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Abstract

In the presence of non-negligible leakage power, the way to design architectures for low
power consumption may have changed. This master’s thesis represents one step towards
exploring low power design again. This thesis shows, that area is not a sufficient predictor
of leakage power consumption when delay requirements are tight.

Architectural voltage scaling is re-evaluated and it is shown that it does not always
reduce leakage power. Opportunities for reducing the leakage associated with repeaters
used in long on-chip wires are explored.

Furthermore, a novel architecture level power estimation method is presented which
allows the designer to explore design space early in the design process.

KEYWORDS: leakage power, static power, total power, architecture, high level power
estimation, architectural voltage scaling, repeater leakage

Resumé

Efterh̊anden som lækstrømme f̊ar mere og mere betydning, kræves ændringer af måden
hvorp̊a man designer chips med lavt effektforbug. Dette eksamensprojekt er et skridt
p̊a vejen mod at udforske dette omr̊ade p̊a ny. Projektet demonstrerer, at areal er et util-
strækkeligt mål til forudsigelse af lækstrømme n̊ar der gælder strenge krav til forsinkelsen.

Teknikken architectural voltage scaling tages op til fornyet evaluering og det fremg̊ar,
at teknikken ikke altid reducerer statisk effektforbrug. Muligheder for reduktion af læk-
strømmene i forbindelse med repeaters p̊a lange ledninger internt p̊a chippen diskuteres.

Endelig præsenteres en ny metode til estimering af strømforbrug p̊a arkitekturniveau.
Denne gør det muligt for designeren at udforske løsningsrummet for lavt effektforbrug
tidligt i designprocessen.

STIKORD: lækstrømme, statisk strømforbrug, totalt strømforbrug, arkitektur, højniveau
estimering af strømforbrug, architectural voltage scaling, repeaterlækstrømme
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Chapter 1

Introduction

Four years ago, at the beginning of my first course in computer architecture, the professor
opened class by telling us, that “this course is for those who believe, that a transistor is a
switch”. This is just the way we as computer architects like to think about the underlying
technology. We like to think, that static CMOS is simple. This way we can concentrate
on the more exciting issues of devising beautiful, fast and complex architectures.

Unfortunately, this is not so. While technology scaling has made it possible to put more
and more transistors onto a simple chip while at the same time allowing them to run ever
faster, less simple effects are starting to show. One of the current trends is, that power
consumption is becoming a serious constraint on the designs. This is not only due to the
recent popularity of battery powered products, but also because the power consumption of
chips has been increasing to the point where heat removal has become a costly problem,
[2]. Furthermore, for environmental reasons, we are required to burn no more power than
necessary.

Even though the amount of switching energy dissipated per gate has decreased with
geometric downsizing, the simultaneous increase of functionality per chip as well as the
increase in clock frequency have resulted in a net increase of dynamic power. The latest
challenge, however, that designers are facing, is static power.

Static CMOS has become the dominating technology because it provides simplicity,
great reliability, zero static power consumption and, with geometric downsizing, also high
density and good speed. While CMOS continues to be the technology of choice, the static
power consumption is no longer zero. With the small feature sizes of 130 nm and below
reached today, a transistor is no longer a device that can be turned completely off. We
can no longer ignore, that a transistor is not a perfect switch. Figure 1.1 shows that static
power consumption will reach the level of dynamic power consumption within a few years
time. Leakage power is becoming a serious problem that needs handling at all levels of
abstraction.

This thesis concentrates on the architecture level.

1.1 Levels of solutions

Figure 1.2 shows some levels of abstraction that exist in computer architecture. In this
hierarchy of abstractions the lower levels create the conditions under which the upper levels
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HS low Vth high speed high leakage

LL high Vth low speed low leakage

Table 1.1: High speed versus low leakage.

operate. But the details of the lower levels are abstracted away into a simple, less detailed
model of the lower level.

For example, the circuit level deals with the details of the design of cells that implement
logic gates. Here, transistors have to be sized to meet various requirements. The synthesizer
uses a view of the circuit level that has much less detail. It views the cells as blocks with a
certain function, propagation delay and area that can just be used. This way the synthesizer
can concentrate on the task of manipulating circuits that meet the requirements that it
has received from its own user, the architect. The circuit architect can in turn exploit
the fact, that the synthesizer handles all the gory details of creating the actual netlist,
analyzing timing and so forth. Thus he can concentrate on the things important at his
level: Creating functionality and meeting architecture level constraints.

At the same time there is an information flow downwards. Algorithms become more
complex and increase the requirements for all the underlying levels. The requirements
propagate all the way down to the bottom levels and here they trigger efforts to solve the
problems of area, timing and, as is the case in this thesis, power.

So while the source of the leakage problem is at the technology level, its effects range
all the way up through the other levels. It is a widely accepted fact that the problem of
power consumption must be handled at all levels of abstraction. At the technology level
much research is being done in order to solve the problem. Multiple Threshold CMOS is
one of the current approaches1. With Multiple Threshold CMOS, it is possible to have
transistors with different threshold voltages (Vth) on the same die2. Typically, two versions
are offered, high Vth and low Vth. As will be explained in section 2, both static power
consumption and speed are highly dependent on Vth. As table 1.1 shows, this creates the
choice between fast but leaky transistors (HS) and slower but less leaky transistors (LL).

For example, in the 70 nm process used in this thesis (see appendix B) a HS inverter
has a leakage power that is 197 times the leakage of an LL inverter. At the same time, the
LL inverter has a delay that is 49% higher than that of the HS inverter.

This thesis is one of three master theses performed at the same time, that deal with
leakage current.

Jacob Gregers Hansen considers alternatives to static CMOS for low power design in
his project Design of CMOS cell libraries for minimal leakage currents [1]. He re-evaluates
a number of logic families under the new situation in order to decide whether static CMOS
is still the best technology.

Michael Kristensen is concerned with logic synthesis in his thesis Incorporating leakage
current considerations in logic synthesis [4]. Michael looks at the state of the art of logic
synthesis and technology mapping and explores ways to reduce leakage power consumption.

This thesis deals with the problem at the architectural level of abstraction. Within this

1In this thesis, the common abbreviation MTCMOS will be avoided, since it has been used to designate
a number of different things, ranging from the possibility to have transistors with different Vth on the same
die to a specific circuit style using such transistors to implement fine-grained power supply gating.

2Some texts write the threshold voltage as Vt.
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Figure 1.3: Leakage power consumption of a multiplier under varying timing constraints.

text, the term architecture refers to the register-transfer level (RTL) of abstraction, where
the building blocks are components such as adders, memories and controllers.

Note, that the full architectural level also contains what is known as system level, which
includes the context that the chip is used in, including things as printed circuit boards,
software, power supply and connections between separate machines. In this thesis, only
system level in the sense of System on Chip is considered. In other words: The discussion
stays on chip.

The algorithm level is not dealt with at this time.

1.2 Scope of this project

The current situation is, that while leakage is becoming an increasingly urgent problem,
architects are only beginning to think about the consequences it has for their work. Mean-
while, the necessary tools already exist. With cell libraries based on Multiple Threshold
CMOS, circuits can be built, that only leak in the places where the extra speed of the HS
cells is needed. The newest generation of synthesis tools automatically consider leakage
power and choose between HS and LL cells.

This is illustrated for a multiplier synthesized under a number of timing constraints in
figure 1.3. The figure shows, that a tighter timing constraint can result in considerably
increased leakage power consumption. This example will be revisited later.

One thing that is still lacking is a strategy for the architectural level. Over the years,
a wide range of architecture level techniques for low power design have been established
in digital chip design. Power management, architectural voltage scaling, high level power
estimation, caching, and bus encoding are examples of these. But all of these techniques
were developed for minimizing dynamic power consumption. Now that total power con-
sumption no longer equals dynamic power consumption, the way that low power design
should be done might have changed.

The aim of this thesis is to re-evaluate a few existing techniques for low power design
and examine how they should be applied in the presence of significant leakage. This thesis
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is intended as one step towards the goal of understanding again how the choices made
at the architectural level of the design process influence the power consumption of the
resulting design. The aim is low total power consumption, not only low static power
consumption, although the discussion will focus on the static contribution. The emphasis
is on synchronous designs.

The subjects chosen for closer examination are architecture level power estimation,
architectural voltage scaling and minimization of the wire associated with leakage. The
motivation for choosing these will be explained in later chapters.

In this thesis, the existence of multiple threshold CMOS libraries is assumed, namely
a library with two threshold voltages, HS and LL. Furthermore synthesis tools that are
able to handle this are assumed to exist. In the work done here, the Synopsys Design
Compiler is used, which can do this, although it is not very good at it. The discussion
will be kept as independent from the specifics of the tool used as possible. The choice of a
target process and cell library assumes to have been already made. This degree of freedom
is not considered in the discussion.

1.3 Overview of the thesis

This thesis is structured into eight chapters and five appendices.

Chapter 2 takes the reader to the source of the problem at the technology level. Here
we take a look at how power is consumed in static CMOS and which parameters
influence the power consumption.

Chapter 3 discusses what architectural level techniques could be useful for minimizing
leakage power consumption. Two of these have been chosen for closer examination
and this choice is explained there.

Chapter 4 presents the design example, that will be used in chapters 5 to 7 for illustration
of the techniques discussed.

Chapter 5 surveys a number of methods for power estimation at the architectural level.
Power estimation is a necessary tool for the designer because it allows him to estimate
the consequences of his choices for power before even implementing the design. A
novel method of architectural power estimation is proposed.

Chapter 6 takes an in-depth discussion about the first of the two techniques that were
chosen for closer examination in chapter 3, architectural voltage scaling. The findings
are illustrated by application on the design example presented in chapter 4.

Chapter 7 is about on-chip communication. Here, part of the design space associated
with long on-chip wires is explored.

Chapter 8 discusses the results obtained, points out directions for future work and con-
cludes the thesis.

Finally, a number appendices document some of the details of the work done.

Appendix A contains the official project description for this thesis.
Appendix B describes the creation of a 70 nm cell library for use in this project.
Appendix C describes the framework created during this project used for characteriza-

tion of library components with Synopsys
Appendix D describes the wire sizing tool created for evaluation of some of the methods

discussed in chapter 7.
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Appendix E is a collection of digital appendices contained on the CD-ROM attached.
This contains the tools described in appendices B to D as well as the raw simulation
data. It also contains an implementation of the power estimation tool proposed in
chapter 5 in the form of a spreadsheet.
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Chapter 2

Theory of power consumption

In static CMOS, power consumption can be divided into two contributions: static and
dynamic. This chapter presents theory on both of these parts for use in later chapters.

The last section in this chapter summarizes the consequences for the architect.

2.1 Dynamic power consumption

Dynamic power consumption has been studied and handled as long as CMOS has existed.
Its properties are very well known. Therefore, only a short introduction to dynamic power
consumption will be given here.

Cload

IP

IN

Vdd

Vin
Vout

Isc

Figure 2.1: Dynamic power in a CMOS inverter. Source: [3, p. 6].

The inverter shown in figure 2.1 will be used for illustration. During the falling transi-
tion of the input voltage Vin there is a short period of time where both the NMOS and the
PMOS transistors conduct current at the same time, resulting in the short circuit current
Isc. The power consumed by short circuit current will be referred to as Psc.

Matching the rise and fall times of the gate will result in reduced Psc. In practice,
however, the times are not matched, since optimizing for propagation delay can result in
unmatched times.

During and after the input transition, charge is moved from Vdd to the output of the
inverter, hereby pulling Vout to Vdd. The lumped capacitance Cload results from parasitic
wire capacitances and from gate capacitances of the logic gates driven by the inverter.
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Figure 2.2: Leakage mechanisms in (NMOS) transistors.

Upon the opposite transition of the input, the PMOS transistor switches off and the
NMOS transistor switches on. Now the charge stored on Cload is moved to ground. In
summary, one rising and the following falling transition of the output consumes an energy
of CloadV

2
dd.

If f is the clock frequency and the average number of low to high transitions (the switch-
ing activity) of the node is denoted by α then the power consumption due to capacitive
switching is given by:

Pcap = αC(Vdd)
2f (2.1)

As a result, total dynamic power is

Pdyn = Psc + Pcap

In practice, Pcap dominates Psc as mentioned in [3, ch. 1]. It will be neglected in the
following.

When changing the supply voltage from Vdd,0 to Vdd,1, the dynamic power is reduced
by a factor KVD as follows:

KVD =
αC(Vdd,1)

2f

αC(Vdd,0)2f

=
(Vdd,1)

2

(Vdd,0)2
(2.2)

A summary of dynamic power consumption is given at the end of this chapter.

2.2 Static power consumption

Traditionally, the static component of power consumption has been negligible in static
CMOS. But as mentioned in the introduction, this is no longer the case. A number of
leakage mechanisms begin to gain significance. Most of these mechanisms are directly or
indirectly due to the small device geometries.

Figure 2.2 illustrates six different mechanisms in MOS transistor leakage. The following
explanation of these is distilled from [5].
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Irev is called reverse bias p-n junction leakage and is caused by minority carriers drifting
and diffusing across the edge of the depletion region and by electron-hole pair generation
in the depletion region of the reverse bias junction.

Isub is the subthreshold leakage current that is caused by the low Vth needed to maintain
drive strength in processes with low Vdd. The result of this is, that Ids can be considerable
even when Vg < Vth.

Igate is the gate oxide tunneling caused by thin gate oxides. Unlike the other effects, it
occurs in both ON and OFF state of the transistor.

Ihot is the gate current due to injection of hot carriers from substrate to gate oxide. It
is caused by electrons or holes gaining enough energy to enter the gate oxide layer. This
current can occur in OFF state, but more typically it occurs during transitions of the gate
voltage.

IGIDL is gate induced drain leakage. The high field effects below the gate cause holes to
accumulate at the silicon surface. This narrows the depletion edge at the drain and causes
further increase in the electric field across the junction. Tunneling allows minority carriers
to cross the gate and exit through the body terminal.

IPT, channel punch through leakage, is caused by the small distance between source
and drain. Due to the small geometries and due to doping profile, the depletion regions of
source and drain can merge below the surface causing carriers to cross.

According to [5] and [6], Isub dominates in processes down to 100 nm and Igate is likely
to be significant in the future. Only Isub and Igate will be described further in the following
two sections.

2.2.1 Subthreshold leakage current

As mentioned in the introduction, subthreshold leakage occurs mainly in transistors with
low Vth. The lowered Vth is dictated by the low supply voltage in small-geometry processes
in order to preserve speed.

Subthreshold current flows between drain and source in an NMOS transistor when VGS

is below V sat
th,n (for PMOS when VGS > V sat

th,p). In figure 2.3, the subthreshold region is the
linear part of the curves. The point of interest is at VGS = 0 V. The current that flows
here is called Isub, the power it consumes is Psub. As seen in the figure, a lower Vth results
in a higher Isub.

The following expression for IDS in the subthreshold region is from [5, p. 580]:

IDS = µ0Cox

W

L
(m− 1)(vT )2e

VGS−Vth
mvT

(

1− e
−Vds

vT

)

(2.3)

Vth is the subthreshold voltage and vT is the thermal voltage. µ0 is the zero bias mobility.
m is the body effect coefficient for the transistor. It is calculated by

m = 1 +
Cdm

Cox

where Cdm is the capacitance of the depletion layer and Cox is the gate oxide capacitance.
The inverse of the slope of log(IDS) vs. VGS is denoted St, the subthreshold slope:

St =

(

d(log IDS)

dVGS

)

−1

= 2.3
mkT

q
(2.4)
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Figure 2.3: Drain-source current for two different values of Vth.

where q is the magnitude of electronic charge and k is Boltzmann’s constant. A small value
of St is desirable, since it means that IDS can be cut off more effectively below Vth.

Vth itself is not a constant. Apart from being a complicated function of gate conductor
and gate insulation materials, gate oxide thickness, impurities at the silicon-insulator in-
terface, device geometries and the doping profile [7], it also depends on VDS. This effect,
which is called drain induced barrier lowering (DIBL), stems from the fact that the energy
band diagrams from source and drain merge in short channel transistors as explained in
[8], thereby lowering Vth by η · VDS.

The body effect is another effect that influences the value of Vth. This effect happens
when a biasing voltage is applied between well and source. The sensitivity of Vth on VBS

is as follows:
dVth

dVBS

=

√

εstqNa/2(2ψB + VSB)

Cox

(2.5)

This means, that Vth can be raised by raising the source-body voltage VSB.
A model of the subthreshold current that includes both the body effect and DIBL is as

follows:

Isub = A× e
1

mvT
(VG−VS−Vth,0−γ′

×VS+η×VDS)
×

(

1− e
−VDS

vT

)

(2.6)

where

A = µ0Cox

W

Leff
(vT )2e1.8e

−∆Vth
ηvT

and Vth,0 is the zero bias threshold voltage. The body effect is presented by the term γ ′VS

where γ′ is the linearized version of equation 2.5. As mentioned above, η is the DIBL
coefficient. ∆Vth is a term that allows to take transistor-to-transistor leakage variations
into account.

A consequence of this expression of the leakage is the so-called stacking effect. This
arises when two or more transistors are connected in series as shown in figure 2.4. The
two transistors in (b) act as a voltage divider, so both only see a VDS of half the supply
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voltage. Furthermore, the upper transistor has a raised VD. As is obvious from equation
2.6, both effects reduce the leakage current.

Vdd

Ileak = 5831 pA

(a) A single transistor.

Ileak = 668 pA

Vdd

(b) Two transistors in series.

Figure 2.4: The stacking effect with 70 nm transistors. Source: [1]

The stacking effect also means, that the leakage of a gate is input dependent. This is
illustrated in figure 2.5.
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Figure 2.5: Input value dependence of subthreshold leakage in a 70 nm 2-input NOR-gate.

Subthreshold leakage is supply voltage dependent. In the following, the effect of chang-
ing the supply voltage from Vdd,0 to Vdd,1 while keeping all other factors constant will be
calculated. This will change the subthreshold leakage power by a factor KVL as follows:

KVL =
Psub,1

Psub,0

=
Vdd,1Isub,1

Vdd,0Isub,0
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=

Vdd,1 × A× e
1

mvT
(Vth,0+η×Vdd,1)×

(

1− e
−Vdd,1

vT

)

Vdd,0 × A× e
1

mvT
(Vth,0+η×Vdd,0)

×

(

1− e
−Vdd,0

vT

)

≈
Vdd,1 × e

1
mvT

(Vth,0+η×Vdd,1)

Vdd,0 × e
1

mvT
(Vth,0+η×Vdd,0)

=
Vdd,1

Vdd,0
e

η
mvT

(Vdd,1−Vdd,0)
(2.7)

Here, VDS = Vdd and VGS = 0 V is assumed and the body effect is neglected. The
factor in the parenthesis can be approximated away, because it will be very close to 1 for
all realistic values of Vdd.

From this expression it can be seen, that Psub is exponentially dependent on Vdd. A
graph of KVL against Vdd,1 is shown in figure 2.6.
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Figure 2.6: KVL vs. Vdd,1 in a 70 nm process (Vdd,0 = 1.0 V).

Subthreshold leakage is very temperature dependent. According to equation 2.4, St

rises linearly with temperature. As can be seen from figure 2.3, Isub rises exponentially
when St falls. Furthermore, Vth decreases when the temperature rises, [8]. This gives the
curve shown in figure 2.7.

2.2.2 Gate oxide tunneling

In small device geometries, the gate oxide becomes very thin, because the field strength
has to be maintained when Vdd is reduced. In the presence of high electric fields across the
gate oxide, tunneling effects begin to occur, allowing electrons and holes to cross the gate
oxide. This destroys the infinite input impedance of the MOS transistors.

The gate oxide leakage is the result of several tunneling effects. They are described
in [5]. For this discussion, the following simple expression given by [9] for the gate oxide
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Figure 2.7: The impact of temperature on the leakage current for a 70 nm inverter.

tunneling current Igate is sufficient:

Igate = WLSDEAg

(

Vdd

Tox

)2

exp





−Bg

[

1− (1− Vdd/Φox)
3
2

]

Vdd

Tox



 (2.8)

Here LSDE, the source-drain extension length, is the length of the overlap of the drain or
source with the gate, so WLSDE is the area causing the leakage. Ag and Bg are physical
parameters determined by the process and Tox is the oxide thickness. Φox is the barrier
height of tunneling electron or hole.

A sketch of Igate versus Vdd and Tox is shown in figure 2.8. Igate rises quickly with
decreasing Tox and exponentially with rising Vdd, [6].

The stacking effect as described above influences gate leakage, so the leakage of a logic
gate is input dependent.

This current can become quite significant. In [10], gate oxide leakage is reported to
average 37% of static power consumption in a 100 nm process for a number of benchmark
circuits.

For the circuit designer, not much freedom exists in controlling Igate apart from gate
area and supply voltage. In future processes, high-K dielectrics for gate oxide materials
instead of SiO2 may provide a solution to this problem.

Gate oxide leakage was not modeled during the work done on this thesis. The main
reason is that no transistor models were available, that include this effect (see appendix
B). Furthermore, the only ways to reduce gate leakage seem to be to reduce Vdd, reduce
transistor width and exploit the input combination sensitivity, all of which also work for
sub-threshold leakage.

2.3 Summary of power consumption theory

In this chapter, the theory necessary for an understanding of the power consumption
problem was presented.
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Tox Vdd

Igate

Figure 2.8: Oxide leakage dependence on Tox and Vdd.

Static power consumption is clearly an increasing problem, especially with feature sizes
below 100 nm. Increasing Vth and lowering Vdd as well as reducing the number and the size
of transistors are the main tools the designer has to keep static power consumption under
control. Further options such as circuit style are the subject of [1] and [4].

In practice, Multiple Threshold CMOS and cell libraries created for Multiple Threshold
CMOS give the designer the choice between two types of cells, HS and LL, i.e. speed
efficient cells and leakage efficient cells. Both subthreshold leakage and leakage due to gate
oxide tunneling are present in LL cells, but due to the subthreshold component, these cells
still exhibit a much better leakage performance than the HS cells.

In summary, the following are the possibilities the designer has to reduce static power
consumption in static CMOS:

• increasing Vth

• reducing the total width of devices that leak
• increasing transistor stacking
• reducing operating temperature
• reducing Vdd

• applying less leaky inputs to gates

Similarly, the following is the list of ways to reduce the dynamic power consumption.

1. reduction of Vdd

2. reduction of the effective frequency of the nodal charging αf
3. reduction of the nodal capacitance Cload
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Chapter 3

Techniques for power optimization

There is no single way to do low power design. Instead, there is a number of techniques
and tricks that designers use. Each of these is more or less useful in a given situation.
Design for low power is more a case to case approach than anything else.

The previous chapter lists the knobs available to the chip architect for controlling
leakage. The complexity rises even further when moving from the level of single transistors
and gates to the level of circuits. This introduces concepts such as critical paths and the
mixture of HS and LL cells.

All in all, there is no lack of solution space. There are many possible directions the
search for leakage reduction could take. This chapter discusses some of the possible options.
Two of these have been chosen for closer examination in later chapters and this chapter
explains why.

3.1 Arithmetic units

The many ways to make common arithmetic units such as adders and multipliers, leave
the circuit architect some design freedom. For instance, a ripple carry adder provides low
speed compared to a carry lookahead adder, but at the same time it consumes much less
switching power, [3, sec. 7.3.1].

With the added component of leakage, this picture may have changed. Due to the
smaller area of the ripple carry adder, it may also provide lower leakage. On the other
hand, depending on the situation, the lower latency of the carry look-ahead adder may
allow for the use of HS cells rather than LL cells, actually making a carry lookahead adder
leak less than a ripple carry adder.

Today, the problem of choosing the right implementation for arithmetic units often is
not the designer’s task anymore. Synthesis tools are able to choose between alternative
architectures given timing, area and power constraints, and although they may not do this
very well for leakage constraints yet, they are likely to become better.

This problem is not investigated further during this project, because given the possi-
bilities to let tools handle this the designer’s time is probably spent better on other issues.
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3.2 Dynamic power management

Power management is a technique well known from dynamic power reduction. The basic
idea is to turn off units that are not in use. Turning off can be done completely by removing
power supply or it can be done in a less complete way by turning off all or part of the clock
tree. Of course, removing power supply is very effective, since no power consumption takes
place any more. The disadvantage is, that all data stored in the circuit is lost, so they have
to be stored before power down and the circuit must go through a reinitialization phase
after powering up again. This may be unacceptable for timing.

Traditionally, clock gating has only been a technique used for dynamic power manage-
ment. In itself it does not provide any leakage savings, as the leakage continues regardless
of switching activity. But as mentioned in section 2.2.1, the leakage of CMOS gates de-
pends on which inputs are applied to them. Therefore, some energy savings can be made
by applying appropriate input vectors to combinational entities during standby. A method
for finding such input vectors was proposed by [11].

A different approach is taken by a circuit style called MTCMOS, that uses sleep devices
to turn off combinational parts of the circuit in standby mode. This can be applied to larger
blocks of combinational circuitry, but as proposed by [12], also a fine grained approach at
the gate level is feasible if some care is taken. However, the switches used to turn off the
voltage also reduce the power supply available to the logic. This degrades performance.

Finally, leakage during standby can be reduced by lowering the supply voltage, which
allows the circuit to keep it’s state as proposed in [13] or by dynamically changing Vth which
allows the circuit to continue operation at a lower speed. Adjusting Vth at run time can
be done by controlling the body. In [14] appropriate circuitry for dynamic Vth scaling is
presented.

Regardless of which approach is used, the management of the power takes some thought.
Typically there is some wake up delay penalty that may degrade performance. A power
penalty for wake up may also be incurred, so if the standby period is too short, going into
standby mode may actually cost power. In order to achieve the right power management
scheme, a thorough analysis should be done. Benini et al. provide a survey of the available
techniques in [15, sec. 5.1].

This subject is not investigated any further due to the substantial research already done
in this field.

3.3 Caches and memory

Currently, there is quite some research activity aiming at reducing leakage power consump-
tion in memories, particularly in caches. This is quite natural as caches and SRAM blocks
often take up a large fraction of the die area. At the same time, caches are typically in
the critical path, so degrading their performance has a direct impact on the performance
of the circuit.

Part of this work takes place at the circuit level in order to design less leaky SRAM
cells, as in [16]. While this is interesting, it does not affect the work of the circuit architect
much.

Some of the cache techniques that have been proposed are based on the observation
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that only a small part of a cache is actually actively used during a given part of time. In
[17], Powell et al. propose a method called Vdd gating. The idea is to predict, which lines
in the cache will not be used any more. These lines are then simply turned off. Powell et
al. achieve a 62% reduction in leakage power at a 4% penalty in execution time.

Flautner et al. use a different approach called Drowsy caches that achieves a similar
reduction in leakage with only 1% performance degradation, [18]. Their approach switches
lines that are not likely to be used again to a second, lower supply voltage. This supply
voltage is high enough that the cache does not loose data, but not high enough for reading
them. For reading, the lines have to be switched to the higher supply voltage, which takes
one extra clock cycle. This is less than with Vdd gating, where the value has to be fetched
from the next memory level. The approach has good leakage performance, because cache
lines can be turned off more aggressively since the overhead for switching them on again
is rather small.

A different approach is taken by Zhang et al. in [19]. Their frequent-value data cache
uses a simple compression method that stores frequently cached values in a shorter repre-
sentation. This means, that some bits in the cache lines that hold these encoded values
are not used and they can thus be turned off. Because Zhang et al. find that 49.2% of the
values are frequent values in their benchmarks they achieve 33% leakage power reduction
at no performance penalty.

Due to the vast amount of work already done in this area, cache leakage is not examined
any further in this thesis.

3.4 Architectural voltage scaling

Voltage scaling is one of the main classical ways to reduce dynamic power. The approach
is to speed up the circuit by applying techniques such as parallelization and pipelining.
Afterward, the supply voltage is lowered again until the performance requirements are just
met. Since speed has a more or less linear relationship to Vdd, but dynamic power scales
quadratically with Vdd as implied by equation 2.1 on page 15, this procedure results in a
net power saving. Architectural voltage scaling is explained in [2, sec. 4.6].

As explained in sections 2.2.1 and 2.2.2, reducing the supply voltage also has a positive
effect on leakage power. Speeding up the circuit by means of architecture typically increases
the area and therefore also the amount of devices that leak. But as the dependence of
leakage power on supply voltage is so strong, savings can still be expected.

Now that HS and LL cells give the circuit designer yet another degree of freedom it
might be worth while to examine how architectural voltage scaling can be done best. This
is done in chapter 6.

3.5 Retiming

Retiming as explained in [20] and [21] is a technique for speeding up a circuit. By balancing
the amount of computation done between registers, the critical path can be shortened. This
technique can be applied either by tools or by the designer. While retiming is closely related
to pipelining, it is a technique in its own right as it can be used to move around registers
that are there for other reasons than pipelining.
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Outside the realm of architectural voltage scaling, retiming is used only for minimizing
switching activity. But with cell libraries containing both HS and LL cells this may change.
A combinational circuit that has very strict timing requirements will have to consist of more
HS cells than the same circuit under more loose timing constraints. By using retiming to
even out the time spent computing between registers, it may be possible to use more LL
cells and thereby reducing leakage power.

This is not investigated in this thesis, but an opportunity for using retiming for leakage
reduction is pointed out in section 6.4.2.

3.6 On-Chip communication

With the downscaling of devices, the capacitance that has to be driven is increasingly
dominated by wire capacitance. The result is, that communication is consuming more and
more power compared to computation. In large chips, long wires with high capacitance
have to be driven at high speeds, requiring strong load drivers or repeaters. For dynamic
power consumption this incurs only a cost per communication, but not a cost per wire.
Leakage power, however is based on the amount of hardware present, and since the strong
drive-inverters can be quite leaky, some amount of resource sharing may be in order. On
the other hand, by using more hardware it can be possible to loosen the timing constraints.
This may in turn allow the use of LL drivers instead of HS drivers.

This issue is discussed in chapter 7.
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Chapter 4

Example design task

Before moving on to describing the actual work done on power estimation (chapter 5),
voltage scaling (chapter 6) and the reduction of leakage associated with wires (chapter 7),
one more thing is needed. For illustration of the techniques discussed in these chapters, an
example design task will be presented here.

The example has two parts. While the first is a piece of computational hardware that
will be used for illustration of the power estimation method and the architectural voltage
scaling technique, the second is a bus that will be used for discussing the leakage issues of
long wires.

4.1 A multiply-accumulate unit

For this purpose, a simple multiply-accumulate unit was chosen based on [22]. It is to be
part of a hypothetic mobile phone application, handling some DSP during telephone calls
and being idle the rest of the time. It computes the following function:

Dout =

225
∑

i=1

Din Ai ·Din Bi

The unit has two 8-bit data inputs and one 24-bit data output. It communicates by
handshaking at both ends. At the input it takes 225 number pairs, multiplies each of the
pairs and outputs the sum of the multiplication results at the output.

The operation of the unit is documented by a waveform and a pseudo code description.
These are only here for the sake of completeness and the reader should not bother too
much about the details.

The handshaking protocol is a simple request-acknowledge based pull-protocol as shown
in figure 4.1 on the following page. Figure 4.2 contains the pseudo-code description of the
algorithm with handshaking.

4.1.1 Performance requirements

When choosing timing and power requirements for the example, there is a number of pos-
sibilities. Figure 4.3 shows an abstract representation of the solution space with power
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Dout ack

Dout

Din A/B

Din ack

Din req

clk

Dout req

1 2 3

result

224 225

Figure 4.1: Handshaking protocol for the multiply accumulate unit.

1: loop

2: Din req ← 1
3: wait until Din ack = 1
4:

5: sum ← 0
6: for i ← 1 to 225 do

7: a ← read

8: b ← read

9: sum ← sum + (a · b)
10: end for

11:

12: Din req ← 0
13: wait until Dout req = 1
14: output sum
15: Dout ack ← 1
16: wait until Dout req = 0
17: Din req ← 0
18: wait until Din ack = 0
19: end loop

Figure 4.2: Pseudo-code for the multiply-accumulate unit.
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and speed requirements. Typically a minimum acceptable speed and a maximum accept-
able power is dictated by the application, production cost, market etc. The curved line
represents the limits to what is possible in terms of technology, cost, etc.

space
valid solution

power
max. acceptable

min.
acceptable

speed

Power

Speed

Figure 4.3: Solution space

There are different types of power constraints. Typical examples are

• average power consumption
• peak power consumption
• stand by power consumption

Timing constraints also come in various flavors such as

• latency
• throughput requirements
• local interface requirements
• global clock frequency requirements

Furthermore, timing and power requirements can be of two overall types:

exact requirements must be met, but doing better than required does not add any extra
value.

elastic requirements must be met, and doing better than required is desirable.

Power requirements are typically elastic. Battery powered equipment may have some
minimum battery lifetime requirement, but prolonging this can give an advantage. Exact
power requirements may stem from facts such as cooling or power supply capacity.

Exact timing requirements are often seen in real time data processing, such as DSP
applications, where data must be processed at a fixed sample rate. Computing results
faster than needed makes no difference, since the application is I/O-bound. On the other
hand, general purpose CPUs often have elastic timing requirements, as a few extra MHz
will increase the market value.

That said, exact timing requirements may not be very exact at all. When designing
circuits that strain the technology as much as possible in terms of speed, process variations
cause some fraction of the otherwise fully functional chips to be too slow. This is typically
handled by applying post-production sorting and discarding the slower chips or selling
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them at a lower price. Having extra timing slack will thus increase the yield or the price
at which the final product can be sold.

For the example in this text, a requirement to minimize power is of course needed. A
non-trivial timing requirement is also needed, since having too much room in timing would
make it too easy to eliminate leakage, as the design could simply consist of LL cells.

The following table lists the requirements chosen.
technology the unit must be implemented in a 70 nm cell

library.
supply voltage Vdd must be 1.0 V or less.

throughput once the data transfer at the input of the de-
sign has begun, one data pair must be taken
every clock cycle until all 225 pairs have been
read.

latency when the last input pair has been read, a
maximum of 6 clock cycles may pass before
the signal Dout ack goes high and the result
is available.

clock period the clock period is fixed at tp = 8 ns. This is
an exact requirement.

average power max. 15.5µW during typical operation, but
the less the better.

Typical operation is defined as processing data (handling phone calls) during 2% of the
time it is switched on1.

A 70 nm cell library was created as part of this project. It is described in appendix B.
Figure 4.4 on the next page shows a simple architecture implementing the algorithm.

This architecture meets the requirements at Vdd = 1.0 V. Apart from the multiplication
and accumulation hardware, it contains a control unit to handle the handshaking and a
timer unit that counts the 225 input value pairs. There is an input register to ensure
that the computation hardware is given the full clock cycle. The enable signals to the
registers gate the clock so that dynamic power can be assumed to be virtually zero when
no computation is done (neglecting the state register in the control unit).

Given the reference implementation and these requirements, a situation has been cre-
ated, where an adequate solution exists, but the solution could be optimized: The timing
requirements are met. The power consumption is acceptable, but only just so. The goal is
now to ameliorate the design in order to reduce the power consumption.

4.2 An on-chip bus

For use in the discussion about on-chip wires, an example including some long on-chip
wires is needed. For this purpose, the setup in figure 4.5 is assumed. Here, one long on-
chip 16 bit bus connects the data source with 16 multiply-accumulate units. The bus is
time multiplexed, so during operation it has to supply two 8-bit numbers to each multiply-
accumulate unit per 8 ns. This requires the wire to transport one sample per 0.5 ns.

1This roughly corresponds to 20 minutes of phone conversation on a 17-hour day. The average Danish
user only uses a cell phone around 6 minutes a day, [23].
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Figure 4.5: 16 multiply-accumulate units sharing one on-chip bus. The multiply-
accumulate units run at 8 ns clocks which are skewed with respect to each other. The
demultiplexer is a control unit that controls the data flow to the 16 units, so that one
sample can be processed every 0.5 ns.
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The bus is 2.5 mm long, which is expected to be the side length of the average chip in
70 nm according to [24]. The capacitance per length is set to 600 fF/mm and the resistance
per length is set to 300 Ω/mm. This is a rather slow wire compared to e.g. the predictions of
the UC Berkeley device group at [25], but this was chosen to bring out the problem more
clearly.

For simplicity, the control hardware for the multiplexed bus is not considered in this
example and neither are the necessary handshaking wires.
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Chapter 5

Power estimation

In order to be able to make design decisions at an early stage in the design process,
the hardware designer needs a way to estimate the consequences of his choices for power
consumption.

The designer needs estimation tools for several levels of abstraction. The usual tool
vendors provide such tools for the RTL level and below, but these tools require the HDL
code for the design to be available. No tools seem to be publicly available for design
time, before any code has been written. However, the designer needs a practical way of
comparing two alternative architectures for power.

This chapter proposes an estimation method for this purpose. This method will also be
used in the following chapter in order to evaluate the effect of architectural voltage scaling.
The power estimation for communication infrastructure is not considered here.

This chapter first presents existing work in the area. However, these approaches are
here shown to be unsuccessful in Multiple Threshold CMOS, especially since leakage power
consumption depends strongly on delay constraints. Therefore, the leakage characteristics
of various RTL level building blocks are examined and an attempt is made to create a
mathematical model of leakage. This is shown to work well for uniform logic blocks with
considerable logic depths such as multipliers. A simple model is also derived for blocks
with only one level of logic such as registers. However, for some types of circuits, deriving
a model fails.

Instead, a model based on precharacterized logic blocks is proposed based on the well
known Spreadsheet model. A tool can then perform look up in this characterization data
in order to evaluate the leakage of a design.

The multiply-accumulate unit design presented in the previous chapter is used to illus-
trate the method.

Estimation of high level dynamic power consumption has been treated thoroughly in
the literature and will not be discussed further here. An overview of common techniques
can be found in [15, 26, 27]. Dynamic power will, however, be part of the model proposed
in section 5.3.

Since the main use of an architectural estimation method is comparison of alternatives,
relative accuracy of the estimation will be more important than absolute accuracy. On
the other hand, since the method should estimate both the static and the dynamic part of
the power consumption, the easiest way to achieve good relative accuracy probably is to
achieve good absolute accuracy.
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5.1 Existing work

The most straight forward way to estimate leakage power is to base the estimate on design
size, since every additional gate contributes to the total leakage. This approach has been
taken by a number of authors. Butts et al. [28] propose the following analytically derived
model.

Pleak = VddNkdesignÎleak

In this model, N is the number of transistors in the design, Îleak is a parameter depen-
dent on technology, and kdesign is a design dependent parameter. This model takes different
circuit styles into account by means of the parameter kdesign, which should be determined
by simulation per circuit style (SRAM, muxes, adders, etc.).

A similar, but slightly simpler model is proposed by Kumar et al. in [29]:

Pleak = χMS

Here the design size M is the cell count of the design. The parameters χ and S are
estimated by characterizing a number of designs synthesized for the target cell library. The
authors find that S in practice is close to one, so that the leakage power scales linearly
with the number of cells.

These models are easy to use for designers because they are very intuitive. They are
appropriate for estimation at the architectural level, since, as the authors state, an estimate
of the circuit size usually will be available early in the design. Kumar et al. claim to reach
an accuracy better than 12.5%. Butts et al. do not give any figures for the accuracy of
their model.

The leakage power model for SRAM presented by Mamidipaka et al. in [30] represents
a different approach to leakage power modeling. The authors derive simple analytical
parameterized leakage power models for each part of an SRAM (memory core, address
decoder, read column circuit etc.) based on technology parameters. State dependent
leakage is incorporated and the estimation error is less than 24%.

In the article only one specific SRAM architecture is described, but the discussion
is clear and comprehensive and allows the reader to adapt the model to other SRAM
architectures.

5.2 Exploration of leakage behavior

One problem with the previously mentioned high-level models for leakage power estimation
is, that they don’t take into account, that a circuit can consist of a mix of both HS and LL
cells. With the synthesis tools and cell libraries available today, this is not realistic. Given
that the leakage of a HS cell is one to two orders of magnitude higher than the leakage of
an LL cell, the mix is the dominating factor. It matters much more than area.

Three different circuits are examined in the following: A multiplier, a register and a 4
to 16 one-hot encoder.
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Logic blocks of large logic depth

Figure 5.1 shows the leakage characteristic of a 16-bit multiplier. Using Synopsys Design
Compiler, a 16-bit multiplier was synthesized and mapped to the 70 nm cell library for a
number of delay constraints in the form of a maximum allowed propagation delay, tp,max.
The dotted line shows the percentage of the cells that are LL cells.
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Figure 5.1: Leakage and cell mix of an 16-bit array multiplier vs. timing constraint.

Obviously, there is a minimum delay constraint that it is possible to satisfy. This will
be called tp,min. It is also clear that loosening the timing constraint past a certain point
does not reduce the leakage power any further. The delay constraint at which this happens
will be called tp,e. The minimum leakage power possible will be termed Pleak,∞.

Figure 5.2 shows the dependence of a number of characteristics on the delay constraint.
This time, the leakage power is displayed on a linear scale. Both dynamic power (fig. 5.2(b))
and area (fig. 5.2(e)) show some dependence on the delay constraint due to the synthesizer
changing the structure of the circuit. This dependence is, however, much weaker than the
dependency of Pleak. The tightening of the delay constraint merely results in a tripling of
the power, while the area is less than doubled. The leakage power is increased more than
7800 times.

This enormous difference in leakage power consumption is due to a number of effects.
First of all, the HS cells used at tp,min leak about 200 times as much as the LL cells. Second,
the doubled area also contributes further leaking devices. Third, the synthesizer uses cells
with a higher drive strength when timing requirements are strict. These cells leak more.
Finally, the synthesizer tends to use smaller cells when speed matters. Due to the lack of
stacking effect, small cells leak more than the equivalent circuit built in larger cells.

In order to find a good and simple model for the leakage power dependence on tp,max,
several candidates were evaluated and one candidate that provides a reasonable trade-off
between simplicity and good model fit was identified:

Pleak =

{

k1

tp,max+k2
− k3 for tp,min ≤ tp,max ≤ tp,e

Pleak,∞ for tp,max > tp,e

(5.1)
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(b) Dynamic power
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(c) Percentage of cells that are HS.

0

10

20

30

40

50

4 6 8 10 12 14 16 18

E
d
y
n

/
p
J

delay constraint, tp,max/ ns

33

33
3

3

3

3
3

3 3 3 3 3 3 3333333 3

(d) Dynamic energy per clock period
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Figure 5.2: Characterization data for a 16 by 16 bit multiplier.
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Figure 5.3 shows this model fitted to the data for the multiplier. The values of the
constants were found to be

k1 = 2144µW · ns

k2 = 1.28 ns

k3 = 184µW

This model is relatively easy to use, as it provides the intuitive relationship that dou-
bling tp,max − k2 will halve Pleak (neglecting k3 and only below tp,e).

The model fit is not very good. The reason for this is, that the shape of the curve is the
result of several factors as mentioned above. The relative smoothness of the curve stems
from the fact that a 16-bit multiplier has a relatively large logic depth.

Logic blocks with low depth

The leakage characteristic for a register is shown in figure 5.4. Here the logic depth is only
one cell, so the change from all HS to all LL happens in one step. The plateau between the
high and the low level, however, is due to the synthesizer choosing LL cells with a higher
drive-strength in order to meet the timing requirements.

Registers have relatively high leakage per area compared to combinational circuits, so
they cannot be neglected. For registers and similarly shallow circuit blocks a two-level
model would be more appropriate:

Pleak =

{

k4 for tp,min ≤ tp,max ≤ tp,e

Pleak,∞ for tp,max > tp,e
(5.2)

Other circuit types

Unfortunately, it is not always possible to deriving a simple leakage model for a circuit.
Figure 5.5 shows the leakage characteristic for a 4 to 16 one-hot encoder. This circuit has
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only about four levels of logic. It is not clear why the synthesizer created this solution.
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Figure 5.5: Leakage and cell mix of a 4 to 16 one hot encoder vs. timing constraint.

The synthesizer alternates between using LL and HS cells according to its internal cost
function, which considers a number of factors. The lesson to be learned from this is that
tools can be unpredictable.

Summary

All in all, leakage power is complex to predict. Mathematical models are only practical to
derive analytically for very simple structures like ripple adders. Even for these, the solution
that the synthesis tool arrives at depends on the details of the synthesis algorithm. Other
factors that influence the outcome are

• the difference between the propagation delay of a HS cell and a LL cell
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• the difference between the leakage power of a HS cell and a LL cell
• the leakage power, dynamic power, timing, and area constraints given to the synthesis

tool
• the structure of the circuit

The observations made in this section are useful to the designer because they can give
a feel for, how timing constraints affect the leakage power. This is useful for navigating in
the solution space. It has been demonstrated, that area is an inappropriate predictor of
leakage power in the presence of tight timing constraints. Even the models presented here
are very inaccurate, and care must be taken when using them to estimate leakage power
consumption. A proposal for practical power estimation at the architectural level is made
in the following section.

5.3 Proposed model for leakage estimation

Failing the attempt to create a mathematical model leaves only the empirical approach.
Using a library of precharacterized components for power estimation is an idea that has
already been employed successfully for dynamic power estimation at the architectural level.
It is the basis of the spreadsheet model.

This model, explained for instance in [15, p. 132-133], is a practical approach for early
architectural level design-space explorations. Both static and dynamic power estimates are
considered in this model. The estimation is based on models obtained by characterization
of library components (as in [31, ch. 3]). The model is simple enough to be implemented
in an ordinary spreadsheet. However, a specialized tool could provide better usability
and better ease of reuse of the data. Unfortunately, since the original tool, PowerPlay
(presented in [32]) is no longer available, no public tools seem to exist.

The spreadsheet model can best be explained by example. Figure 5.6 shows such an
example. The two modules have been precharacterized for power and the data was entered
into the table. Additionally the designer adds the number of components, the supply
voltage and an idle time. The model is entered directly into the cells of the spreadsheet,
so the resulting power is computed directly at each change of the numbers. This allows
the designer to play around with them easily and see the results of possible circuits.

32

16

16

16

(a) Circuit

#comp Vdd Pleak/µA Pdyn/ µA %idle Ptot/µA
add 1 1.0 5 15 40 11.0
mult 1 1.0 20 45 40 35.0

(b) Model

Figure 5.6: The basic spreadsheet model – an example.

With the knowledge presented in the previous section, this model needs to be extended.
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Figure 5.7: Two components in series.

tp,max should be one of the inputs and incorporated in the leakage estimation formula. One
way to do this would be to fit the characterization data to models like equations 5.1 and
5.2. Given, however the macro capabilities of spreadsheet applications, the characteriza-
tion data can be directly imported into the spreadsheet. An appropriate macro can then
directly look up the leakage power, dynamic power and area values. It is even possible to
automatically interpolate between the values in the table to obtain estimates in between
the characterization points.

This has been done in the OpenOffice Calc spreadsheet included in appendix E. Ap-
pendix C presents a tool created for this project for characterizing building blocks.

The model will be extended to consider an operating voltage different from the char-
acterization voltage in the next chapter, which is about voltage scaling.

The spreadsheet model has a number of limitations, so care must be taken when using
it.

First of all, it is input-invariant, that is: It predicts the same power consumption no
matter which inputs are applied to the circuit. As explained in appendix C, characteri-
zation is done assuming completely random inputs. Often, this is not the case in actual
applications. Real data inputs is often correlated in time or to other inputs. Disregarding
this can lead to overestimation of dynamic power, downplaying the significance of leakage
power.

But most importantly, the estimation of power for library components in series contains
serious pitfalls. Figure 5.7 shows such an example. From the figures for the individual
components one could expect the combination of the two to have in the neighborhood of
tp,min = 3.3 ns + 0.76 ns = 4.06 ns and tp,e = 15.2 ns + 5.9 ns = 21.1 ns. However, this is not
the case. For the series connection, the values are tp,min = 3.8 ns and tp,e = 16.2 ns. What
happens is, that the critical paths don’t add up. The length of the critical path of two
components in series can be smaller than the sum of the individual critical path lengths.

Figure 5.8 demonstrates this. The structure of entities x and y is similar to the structure
of a multiplier. The critical paths don’t add up because they are not connected to each
other. This is a common situation for arithmetic units. As demonstrated in figure 5.9,
the critical path of a unit generally goes from the least significant bit of the input to the
most significant bit of the output. Because the most significant output bit of a unit is
connected to the most significant output bit of the following unit, the two critical paths
are not connected.

In the spread sheet model this means, that it is not possible to predict the length of the
critical path of a series connection unless it is known which two paths combined paths will
be the longest ones. Even if this was known, the leakage vs. tp,max characteristic between
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tp,min and tp,e might be totally different from the sum of the two individual characteris-
tics. In summary, using the spread sheet model on a series connection of two individual
components is not possible if both are on the critical path.
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Figure 5.10: Series connection with one unit off the critical path.

In a setup like the one shown in figure 5.10 where only the multiplier and the big adder
are on the critical path, these two units need to be characterized together as one library
component as indicated by the shaded area. The small adder is not on the critical path
and can be characterized separately. It is not clear, however, which tp,max the small adder
will see, but in the setup shown it is likely that it will be large enough so that the leakage
of the adder is Pleak,∞.

5.4 Estimating the example

For the application of the estimation model on the multiply-accumulate unit design from
the previous chapter, appropriate blocks have to be chosen for characterization. The
components along the critical path have to be characterized as one. This includes the
components marked by shading in figure 5.11 on page 44.

The remaining components are characterized separately. No controller had been de-
signed at this point, but it is estimated, that it would need about six states, three inputs
and six outputs. From a previous project a state machine with five states, three inputs,
and three outputs was available. It has been used instead. The zero detector is just an
eight-input NOR gate. It is neglected in estimation.

Table 5.1 shows the figures for the design. The timer circuit and the data path have
tp,max set to the full clock period of 8 ns, while the three components of the timer see 2 ns
each. Since 2 ns > tp,e for all of these three, the exact value of tp,max does not matter.

The only component that has a tp,max less than its tp,e is the data path. Therefore it is
responsible for almost all of the leakage of the circuit. Since it is also the component with
the most switching activity, it also consumes most of the switching power.

Unfortunately a breakdown of the power consumption in this component is not avail-
able, although it would have been possible to extract these figures during characterization.



5.4
E

stim
atin

g
th

e
ex

am
p
le

43

tp,min/ tp,e/ tp,max/ Pleak/ Pdyn/ avg. Pdyn/ Ptot/
#comp component ns ns ns µW µW % on µW µW

1 mult mux add 2.90 11.0 8.0 10.763 189.13 2% 3.78 14.55
1 add rpl 8 0.85 1.6 6.0 0.0024 26.75 2% 0.54 0.54
1 mux 8 0.055 0.18 1.0 0.00129 4.00 2% 0.08 0.08
1 reg 8 0.06 0.07 1.0 0.00278 7.97 2% 0.16 0.16
1 controller 0.07 1.4 8.0 0.00258 6.08 2% 0.12 0.12

5 10.77 233.94 4.68 15.45

Table 5.1: Leakage estimation for the multiply-accumulate design.
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Figure 5.11: Partitioning of the design for characterization.
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Chapter 6

Architectural voltage scaling

The motivation for architectural voltage scaling1 comes from the fact that when Vdd is
reduced, the circuit delay τ rises approximately linearly, while Pleak falls exponentially and
Pdyn falls quadratically as already explained in chapter 2.

Therefore, if a circuit can be speeded up by a factor N and the supply voltage afterward
be reduced by the same factor of N , the circuit will still have the same delay. However, due
to the reduced supply voltage, dynamic power will have been reduced by a factor N 2 and
Pleak will have been reduced even more, even though the area might have been increased.

It may seem that architectural voltage scaling still works, even in the presence of leakage
power. This chapter attempts to answer the question, whether this is in fact so.

6.1 Does architectural voltage scaling still work?

Of course, the power supply cannot be made arbitrarily low. At some point, memory
elements will start to loose their data. But even before that point, the delay of the circuit
will become too high. The following first order relation from [26, sec. 2.2.1] expresses the
influence of Vdd and Vth on circuit delay.

τ ∝
Vdd

(Vdd − Vth)2
(6.1)

This was graphed in figure 6.1 on the following page for constant Vth. As long as
Vdd does not get too close to Vth, the delay increases linearly with falling Vdd. As a design
rule, a minimum supply voltage of Vdd = 4|Vth| is generally used when speed matters, [33].
In the low supply voltages used in the sub-100 nm processes, this leaves less freedom for
voltage scaling than it used to.

As an example, in the cell library used in this project, the supply voltage normally used
is 1.0 V. The HS cells have |Vth| around 0.15 V and the LL cells have 0.33 V. Thus for the
HS cells Vdd = 6.8Vth while for the LL cells, Vdd = 3Vth, which explains their lower speed.
In order to stay in the linear area for the HS cells, the supply voltage can be reduced to
no more than 4 · 0.15 V = 0.6 V. This voltage is only 2Vth for the LL cells, so these cells
would be several times slower.

1sometimes also called architecture driven voltage scaling.
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Figure 6.1: Delay vs. supply voltage.

These observations lead to a number of possible scenarios as shown in figure 6.2 on the
next page. In each of these scenarios a design is first speeded up by means of hardware
duplication. Pipelining or other ways of speeding it up would also be an option, but for
the figures duplication is assumed. Next, the voltage is reduced. The point at which the
design is found is indicated by the dot. Notice, that the leakage reduction in the last step
is not drawn to scale, what looks like a zero leakage in the left column could still me more
than what would look like a non-zero leakage in the right column.

The speeding up step increases the time the component has available to complete it’s
work (tp,max), so the dot moves to the right. The downscaling of the voltage increases
the delay of the HS cells somewhat and increases the delay of the LL cells even more, so
tp,min and tp,e also move to the right. At the same time, the amount that each cell leaks is
reduced.

Scenario A is a case where the initial design consists of a mix of HS and LL cells and so
does the final design.

Scenario B has no HS cells in the initial design, but the delay of the circuit increases so
much during downscaling that the final design has.

Scenario C is the opposite of scenario B. The initial design contains HS cells, but the
speed-up is so large, that the following downscaling does not move the design back
into the leaking area.

Of course, there could also be a scenario D, where the design both before and after
the transformation contains no LL cells. This is a less interesting case. For the remaining
scenarios, the following two questions should be answered:

1. Is the end result a reduction of the leakage power?
2. If it is, how large is this reduction?

These answers will be investigated in the following two sections. The first question in
the form of an analysis of a worst case situation and the second question in the form of an
extension to the power estimation method presented in chapter 5. Finally, architectural
voltage scaling will be performed on the example design from chapter 4 in two different
ways.
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Figure 6.2: Possible scenarios for voltage scaling. The leakage reduction in the right column
has been downplayed.
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6.2 Architectural voltage scaling in multiple thresh-

old CMOS

In order to determine whether architectural voltage scaling will result in a leakage power
reduction, scenario B, which can be considered the worst case situation, will be examined.

The leakage power in the speeded up version of scenario B (middle graph) is

Pleak,∞ = #cells0 Pleak,LL

where Pleak,LL is the average leakage of an LL cell. Correspondingly, Pleak,HS is the average
leakage of an HS cell. #cells0 is the number of cells before the voltage reduction.

The leakage power in the voltage reduced version is

Pleak,1 = KVL((1− ω)Pleak,LL + ωPleak,HS) #cells1

where ω is the cell mix quotient, i.e. the number of HS cells divided by the number of cells
in the design. #cells1 is the number after the voltage reduction. KVL is defined in equation
2.7 on page 19.

In summary, a voltage reduction is seen if the following relation holds true.

#cells0 Pleak,LL > KVL((1− ω)Pleak,LL + ωPleak,HS) #cells1

Generally, the area increase through the tightened delay constraint is only a few times as
figure 5.2(e) on page 36 shows an example of. So #cells1 and #cells0 can be removed from
the relation without affecting the argument much.

Moving things around a little gives the following result.

Pleak,LL

((1− ω)Pleak,LL + ωPleak,HS)
> KVL (6.2)

The variables of the left side of relation 6.2 can be considered known from characterization
data and cell library data. ω is not constant with voltage, because LL become slower faster
than HS cells do. This will decrease the left side of the equation.

KVL depends on the amount of voltage reduction done, so the final voltage, Vdd,1, has
to be determined.

inital design voltage scaledspeeded up

all cells in the
critical path
are LL

all cells in the
critical path
are HS

all cells in the
critical path
are HS

tp,max

Pleak Pleak Pleak

tp,max tp,max

Vdd = Vdd,0 Vdd = Vdd,1Vdd = Vdd,0

tp,min,0 tp,e,0tp,e,0tp,min,0 tp,min,1

= tp,max,1

Figure 6.3: A closer view at scenario B.
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Figure 6.4: Voltage scaling a 16 by 16 multiplier – before the voltage reduction.

Before the voltage reduction in scenario B, all cells of the critical path are LL cells (see
figure 6.3). After the voltage reduction (right graph), all cells of the critical path are HS
cells. The shift of the leakage characteristic happens because the cells are getting slower.
Specifically, tp,min is increased at the rate that the delay of HS cells increases when the
voltage is reduced. This rate will be called ∆d,HS. The following expresses the relationship
between tp,min,0 and tp,min,1 which equals tp,max,1 in the final design in figure 6.3.

tp,max,1 = tp,min,0 ·∆d,HS (6.3)

The value of ∆d,HS can also be expressed by the following expression derived from equation
6.1 as follows.

∆d,HS =
τ1
τ0

=

Vdd,1

(Vdd,1−Vth,HS)2

Vdd,0

(Vdd,0−Vth,HS)2

=
Vdd,1

(Vdd,1 − Vth,HS)2
·
(Vdd,0 − Vth,HS)

2

Vdd,0
(6.4)

Equation 6.4 can be solved for Vdd,1 in order to determine how much the voltage can be
reduced to slow the critical path down by a factor ∆d,HS. The solution is the following
expression.

Vdd,1 =
2∆d,relVth,HS + 1 +

√

4∆d,relVth,HS + 1

2∆d,rel
(6.5)

where

∆d,rel =
∆d,HSVdd,0

(Vdd,0 − Vth,HS)2
(6.6)

Now that Vdd,1 is known, it can be inserted in equation 2.7 on page 19 in order to
calculate KVL and through equation 6.2 determine if the voltage scaling procedure has
resulted in a power reduction.

Unfortunately the complexity of the situation does not lend itself to an analytical
analysis, but the following example shows that architectural voltage scaling does in fact
not always result in a power saving.

Consider the 16 by 16 bit multiplier discussed in chapter 5. Assuming that the speed up
of the circuit allows the component to complete its work in 14 ns (figure 6.4), the voltage
is to be reduced until this timing requirement is just met. The initial voltage Vdd,0 is 1.0 V.
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From the characterization data and cell library data the following parameters are
known2:

Pleak,∞ = 0.1021µW

|Vth,HS| = 0.15 V

Pleak,LL = 282.5 pW

Pleak,HS = 631, 460.1 pW

tp,min,0 = 3.3 ns

ω = 0.572

η = 0.335

m = 1.350

vT = 25.7 mV

Using the expressions in the above discussion, the resulting leakage power consumption can
now be calculated.

From 6.3:

∆d,HS =
14 ns

3.3 ns
= 4.2424

From 6.6:

∆d,rel =
4.2424 · 1.0 V

(1.0 V− Vth,HS)2
= 5.8719 V−1

Inserting this in equation 6.5 yields

Vdd,1 = 0.416 V

With equation 2.7 on page 19 the leakage reduction factor KVL can be determined to be

KVL = 1.48 · 10−3

which is the right hand side of equation 6.2. The left hand side can be computed to

Pleak,LL

((1− ω)Pleak,LL + ωPleak,HS)
= 0.78186 · 10−3

Obviously, this is smaller than KVL, so the reduction of the voltage did in fact increase
the leakage power. It has, however, reduced the dynamic power.

This example shows, that the designer can no longer trust that reducing the voltage
will always decrease the power consumption, because the synthesis tool will have to cope
with the changed timing and may thereby destroy the improvement.

In other cases reducing the voltage also reduces the power consumption. Obviously,
scenario C from figure 6.2 and the not displayed scenario D, where no HS cells are involved
at any time during the design process, will benefit from voltage scaling. In scenario B, the
voltage can be lowered at least to the point where the synthesizer starts to use HS cells.
Scenario A is harder to predict.

2at 25 ◦C
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Figure 6.5: Using characterization data for Vdd,0 to look up a power estimate for Vdd,1.

Saying anything in general about how far the voltage can be reduced is not possible
because it depends on a host of parameters, including complex ones such as the synthesis
algorithm and the circuit structure.

Whether or not to reduce the voltage should be a decision made individually for each
case after careful estimation of the effects. Since it is typically the complete chip and not
just a single component that has its voltage reduced, reducing the supply voltage may
reduce the leakage power consumption of one part of the circuit while it increases the
leakage in another.

6.3 Estimation of power consumption with voltage

scaling

The designer will need a convenient way to evaluate his decisions to determine the con-
sequences of voltage scaling. Therefore the estimation technique presented in chapter 5
needs to be extended for this purpose.

This can be done in two ways. One way is to recharacterize the components for a
number of voltages, but this can become very tedious. The other way is to re-use the data
characterization data by means of the following method.

The procedure is essentially the same as the one outlined in the previous section. It
needs, however, to be extended to estimate the leakage at any point of the characterization
graph.

In estimation, the final voltage is decided by the designer as an input to the estimation
tool, so ∆d,HS (and ∆d,LL) can simply be calculated by equation 6.4.

As mentioned above, the critical path at tp,max = tp,min consists of all HS cells. At
tp,max = tp,e it consists of all LL cells. Therefore the following dependencies between
tp,e and tp,min at Vdd,0 and at Vdd,1 can be assumed.

tp,min,1 = ∆d,HS tp,min,0 (6.7)

tp,e,1 = ∆d,LL tp,e,0 (6.8)

This can be used to calculate the new position of the characteristic after the right shift
during supply voltage reduction.

In order to look up the leakage value at Vdd,1, tp,max,1 is mapped onto the leakage
characteristic for Vdd,0 as shown in figure 6.5. By calculating where tp,max,1 is placed with



6.4 Application to the example 52

respect to tp,min,1 and tp,e,1, it is possible to find the corresponding position with respect to
tp,min,0 and tp,e,0.

pos =
tp,max,1 − tp,min,1

tp,e,1 − tp,min,1

pos is a fraction that specifies at which fraction of the distance between tp,min,1 and tp,e,1,
tp,max,1 is. In the figure this is about 60%. Next, the same point is found in the characterized
data:

tp,max,0 = pos · (tp,e,0 − tp,min,0) + tp,min,0

Finally, the tp,max,0 is used to look up the leakage in the characterized data and this leakage
is multiplied by KVL to obtain the estimate for the voltage scaled circuit.

This estimation method is very simple and can easily be implemented within the spread-
sheet model. On the other hand, it assumes, that the shape of the characteristic does not
change because of the voltage reduction, which may not be true.

In the following section two practical examples of architectural voltage scaling are
evaluated using this method.

6.4 Application to the example

In the following two sections, architectural voltage scaling will be applied to the example
design in two different ways. First, the data-path will be duplicated, so the design can
run at a lower clock frequency. In the second example, the higher speed will instead be
achieved through pipelining.

6.4.1 Duplication

As mentioned before, the critical path in the design in figure 4.4 on page 30 is the multiply-
accumulate data-path. In the design shown in figure 6.6 on the following page, this data-
path has been duplicated, so that each of the two data-paths will multiply and accumulate
half of the incoming data pairs. A final adder combines the results of the two units. This
extra stage and the alternated operation of the two data-paths adds two clock cycles to
the latency but does not affect the throughput. According to the specification on page 29,
this is acceptable.

The timing estimation for this architecture is shown in table 6.1 on page 55 both after
the doubling and after the subsequent voltage reduction to be compared with figure 5.1 on
page 43. The added complexity needed for the control unit has not been modeled. Area
was increased 107%.

The estimation table now has two extra columns. tp,max,0 contains the value that is
used to look up data in the characterization table. tp,rel tells how many clock periods the
multiply-accumulate unit can spend for its work. The duplicated data-path units each
have two clock periods available, because they are clocked at half frequency. This is used
for the calculation of the dynamic power consumption.

The doubling of the data-path has effectively removed the leakage. It was reduced from
10.77µW to 0.144µW. Dynamic power has increased slightly from 4.68µW to 6.74µW
due to the extra adder and register. The interesting question is if reducing the voltage will
improve the leakage power consumption further.
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Figure 6.7: The multiply-accumulate unit with a pipelined data-path.

By experimentation, the minimal leakage power is found at Vdd = 0.904 V. This is the
point where the data-path has tp,max=tp,min. Any further reduction of the supply voltage
past this point increases the leakage power consumption. The dynamic power has decreased
a little to 5.51µW. Thus, leakage consumes only 1.0% of the total power.

Minimal total power is found at Vdd = 0.508 V, where the design just meets it’s timing
requirement (data not listed, see 6.3 on page 58 for a summary). Here, leakage has increased
to 2µW, but since the dynamic power has continued to fall to only 1.74µW, the total power
consumption is now 3.75µW. Leakage now contributes 53.6% of the total power.

The estimation model has been implemented for this design in the spreadsheet to be
found in appendix E. The reader is invited to explore it himself.

6.4.2 Pipelining

Figure 6.7 shows an alternative design. Through the insertion of an extra pipeline register
in the data-path, the multiplier and the add-mux stage both have the full clock period of
8 ns to do their computation3. Surprisingly, area is decreased 8%, but this is an estimate
and may not be entirely accurate.

Table 6.2 lists the estimation results for this design. Before the voltage reduction, the
leakage was already reduced from the original design 10.77µW to 0.068µW because no HS
cells are needed in the data-path any more. This is a little less than half the leakage of the
parallelized design. Dynamic power has risen from 4.68µW to 6.54µW, a little less than
the parallelized design.

A minimal leakage of 0.051µW was found at Vdd = 0.973 V, where it consumes only

3The multiplier and the adder each have the full clock period minus the time needed for the registers
and the mux to be LL.
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# comp.
tp,min

ns

tp,e,0
ns

tp,max,1
ns

tp,rel
tp,max,0

ns
Pleak

ns

Pdyn
µW

%on
Pdyn

ns
Ptot
µW

Pleak
Ptot

2 mult add 2.800 13.00 16.0 200% 16.0 0.120 182.13 2% 3.64 3.76 82.9%
1 add rpl 8 0.850 1.60 6.0 100% 6.0 0.00244 26.75 2% 0.54 0.54 1.7%
1 mux 8 0.055 0.18 1.0 100% 1.0 0.00129 4.00 2% 0.08 0.08 0.9%
1 reg 8 0.060 0.07 1.0 100% 1.0 0.00278 7.97 2% 0.16 0.16 1.9%
1 controller 0.070 1.40 8.0 100% 8.0 0.00258 6.08 2% 0.12 0.12 1.8%
1 add rpl 24 2.600 4.50 7.5 100% 7.5 0.00732 86.41 2% 1.73 1.74 5.1%
3 reg 8 0.060 0.07 0.5 100% 0.5 0.00834 23.90 2% 0.48 0.49 5.8%

10 0.145 337.25 6.74 6.89 2.1%
(a) Without voltage reduction.

# comp.
tp,min

ns

tp,e,0
ns

tp,max,1
ns

tp,rel
tp,max,0

ns
Pleak

ns

Pdyn
µW

%on
Pdyn

ns
Ptot
µW

Pleak
Ptot

2 mult add 2.80 13.00 16.0 200% 12.99 0.0449 148.84 2% 2.98 3.02 83.5%
1 add rpl 8 0.85 1.60 6.0 100% 4.64 0.000873 21.86 2% 0.44 0.44 1.6%
1 mux 8 0.055 0.18 1.0 100% 0.79 0.000461 3.27 2% 0.07 0.07 0.9%
1 reg 8 0.06 0.07 1.0 100% 0.60 0.000996 6.51 2% 0.13 0.13 1.9%
1 controller 0.07 1.40 8.0 100% 6.48 0.000923 4.97 2% 0.10 0.10 1.7%
1 add rpl 24 2.60 4.50 7.5 100% 5.96 0.002619 70.61 2% 1.41 1.41 4.9%
3 reg 8 0.06 0.07 0.5 100% 0.31 0.002987 19.54 2% 0.39 0.39 5.6%

10 0.0538 275.60 5.51 5.57 1.0%
(b) With voltage reduced to 0.904 V

Table 6.1: Leakage estimation for the data-path duplicated design.
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0.8% of total power. As before, the leakage power begins to rise past this point, while total
power falls due to the reductions in dynamic power.

Minimal power is at the minimal voltage of Vdd = 0.507 V (not listed, see the summary
in table 6.3.). Here, leakage consumes 1.5µW, which is 42.7% of the total power consump-
tion which is now 3.18µW. This is almost a fifth of the original power consumption.

Again, the reader is encouraged to explore the design by means of the spreadsheet in
appendix E.

Obviously, the placement of the pipelining register is sub-optimal. Since the adder and
the multiplier have different delays, a pipeline register that was at midpoint in the data-
path would balance the delays better and allow the synthesizer to use less HS cells. This
pipeline register would have to be placed inside the multiplier.

In fact, retiming, that is, moving registers around in the design can be a good tool to
balance computation between registers and thereby reduce the number of HS cells used. It
can often be employed in situations where voltage scaling, pipelining or other paralleliza-
tions are not an option.

6.5 Conclusions for voltage scaling

Contrary to expectations, voltage scaling turns out not always to reduce leakage. Because
the supply voltage is already very close to Vth for LL cells, the delay of these cells rises
much faster than for HS cells, resulting in the synthesizer being forced to use more leaky
HS cells.

Table 6.3 shows a summary of the power dissipation of the different versions of the
design. It demonstrates clearly, that usage of more hardware can in fact reduce leakage
power quite considerably.

In the examples explored, reductions of the voltage were only beneficial for the power
consumption of a component as long as the timing constraint of the component stayed
above tp,e. This was the optimal point. However, the power consumption is a result of
many parameters including technology parameters, circuit and synthesis tool behavior.
This may be different in a different setup.

The estimation method developed here was also implemented in the spreadsheet model
attached in the digital appendices, appendix E. With this tool it is easy to explore design
space, allowing the designer to quickly gain experience with the consequences of various
modifications to the design for both leakage power and dynamic power.
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# comp.
tp,min

ns

tp,e,0
ns

tp,max,1
ns

tp,rel
tp,max,0

ns
Pleak

ns

Pdyn
µW

%on
Pdyn

ns
Ptot
µW

Pleak
Ptot

1 mult 8 1.80 7.00 7.93 100% 7.93 0.0277 258.50 2% 5.17 5.20 26.7%
7 reg 8 0.06 0.07 0.07 100% 0.07 0.0469 118.49 2% 2.37 2.42 45.2%
1 add cla 24 0.80 7.00 7.75 100% 7.75 0.0159 75.61 2% 1.51 1.53 15.4%
1 mux 24 0.06 0.18 0.18 100% 0.18 0.0041 10.38 2% 0.21 0.21 3.9%
1 add rpl 8 0.85 1.60 6.00 100% 6.00 0.0024 26.75 2% 0.54 0.54 2.4%
1 mux 8 0.055 0.18 1.00 100% 1.00 0.0013 4.00 2% 0.08 0.08 1.2%
1 reg 8 0.06 0.07 1.00 100% 1.00 0.0028 7.97 2% 0.16 0.16 2.7%
1 controller 0.07 1.40 8.00 100% 8.00 0.0026 6.08 2% 0.12 0.12 2.5%

14 0.104 507.78 10.16 10.26 1.0%
(a) Without voltage reduction.

# comp.
tp,min

ns

tp,e,0
ns

tp,max,1
ns

tp,rel
tp,max,0

ns
Pleak

ns

Pdyn
µW

%on
Pdyn

ns
Ptot
µW

Pleak
Ptot

1 mult 8 1.800 7.000 7.40 200% 7.00 0.0207 121.88 2% 2.44 2.46 40.9%
7 reg 8 0.060 0.070 0.30 100% 0.26 0.0146 52.81 2% 1.06 1.07 28.8%
1 add rpl 24 2.600 4.500 7.50 100% 7.23 0.00549 81.80 2% 1.64 1.64 10.8%
1 mux 24 0.060 0.180 0.20 100% 0.19 0.00306 10.25 2% 0.20 0.21 6.0%
1 add rpl 8 0.850 1.600 6.00 100% 5.60 0.00183 25.33 2% 0.51 0.51 3.6%
1 mux 8 0.055 0.180 1.00 100% 0.94 0.000965 3.79 2% 0.08 0.08 1.9%
1 reg 8 0.060 0.070 1.00 100% 0.86 0.00209 7.54 2% 0.15 0.15 4.1%
1 controller 0.070 1.400 8.00 100% 7.57 0.00193 5.76 2% 0.12 0.12 3.8%

14 0.0507 309.15 6.18 6.23 0.8%
(b) With voltage reduced to 0.973 V

Table 6.2: Leakage estimation for the pipelined design.
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Vdd Pleak Pdyn Ptot % leak
initial 1.0 V 10.77µW 4.68µW 15.45µW 69.7%

duplicated 1.0 V 0.144µW 6.74µW 6.89µW 2.1%
0.904 V 0.054µW 5.51µW 5.57µW 1.0%
0.508 V 2.0µW 1.74µW 3.75µW 53.6%

pipelined 1.0 V 0.068µW 6.54µW 6.60µW 1.0%
0.973 V 0.051µW 6.18µW 6.23µW 0.8%
0.507 V 1.50µW 1.68µW 3.18µW 47.2%

Table 6.3: Results for voltage scaling.



59

Chapter 7

Wire leakage minimization

Since the beginning of VLSI design, transistor sizes have continued to become smaller.
This decrease in size has traditionally not been used to make smaller chips, but to put
more devices onto the die. In fact, according to [24], the die size itself has been steadily
increasing.

For interconnect, the good news is, that the delay of local wires more or less tracks the
delay of gates, [34]. For wires that cross the chip the prospects are worse. If repeaters are
inserted, the delay of these global wires remains about constant over technology genera-
tions. This means, that the disparity between the delay of global wires and the delay of
gates has been growing and continues to grow. In fact, the number of gates that can be
fitted onto a die is now so large that these gates can no longer all communicate within a
single clock cycle. This problem has become one of the main bottlenecks to performance.

The repeaters inserted into wires in order to keep the delay low are typically very wide.
These repeaters are very leaky, which is likely to become a problem in the future.

In this section, some of the design space available to the architect with respect to long
wires will be explored.

The discussion is kept at an architectural level, so most of the lower level issues such
as crosstalk and noise margins are abstracted away.

Only simple communication infrastructures, namely point-to-point links and shared
buses, are considered. Comparing more elaborate structures such as as on-chip networks is
not done here. However, such structures typically also include long wires (although often
not quite as long) and may benefit from this discussion.

7.1 The cost of a wire

Historically, wires were free. In the ideal model, a wire is just an equipotential area with
zero delay. This model is still more or less usable for local wires, but for global wires it
is not. Global wires have considerable capacitance, resistance and inductance which delay
the signal propagation through them.

Both the capacitance Cw and the resistance Rw of a wire are proportional to wire length.
The delay of a wire is roughly

τw = RwCw
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thus the delay of an uninterrupted wire scales quadratically with wire length. The
solution to this problem is to insert repeaters in the wire at strategic positions. Repeaters
are typically inverters as shown in figure 7.1, but they can also be buffers, which makes
the insertion of them logically easier. The delay of each stage of the wire is the same, so
by using repeaters the delay of the wire becomes proportional to the wire length.

(a) Unidirectional wire.

(b) Bidirectional wire.

Figure 7.1: Wires with repeaters.

A number of authors present algorithms for optimal insertion, dimensioning and placing
of repeaters according to different optimality criteria such as delay, bandwidth, area or
power, among these [34, 35, 36]. This issue is best solved by tools and will not be discussed
any further here.

To help evaluate the options discussed here, a simple repeater insertion tool was created.
It is described in appendix D.

The number of wires that need buffering is increasing exponentially over technology
generations, [37]. According to [35], the number of buffers per chip is about 25, 000 at
130 nm and will reach 797, 000 at 70 nm. According to [38], buffers and inverters currently
already contribute up 50% of total transistor width. These repeaters typically need a high
drive strength to meet timing requirements1 ([35] talks about strengths of 2x to 100x). Since
repeaters consist of inverters, that have no stacking effect and since the delay requirements
typically cause them to be HS, they consume a large amount of leakage power.

In summary, wires are no longer free. Before leakage power became a problem, long
wires only cost area and design effort. A wire that was not used did not cost any power.
This situation has now changed. Every wire with repeaters causes a constant power con-
sumption. In the following section, the architect’s possibilities to reduce this contribution
will be discussed.

7.2 Design space for wire leakage

The discussion in this section will evolve around the list of leakage reduction opportunities
first given on page 21, namely

• increasing Vth

1Drive strength refers to the width of the transistors in an inverter compared to the width of a unit
size inverter. So the transistors in a x2 inverter are twice as wide as the transistors in a minimum size
inverter. However, large drive strengths are typically implemented by using several smaller transistors in
parallel.
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(a) Wire with HS repeaters.

(b) Wire with LL repeaters and shortened distance between repeaters.

(c) Wire with LL repeaters with drive strength matched to the HS repeaters.

(d) Two time multiplexed wires with LL repeaters.

Figure 7.2: Using LL repeaters instead of HS repeaters.

• reducing the total width of devices that leak
• increasing transistor stacking
• reducing operating temperature
• reducing Vdd

• applying less leaky inputs to gates

Reducing the temperature does not provide any good opportunities for the circuit
designer, and since repeaters have to be inverters, neither does increasing the transistor
stacking. The remaining ones will be discussed in the order they are listed. The last two
will be treated together.

7.2.1 Increasing the threshold voltage

As seen in voltage scaling, using LL cells instead of HS cells, can reduce the leakage power
of a circuit very much, bringing it close to zero. But since LL inverters are somewhat slower
than HS cells, they may not be an option for global wire drivers since these typically have
very strict timing requirements.

In order to compensate for this deficiency in speed, a number of options exist as sum-
marized in figure 7.2. Options (b) and (c) will be treated together and option (d) will be
treated separately.
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Repeater count versus repeater drive strength

The first two options (b) and (c) are simply to use more repeaters or to make the repeaters
stronger in order to match the speed of HS-repeaters. Since choosing the number and size
of repeaters is a tool task and the result depends on which optimality criteria the tool uses,
this option will not be discussed deeply here.
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Figure 7.3: Drive strength (a) and leakage power consumption (b) of a long wire vs. number
of repeaters. Total delay: 0.5 ns.

To investigate this, the long 16 bit time multiplexed bus from the example design was
examined. Each of the wires in the bus must have a propagation delay of no more than
0.5 ns. A repeater insertion tool (appendix D) was given the task to meet this requirement
for a certain number of repeaters N . Figure 7.3(a) shows the drive strengths required by
of each of the N repeaters to meet the 0.5 ns total delay requirement.

The graph for the HS driver cells show, that for a low number of segments, the wire delay
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no. of total
repeaters rep. width Pleak Pdyn Ptot

HS 3 164 12.98µW 471.9µW 484.91µW
LL 3 393 0.140µW 502.2µW 502.35µW

doubled LL 3 228 0.143µW 454.1µW 454.21µW
tripled LL 3 209 0.077µW 401.8µW 401.87µW

Table 7.1: Minimum leakage and dynamic power for various bus architectures. The dy-
namic power is with white noise input and activity 2% of the time.

dominates, so stronger repeaters are needed to drive it. For a high number of segments,
the repeater delay dominates, so the faster repeaters are needed. Thus there is a minimum
drive strength.

The leakage graph in figure 7.3(b) shows that the minimum drive strength is not the
point with the minimum leakage. The fewer the number of repeaters, the lower the leakage.
This happens because the drive strength of the repeaters is less than doubled when the
number of repeater stages is. As a conclusion, option 7.2(c) is more leakage efficient than
option 7.2(b).

Obviously, the total leakage of the wire driven by LL repeaters is much less than the
HS version. However, the LL drivers have to be very strong in order to meet the timing
requirements. In fact, the LL graph contains only a few points because this was not
practically possible to create inverters that were fast enough for less than two or more
than seven repeater stages.

The LL repeaters are in general more than twice as wide as the HS repeaters.
Both the HS and LL version of the bus have minimum power at the minimum number

of segments. This is true for both dynamic and static power. The figures are summarized
in table 7.1.

Clearly, dynamic power dominates the static power consumption, but this may be
different in a different situation. In this case, the leakage power is reduced to slightly more
than 1% of the original value. Dynamic power is, however, increased due to the capacitances
of the larger repeaters, so the total result is an increase in power consumption. With this
method, the decrease of static power comes at a cost of an increase in dynamic power.

Duplicating wires

The last option in figure 7.2 shows a rather radical approach to minimizing the leakage,
duplicating the link to reduce its timing requirement. Given the large difference between
HS and LL repeater leakage, this is likely to still result in a leakage power reduction.
However, the area penalty may be quite large.

Furthermore, this method requires some logic to control the time multiplexing, which
will either require that both ends are synchronized by a global clock as shown or that the
link is self-timed.

This situation was simulated and the result is in figure 7.4. The doubling of the delay
requirement has meant a considerable reduction in LL repeater strength. Taking this
approach one step further and tripling the bus reduces the drive strength and hereby the
leakage further.
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Figure 7.4: Drive strength and leakage power for the single HS line (delay: 0.5 ns) compared
to the duplicated LL line (delay: 1.0 ns) and tripled LL line (delay: 1.5 ns) topology.
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Table 7.1 on page 63 shows the results of these two experiments. This time dynamic
power is also reduced, because the driver capacitances are decreased. Consequently, both
possibilities decrease the total power consumption.

This solution does decrease the total active area used by repeaters, but it also increases
the total metal usage. This limits the total on-chip bandwidth.
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7.2.2 Reducing the total width of leaking devices

Reducing the number of repeaters means to reduce the number of wires between two points.
If two communication links are never used at the same time they are good candidates for
time multiplexing. This may also be possible if there is enough bandwidth on one link to
support the transfer and a little extra latency does not matter.

Figure 7.5 illustrates how two buses from the same location to the same destination
can be replaced by a single time multiplexed line. If M buses of N bit each are replaced
by one bus of N bit, then the leakage from drivers is reduced by a factor of

N + dlog2Me

N ·M

since dlog2Me is the number of bits needed to communicate to the other end, which
data the bus is carrying. These savings can become quite substantial for wide buses or
many buses.
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(b) Time multiplexed 4-bit link.

Figure 7.5: Time multiplexing a link.

In the example used here, no other bus is available which could be used for this purpose,
but if there had been, say, two of them, their overall reduction would have been 53%.

Note, that this is different from the duplication strategy used above. Here, two buses
with a surplus of communication capacity are combined to save hardware. Above, a bus
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that was heavily stressed in terms of timing was doubled to lighten the stress.
This sharing strategy is just a special case of the traditional shared on-chip bus principle,

where multiple components share a single communication channel. Figure 7.6(a) shows
such an example.

E

B

A

C

D

(a) Shared bus.

C

A

D

E

B

(b) Shared bus and local buses.

Figure 7.6: Exploiting locality for driver minimization.

Even in this scheme, reducing the amount of driver hardware might be possible. Since
the units A and B as well as C and D are physically close, they can share the access to the
bus. By adding another bus hierarchy, only one large driver onto the global bus is needed
for these two units. If the two units never communicate, the local bus can be as simple as
a number of OR-gates and a little arbitration hardware.
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If two units that are nearby only communicate with each other, they need not use the
bus. As in the case of unit C and E, a specialized point to point link can be less leaky if
the distance is short enough.

The savings achieved by sharing bus access or by replacing bus access by local infras-
tructure will typically be much smaller than the ones achieved by sharing the bus in the
first place, as above. Since the bulk driving of the bus is done by repeaters which are
existent in the bus anyway, replacing two bus accesses by one saves just that: a single
driver. This saving may or may not be worth the overhead. However, exploiting locality
in communication does also reduce dynamic power consumption.

7.2.3 Reducing the supply voltage

One of the classic ways to reduce the dynamic power consumption of a bus is to use a low
swing bus. The repeaters of such a bus would also use the low voltage and thus consume
less dynamic and static power. This is, however, a circuit level problem and will not be
discussed further here. A good overview of these techniques can be found in [39] where a
number of such schemes for dynamic energy, delay and signal to noise ratio are evaluated.

Architecturally more interesting is the idea to entirely turn off the supply voltage in
periods of inactivity on the wire. This could almost entirely eliminate leakage power during
these periods, but on the other hand, it would also reduce the speed. According to [1],
a 99.95% reduction in idle current comes at a cost of a 75% to 88% increased speed.
Furthermore, this technique requires a certain wake-up period. This problem has all the
classical issues of prediction of optimal idle and wake-up times. As already mentioned
earlier, Benini et al. provide a survey of techniques involved in [15, sec. 5.1]. Calhoun et
al. present circuitry to implement supply voltage gating in [12].

In the present example design, the bus is used only 2% of the time, so ideally, 98% of
the leakage energy can be saved, if the bus is switched off the rest of the time.

On the other hand, this technique is only an option if delay constraints are not very
strict. In this case, a single, small LL driver driving the whole line may be just as leakage
efficient at a much lower design effort. The technique does, however, offer reductions for
dynamic power.

7.2.4 Input vector control

As an alternative to turning off the supply voltage, the fact that the leakage power con-
sumption of CMOS gates is input dependent can be exploited for reducing the standby
leakage power. For instance, the 55x HS inverter used in the original minimum leakage
solution dissipates 1.47 times as much static power when applied a 0 as input as it does
when applied a 1.

This can not be exploited for reducing the static power consumption of wires repeated
by means of inverters, because a 1 at the beginning of the line would turn in to a 0 at
every other stage, causing every other inverter to enter its leaky state.

It does, however, make sense in wires repeated by buffers as shown in figure 7.7. Since
one of the inverters is smaller than the other, it will leak much less. By placing the large
inverters in its less leaky state, static energy can be reduced. This is easily accomplished
as it can be done from the driving end of the wire.
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Figure 7.7: Wire with buffers as repeaters.

If the leakage of the smaller inverter is negligible compared to the bigger inverter then
67% of the leakage can be reduced by this procedure. But normally, this will not be the
case and the saving would be smaller. In any case, using buffers instead of inverters may
be a good idea.

A similar approach is presented by Deogun et al. in [38]. The authors present a method
based on asymmetric inverters consisting of one HS and one LL transistor. This creates
inverters that have a particularly non-leaky state. Inverters with LL pull-up and pull down
are interleaved on the wire, giving each wire an LL state.

Deogun et al. use statistical information of the data transfered over the bus to create
a bus encoding technique that results in increased probability that each wire is in a less
leaky state. Hereby, run-time power is reduced. The encoding is a simple look-up table
based encoding. Obviously, this only works if the distribution of the data to be transferred
is known at design time.

7.3 Conclusions for on-chip communication

This chapter has explored part of the design space for long wires on chip. A number of
techniques offer opportunities for leakage reduction.

The first technique is to replace HS repeaters by LL repeaters. This requires a com-
pensation for the lower speed of the LL repeaters, which can be achieved either by using
repeaters with a higher drive strength or by duplicating communication links.

Duplicating communication links offers advantages as it reduces both static and dy-
namic power as well as repeater area, but it is only possible if throughput and not latency
is the limiting factor.

Another technique for reducing leakage associated with wires is to share them. If the
bandwidth of two buses is higher than necessary, then the communication infrastructure
can be shared. This is a well known infrastructure for connecting modules on and off chip.
However, the reasons for using shared buses have been others than leakage. A bus that is
not used is not free power-wise anymore.

Input vector control offers opportunities for some reductions in standby power con-
sumption. With buffers as repeaters or specially designed inverters, this solution is simple
to apply.

Finally, while low swing buses don’t offer any distinct advantages over the other tech-
niques for leakage power reduction, the total power consumption may benefit due to the
simultaneous dynamic power reduction.
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Chapter 8

Discussion and conclusions

8.1 Discussion

This thesis attempts to answer part of the question asked in the introduction: How should
the leakage problem be handled by the chip architect? In order to do so, two main subjects
were approached: Estimation and design.

From a number of promising candidate leakage reduction subjects, two design subjects
were chosen for closer examination: architectural voltage scaling and the reduction of the
leakage associated with wires. Furthermore, high level power estimation was examined.

Architectural voltage scaling is one of the traditionally very effective ways of reducing
power consumption. Since leakage power scales even faster with supply voltage than dy-
namic power consumption does, this was expected to work well. As shown in chapter 6,
this is not necessarily the case.

First of all, speeding up the circuit alone can bring considerable leakage reduction,
since it reduces the amount of HS cells needed. The subsequent re-tightening of the delay
constraints may in fact increase the leakage power consumption if it means that more HS
cells are being used. This happens because the effect of the cell mix on leakage dominates
the effect of the supply voltage.

A second effect is due to the low supply voltage used in leaky processes. This means
that the speed of LL cells degrades faster with supply voltage than the speed of the HS
cells. This was not modeled in the experiments done here, but it can be expected to reduce
the usefulness of voltage reductions further.

In summary, since the cell mix dominates the result of voltage reductions, voltage
scaling may not work if it has a negative effect on the cell mix. In total, however, the
simultaneous reduction of dynamic power consumption may dominate.

Wire leakage was treated in chapter 7. The findings were similar to the ones for voltage
scaling. If bandwidth is abundantly available then two units can share a communication
link and thereby save power. On the other hand, if the delay requirements are strict then
duplicating a link may yield power savings.

Low swing buses were found to offer no clear leakage reducing advantages over the other
techniques examined. Input vector control offers moderate savings at a small design effort.

Architecture level power estimation was treated in chapter 5. In acknowledging the
fact that area is an inappropriate predictor of leakage, given the fact that synthesis tools
can mix HS and LL cells, a novel leakage estimation method was proposed. This method
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is an extension of the well known spreadsheet model. By using precharacterized building
blocks, the estimation method can model the behavior of the synthesis tool. This only re-
quires simple interpolation between a values determined beforehand. A general simulation
framework for collecting this data by precharacterizing such building blocks was created
and presented in appendix C.

Including the effect of the synthesis tool in estimation is essential, since its effect on
leakage power is large. As a side-effect, this also predicts area and dynamic power better
than the traditional spreadsheet model does. The spreadsheet model is simple enough to
be implemented with macros in a regular spreadsheet, and this was done for the multiply-
accumulate example of this thesis.

With the extensions derived in chapter 6, the estimation method also handles voltage
scaling. This method is rather approximate as it neglects that LL cells slow down more
than HS cells when the voltage is reduced.

The estimation method has some limitations. First of all, its dependence on synthesizer
behavior, which is its strength, can also become its weakness when the synthesizer behaves
in a non-consistent way. Unfortunately, this is not uncommon. Next, the method requires
building blocks to be precharacterized. This may not be practical for a new design unless
it consists of standard building blocks or unless a similar design has been done before.

Furthermore, the requirement to have precharacterized data is worsened by the fact that
the result of connecting two combinational blocks is not always predictable. This requires
groups of building blocks between registers in the critical path to be precharacterized
together, which makes building a comprehensive library of precharacterization data much
less viable.

Finally, the method suffers from the disadvantage of all input-independent estimation
methods. Its accuracy is limited by the fact that it does not consider switching activity
and input probabilities.

However, all in all the proposed estimation method is more accurate than both the area
based estimators and the original spreadsheet model.

As a side product of this thesis, a 70 nm cell library was created. The creation method,
scaling down an existing 180 nm cell library, only makes this cell library a guess at what
a real 70 nm cell library will look like. However, the care taken when doing the scaling,
makes it a guess that can be expected to be accurate enough for the conclusions based
upon it to be trusted.

8.2 Future work

Not all questions have been answered by this thesis. As the problem of leakage power
consumption is relatively new, not much work has been done at the architectural level to
evaluate the consequences.

In chapter 3, a number of possible research areas were presented. Some of these already
see a lot of research, but others still need some work. On the subject of the leakage efficiency
of arithmetic units, some work could be done. Current synthesis tools don’t consider the
delay constraint dependency of leakage when choosing architectures for arithmetic units.
From experience it is known that this may lead to sub-optimal decisions. More research
in this area could help building better tools.
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Retiming is another subject which has not been fully explored for its leakage reduction
potential. Retiming, originally a designer task, is now beginning to become a tool task,
[40]. Currently such tools only use retiming for satisfying timing and area constraints.
More research in this area could help extend them to also minimize leakage.

While the proposed power estimation method provides an acceptable trade-off between
ease of use and accuracy, further work could improve it. First of all, a specialized tool could
make it much more usable. Integrating logic block characterization with the tool would
make the effort of using it much smaller. The tool PowerPlay [32], which unfortunately is no
longer available demonstrated how characterization data could be handled in a structured
way and made available to several designers at the same time.

More research on the effect of series connecting logic blocks might help reduce the num-
ber of logic blocks that have to be characterized in order to estimate the power consumption
of a circuit.

Finally, there is hope that synthesis tools will continue to improve their synthesis for
low leakage, thereby creating much more predictable results than today.

Only part of the design space for leakage power associated with on chip communication
was only explored in this thesis. Other aspects exist, especially in the context of the current
trend towards on-chip networks. The leakage overhead associated with the communication
infrastructure may change the optimal topology for a given situation, since networks have
a relatively large amount of wires per communication than do for instance shared buses.

On the subject of repeater sizing, developing a wire sizing algorithm that minimizes for
total power instead of only dynamic power, as is currently the case, still needs to be done.

8.3 Conclusions

Now that a transistor is no longer just a switch, the way low power design should be done
has changed. The changes are not radical, but neither can they be ignored. With leakage
power now being part of the equation, both power estimation and low power design have
become more complicated. There are two main reasons for this.

First of all, reducing total power is no longer equal to reducing dynamic power. Since
static power is now non-negligible, handling the power problem means to balance dynamic
and static power consumption, since what reduces one of them might at the same time
increase the other.

The second reason is, that the now-significant leakage power contribution is more com-
plicated than dynamic power was. Since with Multiple Threshold CMOS, the leakage
depends highly on the cell mix, any part of a circuit can be in one of two regions of the
design space as depicted in figure 8.1. In the delay un-constrained region, leakage power
is low and the area of the circuit is a good predictor of the leakage power. In the delay
constrained region, the leakage power consumption is considerably higher and depends
strongly on the delay requirements.

Furthermore, in this leakage critical area, the leakage power is highly dependent on the
performance of the synthesis tool. The synthesis tool will now more than before have to be
part of the simplified model that architects use for the lower levels in the design hierarchy.

With the proposed estimation method it is possible to explore the design space both for
static and total power consumption – given an appropriate set of precharacterized building
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Figure 8.1: The two regions of leakage.

blocks.
With multiple-Vth cell libraries, designing for low leakage power to a large extent be-

comes a matter of navigating the various parts of the circuit out of the leaky area. This
may be done by speedups such as parallelization or by moving slack around in the circuit
by means of for instance retiming. Other approaches, such as reducing area or voltage
only have a secondary effect on leakage power consumption unless the circuit is in the non-
leakage critical region. However, dynamic power consumption may counteract the moves
in the leakage department. This should not be forgotten.

It is, after all, still total power consumption that counts.



74

Appendix A

Official project description

NR.: 52
Title: Architectural aspects of design for low static power

consumption
Student: Martin Hans
Period: 17.02.2004 - 13.08.2004

Project description:

Objectives
The objective of this MSc thesis work is to investigate optimal design under the presence

of static gate leakages, and to device how design rules and trade-offs are altered.
Description
A main concern during the design of System-on Chips (SOCs) is the power budget,

especially battery supplied systems are considered. In general, dynamic and static contri-
butions constitute total power dissipation.

Dynamic power is primarily consumed by the information processing in the charging
and discharging of internal capacitances. As such, dynamic power consumption is propor-
tional to these capacitances, the switching frequency and the supply voltage. Static power
consumption, on the other hand, is caused by leakage currents while the circuit is idle, i.e.
not performing computations.

One key attraction of CMOS is negligible static power consumption. However, with
decreasing device sizes this property is no longer satisfied due to subtreshold conduction.
The reason for this is that for smaller devices, supply voltages are reduced. For speed, this
in turn forces a reduction in threshold voltages. As a consequence, transistors are no longer
turned off satisfactorily, i.e. drain currents contributes significantly to power losses in the
transistor non-conductive state. For a 0.13µm process, the static losses may constitute
almost 50% of the total power consumption.

The issue has been addressed by offering libraries of gates and cells in both low-Vth and
high-Vth versions. This offers the option of fast, low-Vth cells with high static power losses
where timing is critical, and a slower, high-Vth design for other parts. Traditional synthesis
tools do not offer the means to optimize for multiple-Vth libraries to reduce static power
consumption. The solution, using such known synthesis tools, consists of synthesizing a
design using a low-Vth library, under the constraint that timing and performance require-
ments are met. Then, in a post-synthesis phase, the back-annotated circuit is analyzed
with respect to power consumption and the circuit modified, replacing low-Vth by high-
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Vth library cells whereever possible. The update process does not involve any re-synthesis
steps.

This thesis work addresses the consequences of the availability of multiple-Vth libraries
at architectural level. This includes.a re-evaluation of traditional, architectural level design
choices with respect to static power losses.

The thesis work will be performed in parallel with two other MSc thesis works in a
collaborative but independent effort. One work focusses on the design of libraries offering
various speed to power alternatives, while the other work concentrates on the incorporation
of static power consumption metrics in the synthesis process.

Supervisor: Flemming Stassen
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Appendix B

Creating a cell library

Before the beginning of the work on this thesis, only a 180 nm cell library from ST Micro-
electronics (STM), [41, 42] was available at this department. Although it is available in
both a HS version and a LL version, this is not quite suitable for examining the leakage
problem of the future. At 180 nm leakage power still is very low, so illustrating the trade-
offs between leakage power and dynamic power would have required a very large circuit
with very low switching activity.

To be able to illustrate the problem in a more realistic setup, a cell library in a smaller
technology was needed. In this appendix, the creation of the 70 nm cell library used in the
project is described.

At the time of writing, 90 nm was being introduced in foundries around the world.
Introduction of 65 nm is scheduled to start in 2005 according to [43].

The UC Berkeley Device group has made predictive SPICE transistor models publicly
available at [25] for 180 nm, 100 nm and 70 nm processes. Currently this provides one of
the best ways to predict the behavior of future transistors.

A device size of 70 nm was chosen, since it allows results obtained in this project to be
valid for at least one more technology generation. Also, the Berkeley 70 nm model does
not reach too far into the future, so its predictions can be considered to have an acceptable
accuracy.

To arrive at a complete 70 nm cell library, the following paths were considered:

1. creation and characterization of a custom cell library by means of SPICE
2. downscaling of the existing 180 nm cell library to a smaller technology

The first option includes modeling a number of cells in SPICE and simulating these
netlists without doing any layout of the cells. Without layout, the effect of local routing
inside the cell is neglected, but this can be considered small compared to the routing
between the cells.

As shown in [44], the number of cells would not have to be large. According to the
article, reducing the number of cells from 400 to 11 only increases the delay of a circuit
by 5%. Using 20 cells, the increase is only 2%. However, area and power are increased by
35% and 58% for the 11 cell library and by 5% and 17% for the 20 cell library.

Characterizing a cell library is, however, not at all a simple task. Apart from charac-
terizing the individual cells for delay, capacitances, dynamic and static power, creating a
cell library from scratch would also involve synthesizing, layouting and routing a number
of typical circuits and collecting statistical information of wire lengths and loads in these
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Figure B.1: The scaling process.

circuits.
The second option provides a complete cell library with the same number of cells as

the existing 180 nm cell library (777 cells). The approach is to take a Synopsys Liberty file
[45] for the 180 nm cell library, which contains characterization data for each cell (such
as delay, leakage power, switching power, and wire load figures) and multiply all of these
figures with a factor to simulate the downscaling to a smaller technology.

While the first approach would have yielded the most accurate results, it would also
have been the most time consuming and circuits using the resulting library would suffer
from the power penalty of small cell libraries mentioned above. The second approach gives
a full size cell library, but the actual results are less accurate.

For the purpose of this project, accurate predictions of the delay and power figures in
future technologies are not necessary. Here, the purpose of the cell library is to allow for
illustration of the relative magnitudes of these figures. Therefore the second option was
chosen, but the scaling factors were estimated using SPICE simulations on a few cells as
in the first approach. The scaling flow used is illustrated in figure B.1.

First, the same cell netlists were simulated with both 180 nm and 70 nm transistors,
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then the characterization data obtained hereby was used to find the scaling factors, one
for each type of information contained in a Synopsys Liberty file (leakage power, dynamic
power, timing, capacitance etc.). Since different cells scaled differently from 180 nm to
70 nm, a simple weighting procedure was used, to find a single best-guess value for each of
the factors.

Unfortunately, transistor models were only available as BSIM3.3 and not in a BSIM4
version. BSIM3.3 does not model gate tunneling leakage1.

These scaling factors were applied to the existing cell library, hereby creating the
70 nm cell library, which could be used by the synthesis tool.

The details of this process will be documented in the following chapters. First the
information present in the Liberty file is described along with the method used for scaling
it. The following section describes the details of the cell characterizations and the weighting
procedure.

The tools created or modified for this work flow are included on the CD-ROM attached
as appendix E.

The cell library itself is not attached, as it is a derived work from a STM cell library,
which is confidential. However, with the tools included and the three step procedure
given in appendix E for producing the 70 nm cell library, the interested reader can easily
reproduce it, given the original STM file.

B.1 Scaling cell library contents

This section describes the models for timing, power and wire loading used in the Liberty file
as well as the method used to scale it. The models described here are from [46, 47].

One section for each of these parameters describes
1. how the parameter is modeled
2. how it is specified in a Liberty file
3. how it is scaled
For explanation of the contents of the Liberty file, a sample file can be found in section

B.3 on page 88. References to line numbers relate to this file. It is a shaved down version,
that only contains the parts needed for the discussion here. As such, it is not a complete
Liberty file.

Timing, power etc. can be modeled in several different ways in a Liberty file. Here,
only the models actually used in the STM file are used.

Scaling will be done by means of a script presented in section B.2.3. It takes the
following inputs, each of which will be explained in the following section.

B.1.1 Timing information

Two types of timing information are contained in the Liberty file, propagation delay and
transition times.

1BSIM3 and BSIM4 are developed by the Device Research Group of the Department of of Electrical
Engineering and Computer Science, University of California, Berkeley and copyrighted by the University
of California.



B.1 Scaling cell library contents 79

l leakage factor
rd rise cell delay factor
fd fall cell delay factor
rt rise transition time factor
ft fall transition time factor
rp rise dynamic power factor
fp fall dynamic power factor
c gate capacitance factor
a area factor
ru resistance/unit length factor
cu resistance/unit length factor
lib set name of new library to this
opc set name of operating conditions to this

voltage set voltage of new library to this
temp set temperature of new library to this

Table B.1: Inputs to the scale cellib script.

Dtotal

DwireDcell

BA

Figure B.2: The delay model used.

Modeling

The delay model used is called the CMOS nonlinear delay model [46, pp. 2-19 – 2-30]. It
can be expressed as

Dtotal = Dcell +Dwire

as shown in figure B.2. The total delay from the input of one cell A to the input of the
next cell B, Dtotal, is the sum of the propagation delay through A, Dcell and the wire delay
from A to B, Dwire.

As shown in figure B.3, Dcell is the delay between the change of the input and output
voltages measured at 50% of Vdd. The rising and falling delays are specified separately.

The delay Dcell is a function of the output load Cload and the input transition time
ttransition,in:

Dcell = f(Cload, ttransition,in)

The transition time is measured at the output of a cell as shown in figure B.4. It is the
time needed for the output to change from 10% of Vdd to 90% of Vdd for a rising transition
and from 90% to 10% for a falling transition.

The transition time at the output of a cell is also a function of Cload and ttransition,in, i.e.
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ttransition,out = g(Cload, ttransition,in)

Dwire is modeled by a balanced tree model. The load is assumed to be distributed
evenly on the N fanout branches as follows

Dwire =
R

N
(
C

N
+ Cpin)

where N is the fanout and Cpin is the input capacitance of the pin driven.

Representation

Timing information is specified in the Liberty file for each cell. For each cell timing
information is specified for each of the output pins. Furthermore, for each of the output
pins timing is specified separately for a rising and a falling transition resulting from a
transition of each of the input pins. Timing resulting from the simultaneous change of
several input pins is not specified. Figure B.7 illustrates this.

In the Liberty file, Dcell is specified as a lookup table for various values of Cload and
ttransition,in. For example as in lines 112 to 118. This is a table of Dcell,rise for various values
of ttransition,in horizontally and Cload vertically as defined in the look up table definition in
lines 27 to 32. The unit is ns. Figure B.5 shows a 3D plot of this table. For timing
analysis, the Synopsys tools perform a look up in these tables and interpolate the values
to find an estimate of the delay.
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Figure B.5: Cell delay model

The transition time is specified in a table just like Dcell. In the sample file, this happens
in the lines 127 to 139. As above, the Synopsys tools estimate ttransition,out by performing
interpolation of the values looked up. The resulting values of ttransition,out are used as
ttransition,in in subsequent levels of cells.

Every wire is associated with a wire load model (unless back-annotation from layout
and routing is used). Lines 42 to 55 shows two wire load model specifications. Of these,
only the capacitance and the resistance are used. The fanout N is taken from the netlist.
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The synthesizer chooses a wire load model by the area of the module it is in. The lines
58 to 64 specify, that the wires in modules with an area between 0 and 900µm should use
the wire load model maxarea 000990.

Scaling

For downscaling, the values of Dcell,rise are multiplied with the rise cell delay factor rd and
the values of Dcell,fall are multiplied with the fall cell delay factor fd.

The values of ttransition,out,rise are multiplied with the rise transition time factor rt and
the values of ttransition,out,fall are multiplied with the fall transition time factor ft.

The load capacitance values in the table index (line 31) are scaled by the wire capac-
itance factor cu, since wire capacitance is expected to dominate gate capacitance. The
input transition times were not modified, since they were also an input to the simulations,
so they were not known beforehand. However, it turned out, that they changed very little
during scaling, so this should not introduce a significant error.

Using constant factors for all of these assumes, that all cells will become faster or slower
by the same amount. This may lead to inaccuracies.

The resistance and capacitance values from the wire load model are simply multiplied
with the resistance per unit length and capacitance per unit length factors ru and cu

respectively.
Wire load selection models are scaled by multiplying the area figures in the wire load

selection rules by the area factor a.

B.1.2 Leakage power

Modeling

Since the leakage of a cell depends on the input values applied to it, the leakage model
reflects this.

Pleak,j,t = h(vj,0,t, vj,1,t, . . .)

where h is some function and vj,i,t is the value of input j to cell i at time t.

Representation

In the Liberty file, leakage power is given in several places. Lines 16 and 17 list the default
values for cells where nothing else is given. For each cell leakage values can be specified
separately for each of the possible input combinations as well as a default value for any
input combination not listed. Lines 71 to 83 illustrate this. The leakage power unit is pW.

Scaling

For scaling, all leakage values in the file are just multiplied by the leakage factor, l. This
introduces some error since the leakage power does not change at the same rate for all cells
during technology downscaling. For instance, the leakage power has been found to increase
faster for cells with a high drive strength than it does for single drive strength cells. See
the details in table B.5(a) on page 87.
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This is likely to make the synthesizer use more high-drive strength cells, than it other-
wise would have.

B.1.3 Dynamic power

Modeling

The dynamic power model used in the Liberty format is

Pdyn = Pdyn,int + Pdyn,cap

where Pdyn,int is the dynamic power dissipated inside the cell due to the charging and
discharging of capacitances internally to the cell and due to short circuit current. Pdyn,cap is
power dissipated by the charging and discharging of the capacitance output of the cell
i.e. wire capacitances and gate capacitances of cells driven by the output of the cell.

Pdyn,int can be expressed as

Pdyn,int = Eswitch · TR

where TR is the toggle rate activity and Eswitch is the energy dissipated during one tran-
sition of the output. TR is defined as the number of transitions per time period.

The capacitive switching power is modeled as follows

Pdyn,cap =
1

2
CV 2

ddTR

where the half factor stems from the fact that capacitive switching power is dissipated
once per rising and consecutive falling transition of the output. So TR is half the effective
frequency of the nodal charging αf introduced in equation 2.1 on page 15.

Representation

Like with timing, Eswitch is some function of Cload and ttransition,in. In the Liberty file,
Eswitch is specified in a look up table in the internal power section, lines 90 to 108. As
with timing, each output pin has such a section for each of the input pins. Rise and fall
power values are specified independently. In the sample Liberty file, the unit of Eswitch is
pJ.

The capacity of a wire is determined by the wire load model as mentioned above.

Scaling

The scaling is done simply by multiplying the switch energies by the rising power factor
rp or the falling power factor fp.

The scaling of the load capacitance has been taken care of through the scaling of the
wire load model and the table definition as mentioned above.
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V sat
th,n V sat

th,p Tox,n Tox,p Rdsw,n Rdsw,p Leff

BPTM 180 nm

HS 0.25 V −0.25 V
40Å 42Å 250 Ω/sq 450 Ω/sq 100 nm

LL 0.40 V −0.40 V
BPTM 70 nm

HS 0.15 V −0.16 V
16Å 17Å 150 Ω/sq 280 Ω/sq 38 nm

LL 0.35 V −0.30 V

Table B.2: Properties of the transistors used.

B.1.4 Area and capacitance

An area is associated with each cell in the library, as in line 70. The area unit is µm2.
This is scaled simply by multiplying it with the area factor a.

In the same way, the maximum load capacitances and gate capacitances (lines 88, 89,
156 and 161) are scaled by multiplying them with the gate capacitance factor c. The gate
capacitance unit is pF.

B.2 Determining the factors

B.2.1 Simulation setup

As mentioned above, the available 180 nm cell library [41, 42], contains a large number
of cells, each of them in both a HS and a LL version. In order to scale this down to a
70 nm cell library, some realistic estimates of how the different numbers scale, had to be
obtained. SPICE simulations were used for this.

Unfortunately, SPICE models of the transistors in the 180 nm cell library were not
available, and neither were models of the transistors used in these cells. To create an
approximate model of the transistors in the STM cell library, SPICE models from the UC
Berkeley Device Group’s Predictive Technology Model at [25] were used. This group, which
also created the BSIM transistor models, has created SPICE models for current and future
(predicted) technologies. These models represent a good guess about future technology
generations. Both the 180 nm and 70 nm transistor models were taken from here.

On the BPTM website at [25], it is possible to specify parameters for the transistor
models wanted. Among these parameters are feature size, Vth, Tox, etc. This way, both HS
and LL transistor models for the two technologies used were created. The default values
proposed by the website were used. For reference, these are given in table B.2, for an
explanation of the parameters, see the BPTM manual at [48].

It is of course sub-optimal to use transistor models from BPTM that are not the
same models that were used by STM when creating the cell library. Furthermore, the
180 nm STM cell library is only characterized at a best case corner of 1.6 V and −40 ◦C.
As is clear from figure 2.7 on page 20, the leakage current at −40 ◦C is very small. This is
not acceptable for the present purpose, so an operating temperature of 25 ◦C was chosen
for the downscaled cell library. The 70 nm BPTM transistors run at a nominal voltage of
1.0 V.
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In all simulations, minimum length transistors are used. The NMOS transistor has
Wn = 3

2
L. Furthermore, Wp = 3

2
·Wn to optimize speed. This was taken from [1].

These facts and choices give the simulation parameters listed in table B.3. In inter-
preting the simulation results, it should be kept in mind, that it represents a scaling across
both technology generation, temperature and supply voltage.

technology T Vdd L Wn Wp

180 nm BPTM −40 ◦C 1.6 V 180 nm 3
2
· 180 nm 3

2
· 3

2
· 180 nm

70 nm BPTM 25 ◦C 1.0 V 70 nm 3
2
· 70 nm 3

2
· 3

2
· 70 nm

Table B.3: Transistor parameters used for simulation.

For simulation a small selection of commonly used cells was selected. The cells are
shown in table B.4. Inverters of drive strengths 4 and 8 are included to represent cells with
a drive strength higher than 1. The 3-AND-NOR gate represents more complex gates.
Jacob Gregers Hansen has kindly made the SPICE netlists for the cells available.

name function

IVHSX1 inverter, drive strength 1, HS
IVLLX1 inverter, drive strength 1, LL
IVHSX4 inverter, drive strength 4, HS
IVLLX4 inverter, drive strength 4, LL
IVHSX8 inverter, drive strength 8, HS
IVLLX8 inverter, drive strength 8, LL

ND2HSX1 2-input NAND, drive strength 1, HS
ND2LLX1 2-input NAND, drive strength 1, LL
NO2HSX1 2-input NOR, drive strength 1, HS
NO2LLX1 2-input NOR, drive strength 1, LL

A3NOHSX1 3-AND-NOR, drive strength 1, HS
A3NOLLX1 3-AND-NOR, drive strength 1, LL

Table B.4: Cells simulated for scaling factor estimation.

The characterization of the cells was performed using GSPICE [49], a special tool
for this purpose. GSPICE sets up input files for SPICE, runs SPICE and analyzes the
output. Unfortunately, GSPICE only handles characterization of cells for timing and input
capacitance. For the use in this project, GSPICE has been extended to handle also leakage
power. Extending GSPICE for the characterization of switching power failed due to a bug
in GSPICE. Instead, a custom Perl script, that operates in a similar manner to GSPICE
does this. The version of SPICE used was the Synopsys version, hspice.

For timing and power simulation, 180 nm and 70 nm cells were simulated for a num-
ber of load capacitances and input transition times. As mentioned on page 82, the load
capacitances were scaled by the wire load factor cu for the 70 nmversion.

The cell netlists, the modified version of GSPICE, and the custom script for switching
power characterization are included on the CD-ROM, appendix E, along with a description
of the usage of the tools.

The raw simulation data is also found here.
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B.2.2 Calculation of the scaling factors

During simulation, each cell was simulated for a number of input signals and the following
information was extracted.
leakage power was found for each possible value of the inputs.
timing information was determined for each combination of a number of capacitive out-

put loads and a number of input transition times as explained in section B.1.1.
switching energy was also determined for a number of capacitive output loads and a

number of input transition times.
Furthermore, the input pin capacitance was determined for each input.
The results are listed in figure B.5(a) for the HS cells and in table B.5(b) for the LL

cells. The figures in the tables are factors as defined in table B.1 on page 79, not absolute
values. For example, the leakage power of a x1 HS inverter in 70 nm is 496 times as high
as it was in 180 nm.

Since the factors found varied from cell to cell, they had to be weighted in order to
combine them into a single, reasonable figure. This was done by using a synthesized 32-
bit MIPS processor and collecting statistical information about the number of each cell
actually used. The weights are listed in the second column of the tables.

The weights were found by grouping the MIPS processor as well as in the simulation
set by area and then using the percentage of the cells in the processor that belonged into a
group as the weight in that same group in the simulation setup. For example, about 22%
of the cells in the processor had an area close to that of a 2-input NAND or NOR gate.
Thus the weight for these two is set to 11%.

Since no cells of a drive strength higher than 4 were used in the design, the values for
the x8 inverter were not used (zero weight).

Interestingly, the delay of both HS and LL cells was increased during downscaling. This
is due to the simultaneous increase in operating temperature by 65 ◦C. Dynamic power
was decreased considerably, while leakage power was increased.

The area factor a was calculated as follows:

a =
(70 nm)2

(180 nm)2
= 0.1512

The wire unit length capacitance and resistance values were calculated by means of the
BPTM predictive wire calculator [25], which gives prospected values for wire capacitance,
resistance and inductance for wires in future technology generations. The values for local
wires were used, since only small designs are evaluated in this project. The resistance per
length and capacitance per length for wires in 180 nm and 70 nm found here were simply
divided by each other to obtain ru and cu.

All factor calculations are contained in the factors.sxw OpenOffice Calc spreadsheet
on the CD-ROM, appendix E.

B.2.3 Summary for cell library scaling

The values of the inputs to the scaling script are as listed in figure B.6.
The scaling script itself, scale cellib, is found on the CD-ROM. It is a script written

in Perl that parses the liberty file and applies the scaling as explained. As mentioned,
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cell weight l rd fd rt ft rp fp c

IVHSX1 0.0995 496.0900 1.1606 1.0000 1.2532 1.1221 0.3463 0.3475 0.3861
IVHSX4 0.0001 827.1400 1.1697 0.9010 1.1501 1.0513 0.3293 0.3341 0.3860
IVHSX8 0 930.4600 1.2030 0.8498 1.0770 1.0156 0.3141 0.3200 0.3860
ND2HSX1 0.1102 392.1500 1.1231 1.0200 1.2227 1.1476 0.3239 0.3263 0.3885
NO2HSX1 0.1102 373.2000 1.2525 0.9712 1.3404 1.0953 0.2672 0.2757 0.3892
A3NOHSX1 0.6800 343.2400 1.2148 0.9467 1.2320 1.0749 0.2086 0.2184 0.3787

367.3296 1.2036 0.9629 1.2452 1.0900 0.2415 0.2495 0.3817
(a) For HS cells.

cell weight l rd fd rt ft rp fp c

IVLLX1 0.0995 4.7101 1.3870 1.2807 1.5040 1.3334 0.3471 0.3477 0.3875
IVLLX4 0.0001 17.4730 1.3922 1.2061 1.3173 1.2192 0.3301 0.3330 0.3914
IVLLX8 0 34.1020 1.4018 1.1836 1.2242 1.1490 0.3094 0.3145 0.3919
ND2LLX1 0.1102 3.4545 1.3489 1.3689 1.4592 1.4460 0.3240 0.3258 0.3843
NO2LLX1 0.1102 2.9291 1.5731 1.2501 1.6211 1.2973 0.2680 0.2734 0.3886
A3NOLLX1 0.6800 2.8178 1.5483 1.2799 1.5076 1.3545 0.0794 0.0802 0.3796

3.0905 1.5130 1.2865 1.5144 1.3562 0.1538 0.1552 0.3819
(b) For LL cells.

Table B.5: Calculation of scaling factors for cells.
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HS LL

l 367.3296 3.0905
rd 1.2036 1.5130
fd 0.9629 1.2865
rt 1.2452 1.5144
ft 1.0900 1.3562
rp 0.2415 0.1538
fp 0.2495 0.1552
c 0.3817 0.3819
a 0.1512

ru 1.8371
cu 0.7603

voltage 1.0 V
temp 25 ◦C

Table B.6: Input values to the scale cellib script.

the cell library itself is not contained there, but the CD-ROM contains a simple, detailed
procedure for reproducing it from the original STM Liberty file.

The cell library produced was used for entity characterizations as explained in appendix
C.

The procedure used is a very rough one, as it assumes that the characteristics of all cells
in the library scale by the same amount, which is only approximately true. Furthermore,
it assumes that the STM cells can by modeled by the 180 nm BPTM transistors which is
also inaccurate. The scaling over both temperature and supply voltage introduces further
sources of error.

However, the approach has given a complete cell library, which can be expected to give
a reasonable preview into the 70 nm cell library generation. At least the relative size of
e.g. dynamic and static power consumption can be expected to be correct.

Interconnect models were scaled assuming that all wires are local wires which should
work as long as the designs are small. The example entities characterized during the
work on this thesis are small enough to contain only short wires, so this should not cause
problems.

Correspondingly, this absence of long wires eliminates the need for high-fanout drivers,
so the fact that real high-fanout cells leak more than specified in the constructed cell
library, should not matter.

B.3 Sample Liberty file

This section contains the sample Liberty file used in the discussion earlier in this appendix.
Figure B.6 on the next page shows an overview of the structure of the file and figure B.7 on
page 90 the structure of a single cell declaration.
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library

unit
declarations

library wide
defaults

operating
conditions

voltage

temperature

timing look up
table template

variable 1
variable 2

index 1
index 2

power look up
table template

variable 1
variable 2

index 1
index 2

wire load
models

capacitance

resistance

slope

area

fanout length

wire load
selection

selection
criteria

cell see figure B.7

Figure B.6: Overall structure of the sample Liberty file.
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cell

area

leakage power
default

input dependent
leakage power
values

pin Z

function
max.
capacitance

internal
power
for pin A

Eswitch,rise

Eswitch,fall

timing
for pin A

Dcell,rise

Dcell,fall

ttransition,out,rise

ttransition,out,fall

internal
power
for pin B

. . .

timing
for pin B

. . .

Figure B.7: Overall structure of the cell section of the Liberty file.
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1 library ( some_library ) {

2 /* -------- units -------- */

3 simulation : true;

4 time_unit : "1 ns";

5 voltage_unit : "1V";

6 current_unit : "1 mA";

7 pulling_resistance_unit : "1 kohm ";

8 leakage_power_unit : "1 pW";

9 capacitive_load_unit (1,pf);

10
11 /* -------- defaults -------- */

12 default_inout_pin_cap : 0.01;

13 default_input_pin_cap : 0.01;

14 default_output_pin_cap : 0.0;

15 default_max_transition : 2.4 ;

16 default_cell_leakage_power : 268.73 ;

17 default_leakage_power_density : 32.804 ;

18
19 /* -------- operating conditions -------- */

20 operating_conditions (bc_1 .60 V_m40C ){

21 voltage : 1.60;

22 temperature : -40.0;

23 }

24
25 /* -------- look up tables -------- */

26 delay_model : table_lookup ;

27 lu_table_template ( table_1 ) {

28 variable_1 : input_net_transition ;

29 variable_2 : total_output_net_capacitance ;

30 index_1 (" 0.01 , 0.06 , 0.3 , 1.2 , 2.4 ");

31 index_2 (" 0.003 , 0.015 , 0.045 , 0.09 ");

32 }

33
34 power_lut_template ( power_table_1 ) {

35 variable_1 : input_transition_time ;

36 variable_2 : total_output_net_capacitance ;

37 index_1 (" 0.01 , 0.06 , 0.3 , 1.2 , 2.4 ");

38 index_2 (" 0.003 , 0.03 , 0.09 , 0.18 ");

39 }

40
41 /* -------- wire load models -------- */

42 wire_load (maxarea_000990 ) {

43 resistance : 0.00021 ;

44 capacitance : 0.00017 ;

45 slope : 9.28 ;

46 area : 0 ;
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47 fanout_length ( 1 , 9.28);

48 }

49
50 wire_load (maxarea_003500 ) {

51 resistance : 0.00021 ;

52 capacitance : 0.00017 ;

53 slope : 14.60 ;

54 area : 0 ;

55 fanout_length ( 1 , 14.60);

56 }

57
58 wire_load_selection(default_by_area ){

59 wire_load_from_area ( 0 , 990 , maxarea_000990)

60 wire_load_from_area ( 990 , 3500 , maxarea_003500)

61 }

62 default_wire_load : maxarea_003500

63 default_wire_load_selection : " default_by_area"

64 default_wire_load_mode : " enclosed "

65
66 /* -------- cells -------- */

67
68 /* 2 input AND , 1x drive */

69 cell(AN2HSX1 ) {

70 area : 21.02 ;

71 cell_leakage_power : 512.533 ;

72 leakage_power() {

73 value : 590.10000 ;

74 when : "A*B" ;

75 }

76 leakage_power() {

77 value : 537.60000 ;

78 when : "!A*B" ;

79 }

80 leakage_power() {

81 value : 409.90000 ;

82 when : "!B*A" ;

83 }

84
85 pin(Z) {

86 direction : output ;

87 function : "A*B";

88 max_capacitance : 0.15000 ;

89 capacitance : 0.00000 ;

90 internal_power () {

91 related_pin : "A" ;

92 rise_power (power_table_1) {
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93
94 values ( "0.0153 , 0.0531 , 0.1355 , 0.2616" , \

95 "0.0150 , 0.0531 , 0.1387 , 0.2614" , \

96 "0.0174 , 0.0542 , 0.1376 , 0.2627" , \

97 "0.0315 , 0.0659 , 0.1499 , 0.2719" , \

98 "0.0517 , 0.0846 , 0.1648 , 0.2870" );

99 }

100
101 fall_power (power_table_1) {

102 values ( "0.0147 , 0.0191 , 0.0957 , 0.2108" , \

103 "0.0142 , 0.0197 , 0.0961 , 0.2113" , \

104 "0.0167 , 0.0179 , 0.0944 , 0.2095" , \

105 "0.0305 , 0.0059 , 0.0829 , 0.1981" , \

106 "0.0505 , 0.0122 , 0.0654 , 0.1808" );

107 }

108 }

109 timing () {

110 related_pin : "A" ;

111 timing_sense : positive_unate ;

112 cell_rise (table_1 ) {

113 values ( "0.0271 , 0.1965 , 0.5735 , 1.1356" , \

114 "0.0365 , 0.1965 , 0.5717 , 1.1372" , \

115 "0.0616 , 0.2248 , 0.5742 , 1.1376" , \

116 "0.0805 , 0.3826 , 0.7578 , 1.2286" , \

117 "0.1198 , 0.5050 , 0.9574 , 1.5157" );

118 }

119 cell_fall (table_1 ) {

120 values ( "0.0381 , 0.2694 , 0.7840 , 1.5533" , \

121 "0.0510 , 0.2777 , 0.7916 , 1.5621" , \

122 "0.1043 , 0.3228 , 0.8312 , 1.6024" , \

123 "0.2424 , 0.5857 , 1.0785 , 1.7611" , \

124 "0.3717 , 0.8482 , 1.4152 , 2.1436" );

125 }

126
127 rise_transition(table_1 ) {

128 values ( "0.0730 , 0.5906 , 1.7328 , 3.4373" , \

129 "0.0788 , 0.5814 , 1.7270 , 3.4726" , \

130 "0.1453 , 0.6158 , 1.7329 , 3.4260" , \

131 "0.3576 , 0.8556 , 1.8534 , 3.4699");

132 }

133 fall_transition(table_1 ) {

134 values ( "0.0739 , 0.5818 , 1.7068 , 3.4450" , \

135 "0.0807 , 0.5834 , 1.7211 , 3.3830" , \

136 "0.1446 , 0.6112 , 1.7211 , 3.3841" , \

137 "0.3484 , 0.8601 , 1.8423 , 3.4479" , \

138 "0.6147 , 1.1392 , 2.2538 , 3.7682" );
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139 }

140 timing_label : " A_Z " ;

141 }

142 internal_power () {

143 related_pin : "B" ;

144
145 /* power values for pin B go here */

146 }

147 timing () {

148 related_pin : "B" ;

149
150 /* timing values for pin B go here */

151 }

152 }

153
154 pin(A) {

155 direction : input ;

156 capacitance : 0.00338 ;

157 }

158
159 pin(B) {

160 direction : input ;

161 capacitance : 0.00325 ;

162 }

163 } /* end of cell */

164 } /* end of library */
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Appendix C

Building block characterizations

The estimation method presented in chapter 5 requires the building blocks of the design
to be precharacterized. A tool was created for this task: Multisim.

Multisim is a generic tool for running Synopsys dc shell simulations systematically
and extracting information about the synthesized designs. It is a script written in Perl
made specifically for this project.

Given a working Synopsys synthesis setup, Multisim only needs the following things to
be able to characterize a component:

• a VHDL or Verilog description of the building block
• a simulation setup file
• a dc shell script template

As output, the script produces an XML file which contains information about dynamic
power, leakage power, area, timing, cell mix and module implementations.

In the following, the setup used in the characterization of the building blocks used in
this thesis is described. However, Multisim is general enough to be useful for other kinds
of Synopsys systematic dc shell runs. Synopsys version 2003.12-SP1 was used for the
characterizations done for this thesis.

Multisim can be found on the attached CD-ROM in appendix E along with the simula-
tion setup and raw simulation data for the building blocks of the multiply accumulate unit.
A number of small useful tools for manipulating the output of Multisim are also included.

C.1 The characterization setup

The following explanation of the characterization setup will use the characterization of an
8bit ripple carry adder as an example. Characterizing other kinds of building blocks is
very similar.

The VHDL file for the adder is shown in figure C.1 on the next page. It simply
uses the general DesignWare adder building block. This allows the same source VHDL
file to be used for both ripple carry adders, carry lookahead adders and the other adder
architectures available through DesignWare. The width of the adder is parameterizable by
a generic parameter.

The configuration setup file for the adder is given in figure C.2. Apart from the circuit
name and name of the output result file, the name of the dc shell script template is given.
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1 library IEEE , DWARE , DW01;

2 use IEEE.std_logic_1164.all;

3 use DWARE.DWpackages .all;

4 use DW01.DW01_components.all;

5 entity adder is

6 generic ( W : integer := 32 );

7 port ( a : in std_logic_vector(W-1 downto 0);

8 b : in std_logic_vector(W-1 downto 0);

9 ci : in std_logic ;

10 sum : out std_logic_vector(W-1 downto 0);

11 co : out std_logic

12 );

13 end adder;

14
15 architecture func of adder is

16
17 begin -- Instance of DW01_add

18
19 U1 : DW01_add

20 generic map ( width => W )

21 port map ( A => a,

22 B => b,

23 CI => ci ,

24 SUM => sum ,

25 CO => co );

26
27 end func;

Figure C.1: VHDL file for a generic adder.

1 circuit adder

2 xmlfile results_adder_rpl_8bit .xml

3 dc_script adder.dc

4 architecture func

5 implementation rpl

6 bits 8

7 period 0.7 0.75 0.8 0.9 1.0 2 3 4 6 7 9 11 15 20

Figure C.2: Multisim control file for a 8-bit ripple carry adder.
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The remaining lines list inputs to the simulation. Here, one architecture name (func), one
adder implementation name (ripple adder), one bit width (8 bits) and 14 delay constraints
are given. This will result in 1 ·1 ·1 ·14 syntheses, since one synthesis is performed for every
possible combination of each of these parameters’ values. The names of the parameters is
not predefined, but can be chosen at will. They will be passed on to the dc shell script
template.

1 /* target_library = { IMM_HS , IOLIB } */

2 /* target_library = { IMM_LL , IOLIB } */

3 target_library = { IMM_LL , IMM_HS , IOLIB }

4 link_library= target_library + { dw01.sldb , dw02.sldb , \

5 dw03.sldb , dw04.sldb , dw05.sldb , dw06.sldb }

6
7 remove_design -all

8
9 analyze -format vhdl -lib WORK { [ $circuit ]. vhd }

10
11
12 [ if(defined $bits ){

13 $OUT .= " elaborate $circuit -arch \" $architecture\" -lib WORK ".

14 "- parameters W=$bits ";

15 } else {

16 $OUT .= " elaborate $circuit -arch \" $architecture\" -lib WORK ";

17 }

18
19 $OUT .= " set_implementation DW01_add /$implementation U1"

20 if defined $implementation;

21
22 ]

23
24 set_max_delay [ $period ] - from all_inputs () -to all_outputs ()

25
26 set_switching_activity -toggle_rate [ $period /2 ] - period [ $period ] \

27 -static_probability 0.5 - select inputs

28
29 link

30
31 uniquify

32
33 [ if(defined $implementation ) {

34 $OUT .= " write -f db -hier -output ${circuit }_$implementation.db";

35 } else {

36 $OUT .= " write -f db -hier -output ${circuit }.db";

37 } ]

38
39 set_max_leakage_power 0 mW

40
41 compile -map_effort medium

42
43
44 [ if(defined $implementation ) {

45 $OUT .= " write -f db -hier -output ${circuit } _$period_$implementation .db";

46 } else {

47 $OUT .= " write -f db -hier -output ${circuit }_$period .db";

48 } ]

Figure C.3: Generic dc shell script adders.

Figure C.3 shows the dc shell template. This file is not read directly by dc shell,
but by Multisim. After modifying it, Multisim passes it on to dc shell. This is done
once for each of the simulations defined in the setup file.

Most of the template is simply an ordinary synthesis script that instructs the synthesizer
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to use a specific cell library and to analyze, elaborate and compile the design. Any text
contained in brackets is interpreted as Perl code. The parameters from the simulation
setup file are defined as variables and contain their value for the current run. For instance,
[ $period ] will iterate over the 14 values for the delay constraint defined in the setup
file. Inside such blocks of Perl code, the construct $OUT .= "something" will insert the
string something into the script.

The elaborate statement in lines 13 and 14 sets the bit width of the adder accord-
ing to the bit width parameter in the file. The set implementation command sets the
implementation of the DesignWare adder. The set max delay in line 24 sets the delay
constraint and the following set switching activity command sets the input switching
activity to one switch per cycle and the probability of a input signal to have the value 1
at any time to 50%.

Only a timing constraint and a maximum leakage constraint is given to the synthesizer.
After performing the synthesis, Multisim extracts a number of characteristic from the

design and store them in an XML file as shown in figure C.4. Here, only two of the 14
synthesis runs are shown. Most of this file should be self-explanatory. The parameters
passed to Multisim are contained in this file. In the first run, the timing requirement was
not met (VIOLATED), in the second run it was (MET). The power unit is µW and the
timing unit is ns.

On the CD-ROM a tool, extract all.sh, is included that converts the XML file to a
tabulator separated file suitable for plotting with gnuplot or importing in a spreadsheet.
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1 <?xml version =’1.0 ’ standalone =’yes ’?>

2 <simulations >

3 <simulation circuit ="adder" dc_script ="adder.dc">

4 <run machine ="sunfire " runtime ="00 :00:22 "

5 starttime ="2004 -07 -06 15 :30:12 ">

6 <constraint type="period ">0.8 </constraint >

7 <constraint type=" implementation">rpl </constraint >

8 <constraint type="bits">8 </constraint >

9 <implementation count ="1" module ="DW01_add ">rpl </implementation >

10 <result type=" cell_internal_power">226.1538 </result >

11 <result type=" cell_leakage_power">7.6425 </result >

12 <result type=" net_switching_power">52.9429 </result >

13 <result type=" total_dynamic_power">279.0966 </result >

14 <result type="HS_area ">91.658647 </result >

15 <result type="HS_cells ">8 </result >

16 <result type="LL_area ">8.670413 </result >

17 <result type="LL_cells ">1 </result >

18 <result type="other_area ">0 </result >

19 <result type="other_cells ">0 </result >

20 <result type="slack"> -0.02 </result >

21 <result type="timing_status">VIOLATED </result >

22 <result type="cell_area ">100.329063 </result >

23 <result type="total_area ">undefined </result >

24 </run >

25 <run machine ="sunfire " runtime ="00 :00:20 "

26 starttime ="2004 -07 -06 15 :30:34 ">

27 <constraint type="period ">0.85 </constraint >

28 <constraint type=" implementation">rpl </constraint >

29 <constraint type="bits">8 </constraint >

30 <implementation count ="1" module ="DW01_add ">rpl </implementation >

31 <result type=" cell_internal_power">218.4532 </result >

32 <result type=" cell_leakage_power">7.1565 </result >

33 <result type=" net_switching_power">50.2809 </result >

34 <result type=" total_dynamic_power">268.7341 </result >

35 <result type="HS_area ">92.897277 </result >

36 <result type="HS_cells ">8 </result >

37 <result type="LL_area ">0 </result >

38 <result type="LL_cells ">0 </result >

39 <result type="other_area ">0 </result >

40 <result type="other_cells ">0 </result >

41 <result type="slack">0.00 </result >

42 <result type="timing_status">MET </result >

43 <result type="cell_area ">92.897278 </result >

44 <result type="total_area ">undefined </result >

45 </run >

46 </simulation >

47 </simulations >

Figure C.4: Resulting XML file for the Multisim run.
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Appendix D

Repeater sizing

To enable experiments with long global wires, a repeater sizing tool was created, simply
called wiresim.pl. It takes the following arguments:

• the number of repeaters to be inserted
• the delay requirement to meet
• the length of the wire
• the capacitance per length of the wire
• the resistance per length of the wire
• the repeater type (HS or LL)

Using HSPICE simulations, wiresim.pl then determines the drive strength necessary
to reach the delay specified. The leakage power of the line and the dynamic energy con-
sumed per switch is also determined.

The wire model sent to HSPICE is the Elmore wire model. As shown in figure D.1, a
wire is modeled as consisting of N segments each with the same resistance R and capaci-
tance C.

RN−1

CN−1

N − 1
RN

CN

N
VoutVin

1
R1

C1 C2

R2
2

Figure D.1: The Elmore wire model.

wiresim.pl uses a fixed number of wire segments N = 210, with the capacitance and
resistance of the wire distributed evenly on all segments. The repeaters to be inserted are
then inserted at equidistant places. These are the two repeaters drawn in black in figure
D.2. The two white inverters at the end are unit size inverters whose task it is to present
a realistic load at the wire end.

Figure D.2: Repeater insertion.

To create graphs like the ones in chapter 7, a series of such simulations was run on the
same wire and delay requirement but with a different number of repeaters.
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The tool was implemented in Perl and uses a similar templating technique as the one
used for multisim (appendix C) to create the HSPICE input files. It automatically iterates
the simulations varying the drive strength until the total wire delay reaches the target
delay with some maximum error specified by the user. In the simulations used in chapter
7, this maximum error was set to 1%. wiresim.pl uses an internal feedback controller to
direct the simulation.

The repeater sizing tool can be found on the CD-ROM in appendix E along with the
raw simulation output. All arguments given to it are persistent, so the tool remembers
its state from the last run. This makes it possible to use the tool interactively from the
command line, since it can be interrupted and restarted again from the point it left off but
with one or more options altered.
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Appendix E

Digital appendices - CD-ROM

The CD-ROM attached to this thesis contains the following things:

• the power estimation tool in the form of a spreadsheet with the examples of this
thesis included
• the logic building block characterization tool Multisim
• the repeater sizing tool wiresim.pl
• the cell library scaling tool scale cellib

• the cell library characterization tool chain that determines the scaling factors
• the modified version of GSPICE

A guide to the files on disc can be found in the root of the CD-ROM in the form of an
HTML-file called index.html.
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