
Dynamic Optimization

Niels Kjølstad Poulsen
Informatics and Mathematical Modelling

The Technical Unversity of Denmark

Latest revision: 1st September 2004



2

Preface

These notes are intended for use in connection to the dynamic part of the course in Static and Dy-
namic optimization given at Informatics and Mathematical Modelling, The Technical
University of Denmark.

The notes heavily rely on the presentation and basic approach to dynamic optimization in (Vidal
1981) and (Ravn 1994). Another very important source of inspiration are (Bryson & Ho 1975),
(Lewis 1986b), (Lewis 1992), (Bertsekas 1995) and (Bryson 1999).

Many of the examples and figures in the notes has been produced with Matlab and the software
that comes with (Bryson 1999).
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Chapter 1
Introduction

Let us start this introduction with a citation from S.A. Kierkegaard which can be found in
(Bertsekas 1995):

Life can only be understood going backwards,
but it must be lived going forwards

This citation will become more apparent later on when we are going to deal with the Euler-Lagrange
equations and Dynamic Programming.

Dynamic optimization involve several components. Firstly, it involves something describing what
we want to achieve. Secondly, it involves some dynamics and often some constraints.

In this context we formulate what we want to achieve in terms of a a mathematical model. We
normally denote this as a performance index, a cost function (if we are minimizing) or an objective

function. The type of mathematical model of the dynamics, we are using in these notes, are
the so called state space models. A very important concepts in this connection is the state or
more precisely the state vector, which is a vector containing the state variables. These variable
can intuitively be interpreted as a summary of the system history or a sufficient statistics of the
history. Knowing these variable and the future inputs to the system (together with the system
model) we are able to determine the future path of the system or the trajectory of the state.

1.1 Discrete time

We will first consider the situation in which the index set is discrete. The index is normally
the time, but can be a spatial parameter as well. For simplicity we will assume that the index,
i ∈ {0, 1, 2, ... N}, since we can always transform the problem to this.

Example: 1.1.1 (Optimal pricing) Assume we have started a production of a product. Let us call it brand
A. On the marked the is already a competitor product, brand B. The basic problem is to determine a price profile
is such a way that we earn as much as possible. We consider the problem in a period of time and subdivide the
period into a number (N say) of intervals.

10 2 N

Figure 1.1. We consider the problem in a period of time divided into N intervals
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Figure 1.2. The marked shares

Let the marked share of brand A in the ith period be xi, i = 0, ... ,N where 0 ≤ xi ≤ 1. Since we start with no
share of the marked x0 = 0. We are seeking a sequence ui, i = 0, 1, ... ,N − 1 of prices in order to maximize our
profit. If M denotes the volume of the marked and u is production cost per units, then the performance index is

J =
N�

i=0

Mxi � ui − u � (1.1)

Quite intuitively, a low price will results in a low profit, but a high share of the marked. On the other hand, a
high price will give a high yield per unit but a few customers. I out simple setup, we assume that a customers i
an interval is either buying brand A or brand B. In this context we can observe two kind of transitions. We will
model this transition by means of probabilities.

The prices will effect the income in the present interval, but will also influence on the number of customers that
will bye the brand in next interval. Let p(u) denote the probability for a customer is changing from brand A to
brand B in next interval and let us denote that as the escape probability. The attraction probability is denotes as
q(u). We assume that these probabilities can be described the following logistic distribution laws:

p(u) =
1

1 + exp(−kp[u− up])
q(u) =

1

1 + exp(kq [u− uq ])

where kp, up, kq and uq are constants. This is illustrated as the left curve in the following plot.

Transition probability A−>B

A −> B

price

p

1

0

Escape prob. Attraction prob.

B −> A

price

Transition probability B−>A
q

0

1

Figure 1.3. The transitions probabilities

Since p(ui) is the probability of changing the brand from A to B, [1− p(ui)] xi will be the part of the customers that
stays with brand A. On the other hand 1−xi is part of the marked buying brand B. With q(ui) being the probability
of changing from brand B to A, q(ui) [1− xi] is the part of the customers who is changing from brand B to A. This
results in the following dynamic model:

Dynamics: A→A B→A

xi+1 = � 1− p(ui) � xi + q(ui) � 1− xi � x0 = x0

or
xi+1 = q(ui) + � 1− p(ui)− q(ui) � xi x0 = x0 (1.2)

Notice, this is a discrete time model with no constraints on the decisions. The problem is determined by the objective
function (1.1) and the dynamics in (1.2). The horizon N is fixed. If we choose a constant price ut = u+ 5 (u = 6,
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Figure 1.4. If we use a constant price ut = 11 (lower panel) we will have a slow evolution of the marked share
(upper panel) and a performance index equals (approx) J = 9.
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Figure 1.5. If we use an optimal pricing we will have a performance index equals (approx) J = 26. Notice, the
introductory period as well as the final run, which is due to the final period.

N = 10) we get an objective equal J = 9 and a trajectory which can be seen in Figure 1.4. The optimal price
trajectory (and path of the marked share) is plotted in Figure 1.5.

2

The example above illustrate a free (i.e. with no constraints on the decision variable or state
variable) dynamic optimization problem in which we will find a input trajectory that brings the
system given by the state space model:

xi+1 = fi(xi, ui) x0 = x0 (1.3)
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from the initial state, x0, in such a way that the performance index

J = φ(xN ) +

N−1
∑

i=0

Li(xi, ui) (1.4)

is optimized. Here N is fixed (given), J , φ and L are scalars. In general, the state vector, xi is a
n-dimensional vector, the dynamic fi(xi, ui) is vector (n dimensional) vector function and ui is a
(say m dimensional) vector of decisions. Also, notice there are no constraints on the decisions or
the state variables (except given by the dynamics).

Example: 1.1.2 (Inventory Control Problem from (Bertsekas 1995) p. 3) Consider a problem of order-
ing a quantity of a certain item at each N intervals so as to meat a stochastic demand. Let us denote

Figure 1.6. Inventory control problem

xi stock available at the beginning of the i’th interval.

ui stock order (and immediately delivered) at the beginning of the i’th period.

wi demand during the i’th interval

We assume that excess demand is back logged and filled as soon as additional inventory becomes available. Thus,
stock evolves according to the discrete time model (state space equation):

xi+1 = xi + ui −wi i = 0, ... N − 1 (1.5)

where negative stock corresponds to back logged demand. The cost incurred in period i consists of two components:

• A cost r(xi)representing a penalty for either a positive stock xi (holding costs for excess inventory) or
negative stock xi (shortage cost for unfilled demand).

• The purchasing cost ui, where c is cost per unit ordered.

There is also a terminal cost φ(xN ) for being left with inventory xN at the end of the N periods. Thus the total
cost over N period is

J = φ(xN ) +

N−1�
i=0

(r(xi) + cui) (1.6)
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We want to minimize this cost () by proper choice of the orders (decision variables) u0, u1, ... uN−1 subject to
the natural constraint

ui ≥ 0 u = 0, 1, ... N − 1 (1.7)

2

In the above example (1.1.2) we had the dynamics in (1.5), the objective function in (1.6) and
some constraints in (1.7).

Example: 1.1.3 (Bertsekas two ovens from (Bertsekas 1995) page 20.) A certain material is passed
through a sequence of two ovens (see Figure 1.7). Denote

• x0: Initial temperature of the material

• xi i = 1, 2: Temperature of the material at the exit of oven i.

• ui i = 0, 1: Prevailing temperature of oven i.

Temperature u2Temperature u1

Oven 1 Oven 2

x0 x2x1

Figure 1.7. The temperature evolves according to xi+1 = (1 − a)xi + aui where a is a known scalar 0 < a < 1

We assume a model of the form
xi+1 = (1 − a)xi + aui i = 0, 1 (1.8)

where a is a known scalar from the interval [0, 1]. The objective is to get the final temperature x2 close to a given
target Tg, while expending relatively little energy. This is expressed by a cost function of the form

J = r(x2 − Tg)2 + u2
0 + u2

1 (1.9)

where r is a given scalar. 2

1.2 Continuous time

In this section we will consider systems described in continuous time, i.e. when the the index, t, is
continuous in the interval [0, T ]. We assume the system is given in a state space formulation

0 T

Figure 1.8. In continuous time we consider the problem for t ∈ R in the interval [0, T ]

ẋ = ft(xt, ut) t ∈ [0, T ] x0 = x0 (1.10)

where xt ∈ R
n is the state vector at time t, ẋt ∈ R

n is the vector of first order time derivative of the
state at time t and ut ∈ R

m is the control vector at time t. Thus, the system (1.10) consists of n
coupled first order differential equations. We view xt, ẋt and ut as column vectors and assume the
system function f : R

n×m×1 → R
n is continuously differentiable with respect to xt and continuous

with respect to ut.
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We search for an input function (control signal, decision function) ut, which takes the system from
its original state x0 along a trajectory such that the cost function

J = φ(xT ) +

∫ T

0

Lt(xt, ut)dt (1.11)

is optimized. Here φ and L are scalar valued functions. The problem is specified by the functions
φ, L and f , the initial state x0 and the length of the interval T .

Example: 1.2.1 (Motion control) from (Bertsekas 1995) p. 89). This is actually motion control in one
dimension. An example in two or three dimension contains the same type of problems, but is just notationally more
complicated.

A unit mass moves on a line under influence of a force u. Let z and v be the position and velocity of the mass at
times t, respectively. From a given (z0, v0) we want to bring the the mass near a given final position-velocity pair
(z, v) at time T . In particular we want to minimize the cost function

J = (z − z)2 + (v − v)2 (1.12)

subject to the control constraints
|ut| ≤ 1 for all t ∈ [0, T ]

The corresponding continuous time system is

˙� zt

vt � =

�
vt

ut � �
z0
v0 � =

�
z0
v0 � (1.13)

We see how this example fits the general framework given earlier with

Lt(xt, ut) = 0 φ(xT ) = (z − z)2 + (v − v)2

and the dynamic function

ft(xt, ut) =

�
vt

ut �
There are many variations of this problem; for example the final position andor velocity may be fixed. 2

Example: 1.2.2 (Resource Allocation from (Bertsekas 1995).) A producer with production rate xt at
time t may allocate a portion ut of his/her production to reinvestment and 1−ut to production of a storable good.
Thus xt evolves according to

ẋt = γutxt

where γ is a given constant. The producer wants to maximize the total amount of product stored

J = � T

0

(1− ut)xtdt

subject to the constraint
0 ≤ ut ≤ 1 for all t ∈ [0, T ]

The initial production rate x0 is a given positive number. 2

Example: 1.2.3 (Road Construction from (Bertsekas 1995)). Suppose that we want to construct a road

�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Terain

Road

Figure 1.9. The constructed road (solid) line must lie as close as possible to the originally terrain, but must not
have to high slope

over a one dimensional terrain whose ground elevation (altitude measured from some reference point) is known and
is given by zt, t ∈ [0, T ]. Here is the index t not the time but the position along the road. The elevation of the
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road is denotes as xt, and the difference zt− xi must be made up by fill in or excavation. It is desired to minimize
the cost function

J =
1

2
� T

0

(xt − zt)
2dt

subject to the constraint that the gradient of the road ẋ lies between −a and a, where a is a specified maximum
allowed slope. Thus we have the constraint

|ut| ≤ a t ∈ [0, T ]

where the dynamics is given as
ẋ = ut

2



Chapter 2
Free Dynamic optimization

2.1 Discrete time free dynamic optimization

Let us in this section focus on the problem of controlling the system

xi+1 = fi(xi, ui) i = 0, ... , N − 1 x0 = x0 (2.1)

such that the cost function

J = φ(xN ) +

N−1
∑

i=0

Li(xi, ui) (2.2)

is minimized. The solution to this problem is primarily a sequence of control actions or decisions,
ui, i = 0, ... N −1. Secondarily (and knowing the sequence ui, i = 0, ... N −1), the solution is the
path or trajectory of the state and the costate. Notice, the problem is specified by the functions
f , L and φ, the horizon N and the initial state x0.

The problem is an optimization of (2.2) with N + 1 set of equality constraints given in (2.1).
Each set consists of n equality constraints. In the following there will be associated a vector,
λ of Lagrange multipliers to each set of equality constraints. By tradition λi+1 is associated to
xi+1 = fi(xi, ui). These vectors of Lagrange multipliers are in the literature often denoted as
costate or adjoint state.

The Hamiltonian function, which is a scalar function, is defined as

Hi(xi, ui, λi+1) = Li(xi, ui) + λT
i+1fi(xi, ui) (2.3)

and facilitate a very compact formulation of the necessary conditions for an optimum.

Theorem 1: Consider the free dynamic optimization problem of bringing the system (2.1) from the
initial state such that the performance index (2.2) is minimized. The necessary condition is given by
the Euler-Lagrange equations (for i = 0, ... , N − 1):

xi+1 = fi(xi, ui) State equation (2.4)

λT
i =

∂

∂xi

Hi Costate equation (2.5)

0T =
∂

∂ui

Hi Stationarity condition (2.6)

12
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and the boundary conditions

x0 = x0 λT
N =

∂

∂x
φ(xN ) (2.7)

which is a split boundary condition. 2

Proof: Let λi, i = 1, ... ,N be N vectors containing n Lagrange multiplier associated with the equality constraints
in (2.1) and form the Lagrange function:

JL = φ(xN ) +

N−1�
i=0

�
Li(xi, ui) + λT

i+1 � fi(xi, ui)− xi+1 ��� + λT
0 (x0 − x0)

Stationarity w.r.t. λi gives (for i = 1, ... N) as usual the equality constraints i.e. the state equations (2.4).
Stationarity w.r.t. xi gives (for i = 0, ... N − 1)

0 =
∂

∂x
Li(xi, ui) + λT

i+1

∂

∂x
fi(xi, ui)− λT

i

or the costate equations (2.5), when the Hamiltonian function, (2.3), is applied. Stationarity w.r.t. xN gives the
terminal condition:

λT
N =

∂

∂x
φ[x(N)]

i.e. the costate part of the boundary conditions in (2.7). Stationarity w.r.t. ui gives the stationarity condition (for
i = 0, ... N − 1):

0 =
∂

∂u
Li(xi, ui) + λT

i+1

∂

∂u
fi(xi, ui)

or the stationarity condition, (2.6), when the definition, (2.3) is applied. 2

The necessary condition can also be expressed in a more condensed form as

xT
i+1 =

∂

∂λ
Hi λT

i =
∂

∂x
Hi 0T =

∂

∂u
Hi (2.8)

with the boundary conditions:

x0 = x0 λT
N =

∂

∂x
φ(xN )

The Euler-Lagrange equations express the necessary conditions for optimality. The state equation
(2.4) is inherently forward in time, whereas the costate equation, (2.5) is backward in time. The
stationarity condition (2.6) links together the two set of recursions as indicated in Figure 2.1.

State equation

Costate equation

Stationarity condition

Figure 2.1. The state equation (2.4) is forward in time, whereas the costate equation, (2.5), is
backward in time. The stationarity condition (2.6) links together the two set of recursions.

Example: 2.1.1 (Optimal stepping) Consider the problem of bringing the system

xi+1 = xi + ui

from the initial position, x0, such that the performance index

J =
1

2
px2

N +

N−1�
i=0

1

2
u2

i
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is minimized. The Hamiltonian function is in this case

Hi =
1

2
u2

i + λi+1(xi + ui)

and the Euler-Lagrange equations are simply
xi+1 = xi + ui (2.9)

λt = λi+1 (2.10)

0 = ui + λi+1 (2.11)

with the boundary conditions:
x0 = x0 λN = pxN

These equations are easily solved. Notice, the costate equation (2.10) gives the key to the solution. Firstly, we
notice that the costate are constant. Secondly, from the boundary condition we have:

λi = pxN

From the Euler equation or the stationarity condition, (2.11), we can find the control sequence (expressed as
function of the terminal state xN ), which can be introduced in the state equation, (2.9). The results are:

ui = −pxN xi = x0 − ipxN

From this, we can determine the terminal state as:

xN =
1

1 +Np
x0

Consequently, the solution to the dynamic optimization problem is given by:

ui = −
p

1 +Np
x0 λi =

p

1 +Np
x0 xi =

1 + (N − i)p

1 +Np
x0 = x0 − i

p

1 +Np
x0

2

Example: 2.1.2 (simple LQ problem). Let us now focus on a slightly more complicated problem of bring-
ing the linear, first order system given by:

xi+1 = axi + bui x0 = x0

along a trajectory from the initial state, such the cost function:

J =
1

2
px2

N +

N−1�
i=0

1

2
qx2

i +
1

2
ru2

i

is minimized. Notice, this is a special case of the LQ problem, which is solved later in this chapter.

The Hamiltonian for this problem is

Hi =
1

2
qx2

i +
1

2
ru2

i + λi+1 � axi + bui �
and the Euler-Lagrange equations are:

xi+1 = axi + bui (2.12)

λi = qxi + aλi+1 (2.13)

0 = rui + λi+1b (2.14)

which has the two boundary conditions
x0 = x0 λN = pxN

The stationarity conditions give us a sequence of decisions

ui = −
b

r
λi+1 (2.15)

if the costate is known.

Inspired from the boundary condition on the costate we will postulate a relationship between the state and the costate
as:

λi = sixi (2.16)

If we insert (2.15) and (2.16) in the state equation, (2.12), we can find a recursion for the state

xi+1 = axi −
b2

r
si+1xi+1

or

xi+1 =
1

1 + b2

r
si+1

axi
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From the costate equation, (2.13), we have

sixi = qxi + asi+1xi+1 = � q + asi+1
1

1 + b2

r
si+1

a � xi

which has to fulfilled for any xi. This is the case if si is given by the back wards recursion

si = asi+1
1

1 + b2

r
si+1

a+ q

or if we use identity 1
1+x

= 1− x
1+x

si = q + si+1a
2 −

(absi+1)2

r + b2si+1

sN = p (2.17)

where we have introduced the boundary condition on the costate. Notice the sequence of si can be determined by
solving back wards starting in sN = p (where p is specified by the problem).

With this solution (the sequence of si) we can determine the (sequence of) costate and control actions

ui = −
b

r
λi+1 = −

b

r
si+1xi+1 = −

b

r
si+1(axi + bui)

or

ui = −
absi+1

r + b2si+1

xi and for the costate λi = sixi

2

Example: 2.1.3 (Discrete Velocity Direction Programming for Max Range). From (Bryson 1999).
This is a variant of the Zermelo problem.

θ

uc x

y

Figure 2.2. Geometry for the Zermelo problem

A ship travels with constant velocity with respect to the water through a region with current. The velocity of the
current is parallel to the x-axis but varies with y, so that

ẋ = V cos(θ) + uc(y) x0 = 0

ẏ = V sin(θ) y0 = 0

where θ is the heading of the ship relative to the x-axis. The ship starts at origin and we will maximize the range
in the direction of the x-axis.

Assume that
uc = βy

and that θ is constant for time intervals of length h = T/N . Here T is the length of the horizon and N is the
number of intervals.

The system is in discrete time described by

xi+1 = xi + V h cos(θi) + β � hyi +
1

2
V h2 sin(θi) � (2.18)

yi+1 = yi + V h sin(θi)
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(found from the continuous time description by integration). The objective is to maximize the final position in the
direction of the x-axis i.e. to maximize the performance index

J = xN (2.19)

Notice, the L term n the performance index is zero, but φN = xN .

Let us introduce a costate sequence for each of the states, i.e. λ = � λx
i λy

i � T
. Then the Hamiltonian function

is given by

Hi = λx
i+1 � xi + V h cos(θi) + β � hyi +

1

2
V h2sin(θi) � � + λy

i+1
� yi + V h sin(θi) �

The Euler -Lagrange equations gives us the state equations, (2.19), and the costate equations

λx
i =

∂

∂x
Hi = λx

i+1 λx
N = 1 (2.20)

λy
i =

∂

∂y
Hi = λy

i+1 + λx
i+1βh λy

N
= 0

and the stationarity condition:

0 =
∂

∂u
Hi = λx

i+1 � −V h sin(θi) +
1

2
βV h2 cos(θi) � + λy

i+1V h cos(θi) (2.21)

The costate equation, (2.21), has a quite simple solution

λx
i = 1 λy

i = (N − i)βh

which introduced in the stationarity condition, (2.21), gives us

0 = −V h sin(θi) +
1

2
βV h2 cos(θi) + (N − 1− i)βV h2 cos(θi)

or

tan(θi) = (N − i−
1

2
)βh (2.22)
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DVDP for Max Range

Figure 2.3. DVDP for Max Range with uc = βy

2

Example: 2.1.4 (Discrete Velocity Direction Programming with Gravity). From (Bryson 1999).
This is a variant of the Brachistochrone problem.

A mass m moves in a constant force field of magnitude g starting at rest. We shall do this by programming the
direction of the velocity, i.e. the angle of the wire below the horizontal, θi as a function of the time. It is desired
to find the path that maximize the horizontal range in given time T .

This is the dual problem to the famous Brachistochrone problem of finding the shape of a wire to minimize the time
T to cover a horizontal distance (brachistocrone means shortest time in Greek). It was posed and solved by Jacob
Bernoulli in the seventh century (more precisely in 1696).
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x

y

g

θi

Figure 2.4. Nomenclature for the Velocity Direction Programming Problem

To treat this problem i discrete time we assume that the angle is kept constant in intervals of length h = T/N . A
little geometry results in an acceleration along the wire is

ai = g sin(θi)

Consequently, the speed along the wire is
vi+1 = vi + gh sin(θi)

and the increment in traveling distance along the wire is

li = vih+
1

2
gh2 sin(θi) (2.23)

The position of the bead is then given by the recursion

xi+1 = xi + li cos(θi)

Let the state vector be si = � vi xi � T
.

The problem is then find the optimal sequence of angles, θi such that system�
v
x � i+1

=

�
vi + gh sin(θi)
xi + li cos(θi) � � vx � 0 =

�
0
0 � (2.24)

such that performance index
J = φN (sN ) = xN (2.25)

is minimized.

Let us introduce a costate or an adjoint state to each of the equations in dynamic, i.e. let λi = � λv
i λx

i � T
.

Then the Hamiltonian function becomes

Hi = λv
i+1 � vi + gh sin(θi) � + λx

i+1 � xi + li cos(θi) �
The Euler-Lagrange equations give us the state equation, (2.24), the costate equations

λv
i =

∂

∂v
Hi = λv

i+1 + λx
i+1h cos(θi) λv

N = 0 (2.26)

λx
i =

∂

∂x
Hi = λx

i+1 λx
N = 1 (2.27)

and the stationarity condition

0 =
∂

∂u
Hi = λv

i+1gh cos(θi) + λx
i+1 � −li sin(θi) + cos(θi)

1

2
gh2 cos(thetai) � (2.28)

The solution to the costate equation (2.27) is simply λx
i = 1 which reduce the set of equations to the state equation,

(2.24), and
λv

i = λv
i+1 + gh cos(θi) λv

N = 0

0 = λv
i+1gh cos(θi)− li sin(θi) +

1

2
gh2 cos(θi)
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The solution to this two point boundary value problem can be found using several trigonometric relations. If
α = 1

2
π/N the solution is for i = 0, ... N − 1

θi =
π

2
− α(i+

1

2
)

vi =
gT

2Nsin(α/2)
sin(αi)

xi =
cos(α/2)gT 2

4Nsin(α/2)

�
i−

sin(2αi)

2sin(α)
�

λv
i =

cos(αi)

2Nsin(α/2)

Notice, the y coordinate did not enter the problem in this presentation. It could have included or found from simple
kinematics that

yi =
cos(α/2)gT 2

8N2sin(α/2)sin(α)
� 1− cos(2αi) �
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−0.25

−0.2

−0.15

−0.1

−0.05

0
DVDP for max range with gravity
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y

Figure 2.5. DVDP for Max range with gravity for N = 40.

2

2.2 The LQ problem

In this section we will deal with the problem of finding an optimal input sequence, ui, i = 0, ... N−1
that take the Linear system

xi+1 = Axi +Bui x0 = x0 (2.29)

from its original state, x0, such that the Qadratic cost function

J =
1

2
xT

NPxN +

N−1
∑

i=0

(1

2
xT

i Qxi +
1

2
uT

i Rui

)

(2.30)

is minimized.

In this case the Hamiltonian function is

Hi =
1

2
xT

i Qxi +
1

2
uT

i Rui + λT
i+1

[

Axi +Bui

]

and the Euler-Lagrange equation becomes:

xi+1 = Axi +Bui (2.31)

λi = Qxi +ATλi+1 (2.32)

0 = Rui +BTui (2.33)
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with the (split) boundary conditions

x0 = x0 λN = PxN

Theorem 2: The optimal solution to the free LQ problem specified by (2.29) and (2.30) is given by
a state feed back

ui = −Kixi (2.34)

where the time varying gain is given by

Ki =
[

R+BTSi+1B
]−1

BTSi+1A (2.35)

Here the matrix, S, is found from the following back wards recursion

Si = ATSi+1A−ATSi+1B
(

BTSi+1B +R
)−1

BTSi+1A+Q SN = P (2.36)

which is denoted as the (discrete time, control) Riccati equation. 2

Proof: From the stationarity condition, (2.33), we have

ui = −R−1BT λi+1 (2.37)

As in example 2.1.2 we will use the costate boundary condition and guess on a relation between costate and state

λi = Sixi (2.38)

If (2.38) and (2.37) are introduced in (2.5) we find the evolution of the state

xi = Axi −BR−1BT Si+1xi+1

or if we solves for xi+1

xi+1 =
�
I + BR−1BT Si+1 � −1

Axi (2.39)

If (2.38) and (2.39) are introduced in the costate equation, (2.6)

Sixi = Qxi +AT Si+1xi+1

= Qxi +AT Si+1

�
I +BR−1BT Si+1 � −1

Axi

Since this equation has to be fulfilled for any xt, the assumption (2.38) is valid if we can determine the sequence Si

from

Si = A>Si+1

�
I +BR−1B>Si+1 � −1

A+Q

If we use the inversion lemma (A.50) we can substitute�
I + BR−1B>Si+1 � −1

= I −B
�
BT Si+1B + R � −1

BT Si+1

and the recursion for S becomes

Si = AT Si+1A− AT Si+1B
�
BT Si+1B +R � −1

BT Si+1A+Q (2.40)

The recursion is a backward recursion starting in

SN = P

For determine the control action we have (2.37) or with (2.38) inserted

ui = −R−1BT Si+1xi+1

= −R−1BT Si+1(Axi +Bui)

or

ui = −
�
R+ BT Si+1B � −1

BT Si+1Axi (2.41)



20 2.3 Continuous free dynamic optimization

2

The matrix equation, (2.36), is denoted as the Riccati equation, after Count Riccati, an Italian
who investigated a scalar version in 1724.

It can be shown (see e.g. (Lewis 1986a) p. 54) that the optimal cost function achieved the value

J∗ = Vo(xo) = xT
0 S0xo (2.42)

i.e. is quadratic in the initial state and S0 is a measure of the curvature in that point.

2.3 Continuous free dynamic optimization

Consider the problem related to finding the input function ut to the system

ẋ = ft(xt, ut) x0 = x0 t ∈ [0, T ] (2.43)

such that the cost function

J = φT (xT ) +

∫ T

0

Lt(xt, ut)dt (2.44)

is minimized. Here the initial state x0 and final time T are given (fixed). The problem is specified
by the dynamic function, ft, the scalar value functions φ and L and the constants T and x0.

The problem is an optimization of (2.44) with continuous equality constraints. Similarilly to the
situation in discret time, we here associate a n-dimensional function, λt, to the equality constraints,
ẋ − ft(xt, ut). Also in continuous time these multipliers are denoted as Costate or adjoint state.
In some part of the litterature the vector function, λt, is denoted as influence function.

For convienence we can introduce the scalar Hamiltonian function as follows:

Ht(xt, ut, λt) = Lt(xt, ut) + λT
t ft(xt, ut) (2.45)

We are now able to give the necessary condition for the solution to the problem.

Theorem 3: Consider the free dynamic optimization problem in continuous time of bringing the
system (2.43) from the initial state such that the performance index (2.44) is minimized. The necessary
condition is given by the Euler-Lagrange equations (for t ∈ [0, T ]):

ẋt = ft(xt, ut) State equation (2.46)

−λ̇T
t =

∂

∂xt

Ht Costate equation (2.47)

0T =
∂

∂ut

Ht stationarity condition (2.48)

and the boundary conditions:

x0 = x0 λT =
∂

∂x
φT (xT ) (2.49)

2

Proof: Before we start on the proof we need two lemmas. The first one is the fundamental Lemma of calculus
of variation, while the second is Leibniz’s rule.
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Lemma 1: (The Fundamental lemma of calculus of variations) Let ht be a continuous real-values function
defined on a ≤ t ≤ b and suppose that: � b

a

htδt dt = 0

for any δt ∈ C2[a, b] satisfying δa = δb = 0. Then

ht ≡ 0 t ∈ [a, b]

2

Lemma 2: (Leibniz’s rule for functionals): Let xt ∈
� n be a function of t ∈

�
and

J(x) = � T

s

ht(xt)dt

where both J and h are functions of xt (i.e. functionals). Then

dJ = hT (xT )dT − hs(xs)ds+ � T

s

∂

∂x
ht(xt)δx dt

2

Firstly, we construct the Lagrange function:

JL = φT (xT ) + � T

0

Lt(xt, ut)dt + � T

0

λT
t [ft(xt, ut)− ẋt] dt

Then we introduce integration by part

� T

0

λT
t ẋtdt+ � T

0

λ̇T
t xt = λT

T xT − λT
0 x0

in the Lagrange function which results in:

JL = φT (xT ) + λT
0 x0 − λT

T xT + � T

0

�
Lt(xt, ut) + λT

t ft(xt, ut) + λ̇T
t xt � dt

Using Leibniz rule (Lemma 2) the variation in JL w.r.t. x, λ and u is:

dJL =

�
∂

∂xT

φT − λT
T � dxT + � T

0

�
∂

∂x
L+ λT ∂

∂x
f + λ̇T � δx dt

+ � T

0

(ft(xt, ut)− ẋt)
T δλ dt+ � T

0

�
∂

∂u
L+ λT ∂

∂u
f � δu dt

According to optimization with equality constraints the necessary condition is obtained as a stationary point to the

Lagrange function. Setting to zero all the coefficients of the independent increments yields necessary condition as

given in Theorem 3. 2

We can express the necessary conditions as

ẋT =
∂

∂λ
H − λ̇T =

∂

∂x
H 0T =

∂

∂u
H (2.50)

with the (split) boundary conditions

x0 = x0 λT
T =

∂

∂x
φT

Furthermore, we have

Ḣ =
∂

∂t
H +

∂

∂u
Hu̇+

∂

∂x
Hẋ+

∂

∂λ
Hλ̇

=
∂

∂t
H +

∂

∂u
Hu̇+

∂

∂x
Hf + fT λ̇

=
∂

∂t
H +

∂

∂u
Hu̇+

[

∂

∂x
H + λ̇T

]

f

=
∂

∂t
H
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Now, in the time invariant case, where f and L are not explicit functions of t, and so neither is H .
In this case

Ḣ = 0 (2.51)

Hence, for time invariant systems and cost functions, the Hamiltonian is a constant on the optimal
trajectory.

Example: 2.3.1 (Motion Control) Let us consider the continuous time version of example 2.1.1. The
problem is to bring the system

ẋ = ut x0 = x0

from the initial position, x0, such that the performance index

J =
1

2
px2

T + � T

0

1

2
u2dt

is minimized. The Hamiltonian function is in this case

H =
1

2
u2 + λu

and the Euler-Lagrange equations are simply

ẋ = ut x0 = x0

−λ̇ = 0 λT = pxT

0 = u+ λ

These equations are easily solved. Notice, the costate equation here gives the key to the solution. Firstly, we notice
that the costate is constant. Secondly, from the boundary condition we have:

λ = pxT

From the Euler equation or the stationarity condition we find the control signal (expressed as function of the
terminal state xT ) is given as

u = −pxT

If this strategy is introduced in the state equation we have

xt = x0 − pxT t

from which we get

xT =
1

1 + pT
x0

Finally, we have

xt =

�
1−

p

1 + pT
t � x0 ut = −

p

1 + pT
x0 λ =

p

1 + pT
x0

It is also quite simple to see, that the Hamiltonian function is constant and equal

H = −
1

2

�
p

1 + pT
x0 � 2

2



Chapter 3
Dynamic optimization with end points

constraints

In this chapter we will investigate the situation in which there is constraints on the final states.
We will focus on equality constraints on (some of) the terminal states, i.e.

ψN (xN ) = 0 (in discrete time) (3.1)

or
ψT (xT ) = 0 (in continuous time) (3.2)

where ψ is a mapping from R
n to R

p and p ≤ n, i.e. not fewer states than constraints.

3.1 Simple terminal constraints

Consider the discrete time system (for i = 0, 1, ... N − 1)

xi+1 = fi(xi, ui) x0 = x0 (3.3)

the cost function

J = φ(xN ) +

N−1
∑

i=0

Li(xi, ui) (3.4)

and the simple terminal constraints
xN = xN (3.5)

where xN (and x0) is given. In this simple case, the terminal contribution, φ, to the performance
index could be omitted, since it has not effect on the solution (except a constant additive term to
the performance index). The problem consist in bringing the system (3.3) from its initial state x0

to a (fixed) terminal state xN such that the performance index, (3.4) is minimized.

The problem is specified by the functions f and L (and φ), the length of the horizon N and by
the initial and terminal state x0, xN . Let us apply the usual notation and associate a vector of
Lagrange multipliers λi+1 to each of the equality constraints xi+1 = fi(xi, ui). To the terminal
constraint we associate, ν which is a vector containing n (scalar) Lagrange multipliers.

Notice, as in the unconstrained case we can introduce the Hamiltonian function

Hi(xi, ui, λi+1) = Li(xi, ui) + λT
i+1fi(xi, ui)

and obtain a much more compact form for necessary conditions, which is stated in the theorem
below.

23
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Theorem 4: Consider the dynamic optimization problem of bringing the system (3.3) from the initial
state, x0, to the terminal state, xN , such that the performance index (3.4) is minimized. The necessary
condition is given by the Euler-Lagrange equations (for i = 0, ... , N − 1):

xi+1 = fi(xi, ui) State equation (3.6)

λT
i =

∂

∂xi

Hi Costate equation (3.7)

0T =
∂

∂u
Hi Stationarity condition (3.8)

The boundary conditions are
x0 = x0 xN = xN

and the Lagrange multiplier, ν, related to the simple equality constraints is can be determined from

λT
N = νT +

∂

∂xN

φ

2

Notice, ther performance index will rarely have a dependence on the terminal state in this situation.
In that case

λT
N = νT

Also notice, the dynamic function can be expressed in terms of the Hamiltonian function as

fT
i (xi, ui) =

∂

∂λ
Hi

and obtain a more memotechnical form

xT
i+1 =

∂

∂λ
Hi λT

i+1 =
∂

∂x
Hi 0T =

∂

∂u
Hi

for the Euler-Lagrange equations, (3.6)-(3.8).

Proof: We start forming the Lagrange function:

JL = φ(xN ) +

N−1�
i=0

�
Li(xi, ui) + λT

i+1 � fi(xi, ui)− xi+1 ��� + λT
0 (x0 − x0) + νT (xN − xN )

As in connection to free dynamic optimization stationarity w.r.t.. λi+1 gives (for i = 0, ... N−1) the state equations
(3.6). In the same way stationarity w.r.t. ν gives

xN = xN

Stationarity w.r.t. xi gives (for i = 1, ... N − 1)

0T =
∂

∂x
Li(xi, ui) + λT

i+1

∂

∂x
fi(xi, ui)− λT

i

or the costate equations (3.7) if the definition of the Hamiltonian function is applied. For i = N we have

λT
N = νT +

∂

∂xN

φ

Stationarity w.r.t. ui gives (for i = 0, ... N − 1):

0T =
∂

∂u
Li(xi, ui) + λT

i+1

∂

∂u
fi(xi, ui)

or the stationarity condition, (3.8), if the Hamiltonian function is introduced. 2
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Example: 3.1.1 (Optimal stepping) Let us return to the system from 2.1.1, i.e.

xi+1 = xi + ui

The task is to bring the system from the initial position, x0 to a given final position, xN , in a fixed number, N of
steps, such that the performance index

J =

N−1�
i=0

1

2
u2

i

is minimized. The Hamiltonian function is in this case

Hi =
1

2
u2

i + λi+1(xi + ui)

and the Euler-Lagrange equations are simply
xi+1 = xi + ui (3.9)

λt = λi+1 (3.10)

0 = ui + λi+1 (3.11)

with the boundary conditions:
x0 = x0 xN = xN

Firstly, we notice that the costates are constant, i.e.

λi = c

Secondly, from the stationarity condition we have:

ui = −c

and inserted in the state equation (3.9)

xi = x0 − ic and finally xN = x0 −Nc

From the latter equation and boundary condition we can determine the constant to be

c =
x0 − xN

N

Notice, the solution to the problem in Example 2.1.1 tens to this for p→∞ and xN = 0.

Also notice, the Lagrange multiplier to the terminal conditions is equal

ν = λN = c =
x0 − xN

N

and have an interpretation as a shadow price. 2

Example: 3.1.2 Investment planning. Suppose we are planning to invest some money during a period of
time with N intervals in order to save a specific amount of money xN = 10000$. If the the bank pays interest with
rate α in one interval, the account balance will evolve according to

xi+1 = (1 + α)xi + ui x0 = 0 (3.12)

Here ui is the deposit per period. This problem could easily be solved by the plan ui = 0 i = 1, ... N − 1 and
uN−1 = xN . The plan might, however, be a little beyond our means. We will be looking for a minimum effort
plan. This could be achieved if the deposits are such that the performance index:

J =

N−1�
i=0

1

2
u2

i (3.13)

is minimized.

In this case the Hamiltonian function is

Hi =
1

2
u2

i + λi+1 ((1 + α)xi + ui)

and the Euler-Lagrange equations become

xi+1 = (1 + α)xi + ui x0 = 0 xN = 10000 (3.14)

λi = (1 + α)λi+1 ν = λN (3.15)

0 = ui + λi+1 (3.16)

In this example we are going to solve this problem by means of analytical solutions. In example 3.1.3 we will solved
the problem in a more computer oriented way.
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Introduce the notation a = 1 + α and q = 1
a
. From the Euler-Lagrange equations, or rather the costate equation

(3.15), we find quite easily that
λi+1 = qλi or λi = c qi

where c is an unknown constant. The deposit is then (according to (3.16)) given as

ui = −c qi+1

x0 = 0

x1 = −c q

x2 = a(−c q)− cq2 = −acq − cq2

x3 = a(−acq − cq2)− cq3 = −a2cq − acq2 − cq3

...

xi = −ai−1cq − ai−2cq2 − ... − cqi = −c
i�

k=1

ai−kqk 0 ≤ i ≤ N

The last part is recognized as a geometric series and consequently

xi = −cq2−i 1− q2i

1− q2
0 ≤ i ≤ N

For determination of the unknown constant c we have

xN = −c q2−N 1− q2N

1− q2

When this constant is known we can determine the sequence of annual deposit and other interesting quantities such
as the state (account balance) and the costate. The first two is plotted in Figure 3.1.

0 1 2 3 4 5 6 7 8 9
0

200

400

600

800
annual deposit 

0 1 2 3 4 5 6 7 8 9 10
0

2000

4000

6000

8000

10000

12000
account balance

Figure 3.1. Investment planning. Upper panel show the annual deposit and the lower panel shows the account
balance.

2

Example: 3.1.3 In this example we will solve the investment planning problem from example 3.1.2 in a more
computer oriented way. We will use a so called shooting method, which in this case is based on the fact that the
costate equation can be reversed. As in the previous example (example 3.1.2) the key to the problem is the initial
value of the costate (the unknown constant c in example 3.1.2).

Consider the Euler-Lagrange equations in example 3.1.3. If λ0 = c is known, then we can determine λ1 and u0

from (3.15) and (3.16). Now, since x0 is known we use the state equation and determine x1. Further on, we can
use (3.15) and (3.16) again and determine λ2 and u1. In this way we can iterate the solution until i = N . This
is what is implemented in the file difference.m (see Table 3.1. If the constant c is correct then xN − xN = 0.

The Matlab command fsolve is an implementation of a method for finding roots in a nonlinear function. For
example the command(s)

alfa=0.15; x0=0; xN=10000; N=10;

opt=optimset(’fsolve’);

c=fsolve(@difference,-800,opt,alfa,x0,xN,N)
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function deltax=difference(c,alfa,x0,xN,N)

lambda=c; x=x0;

for i=0:N-1,

lambda=lambda/(1+alfa);

u=-lambda;

x=(1+alfa)*x+u;

end

deltax=(x-xN);

Table 3.1. The contents of the file, difference.m

will search for the correct value of c starting with −800. The value of the parameters alfa,x0,xN,N is just passing
through to difference.m

3.2 Simple partial end point constraints

Consider a variation of the previously treated simple problem. Assume some of the terminal state
variable, x̃N , is constrained i a simple way and the rest of the variable, x̄N , is not constrained, i.e.

xN =

[

x̃N

x̄N

]

x̃N = x̃N

The rest of the state variable, x̄N , might influence the terminal contribution, φN (xN ). Assume for
simplicity that x̃N do not influence on φN , then φN (xN ) = φN (x̄N ). In that case the boundary
conditions becomes:

x0 = x0 x̃N = x̃N λ̃N = νT λ̄N =
∂

∂x̄
φN

3.3 Linear terminal constraints

In the previous section we handled the problem with fixed end point state. We will now focus on
the problem when only a part of the terminal state is fixed. This has, though, as a special case
the simple situation treated in the previous section.

Consider the system (i = 0, ... , N − 1)

xi+1 = fi(xi, ui) x0 = x0 (3.17)

the cost function

J = φ(xN ) +
N−1
∑

i=0

Li(xi, ui) (3.18)

and the linear terminal constraints
CxN = rN (3.19)

where C and rN (and x0) are given. The problem consist in bringing the system (3.3) from its
initial state x0 to a terminal situation in which CxN = rN such that the performance index, (3.4)
is minimized.

The problem is specified by the functions f , L and φ, the length of the horizonN , by the initial state
x0, the p×n matrix C and rN . Let us apply the usual notation and associate a Lagrange multiplier
λi+1 to the equality constraints xi+1 = fi(xi, ui). To the terminal constraints we associate, ν which
is a vector containing p (scalar) Lagrange multipliers.
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Theorem 5: Consider the dynamic optimization problem of bringing the system (3.17) from the initial
state to a terminal state such that the end point constraints in (3.19) is met and the performance
index (3.18) is minimized. The necessary condition is given by the Euler-Lagrange equations (for
i = 0, ... , N − 1):

xn = fi(xi, ui) State equation (3.20)

λT
i =

∂

∂xi

Hi Costate equation (3.21)

0T =
∂

∂u
Hi Stationarity condition (3.22)

The boundary conditions are the initial state and

x0 = x0 CxN = rN λT
N = νTC +

∂

∂xN

φ (3.23)

2

Proof: Again, we start forming the Lagrange function:

JL = φ(xN ) +

N−1�
i=0

�
Li(xi, ui) + λT

i+1 � fi(xi, ui)− xi+1 � � + λT
0 (x0 − x0) + νT (CxN − rN )

As in connection to free dynamic optimization stationarity w.r.t.. λi+1 gives (for i = 0, ... N−1) the state equations
(3.20). In the same way stationarity w.r.t. ν gives

CxN = rN

Stationarity w.r.t. xi gives (for i = 1, ... N − 1)

0 =
∂

∂x
Li(xi, ui) + λT

i+1

∂

∂x
fi(xi, ui)− λT

i

or the costate equations (3.21), whereas for i = N we have

λT
N = νTC +

∂

∂xN

φ

Stationarity w.r.t. ui gives the stationarity condition (for i = 0, ... N − 1):

0 =
∂

∂u
Li(xi, ui) + λT

i+1

∂

∂u
fi(xi, ui)

2

Example: 3.3.1 (Orbit injection problem from (Bryson 1999)).

A body is initial’ at rest in the origin. A constant specific thrust force, a, is applied to the body in a direction that
makes an angle θ with the x-axis (see Figure 3.2). The task is to find a sequence of directions such that the body
in a finite number, N , of intervals

1 is injected into orbit i.e. reach a specific height H

2 has zero vertical speed (y-direction)

3 has maximum horizontal speed (x-direction)

This is also denoted as a Discrete Thrust Direction Programming (DTDP) problem.

Let u and v be the velocity in the x and y direction, respectively. The equation of motion (EOM) is (apply Newton
2 law):

d

dt

�
u
v � = a

�
cos(θ)
sin(θ) � d

dt
y = v

��
u
v
y

��
0

=

��
0
0
0

��
(3.24)
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v
θ

H

a
y

x

u

Figure 3.2. Nomenclature for Thrust Direction Programming

If we have a constant angle in the intervals (with length h) then the discrete time state equation is��
u
v
y

��
i+1

=

��
ui + ah cos(θi)
vi + ah sin(θi)

yi + vih+ 1
2
ah2 sin(θi)

�� ��
u
v
y

��
0

=

��
0
0
0

��
(3.25)

The performance index we are going to maximize is

J = uN (3.26)

and the end point constraints can be written as

vN = 0 yN = H or as

�
0 1 0
0 0 1 �

��
u
v
y

��
N

=

�
0
H � (3.27)

In terms of our standard notation we have

φ = uN = � 1 0 0 �
��
u
v
y

��
N

L = 0 C =

�
0 1 0
0 0 1 � r =

�
0
H �

We assign one (scalar) Lagrange multiplier (or costate) to each of the dynamic elements of the dynamic function

λi = � λu λv λy � T

i

and the Hamiltonian function becomes

Hi = λu
i+1 � ui + ah cos(θi) � + λv

i+1 � vi + ah sin(θi) � + λy
i+1

� yi + vih+
1

2
ah2sin(θi) � (3.28)

From this we find the Euler-Lagrange equations

� λu λv λy �
i
= � λu

i+1 λv
i+1 + λy

i+1h λy
i+1 � (3.29)

which clearly indicates that λu
i and λy

i are constant in time and that λv
i is decreasing linearly with time (and with

rate equal λy h). If we for each of the end point constraints in (3.27) assign a (scalar) Lagrange multiplier, νv and
νy, we can write the boundary conditions in (3.23) as�

0 1 0
0 0 1 �

��
u
v
y

��
N

=

�
0
H �

��
λu

λv

λy

��
N

= � νv νy �
�

0 1 0
0 0 1 � + � 1 0 0 �

or as
vN = 0 yN = H (3.30)

and
λu

N = 1 λv
N = νv λy

N
= νy (3.31)

If we combines (3.31) and (3.29) we find

λu
i = 1 λv

i = νv + νyh(N − i) λy
i

= νy (3.32)

From the stationarity condition we find (from the Hamiltonian function in (3.28))

0 = −λu
i+1ah sin(θi) + λv

i+1ah cos(θi) + λy
i+1

1

2
ah cos(θi)
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or

tan(θi) =
λv

i+1 + 1
2
λy

i+1h

λu
i+1

or with the costate inserted

tan(θi) = νv + νyh(N +
1

2
− i) (3.33)

The two constant, νv and νy must be determined to satisfy yN = H and vN = 0. This can be done by establish the
mapping from the two constants to yN and vN and solve (numerically or analytically) for νv and νy.

In the following we measure time in units of T = Nh, velocities such as u and v in units of aT 2, then we can put
a = 1 and h = 1/N in the equations above.
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Figure 3.3. DTDP for max uN with H = 0.2. Thrust direction angle, vertical and horizontal velocity.
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3.4 General terminal equality constraints

Let us now solve the more general problem in which the end point constraints is given in terms of
a nonlinear function ψ, i.e.

ψ(xN ) = 0 (3.34)

This has, as a special case, the previously treated situations.

Consider the discrete time system (i = 0, ... , N − 1)

xi+1 = fi(xi, ui) x0 = x0 (3.35)
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the cost function

J = φ(xN ) +

N−1
∑

i=0

Li(xi, ui) (3.36)

and the terminal constraints (3.34). The initial state, x0, is given (known). The problem consist
in bringing the system (3.35) i from its initial state x0 to a terminal situation in which ψ(xN ) = 0
such that the performance index, (3.36) is minimized.

The problem is specified by the functions f , L, φ and ψ, the length of the horizon N and by the
initial state x0. Let us apply the usual notation and associate a Lagrange multiplier λi+1 to each
of the equality constraints xi+1 = fi(xi, ui). To the terminal constraints we associate, ν which is
a vector containing p (scalar) Lagrange multipliers.

Theorem 6: Consider the dynamic optimization problem of bringing the system (3.35) from the
initial state such that the performance index (3.36) is minimized. The necessary condition is given by
the Euler-Lagrange equations (for i = 0, ... , N − 1):

xi+1 = fi(xi, ui) State equation (3.37)

λT
i =

∂

∂xi

Hi Costate equation (3.38)

0T =
∂

∂u
Hi Stationarity condition (3.39)

The boundary conditions are:

x0 = x0 ψ(xN ) = 0 λT
N = νT ∂

∂x
ψ +

∂

∂xN

φ

2

Proof: As usual, we start forming the Lagrange function:

JL = φ(xN ) +

N−1�
i=0

�
Li(xi, ui) + λT

i+1 � fi(xi, ui)− xi+1 ��� + λT
0 (x0 − x0) + νT (ψ(xN ))

As in connection to free dynamic optimization stationarity w.r.t.. λi+1 gives (for i = 0, ... N−1) the state equations
(3.37). In the same way stationarity w.r.t. ν gives

ψ(xN ) = 0

Stationarity w.r.t. xi gives (for i = 1, ... N − 1)

0 =
∂

∂x
Li(xi, ui) + λT

i+1

∂

∂x
fi(xi, ui)− λT

i

or the costate equations (3.38), whereas for i = N we have

λT
N = νT ∂

∂x
ψ +

∂

∂xN

φ

Stationarity w.r.t. ui gives the stationarity condition (for i = 0, ... N − 1):

0 =
∂

∂u
Li(xi, ui) + λT

i+1

∂

∂u
fi(xi, ui)

2
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3.5 Continuous dynamic optimization with end point con-

straints.

In this section we consider the continuous case in which t ∈ [0; T ] ∈ R. The problem is to find the
input function ut to the system

ẋ = ft(xt, ut) x0 = x0 (3.40)

such that the cost function

J = φT (xT ) +

∫ T

0

Lt(xt, ut)dt (3.41)

is minimized and the end point constraints in

ψT (xT ) = 0 (3.42)

are met. Here the initial state x0 and final time T are given (fixed). The problem is specified by
the dynamic function, ft, the scalar value functions φ and L, the end point constraints through
the function ψ and the constants T and x0.

As in section 2.3 we can for the sake of convenience introduce the scalar Hamiltonian function as:

Ht(xt, ut, λt) = Lt(xt, ut) + λT
t ft(xt, ut) (3.43)

As in the previous section on discrete time problems we, in addition to the costate (the dynam-
ics is an equality constraints), introduce a Lagrange multiplier, ν associated with the end point
constraints.

Theorem 7: Consider the dynamic optimization problem in continuous time of bringing the system
(3.40) from the initial state and a terminal state satisfying (3.42) such that the performance index (3.41)
is minimized. The necessary condition is given by the Euler-Lagrange equations (for t ∈ [0, T ]):

ẋt = ft(xt, ut) State equation (3.44)

−λ̇T
t =

∂

∂xt

Ht Costate equation (3.45)

0T =
∂

∂ut

Ht stationarity condition (3.46)

and the boundary conditions:

x0 = x0 ψT (xT ) = 0 λT = νT ∂

∂x
ψT +

∂

∂x
φT (xT ) (3.47)

which is a split boundary condition. 2

Proof: As in section 2.3 we first construct the Lagrange function:

JL = φT (xT ) + � T

0

Lt(xt, ut)dt + � T

0

λT
t [ft(xt, ut)− ẋt] dt + νTψT (xT )

Then we introduce integration by part

� T

0

λT
t ẋtdt+ � T

0

λ̇T
t xt = λT

T xT − λT
0 x0

in the Lagrange function which results in:

JL = φT (xT ) + λT
0 x0 − λT

T xT + νTψT (xT ) + � T

0

�
Lt(xt, ut) + λT

t ft(xt, ut) + λ̇T
t xt � dt
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Using Leibniz rule (Lemma 2) the variation in JL w.r.t. x, λ and u is:

dJL =

�
∂

∂xT

φT + νT ∂

∂x
ψT − λT

T � dxT + � T

0

�
∂

∂x
L+ λT ∂

∂x
f + λ̇T � δx dt

+ � T

0

(ft(xt, ut)− ẋt) δλ dt + � T

0

�
∂

∂u
L+ λT ∂

∂u
f � δu dt

According to optimization with equality constraints the necessary condition is obtained as a stationary point to the

Lagrange function. Setting to zero all the coefficients of the independent increments yields necessary condition as

given in Theorem 7. 2

We can express the necessary conditions as

ẋT =
∂

∂λ
H − λ̇T =

∂

∂x
H 0T =

∂

∂u
H (3.48)

with the (split) boundary conditions

x0 = x0 ψT (xT ) = 0 λT
T = νT ∂

∂x
ψT +

∂

∂x
φT

The only difference between this formulation and the one given in Theorem 7 is the alternative
formulation of the state equation.

If we have simple end point constraints where the problem is to bring the system from the initial
state x0 to the final state xT in a fixed period of time along a trajectory such that the performance
index, (3.41), is minimized. In that case

ψT (xT ) = xT − xT = 0

and the boundary condition in (3.47) becomes:

x0 = x0 xT = xT λT = νT
[

+
∂

∂x
φT (xT )

]

(3.49)

If we have simple partial end point constraints the situation is quite similar to the previous one.
Assume some of the terminal state variable, x̃T , is constrained i a simple way and the rest of the
variable, x̄T , is not constrained, i.e.

xT =

[

x̃T

x̄T

]

x̃T = x̃T (3.50)

The rest of the state variabel, x̄T , might influence the terminal contribution, φT (xT ). Assume for
simplicity that x̃T do not influence on φT , then φT (xT ) = φT (x̄T ). In that case the boundary
conditions becomes:

x0 = x0 x̃T = x̃T λ̃T = νT λ̄T =
∂

∂x̄
φT

In the more complicated situation where there is linear end point constraints of the type

CxT = r

Here the known quantities is C, which is a p × n matrix and r ∈ R
p. The system is brought

from the initial state x0 to the final state xT such that CxT = r, in a fixed period of time along
a trajectory such that the performance index, (3.41), is minimized. The boundary condition in
(3.47) becomes here:

x0 = x0 CxT = r λT = νTC +
∂

∂x
φT (xT ) (3.51)
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Example: 3.5.1 (Motion control) Let us consider the continuous time version of example 3.1.1. (Even-
tually see also the unconstrained continuous version in Example 2.3.1). The problem is to bring the system

ẋ = ut x0 = x0

in final (known) time T from the initial position, x0, to the final position, xt, such that the performance index

J =
1

2
px2

T + � T

0

1

2
u2dt

is minimized. The terminal term, 1
2
px2

T
, could have been omitted since only give a constant contribution to the

performance index. It has been included here in order to make the comparison with Example 2.3.1 more obvious.

The Hamiltonian function is (also) in this case

H =
1

2
u2 + λu

and the Euler-Lagrange equations are simply

ẋ = ut

−λ̇ = 0

0 = u+ λ

with the boundary conditions:
x0 = x0 xT = xT λT = ν + pxT

As in Example 2.3.1 these equations are easily solved and it is also the costate equation here gives the key to the
solution. Firstly, we notice that the costate is constant. Let us denote this constant as c.

λ = c

From the stationarity condition we find the control signal (expressed as function of the terminal state xT ) is given
as

u = −c

If this strategy is introduced in the state equation we have

xt = x0 − ct

and

xT = x0 − cT or c =
x0 − xT

T
Finally, we have

xt = x0 +
xT − x0

T
t ut =

xT − x0

T
λ =

x0 − xT

T
It is also quite simple to see, that the Hamiltonian function is constant and equal

H = −
1

2

�
xT − x0

T � 2
2

Example: 3.5.2 (Orbit injection from (Bryson 1999)). Let us return to the continuous time version of the
orbit injection problem (see. Example 3.3.1.) The problem is to find the input function, θt, such that the terminal
horizontal velocity, uT , is maximized subject to the dynamics

d

dt

��
ut

vt

yt

��
=

��
a cos(θt)
a sin(θt)

vt

�� ��
u0

v0
y0

��
=

��
0
0
0

��
(3.52)

and the terminal constraints
vT = 0 yT = H

With our standard notation (in relation to Theorem 7) we have

J = φT (xT ) = uT L = 0 C =

�
0 1 0
0 0 1 � r =

�
0
H �

and the Hamilton functions is
Ht = λu

t a cos(θt) + λv
t a sin(θt) + λy

t vt

The Euler-Lagrange equations consists of the state equation, (3.52), the costate equation

−
d

dt
� λu

t λv
t λy

t � = � 0 λy
t 0 � (3.53)
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and the stationarity condition
0 = −λua sin(θt) + λva cos(θt)

or

tan(θt) =
λv

t

λu
t

(3.54)

The costate equations clearly shown that the costate λu
t and λy

t are constant and that λv
t has a linear evolution with

λy as slope. To each of the two terminal constraints

ψ =

�
vT

yT −H � =

�
0 1 0
0 0 1 �

��
uT

vT

yT

��
−

�
0
H � =

�
0
0 �

we associate two (scalar) Lagrange multipliers, νv and νy, and the boundary condition in (3.47) gives

� λu
T

λv
T

λy
T

� = � νv νy �
�

0 1 0
0 0 1 � + � 1 0 0 �

or
λu

T = 1 λv
T = νv λy

T
= νy

If this is combined with the costate equations we have

λu
t = 1 λv

t = νv + νy(T − t) λy
t = νy

and the stationarity condition gives the optimal decision function

tan(θt) = νv + νy(T − t) (3.55)

The two constants, νu and νy has to be determined such that the end point constraints are met. This can be
achieved by establish the mapping from the two constant and the state trajectories and the end points. This can be
done by integrating the state equations either by means of analytical or numerical methods.
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Figure 3.5. TDP for max uT with H = 0.2. Thrust direction angle, vertical and horizontal velocity.
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Chapter 4
The maximum principle

In this chapter we will be dealing with problems where the control actions or the decisions are
constrained. One example of constrained control actions is the Box model where the control actions
are continuous, but limited to certain region

|ui| ≤ u

In the vector case the inequality apply elementwise. Another type of constrained control is where
the possible action are finite and discrete e.g. of the type

ui ∈ {−1, 0, 1}

In general we will write
ui ∈ Ui

where Ui is feasible set (i.e. the set of allowed decisions).

The necessary conditions are denoted as the maximum principle or Pontryagins maximum princi-
ple. In some part of the literature one can only find the name of Pontryagin in connection to the
continuous time problem. In other part of the literature the principle is also denoted as the mini-
mum principle if it is a minimization problem. Here we will use the name Pontryagins maximum
principle also when we are minimizing.

4.1 Pontryagins maximum principle (D)

Consider the discrete time system (i = 0, ... , N − 1)

xi+1 = fi(xi, ui) x0 = x0 (4.1)

and the cost function

J = φ(xN ) +
N−1
∑

i=0

Li(xi, ui) (4.2)

where the control actions are constrained, i.e.

ui ∈ Ui (4.3)

The task is to take the system, i.e. to find the sequence of feasible (i.e. satisfying (4.3)) decisions
or control actions, ui i = 0, 1, ... N − 1, that takes the system in (4.1) from its initial state x0

along a trajectory such that the performance index (4.2) is minimized.

36
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Notice, as in the previous sections we can introduce the Hamiltonian function

Hi(xi, ui, λi+1) = Li(xi, ui) + λT
i+1fi(xi, ui)

and obtain a much more compact form for necessary conditions, which is stated in the theorem
below.

Theorem 8: Consider the dynamic optimization problem of bringing the system (4.1) from the initial
state such that the performance index (4.2) is minimized. The necessary condition is given by the
following equations (for i = 0, ... , N − 1):

xi+1 = fi(xi, ui) State equation (4.4)

λT
i =

∂

∂xi

Hi Costate equation (4.5)

ui = arg min
ui∈Ui

[Hi] Optimality condition (4.6)

The boundary conditions are:

x0 = x0 λT
N =

∂

∂xN

φ

2

Proof: Omitted here. It can be proved by means of dynamic programming which will be treated later (Chapter

6) in these notes. 2

If the problem is a maximization problem then then the optimality condition in (4.6) is a maxi-
mization rather than a minimization.

Note, if we have end point constraints such as

ψN (xN ) = 0 ψ : R
n → R

p

we can introduce a Lagrange multiplier, ν ∈ R
p related to each of the p ≤ n end point constraints

and the boundary condition are changed into

x0 = x0 ψ(xN ) = 0 λT
N = νT ∂

∂xN

ψN +
∂

∂xN

φN

Example: 4.1.1 Investment planning. Consider the problem from Example 3.1.2, page 26 where we are
planning to invest some money during a period of time with N intervals in order to save a specific amount of money
xN = 10000$. If the the bank pays interest with rate α in one interval, the account balance will evolve according to

xi+1 = (1 + α)xi + ui x0 = 0 (4.7)

Here ui is the deposit per period. As is Example 3.1.2 we will be looking for a minimum effort plan. This could be
achieved if the deposits are such that the performance index:

J =

N−1�
i=0

1

2
u2

i (4.8)

is minimized. In this Example the deposit is however limited to 600 $.

The Hamiltonian function is

Hi =
1

2
u2

i + λi+1 [(1 + α)xi + ui]
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and the necessary conditions are:

xi+1 = (1 + α)xi + ui (4.9)

λi = (1 + α)λi+1 (4.10)

ui = arg min
ui∈Ui

�
1

2
u2

i + λi+1 [(1 + α)xi + ui] � (4.11)

As in Example 3.1.2 we can introduce the constants a = 1 + α and q = 1
a

and solve the Costate equation

λi = c qi

where c is an unknown constant. The optimal deposit is according to (4.11) given by

ui = min(u,−c qi+1)

which inserted in the state equation enable us to find (iterate) the state trajectory for a given value of c. The correct
value of c give

xN = xN = 10000$ (4.12)

The plots in Figure 4.1 has been produced by means of a shooting method where c has been determined to satisfy
the
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Figure 4.1. Investment planning. Upper panel show the annual deposit and the lower panel shows the account
balance.

2

Example: 4.1.2 (Orbit injection problem from (Bryson 1999)).

v
θ

H

a
y

x

u

Figure 4.2. Nomenclature for Thrust Direction Programming

Let us return the Orbit injection problem (or Thrust Direction Programming) from Example 3.3.1 on page 30 where
a body is accelerated and put in orbit, which in this setup means reach a specific height H. The problem is to find a
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sequence of thrusts directions such that the end (i.e. for i = N) horizontal velocity is maximized while the vertical
velocity is zero.

The specific thrust has a (time varying) horizontal component ax and a (time varying) vertical component ay, but
has a constant size a. This problem was in Example 3.3.1 solved by introducing the angle θ between the thrust force
and the x-axis such that �

ax

ay � = a

�
cos(θ)
sin(θ) �

This ensure that the size of the specific trust force is constant and equal a. In this example we will follow another
approach and use both ax and ay as decision variable. They are constrained through

(ax)2 + (ay)2 = a2 (4.13)

Let (again) u and v be the velocity in the x and y direction, respectively. The equation of motion (EOM) is (apply
Newton 2 law):

d

dt

�
u
v � =

�
ax

ay � d

dt
y = v

��
u
v
y

��
0

=

��
0
0
0

��
(4.14)

We have for sake of simplicity omitted the x-coordinate. If the specific thrust is kept constant in intervals (with
length h) then the discrete time state equation is��

u
v
y

��
i+1

=

��
ui + ax

i h
vi + ay

i h
yi + vih+ 1

2
ay

i h
2

�� ��
u
v
y

��
0

=

��
0
0
0

��
(4.15)

where the decision variable or control actions are constrained through (4.13). The performance index we are going
to maximize is

J = uN (4.16)

and the end point constraints can be written as

vN = 0 yN = H or as

�
0 1 0
0 0 1 �

��
u
v
y

��
N

=

�
0
H � (4.17)

If we (as in Example 3.3.1 assign one (scalar) Lagrange multiplier (or costate) to each of the dynamic elements of
the dynamic function

λi = � λu λv λy � T

i

the Hamiltonian function becomes

Hi = λu
i+1(ui + ax

i h) + λv
i+1(vi + ay

i h) + λy
i+1(yi + vih+

1

2
ay

i h
2) (4.18)

For the costate we have the same situation as in Example 3.3.1 and

� λu, λv , λy �
i
= � λu

i+1, λv
i+1 + λy

i+1h, λy
i+1 � (4.19)

with the end point constraints
vN = 0 yN = H

and
λu

N = 1 λv
N = νv λy

N
= νy

where νv and νy are Lagrange multipliers related to the end point constraints. If we combines the costate equation
and the end point conditions we find

λu
i = 1 λv

i = νv + νyh(N − i) λy
i = νy (4.20)

Now consider the maximization of Hi in (4.18) with respect to ax
i and ay

i subject to (4.13). The decision variable
form a vector which maximize the Hamiltonian function if it is parallel to the vector�

λu
i+1h

λv
i+1h+ 1

2
λy

i+1h
2 �

Since the length of the decision vector is constrained by (4.13) the optimal vector is:�
ax

i

ay
i � =

�
λu

i+1h

λv
i+1h+ 1

2
λy

i+1h
2 � a�

(λu
i+1

h)2 + (λv
i+1

h+ 1
2
λy

i+1
h2)2

(4.21)

If the two constants νv and νy are known, then the input sequence given by (4.21) (and (4.20)) can be used in
conjunction with the state equation, (4.15) and the state trajectories can be determined. The two unknown constant
can then be found by means of numerical search such that the end point constraints in (4.17) is met. The results
are depicted in Figure 4.3 in per unit (PU) as in Example 3.3.1. In Figure 4.3 the accelerations in the x- and
y-direction is plotted versus time as a stem plot. The velocities, ui and vi, are also plotted and have the same
evolution as in 3.3.1.

2
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Figure 4.3. The Optimal orbit injection for H = 0.2 (in PU). Specific thrust force ax and ay and vertical and
horizontal velocity.

4.2 Pontryagins maximum principle (C)

Let us now focus on the continuous version of the problem in which t ∈ R. The problem is to find
a feasible input function

ut ∈ Ut (4.22)

to the system
ẋ = ft(xt, ut) x0 = x0 (4.23)

such that the cost function

J = φT (xT ) +

∫ T

0

Lt(xt, ut)dt (4.24)

is minimized. Here the initial state x0 and final time T are given (fixed). The problem is specified
by the dynamic function, ft, the scalar value functions φT and Lt and the constants T and x0.

As in section 2.3 we can for the sake of convenience introduce the scalar Hamiltonian function as:

Ht(xt, ut, λt) = Lt(xt, ut) + λT
t ft(xt, ut) (4.25)

Theorem 9: Consider the dynamic optimization problem in continuous time of bringing the system
(4.23) from the initial state such that the performance index (4.24) is minimized. The necessary
condition is given by the following equations (for t ∈ [0, T ]):

ẋt = ft(xt, ut) State equation (4.26)

−λ̇T
t =

∂

∂xt

Ht Costate equation (4.27)

ut = arg min
ut∈Ut

[Ht] Optimality condition (4.28)

and the boundary conditions:

x0 = x0 λT =
∂

∂x
φT (xT ) (4.29)

which is a split boundary condition. 2
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Proof: Omitted 2

If the problem is a maximization problem, then the minimization in (4.28) is changed into a
maximization.

If we have end point constraints, such as

ψT (xT ) = 0

the boundary conditions are changed into:

x0 = x0 ψT (xT ) = 0 λT
T = νT ∂

∂x
ψT +

∂

∂x
φT

Example: 4.2.1 (Orbit injection from (Bryson 1999)). Let us return to the continuous time version of
the orbit injection problem (see. Example 3.5.2, page 35). In that example the constraint on the size of the specific
thrust was solved by introducing the angle between the thrust force and the x-axis. Here we will solve the problem
using Pontryagins maximum principle. The problem is here to find the input function, i.e. the horizontal (ax) and
vertical (ay) component of the specific thrust force, satisfying

(ax
t )2 + (ay

t )2 = a2 (4.30)

such that the terminal horizontal velocity, uT , is maximized subject to the dynamics

d

dt

��
ut

vt

y

��
=

��
ax

t

ay
t

vt

�� ��
u0

v0
y0

��
=

��
0
0
0

��
(4.31)

and the terminal constraints
vT = 0 yT = H (4.32)

With our standard notation (in relation to Theorem 9 and (3.51)) we have

J = φT (xT ) = uT L = 0

and the Hamilton functions is
Ht = λu

t a
x
t + λv

t a
y
t + λy

t vt

The necessary conditions consist of the state equation, (4.31), the costate equation

−
d

dt
� λu

t λv
t λy

t � = � 0 λy
t 0 � (4.33)

and the optimality condition �
ax

t

ay
t � = argmax � λu

t a
x
t + λv

t a
y
t + λy

t vt �
The maximization in the optimality conditions is with respect to the constraint in (4.30). It is easily seen that the
solution to this constrained optimization is given by�

ax
t

ay
t � =

�
λu

t

λv
t � a

�
(λu

t )2 + (λv
t )2

(4.34)

The costate equations clearly shown that the costate λu
t and λy

t are constant and that λv
t has a linear evolution with

λy as slope. To each of the two terminal constraints in (4.32) we associate a (scalar) Lagrange multipliers, νv and
νy, and the boundary condition is

λu
T = 1 λv

T = νv λy
T

= νy

If this is combined with the costate equations we have

λu
t = 1 λv

t = νv + νy(T − t) λy
t = νy

The two constants, νu and νy has to be determined such that the end point constraints in (4.32) are met. This can

be achieved by establish the mapping from the two constant to the state trajectories and the end point values. This

can be done by integrating the state equations either by means of analytical or numerical methods. 2
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Chapter 5
Time optimal problems

This chapter is devoted to problems in which the length of the period, i.e. T (continuous time) or
N (discrete time), is a part of the optimization. Here we will start with the continuous time case.

5.1 Continuous dynamic optimization.

In this section we consider the continuous case in which t ∈ [0; T ] ∈ R. The problem is to find the
input function ut to the system

ẋ = ft(xt, ut) x0 = x0 (5.1)

such that the cost function

J = φT (xT ) +

∫ T

0

Lt(xt, ut)dt (5.2)

is minimized. Here the final time T is free and is a part of the optimization and the initial state x0

is given (fixed). The problem is specified by the dynamic function, ft, the scalar value functions φ
and L and the constant x0.

As in section 2.3 we can for the sake of convenience introduce the scalar Hamiltonian function as:

Ht(xt, ut, λt) = Lt(xt, ut) + λT
t ft(xt, ut) (5.3)

Theorem 10: Consider the dynamic optimization problem in continuous time of bringing the system
(5.1) from the initial state along a trajectory such that the performance index (5.2) is minimized. The
necessary condition is given by the Euler-Lagrange equations (for t ∈ [0, T ]):

ẋt = ft(xt, ut) State equation (5.4)

−λ̇T
t =

∂

∂xt

Ht Costate equation (5.5)

0T =
∂

∂ut

Ht Stationarity condition (5.6)

and the boundary conditions:

x0 = x0 λT =
∂

∂x
φT (xT ) (5.7)

43
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which is a split boundary condition. Due to the free terminal time, T , the solution must satisfy

∂φT

∂T
+HT = 0 (5.8)

which denoted ad the Transversality condition. 2

Proof: As in section 2.3 we first construct the Lagrange function:

JL = φT (xT ) + � T

0

Lt(xt, ut)dt + � T

0

λT
t [ft(xt, ut)− ẋt] dt + νTψT (xT )

or in short

JL = φT + � T

0

�
Ht − λT ẋ � dt

where we have introduced the Hamilton function

Ht

�
Ht(xt, ut, λt) = Lt(xt, ut) + λT

t ft(xt, ut)

In the following we going to study the differentials of xt, i.e. dxt. The problem is the differentials dxt and dt are
independent. Let us define the variation in xt, δxt as the incremental change in xt when time t is held fixed. Thus,
we have the relation

dxt = δxt + ẋtdt (5.9)

Using Leibniz rule (See Lemma 1, 21) we have

dJL =
∂φT

∂x
dxT +

∂φT

∂T
dT +

�
HT − λT

T ẋT � dT
+ � T

0

�
∂Ht

∂x
δx− λT δẋ +

∂Ht

∂u
δu+

�
∂Ht

∂λ
− ẋT � δλ � dt

Then we introduce integration by part

� T

0

λT
t δẋtdt + � T

0

λ̇T
t δxt = λT

T δxT − λT
0 δx0

in the Lagrange function which results in:

dJL =
∂φT

∂x
dxT +

∂φT

∂T
dT +

�
HT − λT

T ẋT � dT − λT
0 δx0 + λT

T δxT

+ � T

0

� �
∂Ht

∂x
+ λ̇T � δx+

∂Ht

∂u
δu+

�
∂Ht

∂λ
− ẋT � δλ � dt

Notice there are terms depending on dxT and δxT . If we apply (5.9) we end up with

dJL =

�
∂φT

∂x
− λT � dxT +

�
∂φT

∂T
+HT � dT+

+ � T

0

� �
∂Ht

∂x
+ λ̇T � δx+

∂Ht

∂u
δu+

�
∂Ht

∂λ
− ẋT � δλ � dt

According to optimization with equality constraints the necessary condition is obtained as a stationary point to the

Lagrange function. Setting to zero all the coefficients of the independent increments yields necessary condition as

given in Theorem 7. 2

Normally, time optimal problems involves some kind of constraints. Firstly, the end point might
be constrained in the following manner

ψT (xT ) = 0 (5.10)

as we have seen in Chapter 3. Furthermore the decision might be constrained as well. I Chapter
4 we dealt with problems in which the control action was constrained to

ut ∈ Ut (5.11)
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Theorem 11: Consider the dynamic optimization problem in continuous time of bringing the system
(5.1) from the initial state and to a terminal state such that (5.10) is satisfied. The minimization is
such that the performance index (5.2) is minimized subject to the constraints in (5.11). The conditions
are given by the following equations (for t ∈ [0, T ]):

ẋt = ft(xt, ut) State equation (5.12)

−λ̇T
t =

∂

∂xt

Ht Costate equation (5.13)

ut = arg min
ut∈Ut

[Ht] Optimality condition (5.14)

and the boundary conditions:

x0 = x0 λT = νT ∂

∂x
ψT (xT ) +

∂

∂x
φT (xT ) (5.15)

which is a split boundary condition. Due to the free terminal time, T , the solution must satisfy

∂φT

∂T
+HT = 0 (5.16)

which denoted ad the Transversality condition. 2

Proof: Omitted 2

If the problem is a maximization problem, then the minimization in (5.14) is changed into a
maximization. Notice, the special version of the boundary condition for simple, simple partial and
linear end points constraints given in (3.49), (3.50) and (3.51), respectively.

Example: 5.1.1 (Motion control) The purpose of this example is to illustrate the method in a very simple
situation, where the solution by intuition is known.

Let us consider a perturbation of Example 3.5.1. Eventually see also the unconstrained continuous version in
Example 2.3.1. The system here is the same, but the objective is changed.

The problem is to bring the system
ẋ = ut x0 = x0

from the initial position, x0, to the origin (xT = 0), in minimum time, while the control action (or the decision
function) is bounded to

|ut| ≤ 1

The performance index is in this case

J = T = T + � T

0

0 dt = 0 + � T

0

1 dt

Notice, we can regards this as φT = T , L = 0 or φ = 0, L = 1 in our general notation. The Hamiltonian function
is in this case (if we apply the first interpretation of cost function)

H = λtut

and the conditions are simply

ẋ = ut

−λ̇ = 0

ut = −sign(λt)

with the boundary conditions:
x0 = x0 xT = 0 λT = ν

Here we have introduced the Lagrange multiplier, ν, related to the end point constraint, xT = 0. The Transversality
condition is

1 + λTuT = 0
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As in Example 2.3.1 these equations are easily solved and it is also the costate equation here gives the key to the
solution. Firstly, we notice that the costate is constant and equal to ν, i.e.

λt = ν

If the control strategy
ut = −sign(ν)

is introduced in the state equation, we find

xt = x0 − sign(ν) t and specially 0 = x0 − sign(ν) T

The last equation gives us
T = |x0| and sign(ν) = sign(x0)

Now, we have found the sign of ν and is able to find its absolute value from the Transversality condition

1− ν sign(ν) = 0

That means either is
|ν| = 1

The two last equations can be combined into
ν = sign(x0)

This results in the control strategy
ut = −sign(x0)

and
xt = x0 − sign(x0) t

2

Example: 5.1.2 Bang-Bang control from (Lewis 1986b) p. 260. Consider a mass affected by a force.
This is a second order system given by

d

dt

�
z
v � =

�
v
u � �

z
v � 0 =

�
z0
v0 � (5.17)

The state variable are the position, z, and the velocity, v, while the control action is the specific force (force divided
by mass), u. This system is denoted as a double integrator (Control Theory) or a Newtonian system (Dynamic
Optimization) due to the fact it obeys the second law of Newton. Assume the control action, i.e. the specific force
is limited to

|u| ≤ 1

while the objective is to take the system from its original state to the origin

xT =

�
zT

vT � =

�
0
0 �

in minimum time. The performance index is accordingly

J = T

and the Hamilton function is
H = λzv + λvu

We can now write the conditions as the state equation, (5.17),

d

dt

�
z
v � =

�
v
u �

the costate equations

−
d

dt

�
λz

λv � =

�
0
λz � (5.18)

the optimality condition (Pontryagins maximum principle)

ut = −sign(λv)

and the boundary conditions�
z0
v0 � =

�
z0
v0 �

�
zT

vT � =

�
0
0 � �

λz
T
λv

T � =

�
νz

νv �
Notice, we have introduced the two Lagrange multipliers, νz and νv, related to the simple end points constraints in
the states. The transversality condition is in this case

1 +HT = 1 + λz
T vT + λv

T uT = 0 (5.19)

From the Costate equation, (5.18), we can conclude that λz is constant and that λv is linear. More precisely we
have

λz
t = νz λv

t = νv + νz(T − t)

Since vT = 0 the transversality conditions gives us

λv
T uT = −1

but since ut is saturated at ±1 (for all t including of course the end point T ) we only have two possible values for
uT (and λv

T
), i.e.
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• uT = 1 and λv
T

= −1

• uT = −1 and λv
T = 1

The linear switching function, λv
t , can only have one zero crossing or none depending on the initial state z0, v0.

That leaves us with 4 possible situations as indicated in Figure 5.1.

1

−1

t
T

1

−1

t
T

1

−1

t
T

1

−1

t
T

Figure 5.1. The switching function, λv

t
has 4 different type of evolution.

To summarize, we have 3 unknown quantities, νz, νv and T and 3 conditions to met, zT = 0 vT = 0 and λv
T = ±1.

The solution can as previous mentioned be found by means of numerical methods. In this simple example we will
however pursuit a analytical solution.

If the control has a constant values u = ±1, then the solution is simply

vt = v0 + ut

zt = z0 + v0t+
1

2
ut2

See Figure 5.2 (for u = 1) and 5.3 (for u = −1).
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Figure 5.2. Phase plane trajectories for u = 1.

This a parabola passing through z0, v0. If no switching occurs then the origin and the original point must lie on
this parabola, i.e. satisfy the equations

0 = v0 + uTf (5.20)

0 = z0 + v0Tf +
1

2
uT 2

f

where Tf = T (for this special case). This is the case if

Tf = −
v0

u
≥ 0 z0 =

1

2

v20
u

(5.21)
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Figure 5.3. Phase plane trajectories for u = −1.

for either u = 1 or u = −1. In order to fulfill the first part and make the time T positive

u = −sign(v0)

If v0 > 0 then u = −1 and the initial point must lie on z0 = − 1
2
v20 . This is the half (upper part of) the solid curve

(for v0 > 0) indicated in Figure 5.4. On the other hand, if v0 < 0 then u = 1 and the initial point must lie on
z0 = 1

2
v20 . This is the other half (lower part of) the solid curve (for v0 < 0) indicated in Figure 5.4. Notice, that

in both cases we have a deacceleration, but in opposite directions.

The two branches on which the origin lies on the trajectory (for u = ±1) can be described by:

z0 =

�
− 1

2
v20 for v0 > 0

1
2
v20 for v0 < 0

= −
1

2
v20sign(v0)

There will be a switching unless the initial point lies on this curve, which in the literature is denoted as the switching
curve. See Figure 5.4.
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Figure 5.4. The switching curve (solid). The phase plane trajectories for u = ±1 are shown dashed.

If the initial point is not on the switching curve then there will be precisely one switch either from u = −1 to u = 1
or the other way around. From the phase plane trajectories in Figure 5.4 we can see that is the initial point is
below the switching curve, i.e.

z0 < −
1

2
v20sign(v0)

the the input will have a period with ut = 1 until we reach the switching curve where ut = −1 for the rest of the
period. The solution is (in this case) to accelerate the mass as much as possible and then, at the right instant of
time, deaccelerate the mass as much as possible. Above the switching curve it is the reverse sequence of control
input (first ut = −1 and then ut = 1), but it is a acceleration (in the negative direction) succeed by a deacceleration.
This can be expressed as a state feedback law

ut =

�������� �������
1 for z0 < − 1

2
v20sign(v0)

−1 for z0 = − 1
2
v20sign(v0) and v > 0

−1 for z0 > − 1
2
v20sign(v0)

1 for z0 = − 1
2
v20sign(v0) and v < 0



49

−4 −3 −2 −1 0 1 2 3 4
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

z

v

Trajectories for (z
o
,v

0
)=(3,1), (−2,−1) 

Figure 5.5. Optimal trajectories from two initial points.

Let us now focus on the optimal final time, T , and the switching time, Ts. Let us for the sake of simplicity assume
the initial point is above the switching curve. The the initial control is ut = −1 is applied to drive the state along
the parabola passing through the initial point, (z0, v0), to the switching curve, at which time Ts the control is
switched to ut = 1 to bring the state to the origin. Above the switching curve the evolution (for ut = −1) of the
states is given by

vt = v0 − t

zt = z0 + v0t−
1

2
t2

which is valid until the switching curve given (for v < 0) by

z =
1

2
v2

is met. This happens at Ts given by

z0 + v0Ts −
1

2
T 2

s =
1

2
(v0 − Ts)

2

or

Ts = v0 +

�
z0 +

1

2
v20
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Figure 5.6. Contour of constant time to go.

Since the velocity at the switching point is
vTs

= v0 − Ts

the resting time to origin is (according to (5.21)) given by

Tf = −vTs

In total the optimal time can be written as

T = Tf + Ts = Ts − v0 + Ts = v0 + 2

�
z0 +

1

2
v20
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The contours of constant time to go, T , are given by

(v0 − T )2 = 4(
1

2
v20 + z0) z0 > −

1

2
v20sign(v0)

(v0 + T )2 = 4(
1

2
v20 − z0) z0 < −

1

2
v20sign(v0)

as indicated in Figure 5.6. 2



Chapter 6
Dynamic Programming

Dynamic Programming dates from R.E. Bellman, who wrote the first book on the topic in 1957.
It is a quite powerful tools which can be applied to a large variety of problems.

6.1 Discrete Dynamic Programming

Normally, in Dynamic Optimization the independent variable is the time, which (regrettably) is
not reversible. In some cases, we apply methods from dynamic optimization on spatial problems,
where the independent variable is a measure of the distance. But in these situations we associate
the distance with time (i.e. think the distance is a monotonic function of time).

One of the basic properties of dynamic systems is causality, i.e. that a decision do not affects the
previous states, but only the present and following states.

Example: 6.1.1 (Stagecoach problem from (Weber n.d.))

A traveler wish to go from town A to town J through 4 stages with minimum travel distance. Firstly, from town
A the traveler can choose to go to town B, C or D. Secondly the traveler can choose between a journey to E, F or
G. After that, the traveler can go to town H or I and then finally to town J. See Figure 6.1 where The arcs are
marked with the distances between towns.
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Figure 6.1. Road system for stagecoach problem. The arcs are marked with the distances between towns.

The solution to this simple problem can be found by means of dynamic programming, in which we are solving the
problem backwards. Let V (X) be the minimal distance required to reach J from X. Then clearly, V (H) = 3 and

51



52 6.1 Discrete Dynamic Programming

V (I) = 4, which is related to stage 3. If we move on to stage 2, we find that

V (E) = min(1 + V (H), 4 + V (I)) = 4 (E → H)

V (F ) = min(6 + V (H), 3 + V (I)) = 7 (F → I)

V (G) = min(3 + V (H), 3 + V (I)) = 6 (G→ H)

For stage 1 we have

V (B) = min(7 + V (E), 4 + V (F ), 6 + V (G)) = 11 (B → E,B → F )

V (C) = min(3 + V (E), 2 + V (F ), 4 + V (G)) = 7 (C → E)

V (D) = min(4 + V (E), 1 + V (F ), 5 + V (G)) = 8 (D → E,D→ F )

Notice, the minimum is not unique. Finally, we have in stage 0 that

V (A) = min(2 + V (B), 4 + V (C), 3 + V (D)) = 11 (A→ C,A→ D)

where the optimum (again) is not unique. We have not in a recursive manner found the shortest path A→ C →

E → H → J, which has the length 11. Notice, the solution is not unique. Both A → D → E → H → J and

A→ D → F → I → J are optimal solutions (with a path with length 11). 2

6.1.1 Unconstrained Dynamic Programming

Let us now focus on the problem of controlling the system,

xi+1 = fi(xi, ui) x0 = x0 (6.1)

i.e. to find a sequence of decisions ui i = 0, 1, . . . N which takes the system from the initial state
x0 along a trajectory, such that the cost function

J = φ(xN ) +

N−1
∑

i=0

Li(xi, ui) (6.2)

is minimized. This is the free dynamic optimization problem. We will later on see how constrains
easily are included in the setup.

N0 i i+1

Figure 6.2. The discrete time axis.

Introduce the notation uk
i for the sequence of decision from instant i to instant k. Let us consider

the truncated performance index

Ji(xi, u
N−1
i ) = φ(xN ) +

N−1
∑

k=i

Lk(xk, uk)

which is a function of xi and the sequence uN−1
i , due to the fact that given xi and the sequence

uN−1
i we can use the state equation, (6.1), to determine the state sequence xk k = i+ 1, . . . N .

It is quite easy to see that

Ji(xi, u
N−1
i ) = Li(xi, ui) + Ji+1(xi+1, u

N−1
i+1 ) (6.3)

and that in particular
J = J0(x0, u

N−1
0 )
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where J is the performance index from (6.2). The Bellman function is defined as the optimal
performance index, i.e.

Vi(xi) = min
uN−1

i

Ji(xi, u
N−1
i ) (6.4)

and is a function of the present state, xi. Notice, that in particular

VN (xN ) = φN (xN )

We have the following Theorem, which gives a sufficient condition.

Theorem 12: Consider the free dynamic optimization problem specified in (6.1) and (6.2). The
optimal performance index, i.e. the Bellman function Vi, is given by the recursion

Vi(xi) = min
ui

[

Li(xi, ui) + Vi+1(xi+1)
]

(6.5)

with the boundary condition
VN (xN ) = φN (xN ) (6.6)

The functional equation, (6.5), is denoted as the Bellman equation and J ∗ = V0(x0). 2

Proof: The definition of the Bellman function in conjunction with the recursion (6.3) gives:

Vi(xi) = min
u

N−1

i

Ji(xi, u
N−1
i )

= min
u

N−1

i

�
Li(xi, ui) + Ji+1(xi+1, u

N−1
i+1 ) �

Since uN−1
i+1 do not affect Li we can write

Vi(xi) = min
ui

��
Li(xi, ui) + min

u
N−1

i+1

Ji+1(xi+1, u
N−1
i+1 )

��

The last term is nothing but Vi+1, due to the definition of the Bellman function. The boundary condition, (6.6), is

also given by the definition of the Bellman function. 2

If the state equation is applied the Bellman recursion can also be stated as

Vi(xi) = min
ui

[

Li(xi, ui) + Vi+1(fi(xi, ui))
]

VN (xN ) = φN (xN ) (6.7)

Notice, if we have a maximization problem the minimization in (6.5) (or in (6.7)) is substituted
by a maximization.

Example: 6.1.2 (Simple LQ problem) The purpose of this example is to illustrate the application of dy-
namic programming in connection to continuous unconstrained dynamic optimization. Compare e.g. with Example
2.1.2 on page 15.

The problem is bring the system

xi+1 = axi + bui x0 = x0

from the initial state along a trajectory such the performance index

J = px2
N +

N−1�
i=0

qx2
i + ru2

i

is minimized. (Compared with Example 2.1.2 the performance index is here multiplied with a factor of 2 in order
to obtain a simpler notation). In the boundary we have

VN = px2
N
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Inspired of this, we will try the candidate function

Vi = six
2
i

The Bellman equation gives

six
2
i = min

ui

�
qx2

i + ru2
i + si+1x

2
i+1 �

or with the state equation inserted

six
2
i = min

ui

�
qx2

i + ru2
i + si+1(axi + bui)

2 � (6.8)

The minimum is obtained for

ui = −
absi+1

r + b2si+1

xi (6.9)

which inserted in (6.8) results in:

six
2
i =

�
q + a2si+1 −

a2b2s2i+1

r + b2si+1

� x2
i

The candidate function satisfies the Bellman equation if

si = q + a2si+1 −
a2b2s2i+1

r + b2si+1

sN = p (6.10)

which is the (scalar version of the) Riccati equation. The solution (as in Example 2.1.2) consists of the backward

recursion in (6.10) and the control law in (6.9). 2
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Figure 6.3. Plot of Vt(x) for a = 0.98, b = 1, q = 0.1 and r = p = 1. The trajectory for xt is plotted (on the
surface of Vt(x)) for x0 = −4.5.

The method applied in Example 6.1.2 can be generalized. In the example we made a qualified
guess on the Bellman function. Notice, we made a guess on type of function phrased in a (number
of) unknown parameter(s). Then we checked, if the Bellman equation was fulfilled. This check
ended up in a (number of) recursion(s) for the parameter(s).

It is possible to establish a close connection between the Bellman equation and the Euler-Lagrange
equations. Consider the minimization in (6.5). The necessary condition for minimum is

0T =
∂Li

∂ui

+
∂Vi+1

∂xi+1

∂xi+1

∂ui

Introduce the sensitivity

λT
i =

∂

∂xi

Vi(xi)

which we later on will recognize as the costate or the adjoint state vector. This has actually
motivated the choice of symbol. If the sensitivity is applied the stationarity condition is simply

0T =
∂Li

∂ui

+ λT
i+1

∂fi

∂ui
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or

0T =
∂

∂ui

Hi (6.11)

if we use the definition of the Hamiltonian function

Hi = Li(xi, ui) + λT
i+1fi(xi, ui) (6.12)

On the optimal trajectory (i.e. with the optimal control applied) the Bellman function evolve
according to

Vi(xi) = Li(xi, ui) + Vi+1(fi(xi, ui))

or if we apply the chain rule

λT
i =

∂Li

∂x
+
∂Vi+1

∂x

∂

∂x
fi λT

N =
∂

∂x
φN (xN )

or

λT
i =

∂

∂xi

Hi λT
N =

∂

∂xN

φN (xN ) (6.13)

We notice that the last two equations, (6.11) and (6.13), together with the dynamics in (6.1)
precisely is the Euler-Lagrange equation in (2.8).

6.1.2 Constrained Dynamic Programming

In this section we will focus on the problem when the decisions and the state are constrained in
the following manner

ui ∈ Ui xi ∈ Xi (6.14)

The problem consist in bringing the system

xi+1 = fi(xi, ui) x0 = x0 (6.15)

from the initial state along a trajectory satisfying the constraint in (6.14) and such that the
performance index

J = φN (xN ) +
N−1
∑

i=0

Li(xi, ui) (6.16)

is minimized.

We have already met such a type of problem. In Example 6.1.1, on page 52, both the decisions
and the state was constrained to a discrete and a finite set. It is quite easy to see that in the case
of constrained control actions the minimization in (6.16) has to be subject to these constraints.
However, if the state also is constrained, then the minimization in (6.16) is further constrained.
This is due to the fact that a decision ui has to ensure the future state trajectories is inside the
feasible state area and there exists future feasible decisions. Let us define the feasible state area
by the recursion

�
i = { xi ∈ Xi | ∃ ui ∈ Ui : fi(xi, ui) ∈

�
i+1 }

�
N = XN

The situation is (as all ways) less complicated in the end of the period (i.e. for i = N) where
we do not have to take the future into account and then

�
N = XN . It can noticed, that the

recursion for
�

i just states, that the feasible state area is the set for which, there is a decision
which bring the system to a feasible state area in the next interval. As a direct consequence of this
the decision is constrained to decision which bring the system to a feasible state area in the next
interval. Formally, we can define the feasible control area as

U∗i (xi) = { ui ∈ Ui : fi(xi, ui) ∈
�

i+1 }
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Theorem 13: Consider the dynamic optimization problem specified in (6.14) - (6.16). The optimal
performance index, i.e. the Bellman function Vi, is for xi ∈ Di given by the recursion

Vi(xi) = min
ui∈U

∗

i

[

Li(xi, ui) + Vi+1(xi+1)
]

VN (xN ) = φN (xN ) (6.17)

The optimization in (6.17) is constrained to

U∗i (xi) = { ui ∈ Ui : fi(xi, ui) ∈
�

i+1 } (6.18)

where the feasible state area is given by the recursion

�
i = { xi ∈ Xi | ∃ ui ∈ Ui : fi(xi, ui) ∈

�
i+1 }

�
N = XN (6.19)

2

Example: 6.1.3 (Stagecoach problem II Consider a variation of the Stagecoach problem in Example
6.1.1. See Figure 6.4.
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Figure 6.4. Road system for stagecoach problem. The arcs are marked with the distances between towns.

It is easy to realize that

X4 =
�
J � X3 =

�
H, I,K � X2 =

�
E,F,G � X1 =

�
B,C,D � X0 =

�
A �

However, since there is no path from K to J

D4 =
�
J � D3 =

�
H, I � D2 =

�
E,F,G � D1 =

�
B,C,D � D0 =

�
A �

2

Example: 6.1.4 Optimal stepping (DD). This is a variation of Example 6.1.2 where the sample space is
discrete (and the dynamic and performance index are particular simple). Consider the system

xi+1 = xi + ui x0 = 2

the performance index

J = x2
N +

N−1�
i=0

x2
i + u2

i with N = 4

and the constraints
ui ∈ {−1, 0, 1} xi ∈ {−2, −1, 0, 1, 2}

Firstly, we establish V4(x4) as in the following table
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x4 V4

-2 4
-1 1
0 0
1 1
2 4

We are now going to investigate the different components in the Bellman equation (6.17) for i = 3. The combination
of x3 and u3 determines the following state x4 and consequently the V4(x4) contribution in (6.17).

x4 u3

x3 -1 0 1
-2 -3 -2 -1
-1 -2 -1 0
0 -1 0 1
1 0 1 2
2 1 2 3

V4(x4) u3

x3 -1 0 1
-2 ∞ 4 1
-1 4 1 0
0 1 0 1
1 0 1 4
2 1 4 ∞

Notice, an invalid combination of x3 and u3 (resulting in an x4 outside the range) is indicated with ∞ in the
tableau. The combination of x3 and u3 also determines the instantaneous loss L3.

L3 u3

x3 -1 0 1
-2 5 4 5
-1 2 1 2
0 1 0 1
1 2 1 2
2 5 4 5

If we add up the instantaneous loss and V4 we have a tableau in which we for each possible value of x3 can perform
the minimization in (6.17) and determine the optimal value for the decision and the Bellman function (as function
of x3).

L3 + V4 u3 V3 u∗3
x3 -1 0 1
-2 ∞ 8 6 6 1
-1 6 2 2 2 0
0 2 0 2 0 0
1 2 2 6 2 -1
2 6 8 ∞ 6 -1

Knowing V3(x3) we have one of the components for i = 2. In this manner we can iterate backwards and finds:

L2 + V3 u2 V2 u∗2
x2 -1 0 1
-2 ∞ 10 7 7 1
-1 8 3 2 2 1
0 3 0 3 0 0
1 2 3 8 2 -1
2 7 10 ∞ 7 -1

L1 + V2 u1 V1 u∗1
x1 -1 0 1
-2 ∞ 11 7 7 1
-1 9 3 2 2 1
0 3 0 3 0 0
1 2 3 9 2 -1
2 7 11 ∞ 7 -1

Iterating backwards we end with the following tableau.

L0 + V1 u0 V0 u∗0
x0 -1 0 1
-2 ∞ 11 7 7 1
-1 9 3 2 2 1
0 3 0 3 0 0
1 2 3 9 2 -1
2 7 11 ∞ 7 -1

With x0 = 2 we can trace forward and find the input sequence −1, −1, 0, 0 which give (an optimal) performance

equal 7. Since x0 = 2 we actually only need to determine the row corresponding to x0 = 2. The full tableau gives

us, however, information on the sensitivity of the solution with respect to the initial state. 2
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Example: 6.1.5 Optimal stepping (DD). Consider the system from Example 6.1.4, but with the con-
straints that x4 = 1. The task is to bring the system

xi+1 = xi + ui x0 = 2 x4 = 1

along a trajectory such the performance index

J = x2
4 +

3�
i=0

x2
i + u2

i

is minimized if
ui ∈ {−1, 0, 1} xi ∈ {−2, −1, 0, 1, 2}

In this case we assign ∞ with an invalid state

x4 V4

-2 ∞
-1 ∞
0 ∞
1 1
2 ∞

and further iteration gives

Furthermore:

L3 + V4 u3 V3 u∗3
x3 -1 0 1
-2 ∞ ∞ ∞ ∞
-1 ∞ ∞ ∞ ∞
0 ∞ ∞ 2 2 1
1 ∞ 2 ∞ 2 0
2 6 ∞ ∞ 6 -1

L2 + V3 u2 V2 u∗2
x2 -1 0 1
-2 ∞ ∞ ∞ ∞
-1 ∞ ∞ 4 4 1
0 ∞ 2 3 2 0
1 4 3 8 3 0
2 7 10 ∞ 7 -1

and

L1 + V2 u1 V1 u∗1
x1 -1 0 1
-2 ∞ ∞ 9 9 1
-1 ∞ 5 4 4 1
0 5 2 4 2 0
1 4 4 9 4 -1
2 8 11 ∞ 8 -1

L0 + V1 u0 V0 u∗0
x0 -1 0 1
-2 ∞ 13 9 9 1
-1 11 5 4 4 1
0 5 2 5 2 0
1 4 5 10 4 -1
2 9 12 ∞ 9 -1

With x0 = 2 we can iterate forward and find the optimal input sequence −1, −1, 0, 1 which is connected to a
performance index equal 9.

2

6.1.3 Stochastic Dynamic Programming (D)

In this section we will consider the problem of controlling a dynamic system in which there are
involved some stochastics. A stochastic variable is a quantity which can not predicted precisely. The
description of stochastic variable involve distribution function and (if it exists) density function.

We will focus on control of stochastic dynamic systems described as

xi+1 = fi(xi, ui, wi) x0 = x0 (6.20)

where wi is a stochastic process (i.e. a stochastic variable indexed by the time, i).
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Figure 6.5. The evolution of the rate of interests.
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Figure 6.6. The evolution of the bank balance for one particular sequence of rate of interest (and constant down
payment ui = 700).
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Figure 6.7. The evolution of the bank balance for 10 different sequences of interest rate (and constant down
payment ui = 700).
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Example: 6.1.6 The bank loan: Consider a bank loan initially of size x0. If the rate of interest is r per
month then balance will develop according to

xi+1 = (1 + r)xi − ui

Here ui is the monthly down payment on the loan. If the rate of interest is not a constant quantity and especially
if it can not be precisely predicted, then r is a time varying quantity. That means the balance will evolve according
to

xi+1 = (1 + ri)xi − ui

This is typical example on a stochastic system.

2

The performance index can also have a stochastic component. We will in this section work with
performance index which has a stochastic dependence such as

Js = φN (xN , wN ) +
N−1
∑

i=0

Li(xi, ui, wi) (6.21)

The task is to find a sequence of decisions or control actions, ui, i = 1, 0, ... N − 1 such that the
system is taken along a trajectory such that the performance index is minimized. The problem
in this context is however, what we mean by an optimal strategy, when stochastic variables are
involved. More directly, how can we rank performance indexes if they are stochastic variable. If we
apply an average point of view, then the performance has to be ranked by expected value. That
means we have to find a sequence of decisions such that the expected value is minimized, or more
precisely such that

J = E
{

φN (xN , wN ) +

N−1
∑

i=0

Li(xi, ui, wi)
} (

= E
{

Js

} )

(6.22)

is minimized. The truncated performance index will in this case besides the present state, xi, and
the decision sequence, uN−1

i also depend on the future disturbances, wk , k = i, i + 1, ... N (or
in short on wN

i ). The stochastic Bellman function is defined as

Vi(xi) = min
ui

E
{

Ji(xi, u
N−1
i , wN

i )
}

(6.23)

The boundary is interesting in that sense that

VN (xN ) = E
{

φN (xN , wN )
}

Theorem 14: Consider the dynamic optimization problem specified in (6.20) and (6.22). The optimal
performance index, i.e. the Bellman function Vi, is given by the recursion

Vi(xi) = min
ui∈U

∗

i

Ewi
{ Li(xi, ui, wi) + Vi+1(xi+1) } (6.24)

with the boundary condition

VN (xN ) = E
{

φN (xN , wN )
}

(6.25)

The functional equation, (6.5), is denoted as the Bellman equation and J ∗ = V0(x0). 2

Proof: Omitted 2

In (6.24) it should be noticed that xi+1 = fi(xi, ui, wi) which a.o. depend on wi.
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Example: 6.1.7 Consider a situation in which the stochastic vector, wi can take a finite number, r, of
distinct values, i.e.

wi ∈
�
w1

i , w
2
i , ... w

r
i �

with certain probabilities

pk
i = P

�
wi = wk

i � k = 1, 2, ... r

(Do not let yourself confuse by the sample space index (k) with anything else). The stochastic Bellman equation
can be expressed as

Vi(xi) = min
ui

r�
k=1

pk
i

�
Li(xi, ui, w

k
i ) + Vi+1(fi(xi, ui, w

k
i )) �

with boundary condition

VN (xN ) =
r�

k=1

pk
NφN (xN , w

k
N )

If the state space is discrete and finite we can produce a table for VN .

xN VN

The entries will be a weighted sum of the type

VN (xN ) = p1NφN (xN , w
1
N ) + p2NφN (xN , w

2
N ) + ...

When this table has been established we can move on to i = N − 1 and determine a table containing

WN−1(xN−1, uN−1)
� r�

k=1

pk
N−1

�
LN−1(xN−1, uN−1, w

k
N−1) + VN (fN−1(xN−1, uN−1, w

k
N−1)) �

WN−1 uN−1

xN−1 . . .
.
.
.
.
.

For each possible values of xN−1 we can find the minimal values i.e. VN−1(xN−1) and the optimizing decision,
u∗

N−1
.

WN−1 uN−1 VN−1 u∗
N−1

xN−1 . . .
.
.
.
.
.

After establishing the table for VN−1(xN−1) we can repeat the procedure for N − 2, N − 3 and so forth until i = 0.

2

Example: 6.1.8 (Optimal stepping (DD)). Let us consider a stochastic version of Example 6.1.4. Con-
sider the system

xi+1 = xi + ui +wi x0 = 2,

where the stochastic disturbance, wi has a discrete sample space

wi ∈
�
−1 0 1 �

and has a distribution given by:
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pk
i wi

xi -1 0 1

-2 0 1
2

1
2

-1 0 1
2

1
2

0 1
2

0 1
2

1 1
2

1
2

0

2 1
2

1
2

0

That means for example that wi takes the value 1 with probability 1
2

if xi = −2. We have the constraints on the
decisions

ui ∈ {−1, 0, 1}

except if xi = 2, then ui = 1 is not allowed. Similarly, ui = −1 is not allowed if xi = −2. The states are
constrained to

xi ∈ {−2, −1, 0, 1, 2}

The cost function (as in Example 6.1.4) given by

J = x2
N +

N−1�
i=0

x2
i + u2

i with N = 4

Firstly, we establish V4(x4) as in the following table

x4 V4

-2 4
-1 1
0 0
1 1
2 4

Next we can establish the W3(x3, u3) function (see Example 6.1.7) for each possible combination of x3 and u3. In
this case w3 can take 3 possible values with a certain probability as given in the table above. Let us denote these
values as w1

3, w
2
3 and w3

3 and the respective probabilities as p13, p
2
3 and p33. Then

W3(x3, u3) = p13

�
x2
3 +u2

3 +V4(x3 +u3 +w1
3) � + p23

�
x2
3 +u2

3 +V4(x3 +u3 +w2
3) � + p33

�
x2
3 +u2

3 +V4(x3 +u3 +w3
3) �

or
W3(x3, u3) = x2

3 + u2
3 + p13V4(x3 + u3 +w1

3) + p23V4(x3 + u3 +w2
3) + p33V4(x3 + u3 + w3

3)

The numerical values are given in the table below

W3 u3

x3 -1 0 1
-2 ∞ 6.5 5.5
-1 4.5 1.5 2.5
0 3 1 3
1 2.5 1.5 4.5
2 5.5 3.5 ∞

For example the cell corresponding to x3 = 0, u3 = −1 is determined by

W3(0,−1) = 02 + (−1)2 +
1

2
4 +

1

2
0 = 3

Due to the fact that x4 takes the values −1− 1 = −2 and −1 + 1 = 0 with same probability ( 1
2
). Further examples

are

W3(−1,−1) = (−1)2 + (−1)2 +
1

2
4 +

1

2
1 = 4.5

W3(−1, 0) = (−1)2 + (0)2 +
1

2
1 +

1

2
0 = 1.5

W3(−1, 1) = (−1)2 + (1)2 +
1

2
0 +

1

2
1 = 2.5

With the table for W3 it is quite easy to perform the minimization in (6.24). The results are listed in the table
below.
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W3 u3 V3(x3) u∗3(x3)
x3 -1 0 1
-2 ∞ 6.5 5.5 5.5 1
-1 4.5 1.5 2.5 1.5 0
0 3 1 3 1 0
1 2.5 1.5 4.5 1.5 0
2 5.5 3.5 ∞ 3.5 0

By applying this method we can iterate the solution backwards and find.

W2 u2 V2(x2) u∗2(x2)
x2 -1 0 1
-2 ∞ 7.5 6.25 6.25 1
-1 5.5 2.25 3.25 2.25 0
0 4.25 1.5 3.25 1.5 0
1 3.25 2.25 4.5 2.25 0
2 6.25 6.5 ∞ 6.25 -1

W1 u1 V1(x1) u∗1(x1)
x1 -1 0 1
-2 ∞ 8.25 6.88 6.88 1
-1 6.25 2.88 3.88 2.88 0
0 4.88 2.25 4.88 2.25 0
1 3.88 2.88 6.25 2.88 0
2 6.88 8.25 ∞ 6.88 -1

In the last iteration we only need one row (for x0 = 2) and can from this state the optimal decision.

W0 u0 V0(x0) u∗0(x0)
x0 -1 0 1
2 7.56 8.88 ∞ 7.56 -1

2

It should be noticed, that state space and decision space in the previous examples are discrete. If
the state space is continuous, then the method applied in the examples be used as an approximation
if we use a discrete grid covering the relevant part of the state space.

6.2 Continuous Dynamic Programming

Consider the problem of finding the input function ut, t ∈ R, that takes the system

ẋ = ft(xt, ut) x0 = x0 t ∈ [0, T ] (6.26)

from its initial state along a trajectory such that the cost function

J = φT (xT ) +

∫ T

0

Lt(xt, ut) dt (6.27)

is minimized. As in the discrete time case we can define the truncated performance index

Jt(xt, u
T
t ) = φT (xT ) +

∫ T

t

Ls(xs, us) ds

which depend on the point of truncation, on the state, xt, and on the whole input function, uT
t , in

the interval from t to the end point, T . The optimal performance index, i.e. the Bellman function
is defined by

Vt(xt) = min
uT

t

[

Jt(xt, u
T
t )

]

We have the following theorem, which states a sufficient condition.
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Theorem 15: Consider the free dynamic optimization problem specified by (6.26) and (6.27). The
optimal performance index, i.e. the Bellman function Vt(xt), satisfy the equation

−
∂Vt(xt)

∂t
= min

u

[

Lt(xt, ut) +
∂Vt(xt)

∂x
ft(xt, ut)

]

(6.28)

with boundary conditions
VT (xT ) = φT (xT ) (6.29)

2

Equation (6.28) is often denoted as the HJB (Hamilton, Jacobi, Bellman) equation.

Proof: In describe time we have the Bellman equation

Vi(xi) = min
ui

�
Li(xi, ui) + Vi+1(xi+1) �

with the boundary condition
VN (xN ) = φN (xN ) (6.30)

t+ ∆t

i+ 1

t

i

Figure 6.8. The continuous time axis

In continuous time i corresponds to t and i+ 1 to t+ ∆t, respectively. Then

Vt(xt) = min
u

� � t+∆t

t

Lt(xt, ut) dt+ Vt+∆t(xt+∆t) �
If we apply a Taylor expansion on Vt+∆t(xt+∆t) and on the integral we have

Vt(xt)i = min
u

�
Lt(xt, ut)∆t + Vt(xt) +

∂Vt(xt)

∂x
ft∆t+

∂Vt(xt)

∂t
∆t �

Finally, we can collect the terms which do not depend on the decision

Vt(xt) = Vt(xt) +
∂Vt(xt)

∂t
∆t+ min

u

�
Lt(xt, ut)∆t +

∂Vt(xt)

∂x
ft∆t �

In the limit ∆t→ 0 we will have (6.28). The boundary condition, (6.29), comes directly from (6.30). 2

Notice, if we have a maximization problem, then the minimization in (6.28) is substituted with a
maximization.

If the definition of the Hamiltonian function

Ht = Lt(xt, ut) + λT
t ft(xt, ut)

is used, then the HJB equation can also be formulated as

−
∂Vt(xt)

∂t
= min

ut

Ht(xt, ut,
∂Vt(xt)

∂x
)

Example: 6.2.1 (Motion control). The purpose of this simple example is to illustrate the application of
the HJB equation. Consider the system

ẋt = ut x0 = x0

and the performance index

J =
1

2
px2

T + � T

0

1

2
u2

t dt
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The HJB equation, (6.28), gives:

−
∂Vt(xt)

∂t
= min

ut

�
1

2
u2

t +
∂Vt(xt)

∂x
ut �

The minimization can be carried out and gives a solution w.r.t. ut which is

ut = −
∂Vt(xt)

∂x
(6.31)

So if the Bellman function is known the control action or the decision can be determined from this. If the result
above is inserted in the HJB equation we get

−
∂Vt(xt)

∂t
=

1

2

�
∂Vt(xt)

∂x � 2 − � ∂Vt(xt)

∂x � 2 = −
1

2

�
∂Vt(xt)

∂x � 2
which is a partial differential equation with the boundary condition

VT (xT ) =
1

2
px2

T

Inspired of the boundary condition we guess on a candidate function of the type

Vt(x) =
1

2
stx

2

where the explicit time dependence is in the time function, st. Since

∂V

∂x
= stx

∂V

∂t
=

1

2
ṡx2

the following equation

−
1

2
ṡtx

2 = −
1

2
(stx)

2

must be valid for any x, i.e. we can find st by solving the ODE

ṡt = s2t sT = p

backwards. This is actually (a simple version of) the continuous time Riccati equation. The solution can be found

analytically or by means of numerical methods. Knowing the function, st, we can find the control input from (6.31).

2

It is possible to derived the (continuous time) Euler-Lagrange equations from the HJB equation.



Appendix A

A.1 Quadratic forms

In this section we will give a short resume of the concepts and the results related to positive definite
matrices. If x ∈ R

n is a vector, then the squared Euclidian norm is obeying:

J = ‖x‖2 = xTx ≥ 0 (A.1)

If A is a nonsignular matrix, then the vector Ax has a quadratic norm x>A>Ax ≥ 0. Let Q = A>A

then
‖x‖2

Q = xTQx ≥ 0 (A.2)

and denote ‖ x ‖Q as the square norm of x w.r.t.. Q.

Now, let S be a square matrix. We are now interested in the sign of the quadratic form:

J = x>Sx (A.3)

where J is a scalar. Any quadratic matrix can be decomposed in a symmetric part, Ss and a
nonsymmetric part, Sa, i.e.

S = Ss + Sa Ss =
1

2
(S + S>) Sa =

1

2
(S − S>) (A.4)

Notice:
S>s = Ss S>a = −Sa (A.5)

Since the scalar, x>Sax fulfills:

x>Sax = (x>Sax)
> = x>S>a x = −x>Sax (A.6)

it is true that x>Sax = 0 for any x ∈ R
n, or that:

J = x>Sx = x>Ssx (A.7)

An analysis of the sign variation of J can then be carried out as an analysis of Ss, which (as a
symmetric matrix) can be diagonalized.

A matrix S is said to be positive definite if (and only if) x>Sx > 0 for all x ∈ R
n xx > 0.

Consequently, S is positive definite if (and only if) all eigen values are positive. A matrix, S, is
positive semidefinite if x>Sx ≥ 0 for all x ∈ R

n xx > 0. This can be checked by investigating if
all eigen values are non negative. A similar definition exist for negative definite matrices. If J can
take both negative and positive values, then S is denoted as indefinite. In that case the symmetric
part of the matrix has both negative and positive eigenvalues.

We will now examine the situation

66
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Example: A.1.1 In the following we will consider some two dimensional problems. Let us start with a
simple problem in which:

H =

�
1 0
0 1 � g =

�
0
0 � b = 0 (A.8)

In this case we have
J = x2

1 + x2
2 (A.9)

and the levels (domain in which the loss function J is equal c2) are easily recognized as circles with center in origin

and radius equal c. See Figure A.1, area a and surface a. 2
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Figure A.1.

Example: A.1.2 Let us continue the sequence of two dimensional problems in which:

H =

�
1 0
0 4 � g =

�
0
0 � b = 0 (A.10)

The explicit form of the loss function J is:
J = x2

1 + 4x2
2 (A.11)

and the levels (with J = c2) is ellipsis with main directions parallel to the axis and length equal c and c
2
, respectively.

See Figure A.1, area b and surface b. 2

Example: A.1.3 Let us now continue with a little more advanced problem with:

H =

�
1 1
1 4 � g =

�
0
0 � b = 0 (A.12)

In this case the situation is a little more difficult. If we perform an eigenvalue analysis of the symmetric part of H
(which is H itself due to the fact H is symmetric), then we will find that:

H = V DV > V =

�
0.96 0.29
−0.29 0.96 � D =

�
0.70 0
0 4.30 � (A.13)

which means the column in V are the eigenvectors and the diagonal elements of D are the eigenvalues. Since the
eigenvectors conform a orthogonal basis, V >V = I, we can choose to represent x in this coordinate system. Let ξ
be the coordinates in relation to the column of V , then

x = V ξ (A.14)

and
J = x>Hx = ξ>V >HV ξ = ξ>Dξ (A.15)



68 A.1 Quadratic forms

We are hereby able to write the loss function as:

J = 0.7ξ21 + 4.3ξ22 (A.16)

Notice the eigenvalues 0.7 and 4.3. The levels (J = c2) are recognized ad ellipsis with center in origin and main

directions parallel to the eigenvectors. The length of the principal axis are c√
0.7

and c√
4.3

, respectively. See Figure

A.2 area c and surface c. 2
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Figure A.2.

For the sake of simplify the calculus we are going to consider special versions of quadratic forms.

Lemma 3: The quadratic form

J = [Ax+Bu]T S [Ax +Bu]

can be expressed as

J =
[

xT uT
]

(

ATSA ATSB

BTSA BTSB

) [

x

u

]

2

Proof: The proof is simply to express the loss function J as

J = zTSz z = Ax+Bu = � A B �
�
x
u �

or

J = � xT uT �
�
AT

BT � S � A B �
�
x
u �

or as stated in lemma 3 2

We have now studied properties of quadratic forms and a single lemma (3). Let us now focus on
the problem of finding a minimum (or similar a maximum) in a quadratic form.

Lemma 4: Assume, u is a vector of decisions (or control actions) and x is a vector containing known
state variables. Consider the quadratic form:

J =
(

x>u>
)

(

h11 h12

h>12 h22

) (

x

u

)

(A.17)
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There exists not a minimum if h22 is not a positive semidefinite matrix. If h22 is positive definite
then the quadratic form has a minimum for

u∗ = −h−1
22 h

>
12x (A.18)

and the minimum is
J∗ = x>Sx (A.19)

where
S = h11 − h12h

−1
22 h

>
12 (A.20)

If h22 is only positive semidefinite then we have infinite many solutions with the same value of J . 2

Proof: Firstly we have

J =
�
x>u> �

�
h11 h12

h>12 h22
� �

x
u � (A.21)

= x>h11x+ 2x>h12u+ u>h22u (A.22)

and then
∂

∂u
J = 2h22u+ 2h>12x (A.23)

∂2

∂u2
J = 2h22 (A.24)

If h22 is positive definite then J has a minimum for:

u∗ = −h−1
22 h

>
12x (A.25)

which introduced in the expression for the performance index give that:

J∗ = x>h11x+ 2x>h12u
∗ + (u∗)>h22u

∗

= x>h11x− 2(x>h12h
−1
22 )h>12x

+(x>h12h
−1
22 )h22(h−1

22 h
>
12x)

= x>h11x− x>h12h
−1
22 h

>
12x

= x>(h11 − h12h
−1
22 h

>
12)x

2

A.2 Matrix Calculus

Let x be a vector

x =











x1

x2

...
xn











(A.26)

and let s be a scalar. The derivative of x w.r.t. s is defined as:

dx

ds
=











dx1

ds
dx2

ds
...

dxn

ds











(A.27)

If s is a function of x, then the derivative of s w.r.t. x is:

ds

dx
=

[ ds

dx1
,
ds

dx2
, · · ·

ds

dxn

]

(A.28)
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If x depend on a scalar variable, t, then the derivative of s with respect to t is given by:

ds

dt
=
∂s

∂x

dx

dt
(A.29)

The second derivative or the Hessian matrix for s with respect to x is denoted as:

H =
d2s

dx2
=

[

d2s

dxrdxs

]

(A.30)

which is a symmetric n× n matrix. It is possible to use a Taylor expantion of s from x0, i.e.

s(x) = s(x0) +

(

ds

dx

)>

(x − x0) +
1

2
((x− x0)

>

[

d2s

dx2

]

(x− x0) + · · · (A.31)

Let f : R
n → R

M be a vector function, i.e.:

f =











f1
f2
...
fm











(A.32)

The Jacobian matrix of f with respect to x is a m× n matrix:

df

dx
=













df1

dx1

df1

dx2
... df1

dxn

df2

dx1

df2

dx2
... df2

dxn

...
...

. . .
...

dfm

dx1

dfm

dx2
... dfm

dxn













=

[

df

dx1

df

dx2
...

df

dxn

]

=











df1

dx
df2

dx
...

dfm

dx











(A.33)

The derivative of f with respect to t is a m× 1 vector

df

dt
=
∂f

∂x

dx

dt
(A.34)

Let y be a vector, A, B, D and Q matrices of apropriate dimensions (such the given expression is
well defined), then:

d

dt

(

A−1
)

= −A−1

(

d

dt
A

)

A−1 (A.35)

and

∂

∂x
(y>x) =

∂

∂x
(x>y) = y (A.36)

∂

∂x
(y>Ax) =

∂

∂x
(x>Ay) = Ay (A.37)

∂

∂x
(y>f(x)) =

∂

∂x
(f>(x)y) = ∇xf

>y (A.38)

∂

∂x
(x>Ax) = Ax+A>x (A.39)

If Q is symmetric then:
∂

∂x
(x>Qx) = 2Qx (A.40)

A very important Hessian matrix is:

∂2

∂x2
(x>Ax) = A+A> (A.41)
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and if Q is symmetric:
∂2

∂x2
(x>Qx) = 2Q (A.42)

We also have the Jacobian matrix
∂

∂x
(Ax) = A (A.43)

and furthermore:

∂

∂A
tr{A} = I (A.44)

∂

∂A
tr{BAD} = B>D> (A.45)

∂

∂A
tr{ABA>} = 2AB (A.46)

∂

∂A
det{BAD} = det{BAD}A−> (A.47)

∂

∂A
log(detA) = A−> (A.48)

∂

∂A
(tr(WA−1)) = −(A−1WA−1)> (A.49)

A.3 Matrix Algebra

Consider matrices, P , Q, R and S of appropriate dimensions (such the products exists). Assume
that the inverse of P , R and (SPQ+R) exists. Then the follow indentity is valid.

(P−1 +QR−1S)−1 = P − PQ(SPQ+R)−1SP (A.50)

This identity is known as the inversion lemma.
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