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Abstract. The number of source signals in a noisy convolutive mixture
is determined based on the exact log-likelihoods of the candidate models.
In (Olsson and Hansen, 2004), a novel probabilistic blind source separa-
tor was introduced that is based solely on the time-varying second-order
statistics of the sources. The algorithm, known as ‘KaBSS’, employs a
Gaussian linear model for the mixture, i.e. AR models for the sources,
linear mixing filters and a white Gaussian noise model. Using an EM al-
gorithm, which invokes the Kalman smoother in the E-step, all model pa-
rameters are estimated and the exact posterior probability of the sources
conditioned on the observations is obtained. The log-likelihood of the
parameters is computed exactly in the process, which allows for model
evidence comparison assisted by the BIC approximation. This is used to
determine the activity pattern of two speakers in a convolutive mixture
of speech signals.

1 Introduction

We are pursuing a research program in which we aim to understand the prop-
erties of mixtures of independent source signals within a generative statistical
framework. We consider convolutive mixtures, i.e.,

xt =
L−1∑

k=0

Akst−k + nt, (1)

where the elements of the source signal vector, st, i.e., the ds statistically in-
dependent source signals, are convolved with the corresponding elements of the
filter matrix, Ak. The multichannel sensor signal, xt, are furthermore degraded
by additive Gaussian white noise.

It is well-known that separation of the source signals based on second order
statistics is infeasible in general. Consider the second order statistic

〈xtx>t′ 〉 =
L−1∑

k,k′=0

Ak〈st−ks>t′−k′〉A>
k′ + R,

where R is the (diagonal) noise covariance matrix. If the sources are white noise
stationary, the source covariance matrix can be assumed proportional to the unit



matrix without loss of generality, and we see that the statistic is symmetric to a
common rotation of all mixing matrices Ak → AkU. This rotational invariance
means that the statistic is not informative enough to identify the mixing matrix,
hence, the source time series.

However, if we consider stationary sources with known, non-trivial, autocor-
relations 〈sts>t′ 〉 = C(t− t′), and we are given access to measurements involving
multiple values of C(t−t′), the rotational degrees of freedom are constrained and
we will be able to recover the mixing matrices up to a choice of sign and scale
of each source time series. Extending this argument by the observation that the
mixing model (1) is invariant to filtering of a given column of the convolutive
filter provided that the inverse filter is applied to corresponding source signal, we
see that it is infeasible to identify the mixing matrices if these arbitrary inverse
filters can be chosen to that they ‘whiten’ the sources.

For non-stationary sources, on the other hand, the autocorrelation functions
vary through time and it is not possible to choose a single common whitening filter
for each source. This means that the mixing matrices may be identifiable from
multiple estimates of the second order correlation statistic (2) for non-stationary
sources. Parra and Spence [1] provide analysis in terms of the number of free
parameters vs. the number of linear conditions.

Also in [1], the constraining effect of source non-stationarity was exploited by
simultaneously diagonalizing multiple estimates of the source power spectrum.
In [2] we formulated a generative probabilistic model of this process and proved
that it could estimate sources and mixing matrices in noisy mixtures. A state-
space model -a Kalman filter- was specialized and augmented by a stacking
procedure to model a noisy convolutive mixture of non-stationary colored noise
sources, and a forward-backward EM approach was used to estimate the source
statistics, mixing coefficients and the diagonal noise covariance matrix. The EM
algorithm furthermore provides an exact calculation of the likelihood as it is
possible to average over all possible source configurations. Other approaches
based on EM schemes for source inference are [3], [4] and [5]. In [6], a non-linear
state-space model is proposed.

In this presentation we elaborate on the generative model and its applica-
tions. In particular, we use the exact likelihood calculation to make inference
about the dimensionality of the model, i.e. the number of sources. Choosing the
incorrect model order can lead to either a too simple, biased model or a too
complex model. We use the so-called Bayes Information Criterion (BIC) [7] to
approximate the Bayes factor for competing hypotheses.

The model is stated in section 2, while the learning in the particular model
described in section 3. Model order selection using BIC is treated in section 4.
Experiments for speech mixtures are shown in section 5.

2 The model

As indicated above, the sources must be assumed non-stationary in order to
uniquely retrieve the parameters and sources, since the estimation is based on



second-order statistics. In line with [1], this is obtained by segmenting the signals
into frames, in which the wide-sense stationarity of the sources is assumed. A
separate source model is assumed for each segment. The channel filters and
observation noise covariance are assumed stationary across segments in the entire
observed signal.

The colored noise sources are modelled by AR(p) random processes. In seg-
ment n, source i is represented by:

sn
i,t = fn

i,1s
n
i,t−1 + fn

i,2s
n
i,t−2 + . . . + fn

i,ps
n
i,t−p + vn

i,t (2)

where n ∈ {1, 2, .., N} and i ∈ {1, 2, .., ds}. The innovation noise, vi,t, is white
Gaussian. In order to make use of well-established estimation theory, the above
recursion is fitted into the framework of Gaussian linear models, for which a
review is found in e.g. [8]. The Kalman filter model is an instance of this model
that particularly treats continuous Gaussian linear models used widely in e.g.
control and speech enhancement applications. The general Kalman filter with
no control inputs is defined:

st = Fst−1 + vt (3)
xt = Ast + nt

where vt and nt are white Gaussian noise signals that drive the processes.
In order to incorporate the colored noise sources, equation (2), into the

Kalman filter model, the well-known principle of stacking must be applied, see
e.g [9]. At any time, the stacked source vector, s̄n

t , contains the last p samples
of all ds sources:

s̄n
t =

[
(sn

1,t)
> (sn

2,t)
> . . . (sn

ds,t)
> ]>

The component vectors, sn
i,t, contain the p most recent samples of the individual

sources:

sn
i,t =

[
sn

i,t sn
i,t−1 . . . sn

i,t−p+1

]>

In order to maintain the statistical independency of the sources, a constrained
format must be imposed on the parameters:

F̄n =




F̄n
1 0 · · · 0

0 F̄n
2 · · · 0

...
...

. . .
...

0 0 · · · F̄n
ds


 , F̄n

i =




fn
i,1 fn

i,2 · · · fn
i,p−1 fn

i,p

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0




Q̄n =




Q̄n
1 0 · · · 0

0 Q̄n
2 · · · 0

...
...

. . .
...

0 0 · · · Q̄n
ds


 , (Q̄n

i )jj′ =
{ qn

i j = j′ = 1
0 j 6= 1

∨
j′ 6= 1
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Fig. 1. The multiplication of F̄ on s̄t and the addition of innovation noise, vt, shown
for an example involving two AR(3) sources. The special contrained format of F̄ simul-
taneously ensures the storage of past samples.

The matrix A of (3) is left unconstrained but its dimensions must be expanded
to dx × (p× ds) to reflect the stacking of the sources. Conveniently, its elements
can be interpreted as the impulse responses of the channel filters of (1):

Ā =




a>11 a>12 .. a>1ds

a>21 a>22 .. a>2ds

a>dx1 a>dx2 .. a>dxds




where aij = [aij,1, aij,2, .., aij,L]> is the filter between source i and sensor j.
Having defined the stacked sources and the constrained parameter matrices, the
total model is:

s̄n
t = F̄ns̄n

t−1 + v̄n
t

xn
t = Ās̄n

t + nn
t

where v̄n
t ∼ (0, Q̄n) and nn

t ∼ (0, F̄n). Figures 1 and 2 illustrate the updating of
the stacked source vector, s̄t and the effect of multiplication by Ā, respectively.

3 Learning

Having described the convolutive mixing problem in the general framework
of linear Gaussian models, more specifically the Kalman filter model, opti-
mal inference of the sources is obtained by the Kalman smoother. However,
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Fig. 2. The effect of the matrix multiplication Ā on s̄t is shown in the system diagram.
The source signals are filtered (convolved) with the impulse responses of the channel
filters. Observation noise and the segment index, n, are omitted for brevity.

since the problem at hand is effectively blind, the parameters are estimated.
Along the lines of, e.g. [8], an EM algorithm will be used for this purpose, i.e.
L(θ) ≥ F(θ, p̂) ≡ J (θ, p̂) − R(p̂), where J (θ, p̂) ≡ ∫

dSp̂(S) log p(X,S|θ) and
R(p̂) ≡ ∫

dSp̂(S) log p̂(S) were introduced. In accordance with standard EM
theory, J (θ, p̂) is optimized wrt. θ in the M-step. The E-step infers the model
posterior, p̂ = p(S|X, θ). The combined E and M steps are guaranteed not to
decrease L(θ).

3.1 E-step

The forward-backward recursions which comprise the Kalman smoother is em-
ployed in the E-step to infer the source posterior, p(S|X, θ), i.e. the joint pos-
terior of the sources conditioned on all observations. The relevant second-order
statistics of this distribution in segment n is the posterior mean, ˆ̄sn

t ≡ 〈s̄n
t 〉,

and autocorrelation, Mn
i,t ≡ 〈sn

i,t(s
n
i,t)

>〉 ≡ [mn
i,1,t mn

i,2,t .. mn
i,L,t ]>, along with

the time-lagged covariance, M1,n
i,t ≡ 〈sn

i,t(s
n
i,t−1)

>〉 ≡ [m1,n
i,1,t m1,n

i,2,t .. m1,n
i,L,t ]>.

In particular, mn
i,t is the first element of mn

i,1,t. All averages are performed over
p(S|X, θ). The forward recursion also yields the likelihood L(θ).

3.2 M-step

The estimators are derived by straightforward optimization of J (θ, p̂) wrt. the
parameters. It is used that the data model, p(X,S|θ), factorizes. See, e.g., [8] for
background, or [2] for details. The estimators for source i in segment n are:

µn
i,new = ŝn

i,1

Σn
i,new = Mn

i,1 − µn
i,new(µn

i,new)>

(fn
i,new)> =

[ τ∑
t=2

(m1,n
i,t )>

][ τ∑
t=1

Mn
i,t−1

]−1

qn
i,new =

1
τ − 1

[ τ∑
t=2

mn
i,t − (fn

i,new)>m1,n
i,t

]



The stacked estimators, µ̄n
new, Σ̄n

new, F̄n
new and Q̄n

new are reconstructed from
the above as defined in section 2. The constraints on the parameters cause the
above estimators to differ from those of the general Kalman model, which is not
the case for Ānew and Rnew:

Ānew =
[ N∑

n=1

τ∑
t=1

xn
t (ˆ̄sn

t )>
][ N∑

n=1

τ∑
t=1

M̄n
t

]−1

Rnew =
1

Nτ

N∑
n=1

τ∑
t=1

diag[xn
t (xn

t )> − Ānewˆ̄sn
t (xn

t )>]

4 Estimating the number of sources using BIC

In the following is described a scheme for determining ds based on the likelihood
of the parameters. A similar approach was taken in previous work, see [10].
Model control in a strictly Bayesian sense amounts to selecting the most probable
hypothesis, based on the posterior probability of the model conditioned on the
data:

p(ds|X) =
p(X|ds)p(ds)∑

ds
p(X, ds)

(4)

In cases where all models, a priori, are to be considered equally likely, (4) reduces
to p(ds|X) ∝ p(X|ds). The Bayes factor, p(X|ds), is defined:

p(X|ds) =
∫

dθp(X|θ, ds)p(θ|ds) (5)

Bayes information criterion (BIC), see [7], is an approximation of (5) to be
applied in cases where the marginalization of θ is intractable:

p(X|ds) ≈ p(X|θML, ds)τ−
|θ|
2 (6)

The underlying assumptions are that (5) can be evaluated by Laplace integration,
i.e. log p(X|θ, ds) is well approximated by a quadratic function for large amounts
of data (τ →∞), and that the parameter prior p(θ|ds) can be assumed constant
under the integral.

5 Experiments

In order to demonstrate the applicability of the model control setup, a convolu-
tive mixture of speech signals was generated and added with observation noise.
The four models/hypotheses that we investigate in each time frame are that
only one of two speakers are active, 1 and 2, respectively, that both of them are
active, 1+2, or that none of them are active, 0.



Recordings of male speech1, which were also used in [11], were filtered through
the (2× 2 = 4) known channel filters:

Ā =
[

1.00 0.35 −0.20 0.00 0.00, 0.00 0.00 −0.50 −0.30 0.20
0.00 0.00 0.70 −0.20 0.15, 1.30 0.60 0.30 0.00 0.00

]

Observation noise was added to simulate SNR=15dB in the two sensor signals.
KaBSS was then invoked in order to separate the signals and estimate Ā and
R, as shown in [2]. The signals were segmented into frames of τ = 160 samples.
The obtained estimates of Ā and R were treated as known true parameters in
the following. In each segment and for each model-configuration, KaBSS was
separately reinvoked to estimate the source model parameters, F̄n, Q̄n, and
obtain the log-likelihood, L(θ), of the various models. The four resulting L(θ)’s
were then processed in the BIC model control scheme described in section 4.
The number of samples in (6) were set to τ although the sensor signals are not
i.i.d. This approximation is, however, acceptable due to the noisy character of
speech. Figure 3 displays the source signals, the mixtures and the most likely
hypothesis in each time frame. Convincingly, the MAP speech activity detector
selects the correct model.

6 Conclusion

An EM algorithm, ‘KaBSS’, which builds on probabilistic inference in a gen-
erative linear convolutive mixture model with Gaussian sources was introduced
in [2]. This contribution expands the model and its utility by showing that the
exact computation of the log-likelihood, which is readily available as an output
of the forward-backward recursion, can be exploited in a BIC-based model selec-
tion scheme. The result is an exploratory tool capable of determining the correct
number of sources in a convolutive mixture. In particular, it was shown that the
activity pattern of two speech sources in a convolutive mixture can be well esti-
mated. Potential applications include the ability to select the correct model in
speech enhancement and communication algorithms, hopefully resulting in more
robust estimation.
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