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Abstract 
 
This master thesis deals with the learning theory. It contains some analysis as well as 
derivations in Stochastic Linear learning. Derived results, for example, Generalization 
Error are exact in contrast with many available assumed or asymptotic results.  The 
works are done chiefly basing on two papers: Hansen 1993 [13] and Hansen 2004 [20].   
Some MATLAB simulations are done in order to prove the undoubted validity of the 
expressions for the Exact Generalization errors. Two expressions for the Generalization 
errors with respect to the sample size were derived in two different ways from linear 
models. The cross point of them were also detected. The properties of the curves were 
discussed throughout the whole sample size domain. At last, in the research part, there 
are some investigations about the undesired events of the curves while a discussion about 
the recovery from that situation is presented. 
 
Keywords: Learning, stochastic, linear, asymptote, domain. 
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Preface 
 
 
This master thesis works as documentation for the mandatory exam project in the 
requirements to achieve the M.Sc. degree from DTU, Denmark. The thesis has a 
workload of 35 ECTS points out of the 120 points for the two years International M.Sc. 
in Telecommunication program. 
  
The thesis is done with the ”Intelligent Signal Processing (ISP) group”, IMM, DTU. It is 
worked out by two persons; Professor Dr. Lars Kai Hansen, acting as the supervisor and 
Rezaul Karim, a student of M.Sc. in Telecommunication, DTU. 
 

Thesis Overview 
This thesis document consists of mainly six chapters (chapter 0 to chapter 5) and two 
appendices. 
Chapter 0 gives an introductory idea about learning theory with a useful idea from some 
probability distributions.  
 
Chapter 1 talks about stochastic linear learning, aided with some thermodynamical and 
statistical mechanical concepts. The main achievement here is the exact expression for 
learning error, which is authenticated by MATLAB simulation. 
 
Chapter 2 finds mainly the exact learning error in Linear Regression model that also 
passes the verification test through MATLAB simulation. 
 
Chapter 3 looks for the behavior of these two learning curves (derived in chapter1 and 
chapter 2) and detect their cross point analytically. It also makes a mild comparison 
between these curves. 
 
Chapter 4 investigates about the recovery from the undesired events of the cost function 
by using matrix regularization technique. 
 
Chapter 5 makes a short conclusion of the over all thesis with a brief discussion about the 
merits and demerits of this thesis. 
 
APPENDIX A is used for all calculations and proofs. Especially A.8 and A.9 gives the 
analytic explanation with large calculations for the pole and singularity of the test error 
function (which is found from chapter 1) 
 
APPENDIX B deals about the terms and glossary. 
 
At last, the Reference shows the sources used for this thesis. 
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Chapter 0: Introduction 

Chapter 0: Introduction 
 
In this chapter we give some introductory idea about the issue that the project deals 
with. 
  
 

0.0 Theoretical? 
 
Although there is a huge improvement in the implementation of statistical meditations 
and models in almost all the fields of science and engineering, the intricacy of 
developing a satisfactory model depending on the information provided by a finite 
number of observations is not fully acknowledged. Absolutely, the theme of statistical 
model fabrication or recognition is greatly dependent on the results of the theoretical 
analyses of the subject under observation. Still, it must be considered that there is 
usually a big gap between the theoretical results and the practical recognition process. 
However, a good theory can overcome this problem efficiently. Therefore, 
 
“Nothing is more practical than a good theory”  
                              -------- Vladimir Vapnik (Russian statistician). 
And here,  
           
“I believe in Vapnik as r  believes in  so that ” v 1=v

rδ
                               -------- Author. 
 

0.1 Stochastic linear learning 
 
A process is said to be stochastic if it represents a time dependent statistical 
phenomenon according to the probabilistic laws. Usually, this time dependence is 
defined on some observation intervals. The statistical property of the phenomenon 
implies that it progresses with time in an inexact predictable manner from the 
observer’s viewpoint. 
This phenomenon can be a radar signal, a sequence of real-valued measurements of 
voltage, a sequence of coin tosses, digital computer data, the output from a 
communication channel, noise, etc. The inexactness in the prediction occurs due to 
some undesired effects such as interference or noise in a communication link or 
storage medium, etc. 
By using the stochastic process theory, it is possible to enumerate the above 
impression and build mathematical models of real phenomena. The models involving 
only linear terms of the stochastic (input and output) variables are termed as linear 
model (with respect to those variables). 
A stochastic linear model contains input and output variables that are connected by a 
number of adjustable parameters. The process of determining the values of these 
parameters on the basis of data set is called stochastic linear learning. In this process, 
learning is acknowledged when the relation between the input and output variables 
are changed in such a way as to reduce an error function surface. The result of the 
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stochastic linear learning is the set of adjustable parameters in the linear model. 
These parameters are also stochastic and depend on the specific, random training set. 
 

0.2 Learning, generalization and the load parameter 
 
In linear modeling, the main job is to fabricate a linear map between the stochastic 
input and output variables, which can recover the stochasticity. These variables may 
not come only from a specific set of examples, instead, from a lot of other new and 
unknown sets of data. Therefore, the vital goal in learning is not to memorize the 
specific training data, but rather to model the essential generator of the data. This type 
of model can make the best possible predictions for the output variables after it is 
trained and presented with a new value for the input variable. 
As we have said before,  the stochastic linear model contains a number of adjustable 
parameters that relate between the input and output variables. But often there is also a 
significant issue about their number; how many adjustable parameters should be in a 
stochastic linear model? This number is called the model dimension (or coefficient 
number). A model with too small input dimension is too little flexible. Therefore, it 
makes poor predictions in case of new data; poor generalization performance. On the 
contrary, a model with too large input dimension also makes paltry predictions in case 
of new data as it is too flexible and thus fits too much of the noise from the training 
data. Hence, it has a low generalization performance. Therefore, it is necessary to 
optimize the model dimension (or model complexity) in order to achieve the best 
generalization. 
But how to notice whether any specific model dimension value is large or small? A 
feasible way to answer this question is to use the (training) sample size and compare it 
with the model dimension; for example, finding their ratio. Afterward, analyze the 
cost (error) function with respect to this ratio. The ratio between the model dimension 
and the training sample size is traded as load parameter or simply the number of 
examples per dimension. Mathematically,  
 

              load parameter = 
ensionModel
sizeSample

dim
 

In many literatures, it is denoted by α. 
 

0.3 Example of stochastic output 
 
Consider two distributions; the very well known Gaussian distribution and the Cauchy 
distribution. 
A simple Gaussian distribution is given by: 
    

                              )
2

exp(
2
1)(

2xxp −=
π

;     ),( ∞−∞∈x  

 
And the Cauchy distribution is given by: 
 

5 



                               = )(xp
π
1  21

1
x+

         ; ),( ∞−∞∈x  

They look like below: 
 
 
 
 

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

the axis of the variable

Th
e 

G
au

ss
ia

n 
pr

ob
ab

ilit
y

The Gaussian distribution

 
Figure 0.1: Simple Gaussian distribution (having zero mean and unit variance). It is a 
symmetric distribution. 
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Figure 0.2: The Cauchy distribution. It is also a symmetric distribution like the 
Gaussian distribution. 
 
 
The similarity between these two distributions is that both of them are symmetric. 
But if we look for their mean values, we see that they have opposite behavior; the 
Gaussian has a bounded mean whereas the Cauchy has an unbounded mean! 
This can be seen from the figures below: 
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Figure 0.3: Evolution of the mean values of the simple Gaussian distribution. From 
the figure it is obvious that the mean value is bounded in contrast to the mean of the 
Cauchy distribution (Figure 0.4, below).  
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Figure 0.4: Evolution of the mean values of the Cauchy distribution. From the figure 
it is obvious that the mean value is unbounded in contrast to the mean of the Gaussian 
distribution (Figure 0.3).  
 
(An explicit and independent explanation showing the reason behind the boundness of 
Gaussian mean and the unboundness of the Cauchy mean is given in APPENDIX A, 
A.7). 
Thus, from this example, we can see that in some cases of the stochastic process, we 
can meet the situation that the sample values are finite whereas their mean value is 
infinite (example from the Cauchy distribution)! We keep this idea in our mind to 
proceed with the rest part as we are dealing with a stochastic process (the stochastic 
linear learning)! 

0.4 Presented works related to learning and generalization 
So far, the only standard results on test error estimation are given by Akaike [7] [8] 
that are valid for the large training sets (asymptotic) and basically linear models [9].   
Recently, there have been a lot of concentrations on simple linear learning schemes 
[12] [2] [25] [11]. The benefit with simple learning schemes is that it can be analyzed 
analytically and the obtained results may either be applied directly to the more 
interesting non-linear models, such as feed forward neural networks with hidden 
representations, or may inspire future analysis of such models. Recent successful 
schemes for optimization of neural network architecture are driven basically from 
local linear approximations [26]. Fogel used Akaike’s Information Criterion for 
comparing neural network architectures [27]. Hoffman and Larsen used Akaike’s 
final Prediction Error Estimate (FPE) for optimal reduction of polynomial models 
[28]. These informations are aided by [13]. 
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Krogh worked with the learning process in the limit of large models and large training 
sets introducing the load parameter and found a phase transition while the load 
parameter tends to one [11]. 
 Hansen [13] [20] found the learning errors in exact forms that extend the above 
results (for linear model) for all valid range; i.e. also for deterministic case. He found 
a divergence in the test error like [11] but in the exact form [13]. 
 

0.5 Problem definition 
 
We have seen that the conventional results in the stochastic linear learning are not 
exact; they are valid with some limitations. Our target is to derive the exact 
expressions for the vital terms in stochastic linear learning with consistent analyses. 
The most vital terms can be the average test and training errors for a stochastic linear 
model. Therefore, our main goal concerns with these terms. So far, there are only two 
available texts [13] [20] concerning the exact results of these terms. Thus, there is a 
good chance to compare our results with these texts. Further studies on the basis of 
the obtained results would be highly appreciated regarding the time duration of the 
project. 
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Chapter 1: Exact Test and Training Error Averages in stochastic Linear Learning 

Chapter 1: Exact Test and Training Error Averages in 
stochastic Linear Learning 
   
 In this chapter, we study the statistical properties of stochastic linear learning. We derive the 
expressions for exact test and training errors for a linear model and a finite training set. These 
expressions are then compared with the results in [13]. Our result overcomes the limitation in 
Akaike’s FPE as it is valid for more general case including the stochasticity of the process in 
contrast with Akaike’s performance that is only for the special (asymptotic) case. We also make a 
vigilant MATLAB simulation that authenticates our theory. 
 
 The chapter is organized in the following way: 
   In 1.1, we formulate the model; while 1.2 discusses the post training distribution of 
parameters following a stochastic learning procedure. In 1.3, we compute analytically 
the estimates for test and training errors and these results are then compared with the 
others’ in 1.4. Thus, the chapter is concluded in 1.5. 
 

1.1 Linear Modeling 
 
 Consider a linear (with respect to ) model with inputsx d jx  , dj ,...2,1= and a single 
valued output  

                                         =   (1.1) )(xy ∑
=

d

j 1
jj xw

The model parameters will be estimated by the standard recursive gradient descent 
procedure.  

jw

The database or training set that we will use for estimating the optimal parameters is 
created by an unreliable teacher (i.e, static noise is included) having a set of weights 

 [11]: *
jw

                           (1.2) ∑
=

=+=
d

j
jj Nxwy

1

** ,......,2,1; αν ααα

(α works as a suffix representing the samples; not as a power!) 
We consider a finite training set of  examples. The inputs to the teacher,  and 

the noise, 

N α
jx

αν  are independent (like as most of the models in practice) normally 
distributed: . It is a critical point in the basic opinions 
leading to our achievements (decisions). The input covariance matrix 

),0(),,0( 2
νσν NN ∈∈ Σx

( )jj ′∑=∑  that 
we will be working with is non-singular. 
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1.2 The Post Training Distribution 
 

1.2.1The distribution 
We try to reduce the distance between and . An optimal parameter set,   will 
minimize the additive distance for all 

αy α*y w
α  examples. We find this optimal parameter by 

training our model that leads to a distribution on the network configuration space. 
This distribution is noted as post training distribution. 
We will use this distribution for computing average properties of an ensemble of 
networks; this will lead us to model the generic behavior of a network following a 
stochastic learning procedure. The distribution function of the ensemble reflects the 
learning procedure. Properties of deterministic1 learning procedures can be obtained 
as a limit of the general results.  
 
Levin, Tishby and Solla have presented general argument in favor of a Gibbs 
distribution2 of weights [2]: 

                                (1.3) ⎟
⎠

⎞
⎜
⎝

⎛
−= ∑

=

−
N

NN wEZwP
1

1 )(exp)(
α

αβ

 
where the error (or the distance) on the α’th example is given by: 
 

                       (1.4) ( )
2

1

*
2

* )()()( ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=−= ∑

=

d

j
jjj xwwyxywE ααααα ν

and NZ  is the normalized integral, given by 

      [With = ]             (*) ∫ ∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛
−=

=

)(exp
1

wEDwZ
N

N
α

αβ Dw ∫∏
=

j

d

j

dw
1

and β  is a positive integration parameter that determines the sensitivity of the 
probability to the error value . )(wPN )(wEα

Relation (1.3), with the help of (1.4) and (*) can be regarded as the post training 
distribution in the weight space, the probability of each point  is reduced 
exponentially with the error of the network on the training set. That means, when for 
any , this error is less, that w  has higher probability and the , for which this error 
is bigger, has a comparatively lower probability. 

w

w w

Here, we will say something about β  and .NZ  

 

                                                 
1 Deterministic learning is the one where we are able to find an exact valid value of 
the quantity to be evaluated. For example, in equation (1.3), having a fixed β, when 
the error (sum) is the minimum, the probability for a certain w is the biggest and 
determinate (possible to be defined and measured). 
 
 
2 Something is said about Gibbs distribution in APPENDIX B. 
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1.2.2 The β  factor 
It is also called the effective inverse temperature as it is inversely related to the 
temperature, came from thermodynamics in the following way: 

 

                                             
TkB

1
=β  

 
given   is the Boltzman’s constant and T is the temperature (non-negative). Bk
In that case,  (or their sum) in relation (1.3) or (1.4) can be treated as energy 
(or total energy) depending (mainly) on the parameter, . This  has the inverse 
dimension (or, unit) of

)(wEα

w )(wEα

β , which leads to a dimensionless quantity under the exponent 
in the R.H.S of relation (1.3) and thus makes this relation mathematically valid. 
The idea of introducing β  in our calculation comes from the feeling that the 
temperatureT  could be treated as a similar quantity like noise in our weight space; 
more temperature is equivalent to more noise (in the weight space) consistently, the 
less β  value. Inverse of this phenomenon also holds. We will talk a bit about this 
with a short example at the end of this article when we discuss about its influence. 
From [4], we have the effective temperature  is given by 1−β

                                            (1.5)( )∑
=

−− −=
N

FFN
1

2
0

11

α

αηβ   

with
w

EF
∂
∂

−=
α

α ,    and∑
=

−=
N

FNF
1

1
0

α

α η is the step-size parameter as will be given in 

the relation (1.6) later. 
We will now make a bit algebraic manipulation with (1.5) to find the influence of  β  
in the weight space. Re-writing (1.5) we get 
 

                                     ( )∑
=

−− −=
N

FFN
1

2
0

11

α

αηβ

                                              = 〈η ( ) 〉−
2

0FF α  

                                              = 〈η 〉⎟
⎠

⎞
⎜
⎝

⎛
− ∑

=

−
2

1

1
N

FNF
α

αα  

                                              = 〈η ( ) 〉〉〈−
2αα FF  

                                              = η [ ]22 )()( 〉〈−〉〈 αα FF  
                                              = η [ ]222 )()( 〉〈−−〉−〈− αα ηηη FF  

                                              = ⎥
⎦

⎤
⎢
⎣

⎡
〉

∂
∂

〈−−〉
∂
∂

−〈− 221 )()(
w

E
w

E αα

ηηη  

                                              = [ ]221 ))(())(( 〉〈−〉〈− ηδηδη ww  [using the idea in (1.6)] 
                                              =  ))((1 ηδη wVariance−

                           ⇒   =  1−β )(1 parameterwinchangeVariance−η
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This shows that β  is inversely proportional to the variance of the change in 
parameter (which is also a function ofw η , chosen by the user); consistently 

temperature is directly proportional to this variance (or, the variance of the change) in 
space, which makes sense. w

Now, when β ∞→ (or, equivalently, ) we find that there is no variance in the 
space (or, no total change in the w parameter). In this case, the measurement of the 

probability in relation (1.3) is simply the previous distribution restricted to the zero 
error region in space. We can express it mathematically in the following way, 

0→T
w

w
 
                 ( ))()( 1 wEZwP NN

αδ−=  ; 
 Where ( ))(wEαδ = 1 for  = 0 and 0 otherwise. )(wEα

So, in a short, we say that in case ofβ ∞→ , we get no noise in the distribution of 
and this distribution becomes a delta function. w

But when β 0→ (or, equivalently, temperature, ∞→T ), we have infinite variation in 
the space. That means, space is full of noise, every possible states of the weight 
vector in space has the same probability, no useful information is available; this is 
worthless and undesired (but in some optimization algorithm, we start with higher 

w w
w

T value and later we cool it down in order to get a better result, which is not so related 
here and may not be mixed with our discussion here). 
In this chapter, first we will keepβ  to be non-zero finite in order to perform some 
formal derivations of the training and test errors. 
 

1.2.3 The NZ  function 
Sometimes this is called the partition function or the normalization constant. This 
gives the guaranty from the relation (1.3) that sum of all the probabilities will be equal 
to one. 
It is also an error moment generating function3 as by manipulating with it, we can 
obtain error functions (as we will see later of this chapter). 
Although it is called a constant, it is not always a constant indeed (but it is a constant 
with respect to ); depends on some other variables. Temperature w T  is one of those 
variables. 
We can verify its monotone property related to the error function and sample size in 
the following way: 
 
We know that  

                                             [as ] )(
1

wE
N

∑
=α

α )(
1

1
wE

N

∑
+

=

≤
α

α 0)( ≥wEα

                                      [as  )(   )(  
1

11

wEwE
NN

∑∑
+

==

−≥−⇒
α

α

α

α ββ β is positive] 

                                       )(exp   )(exp  
1

11
⎟
⎠

⎞
⎜
⎝

⎛
−≥⎟

⎠

⎞
⎜
⎝

⎛
−⇒ ∑∑

+

==

wEwE
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                                       D )(exp      D )(exp  
1
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wwEwwE
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⎞
⎜
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⎛
−≥⎟

⎠

⎞
⎜
⎝

⎛
−⇒

+

== α

α

α

α ββ

                                                 
3 Something more about Moment generating function will be said later in this chapter. 
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                                          [Using the relation (*) above]. 1+≥⇒ NN ZZ
Then this (the normalizing integral) function is a Semi-monotone decreasing function 
(considering the sample size). 
 
Now, we get back to the relation (1.3) & (1.4). As we said before, we will be looking 
for an optimal parameter set, . For that searching (and learning; as here, learning is 
equivalent to the reduction of the cost function), we will use the standard recursive 
gradient descent

w

4 method with step –size parameter η: 

                          ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

−=−≡ +

j

n
n
j

n
j

n
j w

Ewww
)(

1
α

ηδ
                              (1.6)                   

that is, the weights are updated after each presented example.  The presentations are 
from a random sequence ﴾α (n) ﴿ drawn from the training set. It is done in this way as 
we will be working with the mean error.  
 
Using [4], we arrive at the idea that as the distribution of weights in our system 
follows a stochastic learning procedure, it solves a Fokker-Planck equation5. 
Particularly, when we consider our covariance matrix of the input vector, 

'jj∑ = 2
xσ 'jjδ  (isotropic covariance matrix) and the step size parameter (η ) to be 

small (slow training) we get the stationary weight distribution is approximately 
Gibb’s distribution as above (relation (1.3)). Throughout the rest of this chapter, we 
will continue with these considerations in order to assume our post training 
distribution to be Gibbsian. Our considerations will support our assumption to skip 
the limitations of [2] proved by [4]. 
 
 
 
 

                                                 
4 A standard technique in optimization problem. Sometimes, known as steepest descent. Idea behind 
this is mainly similar to the Bisection method (or, Newton-Raphson method) that is used to find the 
zero of a function. In gradient descent,  (primarily) we also try to find the zero of the derivative of the 
cost function (here, E ) with respect to the parameter (here, w). If the cost function’s search region is 
convex, then for its positive gradient value we give the parameter a negative increment and for its 
negative gradient value we give the parameter a positive increment (or, for a concave regional cost 
function we do the opposite) in order hit the extremum of the cost function. 
5 Very shortly: A partial differential equation, mainly came from statistical mechanics; where the 
dependent variable is the probability of a state (with respect to particles) and the independent variable 
is time. That means, the Fokker-Planck equation talks about the rate of change of the probability 
densities of the states with respect to time. Here, it is compared by taking the probability density over 
the  space. Each set of corresponds a state and time could be considered as the iteration.  w w
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1.3 Average Test and Training Errors 
 

1.3.1 Training Error Average involving the Energy function and 
distribution 
 
As the errors are functions of weights (coefficients of input data), we introduce their 
distribution in order to find the weighted average of the errors. 
When a specific database is given, by using the post training distribution we can 
compute the ensemble average (or, group average having the same temperature,T or 
noise level ) of the training error. We calculate it in the following way: 
 
At first, we find the error on any α’th example (from the database),  in any 
network of our model by using relation (1.4). Using

)(wEα

*~
jjj www −=  in (1.4), we 

get = )
2

1

~)( ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= ∑

=

d

j
jj xwwE ναα ~(wEα . [here, we have introduced )~(wEα , which is 

just for notation only. It is for our convenience and throughout the rest of this chapter, 
we will use this.]. Then we add these errors, )~(wEα  for all given α  ( N,......,2,1=α ) 
in that network and divide this addition by the total number ( ) of examples; this 
gives an average-error of this particular network.  Then we consider infinite number 
of networks (as a result, we also have infinite numbers of weights, which leads 

N

w~  to 
be continuous for any summation) and take a weighted average of the average-errors 
for all of the (considered) infinite networks being dependent on (or,w w~ ). The 
weighted average is found by taking integration over the multiplication of the 

average-error per network, ∑
=

N

wE
N 1

)~(1
α

α  and the post training distribution, )~(wPN (as 

it describes the probability of each weight on the whole weight space) with respect 
to w~ . This gives us at last 

 the ensemble average of the training error,  ∑∫
=

=∈
N

NT wE
N

wPwD
1

)~(1)~(~
α

α    (1.7)                                

with the notation:   ( ) ∫∏∫∫∫
=

≡=−= j

d

j

wdwDwwDDw ~~
1

*

 

1.3.2 Test Error Average involving the Energy function and 
distribution 
 
The test or generalization error is computed as the joint average over the post training 
ensemble and a random example drawn from the same distribution as the training set 
(test samples are a part of the training sets).  
The computation is done by using the following idea: 
 
The test error in each network (due to its model and parameters) can be found by 
comparing relations (1.1) and (1.2) 
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                   . ( )
2

1

2

1

*2 ~)(*)()( ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
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⎠

⎞
⎜⎜
⎝

⎛
−−=−= ∑∑

==

d

j
jj

d

j
jjj xwxwwyxywE νν

 
By using infinite number of networks and the same post training distribution as above 
(as it describes the probability of each point w~  over the weight space), )~(wPN , we 
find the test error, weighted by the probabilities of the points (weight co-efficients of 

networks) w~  as . This can be treated as a partial average 

test error.  

2

1

~)~(~
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−∑∫

=

d

j
jjN xwwPwD ν

In order to find a full average test error, we now start to take the samples randomly 
from the training set pretending them as test samples and find the test errors. But these 
taken samples came from the distribution as for data ),0( Σx N∈  and for noise 

),0( 2
νσν N∈ that we mentioned at the beginning of this chapter. As soon as we insert 

them in our experiment, we need to introduce the probability densities of their 
components as they are taken randomly. That gives us the average test or 
generalization error in the following way: 

( )( )( )
2

1

~)()()~(~
2 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=∈ ∑∫∫∫

=
∑

d

j
jjNG xwPdxPDxwPwD ννν

νσ
; Where = . Dx ∫∏

=

j

d

j

dx
1

 
But since x and ν are independent, for our convenience, we write the above relation in 
the following form. 

                     (1.8) 
2

1

~)()()~(~
2 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=∈ ∑∫ ∫∫

=
∑

d

j
jjNG xwPxPdDxwPwD ννν

νσ

 

                ⇒ ννν
νσ

dDxPxPxwwPwD
d

j
jjNG )()(~)~(~

2

2

1
∑

=
∫ ∫ ∑∫ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=∈

                    [Since,
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=∈⇒ ∑∫

=

2

1

~)~(~ d

j
jjNG xwEwPwD ν [ ] ( )∫= dmmpmmE ] 

 

⎥
⎦

⎤
⎢
⎣
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2

1, 1

~2~~)~(~ νν
d
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j
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⎞
⎜
⎜
⎝
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+⎥

⎦

⎤
⎢
⎣

⎡
−⎥
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⎤
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⎡
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==′
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2
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~2~~)~(~ νν ExwExxwwEwPwD
d

j
jj

d

jj
jjjjNG

  )~(~ wPwD NG ∫=∈⇒ [ ] [ ] [ ] ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+− ∑∑

==′
′′

2

11,

~2~~
νσνExEwxxEww j

d

j
j

d

jj
jjjj  

)~(~ wPwD NG ∫=∈⇒ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−∑∑

′
′′

d

jj
jjjj ww

,

20~~
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[Using [ ] jjjj xxE ′′ ∑=  from Art 1.1] 
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                                                     .~~)~(~
,

2∫ ∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+∑=∈⇒

′
′′

d

jj
jjjjNG wwwPwD νσ  (1.9) 

 

1.3.3 The Moment generating functional 
 
In case of post training distribution at section 1.2, in relation (1.3), we found a term 

as the normalization constant integral. We also defined it there mathematically by 
the relation (*). We see that this  is a function of the error function, which 
is involved inside the exponential term under the integral. So, we can call  as a 
functional of . In addition, we notice that by differentiating with respect to the 
co-efficient of (here,

NZ

NZ )(wEα

NZ
w NZ

)(wEα β ), it is possible to generate the moments of (or, )(wEα

)~(wEα ). As a result, we can call as a moment generating function of 
(or,

NZ
)(wEα )~(wEα ). In the same way, in order to get the moments (or products) of 

w~ (or, w ) we introduce an extra term involving w~  under the exponent part of . 
This term is expressed as a linear combination of 

NZ
w~  and ; where h is an auxiliary 

field that is useful in our calculation in the limit (that is, applying this limit we 
keep the validity (and originality) of our expressions and quantities). This extra term 
is multiplied with 

h
h 0→

β−  and then added with β− )(wEα under the exponent term 
of . Thus  is having a new phase as NZ NZ

                            ∫ ∑∑ ⎟
⎟
⎠

⎞⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎜⎜
⎝

⎛
+−=

==
j

d

j
j

N

N whwEwDh ~)~(exp~),(
11α

αββZ              (1.10) 

[Here, one might ask about the dimensionality and the dependence of  with 

respect to 

j

d

j
jwh ~

1
∑
=

β  for the consistency of (1.10) and the further manipulations with it. In 

that case, we inform that has the inverse dimensionality of j

d

j
jwh ~

1
∑
=

β  and ( )βjj hh ≠  

directly up to our uses level. We may not give detail explanations for this since it is 
beyond of interest.] 
Now, from the relation (1.10), it is quite obvious that by manipulating with the 
derivatives of ),( βhZN , we can obtain the moments of the average training and 
generalization errors. So, it is a moment generator. In addition, ),( βhZN is a function 
of function(s). So, it is a functional. Combining these two, we call ),( βhZN as the 
moment generating functional that will be continued throughout the rest discussions. 
 

1.3.4 Training Error Average involving the Moment Generating 
Functional
                                                                               
By making a careful observation (with comparison) on the relations (1.7) and (1.10) 
and applying the idea form the above discussions about ),( βhZN ,  it is noticeable that 
the average training error  can be expressed as below [13]: T∈
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[ 0),(ln1
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−=∈ hNT hZ

N
β

β
]                           (1.11) 

(This  can be treated as the average training error with respect to samples) T∈
(Proof of this (1.11) is given APPENDIX A: A.1) 

 

1.3.5 Test Error Average involving the Moment Generating 
Functional 

   
By making a powerful observation and investigation (with deep comparison) on the 
relations (1.9) and (1.10) and using the knowledge form the above discussions about 

),( βhZN  it is also possible to detect that G∈  can be expressed as below [13]: 
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 (1.12) 
  
 
(This  can be treated as the average test error with respect to test samples and 
noise) 

G∈

 
(Proof of this (1.12) is given APPENDIX A: A.2) 
 

1.3.6 Explicit Evaluation of the Moment generating functional 
 
Now we will try to evaluate the generating functional ),( βhZ N  in a more explicit 
form. From relation (1.10), we have, 
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 If we define, 

                               [Estimated input covariance matrix]    (1.13) ∑
=

′′ =
N

jjjj xxA
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αα

 

                               (1.14)                                 ∑
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−=
N

jjj xha
1
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ααν

  

                                                 (1.15)                                 ( )∑
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2
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We get  
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4
detln

2
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d
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N
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′
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−
′

− AA                                  (1.16) 

[Proof of this relation is given in APPENDIX A.4] 
 

1.3.7 Evaluating Training Error Average using the Moment 
Generating Functional 

 
Now, we will apply (1.11) on (1.16) in order to obtain the average training error as we 
have mentioned earlier. 
 
Applying (1.11) on (1.16) we get the average training error ( T∈ ) in the way below: 
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 where dβλβλβλ ,,........., 21  are the eigen values of the matrix Aβ  
[Since the determinant of a matrix is equal to the multiplication of its eigen values] 
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1.3.8 Evaluating Test Error Average using the Moment Generating 
Functional 

 
We will also apply (1.12) on this (1.16) in order to obtain the average generalization 
error ( ) as we have mentioned earlier. It is found as below 
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    [Proof of this relation is given in APPENDIX A.5] 
 

1.3.9 General average Training error 

 
As the relation (1.11) for the average training error was derived by using a given 
training set and the expression (1.17) is obtained by following this relation primarily, 
the results in (1.17) is also valid for that specific training set only. But we are 
planning to derive expressions for the general case. Therefore, we have to average 
over all possible training sets.  
Using [ ] ααν

αα δσνν ′
′ = 2E , we obtain the general average training error ( T∈ ) in the 

following way: 
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This is the general average training error with respect to the values of the samples.  
Here, we like to point out the issue that the general average training error ( T∈ ) in the 
above relation (1.19) is exact and no reference to the distribution of the inputs was 
used to calculate it; the only used condition is that the matrix,  must be non-
singular in order to well define the Gaussian integrals that is used to express the 
moment generating functional, 

A

),( βhZ N explicitly [from (1.13) to (1.16)].  
From relation (1.19), it can easily be noticed that the value of the general average 
training error ( T∈ ) decreases with the increasing ofβ , which is desired. This can also 
be proved in a more general and analytic form by using the average training error 
( ) in the following way: T∈
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                                                                                                              (1.19-EXTRA) 
 
[Proof of this (1.19-EXTRA) is given in APPENDIX A: A.3] 
 
This tells us that the gradient of the average training error ( T∈ ) function is negative 
(or zero for special case) with respect to β . That implies, the average training error 
( ) is a decreasing function ofT∈ β . But the Expectation operator ( taking the mean 
value), noted by [ ].E  is a linear operator and [ ]TE∈  = T∈ . This gives, there is a linear 
relation between andT∈ T∈ . Combining these, we conclude that the general average 
training error ( T∈ ) is a decreasing function ofβ . 
 
 Using ∞→β (i.e, temperature → 0), in (1.19), we get  
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T for .  dN ≥

In this case, we also see that for dN = , 0=∈T . But afterwards, T∈ starts to increase 
with the increasing of . Anyway, this increasing ends for by givingN dN → →∈T  

, which is the maximum value of the general average training error (2
νσ T∈ ). We will 

also analyze regarding this condition for our average test error later in this chapter. 
 
 

1.3.10 General average Test error 
 
In relation (1.18), we got the average generalization error that was derived by making 
experiment on one training set as it is based on relation (1.12), which was for a 
specific training set only. Now, according to our target, we will find the general 
average generalization error ( G∈ ). We find it by simply taking average on (1.18) in 
the following way: 
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The inverse covariance matrix of the input vectors, ( ) jj ′
−1A , samples as an Inverted 

Wishart distribution6 with  degrees of freedom, W-1( ∑-1, ), for which the mean N N
 
is given by [6] : 
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[Here, we insist on  as in other case 1+dN f ( ) jj ′
−1A does not have a finite consistent 

value. For example, if  = , we get infinite valued elements in the entries of N 1+d

( ) jj ′
−1A  for a non-singular matrix∑ and if  <N 1+d , we get negative valued 

elements in the entries of ( ) jj ′
−1A while ( ) jj ′

−1A is the inverse of a covariance matrix.] 
 
Using this in relation (1.20) we get, 
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Here we emphasis that this is an exact (without any approximation) finite temperature 
(that means or∞≠T 0≠β ) general average of the generalization error and it is valid 
for arbitrary correlation among the components of the multi-normal input vector as 
long as the correlation matrix ∑ is non-singular. 
                                                 
6 A short discussion about (Inverted) Wishart distribution can be found in APPENDIX B 
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For ∞→β (that is, 0 temperature), from relation (1.22), we get 
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From this, we see that G∈  decreases with the increasing of N (number of sample 

size), which is reasonable and for ∞→N , G∈ approaches to , which is its 
minimum value. 
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This could be seen in the figure below: 
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  Figure 1.1:  General Average Generalization error (in zero temperature) with respect 
to the sample size. The fresh (red) curve is from simulation while the circulated 
(green) curve is from our theoretical calculation following (1.22a). From figure, we 
see that they agree very strongly! Both of them have poles (or very high cost function 
values) at . Before this value, the curves are not drawn as they are 
inconsistent for

)1(8 +== dN N
1+≤ dN . In this figure, we also see that the cost function value gets 

smaller with the increasing of the sample size, . When gets even larger and 
larger, the cost function value approaches to 1, which is equal to the noise level,  
used for this simulation that was easily predictable before. 

N N
2
νσ

 
Here, one might complain about using any specific value ofβ . That means, it could 
be interesting to see the general average generalized error for any arbitrarily positive 
β (or equivalently, for arbitrarily positively finite temperature). In that case we can 
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skip using of β in our expression, but we will use the training error term. We do it in 
the following way: 
From (1.19), we have 
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Using this expression for β2 in (1.22), we get 
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⇒   General averaged generalization error = Training error term + Complexity term 
or, equivalently, 
Prediction error term = Training error term + Complexity term. 
 
This expression can be compared to [15] .The specialty of this expression is that it is 
obtained regardless of any valid value ofβ . 
Tracking the origin and the further path of (1.22b), we see: 
 for very small value of  (i.e, the dimension of weight vector) d G∈ is big as in that 

case gives large value; on the other hand, for very big value, TE d G∈ gets larger as in 
that case the terms of R.H.S of (1.22b) get rather bigger. Thus, the minimum value of 
General averaged generalization error ( G∈ ) represents a trade-off between these two 
competing effects. 
 
 
 

1.4 Discussion and comparison with other results derived for 
the error functions 
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In conventional statistics, various results have been developed in the context of linear 
models, for assessing the generalization performance of trained models without the 
use of validation data. Similar criteria are also obtained by using similar properties in 
other areas like thermodynamics, statistical mechanics, etc. Parts of them are 
discussed below: 
 
 
 
 

1.4.1 Comparing with Akaike’s FPE 
 
Combining expression (1.19) and (1.22) it is possible to find a relation between the 
general average training and generalization errors. We find it in the way below: 
 
In (1.19) we have 
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Using this expression in (1.22), we can express the average test error, G∈  in terms of 

the average training error, T∈ in the following way: 
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This can be compared to Akaike’s Final Prediction Error estimate [7][8]. 
In [7] Akaike computes the ratio between the test and training errors in the 
deterministic limit ∞→β  : 
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In [8] Akaike computes the ratio between the test and training errors in the 
deterministic limit ∞→β  : 
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For comparatively larger values of , relation (#) can be formed into relation (# #), 
which is the usual case. Thus, in general, we can notify the Akaike’s Final Prediction 
Error estimate in the latter form; that is, 
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Using ∞→β in our expression (1.23) we find: 
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This coincides with (1.24) in the limit of large training sets: → ∞ (as in both (1.24) 
and (1.25) if we apply → ∞ and >> , we get

N
N N d TG ∈→∈ ).  

 
Proceeding with (1.25) for large , we get N
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 Now, manipulating in the same way with Akaike’s expression from (1.24), we get 
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This is Akaike’s expression in expanded and modified form. One message is obvious 
here that this expression agrees with our expression (1.26a) only to the first order 

in
α
1 . 
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1.4.2 Comparing with others 
 
Properties of linear models in the limit → ∞, but with constant load 

parameter,

N

)(
d
N

≡α  have been investigated by several workers [9] [11] [12] [25]. 

 
Comparing with L.Ljung 
In [9], L. Ljung found that the test error blows up for → . This could be 
compared with our expression (1.26) for very large , . Because, for is very 

large,

N d
N d d

d
1 0→ 111 →+⇒

d
 and we can use the assumption (hypothetically) 1→α in 

relation (1.26). Using it, we find that the numerator of the R.H.S. of (1.26) tends to 
zero (as for 0→∈T 1→α or → , found by analysis from (1.19)) in first degree; 
whereas the denominator of the R.H.S. of (1.26) tends to zero in second degree. As a 
result, their ratio diverges, which leads the test error to blow up.  

N d

This shows an agreement between L. Ljung’s and our result for very 
large , (which is a common case). N d
 
Comparing with Krogh 
In [11] [12] Krogh found phase-transition7 like behavior for (that means, +→ 1α

q+= 1α for >0 and ), with divergent relaxation times8 and infinite test-
errors. This surely agrees with our expression (1.22a) where we showed that the test 

error blows up for

q 0→q

+→⇒+→⇒+→ 1111 α
dd

NdN . For very large , d , the 

agreement between Krogh’s result and our result can also be shown by using our 
expression (1.26) in the same way as we did for L. Lung’s result. 

N

 

1.5 Conclusion 
 
We have derived exact averages of the training and test errors of a linear model for 
the general cases. Our results give the same as [13].  Our derivations are done in 
several phases; mainly considering ∞→β  and without considering any value of 
β (that is, avoiding the β factor). We also have defined minimum and maximum 
value of the training and test errors. Our results are valid for a stochastic algorithm 
considering the following conditions: 
 

• the post training distribution is Gibbsian. 
• the difference between the sample size length and the model dimension length 

is more than one; i.e. 1+dN f   
        

• inputs and noise are independent; their distributions are multinormal and 
normal respectively. 

                                                 
7 The conversion by which a state leaves its cluster entirely and enters into a 
completely different type of cluster. 
8 Time taken for reaching a stationary situation. When this time goes to infinite or very large, it is 
considered to be a divergent relaxation time. 
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Our expressions for training and test errors are consistent for all valid sample size that 
extend those of Akaike to finite training set sizes for simple linear learning.  They also 
agree with other’s results like L.Ljung’s and Krogh’s. 
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Chapter 2: Exact Generalization Error in Linear Regression Model 

Chapter 2: Exact Generalization Error in Linear 
Regression Model 
 
In chapter1, we derived exact expressions for Generalization errors as a function of 
sample size, dimension and output noise level where the input sample covariance was 
probabilistic and unknown. In this chapter, we also derive expression for exact 
Generalization error involving two more parameters; the assumed known input 
covariance matrix and the true co-efficient set (weight vector). The derivation is done 
by an exact analysis of a simple linear regression model and the result is then 
compared to [20]. To my knowledge, our result (with [20]) is the first derived 
expression for Generalization error in regression analysis in such explicit form. We 
compare our theoretical result with MATLAB simulation and find a solid 
resemblance that recognises the undoubted validity of the theory. 
 
Organization of this chapter: 
   In 2.1, we make an introductory discussion about linear regression while we deal with some of 
its common algebra in 2.2. In 2.3, we derive the expression of exact Generalization error for 
linear regression and we make simulation for its authentication. In 2.4, we also derive an 
expression for the covariance of the estimated weight vector. At last, we conclude the chapter in 
2.5. 
  

2.1 Introduction to Linear Regression  
 

2.1.1 Regression 
 
Regression Analysis may be broadly defined as the analysis of relationships among variables. It 
is one of the most widely used statistical tools because it provides a simple method for 
establishing functional relationship among variables. The relationship is expressed in the form of 
an equation connecting the response or the dependent variable and one or more independent 
variables. This equation is called the regression equation and the co-efficient (s) of the 
independent variable (s) is (are) called regression coefficient (s). When this equation is linear 
(with respect to the dependent /independent variable), we call it as linear regression. A regression 
containing only one independent variable is called a simple regression equation. But when the 
equation contains more than one independent variable, it is named as a multiple regression 
equation. 
 

2.1.2 Its goal 
 
The goal of regression analysis is to determine the values of parameters for a function that cause 
the function to best fit a set of data observations that is provided. 
 
There are two primary reasons for fitting a regression equation to a set of data--first, to describe 
the data; second, to predict the response from the carrier. The justification behind the way the 
regression line is calculated is best seen from the point-of-view of prediction. A line gives a good 
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fit to a set of data if the points are close to it. Where the points are not tightly grouped about any 
line, a line gives a good fit if the points are closer to it than to any other line. For predictive 
purposes, this means that the predicted values obtained by using the line should be close to the 
values that were actually observed, that is, that the residuals should be small. Therefore, when 
assessing the fit of a line, the vertical distances of the points to the line are the only distances that 
matter. Perpendicular distances are not considered because errors are measured as vertical 
distances, not perpendicular distances.  

When predictors are categorical, one can predict the response by simply averaging the 
responses observed in the training data. For numerical predictors, this is not possible 
since the predictor value we get in the future may not precisely match any value we 
have seen in the past. Right from the beginning, we need to impose constraints on 
how the predictors are related to the response.  

2.1.3 Why Linear Regression 
 
In real data analysis, relationships are rarely linear. But this does not necessarily mean that we 
have to use nonlinear regression. Fortunately, often there are simple transformations of the 
response and/or predictors which make the relationship linear. If possible, this approach is 
preferred since it generally leads to the simplest models and allows us to use tools developed for 
the linear case. 
 
 

2.2 Algebra in Linear Regression 
 

2.2.1 Linear Equation 
 
With the unknown properties of the dependent and independent variables, it is not possible to 
determine their functional relationship (or, the regression function) a priori. It has to be estimated 
from the data and must therefore be suitably parametrized. Thus, we consider a noisy linear 
relation 
                                       
                                            xw •=y + ε                  (2.1) 
 
Where y is the depending variable that depends on the independent variable . We 
will try to estimate the relation between 

x
y  and  based on examples x N

  , with },...,2,1|),({ NnyD n == nx n0 xw •=ny + nε . Here, the s are 
independent, probabilistic and a 

nx
1×d  vector whereas is a fixed  (coefficient) 

vector. We assume that the input and the additive noise are independent and both of 
them belong to zero mean normal distribution, that is 

0w 1×d

),( ∑∈ 0x N , . At 
this stage, we will assume that ∑ is unknown whereas the noise level  will be 
assumed to be known throughout the whole process. 

),0( 2σε N∈
2σ
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We define the estimated covariance matrix (of the input covariance matrix ) as ∑
   

                                    = A ⎥
⎦

⎤
⎢
⎣

⎡∑
=

N

n

T
nnN 1

1 xx  

But from Chapter1, we found that while the matrix is non-singular with probability 
one for , the mean of its inverse is infinite for

A
dN ≥ 1+≤ dN . Therefore, for the 

moment, in order to use , we consider1−A 1+dN f , so that it can be well defined. 
 
 

2.2.2 Least Square Estimate (LSE) 
 
For estimating the functional relation between  and , we have to estimate . The best 
estimate (with the used assumptions) is found by searching for that estimate of  for which 
squared sum of the difference between the estimated and observed values of is the minimum. 
This estimation is called the Least Square Estimation (LSE) or simply Ordinary Least Square 
(OLS) Estimation. 

y x 0w

0w
y

 
We make the OLS estimate of in the following way: 0w
                               .                       (2.2) =)(ˆ Dw aA 1−

With  = a [ ]nn

N

n

y
N

x∑
=1

1  

       [Proof of this relation is given in APPENDIX A.6.] 
 
One of the good properties of this estimator is that it is an unbiased estimator that can 
be seen below: 
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2.2.3 Generalization error 
 
The generalization error or the final prediction error is counted as the mean square loss averaged 
with respect to test and training set in the following way: 
Generalization error,  
                 DyyyE 〉〉−〈〈= ),(

2)ˆ( x

                                          ⇒ DyyE 〉〉•−〈〈= ),(
2)ˆ( xx(D)w

By following the track of the derivation of , it is possible to realize that this Generalization 
error, 

)(ˆ Dw
E  can be a function of the model dimension ( ), the sample size ( ), the noise level 

( ), the true coefficient parameter ( ) and the input covariance matrix (∑ ). Therefore, we 
can re-write it in the following form 

d N
2σ 0w

 
                                    (2.3) DyyNdE 〉〉•−〈〈=∑ ),(

22 )ˆ(),,,( x0 x(D)w,wσ
 
But so far, we have only the estimated input covariance matrix A , not the true one (∑ ) and it is 
very hard to find the explicit form of the relation (2.3) using this A. However, a good property of 
this A is that it is an unbiased estimate of ∑  as we can see in the following: 

[ ]AE  = ⎥
⎦

⎤
⎢
⎣

⎡ ∑
=

N

n

T
nnN

E
1

1 xx = [ ]∑
=

N

n

T
nnE

N 1

1 xx  = ∑
=

∑
N

nN 1

1  = ∑ . 

 
And from the Law of Large numbers, we can say that for a very large value of  or 
correspondingly, in the presence of a large set of data, 

N
∑→A  (that means, when a large amount 

of examples are available, the input covariance matrix can be assumed to be known). Thus, in 
that case, we can re-write the above relation (2.2) in the following way: 
 
                                          ≅)(ˆ Dw a1−∑                        (2.4)    
 
Now, we will try to express relation (2.3) in an explicit form involving the assumed known input 
covariance matrix∑ . 
 

2.3 Generalization Error with known input distribution in 
Linear Regression 
 

2.3.1 Derivation of the expression for exact Generalization error 
 
From (2.3) we have 

DyyNdE 〉〉•−〈〈=∑ ),(
22 )ˆ(),,,( x0 x(D)w,wσ  

                                   Dy
Ty 〉〉−〈〈= ),(

2)ˆ( x(D)wx

                                     [Writing with the suffix  Dy
T
nny 〉〉−〈〈= ),(

2)ˆ( x(D)wx
                                                                                               where Nn ,...,2,1= ] 
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In the following, we will do some small vector & matrix calculations that will be used 
in the above expression. 
 
 
We have, 
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T
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n
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[In fact, both and ny nε are scalar quantities; still here we work with their                                              
transposes in order to show a consistent way of calculation] 
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Inserting these values in the above expression for , we get ),,,( 2 ∑,w0σNdE
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As we want to express the generalization error, E  in terms of the known 
parameters ; that means, we want ∑,w0,,, 2σNd E = , we also 
need to find out the values of ,  and  using these 
parameters. We will find  and in the following at first. 
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Inserting these in the above expression for E , we get 
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Now we will compute  in terms of  in the way 
below. 
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Now we calculate the first term of the R.H.S. of the above relation, (γ) as below.                                
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Further, we have to calculate  and we will do so by the following 
technique. 
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Using this expression in the above relation (γ), we get 
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At last, using this expression in the above relation (α), we get 
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But we have found before that the average total energy of the signal is 

〉〈 ny 2 =  =  = signal energy + noise energy. 〉′〈 nn yy 2
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Therefore, the Signal to Noise Ratio (SNR) is 
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So, we can re-write the relation (2.6) in the form below 
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This is an exact Generalization Error in case of Linear Regression model and is a 
function of the signal to noise ratio in addition to the model dimension, sample size 
and the input noise level. From this expression we also see that the error increases 
with the increasing of the model complexity (dimension) and decreases with in 
increasing of the sample size, which is a pretty common idea in learning theory. But 
the peculiarity of this expression is that it shows the increasing of error with the 
increasing of the signal to noise ratio. 
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2.3.2 Simulation and comparison for the Generalization error 
calculation 
 
In order to verify the purity of our theory (2.6), we make a MATLAB simulation that 
compares our result with the simulated one. Figure 2.1 shows that comparison 
(below): 
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Figure 2.1: Generalization Error curves with respect to the sample size. The dotted (blue) one is 
the simulated curve whereas the crystal (black) one is from our theoretical calculation (found 
from (2.6) or (2.7)). Figure shows their strong agreement!! From figure, we also see that the cost 
function value gets smaller with the increasing of . When gets even more and more large, 
the cost function approaches to 1, which is equal to the noise level for this simulation. This was 
easily predictable from relations (2.6) or (2.7). This figure is obtained using the known input 
distribution. 

N N

 
 

2.4 Covariance of the estimated weight vector 
 
The covariance of  is given by (D)ŵ

)ˆ( (D)wCov  

= [ ]( ) [ ]( )TEE (D)w(D)w(D)w(D)w ˆˆˆˆ −−  
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[Using the results from (2.5) and some others above] 
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2.5 Conclusion 
 
We successfully managed to derive the exact expression for Generalization error in Linear 
Regression model that is an explicit function of the model dimension, the sample size, associative 
additive noise level, true regression coefficient parameter and the known input covariance matrix. 
Our result gives the same as [20]. The parameters in our expression arise in such a form that the 
error can be treated also as a function of Signal to Noise Ratio. Figure (2.1) shows a severely 
strong similarity between our theoretical curve and the simulated one. This proves a strong 
validity of our theory. 
We also derived the exact expression for the covariance of our (unbiased) estimated weight 
vector. But as it is in the matrix form, it is really hard and long process to make any proper 
graphical comparison for it, which is not in high priority with respect to the time limitation of this 
thesis.  
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Chapter 3: Generalized Cross-over 
Chapter 3: Generalized Cross-over 
 
In chapter1, we derived expressions for generalized error with respect to the sample 
size, input data dimension and the input additive noise level, where the input 
covariance matrix was probabilistic and unknown. In chapter 2, we derived this 
expression in terms of input sample size, input dimension, true weight vector, additive 
noise level and the assumed known input covariance matrix. In this chapter, we make 
short mathematical analyses with these expressions and thus search for the classes and 
behaviors of the curves produced by them. Then the cross point of these curves are 
traced. At last, we conclude by making a short comparison between them regarding 
their usefulness. 
 The chapter is organized in the following way: In 3.1, we analyze the expressions of 
the generalized curves. In 3.2, we find the cross point of two learning curves obtained 
from these two expressions of the Generalized curves. In 3.3, we make a mild 
comparison between the methods regarding their merits depending on the cost 
functions produced by them. And at last, we make a very short conclusion in 3.4. 
 

3.1 Expressions of the generalized errors and their properties 
 
From chapter1, relation (1.22a), we have  
 

2

1
1

νσ−−
−

=∈
dN

N
G         [For 1+dN f  ]                 (3.1) 

 
And from chapter 2, relation (2.7), we have  
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As both of the above expressions talk about the Generalization error, in a sense they 
are of the same type. Therefore, while manipulating with them, we will use different 
but same type of notations for them. This is just for manipulating comfort and 
decoration only. We simply denote G∈  or ),,( 2σNdG∈  of (3.1) by  and 

 of (3.2) by . Using these notations, (3.1) and (3.2) can be re-
written as  
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And  
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Now we will analyze with their mathematical form and find the classes of the curves 
produced by them. 
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3.1.1 Generalized error expression in the 1st way  
 
In (3.3) we have 

2
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1 1 νν σσ
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dN
dE  

⇒ 22
1 1

  νν σσ
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dN
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⇒ 22
1 )1()  ( νν σσ ddNE =−−−  

⇒ 11
~~ CNE =                                         (3.5) 

          [Where 1
~E = ; 2

1   νσ−E N~ = 1−− dN ; =  = Constant] 1C 2
νσd

                                                                                       
                                                                                                                                         
This is an equation of a Rectangular Hyperbola (in the form of tConsyx tan= ) [18]. 
The two perpendicular asymptotes are at  

1
~E = 0 
⇒ 2

1   νσ−E  = 0 
⇒ 2

1  νσ=E   
And 
 
N~ = 0 
⇒ 1−− dN  = 0 
⇒ 1+= dN  
That means, the curve produced by relation (3.3) or, (3.1) (or, 1.22a in chapter 1) 
representing our 1st way of generalization error has two asymptotes; one is the line 

 and the other one is the line2
1  νσ=E 1+= dN .  

The line  (parallel to the sample size axis) gives us the minimum value of the 
generalized error with the maximum value of the sample size (here, infinitely 
large).  

2
1  νσ=E

N

On the other hand, the line 1+= dN (parallel to the Generalized Error axis) tells us 
the maximum value (here, infinitely large) of the Generalized Error at the minimum 
valid value (with open boundary!) of the sample size. Below is the figure of the 
Generalization Error in the 1st way with its two asymptotes. 
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Figure 3.1: Generalization error with respect to the sample size in the 1st way with its 
two perpendicular asymptotes. In chapter1, we also used the same figure but with the 
vertical asymptote only. The vertical asymptote is the (blue) line 1+= dN , parallel to 
the Error axis and passes the sample size axis at d+1. The horizontal asymptote is the 
(magenta) line , parallel to the sample size axis and passes the Error axis 
at . 

2
1  νσ=E

2 νσ
 
 
 

3.1.2 Generalized error expression in the 2nd way  
 
In (3.4) we have  

2E  = (1 SNR
N

d
N
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++ )         2σ

⇒ 2E -   = 2σ
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SNRdd )1( ++ 2σ  
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      [Where, 2

~E = - ; = 2E 2σ 2C SNRdd )1( ++ = Constant] 
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This is also an equation of a Rectangular Hyperbola (in the form of ) 
[18]. The two perpendicular asymptotes are at  

tConsyx tan=

 
2

~E = 0 
⇒ 2

2   νσ−E  = 0 
⇒ 2

2  νσ=E   
And 
 
N = 0 
 
Thus, the learning curve produced by relation (3.4) or, (3.2) (or 2.7 in chapter 2) 
representing our 2nd way of Generalization Error (or, cost function) has two 
asymptotes; one is the line  and the other one is the line2

2  σ=E 0=N .  

The line  is the same as . Thus the two generalized error curve have 
the same horizontal asymptote that gives the lower limit of the error in case of the 
upper limit of the sample size. We denote these two lines in one expression as 

[considering = ]. 

2
2  σ=E 2

1  νσ=E

2 σ=E 2 νσ
2 σ

 On the other hand, the line is the generalized error axis; this tells us that 
average error goes infinite when there is no sample. This is quite ridiculous, 
impractical… and we will not focus on it at all. 

0=N

 Below is the figure of the Generalization Error in the 2nd way with its two asymptotes 
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Figure 3.2: Generalization Error with respect to the sample size in the 2nd way with its 
two perpendicular asymptotes. In chapter2, we also used the same figure but without 
showing any asymptote. The vertical asymptote is the (yellow) line , the Error 
axis. The horizontal asymptote is the (magenta) line , parallel to the sample 

size axis and passes the error axis at , which is the same in case of the 1st way of 
generalization error. 

0=N
2

2  σ=E
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Up to now, we have discussed about the properties of the two generalized error 
curves. Now, we will find their cross point and some other relevant values. 
 

3.2 Finding the cross point of the two learning curves:  
 
In the above analysis, we found that the two curves, produced by relations (3.3) and 
(3.4) have the four asymptotes as , 2 σ=E 1+= dN  and 0=N . Therefore, the cross 

point of these two curve must lie in the truncated plane defined by  
and . We will investigate it in the following. 

2σfE
1+dN f

 
As both of (3.3) and (3.4) represent the generalized error, they are equivalent. 
Comparing these two relations, we get 
  

2

1
1 σ
−−

−
dN

N  = (1 SNR
N

d
N
d 1+
++ )    [considering = , as their different 

value does not give big difference meaning of the context here; it only brings the 
complexity of the calculation .] 

2σ 2 νσ
2 σ
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This is the value of (sample size) where the two generalization curves cross each 
other. 

N

Inserting this value of N in relation (3.3), we get 
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σ

−−++
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d
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dd
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⇒ E  = 2σ

SNR
d
SNR

dd +
  [As at the cross point, E  represents both types of learning 

curves]   
                                                                                                          
⇒ E  = (1 + )  SNR 2σ

⇒ E  = (1 + 2
0

σ
0ww ∑T

)                                                                                             2σ

⇒ E  =  +                    (3.8) 2σ 0ww ∑T
0

 
⇒ E  =  2y
⇒ E  = Total Energy of signal in case of the 2nd curve. 
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This shows that at the cross point, the error is fixed. It is not directly dependent on  
(dimension) and independent of (sample size).  

d
N

 
Now, we will investigate this cross point obtained in (3.7) and (3.8). 
We have,  and for any non-zero and covariance matrix . 

Therefore,

2σ 0f 0ww ∑T
0 0f 0w ∑

2
0

σ
0ww ∑

=
T

SNR  is positively finite. Thus, 
SNR

ddN ++= 1 1+df . 

Moreover, E  =  + . Thus the cross point lies in the above 
mentioned truncated plane and valid. 

2σ 0ww ∑T
0 f 2σ

 
 
 
A figure of showing the cross-pint is given below: 
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 Figure 3.3: Crossing of the two curves representing the Generalization Errors with 
respect to sample size in the 1st and 2nd way. These two curves have a common 
horizontal (magenta colored) asymptote, . But they have different vertical 
asymptotes: 

2 σ=E
1+= dN (blue colored) for the 1st way and 0=N (not shown here 

because of its least importance in order to make a better figure) for the 2nd way. 
According to relations (3.7) and (3.8), at the cross point, the value of the sample size, 

should be equal to 10.5455 and the error value should be equal to 3.75 (total 
energy of the 2nd curve). Figure shows a strong support to this statement. 
N
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3.3 Comparison between these two methods 
 
For comparing these two methods, first of all we re-write the expressions (3.3) and 
(3.4) once again in the following way:  
 
The 1st method gives the generalized error in the form 

2
1 1
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=
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dE   [Using = ]               (3.9) 2
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And the 2nd method gives the generalized error in the form 
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Now, if we remove the stochasticity of the process by setting = 0 in relation (3.9) 
and (3.10), we obtain: 

2σ

  
Generalization error in the 1st way (from (3.9)) becomes zero, which is desired. 
In contrast, the Generalization error in the 2nd case (from (3.10)) still remains with the 

value )(1
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d , which is undesired! Although for very large (>>d), this 

error may converge to zero (depending on the signal energy, ), it has a 
significant effect on the cost function for small  . 
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N
Therefore, in the non-stochastic process (which is almost impossible in real life!!), we 
should always use the 1st method. 
Now, for comparing these two methods in case of stochastic process, at first, we will 
find the difference of the learning curve values (or, error values) produced from them. 
Subtracting (3.9) from (3.10) we get 
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Now, as for 1+≤ dN , is not defined (from (3.9) or (3.1)) and the 1st method is not 
valid; hence the 2nd method is comparatively better for modeling. 
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Afterwards, we will be looking for the event 1+dN f . In that case,  
2E 1Ef  if  

)(1
0 0ww ∑⎟

⎠
⎞

⎜
⎝
⎛ + T

N
d  f 2

)1(
)1( σ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−

+
dNN

dd  

⇒
SNR

ddN ++1f  [After doing a tiny simple algebra]  

       ; Where 2
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σ
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That means, from just after 
SNR

ddN ++= 1  to any finite value of , (that is 

the cost function from the 2nd method is larger than the cost function from the 1st 
method); this can also be seen from the figure 3.3. Therefore, after this value of 

(Sample size), the first method is comparatively better for modeling. But 
this value is the cross point of the two learning curves. So, in narrative form, we say 
that if the given training sample size is larger than this cross point sample size value, 
then it is better to model by following the 1st method. 

N 2E 1Ef

N
N

 Here, we also see that a low gives comparatively larger value for as the 
crossing point; in this case, the 2nd method is recommended for comparatively larger 

SNR N

53 



sample sizes. But for extremely low implies that the 2nd method is a little 
improved form of the 1st method. 

SNR

  
 

3.4 Conclusion 
 
We found out the type and the properties of the learning curves produced in two 
methods. We were also able to locate their cross point in the consistently finite plane 
of the tuple: (sample size, generalized error). The error value at this cross-point, 
which is independent of the sample size, was also detected. Finally, we made a mild 
comparison between the two methods with respect to their merits depending on the 
learning curves produced from them.  
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Chapter 4: Matrix Regularization
Chapter 4: Matrix Regularization 
 
 In Chapter 1, we found that the generalization error becomes unbounded and invalid 
while the sample size∈[1, 1+ model dimension]. In this chapter, we will investigate 
that issue by making regularization of the estimated input covariance matrix. 
 
Organization of the topics in this chapter: 
 In 4.1, we talk about the regularization of the estimated input covariance matrix to 
find its necessity and action. In 4.2, we make simulations in order to investigate this 
issue further. At last, we conclude the chapter in 4.3. 
 

4.1 Explanation about the regularization 
 

4.1.1 Necessity of Regularization 
 
When we use only A as an estimate of the input covariance matrix, then we are in a 
little risk for the lower number of sample size; specially, for the sample size value 
near to the value of model dimension. In that case, the fluctuation of the elements of 
A, leads to an increased probability of the small eigen value of A . Even some cases, 
one or many of the eigen values may become zero or very close to it; i.e. .the rank of 
A goes down (less than the full rank). This will cause the determinant of A to be zero, 
i.e. 0=A  . Therefore, the inverse of A or A -1 will have infinite valued elements, 
which will be still infinite after taking the mean of A -1.  This leads the general 
averaged generalization error G∈  to have infinite value [A.8]. In order to avoid this 
phenomenon, we need to tune or regularize this estimated input covariance matrix A. 

4.1.2 Actions of Regularization 
 
If we would choose our sample covariance matrix as IA λ+ , where I is the unit 
(identity) matrix and λ is the regularizer  with 0fλ , this  λ  would somehow 
increase the number of degrees of freedom of the elements in ( )1−A ; i.e. the number of 

degrees of freedom of the elements in ( ( ) 1−+ IA λ )  is greater than the numbers of 

degrees of freedom of the elements in ( )1−A  [A.9]. Thus, ( ) 1−+ IA λ  will have finite 
valued elements [A.8] [A.9] and therefore, the estimated coefficient vector (or 
estimated weight vector) will become finite. As a result, the general averaged 
generalization error G∈  will have finite value. We can also say it another way, 
as Iλ has a full rank, IA λ+   will have full rank too without caring the fluctuation in 
A . Therefore, ( IA λ+ )  will have finite valued element and thus their mean i.e.  1−

( 1−
+ IA λ )  is expected (usually ) to have finite element. This will lead the general 

averaged generalization error G∈  to have finite value. This treatment can be called 
Matrix Regularization. 
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But in this case, we face another problem. That is, we may loose part of our 
information because of introducing Iλ  that was not related to our input distribution. 
We can also find a difference between these two estimators (regularized and 
unregularized) with respect to the biased unbiased property. It can be seen below: 
 
For only A as estimated input covariance matrix, we have 

 E [A] = E [∑ ]  [Using the expression of A from chapter 1] 
=

′

N

jj xx
1α

αα

⇒E [A] = N  Σ
This is proportionally unbiased.  
But in contrast, for IA λ+ , we get E[ IA λ+ ] = E[A] + Iλ = N + Σ Iλ , which is 
biased.  
Still, by tuning this λ - value properly, we can recover this information loosing, which 
may not cure the problem completely but at least can give a better solution.  
 
Below we have shown some simulations regarding the estimated matrix 
regularization. 
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4.2 Simulations 

4.2.1 Simulation concerning sample size (N), model dimension (d) 
and the determinant of the estimated input covariance matrix 
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Figure 4.1: Showing the determinant values of the estimated input covariance matrix 
when the sample size value is near the number of dimension. As the determinant of a 
square matrix is a multiplicative property of the eigen values of the matrix, we took 
the geometric mean of the absolute maximum and absolute minimum values of the 
determinant of the (unregularized) estimated input covariance matrix taken out from 
all the trials for each sample size value. We made simulations for the sample size (N) 
values from 1 to 9. But the values before the sample size equals the model dimension 
(d =7), these determinant values are extremely low. Therefore, it is not shown in the 
simulation. We took the absolute values of the determinants as MATLAB sometimes 
gives negative valued determinant of a covariance matrix when it is almost singular. 
From this figure 4.1, we also see that the determinant values are too low when the 
sample size value (N) is equal or less than one more than the model dimension value 
(d) [i.e. for 1+≤ dN ] and thus it starts to increase afterwards, as we have discussed 
in section 4.1.1. 
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4.2.2 Simulation concerning the regularization of the estimated 
input covariance matrix 

 
Simulation of the cost functions with unregularized estimated input covariance 
matrix: 
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Figure 4.2: Showing the unboundness of the generalization error without using any 
regularization of the estimated input covariance matrix A.  In figure, we see that for 
the 1st method (derived in chapter1) of generalization error, both our theoretical 
result’s curve (green) and the simulated curve (red) becomes unbounded when the 
sample size value (N) is lesser or equal to one more than the model dimension value 
(d) [i.e. for 1+≤ dN ] and thus they start to give finite values afterwards, as we have 
discussed in section 4.1.1.  The two perpendicular straight lines are the asymptotes of 
the two simulated curves obtained from the 1st and 2nd method. Same type of this 
figure 4.2 we used in chapter 3, Figure 3.3. 
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Simulation of the cost functions with regularized estimated input covariance 
matrix: 

 

 
 
 
Figure 4.3: Showing the boundness of the generalization error after using 
regularization of the estimated input covariance matrix A by introducing a 
regularization parameter (or the so called ‘weight decay’)λ . After regularization, the 
new (regularized) estimated input covariance matrix becomes IA λ+ .  In figure, we 
see that for the 1st method (derived in chapter1) of generalization error, our theoretical 
result’s curve (green) is still unbounded while 1+≤ dN  as it is a function of . 
But the simulated curve (red) becomes bounded for all the valid sample size value 
(N), which is better than the case of Figure 4.2 above. This is the benefit of making 
regularization of the estimated input covariance matrix as discussed in section 4.1.2. 
In the same way, we see that the simulated generalization error curve (dotted blue) 
obtained from the 2nd method (derived in chapter 2) is bounded for all valid sample 
size value (N), which is better than the case of  the same curve in Figure 4.2 (above). 
This benefit is obtained by regularization as we have mentioned once before. From 
the figure, we also see that our theoretical curve from the 2nd method is always 
bounded for all valid sample size as usual since it has no pole with respect to d . 
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4.2.3 Simulation concerning the values of regularization parameter 
(or ‘weight decay’) 
 
From Figure 4.2 and Figure 4.3 above, we see that the weight decay parameter λ  
plays an important role in order to recover from the unbounded generalization error 
phenomenon. But there is no given fixed value for that. We will now try to see the 
influence of the values of this weight decay parameter by observing the variation in 
the generalized error function with the change in this parameter as.  
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Figure 4.4: Figure showing the generalization error as a function of the regularization 
parameter (weight decay) λ . From figure we see that after certain value of λ , 
generalization error increases as λ increases. Therefore, this certain value could be 
thought as the optimum value of λ regarding our model and its assumptions. From 
[11] we can have a little idea about the optimum value of this λ  and the minimum 
generalization error by using this value ofλ . We made a theoretical calculation to 
approximate this minimum generalization value, which is called (in this figure at the 
Y-label) as the ‘Theo. Min. value   (wrt λ )’ and was found as 0.4531 whereas the 
experimental minimum value, called (in this figure at the Y-label) as ‘Exp. Min. 
value’ and was found as 0.88141, which is 0.42831 from the theoretical one. This 
difference came due to the simulation technique and the issues regarding the model 
selection with the used assumptions in the model. A deep analysis considering all of 
these issues can give better approximation of the optimal λ .   
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4.3 Conclusion 
 
In this chapter, we managed to talk about the necessity of estimated input covariance 
matrix regularization and its action (with merit and demerit). We were able to 
investigate the related issues through simulations. We tried to find the optimal value 
of the regularizer λ  implementing the idea from [11]. We were able to get closer to 
the optimal value λ  excluding the model specialty and used assumption. 
A further deep analysis would take us nearer to the optimum value of λ .
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Chapter 5: Conclusion
 

Chapter 5: Conclusion 
 
In this chapter we make a succinct summary of the whole project. 
 
Organization of this chapter: 
In 5.1, we discussed about the work done so far whereas we talk about the least 
further possible work in 5.2 

5.1 So Far 
 
This is a theoretical project. Works here are in principal to derive and analyze some 
crucial results in stochastic linear learning with a chaste authentication.  A reasonable 
amount of work has also been done to compare the derived results with other standard 
results (if there exists any!). Main target was to obtain exact expressions especially, 
for the vital terms in stochastic learning algorithms and thus investigate them in 
several aspects. Therefore, in a short, the target was fulfilled with full satisfaction! 
But how is it so? Below traces the answer: 
 
We, combining the statistical mechanical and other concepts, were able to derive the 
expressions of the exact training and test errors averages for a linear model [13], 
which are salient terms in learning theory in order to judge the quality of a model. 
These derivations were done using only three simple conditions: 
i) The post training distribution is Gibbsian  
ii) Noise and inputs are independent having the normal and multinormal 

distribution respectively 
iii) Difference between the sample size’s length and the model dimension’s 

length is more than one. 
And the results are mainly functions of three terms only: the sample size, model 
dimension and the associated additive noise level; but not the unknown input 
covariance. 
Our results are consistent for all valid sample size range defeating the conventional 
results so far, which perform in limited cases. For example, the most frequently 
referred one is the Akaike’s FPE [7] [8]. This is valid only for very large sample size. 
Our test error result easily passed the unsullied verification by using MATLAB 
simulation (with 10000 trials for each sample size value) [chapter 1, figure: 1.1]. 
 
In this thesis, we also derived the exact expression of the generalization error in 
Linear Regression model [20] with respect to the sample size, model dimension, 
associated additive noise level, true weight vector and the known input covariance 
matrix. In my knowledge, this is the first and only derived expression for the 
generalization error in that phase considering the whole machine learning area. We 
also made an immaculate MATLAB simulation regarding this result. The simulation 
result (with 10000 trials for each sample size value) proves the validity of our theorem 
[chapter 2, Fig: 2.1]. 
 
We detected the cross point of the two curves produced from the two exact 
expressions of the generalization errors mentioned above. This detection was done 
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after making a short analytic inspection about their properties. The cross point was 
found in the valid sample size, error domain. It was also shown that at the cross point, 
the generalization error is not an explicit function of the either sample size or the 
model dimension [chapter 3]. 
 
This thesis was also able to make a useful investigation for the case of unbounded 
generalization error by making regularization of the estimated covariance matrix 
[chapter 4].  
 
It also finds mathematical explanations for the case of pole and singularity of the 
generalization error function [A.8]. 

 

5.2 Further work 
 
Due to the time limitation of the project, it was not possible to go through the deepest 
detail in all the aspects. Thus, if there would be further work in this field, the 
following issues would be considered to focus first: 
 
i) Finding the geometric interpretation behind the unboundness of the averaged 
generalization error G∈  when the sample size length is one more than the length of 
the model dimension [related to chapter 1]. 
 
ii) Measuring the amount of penalty (for example, lost information) due to the 
regularization of the estimated input covariance matrix [related to chapter 4]. 
 
iii) Finding the optimum value of this regularization parameter that gives the least 
generalization error.
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APPENDIX A (CALCULATIONS AND PROOFS)                       
 

A.1 

PROOF OF RELATION (1.11)  
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A.2 
 

PROOF OF RELATION (1.12)  
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PROOF OF RELATION (1.19-EXTRA)  
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A.4 
 

PROOF OF RELATION (1.16) 
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Comparing this expression with (B.15) (page-446) of Bishop’s book (“Neural 
Networks for Pattern Recognition”) and then following the result of (B.22) of the 
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Taking logarithm (natural) on the both sides, we get 
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A.5 
 

PROOF OF RELATION (1.18) 
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Using the above expressions, we find 
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A.6 
 

PROOF OF RELATION (2.2) 
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y
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x∑
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1   and   = A ⎥
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⎤
⎢
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nnN 1

1 xx  

 
 
Proof: 
 
We have, 

n0 xw •=ny + nε  

n
T
nny ε+=⇒ 0wx  

 
Then the (error)2 from the n-th relation (input-output map), 
 

2)( 0wxT
nnn yR −=    

 
 and the Residual Sum of Squares (RSS) can be calculated as 
 

RSS  =   n

N

n
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=1

⇒  RSS  =    2

1
)( 0wxT

nn

N

n
y −∑

=

We will be looking for a set of ; j0w dj ,...,2,1=  that minimizes RSS. This vector 
 is called the OLS (Ordinary Least Square) estimate of  and will be denoted 

by . 
j0w 0w

)(ˆ Dw
We find the OLS estimate of  by setting 0w
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=
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This is the value of that minimizes RSS. So, this is the OLS estimate of . 
Therefore,  

0w 0w

                               .                                                                               =)(ˆ Dw aA 1−

 
                                                                       [Proved] 
 
 
 
[An almost similar proof can also be found in [23]]  
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A.7 
 

Means of Gaussian and Cauchy distributions 
 
 
Mean of Gaussian distribution and reason for its boundness: 

Gaussian distribution, ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−=

2
)(exp

2
1)(

2µ
π

xxp ; ),( ∞−∞∈x  

 [With unit (constant) variance andµ mean] 
Before we talk about (or evaluate) the mean, we need to find the mean function. We 
find it as 

       dxxxG
f ∫ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
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2
)(exp

2
1 2µ
π

µ  

                =  dzzz∫ ⎟⎟
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⎞
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⎛
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2
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2
1 2

µ
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 [Using zx =− µ dzdx =⇒ ] 
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⎠

⎞
⎜⎜
⎝

⎛
−

2
exp

2z is a bounded function as ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

2
exp

2z 0→  for both  

and . Therefore, the Gaussian mean function is a bounded function or 
simply the mean of Gaussian distribution is bounded. 

∞−→z

∞→z G
fµ

 
Mean of Cauchy’s distribution and reason for its unboundness:   

Cauchy’s distribution,  = )(xp
π
1 * 21

1
x+

 

Before we talk about (or evaluate) the mean, we need to find the mean function. We 
find it as 
 
  =      C

fµ ( )∫ dxxpx

        = ∫ +
dx

x
x

21
2

2
1
π

  

     = C
fµ⇒

π2
1 ( )21ln x+  
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But ( )21ln x+  is an unbounded function as ( )21ln x+ ∞→  for both ∞−→x  
and ∞→x . Therefore, the Cauchy mean function  is an unbounded function or 
simply the mean of Cauchy distribution is unbounded (or undefined). 

C
fµ

 
This could also be proved in an alternating way that is given below: 
 
 
 Let for any integer the th sample from Cauchy’s distribution is  0fN N 0faxN =
 Then the maximum mean value for Cauchy up to this point is  

( )[ ]aN x 0
21ln

2
1

+=
π

µ   . 

        ( )21ln
2
1 a+=
π

 

 
[We said this is the maximum value of the mean at this point as we used the lower 
limit of . If we take any non-zero lower limit of0=x x  , e.g. bx = , then  the mean 

becomes   
π2
1 [ ln (1+ a ) – ln (1 + b ) ],  which is smaller  than  2 2

π2
1 ln (1+a )]  2

 

⇒ ( ) πµ 2
1

21ln aN +=  
 

Now, let the 1+N st sample from Cauchy distribution is tax += for t   0≥
  i.e. . taxN +=+1

Now we can obviously write, π2
1

2 )1( a+ tae +p  
 
[As from the Binomial expansion, we have  
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1 2
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⇒  1+NN xpµ  
 
 
From this, we will show that, the mean of Cauchy is unbounded as  gets larger. N
We have, 1+NN xpµ ,  
       ⇒ 1+Nx f Nµ  
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That means, for Cauchy’s distribution, the mean for any sample size is lesser than the 
mean for the sample size that is larger than before.  
 

A.8 
 
 

Reason for the asymptotic behavior of the error function: 
 
From the relation (1.20) in Chapter1, we have 

( )( )∑
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−
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⎡
+=∈
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kkkkG
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A ;              (A.8.1) 

Where ( ) kk ′′′
−1A is the inverse of the estimated dd ×  input covariance matrix, 

. ∑
=

=
N

kk xx
1

'''
α

αα
'k'k'A

Now, determinant of , denoted by det ( ) = | | = 'k'k'A 'k'k'A 'k'k'A dλλλ ..........21  where 

dλλλ .,,........., 21  are the eigen values of and all of them are positive as is a 
estimated covariance matrix. Thus, we can write, 

'k'k'A 'k'k'A

     ( ) kk ′′′
−1A  = 

'k'k'A
matrixgularnona sin−  

⇒ ( ) kk ′′′
−1A ∝   

dλλλ ..........
11

21

=
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⇒ ( )[ ]kkE ′′′
−1A  =  Φ ⎥

⎦

⎤
⎢
⎣

⎡

d

E
λλλ ..........

1

21

  

  [Here, Φ  is a constant that depends on the distribution of following some 
constrains.] 

'k'k'A
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⇒ ( ) kk ′′′
−1A =  Φ ⎥

⎦

⎤
⎢
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⎡
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E
λλλ ..........

1

21

             (A.8.2)                               

 
 

But the other terms, involved in the R.H.S. of (A.8.1) are 2,
2
1

νσβ
 and   , 

which are positive, finite and fixed in the aspect of mean of the general average 
generalized error (

kk ′′′∑

G∈ ). Therefore, the value of G∈ mainly depends on ( ) kk ′′′
−1A . 

As a result, we can write, 
        G∈   ∝ ( ) kk ′′′

−1A  
 

⇒ G∈ ∝   Φ ⎥
⎦

⎤
⎢
⎣

⎡

d

E
λλλ ..........

1

21

   [Using (A.8.2)] 

 
Now, we see that G∈  depends on a composite term involving  and the eigen values 
(

Φ

dλλλ .,,........., 21 ). Therefore, its singularity or pole can occur due to any of them. 
For , as we have said before, dN p ( ) kk ′′′

−1A is not defined (at the same time  is 
undefined and also at least on of the eigen values tends to zero 

leading

Φ
d

⎥
⎦

⎤
⎢
⎣

⎡

d

E
λλλ ..........

1

21

∞→ ). Therefore, G∈ becomes undefined (or singular). 

For (in non-asymptotic case), Φ  brings negative values (from A.9.2 ) and thus dN =

G∈  becomes invalid. 
 
For , becomes infinite (from A.9.2) and thus 1+= dN Φ G∈ ∞→ . 
  

A.9 

About the mean of the estimated input covariance matrix: 
 
 
(This is an alternate proof of [6]) 
 

Statement: ( )( ) ( ) '
1

'
1

1
1

jjjj dN
A −−

−−
= Σ  

 

 Proof:  we have, [∑
=

′=
N
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1

'
α

αα djj ,...,2,1', = ]  [From relation (1.13)] 

                                       = [As ∑
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N

jj xx
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'
α

αα α is just a suffix index, not a power index] 
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But A  is the sample of the covariance matrix of . So, A  has the distribution of   

W
'jj Σ 'jj

d ),( NΣ  and A has the distribution of1− 1−
dW ( )N,1−Σ .  But our is a diagonal 

matrix. Therefore,  is also a diagonal matrix. 
Σ

1−Σ
 
Thus,  ( )( )'1
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jjAE is also a diagonal matrix and we will write         
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Now, by a little analysis, we can easily realize that if we have a vector with d 
correlated input, then the necessary relation to find each of them is d-1. 
Again, from [29], we know that  
  Degrees of freedom in terms of sample size 
  = number of observations minus the number of necessary relations. 
Then from  the above relation (*) , each term of ( )[ ]122

2
2
1 ...... −

+++ jNjj xxxE  has the 
degress of freedom = )1( −− dN = 1+− dN   

 
Thus each (diagonal ) element of ( )( )'1

jjA− , i.e. ( )[ ]122
2

2
1 ...... −

+++ jNjj xxxE ( ) jj
1−Σ  is 

said to have an inverse Gamma distribution with ( 1+− dN ) degrees of freedom and 
with the scale  parameter  ;1−Σ= jjλ

Now if we notify each of the (diagonal) elements of ( )1−A  as , then we can 

write,  ( , 
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jw
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jw ∈ k λ );  where, 1+−= dNk & λ  = . 1−Σ jj

 This has a density function as below [14] : 
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Now Let, = z  1−
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   [Proved]. 
 
From the above derivation, we see that the mean of the inverse Gamma distribution 
has special weakness to the number 2 regarding the degrees of freedom of the 
distribution. And we have also seen that according to our choice of the input samples, 
we get inverse Gamma distribution for the mean of the inverse of our sample 
Covariance matrix. Keeping this choice, if we like to avoid the infinite value of the 
general averaged generalization error G∈ , we should follow the track for which 
Number of degrees of freedom in the element of the mean of the inverse sample 
covariance matrix  -2 > 0 
⇒  0 1−− dN f
⇒   1+dN f
Otherwise, for 1+= dN the elements act similar like Cauchy’s distribution that 
discussed in Chapter 0 (Introduction) of this thesis. 
 
Again, comparing (A.8.2) and (A.9.1) we see find 
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[This relation is helpful for A.8]
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 APPENDIX B (TERMS AND GLOSSARY) 
 
 

G 
 
Gibbs distribution:  
 
It is a probability distribution that mainly came from thermodynamics describing 
the probability of states with respect to energy. In our context, these states are 
compared with the possible combinations of weights in the weight space and 
energy is compared to the error due to the weights. It has a general form: 

⎟
⎠

⎞
⎜
⎝

⎛
−= ∑

=

−
N

NN wEZwP
1

1 )(exp)(
α

αβ ; 

where  is the normalization integral and is a function of NZ β  
β is compared to the inverse of the noise in the weight space 

and is the error function. ∑
=

N

wE
1

)(
α

α

We have chosen this distribution as it is the only distribution that corresponds 
directly to the error minimization. 
In fact, any distribution can be expressed as Gibb’s distribution if its energy 
function (normally the quadratic function that depends on the variable 
representing the degrees of freedom) is proportional to the negative log P  and the 
co-efficient of the energy function (here,β ) is fixed. We can analyze this in the 
following way: 
Suppose,  is any distribution. We can write  )(xP
                    =  )(xP )))(ln(exp( xP
Here, we have ∫ = 1)( dxxP . But if we raise to the power)(xP β 1≠ , then 

 ∫ .  In this case we need to normalize the probability in order to 
get the total probability summed to 1. Thus, if we know 

≠ 1))(( dxxP β

β , we can write, 
                   
                                )|( βxP  =    ( )[ ]ββ )(lnexp)(1 xPZ − ; 
where )(βZ is the normalizing constant 
 and )(βZ = ( )( )∫ β)(lnexp xPdx       with > 0 and < 0 )(xP )(ln xP

 
 Though this distribution may appear unlikely for some training methods (the 
stationary probability distribution in the general case is non-Gibbsian; it becomes 
Gibbsian only when the covariance matrix of the backpropagated gradients is 
isotropic and independent of the weights whose distribution is being sought. [4]), it 
arises naturally for stochastic algorithms.  
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W 
 
Wishart distribution: This distribution deals with the distribution of the sample 
covariance matrix.  
Consider samples  where each of these samples is a P 
dimensional vector with N>P and they come from the distribution . Let S 
is the sample covariance matrix in the following way: 

N N21 xxx ,,.........,
),( ∑µPN

  

          )()(
1

1
1

′−−
−

= ∑
=

xxxxS α
α

α

N

N
; where ∑

=

=
N

N 1

1
α

αxx  

       Then S is an unbiased estimator of the population covariance matrix∑  
If we consider a positive definite matrix A such that  
                           SA )1( −= N
then the distribution of A (or, S) is often called the Wishart distribution. The 
distribution of A is denoted by ),( nWp ∑ , where n = N-1 = Number of degrees of 
freedom. 
 
Inverted Wishart distribution:  This deals with the distribution of the inverse of 
the sample covariance matrix.  
If a positive definite matrix A has the distribution ),( nWp ∑  and another positive 
definite matrix B = A-1, then the distribution of B is called the Inverted Wishart 
distribution and is denoted by . In this case, is termed as precision 
matrix. 

),( 11 nWp
−− ∑ 1−∑
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