
An introduction to Variational calculus in

Machine Learning

Anders Meng

February 2004

1 Introduction

The intention of this note is not to give a full understanding of calculus of variations since
this area are simply to big, however the note is meant as an appetizer. Classical variational
methods concerns the field of finding the extremum of an integral depending on an unknown
function and its derivatives. Methods as the finite element method, used widely in many
software packages for solving partial differential equations is using a variational approach as
well as e.g. maximum entropy estimation [6].

Another intuitively example which is derived in many textbooks on calculus of variations;
consider you have a line integral in euclidian space between two points a and b. To minimize
the line integral (functional) with respect to the functions describing the path, one finds that
a linear function minimizes the line-integral. This is of no surprise, since we are working in
an euclidian space, however, if the integral is not as easy to interpret, calculus of variations
comes in handy in the more general case.

This little note will mainly concentrate on a specific example, namely the Variational EM
algorithm for incomplete data.

2 A practical example of calculus of variations

To determine the shortest distance between to given points, A and B positioned in a two
dimensional Euclidean space (see figure (1) page (2)), calculus of variations will be applied
as to determine the functional form of the solution. The problem can be illustrated as
minimizing the line-integral given by

I =
∫ B

A

1ds(x, y). (1)
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Figure 1: A line between the points A and B

The above integral can be rewritten by a simple (and a bit heuristic) observation.

ds = (dx2 + dy2)
1
2

= dx

[
1 +

(
dy

dx

)2
] 1

2

ds

dx
=

[
1 +

(
dy

dx

)2
] 1

2

. (2)

From this observation the line integral can be written as

I(x, y, y′) =
∫ B

A

[
1 +

(
dy

dx

)2
] 1

2

dx. (3)

The line integral given in equation (3) is also known as a functional, since it depends on
x, y, y′, where y′ = dy

dx . Before performing the minimization, two important rules in varia-
tional calculus needs attention
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Rules of the game

• Functional derivative

δf(x)
δf(x′)

= δ(x− x′) (4)

where

δ(x) =
{

1 for x = 0
0 otherwise

• Communitative

δ

δf(x′)
∂f(x)

∂x
=

∂

∂x

δf(x)
δf(x′)

(5)

• The Chain Rule known from function differentiation ap-
plies.

The function f(x) should be a smooth function, which usually is
the case.

It is now possible to determine the type of functions which minimizes the functional given
in equation (3) page (2)

δI(x, y, y′)
δy(xp)

=
δ

δy(xp)

∫ B

A

[
1 +

(
dy

dx

)2
] 1

2

dx. (6)

where we now define yp ≡ y(xp) to simplify the notation. Using ”the rules of the game”, it
is possible to differentiate the expression inside the integral to give

δI(x, y, y′)
δy(xp)

=
∫ B

A

1
2
(1 + y′2)−

1
2 2y′

δ

δyp

dy

dx
dx

=
∫ B

A

y′

(1 + y′2)
1
2

d

dx

δy(x)
δy(xp)

dx

=
∫ B

A

y′

(1 + y′2)
1
2︸ ︷︷ ︸

g

d

dx
δ(x− xp)

︸ ︷︷ ︸
f

dx. (7)

The chain rule in integration :
∫

f(x)g(x)dx = F (x)g(x)−
∫

F (x)g′(x)dx (8)
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can be applied to the expression above, which results in the following equations

δI(x, y, y′)
δy(xp)

=
[
δ(x− xp)

y′

(1 + y′2)
1
2

]B

A

−
∫ B

A

δ(x− xp)
y′′

(1 + y′2)
3
2
dx. (9)

The last step serves an explanation. Remember that

g(x) =
y′

(1 + y′2)
1
2
. (10)

The derivative of this w.r.t. x calculates to (try it out)

g′(x) =
y′′

(1 + y′2)
3
2

(11)

Now assuming that on the boundaries, A and B, the first part of the expression given in
equation (9) disappears, so δ(A− xp) = 0 and δ(B − xp) = 0, then the expression simplifies
to (assuming that

∫ B

A
δ(x− xp)dx = 1)

δI(x, y, y′)
δy(xp)

= − y′′p
(1 + y′2p )

3
2

(12)

Setting this expression to zero and determine the function form of y(xp) :

y′′p
(1 + y′2p )

3
2

= 0. (13)

A solution to the differential equation y′′p = 0 is yp(x) = ax + b; the family of straight
lines, which intuitively makes sense. However in cases where the space is not Euclidean,
the functions which minimized the integral expression or functional may not be that easy
to determine.

In the above case, to guarantee that the found solution is a minimum the functional have
to be differentiated once more with respect to yp(x) to make sure that the found solution is
a minimum.

The above example was partly inspired from [1], where other more delicate examples might
be found, however the derivation procedure in [1] is not the same as shown here.

The next section will introduce variational calculus in machine learning.
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3 Calculus of variations in Machine Learning

The practical example which will be investigated is the problem of lower bounding the
marginal likelihood using a variational approach. Dempster et al. [4] proposed the EM-
algorithm for this purpose, but in this note a variational EM - algorithm is derived in
accordance with [5]. Let y denote the observed variables, x denote the latent variables
and θ denote the parameters. The log - likelihood of a data-set y can be lower bounded
by introducing any distribution over the latent variables and the input parameters as long
as this distribution have support where p(x, θ|y,m) does, and using the trick of Jensen’s
inequality.

ln p(y|m) = ln

∫
p(y,x, θ|m)dxdθ = ln

∫
q(x, θ)

p(y,x, θ|m)

q(x, θ)
dxdθ

≥
∫

q(x, θ) ln
p(y,x, θ|m)

q(x, θ)
dxdθ (14)

The expression can be rewritten using Bayes rule to show that maximization of the above
expression w.r.t. q(x, θ) actually corresponds to minimizing the Kullback-Leibler divergence
between q(x,θ) and p(x,θ|y,m), see e.g. [5].

If we maximize the expression w.r.t. q(x, θ) we would find that q(x,θ) = p(x, θ|y,m), which
is the true posterior distribution1. This however is not the way to go since we would still
have to determine a normalizing constant, namely the marginal likelihood. Another way is
to factorize the probability into q(x,θ) ≈ qx(x)qθ(θ), in which equation (14) can be written
as

ln p(y|m) ≥
∫

qx(x)qθ(θ) ln
p(y,x, θ|m)

qx(x)qθ(θ)
dxdθ = Fm(qx(x), qθ(θ),y) (15)

which further can be split into parts depending on qx(x) and qθ(θ). See below

Fm(qx(x), qθ(θ),y) =

∫
qx(x)qθ(θ) ln

p(y,x, θ|m)

qx(x)qθ(θ)
dxdθ

=

∫
qx(x)qθ(θ)

(
ln

p(y,x|θ, m)

qx(x)
+ ln

p(θ|m)

qθ(θ)

)
dxdθ

=

∫
qx(x)qθ(θ) ln

p(y,x|θ, m)

qx(x)
dxdθ +

∫
qθ(θ) ln

p(θ|m)

qθ(θ)
dθ

where Fm(qx(x), qθ(θ),y) is our functional. The big problem, is to determine the optimal
form of the distributions qx(x) and qθ(θ). In order to do this, we calculate the derivative
of the functional with respect to the two ”free” functions / distributions, and determine
iterative updates of the distributions. It will now be shown how the update-formulas are
calculated using calculus of variation. The results of the calculations can be found in [5].

1You can see this by inserting q(x, θ) = p(x, θ|y, m) into eq. (14), which turns the inequality into a
equality
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The short hand notation : qx ≡ qx(x) and qθ ≡ qθ(θ) is used in the following derivation.
Another thing that should be stressed is the following relation;

Assume we have the functional G(fx(x), fy(y)), then the following relation applies :

G(fx(x), fy(y)) =
∫ ∫

fx(x)fy(y) ln p(x, y)dxdy

δG(fx(x), fy(y))
δfx(x′)

=
∫ ∫

δ(x− x′)fy(y)ln(p(x, y))dxdy

=
∫

fy(y)ln(p(x′, y))dy. (16)

This will be used in the following when performing the differentiation with respect to qx(x).
Also a Lagrange-multiplier have been added, as to ensure that we find a probability distri-
bution.

Fm(qx, qθ,y) =

∫
qxqθ ln

p(y,x|θ, m)

qx
dxdθ +

∫
qθ ln

p(θ|m)

qθ
dθ + λ

(
1−

∫
qx(x)dx

)

δFm(·)
δqx

=

∫ [
qθ ln

p(y,x′|θ, m)

qx′
− qx′qθ

qx′

p(y,x′|θ, m)
q−2
x′ p(y,x′|θ, m)

]
dθ − λ

=

∫ [
qθ ln p(y,x′|θ, m)− qθ ln qx′ − qθ

]
dθ − λ

=

∫
qθ ln p(y,x′|θ, m)dθ − ln qx′ − 1− λ = 0

(17)

Isolating with respect to qx′(x′) gives the following relation.

qx′(x′) = exp
{∫

qθ(θ) ln p(y,x′|θ,m)dθ − Zx

}

= exp {< ln p(y,x′|θ,m) >θ −Zx} (18)

where Zx is a normalization constant. The above method can be used again, now just
determining the ”derivative” w.r.t. qθ(θ). The calculation of the derivative is quite similar
however, below, one can see how it is calculated :

Fm(qx, qθ,y) =

∫
qxqθ ln

p(y,x|θ, m)

qx
dxdθ +

∫
qθ ln

p(θ|m)

qθ
dθ + λ

(
1−

∫
qθ(θ)dθ

)

δFm(·)
δqθ′

=

∫
qx ln

p(y,x|θ′, m)

qx
dx + ln

p(θ′|m)

qθ′
− 1− λ

=

∫
qx ln p(y,x|θ′, m)dx + ln

p(θ′|m)

qθ′
− C − λ

=

∫
qx ln p(y,x|θ′, m)dx + ln p(θ′|m)− ln qθ′ − C − λ = 0

(19)
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Isolating with respect to qθ′(θ′) gives the following relation.

qθ′(θ′) = p(θ′|m) exp
{∫

qx ln p(y,x|θ′, m)dx− Zθ

}

= p(θ′|m) exp {< ln p(y,x|θ′,m) >x −Zθ} (20)

Where Zθ is a normalization constant. The two equations we have just determined is coupled
equations. One way to solve these equations is to iterate these until convergence (fixed point
iteration). So denoting a iteration number as superscript t the equations to iterate look like

q(t+1)
x (x) ∝ exp

[∫
ln(p(x,y|θ,m)q(t)

θ (θ)dθ

]
(21)

q
(t+1)
θ (θ) ∝ p(θ|m) exp

[∫
ln(p(x,y|θ,m)q(t+1)

x (x)dx
]

(22)

where the normalization constants have been avoided in accordance with [5]. The lower
bound is increased at each iteration.

In the above derivations the principles of calculation of variations what used. Due to the
form of the update-formulas there is a special family of models which comes in handy, these
are the so called : Conjugate-Exponential Models, but will not be further discussed. However
the Phd-thesis by Matthew Beal, goes into much more details concerning the CE-models [3].
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