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Abstract: We have analyzed simple data fusion and preprocessing methods on Acoustic
Emission measurements of prosthetic feets made of carbon fiber reinforced composites.
This paper presents the initial research steps; aiming at reducing the time spent on the fa-
tigue test. With a simple single feature probabilistic scheme we have showed that these
methods can lead to increased classification performance. We conclude that: the derived
features of the TTL count leads to increased classification under supervised conditions.
The probabilistic classification scheme was founded on the histogram, however different
approaches can readily be investigated using the improved features, possibly improving the
performance using multiple feature classifiers, e.g., Voting systems; Support Vector Ma-
chines and Gaussian Mixtures.
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Introduction: During the design phase of a prosthetic carbon fiber foot at Össur hf., pro-
totype models are built, evaluated, and improved to meet the design criteria. For evaluation
several testing methods are used; visual tests, stiffness measurements and fatigue testing.
Feet are mainly subjected to dynamic loading, which sometimes requires low loads to ini-
tiate and propagate faults [16]. Because of this fatigue testing is extremely important part
of the design process. Fatigue tests of composites can take very long time, up to several
weeks. It is therefore valuable for an engineer, that wants to test a prototype, to be able to
see if it will fail early during the test. Considerable time can be saved by this. By short-
ening the test time, feet can be; designed and developed in less time and at a lower cost
than previously possible. During the fatigue testing of an prosthetic feet, the stiffness is
monitored and visual tests are also performed regularly. However, visual tests can only
detect faults that extend to the surface of a foot or affect it in some way. In order to be able
to predict the fatigue strength of a foot undergoing fatigue testing, other NDT methods can
be used for obtaining data.
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When microstructural changes occur in composites, energy is released and transient stress
waves are generated. These stress waves are called called Acoustic Emissions (AE) [16].
The stress waves travel through the composite and when they reach the surface it will
vibrate. The small surface displacements generated by the vibration of the composite can be
detected by using appropriate sensors. According to Duesling [3] piezoelectric sensors are
most popular. AE can be generated by several types of damage that occurs in the material,
e.g. fibre breakage, matrix cracking, delamination etc. Because microstructural damage
generates AE the method has the potential of detecting damage in its early stages, much
earlier than possible by monitoring deflection or performing visual inspection. Therefore
a microstructural damage that starts to formate in the last cycles of a fatigue test can be
detected, a damage that would pass undetected by the other two previously mentioned
methods.

AE signals are not only generated by damage, they can also come from other sources,
such as; the testing machine [16], electrical disturbances [16, 5], friction due to rubbing of
parts [12] and the friction generated by opening and closing of matrix cracks [13]. Accord-
ing to Hamstad [7] AE is also generated under loading because of the different material
properties of the fibers and the matrix.

Friction generated AE can provide important information about the condition of an com-
posite [1]. Some researchers have attempted to filter the AE signal generated by friction
from the total signal in order to better detect AE from damage, but this can be difficult [15].
The fact that a damage only emits AE once but friction many times suggests that approaches
based on friction will be more robust.

An AE parameter analysis is the conventional way of performing an AE monitoring. The
results from using standard AE parameters, especially amplitude, are contradicting in the
literature [5, 2, 8, 3]. Amplitude suffers from attenuation. The main reasons for the attenua-
tion are; geometric spreading, dispersion, internal friction and scattering [11]. Also, Prosser
et al. [10] reported that the same type of damage doesn’t always produce AE with the same
amplitude. This indicates that amplitude is not a very good feature. Godin et al. [6] claimed
that conventional AE analysis cannot distinguish between different AE sources and sug-
gested that more advanced methods, such as multivariate analysis and classifiers, should
be used. Similar comments were made by Tsamtsakis et al. [15]. They suggested that new
parameters, like force or displacement, should be added.

This paper reports the results of using several methods to extract information from conven-
tional AE features. The features were obtained using a commercial AE acquisition system
(AESmart 2000 from DECI Inc) and consist of a fixed set of standard AE features. The
emphasis was put on generating features which could be used for fast and reliable detection
of damage onset. It was also considered important for the detection method to be robust.
Robustness was believed to be obtained by basing the features on friction based AE.

The outline of the remaining of the paper is as follows: First the setup of the acquisition
system is explained then the methodology is explained. It starts with explaining how new
features are derived from the available feature set by both applying sensor fusion and using
moving window second order moment. The section ends with a description a simple clas-
sification system based on the assumption that faulty specimens have inhibit greater AE
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activity than normal ones, thus threshold on the features can be used for classification. We
compare classification properties of the different features by using using receiver-operator
characteristics (ROC) curves. The features are compared and discussed – identifying the
useful features. Finally the concluding remarks are made and future work is outlined.

System Setup: The fatigue test specimens were two types of prosthetic feet differing
slightly in stiffness and size. Foot no. 1 is stiffer and smaller than foot no 2. The con-
struction of both feet is the same, they are made from unidirectional carbon fiber reinforced
epoxy and woven mats are used for the top and bottom layers for nicer look. The test was
performed according to ISO 10328 specifications, with a “Foot/Limb” test system at Ös-
sur’s testing facilities. During the fatigue test, two actuators were used to flex the foot for
2 × 106 cycles at 1.5 Hz. The maximum load for each actuator was kept constant and the
deflection was monitored. No change in maximum deflection was measured, which means
that no stiffness reduction was observed during the tests. For data collection SE9125-MI
data transducers and the AESmart 2000 AE acquisition system, from from DECI Inc., was
used.

According to Dunegan [4] the system splits the AE signal into low frequency (LF) and high
frequency (HF) signals. The LF signal contains frequencies between 20 to 60 kHz and the
HF signal contains frequencies between 100 to 500 kHz. Data is only collected from one
sensor at a time, each time the system switches between the sensors it stores the data in
an Excel file. The data that is stored is not the actual AE signal but instead the following
features that the system extracts from this signal; time of the recorded event, HF counts
above threshold (TTL counts), HF peak amplitude, LF peak amplitude, ratio of the HF/LF
peak amplitudes, event count, time difference between HF and LF signals. Other features
are also stored by the system but, they are irrelevant to the test.

The system was set up to switch between the two sensors, i.e. one on each foot, using 6
second dwell time. The monitoring was performed twice a day for 4 to 6 hours each time.
The gain for both the LF and HF gain was set to 60 dB. The threshold setting for the LH
and HF was set to 200 mV. The time interval for counting the TTL counts was set to 1 ms.

Data preprocessing: During data acquisition each foot was monitored for periods of six
seconds, before the system switched started monitoring the other foot. Each entry in the
data file is the result of the following events

1. AE signal crosses the trigger threshold
2. Acquisition board computes the set of features from a 1 ms analysis window
3. Acquisition board goes back to detecting threshold crossing in AE signal. Further

the system might also change foot if the 6 s period has ended

Moving window second order moment: We compute the second order moment over a fixed
number of consecutive data entries, move the window and repeat. This gives the moving
window second order moment that peaks when the local mean value change, and also when
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the local variance increase. So this is just a simple “amplification” of changes in a time
series. Besides from giving a different measure (variance instead of values) this method
also performs filtering since a number of consecutive samples are used for each value.

µ̌(n) =
1

N

N−1∑
n′=0

x(n− n′) (1)

σ̌2(n) =
1

N − 1

N−1∑
n′=0

(x(n− n′)− µ̂(n))
2 (2)

Time normalization: Each data entry comes from a 1 ms analysis window triggered by a
threshold crossing. So we can imagine several regimes (explaining the data entries in the 6
s periods where the system monitors each foot).

1. few data entries with a few high readings – occasional low activity
2. many data entries with a few high readings – steady low activity
3. few data entries with many high readings – occasional high activity
4. many data entries with many high readings – steady high activity

This means that if we omit the time information and look at the feature values, we cannot
differ between the occasional and steady activity. Instead we fuse the features in each 6 s
period. We deliberately use the term fuse, even though most features are just summed up
during the period. But for the time entry we take the earliest value, for the event count we
take the maximum, and for the ratio we recalculate; since the original ratio computation
was constrained. Another benefit of time normalization is reduction of data size as several
events are combined into one.

We can also apply the moving window second order moment to the time normalized data
in order to further enhance changes.

Energy normalization: In the LF/HF peak amplitude we have the peak amplitudes, we
already have the number of TTL counts in a 6 s period. Multiplying those two quantities
and sum over the events in the period gives an upper bound estimate of the “energy”.

E =
∑

i

TTLiPi (3)

Filtering: One way of decreasing feature variance is low-pass filtering, essentially this
forces the classification system to evaluate the feature value for consecutive examples. This
smears out occasional high values, but also the sudden steps in the feature, thus this delays
the significant changes. Further notice that this is related to the post classification process-
ing described last in the following section.

Feature processing: We adopt a very simple setup for supervised single feature classifica-
tion of the specimen condition. Assuming that a damaged specimen generate a “loud” AE
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signal, it will also generate many TTL counts with high peak amplitudes and many event
counts. Thus as a rule of thumb: The feature value in a faulty specimen should be larger
than the normal. In order to compute the feature thresholds, we compute the histograms of
each feature on two sets of data, a normal and a faulty. Histograms are not directly well
suited for classification tasks, so instead we use the normalized cumulated sum of the his-
togram, corresponding to a sample of the true cumulated density function (CDF). The CDF
gives the probability that the feature is less or equal to τ .

P (x ≤ τ) =

∫ τ

x=−∞
p(x) (4)

A good feature for classification will behave such that Pnormal(x ≤ τ) � Pfaulty(x ≤ τ) is
fulfilled, not everywhere but in an interval. Actually Pnormal(x ≤ τ) = X, X ∈ [0; 1] says
that X of the normal examples have a feature value x less or equal to τ . Obviously this
means that thresholding with this value of τ corresponds to 1 − X false alarms, and that
1− Pfaulty(x ≤ τ) of the faulty specimens is correctly detected (see further [14]). Varying
τ from the smallest to the largest observed value whilst tabulating 1− Pnormal(x ≤ τ) and
1− Pfaulty(x ≤ τ) gives the Reciever Operator Characteristics (ROC) shown in Figure 1.

Figure 1: ROC-curves for the TTL count and the three derived features. The o’s and
stars on the curves indicate the performance of the two optimal thresholds. Notice the
consensus between the different optimality criterions wrt. ranking of the features – also
the Neyman-Pearson criterion at 5% agrees. The figure also show our conclusion, that the
time normalization (data fusion) and moving window variance (processing) increase the
performance of the system.

Detection rate D(τ) = 1− Pfaulty(x ≤ τ)s (5)
False alarm rate F (τ) = 1− Pnormal(x ≤ τ) (6)
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This approach with a single dimension classifier is very simple, with multiple dimensions,
like using several of the obtained features, either pattern recognition or voting systems
should be explored.

We adopt two rules for obtaining the optimal threshold:

1. Maximize the difference between the detection rate and false alarm rate
2. Minimize the absolute distance to the optimal point (100% detection, 0% false alarm)

Also applicable is the Neyman-Pearson Criterion[14], where the best classifier/threshold is
the one with the highest detection rate given a set false alarm rate, say 5%.

Having decided on a threshold we also have knowledge of the false alarm rate of the classi-
fier under normal conditions. In many cases occasional false alarms will occur, an we could
filter out with a moving average low pass filter. The length of the filter and the significant
number of alarms for the filtered signal can be obtained through the Binomial hypothesis
testing (this is further described for a unsupervised setting in [9]).

In short we can vary the threshold in order to balance the rate of false alarms versus de-
tection, however it is a trade-off. Direct improvement is only available through a better
classifier. Another available trade-off is between classification accuracy and delay. If we
know that the false alarm rate is 5 out of 100, we could wait until 12 out of 100 was
classified as faulty; however this will introduce a delay since we need to gather enough
fault-classifications.

Results and Discussion: Table 1 shows the statistical parameters for the ROC curves cor-
responding to the original features, i.e. those provided by the acquisition system.

Feature false 1 detect 1 false 2 detect 2 Area
TTL count 3 24 37 54 0.55
HF amp 3 10 18 15 0.15
LF amp 0 2 25 8 0.07

Table 1: Original data

None of these features are able to discriminate well between normal and faulty signals
under the assumption that faulty signals are louder. The LF amp with the assumption that
normal signals are loud works quite well (area under ROC-curve 0.93), this could fit the
“steady low amplitude” regime descried under time normalization.

Applying a moving window variance on the original features the classification perfor-
mances is considerably improved. Now take a look at the features generated by taking
a moving window variance of the original data, shown in Table 2, then we have features
with considerably better detection performance.

This increase in performance is in some cases followed by increased false detection rate.
However, these features are generally better suited for classifying as indicated by the much
larger area under the ROC curves. The performance of the time normalized data is shown
in Table 3.
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Feature false 1 detect 1 false 2 detect 2 Area
TTL count 4 84 4 84 0.91
HF amp 16 87 16 87 0.84
LF amp 36 79 36 79 0.67

Table 2: Moving Window Variance of Original data

Feature false 1 detect 1 false 2 detect 2 Area
TTL count 4 72 13 79 0.87
HF amp 11 49 22 56 0.60
LF amp 3 8 48 45 0.31
Event count 43 91 26 73 0.78

Table 3: Time Normalized data

These features result in better classification than with the original features (Table 1), how-
ever not as good as with the moving window variance. However the combination, by
applying moving window variance on those features we hoped for similar improvement as
was observed for the original data. Table 4 lists the ROC performance of the new set of
features.

Feature false 1 detect 1 false 2 detect 2 Area
TTL count 1 93 6 96 0.99
HF amp 13 93 13 93 0.92
LF amp 23 84 23 84 0.81
Event count 83 100 54 55 0.52

Table 4: Moving Window Variance of Time Normalized data

According to the Moving window variance of the normalized TTL counts is definitely a
good feature.

Feature false 1 detect 1 false 2 detect 2 Area
TTLxHF 13 56 13 56 0.54
TTLxLF 5 19 40 35 0.29
TTLx(HF+LF) 5 29 42 51 0.43

Table 5: Energy Normalized data

In order to see if the classification performance of the feature created by applying moving
window variance on the normalized TTL counts could be improved further, a filtering was
applied. As Table 6 shows that the filtering improved the false alarm rate compared to
Table 4, but the area below the curve is slightly decreased as the detection rate is also
decreased. Figure 2 shows the time series of both features derived from the TTL count
as well as their respective classification. The various preprocessing steps reduce the local
variance of the classification.
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Feature false 1 detect 1 false 2 detect 2 Area
NTTL variance 0 95 0 95 0.98

Table 6: Filtered moving window variance of the normalized TTL counts

Figure 2: The time series of the TTL count and three derived features. Each entry in the
features has been classified; this binary output is plotted just below the feature (the lower
value is faulty, upper is normal). It is believed that the specimen turns faulty after 4 · 105s.
The uncertainty using the original TTL count is clearly visible during under both normal
and faulty conditions, as the classification switches all the time.

Conclusion: We have analyzed simple data fusion and preprocessing methods on Acoustic
Emission measurements of prosthetic feets made of carbon fiber reinforced composites.
This paper presents the initial research steps; aiming at reducing the time spent on the fa-
tigue test. With a simple single feature probabilistic scheme we have showed that these
methods can lead to increased classification performance. We conclude that: the derived
features of the TTL count leads to improved classification and damage detection in a su-
pervised setup.

The probabilistic classification scheme was founded on the histogram, however different
approaches can readily be investigated using the improved features, possibly improving
the performance using multiple features classifiers, e.g., Support Vector Machines and
Gaussian Mixtures.
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