and after preemphasis

Notice the envelope of the original signal (upper panel),
which represents the low frequency, was removed.

In this chapter experiments will be presented with details. It is divided into 4 sections:
preemphasis; feature extraction; speaker pruning; and speaker modeling and
recognition. More effects have been put on feature extraction, since features is closely
related with the performance of whole system. Moreover speaker pruning as an
introduced step in our recognition system needs special attentions. For improving the
pruning performance, a new method will be invented to make two features: pitch and
MFCC working together in Euclidean distance calculation for KNN algorithm. Finally
HMM will be implemented on the candidates after speaker pruning to fulfill the speaker
recognition task.

7.1 Preemphasis

As we introduced in Section 3.3, speech signals should be processed by high-emphasis
filter before performing feature extraction. The preemphasis is prevalent due to the
well-known fact that higher frequency components contain more speaker-dependent
information than lower frequency components [33]. Generally, the first order FIR filter
will be used to execute the high pass filtering. However, here we used the Kaiser
frequency filter to filter out the low frequency components, while keeping the high
frequency components unchanged according to the magnitude response of this Kaiser
filter, shown in Fig. 3.4.

 - 60 -

Before preemphasis

time (s)

fr
eq

u
en

cy
 (H

z)

0 5 10
0

1000

2000

3000

4000

5000

6000

7000

8000

time (s)

fr
eq

u
en

cy
 (H

z)

After preemphasis

0 5 10
0

1000

2000

3000

4000

5000

6000

7000

8000

-100

-80

-60

-40

-20

0

20

(a) (b)
Fig. 7.2 Spectrogram before and after Preemphasis

(a) (b) show the spectrogram of the same utterance
FAML_Sa.wav. (a) gives the spectrogram of the original signal;
whereas (b) shows the spectrogram of the preemphasized signal.
The two spectrograms are scaled equally.

By performing the preemphasis, we filtered the low frequency components. Hence the
damped higher frequency components, which is -6db slope downward, can be modeled
equally as the lower frequency part. The signal before and after preemphasis is shown
in Fig. 7.1, where we see that the envelope of the original signal, which represents the
low frequency, was removed.

Fig. 7.2 gives the spectrograms of a speech signal from the ELSDSR database before
and after performing preemphasis. In order to see the difference, the two spectrograms
are scaled equally. Let’s focus our attention on the lower frequency part of (a) and (b),
we notice the magnitude for the low frequency components in (b) was decreased
compared with that in (a). However the magnitude for higher frequency components
stays almost unchanged.

7.2 Feature Extraction

In Chapter 3, we introduced three types of features: Cepstral Coefficients (and LP
based), Mel-frequency Cepstral Coefficients and Fundamental Frequency (Pitch). As
we know Pitch doesn’t work well alone for classifying a large group of people. Thus
our experiments were focused on comparing LPCC and MFCC for extracting
speaker-specific features. After selecting the desired feature, the dimension of features
will be discussed and decided.

For comparison, two techniques were used: PCA and KNN. Mentioned in Section 3.4
that directly working with data in high (n) dimensional spaces arise problems due to the

 - 61 -

curse of dimensionality. Generally, mapping the high (n) dimensional input data into
lower (m) dimensionality is one improvement (n>m). However without exception, this
reduction will discard some of the information. Thus the problem becomes to find a
method for obtaining the m dimensions, which guarantees the projection on those
directions contents as much the relevant information as possible. PCA appears to be a
good method for this task [27].

7.2.1 Feature Selection

Comparison between LPCC and MFCC using PCA

Principal component analysis (PCA) is a mathematical procedure that transforms a
number of correlated variables into a number of uncorrelated variables called principal
components. This is performed by projecting the n-dimensional signal into its m largest
principal components. The objective of PCA is to reduce the dimensionality of the data,
while retaining most of the original variability in the data, which are the eigenvectors
with the largest eigenvalues of the covariance matrix. The PCA transformation is
expressed as follow [27]:

 IUJ T
1= (7.1)

where I is the high dimensional input data, J is the low dimensional data, and U1 is the
projection matrix containing the m eigenvectors (principal components) corresponding
to the largest eigenvalues.

A way to find the principal components U1 is by decomposing the (n x n) covariance
matrix G of signal I into its eigenvectors and eigenvalues as follows:

 T U UG Λ= (7.2)

where U is a (n x n) column-orthogonal matrix which contains eigenvectors
corresponding to the eigenvalues in the (n x n) diagonal matrix 	, U1 in (7.1) contains
m columns (eigenvectors) with m largest eigenvalues. The decomposition in (7.2) is a
special case of Singular Value Decomposition (SVD) [36], where G is a (r x c) matrix,
and r is generally not necessary to be the same as c.

We have illustrated in Fig. 3.9 that 12 MFCC gives better separation between two
speakers from TIMIT database than 12 LPCC does in text-dependent case (two speaker
saying same text). More experiments were done with our own database. Fig 7.3 shows
the experimental results with ELSDSR. Same as before, 12 MFCC and 12 LPCC were
compared in speaker separation task with text-dependent constrain. The signal pieces
from FAML_Sa.wav and MASM_Sa.wav were both 0.5s. In this case, we can say that
MFCC separate speakers better than LPCC.

 - 62 -

-5 -4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

0

1

2

3

4

F

F F
F

F

F
FF

F

F

F

F
FF

F
FF

F

F
F

F
F

F
F

F
FFF

F

F
FF

FF
F

F
F

F

F
F

F

F F

F

F

F
F

F
F

FF

F
F

F
F

F
FF F F

F

F
F

F

F
F

F

F
FFF

F F
FF

FF
F F

F

F

F

FF
F

F
FFFFFF

F
F

FF
F
F

FFFFF F
F

FFFF

F

F

F

F F
F

F
F

F

F

F
F F

F

F

F FF
F
F

FF

F

F

F

F

F

F

F

F
F

F

F
F

F

F
F
F

F

F
FF

F

F

F
F FF

F

F

FF

F
F

F

F

F
F

F
F

F F F

F F
FF

F
FFFFFF

FFFF
F

F

F

FF

F

FF

F

F

F FF F

F

FF
F

F
FF
F

F

F
FF

FF
FFF

FF FFF

F F
FFF

F

FF

F

F F

F

F

F
F

F
F

F
FFF F F
F

F

FFFFFF
F

FF

F

F
F

FF

F
FF FF

F
F

F
F

F

F
F

F
F

FF
F

F

F

F F

F

FF
F

F

F

F

F
F

FFF

FFF
F

FF

F F
F
F

F
F

F

FF F
FF F

F

FF

FF

F

F
F

F

F

F

F FF
FF

F
FFF F F

F
F

F

FF
FFFF

FF
F FF

FFF

F
F
F FF F

F
F

FFFF
F

F

F
F

F
F

FFF F
F

F

FF

F

F
F

F

FFF

F

F F FF
F

F

FF

F

F

F FF
F

F
F F

FFFFF

F

F

F
F

F

F

F
F

F

F F
F

F

F

F

F
F F

FF

F

F
F

FF

F

FFFFFFFF
FF

F

F

F

F

F FF
F

F
F

F
FF
F

FF
F

F F

F F

F

F
F

F
FF

F

FFF

F

F

F
F

F
F
FFF F
F

F
FFFFFFFF

FF
F
F FFFFF

FF
FF F
FFF F
FFF

F
F

FFFFF
F F FFFF

FF
F

F
FFFF

F

F

F

F

F

F

FFF

F
F

F
FF

F

F

F F

F
F

F

F

F

F

F

FF
F

F

F F

F
F

F
FF

FF

F

F
F

F
F

FF F
FFF

FF

F

F
F

F

F

FF
F

F F

F

F

F
F F

F

F

FFF

F

F

F

F

F

F

F
FF

F

F

F

F

F

F
F

FF FF
F F

F

F

F
FF

F

FF

F

F
F

F

F

F

FF
FFFF

F
F

FF

F

F

F
F

F

F

F

F

FFF
F

F FF
F
F

F
F

F

F

F

FF F F

F

F F F

F
FF

F
FF

F

F F
F

FF
FFFFFFFFFFFF

F

F

FF

F

F

F

FFF

F
F

F

FFF

F
F

F
FF

F

F
FFF

F
FFF F FF F FF

F
F

F

F

F

F

F
F F F

FFF
F

FFFF F FF
F

FF
F

F
F

F
F

F
F F

F
F
F FF

FF
F

F
F

F
F

F

F

F

F

F
F

F
F

F

F

F
M

M

MM

M

M M
MM

M
M

M
M

M
M

M
MM

M
M

M

M

M

M

M

M

M
MMM

M

M
M

M

M
M

M

M
M

MM M

M
M

M

M

M

MM
M M

M
M
MMM

M

M
M
M

M
M MM

M
MMM

M M
MMMMMM M

M

MM
M MM

M

M MMMMMM

M

M
M

M
MMM

MM

M
M

M
MM

M
MMMM

M M
M
M

MM MM
M

MM
MMM

M
M

M
M

M
MM

M

M
M

MM
MMMM

MMMMMMMM
MMM
MMM

M
MM

M
M

M

M
M

M

M
M

M
M M

MM
M

MMMMMM

M
M

MM MMM

MM M
MM

M
M

M
MM

M M

M
M

MM
MM
M

MM
M

M
M

M M

M
M

M

MM

MM

M
M
MM

M M M MM
M

M

M

MMMMMM
M
M

M

M
M

M

M

M

M

M

M
M M

M

MM

M

M

M
MM

M

M

M

M

M

M

MM
MM

M

M

MMM

M

M
M MM

MMM
M

M

M

M

M M
M

MM
MM

M
M

M
MM
MM

MM

M
MM

M
M M

M

M
M

M

M
M

M

M

MM

MM

M M M
M

M

M
M

MM M
MMM

MM
M

MM MM
MM

M

M

M

M
M

M
M

M
M

M
M

M

M

MM M

M
M

M
M

M
M

M
M

M

M

M

M
M

M

M M

M

M
M

M

M

M

M
M

M
M

MM

MM M
M
MMMMMM

MMMMM

MM

M

M
M

M
M MM

MM
M

M
M

M

M

M
M

M M

M

M
M

M

MM
M

M
MM

MMM

M
MMMMM

MM
MM MMM
M

M
MM
M

MMMMM
M M

M
M

M

M

M

M
M

M
MM

M

M
M

M
M

M
M

M
MM

M MM M

M
M

MM

M
M

M MM

M
M M

M

M

M

M
MM

M
M

M

M
MMM

MM

M M
M

MMM

M

M

MMM
M

M
M
MMM
M

M M

M
M M

M MM
M

M
M

M
MM

M

M

M

M

M

M

MMMM
M

MM
M

MMM
MM

MMMMMMMM
M
MM MM

M

M

M

MM

M

M

MM

M

M

MMMM
M

M

M M

M
M

M

M

M

M

M

M

MM

M MMM MMMM

MMMM

MM

MM

MM

MM
M

MM M
M

M
M

M

M M

MM
M M

M
M

M

M

M

MM
M

M

M
MM

M
M

M

M
M

M

M

MM

M
MM

M

M
MMM

M
M

M

M M

M

M

MM

MM
M M MM MM

M
M

M
MM
MMM

MM M
MMMM

MM
M

M
MM

M
M

M
M

M

MMM
MM

MM

M M

M

MM

MM
MM

M
M

M

M

M

M

MM
MM

M

M

MM
MMMMMMMM

M
M M M

M
M

M
MMMM

M
M

M

M
MM

M
M

M
M M

M
M M

M

M
M

MM

M

M
M

MM

M
M

M
M

M

M M
M

MM M

MM

M

MM
M

M

M
M
M

12 LPCCs PCA

principal component 1

p
ri

nc
ip

al
 c

om
p

o
n

en
t 2

(a)

-4 -3 -2 -1 0 1 2 3 4
-6

-5

-4

-3

-2

-1

0

1

2

3

4

FF
F
FF

F
FF

F
F

F
F

FF F
F
F

F

F
F F

F

F
F

F

F
FF

F
F

F

FF
F

F

F

F
F

F

F

F
FF

FF

F
F

F
F

F
F F

FF
F

F

FF
F

F
F

F

FF
F

F
F

F
F

F
F

FF
F

FF

F

F

F

F

F F
F F

FF
F

FF
FFF FF

F

F
F

F F
F

F F
F

F
FFF

F
F

F
F

F

F

F

F
FFFF

F

F

F

F

F

F
F

F
FF

F
FFF F

F

F
F F

F
F

FF

F F FF FF

F
F

F
FFF

F

F F
F
F

F
FFFF

F
F

F

F
FF

FFF
FF

F F
F

F
F F

F

F

FF
F

F

F

F

F

F F

F

F

F

F F F F

F
FF F
F

F F
F

FF
F

FF
F

F F FF

F

F
F

F

F F
F

FF
F

F
F

F FFF

F
F

F

F

F
F

F
F F F

F

F
F

F

F
F

FFFFF
FFF

FF FF
F

F
F

F
F F

FF
F

F

F
F

F

F
F

F
F

F

FF

F
F

F F
FF

F
FF

F
F
F F

F

F

F
F

F
F

F

F
F F

F

F F
F

F

FF
FF FF F
F

F F

F FFF

F

F

FF
F

F

F
F

F F F
FFF

FF F
FFFF

F

F
F

F
F FF FF F

F

FF F
F F

F F
F F F FF FF

FF
F

FF

F
FF

F
F

F

F
F

FF

F

F

F
F

F

F
F F

F

F
F

F
F

FF F

F
FF

F
F

F F F

F

F
FF

F

F F
F

F
FF

FF FF
F

FF

F

F
FFF F F

F
F

FF
F

F
FF

FF
FF

F
FF

F
F

FF
F

F
F

F
FF

F
F

FFF
F FFF FF FF

F
FF

FF
F

F

F
F

FF
F

F

F
FF F FFFF
F
FFFF F

FF
FF
F FFF F

F F
FF F

F F
FF

F
FFFFF
F

F
F
F

F F F
F
FF

FF
F

FFF

F
F

F
F

FFF

F

F FF

F

F

FF

FF
F F

F
F F FF

F
F F

F

F

F

FF

F F

F

FF
F

F
F F

F

F

F
F

F

F F
F FF

F

FF
F

F F

F

F

F
F

F

F

F

FFF
F

F F
F

F
FFF

F

F F

F
F

F
F

FFF
F

F

F
FF

F

FFFF
FFFF

F F
F

FF

F

F

F
F F

F
F

F
F

FF
FF

F
F

F
F

F
F

FF

F

F
F

F
F

F
F

F
F

F

F

F
F

F
FF

F

F
FFF

F
F F

F
F

F
F

FFF
F
F

F
F F

F
F FF

F

FF

F
F F

F F F F F

F
F

F
F F

FF
F

F
F

F

F
F

F

F
FF

FF

F

F

F FFF

F
FF

F
FF

F
F

F F

F
FF

FF

F
F
F

F F
F
F

FFFF
FFF F
F

F
F

F
F

F
F

FF
F F

F
F

F

F
FF

F
F F F F

F

F
F

F

F F
F

F
F

M

M
M

M

M

M

M M
M

M
M M

M M
M

M
M M
M

M
M

M
M

M

M
M

M
M

M

M
M

M
MM

M

M
M

M
M M M

M
M

M
M

M

M

M

M
MMM

MMM
M
M
MMMMMM
M

M
M

M
MMMM

M
MM

MMM

M
M

M

M
M

M M
M
M
MMM

M
M

MM

M
M

M

M
M

M
M M M

M
MMMM

M M
MMMM

M

M
M

MM
M

MMM
M

M

MM MMM

M

M

M
M

M M
M

MM
M
MM

M
MM

MMMMMMMMM
M MMM

M

M MM

MM

M M

M
M

M MM

M

M
M

M
M

M MM
M

M
M MMMMM

MMMMM M
MM

M

M
M

MM
M M MM

M
M

MM

M
MM

M
M

M

M
M

M
MM M

M
M

MMMM

MM

M
M M

M
M M

M M
MM

M
M

M M

M

M

M

M

M M
MMM MMM

M
M

M

M
M

M

M

M
M MM MM

M
M

M
M

M
MM

M

M M

M
M

M M
M

M

MM
M

M
M

M

M

M

M
M

MM
M
M MMMM

M M

M

M
M

M

M
M

M M
M

M
MM

M
M

M
M

M
M

MM

M

MM
MM

MMM M
M

M M M
M
M
M

M
M

M

M

M
M

M
M M

M

M

M

M

M

M
M

M
M
M MM

M
M

M
M

M

MM

M M
M

MM M
M M

M

MM
M

M

M M M
M

M M

M
M
M

MM

M M
M

MM M

M

M
MMMM
MM MM
M

M
M

M
M

MM

M
M

M
M

M

M M
MM M

M
MMM

M
MM
MMMM M

MMMM
M

MMM
MMM

MM MM
M

M M
MMMM

M

MM
MM M M

M
MMM

MM M
M

M
M M

M
MM M

M

M M
MMM

M
MMM M

MM
M

M M
MM M

M

MM
M

MM
MM M

MM
MMMM

M M
M

MMM
M

MMMMMM
M

M

MM
M

M

M

M
M

M
M

M
MM

M
MM

M

MM M
M

MMMMM
MM

MM
M M
M

M
MM

M M
M
MMM
MM

M

M
MM

M

M
M

MM
M
M

M
M M

M

M M
MMM

M

M

M
M

MM M
M
M

MM
MMMM

M
M

MM M
MM M

MM
M
M

M

M M
M
M

M
M
M

M

M
M

M

M
MM

M
M

M MMMM M

M
MM

M M
M

M
M

MM
M

M

M
MMM

MM M
M

MM
M
MM M

MM M
M

M
M
M

MM

M
MM

M
MM

MMMM
M

M M
M

MMM
M
MM

MM

M
M MM
M MMMMMMMM MM M

M
M

M M
MM

MM
M

MMM M
M

M
M

MM

M

M
M

MMM

M
MMMMM
MM

MMMMM MM

MM M

M

M

MM M
MMM

M

M

M

M

M
M MMM

MMM MM
M

M
MM
MM

M MM
MM

M
M

M

M
M

M

M

M

M

M

M

12 MFCCs PCA

principal component 1

pr
in

ci
pa

l c
om

p
on

en
t 2

(b)
Fig. 7.3 LPCC vs. MFCC for speaker separation using PCA

Fig. 7.3 shows an example of PCA. Speech messages of FAML_Sa.wav and
MASM_Sa.wav from ELSDSR database were used. We extracted the first
0.5s (800 samples @ 16 kHz) of both signals. (a) shows 12 LP based cepstral
coefficients projected into the largest two principal components; whereas (b)
shows 12 MFCCs projection. F denotes FAML, and M denotes MASM. In
both cases frame size=320, overlap=240.

 - 63 -

Comparison between LPCC and MFCC using KNN

From the above experiments we have the impression that MFCC work a little bit better
than LPCC for separating two speakers’ speech messages. In order to fix the conclusion,
more experiments for comparing MFCC and LPCC in different situations need to be
done. KNN algorithm introduced in Chapter 5 was implemented in the following
experiments for classification.

Before going to the comparison experiments, the front-end processing of speech signals
should be presented:

1. According to Section 3.2, the sub-processes of the front-end processing,
preemphasis should be implemented first to original signals with Kaiser
Frequency filter.

2. Then following the sequences of short-term analysis, signals were blocked into
frames of 320 samples, which is 20ms @ 16 kHz, and the consecutive frames
were spaced 80 samples (75% overlap) apart. For the sake of avoiding
truncation of signals, we used Hamming window to multiply each frame. It’s
hard to say whether Hanning or Hamming window is better than the other. The
choice depends on the applications. Here the most popular window function in
speaker recognition field was chosen. In order to make it consistent, we used
Hamming window for both MFCC and LPCC.

3. After performing the above two steps, the frames undergo the feature extraction
process using MFCC and LPCC techniques individually. As for LPCC, 12 LP
coefficients were calculated [13], and converted into Q lowest cepstral
coefficient using (3.14). To make these two features comparable, Q lowest
MFCC were calculated (excluding the 0’th coefficient since it corresponds to
energy of the frame). The value of Q is related to the length of the raised sine
lifter function as shown in Fig. 3.5. To include some dynamic information of
speech signal, Q delta-LPCC and Q delta-MFCC were also calculated, and
concatenated with the Q lowest LPCC and MFCC separately. Hence the
dimension of both LPCC and MFCC features are 2Q*NF, where NF is the total
number of frames.

Brief introduction about the experiment setup in our implementation of KNN algorithm
is necessary. For this comparison task, a binary KNN was implemented, which means
that the training set and test set only include two different speakers’ speech signals. The
assigning for new example becomes a binary decision: the new example either belongs
to class 1 or class 2. To avoid bias for majority voting algorithms, we stored the equal
amount of speech information for those two speakers, which was about 4 seconds (6400
samples @ 16 kHz) for each speaker for training, and 3 seconds signals were used for
testing. Moreover, we named the training examples input1, and the test examples input2,
correspondingly the class labels for training and test examples are Label 1 and Label 2.

 - 64 -

0 2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

NK

E
rr

o
rs

KNN for MFCC and LPCC with preemphasis

MFCC Label1 error
MFCC Label2 error
LPCC Label1 error
LPCC Label2 error

Fig. 7.4 LPCC vs. MFCC using KNN

24 MFCC and 24 LPCC features were extracted from FJAZ_Sa, MKBP_Sb,
FJAZ_Sc and MKBP_Sd. They were used respectively for binary KNN algorithm
in text-independent case. 20 iterations were done with NK changing from 1 to 20.
Red (o) and blue (*) curves gave the Label1 and Label2 (test) errors from MFCC. It
shows MFCC can achieve smaller errors, and when NK=8 minimum test error
0.1039 was achieved, and corresponding Label1 error was around 0.0082.

Now we will show the data source and construction for training and test set. First a
piece of signal with 4s was cut from FJAZ_Sa.wav (FJAZ stands the speaker ID, Sa
stands the sentence ID), and another 4s signal was cut from MKBP_Sb.wav. Afterwards
the features extracted from these two signals were concatenated together to work as
training examples Fv={fv1, fv2, …, fvNF}. NF is the total number of frames, which
depends on the number of samples (2*6400), the frame size (320), and the overlap
(240); and fvi is a 2*Q dimensional vector. Following the ‘almost standard’ in speaker
recognition field [29], Q was set to 12. Next we need to find out the labels for training
data. For each example vector we gave one label, thus there are totally NF labels for our
training data, and the first half are class1’s label, the rest are for class2: L={l1, l2,…, lNF}.
Now we got the training data set {fvi, li}. For the test set, 3s signal from FJAZ_Sc.wav
and 3s signal from MKBP_Sd.wav were concatenated, and then extracted into 24
dimensional features, the collection of them gives the new examples waiting for
assigning labels: Fvnew={ fvnew1, fvnew2, …, fvnewM}. Notice this experiment was done in
text-independent situation. For text-dependent case, see appendix D1.

Fig. 7.4 gives the Lable1 and Label2 errors of using MFCC and LPCC for classification.
The Lable1 error means that we vote the label for each example from training set

 - 65 -

without itself included, and finally compare the new voting labels with true labels to get
the training error. It shows with the same dimensional features that using MFCC can
achieve lower errors than using LPCC for KNN classification.

Conclusion: Using PCA and KNN, we got the same conclusion that MFCC perform
better than LPCC in speaker separation or recognition. The following experiments are
meant to find out the desired dimension of MFCC features.

7.2.2 Feature Dimensionality

From the previous experiments we choose the MFCC as features for our speaker
recognition system since it can achieve smaller test errors on speaker classification.
Now let’s decide the value of Q which determines the dimensionality of features. First
we compare Q=12 with Q=24 using PCA. (Q=24 is also commonly used in MFCC.)
Then we will use multi-KNN algorithm to do more detailed experiments. Finally Q
iterations in KNN will be implemented to find out the optimal Q and confirm our
previous experimental results.

PCA
First the PCA was performed with 24 dimensional MFCC features (Q=12) and 48
dimensional MFCC features (Q=24) including the delta coefficients. The results are
given in Fig. 7.5. Same as before, signal pieces lasting 0.5s were cut from ELSDSR
database: FAML_Sa.wav and MASM_Sb.wav. This time the experiment was done in
text-independent situation. Using PCA technique, we got the conclusion that 48
dimensional MFCC gave better data separation.

Multi-KNN
Now we use the multi-KNN algorithm to test the superiority of 48 dimensional MFCC.
The training and test sets for the multi-KNN case include 6 speakers’ speech messages:
FAML_Sa, FDHH_Sb, FEAB_Sc, MASM_Sd, MCBR_Se and MFKC_Sf. For training
set 3s signals were cut from each of these 6 messages, and for test set 2s signals were
cut. Hence we got 3*6=18s signal for training, and 2*6=12s signal for testing. Same as
before, 20 iterations were fulfilled with the number of nearest neighbors NK=1 to 20.
The results are shown in Fig. 7.6. For the multi-KNN case, the number of neighbors
doesn’t give big influence on test errors. The blue and red curves represent the 48
MFCC7 case. 24 MFCC gave 0.4916 smallest test error, whereas 48 MFCC gave
0.3455 smallest test error, and the improvement of test error was around 29.7% w.r.t.
that of 24 MFCC. We should emphasize that from now on all speech signals are
preemphasized before doing feature extraction.

7 From now on we will use delta MFCC together with MFCC, for simplification 24 MFCC
means Q=12: 12 MFCC and 12 DMFCC. Hereinafter the number xx in xx MFCC gives the
dimension of coefficient instead of the Q value, unless special denotation is given.

 - 66 -

-4 -3 -2 -1 0 1 2 3 4 5
-8

-6

-4

-2

0

2

4

6

FFF
F

F F
FFF F

F
FF

F
FFF

F

F
F

F
F FF

FF
F
F

FFF FFF F
FFFF

F FFFFF

F FF

F
F

F
F

FF

F

FF

F

F
F
F

F
F

F

FF
F F
F F

F
FF

F
F

F

F

FF

F

F
F

F

F
FFF FF FFFF

F
F F

F
F F

F
F

F
F

FF
FF

F

F
FF

F
F

F

F F
F

FF
F

F F
FFFF

F

F
FFF

FFFF FF F F
F

F
F FF

F
F FF

F
F F
F

FF
F

FF F F F
F

F
FF

F

F F

F
FFF

FF FFFFFF
F

FF
F F

FF
F

F

F

FF

F

F

FF
F

F
F

F
F

F
F
F
F F F FFFF

FFF
F FF

FF F
F

F F
F

F
F

F
F F

FF FFF F
F FFF FF

F
F F

FF
F FF FFFFFF

FFF
F

F
FFF

F
F

F F

F

F
F

F
FF
F

F
FFF

F
F

FFF F F
FF

F
F FF

F

F

F
F

F
FF F

F

F
F

F

F
FFF F

F
F

FFFF
FF

F
F

F
F

F
F

F
F F

F

F

F

F

F
FF

F

F

F

F
FF FF F

FF
F

F F F
F

FFF
F

F
F
FFFFFF FF

FF
F FF

F
F
F

F

F F
F
F

F
F

F

F
F

F

F
F F

F
F

F
FF F

F
F

FF

FF F F
FF F

F
F

F F
FF

F
F

F
F

F

FF

F
F

F

F

FFF

F
F
F F
FFF

F

FF
F

F
FF

F FF
FF

F
F

F
F

F

FF
F

F
F

F
F FF

F
FFFF F

F
FFF FF
F

F
F
F
FF F

F

F
F F

F

F

F

F
F

FF
F

FF
F FFF

FFF FFFFFF
FFF FFFFFF FFF FFF

F
F F F F

F
F

F
F

F FF
FF

FFF
F FFF

FFF
F FF

F

F

F
F F F F

F
FF

F
F FF F

FF
FFFFF

F
F

FF F FF
F

F F
F

F
F F

F F

F

FFFF

F

F F
F
F FFF

F

FF
F

F
F F

FF

F FF
F F

F
FFF

F

F

F

F
FFF F

FF
F

F

F
F F F F

F
F

FFFFFF
FF

F
F F

F
F

F
F

F
F

F

F
F
F

F F
F

FFF

F FF
F

FF
F

F F

F FF
F

FFF FF
F

F F
FF

F F
F
F

FF
F

FF
F FFFF

FF FFF
F

F
FF

FF
FF FFF

F

F
F F F

F
FF

FF
F

F

F FF
F F

F
FF

F

F
FF

F
F

F

F

F

F

F
F

F
F

FF
F

F F F
F

FFF

F

FF F F FF
F

FF
FF

FF
F FF F

F
F FF

F
FF

F FF
F

F
FFF F

F
F
F F

F F
F

F
F

F
F FF

M
M MM

MM
M

MM
M

MM
M

MM
M

M
M

MM

M M
MM

M M

M MM
M

M
MMMM

M
MM

MM M M M
M

M M
MM

M

MM M

M
MM

MM
M
M

M M
M

M

M MMM
M

M

M
M

M
M

MM M M
M

M M
MMMM MMMMMMM
MM

M MM
MM
M

M M
M

MMM
MM

M
MM

M
M MM

M
M

M M
M MM M

M M
M

MM M
MMM

M
MM MM

M
MM M M M

M
MMM

MMMM
M

M
MM

M

M

M

MMMM

M

M

M

M
MMMM
MMMM

M

M

M
M M

M
M

M

M

M
M

M
M

M
M

M

MMMM
M

MMM MMM MMMM
MMM MM

M

M
M

M

M

M M M

M

M

M

M

M
M

M
MM

MM
M M

M
M

M

MM

M

M

M

M
M

M
M

M

M M MM
M M
M

M
MM

M
MM
MM

M
MM MMM

M
M

M
M

M MM

M
M

M

M
MMM

M

M M
M
M

M
M

MMM
MMMM

M M
MM

M

M

M

MM
M

M

M

M

M
M M

M
M

M

M
M

M
M

M
MMM

MMM
M
M
M
MMM

M
M

M MMMM
M

M M
M MMMM M MMM

M

M M
MM

MM
M

M M

M

M
M

M
MMM
M

MM
M
MMM M

M
MM

M
M MMM

M
M

M
M

M
M

M
MM

M
M

MM
MM M M

M MM

M
M

M

M
MM
M

M

M
M

MM
MM

M

M

M
MM

MMMMMM MMMMMMM

M
MMM
MMM

MM
M

M
M

M

M

MM

M
M

M MM
MM M MM

M
M

M M
M
M

M
M MM

M
M M

M
M

M
M

M
M
MMM

MMMMMMMMM
MMMMM MMM MMMMM

M
M

M

M

M
M M M

M

M

M

M

M
M

MMM
M

M
MM
MM

MMM
MMMM M

M

M

M

MMM

M

M

M

M
M MM MM

MM
M MMM

MMMMM MMMM

MM
MMM

M

M

M M M M
MM
M

M MM

M

M
M

M M
M

MM M
MM

MM
M

MMM
M

M

M

MMM
M

M

M

M

M

M

M
M

M
M

M

M
MM

M M
M
MM

M
M

M
M

M
MM

M
M

M M
M

M
MM

M
M

M

M
M

MM
M
M

M

M

MM
MM

MMMMM
MM

M

M

M
M

M
M

M
M MM

M

M

M

M

M

M

MM
M

M

M
MM

MMM MM M MM M

MM M M
M M

MMMM
M

M
M MMMMMMMMMM

MM
M

MMMM
MM

MM
MMM MM MMMM

MMMM
MM MMMM

MM MM
M MM MMM

M
M

M
M

MM
MMM M M M MM

M
MMM

M
MM

MMM
MMMMM

MMMM
M
M

MM
M

M

M
MM

M MMM

12 MFCC & 12 DMFCCs PCA

principal component 1

pr
in

ci
pa

l c
om

po
ne

nt
 2

-6 -4 -2 0 2 4 6
-6

-4

-2

0

2

4

6

F F

F
F

F

F

FF
F F

F
FF

F
F

F

F

F

FF

F

F

FF
F

F

F

F
F

F
F

F
F

F
F

F

F

F

FF

F FF
F

F

F

F

F
FF

F F F

FFF
F
F

F

F
F

F
F

F

F

F

F

F
F F FF

F

F

F
F

F
F

F

F

F

F

FFF
F
F

F
F

F

F
FF

F
F F F

F F

F

F

F
F

F
F

F

F
F

F

F

FF

F

F
F

F

FF
F

F

F F

F

F

F

F
F

F

F

FF
F

F
FF

F
F

FF F

F

F
FF
F

F
F

F

F

F

F

F

F

FF
F

F

FF

F
F
FF

F

F

F
F

FF
F F

F

F

FFF

F
FF FF

F

F

F

F

F FF
F

FF

F

F

F

F

F

F F

F

F
F

FFF
F

FFF FF

F

F

F

F
FF

F
F

FF

F

F

F
FF

F
F FF

F

FF
F FF

FF
F

F

FF

F

FF F FFF

FF
FFFF

F
F

F
FF FFF

FF

F
F

F

F

F F

F

F F

F

F
F
F
F

F
FFF

F
FF
FF F
F

F F

FF

F

F

F
F

F

FF

F

F
FF

F
F

F

F
F

FF

FF
FF

F
F

FF

FF
F

F

F
F

FF

F

F
F

F

F
F

F
F
FF
F

F
F

F
FFF F FF

F
FF

F FFFF
F FF

F
F

FFF
F FF
F

FF

FF
F F

F
FF

F

FF

F

F

F

F

F

F
F

F
F

F
F

F
FF

F
F

F
F

F

F

F

FF
F

F F

F
F

F

F
FF

F

F

F

F
F F F

F

FF

F

F
F

F
F

F

F

F
F

F
FFF

F

F F

FFFF
FF

FF

F

F

F
F F

FF
F

F
F
FFFF

F
FFF

FF
FF F F F F F F

F
F

F

F

F

F

F

F

F

F

F F
F

F
FFF

F
F

F
FFFFF
FF

FF
FFF

FFF FFFF
F

F
FF

F
FFFF
F

F
F

FF

F
F F

FF

F
F

FF
F
FF

F

F

F

F

FF
F

F

F
F

F
F

F

F
F

F

F

F
F

F
F

F

F

F F
F
FFF

F
FFF

F F

FF
F

F

F
F

F

FF

F
FF

F
F F

F

F

F
F

F
F

F

F

F

F

FF
F

F

F

F

F
FFF

F

F
FF

F
F

F
F

F F

F
F

F

F
F

F
F

F

FF
F

FFF
F

FFF
F F F

FF
F

F

F

F

F
FF

F
F

F
F FFF

F

F

F

F

F F

F
F

F
FF

F
F F

F
F

F F

F

F

F F

FFF
F

F

F
F

FFFFF

FFF

FF
F

F
FF

F
FFFF

F

F
F

FF
F

F
F

F

F

F

F
F

FF

F FF
F

F
F F

FF

F
F F

F

F

FF

F

F
FF
F
FFF

F

F

F
F
F

F

F

FF

F
FF

F
F

F

F F
F
F

F
F
FFFF

F
F

F
F

F
F F

FF
FF

FFF

F
F

F

FF

F

F
F

F F F

FF

FF

F
F

F
F

M M
M

M
M
MM

M
M

M
M

M

M

M
M

M M

MM

M
M

M

M
M

M M

MMM

M M
MM

M
M

M
M

M

M M

M
M
M

MM

M

M

M M
M

M
M M

MM

M

M MMMM
M

M
M M

MM

M
MM

M

M

M
M

M

M
MM

M M
M
M

MM MM

M

M

MMM
MM

M M

MM

M

M

M M
M

MM

M

MM
M

M

MM

M
M

M

M

M
M

M
M

M
M

M
M

M
M

M
M

M

M M
M
MM

M

M
M

MM

M

M

M

M
MM

M
M

M
M

M

M
M
M

M
M

M
M

M
M

M
M

M

M M
M

M
MMM
MM
MMM

M
M

MM
M

M

MMM
M

MM

MMM
M
MM

MMM
MM
MM

MM
MMMMMMM

MMM
MM

M
M M

M

M

M M
MM

M

M
M
MM MM

M
M

MM
MM

MM

M

M
MMMM M

M
M M

M
M

M

M
M M

M

M
MM

MMM
M
MMMM

M

MM
M
M

M

M MM
M M

M
M

M MM
MM MM MMMM

MMMM
M

M
MM

M
M

M M

M
M

M M
MMMM

M

MMMM
MM MMMMM

MMMMMMMMMMM
M

M
M
M
M

M

M
M

MM
MM

M
M M

MM

M
M

M

M
MMMM

M

MM
M

M M
M

M

M

M
M

M

MMM
MM

M
M MM

M

M

MMM

M
M M

MMM
M

M
M

M
M

M
M

M

M

M MM
M

M

M

M
M

M
M

M

M

M
M

M
M

MM
M

M
MMM

MMM
MM M

MMMMMM

MM
M

MMM
M

M MMM
M

M
M

M

M
M

M
M M M

M

M MM

M
M

M
M

M

MMMM
M

M
M M

M
M

M
M

M
M M MMMMMMM MM MMM

M
M
M
M

MMMM
MM

M
MM

M M
MM

M

M

MM M

M
M
M

M
M

M
M

MMM
M

M

M M MMM M
M
MM

M
M

M
MM

M

MM
M

M

M
M M

M MMMMM MMM MMMM
M MM
MM

MM
M
M

M M
M

M
MM

MM
M

MM M
M M

M

MM

M
MM

M

M

M
M M

M

MMM
MM M

M

M

M

M

M

M
M

M
M

M
M

M

M
M

M

M
M

M MM
MMM

M
MM

M
MMM

M

M
M M M

MM
MM

M

MM

M
M

M

M

M
M

M
M

M
MM

MMMMM
M

M
MM

M

M M
M

MM

M
M

M

M
M
M

M
M M

MMM
M

M

MM

M

M M
M
M M
M

M
M

M M
M

M M
M

M
M

M M
MM

MM
MM
MM
M

MMM
M

M
MM MMM M

M
MMM

MM MMM
MM

MMMM
M
M M M

MM MMM M

MM
M
M

MM
M MMM

MMM
M

M

M
M
M

M
MM

M
MMMMM

M M
M

M
MM

M MM
M

MM

MMM MM

M
M
MMMM

MM
M

24 MFCC & 24 DMFCCs PCA

principal component 1

pr
in

ci
pa

l c
om

po
ne

nt
 2

(a) (b)

Fig. 7.5 24 MFCC vs. 48 MFCC for speaker separation using PCA
(a) shows the speech data separation between one female and one male with 24
MFCC (b) gives the result with 48 MFCC. Both of them were in
text-independent situation. F denotes FAML, and M denotes MASM. In both
cases frame size=320, overlap=240.

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

NK

E
rr

or
s

KNN for 24 & 48 MFCC
48MFCC Label1 error
48MFCC Label2 error
24MFCC Label1 error
24MFCC Label2 error

Fig. 7.6 24 MFCC vs. 48 MFCC using KNN
Figure shows the experiment results with multi-KNN algorithm using 24
MFCC and 48 MFCC respectively in text-independent case. 20 iterations were
done with NK=1:20. Red (o) and blue (*) curves gave the Label1 and Label2
(test) errors from 48 MFCC. The errors from 48 MFCC are much smaller than
those from 24 MFCC, and the smallest test error was ELabel2=0.3455, and
corresponding ELabel1=0.0070 when NK=6.

 - 67 -

• Q Iteration

5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Feature Dimension Iteration

Q

E
rr

or
s

Label2 error bar
Label2 error
Label1 error bar
Label1 error bar

Fig. 7.7 Q iterations for searching optimal Q
Experimental signals were from 6 speakers’ speech messages: FAML_Sa,
FDHH_Sb, FEAB_Sc, MASM_Sd, MCBR_Se and MFKC_Sf. Different
size of training set were used, test set was always 2*6s, and NK=8. From
the shape of the curve and the error bar, we found out the desired feature
dimension is 48, which gave lower test error.

From the above experiments we can loosely say that 48 MFCC gives better results with
smaller errors. In order to fix the conclusion Q iterations were used to illustrate the
result again by using KNN algorithm. We worked on multi-KNN with the same 6
speakers as in previous experiments. The training signals from each speaker were
varying from 1s to 5s, and 2s for testing. As for the number of neighbors, we choose
NK=8. Seen from Fig. 7.6, the number of neighbors doesn’t give a big influence in
multi-speaker cases. Since we are working in multi-KNN case, the even number of
neighbors won’t give bad effects. However in binary cases, using odd number of
neighbors gives more precise assignments for new examples, because the majority
voting is easy to get a draw when even examples are voted.

The result is given in Fig. 7.7. Observing the shape of this curve and the error bar, we
see the tendency of test errors with the change of Q. It shows obviously that minimum
test error was found when Q=24, and the test errors are not linearly proportional to the
dimensionality of features, and models using 48 MFCC offer best recognition results.

Conclusion: Using both PCA and multi-KNN, the 48 MFCC always perform better than
24 MFCC. The Q iteration confirms the results again, and moreover shows 48 is the
most desired dimension with MFCC features in speaker classification.

 - 68 -

7.2.3 Recognition Error Improvement for KNN

Seen from Fig. 7.6, the minimum test error rate we got from this 6-speaker KNN case
was around 35%, and for randomly guessing, the error rate is up to 83%. Even though
KNN gives much better recognition results, the error rate is still not good enough in
practice. One way to improve the recognition accuracy is to use more information from
test signals for majority voting instead of only using information from one window
(frame). In the previous experiments, we labeled the training data frame by frame, and
used them to get the labels for new (test) signal frame by frame, too. Afterwards we
perform majority voting and finally recognize the new signal as the most appearing
label. Now we are still using the same way to get the frame by frame labels for new
signal. However instead of performing majority voting directly to the frame by frame
labels, we do the internal voting first in a small group of examples with NG members to
get a voted label for the group. After constructing the groups and getting the labels for
them, we could use the grouped labels for the majority voting to recognize the speaker
with the most appearing label. By this means, we increase the accuracy of voted label,
since the information containing in one group is richer than one example, we expect the
recognition errors to be decreased.

Since we have found out that 48MFCC outperform the 24MFCC for both binary and
multi- speaker recognition, in the next few experiments we will use 48MFCC. Seen
from Fig. 7.8, with NG=10 in one group and half overlap Nover=5 between groups in the
same multi-KNN situation as before (NP=6), the minimum test error occurred when
NK= 4, 5, 10, and the value was 0.2586. From the experiment shown in Fig.7.6, the
smallest test error from 48MFCC was 0.3455. By comparison we notice the
improvement of recognition accuracy was around 13.3%. The confusion matrix of the
estimation for NK=4 is shown as follows:

Confusion Matrix =
 Estimated speakers
 P1 P2 P3 P4 P5 P6

 P1 49 4 3 0 1 21
 P2 11 62 1 0 1 3

 P3 10 7 41 1 0 19
 P4 0 1 0 63 8 6
 P5 1 0 0 5 64 8
 P6 2 7 1 0 0 68

Rows represent the true speakers FAML, FDHH, FEAB, MASM, MCBR and MFKC,
and columns represent the estimated speakers. Notice the more voting labels lay on the
diagonal of this matrix, the more accurate the recognition is.

Tr
ue

 S
pe

ak
er

 - 69 -

0 2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

NK

E
rr

or
s

KNN for 48MFCC with N
P
=6 N

G
=10 N

over
=5

Label1 error
Label2 error

Fig. 7.8 Recognition accuracy improvement

NK iteration was performed with 48MFCC in the same 6-speaker
multi-KNN situation as before. In order to improve the voting accuracy,
10 former examples were grouped together with 5 examples overlaps in
groups. The curve of test errors lies between 0.25 and 0.3, however from
Fig. 7.6 the test errors for 48MFCC belong to the range [0.3, 0.4]. The
minimum test error before improvement was 0.3455 (NK =6), and now it
becomes 0.2586 (NK=4,5,10). The decrease of test error is more than
25%.

7.2.4 Combining fundamental frequency Information with MFCC

In this project, one challenge is to add fundamental frequency information into MFCC
features in the application of KNN algorithm. Notice from the confusion matrix given
in Subsection 7.2.3, the misclassification of labels between female and male decreased
the recognition accuracy, especially for female speakers 1 and 3: 21 and 19 labels
should belong to P1 and P3 respectively were misrecognized as the third male speaker.
Moreover as we introduced in subsection 3.4.3, the fundamental frequency information
is efficient to classify genders. Hence we propose to use both features: MFCC and
fundamental frequency in KNN with the purpose of eliminating or decreasing the
misrecognition between female and male speakers.

However the combination task is not as easy as we thought. First, MFCC have to follow
the short-term analysis. Thus the frame size of the speech signal should be around
20ms-40ms in order to keep the speech signal pseudo-stationary in the framed period.
Whereas since fundamental frequency (F0) of human voice is at a much lower
frequency than the formants (F1, F2,…), we should frame the signal into larger chunks,
for extracting fundamental frequency information. Therefore the F0 extracted from each

 - 70 -

longer frame cannot just be added to the MFCC from shorter frames. Secondly, F0 does
not exist in every frame, e.g. the unvoiced parts, such as letter s, and silence parts.
Therefore if we extract F0 frame by frame, it will give us many zeros, which don’t help
for recognition at all.

In this subsection, we will solve the combination problem in different ways. First of all
fundamental frequency estimation method in our project will be introduced and
experimented, then comes the solutions for the combination.

Fundamental Frequency Estimation

As we briefly introduced in subsection 3.4.5, there are many pitch extraction techniques
fitting for different situations, e.g. noise environment, noiseless environment, etc. Since
we are working with the ‘pure’ speech signals, Cepstrum method (CEP) technique was
used to fulfill the pitch estimation.

Due to the low frequency location of fundamental frequency, we first blocked the
speech signal into 64ms frames with half overlap (32ms), i.e. 1024 and 512 samples
@16 kHz, and for each frame, real cepstral coefficients were calculated. The cepstrum
turns the pitch into a pulse train with a period that equals the pitch period of the speaker
[30]. The low frequency location of F0 usually means the region [50Hz, 400Hz], which
covers the F0 of most men and women [21]. Therefore for each frame we only need to
search the pitch in the range [2.5ms, 20ms] in time domain, corresponding to [40, 320]
samples. Since there are unvoiced phonemes and silence in speech signals, we only
calculated the F0 with significant peak in the range of each frame, see Fig. 7.9. By
averaging the F0 from frames, we found out the median pitches for speakers. To get
more information, we also included maximum and minimum pitch values for each
speaker. In Fig.3.11, the fundamental frequencies for eight speakers from TIMIT
database have been already given. Now the experiment has been done with our
ELSDSR. All the suggested training data have been used to extract the F0 of these 22
speakers, see Fig 7.10. The first 10 speakers are female, and the sequence follows Table
6.2 from FAML to MTLS. For our database the female F0 belong to [150Hz, 250Hz],
and the male F0 lie in [90Hz, 177Hz]. Notice, it’s hard to recognize the speaker ID only
based on F0. However from the distribution of fundamental frequencies of female and
male, it’s reliable to separate genders using pitches.

 - 71 -

50 100 150 200 250 300 350 400 450 500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

samples

C
ep

st
ra

l C
o

ef
fic

ie
n

ts

Cepstral Coefficients for one 64ms frame

Pitch

Fig. 7.9 Cepstral coefficients
This figure shows a part of cepstral coefficients in one 64ms frame
with significant peak. We only need to search the peaks from
samples No.40 to No.320 out of 1024 samples. The pointed pulse
gives the position of pitch in this frame.

0 5 10 15 20
0

50

100

150

200

250
F0 for 22 Speakers from ELSDSR

Speakers

fu
nd

am
en

ta
l f

re
qu

en
cy

 (H
z)

F F F

F

F
F

F
F

F

F

M

M

M M

M

M M
M

M

M
M

M

Fig. 7.10 F0 information for 22 speakers from ELSDSR
Notice the female F0 are comparably higher than male: female F0 belong to
[150Hz, 250Hz], and male F0 lie in [90Hz, 177Hz].

 - 72 -

Combining MFCC and Fundamental Frequency

• Static weight parameter

In order to find out a suitable way to use both MFCC and pitch features in KNN
algorithm (speaker pruning technique for our system), many methods have been
experimented. As mentioned before, the frame by frame combination of MFCC and
pitch cannot include the correct pitch information because of the property of pitch
location. Subsequently instead of trying to combine two features, we solved the
combining problem from another point of view that is to modify the similarity
calculation in KNN algorithm directly.

Method one:
One way to modify the similarity calculation in multi-KNN is to calculate the
Euclidean distances by using MFCC and Fundamental Frequency separately. The
Euclidean distance using only MFCC features dMFCC can be computed using (5.1).
Whereas the Euclidean distance using pitch dpitch is just the simple subtraction between
test signal’s pitch and the pitches of 22 speakers in the database. By combining the
MFCC and F0, a weight parameter on pitch distance is introduced:

 22
pitchMFCCEnew ddd ⋅+= δ (7.3)

where � is the weight for pitch information. Therefore we will then find the K-nearest
neighbors with the new distance, dEnew.

Since pitch is only supposed to give some help in separating genders, and it cannot
recognize speakers, a weight is used in (7.3) to avoid the domination of pitch
information over MFCC. However this method does not work well, since � is a constant
here, and it is also data-dependent, and have to be adjusted with new input data. No
suitable way has been found out to adjust the weight since the test signal is
unpredictable. If � is not suitable to data, the recognition achieved by MFCC will be
distorted by pitch information, which gives even worse recognition.

Method two:
Another similar method is also to introduce a static parameter �. This parameter
depends on the pitch detection result, but the difference is only the sign. We multiply
(1-�) to Euclidean distances between the unknown speaker’s examples and the
examples of all female speakers in the database; and multiply (1+�) to the male
Euclidean distances:

 MFCCnew dd ⋅±=)1(κ 11 <κ≤− (7.4)

First pitch detection of the test signal is performed to find out the gender of the speaker.
Then according to the gender of the unknown speaker, we decide the sign of parameter
�. For instance, if the gender of unknown speaker is female, then � is decided to be a
positive value.

 - 73 -

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0.25

0.26

parameter

te
st

 e
rr

o
rs

Effect of weight Parameter

Fig. 7.11 Effect of weight parameter � on test errors

The test errors decreased with the increasing of parameter �. It
proved that this method accomplished adding the pitch
information into MFCC to decrease the recognition errors. In
this case the decrease is around 31% while � >0.1.

Consequently the dMFCC between this speaker and all the female speakers in the
database will be decreased to some degree, which increases the percentage of female
speakers in K-nearest neighbors.

Fig. 7.11 gives the effect of using different �. In order to get a suitable value of this
parameter, we need to see its effect on test errors. The condition of this experiment was:
NK=4, NG=10, Nover=5. Here we used a female test speaker. When �=0, no parameter
was used, and the test error is equal to what we got from Fig.7.8 when NK=4, i.e.
0.2586. After � was increased larger than 0.1, the error became stable and unchanged,
i.e. 0.1795, and the improvement was around 31% compared with the case in Fig.7.8.
Therefore we can choose |�|=0.1 or 0.2.

However since the parameter is static, it cannot be suitable for all different cases. The
worst case is brought by the wrong gender recognition. Since the test signal is quite
short, the estimated pitch from the limited speech message may not be as reliable as
pitch from long signals. Hence mistakes in gender recognition exist. In this case, the
distance between unknown speaker and the true gender speakers in the database will be
unfortunately increased, which decreases the speaker recognition accuracy. Therefore
we found out a new method based on method two, where the weight parameter is
adaptive according to the precision of pitch detection.

 - 74 -

• Adaptive weight parameter

The new method has been briefly introduced in section 5.2. Instead of using a static
weight parameter as method two, we use an adaptive parameter also called �, which
depends on the precision of pitch detection:

4.0%)50(×−= fPκ []%100,0∈fP , []2.0,2.0−∈κ (7.5)

where Pf is the probability of unknown speaker being a female. That is if Pf>>50%, the
weight parameter � will get a large positive value; if Pf<50%, � is negative; and if Pf =
50%, the unknown speaker has equal possibility to be female and male, then in this case,
pitch doesn’t help and will not be taken into account. The range of this weight
parameter � is determined by observing the effect of using different values on test
errors, see Fig. 7.11. Since we only used a female test speaker, � only has positive value,
for both female and male speakers, the range of this parameter should be symmetric. A
safety boundary is chosen to be ±0.2.

According to the accuracy of pitch in recognizing the genders, we can use (7.4) to
modify this distance. The same as Method two, the (1- �) factor is multiplied to the
Euclidean distances between the unknown speaker and female speakers in the database;
and for the rest male speakers the Euclidean distances are multiplied by a (1+ �) factor.

To find out the gender probability of the new speaker, we calculated the distance
between the pitch (median pitch) from test signal and the mean pitch of female speakers
and male speakers. 22 F0 from ELSDSR were used, and signals from the suggested test
set were used. First we block the test signal into frames, and F0 from each frame will be
calculated, and then the median value of these pitches was found as the pitch of the new
signal. By calculating the distance from the new pitch to mean female pitch, and to
mean male pitch, we can find out the probability of being a female speaker Pf:

)/(FMMf dddP += (7.6)

where dM is the distance from new pitch to mean male pitch, and similarly dF is the
distance from new pitch to mean female pitch. Mean male pitch and mean female pitch
were based on the speakers’ pitches in our database. Our experiment proved the
reliability of pitch in separating genders. The pitch accuracy for gender recognition is
shown in appendix D2. We notice it can achieve high accuracy: by using 1s test signals,
the accuracies were above 69% for 22 speakers in ELSDSR; and using 2s signals, the
lowest accuracy was 85%, but for most of the speakers 100% accuracies were achieved.

Observing the confusion matrix, we can see the good recognition result after
introducing adaptive weight parameter �. The condition of this experiment was: NK=4,
NG=10, Nover=5. Compared with the confusion matrix we got before, shown again for
convenience, where the correct classification was 74.15%, the misclassification
between genders all disappeared, and the diagonal of the matrix still kept the highest
value of each row, which gave 82.05%. The improvement was around 10.7% w.r.t. the
former classification accuracy.

 - 75 -

Confusion Matrix (new) = Estimated speakers
 P1 P2 P3 P4 P5 P6

 P1 69 6 3 0 0 0
 P2 15 62 1 0 0 0

 P3 10 22 46 0 0 0
 P4 0 0 0 64 9 5
 P5 0 0 0 5 65 8
 P6 0 0 0 0 0 78

As mentioned before method two devastates the recognition when pitch detection gives
wrong gender recognition. However by introducing the adaptive weight parameter even
though the gender recognition is wrong, the true speaker has still chance to be picked
out in speaker pruning (details come in Section 7.3) as candidates waiting for HMM
modeling and final recognition. Experiments have been done to compare the static and
adaptive weight methods in the worst case. The training set includes 22 speakers speech
message from ELSDSR, and test data was from one male speaker P15. The
probabilities of the male speaker being each of these 22 speakers using both methods
are shown in Table 7.1. Suppose that we pick out the first 6 speakers who have biggest
probability to be the unknown speaker after speaker pruning. Hence when Static �=0.1
the probability of unknown speaker being P15 (true speaker) is only 1.28%, and it’s not
in the first 6 candidates; when �=0.2 the situation becomes even worse, the method two
eliminates all the speakers who have different gender to the estimated gender from
unknown speaker. Whereas using adaptive weight � method, the Pf from pitch
estimation was 57.07%, consequently � became 0.0283, and the true speaker P15 was
included into the first 6 candidates.

Tr
ue

 S
pe

ak
er

 - 76 -

Table 7.1 Comparison between static weight and adaptive weight methods.
Probability Static �=0.1 Static �=0.2 Adaptive �=0.1

P1 0.17958 0.1923 0.1667
P2 0.0769 0.0769 0.0769
P3 0.0769 0.0641 0.0513
P4 0.0641 0.0641 0.0256
P5 0.0641 0.0641 0.0256
P6 0.1154 0.1282 0.0897
P7 0.0256 0.0256 0.0256
P8 0.2436 0.2436 0.2436
P9 0.0641 0.0513 0.0513

P10 0.0769 0.0897 0.0769
P11 0 0 0
P12 0 0 0.0385
P13 0 0 0.0385
P14 0 0 0.0128
P15 0.0128 0 0.0641
P16 0 0 0
P17 0 0 0
P18 0 0 0
P19 0 0 0
P20 0 0 0
P21 0 0 0
P22 0 0 0.0128

It shows the probability of the unknown speaker (P15) being speaker P1 to P22 after
KNN with static and adaptive weights respectively.

8 The first 6 candidates who have the biggest probability being true speaker were given in red
color.

 - 77 -

7.3 Speaker Pruning

Speaker pruning in our SRS is designed to increase the recognition accuracy. KNN as a
simple algorithm was chosen to be pruning technique in our system. As we introduced
in Section 5.2, we should solve the listed issues for pruning algorithm: features
selection; the matching score; number of nearest neighbors; pruning criterion; time
consumption.

In the previous work, we proved that MFCC features are superior to LPCC in speaker
recognition for KNN algorithm, and 48 MFCC gave better recognition than 24 MFCC
(experiments have been done with both TIMIT and ELSDSR database.) However 24
MFCC and 48 MFCC will both be experimented and compared, with the intention of
increasing speaker pruning speed, while keeping the pruning error rate relative low.
More details come in subsection 7.3.2. In our speaker pruning, the matching score will
be calculated using our invented method (7.4) with adaptive weight parameter.
Obviously both MFCC and pitch features are needed here. For reducing the error rate,
the recognition accuracy improvement method introduced in subsection 7.2.3 will also
be used. By saying the pruning criterion, we mean the number of speaker (Ns) we are
going to select for the later speaker modeling and recognition by HMM. These speakers
should be the most likely ones to the unknown speaker. The pruning criterion depends
on the accuracy of KNN for speaker recognition: if the accuracy is not so high, then
more speakers should be retained.

7.3.1 Training Set Size

First of all, let’s decide the size of training and test sets. Learned from appendix D2,
gender recognition using pitch extracted from 2s speech signal can achieve almost
100% accuracy for most of the speakers. Hence the test signal is chosen to be 2s long.
Remember the time consumption is also critical in our pruning task. Therefore it makes
the size of training set becoming an important issue. As mentioned before, KNN
algorithm does not build any models; instead, all the training data have to be retained.
The more training data we have the more memory we need, and the more distances
need to be calculated, consequently the slower the pruning will be. On the other hand,
the less training data, the lower recognition accuracy. The trade-off [27] between
achieving lower error rate, and consuming less time is an important point in our pruning
task.

For the purpose of finding the desired size of training set, we first set the other
parameters as constants: the number of nearest neighbor NK=10; the number of group
members in accuracy improved KNN NG=10, overlap amongst groups Nover=5; the
number of retained speakers after pruning NS=4; and the feature dimensionality is 48.
By using different size of training data set, we calculated the recognition time
consumption, while at the same time the test error of recognition.

 - 78 -

10 20 30 40 50 60 70 80 90 100 110
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Trade-off between error rate and time consumption

Training set size (s)

error
time
sum

Fig. 7.12 Searching desired training set size

This figure shows the trade-off between the time and error rate, and the
desired size for training set is appeared at the lowest point in the sum curve
of these two factors, which is 55s. Here the normalization of time and error is
necessary.

Here the error is defined as the probability of failing to include the true speaker into the
NS retained speakers. The normalization of the time and error is necessary since these
two variables do not have the same scale and have totally different definition and
property. The normalization is to make the range of both two factors the same; and
consequently equal the influence of both factors on training set size. The normalization
is as follow:

)min()max(

)min(

befbef

befbef
aft xx

xx
x

−
−

= (7.7)

where xbef represents either time or error before normalization, and xaft stands the values
after normalization. Notice that the subtraction of min(xbef) in the nominator of (7.7) is
optional, since it will not affect the shape of the sum in Fig. 7.12.

After normalizing the time and error rate, the trade-off between the time and error rate
was found, see Fig. 7.12. The desired size for training set appeared at the lowest point
in the sum curve of these two factors: the time consumption and the test error, which is
55s. It means for each speaker 2.5s (55/22=2.5) signal is desired for training.

 - 79 -

7.3.2 Feature Dimensionality in Speaker Pruning

In the previous experiments, we found out the desired training set size for this pruning
task, i.e. 55s. Next step is to find out the feature dimensionality. We know from the
experiments we did before that 48MFCC is superior to 24 MFCC in speaker
recognition. However since the most time consumption part is the distance calculation,
the feature dimensionality becomes another important issue for speaker pruning.
Comparison between 24 MFCC and 48 MFCC in pruning task will be made to find out
the suitable feature dimensionality from the perspective of recognition accuracy and
time consumption. Table 7.2 gives the time consumption and test errors of pruning task
using 24 and 48 dimensional features respectively. Learned from the previous
experiments, the training set was set to be 55s with 2.5s for each speaker, and test set
was 2s. Four different training set were used. The other parameters were set to: NK=10,
NG =10, Nover=5 and NS=6.

 Table 7.2 Time consumption and Test Errors using 24MFCC & 48MFCC
48MFCC 24MFCC Training

Set Time (s) Error Time (s) Error
1 19.6947 0.1522 11.1824 0.3478
2 19.9877 0.1522 10.9864 0.3261
3 20.2772 0.1087 11.0795 0.3261
4 19.8863 0.2074 10.8906 0.3043

Average 19.9600 0.1551 11.0347 0.3261

As we did in Fig. 7.12, we should find out the smallest sum of time and error. However
since time and error have different scale and variance, directly summation doesn’t
follow the assumption of time and error having equal weight/influence on results.
Therefore we will compare the percentage of time changing and error changing to
decide the dimension of features:

Time: (19.96-11.0347) /19.96=44.72%
Error: (0.3261-0.1551) /0.1551=110.3%

Notice the time changing was 110.3%, whereas error changing was 52.44%. It means
even though we saved a little bit time by using lower dimensional features, we lost
much more recognition accuracy. Therefore it is better to choose 48 MFCC in our study.
However the choice of feature dimension does really depend on the applications,
whether time is more critical or error is.

7.3.3 Determining the Other Parameters

After determining the two most important issues in our speaker pruning, the other
parameters, such as NK, NG and Nover need to be decided. Based on our experience from
the experiments, the changing of the number of nearest neighbors, the number of group
members and overlap are not critical to the time consumption. Thus we put our
attention on the test error again to find out the optimal values.

 - 80 -

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3

3.5

NK

E
rr

or
/ T

im
e

(s
)

N
k
 Iteration in Speaker Pruning

error
time

Fig. 7.13 NK iteration for finding optimal NK

This figure gives the changing of the errors with different nearest neighbors. NK is
from 1:20. When 7 neighbors were used, we got the minimum error, i.e. 0.0709.
Here we proved that the number of NK doesn’t give a big influence on the time
consumption, since the time consuming calculation in pruning/KNN is the distance
computation. (the time here doesn’t refer to total time consumption of speaker
pruning, and it just shows the variance of using different NK.)

The number of group members in accuracy improved KNN depends on the data very
much, and it’s hard to say which value is desired. The more members in one group, the
more accurate the group label will be; but too many group members will cause the lack
of data problem, hence decrease accuracy. From our experimental experience with
different NG and Nover, we can loosely say that when NG=10 and Nover=5, the group
label is accurate enough, while the data are also sufficient.

For finding optimal number of nearest neighbors, we do the NK iterations as before. The
setup of this experiment is following the results of previous experiments: NG=10,
Nover=5, training set size=55s, test set size=2s, feature dimension=48 and retained
models NS=6. Fig. 7.13 shows the results. Notice with the iteration of NK the time
consumption is very equable (expect the case with only one nearest neighbor). While
NK=7, the minimum error rate was found to be 7.09%.

In this section, we introduced speaker pruning technique into our recognition system.
The important issues of speaker pruning are the size of training set and the dimension
of features from the error and time consumption perspective. The optimal values for
training set size and feature dimension are 55s and 48 respectively. Afterwards with the
optimal values of these two issues, we decided the number of nearest neighbors NK, the
number of group members NG and overlap between groups Nover.

 - 81 -

In the next section, we will use HMM on the survived speakers to fulfill speaker
modeling and recognition. According to the recognition accuracy of HMM within the
survived speakers, we will adjust the pruning criterion.

7.4 Speaker Modeling and Recognition

Following the steps of enrollment phase in SI, shown in Fig. 1.5, after front-end
processing the feature vectors will be processed by some speaker modeling methods to
create speaker models. Here the statistically mature method, HMM, were used for
speaker modeling. In detail, the Discrete-Density HMMs introduced in Chapter 4 were
used. For DDHMM, the number of codewords K, the number of states N, and the model
parameters � = (A, B, �) should be set before and during training/ learning procedure.

As for the identification phase in SI, it is slightly different from the steps shown in Fig.
1.3 due to the introduction of speaker pruning process. The speaker pruning should be
done right after the front-end processing, and the candidates are picked out of all the
speakers in the database. The feature vectors of those candidates will then be input to
the DDHMM for pattern recognition, finally the decision will be made according to the
maximum selection. Introduced in subsection 4.2.3, DDHMM needs more memory for
storing codebooks, whereas spends less computation time than CDHMM [28].
Therefore in our system, DDHMM is chosen.

In the following subsections, we will give the experimental results on speaker modeling
and speaker recognition respectively.

7.4.1 Speaker Modeling

Speaker modeling refers to training hidden Markov model for each speaker, and get a
set of the model parameters. The speaker modeling follows the solution of the third
essential problem introduced in subsection 4.2.2.

The first task is to derive codebooks. The training feature vectors from all the speakers
in the database will be gathered together to create one or more codebooks. Normally
only one codebook is derived from one training set, however since we introduced the
delta coefficient, two codebooks were created: one is for the lowest 24 MFCC; the
other is for the rest feature vectors [28]. The algorithm for vector quantization was
chosen to be K-means. K-means is to partition the data points (feature vectors {fvi})
into K disjointed subsets Sj containing numbers of data points in each subset. According
to the commonly used version of K-means, random cluster centers have been selected
from the data points, and then adjusted according to the space spreading of feature
vectors and the subset members of each cluster. The adjustment of cluster centers is
evolved in a way to minimize the sum-of-squares clustering function as follows:

 - 82 -

 ��
= ∈

−=
K

j Sn
j

n

j

fvJ
1

2
µ (7.8)

where fvn represents the members in subset Sj, and �j is the center (mean) of the data
points in subset Sj. After one evolution, each point is re-assigned to a new set according
to the nearest mean vector, and the means of each subset are then recomputed. The
evolution stops until there’s no big change in the grouping of the data points [27].

K-means turns the continuous feature vectors into a sequence of discrete observation
symbols which have lower dimensions than the original feature vectors. Those
quantized vectors regarded as discrete observations will then be input into DDHMM.
By adjusting the model parameters using Baum-Welch algorithm, we are trying to get

the maximum likelihood)|(maxarg λλ
λ

OP= for observing the quantized feature

vectors from each speaker. For each speaker there exists one HMM. The codebooks
derived by the training set will also be used to quantize the test feature vectors.

Finding desired N and K

The following experiments have been done to find out the desired number of states and
number of codewords (discrete observation per state) for speaker recognition and for
our own database ELSDSR. For the K-means clustering algorithm, the number of
centers (K) must be decided in advance [27]. Moreover for DDHMM, the number of
states (N) should also be decided before executing training and testing. However we
had no idea what the value of these two parameters should be for our recognition task
and for our database. Therefore K and N were set to different values for observing their
influence on the test errors for recognizing speakers.

The training set has been set to be 22s per speaker, i.e. 22*22=484s long signals. Before
vector quantization, the front-end processing was performed with preemphasis and
feature extraction described in 7.2.1. Subsequently, feature vectors were input into
K-means algorithm, and then discrete observations were generated. Subsequently, the
discrete observations were used to train the HM models for each speaker. The model
parameters � = (A, B, �) were initialized randomly. Afterwards, the Baum-Welch EM
reestimation algorithm was performed to update and devise the model parameters until
the local maximum of the likelihood P(O|�) was reached. The adjustment or update of
the model parameters utilizes equations (4.18) derived in subsection 4.2.2.

With the purpose of finding out the desired number of states N and number of
codewords K, experiments with different combination of N and K have been done. For
these experiments, 10 different test sets were used. All the test sets have the same
amount of speech messages from Ns=6 candidates, i.e. 5s. Table 7.3 shows part of the
results which are representative. Two codebooks were derived: first one was generated
by quantizing the lowest 24 MFCC vectors into K codewords; the second one was from
the 24 delta MFCC vectors converted into K codewords as well. Finally two sets of

 - 83 -

likelihood {P1(O|�)} and {P2(O|�)} were calculated. Err1 represents the test error using
only the first codebook to test the lowest 24 MFCC from test signals. Similarly Err2
stands the test error using the second codebook only. ERR gives the final test error
using both codebooks. The final P(O|�) was calculated as follow:

)()()(21 ííí OPOPOP λλλ ⋅= 221 ≤≤ i

 or equivalently)(log)(log)(log 21 ííí OPOPOP λλλ += (7.9)

where i is the model sequence.

Take a look at Table 7.3, when K is smaller than 128, the errors (Err1, Err2 and ERR)
from one state DDHMM were always smaller or at least not bigger than multi-state
DDHMM. The result proves and accords with the summary of [9] and [23] about
text-independent speaker recognition using DDHMM. The desired number of
observations per state in this study is 32 with two codebooks, which gave 3.7% error
rate. When K is too small, the codewords (clusters) are not enough for quantizing and
separating 22 speakers speech messages; whereas when K is too big the data space was
divided into too many clusters, and each cluster has few data points, as a result the
model was easy to be over trained, which took the noise or speaker-independent
information into account. The extreme case is that for each data point there is a cluster
whose center is the position of data point.

Table 7.3 Test Errors from Codebook1, 2 separately and together with different N and K.

K=16 K=24 K=32
States

Err1 Err2 ERR Err1 Err2 ERR Err1 Err2 ERR

1 0.3704 0.2037 0.3704 0.0926 0.2407 0.0741 0.0556 0.1296 0.0370

2 0.3704 0.2963 0.4259 0.2778 0.7222 0.2963 0.3889 0.5000 0.3704

3 0.3704 0.6296 0.3704 0.3704 0.8148 0.3889 0.2407 0.7222 0.2778

4 0.3704 0.5185 0.3704 0.2407 0.7593 0.3148 0.0926 0.4815 0.1296

5 0.5185 0.6111 0.5000 0.1481 0.7037 0.2222 0.0926 0.5741 0.0926

K=64 K=72 K=128
States

Err1 Err2 ERR Err1 Err2 ERR Err1 Err2 ERR

1 0.2963 0.2037 0.2963 0.4259 0.0926 0.4259 0.4630 0.0370 0.4630

2 0.2963 0.4259 0.3519 0.5741 0.2037 0.5741 0.4630 0.1481 0.4444

3 0.3519 0.5556 0.3519 0.5000 0.6481 0.5370 0.4630 0.3148 0.4444

4 0.2963 0.6667 0.2963 0.4259 0.4444 0.4259 0.4630 0.2593 0.4444

5 0.3148 0.5185 0.3519 0.4444 0.3519 0.4444 0.4630 0.3333 0.4630

Note: the errors shown above were the average of 10 times experiments; Ns=6.

 - 84 -

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Errors with Different Combination of N and K

N

E
rr

o
rs

K=16
K=24
K=32
K=48
K=56
K=64
K=72
K=80
K=96
K=128
K=180

Fig. 7.14 Test errors with different combination of N and K

Notice in almost all the cases, N=1 gave lower test errors than multi-states
cases; while for K=32 N=1, the test error got the lowest value. The errors
shown in the figure were from both codebooks which correspond to ERR in
table 7.3.

Since we used two codebooks in our system, we found out an interesting result
happened when K is quite big. Take a look at the data in Table 7.3 while K=72 and 128,
using the codebook from the first 24 feature vectors gave very low recognition accuracy,
on the contrary using the second codebook generated by the first time derivative
features gave much high accuracy while only one state was used. Therefore we can
grossly say that with small K, using both codebook1 and 2 gives better recognition
accuracy for one state DDHMM; whereas for large K, using only codebook2 gives
better result for one state DDHMM.

Fig. 7.14 gives the test recognition errors using both codebooks with different
combination of K and N. The states were from 1 to 5, and K was from 16 to160. From
this experiment we proved again that one state models give higher accuracy than more
state models, and 32 codewords for each codebook, in other words, 32 distinct
observations per state gives the best recognition in this study. The desired number
observations per state are different from database to database. For example, for TIMIT
database with only one codebook for 48 dimensional features, the desired K was 128.
However for the number of state, it was the same no matter whether TIMIT or ELSDSR
was used, i.e. N=1 offered the best results.

 - 85 -

7.4.2 Speaker Recognition

With desired N=1 and K=32, we can build 22 discrete density hidden Markov models
for each known speaker. In this subsection we will show the recognition accuracy we
achieved with different size of test set and different number of candidates survived
from speaker pruning.

Table 7.4 provides the accuracy rate in different experiment setups. The test set for
HMM recognition was changing from 2s to 6s with the same training set 22*22=484s
(22s for each speaker). The speaker pruning was performed only on 2s test signal, since
the distance calculation takes time and the training and test data points need amount of
computer storage. The candidates for further DDHMM recognition were from 4 to 8.
Notice the more speaker retained, the lower HMM recognition accuracy becomes,
whereas the more test data used, the higher HMM recognition accuracy achieved. With
Ns=4 and 6s test set, the HMM recognition reached 100%. However since few
candidates survived from speaker pruning, the accuracy of including the true speaker
into the candidates becomes lower. Therefore we should not only pay attention on the
individual recognition accuracy, but the total accuracy as well. It was calculated as
follows:

HMMsptotal AccuracyAccuracyAccuracy ×= (7.10)

where Accuracy = 1-Error. In table 7.4, A1 represents AccuracyHMM, A2 represents
Accuraysp, and A is the total accuracy of the system.

The highest recognition accuracy, 92.07%, appeared when 8 candidates were remained,
and 6s test set was used for HMM recognition. However direct speaker recognition
using DDHMM for 22 speakers was not so reliable, and the highest accuracy was only
84.21%. The improvement brought by speaker pruning was 9.3% w.r.t the former
accuracy. We can definitely say that the introduction of speaker pruning increases the
total recognition accuracy. Whereas the recognition speed is slowed down a little bit.
For details on time consumption, see appendix D3.

It is necessary to mention one practical problem occurred in the procedure of codebook
deriving. As we mentioned the codebook is formed by K-means algorithm, the feature
vectors should be all stored and quantized into K codewords. When more data will be
used for training, more memory and time will be spent on quantizing the feature vectors
into codewords. Here for training set we only used two seventh of suggested training
data in our database ELSDSR, since large training set brought out of memory problems
to Matlab implementation. It’s one reason that the highest recognition accuracy of our
speaker recognition system is not as high as some other systems. The comparison of our
work to others will be given in Chapter 8.

 - 86 -

Table 7.4 Summary of Recognition accuracy
Test set

Accuracy(%)
2s 3s 4s 5s 6s

HMM with Ns=4 A1= 83.33% A1= 88.89% A1= 94.44% A1= 97.22% A1=100 %

Speaker pruning (2s) A2= 86.57% A2= 86.57% A2= 86.57% A2= 86.57% A2= 86.57%

Total error
A=A1*A2

A= 72.14% A= 76.95% A= 81.76% A= 84.16% A= 86.57%

HMM with Ns=6 A1= 75.93% A1= 87.04% A1= 88.89% A1= 96.3% A1=97.62%

Speaker pruning (2s) A2= 92.91% A2= 92.91% A2= 92.91% A2= 92.91% A2=92.91 %

Total error
A=A1*A2

A= 70.55% A= 80.87% A= 82.59% A= 89.47% A= 90.70%

HMM with Ns=8 A1= 72.22% A1= 79.11% A1= 84.72% A1= 90.28% A1=96.43 %

Speaker pruning (2s) A2= 95.48% A2= 95.48% A2= 95.48% A2= 95.48% A2= 95.48%

Total error
A=A1*A2

A= 73.73% A= 75.53% A= 80.86% A= 86.20% A= 92.07%

HMM with 22
speaker models

60.1% 68.18% 72.22% 80.81% 84.21%

 - 87 -

Chapter 8 Conclusion and Future Work

Conclusion

In this thesis, work has been focused on establishing a text-independent closed-set
speaker recognition system. Efforts have been distributed into 4 main parts:

• Database Establishment

With the purpose of collecting more speech samples, an English language speech
database for speaker recognition was built during the period of this project. It contains
rich speech messages and captures almost all the possible pronunciation of English
language: vowels, consonants and diphthongs.

• Feature Selection

Feature is critical for any systems. During this work, cepstral coefficient, LP based
cepstral coefficient, MFCC and Pitch were extracted and compared with variant
techniques: PCA, binary and multi- KNN. Finally MFCC were chosen, which accorded
with the suggested and commonly used features in speaker recognition [18].
Subsequently, feature dimension became another issue waiting to be decided. Testing
with different dimensional features, 48 MFCC performed superior to the other
dimensions.

• Performance Improvement

Several methods were investigated in increasing the performance of this system on
recognizing speaker ID within 22 speakers from ELSDSR database.

1. Speaker pruning technique (Chapter 5 and 7)
Speaker pruning technique was introduced into our system for the purpose of
increasing the recognition accuracy with a little cost of speed. KNN algorithm was
implemented to eliminate some of the most dissimilar known speakers with the
unknown speaker in ELSDSR database. By this means, HMM recognition only
needs to be performed on the ‘survived’ speaker models, which increased the
accuracy. Due to the intention of this speaker pruning in the system, it’s designed to
be different from the pruning technique, which is to find out the speaker ID with
only pruning method [26]. Whereas, herein it is regarded as pre-election before the
final election performs. The pruning time consumption mainly depends on the
training set size and feature dimensions. The pruning accuracy depends on the
number of ‘survived’ candidates. With 6 candidates and 2s test set, the speaker
pruning accuracy was 92.91%; whereas with 8 candidates, it was 95.48%.

 - 88 -

2. Improvement of KNN algorithm (Subsection 7.2.3)
Since KNN algorithm was used as the speaker pruning technique, improving the
performance of KNN in matching score calculation is necessary. The frame by
frame label method was modified into group by group label method, which divided
the frame by frame labels into groups with overlaps, and then find the label of each
group by majority voting. By doing so, recognition accuracy of KNN was increased
13.3%, since the groups contain richer information than the frames, and the labels
became more reliable.

3. Merging Pitch with MFCC in KNN similarity calculation (Chapter 5 & 7)
Several methods for combining pitch and MFCC in similarity calculation have been
discussed and tested. Finally the method with adaptive weight parameter
outperformed. The initial intention was to combine two features together. However
problems occurred due to the low frequency location of fundamental frequency. The
combination method adds the pitch estimation results into the Euclidean distance
calculation to decrease the misclassification of the gender. It is applicable to all
algorithms with distance calculations. The adaptive weight depends on the
probability of unknown speaker being female. In the worst case, where gender
recognition using pitch is wrong, the method can also include the true speaker into
candidates after speaker pruning, since the weight becomes very small and will not
bring disaster to the distances computed with MFCC, as the method one and two do
(Subsection 7.2.4).

• HMM Training

For DDHMM, the number of observations per state and the number of state should be
determined in advance. They were decided by experimental results: K=32 per state and
one state in HMM. Actually as proved in [9], and quoted in [23], for text-independent
applications the information on transitions between different states is ineffective, it
means one state in HMM performs better or at least the same as multi-states. This claim
was also proved in our experiments with both ELSDSR and TIMIT database. To get the
discrete observations, vector quantization was performed by K-means algorithm. Two
codebooks were derived: one was for the lowest 24 MFCC; the other was for the 24
first time derivative features vectors. The deriving of codebooks is the most time
consuming and memory spending part, which brought practical problems in this system.
When more data are used for training, more memory and time is spent on quantizing
the feature vectors into codewords. In our experiments, generating one small codebook
(with less than 64 codewords) took at least one hour on an Intel Pentium IV computer
(2.5GHz); and for larger data set with more codewords it can take 3 to 4 hours.
Moreover because of the Matlab memory problem, only two seventh of the suggested
training data in ELSDSR database was used. With the limited training data, 22s per
speaker, and 6s test set from unknown speaker, the HMM recognition achieved 97.62%
accuracy with 6 ‘survived’ candidates; and the accuracy for 8 candidates was 96.43%.
However with no doubt, the HM models will become more reliable trained with more
training data. Another problem should be mentioned is DDHMM, as a doubly

 - 89 -

stochastic process, is hard to train and the recognition results are different from time to
time even with the same setups.

Finally we take both speaker pruning accuracy and HMM recognition accuracy within
candidates into consideration, and get the accuracy for the whole system. The highest
recognition accuracy the system achieved was 92.07% with 8 candidates and 6s test
signal. However speaker recognition performed by HMM directly from all the speakers
in the ELSDSR gave a lower accuracy, 84.21%.

The comparison of the work in this project to other researchers work in speaker
recognition field is necessary. According to Reynolds’s work in 1996 with HMM
approach [36] in text-independent speaker verification, the identification error rate with
3s test speech recoded in telephone was 11%; and with 10s test speech error became
6%. Our work was done in generally difficult text-independent case, with 6s test speech
recorded in lab, and the lowest error rate was 7.93% with speaker pruning and HMM
approaches. Both of the work used MFCC with first time derivatives.

From a Master project work on text independent speaker recognition [30], the best
accuracy in identifying the correct speaker is roughly 70%. The approach used in this
project was weighted VQ, invented in [35], with MFCC, DMFCC, DDMFCC and Pitch.
In [6], the recognition system reached 99% recognition rate with 10 speakers database
and 1.5 s test speech, which is quite impressive and can be used as a real-time system.

Future Work

In our system speaker pruning was introduced. Because of this step we reduced the
number of pattern matching in the next HMM recognition step, which increases the
recognition accuracy since HMM does not perform well in speaker recognition from a
large set of known speakers in our study. However in the mean while we slowed down
a little bit of the recognition speed. The KNN algorithm was used as pruning technique.
It retains all the training set and takes time to calculate the Euclidean distances between
new examples and all the examples in the training set. Therefore, for the future research,
more work need to be done for improving the KNN performance. For example
weighted method introduced in [35] could be one solution. A variant of this approach
calculates a weighted average of the nearest neighbors. Given a specific instance e that
shall be classified, the weight of an example increases with increasing similarity to e
[34].

As mentioned in subsection 4.2.3, the DDHMM stores the generated codebooks in
advance, whereas CDHMM calculates the probability for each observation during
training and recognition. Therefore we chose DDHMM as speaker modeling method
since it spends less computation time, even it needs more memory for storing
codebooks [28]. However, while saving computation time, we lose some recognition
accuracy. According to [9], an ergodic CDHMM is superior to an ergodic DDHMM, so
the study and implementation of CDHMM may be one of the future works to increase

 - 90 -

the recognition accuracy for our speaker recognition system.

Finally, some work could be done in the future on feature pruning. Now we are using
48 dimensional MFCC including 24 first time derivatives. Because of the curse of
dimensionality, we could try to get lower dimensional features while keeping the most
important and speaker-dependent information [13].

 - 91 -

 A Essential Problems in HMM

A1 Evaluation Problem

A1.1 Forward Algorithm

The evaluation problem is solved by forward-backward algorithm, which has less
computational complexity than the naive way mentioned in subsection 4.2.2. The
definition of forward variables is shown in (4.8), and for convenience we repeat it here:

),()(21 λ==α ittt sxoooPi � (A.1.1)

The forward recursion can be explained inductively as follows:

• Initialization:

)(),()(1111 obsxoPi iii πλα === , Ni ≤≤1 (A.1.2)

When t=1, the joint probability of initial observation o1 and state si is expressed by
the multiplication of the initial state distribution �i and the emission probability of
the initial observation bi(o1).

• Induction

In this step, we will lead the forward variable through time. (A.1.1) shows the
forward variable at time t, and suppose at time t+1, model goes to state sj from N
possible state si (Ni ≤≤1), and then the forward variable at time t+1 can be derived
as follows:

)()(

),(),(),(

),,(

),(

)(

1
1

1
11121

1
1121

1121

1

+
=

=
+++

=
++

++

+

�

�
�
�

� ⋅=

=⋅==⋅==

===

==

�

�

�

tj

N

i
ijt

N

i
jttjtititt

N

i
jtittt

jttt

t

obai

sxoPsxsxPsxoooP

sxsxooooP

sxooooP

j

α

λλλ

λ

λ
α

�

�

�

 (A.1.3)

 Nj ≤≤1 , 11 −≤≤ Tt

We notice that the last step of (A.1.3) gives the recursion of the forward variable.

 - 92 -

• Termination

From (A.1.1), we know the terminal forward variable (when t=T) is:

),()(21 λα iTTT sxoooPi == � (A.1.4)

Therefore the desired P(O|�) is just the sum of the terminal forward variable:

�
=

α=λ
N

i
T iOP

1

)()((A.1.5)

A1.2 Backward Algorithm

The definition of the backward variables are: given the model � and the model is in
state si at time t, the probability of having seen the partial observations from time t+1
until the end:

),()(21 λβ itTttt sxoooPi == ++ � (A.1.6)

Same as the forward algorithm, backward algorithm could also be explained in steps as
follows:

• Initialization

When t=T, the backward variable becomes 1 for all permitted final states:

1),()(=== λβ iTTT sxoPi , Ni ≤≤1 (A.1.7)

• Induction

When at time t, the backward variable could be expressed as follow:

�
=

++=
N

j
ttjijt jobai

1
11)()()(ββ , 1,,2,1 �−−= TTt , Ni ≤≤1 (A.1.8)

We read (A.1.8) from right to left, due to the backward recursion what we know

is)(1 jt+β , we need to derivate the backward variable for the previous time. From

the elements of an HMM, we know the probability of having observation ot+1 at

time t+1,)(1+tj ob , and the probability of jumping from state si is sj, ija , then the

variable for the previous time is just the sum of the production of those three components.

 - 93 -

A2 Optimal State Sequence Problem

The optimal criterion is aimed at choosing the state sequence having the maximum
likelihood w.r.t the given model. The task can be fulfilled recursively by the Viterbi
algorithm.

The Viterbi algorithm uses two variables:

�t(i) is defined as the probability of having seen the partial observation (o1, o2,…, ot)
and the model being in state si at time t by the most likely path, which means that the
�t(i) is the highest likelihood of a single path among all the paths ending in state si at
time t.

),(max)(2121
121

λδ itt
xxx

t sxxxoooPi
t

==
−

��
�

 (A.2.1)

�t(i) is defined to keep track of the best path ending in the state si at time t:

),(maxarg)(2121
121

λψ itt
xxx

t sxxxoooPi
t

==
−

��
�

 (A.2.2)

The procedure of Viterbi algorithm is summarized as follows into four steps:

• Initialization

The initialization of �t(i) is the same as that of forward variable)(1 iα :

)(),(max)(1111
121

obixoPi ii
xxx t

πλδ ===
−�

 (A.2.3)

0)(1 =iψ (A.2.4)

• Induction

)())((max)(111 +≤≤+ ⋅= tjijtNit obaij αδ , Nj ≤≤1 , 11 −≤≤ Tt (A.2.5)

))((maxarg)(
1

1 ijt
Ni

t aij ⋅=
≤≤

+ αψ , Nj ≤≤1 , 11 −≤≤ Tt (A.2.6)

Notice the difference between (A.2.5) and the last step of (A.1.3), in (A.2.5) only
the path (sequence) with highest likelihood survived.

 - 94 -

• Termination

)(max)(
1

* iOP T
Ni

δλ
≤≤

= (A.2.7)

)(maxarg
1

* ix T
Ni

T δ
≤≤

= (A.2.8)

where *
Tx is the optimal final state, and * denotes the optimal value.

• Backtracking

 In the termination step we get the optimal final state, then by doing backtracking,
we can find out the optimal state sequence:

{ }**
2

*
1

*
TxxxX �= and)(*

11
*

++= ttt xx ψ t = T-1, T-2,…,1 (A.2.9)

 - 95 -

B Normalized KNN

Table B Normalized Data for KNN algorithm (NK=3)

Name Age Math Physics Chemistry Qualified Euclidean distances from George

Alice
18/40
=0.45

10/13
=0.77

10/13
=0.77

10/11 =0.91 Yes
[(0.675-0.45)2 + (1-0.77) 2 + (0.85-0.77) 2 +

(1-0.91)2]½ = 0.344 (2nd)

Tom
25/40

=0.625
7/13

=0.54
8/13

=0.62
9/11 =0.82 No

[(0.675-0.625)2 + (1-0.54) 2 + (0.85-0.62) 2

+ (1-0.82)2]½ = 0.547

Jerry
22/40
=0.55

9/13
=0.69

10/13
=0.77

11/11 =1 Yes
[(0.675-0.55)2 + (1-0.69) 2 + (0.85-0.77) 2 +

(1-1)2]½ = 0.344 (2nd)

Homer 40/40=1
5/13

=0.38
3/13

=0.23
6/11 =0.55 No

[(0.675-1)2 + (1-0.38) 2 + (0.85-0.23)2 +

(1-0.55)2]½ = 1.038

Lisa
23/40

=0.575
11/13
=0.85

13/13
=1

10/11 =0.91 Yes
[(0.675-0.575)2 + (1-0.85) 2 + (0.85-1) 2 +

(1-0.91)2]½ = 0.251 (1st)

Bart
35/40

=0.875
6/13

=0.46
7/13

=0.54
5/11 =0.45 No

[(0.675-0.875)2 + (1-0.46) 2 + (0.85-0.54) 2

+ (1-0.45)2]½ = 0.855

George
27/40

=0.675
13/13

=1
11/13
=0.85

11/11 =1 YES

Table B shows the normalization of variables for KNN algorithm. The normalization is
to avoid the domination of variables with large values. It should be done before
computing the Euclidean distances. Using the data set from Example 5.1, first we found
out the maximum value for each variable, the italic numbers in the table. Then all the
variables are divided by the maximum values, shown in the left half of the table.
Afterwards the Euclidean distances can be calculated for finding the smallest NK
distances, which represents NK nearest neighbors. Here NK is set to 3. The 3 nearest
neighbors of George are Lisa, Jerry and Alice. However, without normalization, the 3
nearest neighbors are Lisa, Jerry and Tom. It is caused by the domination of Age
variable. Nevertheless, as we said before, in this example the normalization effect is not
so obvious, and doesn’t effect the final decision.

 - 96 -

C Database Information

C1 Detailed Information about Database Speakers

 Table B.1: Information about Speakers

Speaker ID Age Nationality
FAML 48 Danish
FDHH 28 Danish
FEAB 58 Danish
FHRO 26 Icelander
FJAZ 25 Canadian
FMEL 38 Danish
FMEV 46 Danish
FSLJ 24 Danish
FTEJ 50 Danish
FUAN 63 Danish
Average 40.6
MASM 27 Danish
MCBR 26 Danish
MFKC 47 Danish
MKBP 30 Danish
MLKH 47 Danish
MMLP 27 Danish
MMNA 26 Danish
MNHP 28 Danish
MOEW 37 Danish
MPRA 29 Danish
MREM 29 Danish
MTLS 28 Danish
Average 31.75

 - 97 -

C2 Recording Experiment Setup

C2.1 3D Setup

 - 98 -

C2.2 2D Setup with Measurement

 - 99 -

D Experiments

D1 Text-dependent Case for Binary KNN

Two 4s long signals were cut from FJAZ_Sa.wav and MKBP_Sa.wav. Then features
extracted from these two signals were concatenated together to work as training
examples. For the test set, two 3s signals from FJAZ_Sb.wav and MKBP_Sb.wav
separately were cut and their features were then concatenated. The features we used all
have 24 dimensions.

0 2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

NK

E
rr

or
s

KNN for MFCC and LPCC with preemphasis
MFCC Label1 error
MFCC Label2 error
LPCC Label1 error
LPCC Label2 error

Fig C1.1 LPCC vs. MFCC using KNN in text-dependent case

24 MFCC (12 delta) and 24 LPCC (12 delta) features were extracted
from FJAZ_Sa.wav, MKBP_Sa.wav, FJAZ_Sb.wav and MKBP_Sb.wav.
First two were used as training data, the rest were used as test data for
binary KNN algorithm in text-dependent case. 20 iterations were done
with the number of neighbors changing from 1 to 20 in order to find out
the minimum test error. Red (o) and blue (*) curves gave the Label1 and
Label2 (test) errors from MFCC. It shows using MFCC can achieve
smaller errors, and when NK=19 minimum test error 0.1072 was
achieved, and corresponding Label1 error was around 0.0345.

 - 100 -

D2 Pitch Accuracy for Gender Recognition

Table D2.1 Pitch estimation accuracy for recognizing genders from 1s and 2s
Sentence 1 Sentence2 Sentence

Speaker 1s 2s 1s 2s
FAML 0.9130 1.0000 1.0000 1.0000

FDHH 1.0000 1.0000 1.0000 1.0000

FEAB 1.0000 1.0000 0.9722 1.0000

FHRO 1.0000 1.0000 1.0000 1.0000

FJAZ 1.0000 1.0000 1.0000 1.0000

FMEL 1.0000 1.0000 1.0000 1.0000

FMEV 1.0000 1.0000 1.0000 1.0000

FSLJ 1.0000 1.0000 1.0000 1.0000

FTEJ 0.8571 1.0000 1.0000 1.0000

FUAN 1.0000 1.0000 1.0000 1.0000

MASM 1.0000 1.0000 0.9859 1.0000

MCBR 1.0000 1.0000 1.0000 1.0000

MFKC 0.9000 1.0000 0.9412 1.0000

MKBP 0.7778 1.0000 0.9091 1.0000

MLKH 0.6933 0.8200 0.8500 0.8900

MMLP 1.0000 1.0000 1.0000 1.0000

MMNA 1.0000 1.0000 1.0000 1.0000

MNHP 0.9333 1.0000 1.0000 1.0000

MOEW 1.0000 1.0000 1.0000 1.0000

MPRA 1.0000 1.0000 1.0000 1.0000

MREM 0.8333 0.8750 0.9130 1.0000

MTLS 1.0000 1.0000 1.0000 1.0000

Table D2.1 gives the pitch accuracy for gender recognition for ELSDSR database with
1s and 2s test signals respectively. The detected pitches were compared with the pitches
estimated from all the training signals of each speaker in the database, which is quite
reliable. The lowest accuracies using 1s was 69.33%, but for most of the speakers it
achieved 100%. With 2s signals, the detected pitches became more reliable, which gave
85% lowest accuracy.

Notice the accuracies for some speakers on gender recognition using Pitch information
are not so high. Even though the worst situation happens, where the detected pitch
gives wrong gender recognition, the adaptive weight parameter � in the invented
method can reduce the impact by adjusting the weight parameter with the probability of
the speaker being certain gender. For this uncertain case, the probability becomes
around 50%, which will give a very small weight parameter.

 - 101 -

D3 Time consumption of recognition with/without speaker pruning

 Table D3.1 Time consumption with/without speaker pruning
Test set

Time (s)
2s 3s 4s 5s 6s

Feature extraction T1= 0.11 T1= 0.22 T1= 0.24 T1= 0.33 T1= 0.45

HMM with Ns=4 T2= 1.53 T2=2.35 T2=3.06 T2=3.88 T2= 4.05

Speaker pruning T3= 19.85 T3= 29.67 T3= 40.99 T3= 49.36 T3= 60.09

Total time
T=T1+T2 +T3

T=21.49 T=32.24 T=44.29 T=53.57 T=64.59

HMM with Ns=6 T2= 2.31 T2= 3.48 T2= 4.60 T2=5.76 T2= 8.30

Speaker pruning T3= 19.86 T3= 28.89 T3= 40.41 T3= 50.81 T3= 60.87

Total time
T=T1+T2 +T3

T=22.28 T=32.59 T=45.25 T=56.90 T=69.62

HMM with Ns=8 T2=4.29 T2=6.40 T2=8.52 T2=10.57 T2= 10.38

Speaker pruning T3=19.85 T3= 30.77 T3= 41.02 T3= 50.33 T3= 59.87

Total time
T=T1+T2 +T3

T=24.25 T=37.39 T=49.78 T=61.23 T=70.7

HMM with 22
speaker models

22.8624 25.83 34.05 41.97 68.79

Table D3.1 shows that by introducing the speaker pruning, the total recognition speed
was slightly slowed down. However the time consumption can be significantly
decreased by optimizing the implementation.

 - 102 -

 - 103 -

References

[1] D.A. Reynolds, L.P. Heck, “Automatic Speaker Recognition”, AAAS 2000 Meeting,
Humans, Computers and Speech Symposium, 19 Feb 2000.

[2] R. A. Cole and colleagues, “Survey of the State of the Art in Human Language
Technology”, National Science Foundation European Commission, 1996.
http://cslu.cse.ogi.edu/HLTsurvey/ch1node47.html

[3] J. A. Markowitz and colleagues, “J. Markowitz, Consultants”, 2003.
http://www.jmarkowitz.com/glossary.html

[4] J. Rosca, A. Kofmehl, “Cepstrum-like ICA Representations for Text Independent
Speaker Recognition”, ICA2003, pp. 999-1004, 2003.

[5] D.A. Reynolds, R.C. Rose, “Robust text-independent speaker identification using
Gaussian Mixture speaker models”, IEEE Trans. on Speech and Audio Processing, vol.
3, no. 1, pp. 72-83, 1995.

[6] L. P. Cordella, P. Foggia, C. Sansone, M. Vento, “A Real-Time Text-Independent
Speaker Identification System”, Proceedings of the ICIAP, pp. 632, 2003.

[7] H. A. Murthy, F. Beaufays, L. P. Heck, M. Weintraub, “Robust Text-independent
Speaker Identification over Telephone Channels”, IEEE Trans. on Speech and Audio
Processing, vol. 7, no.5, pp.554-568, 1999.

[8] C. Tanprasert, C. Wutiwiwatchai, S. Sae-tang, “Text-dependent Speaker
Identification Using Neural Network On Distinctive Thai Tone Marks”, IJCNN '99
International Joint Conference on Neural Network, vol. 5, pp. 2950-2953, 1999.

[9] T. Matsui, S. Furui, “Comparison of text-independent speaker recognition methods
using VQ-distortion and discrete/continuous HMMs”, Proc. ICASSP, vol. II, pp.
157-160, 1992.

[10] A. F. Martin, M. A. Przybocki, “Speaker Recognition in a Multi-Speaker
Environment”, Eurospeech 2001, Scandinavia, vol. 2, pp. 787-790.

[11] H. G. Kim, E. Berdahl, N. Moreau. T. Sikora, “Speaker Recognition Using
MPEG-7 Descriptors”, Eurospeech 2003, Geneva, Switzerland, September 1-4, 2003.

[12] Jose M. Martinez (UAM-GTI, ES), “MPEG-7 Overview (version 9)”, ISO/IEC
JTC1/SC29/WG11N5525, March 2003, Pattaya.

[13] Ing. Milan Sigmund, CSc. “Speaker Recognition, Identifying People by their
Voices”, Brno University of Technology, Czech Republic, Habilitation Thesis, 2000.

 - 104 -

[14] J. P. Campbell, JR., “Speaker Recognition: A Tutorial”, Proceedings of the IEEE,
vol. 85, no.9, pp. 1437-1462, Sep 1997.

[15] D. Schwarz, “Spectral Envelopes in Sound Analysis and Synthesis”, IRCAM
Institut de la Recherche et Coordination Acoustique/Musique, Sep 1998.

[16] J. R. Deller, J. H.L. Hansen, J. G. Proakis, “Discrete-Time Processing of Speech
Signals”, IEEE Press, New York, NY, 2000.

[17] J. G. Proakis, D. G. Manolakis, “Digital signal processing. Principles, Algorithms
and Applications”, Third ed. Macmillan, New York, 1996.

[18] T. Kinnunen, “Spectral Features for Automatic Text-independent Speaker
Recognition”, University of Joensuu, Department of Computer Science, Dec. 2003.

[19] J. Harrington, S. Cassidy, “Techniques in Speech Acoustics”, Kluwer Academic
Publishers, Dordrecht, 1999.

[20] H. Ezzaidi, J. Rouat, D. O’Shaughnessy, “Towards Combining Pitch and MFCC
for Speaker Identification Systems”, Proceedings of Eurospeech 2001, pp. 2825, Sep
2001.

[21] T. Shimamura, “Weighted Autocorrelation for Pitch Extraction of Noisy Speech”,
IEEE Transactions on Speech and Audio Processing, vol. 9, No. 7, pp. 727-730, Oct
2001.

[22] G. Middleton, “Pitch Detection Algorithm”, Connexions, Rice University, Dec
2003 http://cnx.rice.edu/content/m11714/latest/

[23] D. A. Reynolds, “An Overview of Automatic Speaker Recognition Technology”,
Proc. ICASSP 2002, Orlando, Florida, pp. 300-304.

[24] L. R. Rabiner, “A tutorial on hidden Markov models and selected application in
speech recognition”, Proceedings of the IEEE, vol. 77, No. 2, pp. 257-286, Feb 1989.

[25] B. Resch, “Hidden Markov Models, A tutorial of the course computational
intelligence”, Signal Processing and Speech Communication Laboratory.

[26] E. Karpov, “Real-Time Speaker Identification”, University of Joensuu, Jan. 2003.

[27] C. M. Bishop, “Neural Networks for Pattern Recognition”, OXFORD University
Press, Oxford, UK, 1995.

[28] X. Wang, “Incorporating Knowledge on Segmental Duration in HMM-based
Continuous Speech Recognition”, Ph. D Thesis, Institute of Phonetic Sciences,
University of Amsterdam, Proceedings 21, pp.155-157, 1997.

 - 105 -

[29] A. Cohen, Y. Zigel, “On Feature Selection for Speaker Verification”, Proceedings
of COST 275 workshop on The Advent of Biometrics on the Internet, pp. 89-92, Nov.
2002.

[30] N. Bagge, C. Donica, “Text Independent Speaker Recognition”, ELEC 301 Signals
and Systems Group Project, Rice University, 2001.

[31] C.W.J, “Speaker Identification using Gaussian Mixture Model”, Speech Processing
Laboratory at National TaiWan Univeristy, May. 2000.

[32] NOVA online, WGBH Science Unit,1997 http://www.pbs.org/wgbh/nova/pyramid/

[33] T. Kinnunen, T. Kilpeläinen, P. Fränti, “Comparison of Clustering Algorithm in
Speaker Identification”, Proc. IASTED Int. Conf. Signal Processing and
Communications (SPC), pp. 222-227, Marbella, Spain, 2000.

[34] BSCW project group, “The Machine Learning network Online Information
Service”, website supported by EU project Esprit No. 29288, University of Magdeburg
and GMD. http://www.mlnet.org/

[35] T. Kinnunen, P. Fränti, “Speaker discriminative weighting method for VQ-based
speaker identification”, Proc. 3rd International Conference on audio-and video-based
biometric person authentication (AVBPA), pp. 150-156, Halmstad, Sweden, 2001.

[36] L. K. Hansen, O. Winther, “Singular value decomposition and principal
component analysis”, Class notes, IMM, DTU, April 2003.

