
Simulation Based Sequential Circuit
Automated Test Pattern Generation

Jing Yuan

28 July 2004

2

3

Preface

This thesis constitutes my Masters thesis project for a degree in Master of
Science in Engineering (M.Sc.Eng.). It was written during the period of 1st
of February to 31st of July 2004 at Informatics and Mathematical Modelling
(IMM), Technical University of Denmark (DTU). Associate Professor Flem-
ming Stassen, IMM, was supervisor of my M.Sc. Thesis project.

I would like to thank the entire staff and my fellow students at the institute
for creating a friendly and inspiring environment. Specially, I would like to
take this opportunity to thank Flemming Stassen for his counseling, support
and not least his interest in my M.Sc. Thesis project. Furthermore, I would
like to thank my girlfriend Yingdi Lu for her patience and understanding.

4

Abstract

The aim with this paper is to design a high efficient sequential ATPG on single
stack-at fault model. A new approach for sequential circuit test generation
is proposed in this paper. With combining the advantage of logic simulation
based ATPG and fault simulation based ATPG, higher fault coverage and
shorter test sequential length are achieved for benchmark circuit instead of
pure logic or fault simulation based ATPG.

A new high efficient fault simulation algorithm which is based on PROOFs
[39] is presented. Here two new techniques are used to accelerate parallel fault
simulation: 1) X algorithm preprocessing, 2) Dynamic fault ordering method.
Based on experiment result, these two heuristic accelerate fault simulation
by 1.2 time in fault simulation.

Two metaheuristic algorithms, genetic algorithm and Tabu search, are in-
vestigated in test generation process. These algorithms are used to generate
population of candidate test vectors and optimize vectors.

i

Contents

1 Introduction 1

1.1 Background and motivation 1

1.2 Overview . 2

1.3 Document organization . 3

2 System architecture 5

3 Fault Simulation 7

3.1 Overview . 7

3.2 Terms . 8

3.3 Proofs . 10

3.4 Proposed method . 13

3.5 Experiment results . 15

3.6 Ongoing work . 20

4 Logic Simulation 23

5 Fitness function 25

5.1 Overview . 25

5.2 Fitness function of LSG . 25

5.3 FSG fitness function . 33

5.4 Combinational fitness function 35

ii CONTENTS

6 Metaheuristic algorithm 37

6.1 Genetic algorithm . 38

6.1.1 Background . 38

6.1.2 GA framework for ATPG 40

6.1.3 Selection . 40

6.1.4 GA parameter . 42

6.1.5 Fitness scaling . 45

6.2 Tabu Search algorithm . 47

7 Test 51

8 Benchmark test run on C++ and C# 53

9 Experiment Result 55

10 Conclusion 63

11 Acronym 65

A Appendix 71

A.1 X algorithm . 71

A.2 Experiment results . 74

iii

List of Tables

3.1 Experiment results of dynamic ordering and static ordering . . 17

3.2 Experiment result 1 of fault simulator with X algorithm 19

3.3 Experiment result 2 of fault simulator with X algorithm 19

3.4 Gate Type . 21

5.1 Parameter W . 32

5.2 Parameter U . 32

5.3 Parameter K . 33

5.4 Precision of X algorithm . 35

6.1 GA parameter . 45

8.1 Comparison C# and C++ . 54

9.1 Experiment results for various sequence length in a chromosome 56

9.2 Experiment results 1 for various mutation rate 57

9.3 Experiment results 2 for various mutation rate 58

9.4 Comparison of PS GA and Tabu 59

9.5 Groups in experiment . 60

9.6 Experiment of CSG . 60

9.7 Compare PS GA and CSG . 61

9.8 Comparison with other ATPG 62

A.1 SUS GA: mutation rate is 0.01, length of test sequence in a
chromosome is 1 . 74

iv LIST OF TABLES

A.2 SUS GA: mutation rate is 0.01, length of test sequence in a
chromosome is 10 . 74

A.3 SUS GA: mutation rate is 0.01, length of test sequence in a
chromosome is 20 . 74

A.4 SUS GA: mutation rate is 0.01, length of test sequence in a
chromosome is 40 . 75

A.5 SUS GA: mutation rate is 0.01, length of test sequence in a
chromosome is 100 . 75

A.6 PS GA: mutation rate is 0.01, length of test sequence in a
chromosome is 1 . 75

A.7 PS GA: mutation rate is 0.01, length of test sequence in a
chromosome is 10 . 76

A.8 PS GA: mutation rate is 0.01, length of test sequence in a
chromosome is 20 . 76

A.9 PS GA: mutation rate is 0.01, length of test sequence in a
chromosome is 40 . 76

A.10 PS GA: mutation rate is 0.01, length of test sequence in a
chromosome is 100 . 77

A.11 PS GA: mutation rate is 0.025, length of test sequence in a
chromosome is 20 . 77

A.12 PS GA: mutation rate is 0.05, length of test sequence in a
chromosome is 20 . 77

A.13 PS GA: mutation rate is 0.075, length of test sequence in a
chromosome is 20 . 78

A.14 PS GA: mutation rate is 0.1, length of test sequence in a chro-
mosome is 20 . 78

A.15 PS GA: mutation rate is 0.25, length of test sequence in a
chromosome is 20 . 78

A.16 PS GA: mutation rate is 0.5, length of test sequence in a chro-
mosome is 20 . 79

A.17 Tabu search: length of test sequence in a chromosome is 10 . . 79

A.18 CSG: mutation rate is 0.01, length of test sequence in a chro-
mosome is 10 . 79

A.19 CSG: mutation rate is 0.01, length of test sequence in a chro-
mosome is 20 . 80

LIST OF TABLES v

A.20 CSG: mutation rate is 0.02, length of test sequence in a chro-
mosome is 10 . 80

A.21 CSG: mutation rate is 0.02, length of test sequence in a chro-
mosome is 20 . 80

A.22 CSG: mutation rate is 0.03, length of test sequence in a chro-
mosome is 10 . 81

A.23 CSG: mutation rate is 0.03, length of test sequence in a chro-
mosome is 20 . 81

A.24 CSG: mutation rate is 0.04, length of test sequence in a chro-
mosome is 10 . 81

A.25 CSG: mutation rate is 0.04, length of test sequence in a chro-
mosome is 20 . 82

A.26 CSG: mutation rate is 0.05, length of test sequence in a chro-
mosome is 10 . 82

A.27 CSG: mutation rate is 0.05, length of test sequence in a chro-
mosome is 20 . 82

vi LIST OF TABLES

vii

List of Figures

1.1 ATPG Overview . 3

2.1 System Framework . 5

3.1 Fault simulation . 7

3.2 Sequential circuit . 8

3.3 Time Expansion. 8

3.4 FIFO event queue. 11

3.5 Event ordering. 12

3.6 Compute node’s level algorithm. 12

3.7 Number of fault simulated . 14

3.8 First example of fault grouping. 15

3.9 Dynamic fault grouping process 16

3.10 The second example of fault grouping. 17

3.11 Algorithm of XProofs3 . 18

3.12 Fault ordering. 21

3.13 Example of Fault Injection. 22

5.1 Useful states and useless states. 26

5.2 Example of hamming distance 27

5.3 Example of state partitioning 28

5.4 State Partitioning algorithm 29

5.5 State Partitioning . 30

viii LIST OF FIGURES

5.6 Global Optimization and Local Optimization 31

5.7 structure of an optimization unit 31

5.8 Combination ATPG Processing 36

6.1 Standard GA Procession . 39

6.2 Stead state GA Procession . 41

6.3 Proportional selection . 41

6.4 Stochastic universal selection 42

6.5 One point crossover . 43

6.6 Two point crossover . 44

6.7 Uniform crossover . 44

6.8 Linear scale . 46

6.9 Undesirable Linear Scale . 46

6.10 Modified Linear Scale . 47

6.11 Tabu iteration . 48

6.12 The use of Tabu list . 48

6.13 Tabu search processing . 49

1

Chapter 1

Introduction

1.1 Background and motivation

With the persistent increase in integration density and new technologies, test
generation becomes more and more complex and expensive. Compare with
combination ATPG, sequential ATPG is much more complicated. Because
sequential ATPG not only depend on primary inputs, but also depends on
the flip-flop’s states. State and time expansion have caused a virtual explosion
of the circuit. So there exists a crucial need to develop sequential ATPG that
can handle VLSI chips at a reasonable computing cost and provide high fault
coverage.

There are three types of test generator algorithms for sequential circuit [4],
structure-based algorithms, fault simulation based algorithms and logic sim-
ulation based algorithms.

The principle to all structure-based algorithms is to construct of a combina-
tional model of the circuit. Deterministic approach like D-algorithm, PODEM
is used to generate test pattern. FTP (forward time processing) is used to
propagate the effect of the fault and RTP (reverse time processing) is used
for getting the required state. Because the numbers of backtracks in deter-
ministic approach is exponentially growing (NP problem) and ever-increasing
complexity of digital circuit, the structure-based algorithms algorithms are
not feasible for large circuit.

In stead, in the past decades, the focus has been set on simulation-based
techniques and metaheuristics. Simulation-based techniques are used to eval-
uate each candidate solution by fitness function. Metaheuristic algorithm is
used to quickly find out the best solution, which has highest fitness value.

2 Chapter 1. Introduction

In general, this type of ATPG is called simulation based ATPG. Because
it needn’t branch and bound, the computational complex is only square or
linear to the size of circuit.

The class of simulation-based ATPG is divided into logic simulation based
test generators (LSG) and fault simulation based test generators (FSG). LSG
targets a property of the fault-free circuit such as the activity or the number of
states (flip-flops’ values) visited, and, based on fault-free simulation, generate
a test sequence maximizing this property. FSG, on the other hand, fault
simulate is used to evaluate the effectiveness of each candidate test sequence,
thus providing a fitness function while collecting information on targeted
faults, i.e. guiding the search process.

To LSG, only fault-free simulation (logic simulation) is used to guide the
search process, whose computational complex is N, whereas to FSG, fault
simulation is used to guide the search process, whose computational complex
is N2. LSG executes relatively quickly compared to FSG, especially for large
circuits. But every coin has two sides. The deficient of LSG is that less in-
formation (only fault-free circuit is simulated) used in fitness function than
FSG, so fitness function has less guidance and generates longer test sequence
than FSG. But static compaction technology can remove unwanted vector of
LSG and guarantee to retain fault coverage. These let LSG a more promising
technology.

1.2 Overview

The focus of this document is about simulation based sequential ATPG for
single stack-at fault. The overview of ATPG is showed in Figure 1.1. From
Figure 1.1, we can see the major part of this project is simulation tech-
nology based metaheuristic algorithm and fault simulation. The function of
simulation technology based metaheuristic algorithm is to find the best test
sequence according to fitness value. Fault simulation is used to determine
new faults detected by new inserted vector and drop the detected fault from
fault list (fault dropping).

The Pros and Cons of LSG and FSG are complementary. LSG is fast but has
less guidance information and FSG is slow and has relative more guidance
information. In this project, both technologies are investigated and a new
simulation based generator which combine both advantage of two ATPGs
are proposed.

1.3 Document organization 3

Main
{
 do
 {

 Use simulation based metaheuristic algorithm,
 such as gentic algorithm, to find a new test vector;

Insert test vector to test set and checked new faults detected by the new test
Vector (fault simulation);

}
While(finished_test_pattern_generation());

}

bool finished_test_pattern_generation()
{
 // fault coverage: total fault detect / the number of fault in fault List

 If(fault coverage >= N) //N's default value is 1
 return false;

 If(test sequence's length >= M) //M's default value is 20,000
 return false;

 If(The last O number of test vectors can't detect any fault)
//O's default value is 4,000
return false;

return true;
}

Figure 1.1: ATPG Overview

There are many excellent metaheuristic algorithms for large-scale optimiza-
tion problem. But there is no such thing as a best metaheuristic, which has
actually been proven mathematically. Here two classical algorithms, genetic
algorithm and Tabu search, are investigated to find suitable metaheuristic
for ATPG.

Of course, a high efficient fault simulator can speed up ATPG. Here the
proposed fault simulation is based PROOF[39]. Two new heuristics are used
to improve the speed of fault simulation furthermore.

1.3 Document organization

Chapter 1 Introduction. This chapter gives a short overview of the project.
It briefly describes the history of sequential ATPG and gives the overview of

4 Chapter 1. Introduction

the project.

Chapter 2 System architecture. This chapter describes the framework of
the design.

Chapter 3 Fault simulation. This chapter describes the related work and
current design of the fault simulator.

Chapter 4 Logic simulation. This chapter describes the current design of
the logic simulator.

Chapter 5 Fitness Function. This chapter describes the fitness function,
which used in simulation based ATPG.

Chapter 6 Metaheuristic algorithm. This chapter presents the implemen-
tation of GA algorithm and Tabu search algorithm, which used in ATPG.

Chapter 7 Test. This chapter describes the the project’s test work.

Chapter 8 Benchmark test run on C++ and C#. Because many of
published ATPG is implemented with C++ language, whereas the proposed
ATPG is implemented with C# language. In this chapter, benchmark of C++
and C# is proposed to compare the performance of other published ATPG.

Chapter 9 Experiment Result. This chapter presents the experiment result
of proposed ATPG.

Chapter 10 Conclusion. This chapter concludes this project.

5

Chapter 2

System architecture

In this work, my mandatory task is to design sequential ATPG, which can
generate single stuck-at fault test pattern for sequential circuit. The system’s
framework is showed in Figure 2.1.

User Interface

Simulation based ATPG

Circuit
Simulators

Circuit Description

Gate Description

Metaheuristic
Algorithms

Cost functions

Gate Lib

Figure 2.1: System Framework

The detail of each function block showed below

• Gate lib describes the functional of different gates. In this project, it
support 9 types of gate, i.e. ”AND”, ”NAND”, ”OR”, ”NOR”, ”XOR”,
”XNOR”, ”INVERSION”, ”BUFFER” and ”D type flip flop”.

• Node description describes attributes and functions in the node level.
The attributes include information about node type, node value, input,
output, fan-out and fault Information. The functions include node up-
date, reset, etc.

6 Chapter 2. System architecture

• Circuit description describes attributes and functions in the circuit
level. The attributes include information about flip-flop nodes, internal
nodes, primary input nodes, primary output nodes, fan-out nodes and
fault info. For minimizing lookup time, these information are saved in
hash table. The function includes input circuit from circuit file, circuit
update, etc. Now, the circuit file supported is ISCAS89 benchmark file.

• Metaheuristic Algorithms includes two large-scale optimization al-
gorithms, genetic algorithm and Tabu search.

• Simulation Algorithms implements fault-free circuit simulation and
several fault simulation algorithms, such as X algorithm, parallel dif-
ferential fault simulation algorithm.

• Fitness functions contain several fitness functions for LSG and FSG.
• Simulation based ATPG engine. It includes several simulation

based ATPG engine, eg. GA based LSG, GA based CSG and Tabu
search based LSG.

• User interface. User can change parameters and operate the system
through it.

In this project, many different technologies and heuristics are investigated,
so in system design period, abstract, refinement and modularity are specially
considered. From Figure 2.1, the system is comprised of 5 layers and 7 mod-
ules. Each module is only allowed to invoke function of other modules which
is in the same layer or one layer below. This design has advantages showed
below.

1. Easy for sharing code. For instance, in this project, I implement six
types of ATPG, these ATPG uses 2 different cost functions and 3
metaheuristic algorithms. Each function in ”cost functions” block and
”metaheristic algorithms” block are shared in these ATPG engines. So
it needn’t write independent cost function and metaheuristic algorithm
for each ATPG.

2. Decoupling and easy refinement. After determining the interface of each
block, any refinement in each block doesn’t influence other block. For
instance, modifying fault simulation algorithm will not influence cost
function block, which invoke functions of simulation algorithms block.

7

Chapter 3

Fault Simulation

3.1 Overview

Fault simulation consists of simulating a circuit in the presence of faults.
Comparing the fault simulation results with those of the fault-free simulation,
the faults detected by that test can be determined. An example is showed in
Figure 3.1.

Fault

Fault System

Fault Free System

Test pattern

Detect

Figure 3.1: Fault simulation

There are two purposes of fault simulation during design cycle. The first is
to evaluate the candidate test vector and guide the test pattern generation
process (FSG). The second is to measure the fault coverage of inserted test
sequence.

8 Chapter 3. Fault Simulation

3.2 Terms

Synchronous sequential circuit is comprised of combinational logic blocks
(CLB) and flip-flops. The inputs of the flip-flop are called PPO and outputs
of the flip-flop are called PPI. Compare with combination circuit, sequential
circuit has a new parameter, time frame. Under the zero gate delay model,
Sequential circuit can be simulated by method of time-frame expansion. Each
time frame just represents circuit in each clock cycle. CLB is copied in each
time frame. Flip-flops are removed and their output are directly linked to
input of next time frame’s flip-flop. Test vector is inserted in each time frame
one by one. For instance, the circuit in Figure 3.2 is expanded three time
frames (clock cycle) in Figure 3.3. After time-frame expansion and insert
test vector to each time frame, we can simulate the sequential circuit and get
the primary output result in the third clock cycle.

A

B

Q

Q
SET

CLR

D

Combination block

Figure 3.2: Sequential circuit

inp1

inp2

inp3

A

B
Initial value

A’

B’

Time frame1Time frame0

Inp1'

Inp2'

Inp3'

Inp1'’

Inp2'’

Inp3'’

Time frame2

Output

Figure 3.3: Time Expansion.

For sequential circuit fault simulation, if an undetected single stack-at fault

3.2 Terms 9

propagated faults to PPO in the time frame, then in next time frame, it is
called as multiple event fault. Otherwise, if it didn’t propagate faults to
PPI, it is called as single event fault in next time frame. A multiple event
fault is the same as multiple stack-at faults. Fault simulation must consider
effect of the faulty value of all the PPIs whose fault-free value and fault value
are different.

As large CPU time is used in ATPG’s fault simulation process, an efficient
fault simulation algorithm is very important for ATPG. Five fault simula-
tion algorithms are popularly used [37]. They are serial algorithm, parallel
algorithm, differential algorithm, deductive algorithm, concurrent algorithm.

Serial algorithm is single pattern single fault propagation algorithm. Parallel
algorithm is a single pattern parallel fault propagation algorithm. It directly
improves on serial algorithm by taking advantage of existing computer in-
structions doing bit-parallel logical operations. In 32-bit INTEL CPU, 32
faults can be simulated in one pass. Pure serial algorithm and parallel algo-
rithm is infeasible for VLSI circuit, because their computational complex is
N3, N is the number of the gates in the circuit.

Deductive algorithm explicitly simulating the fault-free circuit, and simul-
taneously deducing all detectable faults from the current good state of the
circuit. Concurrent algorithm simulates the fault-free circuit and concurrently
simulats the faulty circuit only if the faulty circuit’s activity actually differs
from the fault-free circuit. Deductive algorithm, and concurrent algorithm’s
computational complex is N2, so they are fast algorithm, but they need large
storage.

The difference algorithm simulates the fault-free circuit first and only simu-
late the part of fault circuit which is difference with adjacent fault circuit (or
the fault free circuit). Its computational complex is N2 and it need very lit-
tle memory because it only stores one copy of adjacent fault cricuit (or fault
free circuit) and the difference between adjacent fault cricuit (or fault free
circuit). Among deductive concurrent and differential algorithms, differential
algorithm [37] is not only the fastest one, but also the one requiring least
memory.

Difference algorithm is implemented in this project. A copy of fault-free cir-
cuit is saved and only the difference between each fault cricuit and fault free
circuit is simulated.

PROOFS [39] [5] is a super fast parallel differential fault simulator for se-
quential circuit. Through exploiting parallel simulation of faults and utilizing
several efficient heuristic, it accelerates fault simulation and reduces memory
requirements by about five times.

10 Chapter 3. Fault Simulation

Unlike the deterministic method showed above, X algorithm [30] and crit-
ical path tracing [22] is an approximate method. X algorithm can identify
most of undetectable faults and critical path tracing can identify most of de-
tectable faults. The attraction of these algorithms is that their computational
complexes are all N. The detail of X algorithm are showed in APPENDIX
A.1.

In this paper, I proposed two new techniques that substantially reduce the
parallel fault simulation time of PROOFS. 1) Reducing fault simulation time
by dynamic ordering. 2) Removing most of undetectable fault by X algorithm.
We incorporated the proposed technique into my version of Proofs to develop
a new fault simulator. According experiment results, my fault simulator is on
average about 2.5 times faster than the Proofs implemented by memy version
of Proofs for 10 ISCAS89 benchmark circuits.

In the rest of this chapter,

• Chapter 3.3 introduce technique of Proofs.
• Chapter 3.4 describes new heuristics used in my ATPG.
• Chapter 3.5 is experiment result.
• Chapter 3.6 is ongoing work.

3.3 Proofs

Proofs is a parallel differential fault simulator. In PROOFs [39], fault free
circuit is simulated first and then fault circuits are simulated. Because one
word in PC is 32 bits and a gate’s value only occupy one bit, in Proofs, 32
faults are injected each time and simulated in parallel with the same test
vector. If a fault is detected, it is dropped from fault list.

In [39], several heuristic have been used into Proofs to accelerate fault simu-
lation. There are:

1. Event ordering
2. Inactive fault removing
3. Fault ordering

Next, I describe these heuristic by detail.

1. Event ordering ; To take advantage of parallel, same events in differ-
ent fault circuits should be deal with at the same time. But if using
FIFO(First In and First Out) queue to store events, same events are
hardly to be deal with in the same time. For instance, two faults, f1

3.3 Proofs 11

and f2, showed in Figure 3.4, are simulated in parallel. F1 is assumed
to propagate to the primary output j and k and f2 is assumed to prop-
agate to the primary output j. At first, f1 and f2 are injected in the
circuits and events G1 and G4, which is in the gate G1 and G4, are
inserted in the event queue. After dealing with the events G1 and G4,
f1 and f2 is propagated to G2 and G3, two new events G2 and G3 are
inserted. In the end, f1 is propaged into G4 and event G4 is inserted
in the queue again. There are totally 5 events in simulation and the
number of events doesn’t reduce after applying parallel simulation.

G3

G4

G1

c

a

h
j

f1
G2

g

k1
e

f

d
b

f2

Turn Event queue

0 G1, G4

1 G2, G3

2 G4

Figure 3.4: FIFO event queue.

In Proofs, event is ordered according to the level of the circuit. Every
time, the event at the lowest level is retrieved from the event queue.
For example, assuming the faults in Figure 3.4 are simulated by event
ordering method, which is showed in Figure 3.5. In Figure 3.5, the num-
ber in the center of each gate represents the gate’s level no. Each time,
when new events are inserted into the event queue, they are ordered by
the level no. Initially, event G1 and G4 is inserted in the queue. In the
first turn, event G1 is lowest level event in the queue, so it is simulated
and event G2 is inserted into the queue. In the second run, event G2 is
lowest level event in queue, so it is simulated and event G4 is inserted
in the queue. Because G4 is already exist in the queue, so it only need
to simulate one time and the number of simulated events is reduced.
In this project, the algorithm of computing node’s level is shown in
Figure 3.6.

2. Inactive fault removing: If the value of a single event fault f is the same
as the fault-free value, fault f is called inactive fault. Otherwise, it is
called active fault. Inactive faults don’t need to be simulated in parallel,
so it is removed from fault list before fault simulation.

3. Fault ordering: In parallel fault simulation, in order to take advantage
of parallelism, faults that cause the same events should be grouped
together. PROOFS shows that depth first ordering often reduce the

12 Chapter 3. Fault Simulation

G3

G4

G1

c

a

h
j

1

f1
G2

g

k1
e

f

d
b

f2

Turn Event queue

0 G1, G4

1 G2, G3, G4

2 G3, G4

1
2

0

3 G4

Figure 3.5: Event ordering.

Compute_Node_Level()
{

//PPI and PI is the lowest level in the circuit
foreach(PPI and PI node in the circuit)
{

set node Level to 0;
};

foreach(PPI and PI node in the circuit)
{

set_Output_Node_Level(node);
};

}

set_Output_Node_Level(Node node);
{

foreach(node outputNode)
{

if(outputNode level < node level + 1)
{

set outputNode level to node level + 1;

//expansion in CLB;
if(outputNode type is not flip-flop)

set_Output_Node_Level(outputNode);
};

};

}

Figure 3.6: Compute node’s level algorithm.

number of events more than breadth first ordering, so depth first or-
dering is used as event ordering algorithm in Proofs.

3.4 Proposed method 13

3.4 Proposed method

In the proposed fault simulator, in addition to the three heuristics showed
above, two new heuristics have been incorporated into Proofs to accelerate
fault simulation. The two heuristics are

1. Reduction of faults to be simulated in parallel by X algorithm
2. Dynamic Fault ordering

Next, I describe these heuristics in detail.

1. Using X algorithm to reduce the number of faults simulated by differ-
ential simulator.
X algorithm [30] is a one-pass, linear-time algorithm that determines
most of undetectable faults for a given test vector. Because differential
fault simulator is a square-time algorithm, X algorithm can be used
as a preprocessing step to reduce the number of faults simulated by
differential simulator and significantly reduce fault simulation time.
Critical path tracing [22] is another one-pass, linear-time algorithm that
determine most of detectable faults for a given test vector. Use critical
path tracing can reduce fault simulation furthermore. Here it wont’t be
considered because of two reasons. Firstly, normally, most of detectable
faults are easily detected and they can be detected in the early stage
of test and after that stage, the number of faults detected by each test
vector generally is very limited and using critical path tracing can’t
get much improvement. In experiment, I found the improvement by
critical path tracing in general less than the overhead of the algorithm.
Secondly, this algorithm needs lots of memory to store preprocessing
information, such as fan-out free region (FFR) information and parity
information. In my implementation, it consumes more than 400M-byte-
memory for some large circuits such as s35932.
The deficient of X algorithm is that it can’t get any benefit from fault
dropping. In other words, the simulation time is constant no matter
how many faults are simulated. Considering in test generation process,
the more faults are dropped, the less simulation time is improved by X
algorithm. Especially in the end of test pattern generation, most of the
faults are detected, the overhead of X algorithm may be greater than
the improvement. So X algorithm should be stoped before the time
when the overhead of X algorithm is greater than the improvement.
My idea is using ”threshhold”. If the number of faults, which need to be
simulated, is over than threshold, X algorithm will be used. Otherwise,
it will not be used (just use parallel differential simulator). Threshold
is experientially compute as the nu mber o f nod es in the cir cu it ÷ 2 .

14 Chapter 3. Fault Simulation

In Figure 3.7, the griding part shows the simulated faults reduced by
X algorithm.

Figure 3.7: Number of fault simulated

2. Dynamic Fault ordering In Proofs, faults is ordered by depth first or-
dering and grouping together in parallel simulation. According to my
methods, because multiple event faults have faults effect in PPI and
PPI is the lowest level in the circuit, Grouping multiple event faults
with the same PPI can help to decrease the events. For instance, there
are three faults in Figure 3.8. Faults f1 and f2 are neighbors by depth
first ordering. They are grouped together by Proofs. Faults f1 and f3
have fault effect in the same PPI. In my method, they are grouped
together. It can be seen that grouping f1 and f3 leads to more large
intersection area.
Like Proofs, I propose that ordering these stems by depth first travers-
ing. Before each simulation, the single event faults are mapped to
stems. Then, multiple event faults which has event in the same PPI
are grouped. Last stem and multiple event faults are simulated in par-
allel. The details are showed in Figure 3.9.
There are two deficiencies in this method. Firstly, it needs to order
faults and has overhead in each simulation. Secondly, for some multi-
ple event faults (fault positions are in internal node and PPIs), which
need longer distance to be propogated from internal node to output
than from PPIs, dynamic Fault ordering can’t help decrease the event
number. For instance, in Figure 3.10, grouping f1 and f3 doesn’t help
to reduce the number of events.

I implement extended X algorithm [22] with the star detection heuristic and
the fault propagation heuristic. The benchmark circuits used in experiment

3.5 Experiment results 15

Figure 3.8: First example of fault grouping.

are ISCAS89 benchmark circuits. For each of benchmark circuits, the exper-
iment is performed 3 times to study the consistence of the results. For each
run, a sequence of random vectors is generated. In all experiments, each of
the standard deviation value is lower than 10 percent of the average value.
This value shows the consistency of the algorithm. For small circuits, s349,
s510, s641, s713 and s838.1, the length of test vector is set as 200. For large
circuits, i.e. s1196, s1238, s1423, s1488, s1494 and s5378, the length of test
vector is set to 2000 to achieve high fault coverage. X algorithm is written
with C# dotnet language and runs on HP-Compaq workstation. The opera-
tion system is windows XP and CPU is INTEL Pentium 4 2GHz. In the rest
of experiments in this chapter, all experiment environment is same.

3.5 Experiment results

In last section, two new heuristics are used to improve the speed of paral-
lel fault simulation. To measure the effectiveness of the proposed heuristic,
I implemented the Proofs, which is introduced in the second section of this
chapter and extended X algorithm [22] with the star detection heuristic and
the fault propagation heuristic. The benchmark circuits used in experiment
are ISCAS89 benchmark circuits. For each of benchmark circuits, the exper-
iment is performed 3 times to study the consistence of the results. For each
run, a sequence of random vectors is generated. For small circuits, s349, s510,

16 Chapter 3. Fault Simulation

Main
{
 Order_Prepocess();

 For each test vector
 {

Dynamic_Order();

FaultSimulation();
}

}

void Order_Prepocess()
{
 ordering faults in fault list by depth first traversing
}

void Dynamic_Order()
{
 Map single event faults in FFR to the FFR output stem;

 For each PPI
 {

for each multiple event fault which has faults effect in the PPI
 {
 If (multiple event fault hasn been grouped by other PPI)
 Grouped the fault with PPI
 }
 }
}

Figure 3.9: Dynamic fault grouping process

s641, s713 and s838.1, the length of test vector is set as 200. For large circuits,
i.e. s1196, s1238, s1423, s1488, s1494 and s5378, the length of test vector is set
to 2000 to achieve high fault coverage. The performance of these individual
techniques are reported in the next two subsections. All of fault simulators
are written in the C# dotnet language and run on HP-Compaq workstation.
The operation system is windows XP and CPU is INTEL Pentium 2G Hz.

• Dynamic ordering.
The first experiment measures the performance of the heuristic ”dy-
namic ordering”. I implement a fault simulator called XProofs1 which
incorporates the proposed heuristic and compare it with Proofs which
incorporates the static fault ordering.
The aim of dynamic order is to reduce simulation time via reducing the
number of events. The number of event per test vector and CPU times
in each simulation are showed in Table 3.1.
From the table, we can see that the number of events in 8 of the bench-

3.5 Experiment results 17

Figure 3.10: The second example of fault grouping.

Circuit Average Event Number per Vector Time(Sec)
Proofs XProofs1 Speed up Proofs XProofs1 Speed up

s349 205,5 203,1 1,01 1,13 1,17 0,96
s510 312,7 306,8 1,01 1,4 1,54 0,9
s641 712 738,7 0,96 3,54 3,72 0,95
s713 1055,6 927,9 1,13 4,58 4,13 1,1
s838 3276,7 2885,8 1,13 17,1 16,4 1,04
s1196 1812,8 1802,6 1,01 74,5 76,1 0,97
s1238 2636,9 2644,2 0,99 105,1 111 0,94
s1423 6549,6 5044 1,29 334,2 294,3 1,13
s1488 3988,9 3989,9 0,99 152,2 163,8 0,92
s1494 4089,2 4049,8 1,01 156,8 158,5 0,98
s5378 14974,1 11478,4 1,3 1644 1311,1 1,25

Average 1,07 1,01

Table 3.1: Experiment results of dynamic ordering and static ordering

mark circuits is reduced and on average, the number of events is de-
creased by 7 percent. In the rest of 3 circuits, the number of events
increased because the distance between some FFRs’ output and PO or
PPO is shorter than PPI. If group these faults together, the perfor-
mance will become poor.
Though the number of events is decreased 7 percent on average, sim-
ulation time is only decreased 1 percent. This is because the overhead

18 Chapter 3. Fault Simulation

of dynamic ordering is larger than static ordering. But code optimiza-
tion can help to decrease dynamic ordering’s overhead and improve the
performance. Because time limitation, I haven’t time to optimize code.
It will be done in ongoing work.
Because the simulation time has only slightly reduced and in order
to decrease the amount of test work, this heursitic is not included in
proposed ATPG.

• Performance of incorporation of X algorithm
In this section, I report experimental results for incorporation of X
algorithm. Fault simulators implemented here are comprised of X algo-
rithm and differential simulation. Extended X algorithm [22] with the
star detection heuristic and the fault propagation heuristic is used to
reduce the number of faults simulated by differential simulator. Two
fault simulators, XProofs2 and XProofs3 are implemented. threshold
is not used in XProofs2, whereas threshold is used in XProofs3. The
algorithm of XProofs3 is showed in Figure 3.11.

Fault ordering by depth first algorithm (preprocessing step);

XProofs3()
{

Inactive fault moving;

if (the number of fault in fault list > threshold)
{

Simulate the circuit by X algorithm to determine most of
undetected fault;

}

Fault Simulate the rest of faults by parallel differential simulator

fault dropping;
};

Figure 3.11: Algorithm of XProofs3

From the Table 3.2, it can be seen that the fault reduced by the X
algorithm is great. Because of threshold, the fault reduced by XProofs3
is less than XProofs2 in four of the benchmark circuits. In the rest of
the circuits, because the number of undetected faults is always greater
than the threshold in simulation, the fault reduced by XProofs3 is same
as XProofs2.
Table 3.2 shows the improvement of simulation time. It can be seen
that XProofs2 and XProofs3 can reduce the simulation time about
60 percent. Notablely, for circuit s349, simulation time of XProofs2 is
larger than Proofs. This is because in this case, the overhead of X al-

3.5 Experiment results 19

Number of faults simulated by differential simulator
Fault per vector on average

Circuit Coverage Proofs XProofs2 Speedup XProofs3 Speedup
s349 93.4% 80,8 32,6 2,47 79,4 1,01
s510 97.8% 92,7 4.89 18.95 15,3 6,05
s641 70.6% 212 43 4,93 43 4.93
s713 69.3% 262 47,6 5,5 55,4 4,72
s838 25.1% 739,9 134,2 5,51 134,2 5,51
s1196 86.1% 323,1 50,3 6,42 150,5 2,14
s1238 81.3% 417,5 52,8 7,9 52,8 7,9
s1423 48.9% 946,7 235,2 4,02 235,2 4,02
s1488 68.4% 583,7 12,5 46,69 12,5 46,69
s1494 67.7% 603,2 12,5 48,25 12,5 48,25
s5378 66.8% 2017,6 472,8 4,26 472,8 4,26

Average 14.08 12,31

Table 3.2: Experiment result 1 of fault simulator with X algorithm

Fault Time(Sec) Time(Sec)
Circuit Coverage Proofs XProofs2 Speedup XProofs3 Speedup
s349 93,40% 1,13 1,22 0,92 1,02 1,1
s510 97,80% 1,4 1,14 1,22 1,05 1,33
s641 70,60% 3,54 2,67 1,32 2,67 1,32
s713 69,30% 4,58 3,16 1,44 3,16 1,44
s838 25,10% 17,1 6,01 2,84 6,01 2,84
s1196 86,10% 74,5 30,1 2,47 30,1 2,47
s1238 81,30% 105,1 32,2 3,26 32,2 3,26
s1423 48,90% 334,2 151,4 2,2 149,3 2,23
s1488 68,40% 152,2 36,4 4,18 36,3 4,19
s1494 67,70% 156,8 36,1 4,34 36,1 4,34
s5378 66,80% 1644 672 2,44 672 2,44

Average 2,42 2,45

Table 3.3: Experiment result 2 of fault simulator with X algorithm

gorithm is greater than improvement. Whereas, because of threshold
which can stop X algorithm when overhead is greater than improve-
ment, XProofs3 is faster than Proofs. This case shows the efficiency of
threshold.
In conclusion, incorporation X algorithm can effectively reduce the sim-
ulation time and using threshold can effectively prevent overhead great
than the improvement of X algorithm.

20 Chapter 3. Fault Simulation

In proposed ATPG, X algorithm with threshold is incorporated with
parallel differential simulator.

3.6 Ongoing work

Hyung Ki Lee et al. proposed HOPE [20] which further speeds up PROOFS.
It used three new heuristics to improve the speed of Proofs.

• fault mapping
• fault ordering
• efficient fault injection

These heuristics can also improve proposed fault simulator in experiment of
[20]. But in my implementation, the first two heuristic decrease the fault
simulation’s performance, this is because these heuristics are sophistic and
complicated. Without code optimization, the improvement will be greatly
offset by high overhead. Unfortunately, because of time limitation, I can’t do
much code optimization. I plan to optimize these code and implement the
third heuristic ”efficient fault indection” in the future work.

Next, I show these techniques in detail.

• fault mapping:
After removing stem, CLB can be partitioned into fan out free region
(FFR). Any single event fault in FFR must propagate into output of
FFR before propagating to any PPO or PO. In other words, any single
event fault in FFR can be mapped to stem faults, which is output of
FFR. After mapping, only stem fault can be simulated. For example,
Figure 3.12 is a FFR in circuit. Faults f1, f2, f3, f4 and f5 can be
mapped to stack-at 1 and stack-at 0 fault in the stem s. This heuristic
can reduce faults to be simulated.

• fault ordering
HOPE improves the ordering method furthermore. Because multiple
event faults can’t be mapped and they should be propagated through
stem, grouping faults in the same FFR together is a good idea to reduce
events. For instance, faults f1, f2, f3, f4 and f5 in Figure 3.12 should
be grouped together. HOPE proposes that nonstem faults inside each
FFR be grouped first and then ordering these fault groups by depth
first traversing FFR.

• efficient fault injection
In proposed fault simulation, traditional fault simulation [11] method
is used. Faults are injected by masking the appropriate bits of words

3.6 Ongoing work 21

Stem s
f1

f2

f3

f4 f5

Figure 3.12: Fault ordering.

and it is slow because it needs to check each gate during the simulation
to determine whether bit-masking has to be performed or not.
Hope improves the amelioration in the fault injection method. When a
fault is introduced at an input or output of the gate, the gate function
is changed. In other words, we can use a new Boolean expression to
reflect the presence of the fault. For instance, suppose a stack-at 0
fault is injected into a gate’s output, then the function of the fault gate
is f = 0;.
In HOPE, the types of fault free gates and fault gates are coded to-
gether, which is showed in Table 3.4.

function in-
dex

gate type

1 AND
2 NAND
3 OR
4 NOR
5 XOR
6 XNOR
7 INVERT
8 BUFFER
9 D flip-flop
20 and
above

reserved for faulty gates

Table 3.4: Gate Type

A new fault type of gate is created, when a fault is injected into circuit.
The new fault type of gate is assigned a function index (20 + the bit

22 Chapter 3. Fault Simulation

position of the fault in the word). Because one word contain 32 bits,
here 20 to 51 is reserved for faulty gates.
Assuming three stack-at faults f1, f2 and f3 are injected into circuits,
as shown in Figure 3.13. Suppose these three faults are simulated in
parallel and saved in the bit position 0 to 2. Gate A has two faults f1
and f2. The two faults are added into link list. Because f1’s bit position
is lower than f2, the type of Gate A is changed to 20, represented
the first fault in bit position 0. Gate B has no fault. Gate B’s type is 1
represented AND gate. Gate C has one fault f3, which is in the position
2, so gate C’s type changed to 22.

f1
f2

f3

A

B

C
20

1

22

0

f1

a

b
c

d

e

Bit

Fault

Next

1

f2

2

f3

Figure 3.13: Example of Fault Injection.

After all faults are inserted, the gates are evaluated according to func-
tion index and fault information.
The advantage of the method is it needn’t circuit modification and has
no any overhead for fault-free gates.

In experiment results [20], on average, HOPE is faster than Proof by 1.6
times.

23

Chapter 4

Logic Simulation

Logic simulator is used to simulated the fault free circuit. In the beginning
of each time frame, not only new test vector is inserted in the circuit, but
also flip-flops’s states are updated. These changes influence the internal node
of the circuits. Logic simulator is used to simulation these influence to fault
free circuit. In LSG, Logic simulator is also used to evaluate the effectiveness
of each candidate test sequence.

Logic simulator implemented in this project has following characters.

• event-driven simulator.
• Influence of flip-flops’ new state is simulated first. (The test vector is

same as test vector in last time frame) This is because flip-flop’s state
in current time frame is not depended on new test vector, but only
depending on PPO of last time frame. In other words, in the same time
frame, flip-flops’ new states are always the same whatever test vector
changes. If simulating influence of flip-flops’ new state first, the circuit
can be used as initial circuit for new test vector simulation.

• Differential logic simulator. Like differential fault simulator, only dif-
ferent part of circuits is simulated. The initial circuit is the circuit after
simulating the new flip-flop’s state.

• parallel logic simulator. 32 different test vectors are simulated in one
pass.

• Event ordering. Like Proofs, event is ordered according to the level of
the nodes.

24 Chapter 4. Logic Simulation

25

Chapter 5

Fitness function

5.1 Overview

Both FSG and LSG use fitness function to evaluate the fitness of test sequence
and guide the test generation, but they use different method to calculate
fitness value. For FSG, fault simulation makes up the bulk of computation.
LSG repeats logic simulation to gather information for fitness function. Both
FSG and LSG is complementary. LSG is less complex than FSG, so the
execution time can be far shorter. But at the same time, LSG gathers less
information for fitness function, generally, the fault coverage of LSG is inferior
than FSG if the generated test sequence’s length is the same.

In this project, at first, a LSG is designed. Because of complementary of LSG
and FSG, LSG is improved by combination technique of LSG and FSG. The
organization of the rest chapter are showed below.

• Chapter 5.2 Fitness function of LSG
• Chapter 5.3 Fitness function of FSG
• Chapter 5.4 Combinational fitness function

5.2 Fitness function of LSG

The proposed fitness function of LSG targets on property of the fault free
circuit and depends on the observations showed below.

1. Observation 1: The more new states are accessed, the more faults may
be detected.

26 Chapter 5. Fitness function

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

FF2

FF3 Inp1

Inp2

Inp3

Inp4

Inp5

Inp6

Inp7

Inp9

Inp10

Output1

A

Output2

Q

Q
SET

CLR

D

FF1

B

Figure 5.1: Useful states and useless states.

Fault detection in sequential circuit is depended on circuit states (flip-
flops’ value). More new states are accessed, more faults may be de-
tected. Therefore, Pomeranz [28] developed a test generator that aims
to drive the fault-free circuit to as many new states as possible.

2. Observation 2: New states which have more difference with old states,
more useful.
Large sequential circuit has numerous states, assuming the number of
circuit’s states is equal 2N , N is the number of flip-flop, most of these
states are noise and useless. Indiscriminate addition of new states is
inefficient and fault coverage can level off prematurely.
Which test pattern is important, which is not? We can see an example
first. A fault circuit showed in Figure 5.1. New states in flip-flop FF2
and FF3 is useful to test the fault A in line. New state in FF1 is useless.
But it is always useful when more than one flip-flop’s state changes. In
other words, more different with old states, more useful.
Hamming distance can be used to guide the selection and remove noise.
Longer distance means there is more difference with old states. The

5.2 Fitness function of LSG 27

choice, which has long distance with old states, is a good choice. For
example, in Figure 5.2, a circuit has 8 flip-flops. In history table, there
are 2 old states and in candidate table, there are 2 candidate states.
Hamming distance between state A and old states is 9 and that of state
B is 5. A is better than B.

FF1 FF2 FF3 FF4 FF5 FF6 FF7 FF8

1 1 1 1 1 1 1 1

1 0 0 0 0 0 1 1

History table

1 0 1 1 1 1 0 0

1 0 0 0 1 0 1 1

Candidate table

Figure 5.2: Example of hamming distance

3. Observation 3: State partitioning provides better guidance in the search
space.
As shown above, for each fault, some state variables are useful, while
others are useless and unimportant to detected faults, so maximizing
the new states on these useless states doesn’t play any work. Obvi-
ously, these unimportant states are noise and could misguide the test
generator. For instance FF1 is useless states for fault A. Unfortunately,
Hamming distance can’t weed out these noises.
Another choice is partitioning global state into partial states [31]. Fit-
ness value is calculated according to how many new partial states ac-

28 Chapter 5. Fitness function

cess.
For example, Figure 5.3 showed circuit with eight flip-flops. Global state
is partitioned into two partial states S1 and S2. There are two old states
in history table. Here it can be found that candidate A has 2 different
partial states and B has 1 different partial state, so A is winner.

FF1 FF2 FF3 FF4 FF5 FF6 FF7 FF8

1 1 1 1 1 1 1 1

1 0 0 0 0 0 1 1

History table

1 0 1 1 1 1 0 0

1 0 0 0 1 0 1 1

Candidate table

FF1 FF2 FF3 FF4 FF5 FF6 FF7 FF8

Global State

S1 S2
Partial State

Figure 5.3: Example of state partitioning

4. Observation 4: Hard-to-detect fault generally has to access hard to
control states during testing [31].
Shuo Sheng and Michael S. Hsiao [31] proposed that partitioning states
according to their controllability and assigning hard to control states
higher weight is useful to weed out the noise. Here I use the same
partition method as [31]. The details is showed below.
Partition algorithm showed in Figure 5.4.

(a) Calculate each flip-flop’s controllability value.

5.2 Fitness function of LSG 29

State_partition()
{

1000 times logic simulation;

compute FFBias value for each flip-flop;

sort flip-flops with the FFBias value;

Partition();
};

Partition()
{

int n = the number of flip-flops;

//limited the size of group to 32
if (n < 32 * 5)
{

averagely partition flip-flops into 5 sub groups,
}
else
{

group_number = n / 32;
averagely partition flip-flops into n / 32 sub groups,

}
}

Figure 5.4: State Partitioning algorithm

The circuit is simulated by logic simulation with 1000 random vec-
tors and the number of times in each FFi is set to 0 is recorded
, denoted by Ni0. The 0 controllability of FFi is calculated as
CC0i = Ni0 ÷ 1000, and the 1 controllability is CC1i = 1 − CC0i.
The bias of the controllability values is called as FFbias and de-
fined as FFbias(i) = |CC0i − CC1i|, If FFi is easily controlled
as both 0 and 1, then FFbias(i) is close to 0. A large FFbias(i)
indicates that a strong bias exists for this CC0i, CC0i and It is
hard to control 0 or 1 to FFi. Because reducing this bias is most
interesting in state traversal, bias-to-0 or 1 isn’t differentiated.

(b) Sort the entire flip-flops from the lowest FFbias value to high
FFbias value.

(c) Because large subgroups go against weeding out the noise, the
size of each subgroup is limieted and hasn’t relative with the the
number of flip-flops in the circuits.
An example, which circuit is partitioned into 5 sub groups, is
shown in In Figure 5.5.

30 Chapter 5. Fitness function

1 N

Group1 Group2 Group3 Group4 Group5

Flip-Flop

after ranking

Lowest controllability

Flip-Flop

Highest controllability

Flip-Flop

Highest FFbias

flip-flop
Flip-flop

after ranking
Lowest FFbias
flip-flop

Figure 5.5: State Partitioning

(d) After state partitioning, high FFbias group can be assigned high
weight in fitness function.

5. Observation 5: Best former test patterns can not guarantee later test
patterns are also best. If only optimizing single test vector for each time
frame, then only local optimization result can be achieved.
As mentioned above, for sequential circuit, primary output values not
only depend on primary inputs, but also depend on old circuit states. If
only optimizing test pattern for each time frame, only local optimization
result is achieved, because best former test patterns can’t guarantee
later test patterns also best. For example, in Figure 5.6, a circuit has
8 flip-flops. It is partitioned into 3 partial states, S1, S2 and S3. In
history state table, it has three old states. There are two test sequences
A, B in candidate table. Each sequence has three test patterns, which
are winners after optimization. For instance, A1 is the best test pattern
after applying test pattern A0. I also denote partial states a decimal
number instead of binary number. For example, ’3’ appearing on S1
represents partial states ”011”. It can be found that after applying A0,
three new partial states are accessed. For B0, only 2 new states are
accessed. But when applying all three test vectors in test sequence
A, 5 new partial states are accessed. For B, 8 new partial states are
accessed. Obviously, B is better than A globally. But if only optimizing
for each time frame, A0 is better than B0, so A is selected. Then a
local optimization result is achieved. To improve it, I optimize test
sequence instead of single vector. Figure 5.7 shows the structure of an
optimization unit (chromosome in GA) .
In theory, longer sequence can get more global optimal results. But
because Longer sequence also exponentially extends search space, which
is showed in Equation 5.1. This increases generation time and decreases
the probability of finding optimal result. I tried 5 different lengths of
sequence, 1, 10, 20, 40 and 100, to find the optimal value.

SearchSpace = 2N×M (5.1)

• N is the number of primary inputs.

5.2 Fitness function of LSG 31

• M is sequence’s length.

FF1 FF2 FF3 FF4 FF5 FF6 FF7 FF8

3

2

History table

Candidate table

A0
A

FF1 FF2 FF3 FF4 FF5 FF6 FF7 FF8

Global State

S1 S3

Partial State

7

4

3

5

5 8

S2

1

3

0

2

2 23A1

4 50A2

B0
B

5 81

6 22B1

4 16B2

Figure 5.6: Global Optimization and Local Optimization

Test Vector 1 Test Vector 2 Test Vector M - 1 Test Vector M

Figure 5.7: structure of an optimization unit

32 Chapter 5. Fitness function

According to the observation showed above, Fitness value is computed
by the Formula 5.2 :

Fitness =

M∑

j=1

N∑

i=1

Wij × Uij ÷ 10K (5.2)

• N is the total number of partitions.
• M is the length of test vectors in a optimization unit,
• W, U and K’s meaning is showed in below Table 5.1, 5.2 and 5.3.

In Formula 5.2, ”
∑M

j=1” is used for global optimization (Observation 5).

”
∑N

i=1 Wij × Uij” is used to maximum new partial states(Observation
2, 3, 4).
”÷10K” is used to achieve maximize new global states (Observation 1).

W: weight assigned to each sub
group.

Group 1 1
Group 2 2
Group 3 3
Group 4 4
Group 5 5

Table 5.1: Parameter W

U
New Partial
State

10

Old Partial
State

1/n, n is the number of times this
partial state has been visited during
logic simulation

Table 5.2: Parameter U

Because the goal is to get as many useful states as possible, the search
must not frequently return the circuit with an old or reset state. In
sequential circuit, there is reset signal to reset circuit’s state. These
signals must be masked. S. Sheng [27] uses reset masking technology
to prevent it, i.e. use parallel simulation to identify the circuit’s reset
PIs and perform the masking as part of the ATPG process. Here I
use a new simple method. In any times, the circuit returns an old or
reset global state, fitness value is divided by 10k, k is the number of

5.3 FSG fitness function 33

K
New Global
State

0

Old Global
State

n, n is the number of times this
global state has been visited during
logic simulation

Table 5.3: Parameter K

times this global state has been visited during logic simulation. This
way is better than reset masking technology, because it prevents circuit
from returning not only reset state, but also old states, whereas reset
masking technology only prevent circuit from returning reset state.

5.3 FSG fitness function

FSG [12] [32] [9] [13] gathers information for fitness function from PROOFS
fault simulation. The fitness function of [13] is showed in Formula 5.3.

fitness =
∑

fautls detected +

∑
fault effects propagated to flip flops∑

faults simulated
∑

flip flops
(5.3)

Because the aim of ATPG is to achieve high fault coverage, the number
of detected faults (

∑
fautls detected) is the primary metric in the fitness

function. The number of fault effects propagated to flip-flops are induced to
differentiate test sequences that detect the same number of faults. To ensure
that the number of faults detected is dominant fraction in the fitness function,
the number of fault propagated is offset by the number of fault simulated and
the number of flip flops.

Though an accurate fitness function is essential for achieving a good solu-
tion, the high computational cost of fault simulation may be prohibitive. To
avoid excessive computations, [12] [32] [9] [13] approximate the fitness of a
candidate test by using a small random sample of faults. In these work, they
use a sample size of about 100 faults if the number of faults remaining in the
fault list is greater than 100.

In this project, Formula 5.3 is chosen as fitness function and X algorithm is
used instead of fault sampling if the remaining faults are greater than thresh-
old, as X algorithm can determine most of undetected faults. The detected

34 Chapter 5. Fitness function

faults and fault effects propagating to each PPO are computed by Formula
5.4 and 5.5.

FXALG = FFL− XUDF (5.4)

XFPPPO = XUDF − FXPALG (5.5)

• FXALG: detectable faults, which is determined by X algorithm
• FFL: faults in fault list.
• XUDF: undetectable faults, which is determined by X algorithm
• XFPPPO: undetectable faults but whose effects can propagated to each

PPO, determined by X algorithm
• FXPALG: undetectable faults and whose effects also can not propa-

gated to each PPO, determined by X algorithm

X algorithm is chosen because of two reasons.

The first, X algorithm is more accurate than fault sampling. Table 5.4 shows
the precision of X algorithm and precision of Fault Sampling. From Table 5.4,
it can be seen that X algorithm is much preciser than fault sampling.

Formula 5.6 is used to calculate the precision of X algorithm in Table 5.4.
Formula 5.7 is used to compute the precision of fault sampling in Table 5.4.
Like [12] [32] [9] [13], the sample size is 100 in the experiment. The experiment
environment is the same as chapter 3.

Precision =

∑LTS
i=1

NODF
NODFX

LTS
(5.6)

Precision =

∑LTS
i=1 (NODF < NODFS)?(NODF

NODFS
: NODFS

NODF
)

LTS
(5.7)

• LTS: the length of test sequence.
• NODF: the number of detectable faults, which are determined by par-

allel differential fault simulator.
• NODFX, the number of detectable faults, which are determined by X

algorithm.
• NODFS, the number of detectable faults determined by fault sampling.

The second, any faults detected by differential fault simulator also can be
determined by X algorithm. This is a very useful character which fault sam-
pling hasn’t, because most of faults are easily detected faults and they are

5.4 Combinational fitness function 35

Precision
Circuit the length of Test vector X algorithm Fault Sampling
s349 200 0.99 0,87
s510 200 0.97 0,92
s641 200 0.98 0.75
s713 200 0.85 0,71
s838 200 0.79 0,83
s1196 2000 0.52 0,37
s1238 2000 0,59 0,39
s1423 2000 0.92 0,48
s1488 2000 0,98 0,42
s1494 2000 0.96 0,38
s5378 2000 0.93 0.70

Table 5.4: Precision of X algorithm

dropped in the early stage of test generation. After that, the number of faults
detected by single vector are very little, generally not greater than 2. There
are large probability that the detectable fault is not sampled, The fitness
value of test vector which can detect faults may be no difference with useless
vectors which can’t detect any faults.

5.4 Combinational fitness function

As showed above, The Pros and Cons of LSG and FSG are complementary.
LSG is fast but containing less guidance information and FSG is slow but with
relative more guidance information. In this section, combination-simulated
based generator (CSG) is proposed to combine the advantage of LSG and
FSG, which is showed in Figure 5.8.

Comparing with pure LSG, CSG needs 32 more times of X algorithm for each
new test vector. But this overhead is not large, because of two reasons.

1. For each new inserted test vector, ATPG also needs fault simulation to de-
termine the number of detectable fault. Table 9.3 in Chapter 9 shows that in
most of test circuits, only about 10%’s CPU time is used for fault simulation,
whereas the computation cost of X algorithm is much less than fault simu-
lation. The cost of 32 times X algorithm haven’t much influence in running
time .

2. Table 9.7 shows that CSG is faster than LSG, because CSG decreases the
length of test sequence (without decreasing fault coverage). In other words,

36 Chapter 5. Fitness function

Main
{
 do
 {

 Logic simulation and metaheuristic algorithm are used to find best test vector

X algorithm are used to evaluate the fitness value of the best 32 vector that
 has highest LSG fitness value and selected the best vector (FSG)

Insert the best test vector to test set and checked new faults detected by the new
test vector (fault simulation)

}
While(finished_test_pattern_generation())

}

Figure 5.8: Combination ATPG Processing

the number of test generation is decreased by CSG. This improvement is
greater than overhead.

In conclusion, CSG not only improves the fault coverage, but also decreases
the test generation time.

37

Chapter 6

Metaheuristic algorithm

In art of state simulation-based [10] test generation, metaheuristic algorithms,
such as genetic algorithm, are used to search for best test sequence and fitness
function is used to guide the test generation’s search.

Six metaheuristic algorithms are commonly used. They are Tabu Search(TS),
genetic Aglorithm(GA), Simulated Annealing(SA), Deterministic Anneal-
ing(DA), Ant Systems(AS) and Neural Networks(NN) [3]. GA is a iterative
procedure that maintains a population of candidate solutions encoded in form
of chromosome string. SA, DA and TS move from one solution to another in
the neighborhood to find good solution [3]. AS discovers good solutions by
using positive feedback, constructive greedy heuristic and distributed com-
putation. NN is a learning method, which gradually adjusts weights until a
satisfactory solution is reached.

A suitable metaheuristic algorithm for ATPG can speedup test generation,
reduce test sequence’s length and improve fault coverage. Because of time lim-
itation, it is impossible to implement and compare all these metaheuristics in
this project. In order to choose the best one, I consult metaheursitic solution
of another large-scale problem, Vehicle Routing Problem (VRP), which is to
find the efficient use of a fleet of vehicles that must make a number of stops
to pick up and deliver passengers or produces. I think efficient metaheursitic
for VRP also can be used in ATPG, because of two reasons. Firstly, like
ATPG, VRP is a NP problem and an algorithm for solving NP problem can
be translated into the one for solving another NP problem. Secondly, like
ATPG, VRP also has large neighborhood and the size of neighborhood is an
important metric to select metaheuristic algorithm to solute problem.

Comparing the best-known methods, NN, SA, DA and AS have not shown out
competitive results [15]. TS [14] and GA [1] have been got a lot of attention

38 Chapter 6. Metaheuristic algorithm

and are the most effective approachs for VRP. In this project, I implemented
GA and TS. They will be described in the rest of the Chapter,

The deficiency of metaheuristic algorithms [1] is that their running time is
unknown and they involve many parameters that need to be tuned for each
problem before they are applied. In this project, I limited running time via
limiting the number of repeating and tried to find best parameters for ATPG.
The details are shown later.

6.1 Genetic algorithm

6.1.1 Background

In 1859, Charles Darwin proposed the theory of Natural Selection [18]. It
states the procession that results in adaptation of an organism to its en-
vironment by means of selectively reproducing changes in its genotype. The
individual with higher adaptation characteristics is more likely to survive and
mate. In nature, the characteristics of every organism are stored in the gene.
When the organisms mate, parents’ genes are reproduced, crossover, mutated
and pass on to the offspring. The population will gradually improved by the
natural selection.

Genetic algorithm is modeled on Darwin’s theory [18]. The basic terms and
ideas are widely accepted. Here I just explain it in brief.

Normally, species-evolution acts on a population of individuals to complete
natural selection of best ones, which has high fitness to environment. To be
the same as species-evolution, GA acts on a population of individuals and
seeks patterns (genetic material) of the individuals, which upgrade fitness.
For optimization problem, individuals are represented as solutions of problem.
Generally, Patterns (genetic material) of the individuals are encoded to bit
string like gene on a DNA chromosome, which determines the feature of
species. The bit string is often called as chromosome. These chromosomes
are each evaluated by the fitness function.

Like natural selection, GA also uses fitness value to select individuals in the
current population to mate and reproduce new offspring. Reproduction is
the recombination of the individuals, which has two parent individuals per
offspring typically. Each new set of offspring and any surviving parents is
called a generation.

The outline of standard GA [1] is showed in Figure 6.1.

6.1 Genetic algorithm 39

GA()
{

do{
Select promising individuals from current population

Select individuals and the previous population left off

Cross and Mutate to reproduce selected individuals

Evaluate created individuals
}
while(finished())

return best from population
}

Figure 6.1: Standard GA Procession

Evolutionary operators, crossover and mutation, are mimicking the basic pro-
cess of reproduction.

Crossover places the role of combination the parents’s gene to create a new
offset. According fitness value, the best chromosomes’ data are selected and
mixed, hopefully producing a better next generation. Generally, each offset
has two parents.

During mutation, each part of chromosome has a certain probability, gen-
erally very low, to change. New individual in a population is introduced by
this operation and we can search for a new solution (not only congregate the
individuals that already exist in the population).

The Pros of Genetic algorithms is showed below

• GAs are adaptive learning heuristic.
• GAs are also robust and effective algorithms, whose computational

complex is simple [3].
• GA is significantly different from heuristics such as SA and TS and

thus complements these algorithms. The difference are showed below
[16]:

– GAs search from a set of solutions and do a multi directional search
in search space. This is similar to parallelly running several Tabu
search. There is higher probability to get global optimal result.

– GAs needn’t continuous searching space. It is more suitable for
real life example, which generally has discontinuous search space.

– GAs are nondeterministic algorithms which are stochastic in de-
cision. This makes them more robust.

40 Chapter 6. Metaheuristic algorithm

– GAs have many parameters and these parameters are hidden and
depend non-linearly on each other. It is hard to find optimal com-
bination of these parameters.

GA is suitable for many different problems. Until now, many different versions
of GAs are proposed for different problems. But in order to work as effective
as possible, the following basic items need to be carefully considered for all
genetic algorithms[24].

• A GA framework
• A good genetic representation of a solution in a form of a chromosome.
• Fitness function to evaluate fitness value of each solution.
• A initial population constructor, generally it is a random constructor.
• Genetic operators, such as selection.
• Values for parameters, population size, mutation probabiltiy, etc.

The argument against GA is GA has so many parameters and it is very
time-consuming to find out the best combination of all these praramters. For
sparing time, in this project, I tried to find the best value by experiment for
critical GA parameters, such as mutation rate. Other parameters is selected
according to the optimal value found in the related works. The detail showed
in the next section.

Please note, this chapter doesn’t describe fitness function because it is intro-
duced in previous chapter.

6.1.2 GA framework for ATPG

Besides standard GA, there is another best-known GA [1], steady state GA
(SS), showed in Figure 6.2. In many optimization problems, it works bet-
ter than standard GA. But here it isn’t considered, because it can’t exploit
parallel logic simulate. In order to utilize parallel logic simulation, a new
generation should be evolved first, then parallel logic simulation can be used
to calculate these individual’s fitness value. Whereas, for steady state GA,
two new individuals are generated at first, then their fitness values should
be calculated immediately. Here I focus on standard GA, which is showed in
Figure 6.1.

6.1.3 Selection

Various selection schemes will generate different results. There are many se-
lection schemes have been used. Here I will focus on proportional selection
(PS) and stochastic universal selection (SUS).

6.1 Genetic algorithm 41

Figure 6.2: Stead state GA Procession

Proportional selection uses a roulette wheel, which is sized according to the
fitness of each individual in the population. An individual is selected by
spinning the roulette wheel. An example is showed in Figure 6.3. Stochastic
universal selection uses a roulette wheel, which has N equidistant marks and
N is the number of individuals in the population. The number of copies
of each individual selection is equaling to the number of marks inside the
corresponding slot. An example is showed in Figure 6.4.

p1 = 0.31
p2 = 0.21
p3 = 0.15
p4 = 0.24
p5 = 0.09

p1
p2

p3

p4

p5

Figure 6.3: Proportional selection

[9] shows stochastic universal selection is a more fair method and with less

42 Chapter 6. Metaheuristic algorithm

p1 = 0.31
p2 = 0.21
p3 = 0.15
p4 = 0.24
p5 = 0.09

p1
p2

p3

p4

p5

Figure 6.4: Stochastic universal selection

noise in the sampling of new individuals than Proportional selection. In this
implementation, I compare these two selection methods by experiment re-
sults.

6.1.4 GA parameter

Various GA parameters are important in achieving good results.

Firstly, chromosome’s organization is considered. In my case, binary-
coded string is used to represent chromosome (population). Each bit in string
represents a primary input and each string represents one test vector.

Next, I consider the size of population. A sufficient population is needed
to provide good combinations of characters. However, a reasonable limit on
the population size is needed to reduce computation. As [9] presented, the
best size of population in ATPG GA is 16 or 32. Increasing size can’t get
much improvement but increase run time. [9] also shows that for ATPG, over-
lapping population (there are individuals that contain same chromosome in
the population) is faster than no overlapping population (each chromosome
of individuals are different), almost without any negative influence with fault
coverage. Considering ability of parallel simulation, I select size of popula-
tion 32 with overlapping. Termination condition is another critical condition,
which can limit the number of repeatation. There are three conditions that
will terminate generation.

Then initial population is considered. Because without evaluating test vec-
tor, no one know which test vector is good or not, so initial population is
randomly generated.

6.1 Genetic algorithm 43

1. Convergence condition. The longest hamming distance between highest
fit individual and other individual is smaller than N / 10, N is the
number of flip-flops.

2. The best fitness value has no improvement in the latest ten iterations.
3. The number of iteration is greater than 600.

Crossover is a very important operation in GAs, which provides a method
for creating new solution from two fit parents, which are likely to be helpful in
improving the fitness. There are several techniques can be used in crossover.

1. One point crossover
One index (swap point) in the chromosome string is selected. All data
beyond that point in the chromosome string is swapped between the
two parent organisms. The getting chromosomes are the children. An
example is shown in Figure 6.5. There are two methods to implement
one point crossover, fixed-index and random-index. Each time, when
crossover, for fixed-indes, the swap point is fixed and for random -index,
the swap point is randomly.

1

1

1 00110

0 00000

Swap pointer

1 11

0011

0 0 00

000

Parent_1

Parent_2

Child_1

Child_2

One pointer
Crossover

Figure 6.5: One point crossover

2. Two point crossover
Two indices (swap points) are selected in the chromosome. Everything
between the two points is swapped between the parent chromosomes,
rendering two child chromosomes. An example is showed in Figure 6.6.
There are also two methods to implement two point crossover, i.e. fixed-
index and random-index.

3. Uniform crossover
Uniform crossover is the extreme case of multipoint crossover, for each
bit: it takes the value from one of the parents at random. An example
is showed in Figure 6.7.
Studies [5] have shown that uniform crossover is superior to one and
two-point crossover. The advantage of uniform crossover is that it per-

44 Chapter 6. Metaheuristic algorithm

1

1

1 00110

0 00000

Swap pointer 1

11

0011

0 0 00

010

Parent_1

Parent_2

Child_1

Child_2

Two pointer
crossover

Swap pointer 2

0

Figure 6.6: Two point crossover

1

1

1 00110

0 00000

10 0 0 00

Parent_1

Parent_2

Child
Uniform
crossover

1

Figure 6.7: Uniform crossover

forms many different combinations of schemata much more quickly than
one or two point crossover. When chromosome length is long the em-
phasis of a GA is on performing more combinations of chromosome to
obtain new schemata. Therefore, uniform crossover surges forward in
this area. Because in the sequential ATPG, the chromosome’s length
generally is quite longe, which is shown in Equation 6.1, so uniform
crossover is selected for this implementation.

The length of Chromsome = N × M (6.1)

• N is the number of primary input.
• M is the number of test vectors in one chromosome.

Mutation rate is a very critical and problem depend parameter, which is
used to prevent the loss of key characters at the various string positions. But,
mutation also destroys good combinations of characters, so a balance should
be found. I tried mutation probabilities from 0.01 to 0.5 respectively to find
the best mutation rate of the circuits.

In summary, the GA parameters, selected in this implementation are shown
in Table 6.1.

6.1 Genetic algorithm 45

Parameter Name Value or technology se-
lected

Comment

GA algorithm Standard GA
Chromosome Bit string
Population size 32
Population type Overlapping population
Selection Method PS or SUS Determined according

to experiment results
Fitness scaling Linear scaling
Crossover Uniform crossover
Mutation Not decided Determined according

to experiment results

Table 6.1: GA parameter

6.1.5 Fitness scaling

Controlling of the number of copies is very important in small population
genetic algorithms, which is the exact case in this project.

In general, at the start of GA’s running, there are some extraordinary indi-
viduals in a population of ordinary colleagues. If using proportional selection
or stochastic universal selection, the extraordinary individuals would take
over a significant proportion of the population in a single generation. This
causes the premature convergence and it is undesirable. So in the beginning,
the difference of fitness should be shrunk. Later when the run becomes ma-
tures, there may still be a significant diversity within the population, but
the average fitness is close to the population’s best fitness. Average members
and best members get almost same numbers of copies in future generation.
It doesn’t encourage a healthy competition among near equal fitness values.
At that time, the difference of fitness should be amplified.

Fitness scaling [18] can help in these situations and linear scaling is a use-
ful and simple scaling method. Linear scaling requires a linear relationship
between the raw fitness f and the scaled fitness f’.

f ’ = af + b (6.2)

Because that the best individual is copied one time more than average indi-
vidual in generation is desirable in generation for small population [18], so a
and b is selected to scale f like Figure 6.8.

Toward the end of the run, the average fitness may be near Max fitness. If

46 Chapter 6. Metaheuristic algorithm

0

0 fmin favg fmax

f'min

f'avg

f'max (2favg)

Raw fitness

S
ca

le
d

 fi
tn

es
s

Figure 6.8: Linear scale

fitness value is scaled by above method at that time, minimal fitness value
will be negative, which is showed in Figure 6.9. This is also undesirable.

0

0 fmin
favg fmax

f'min

f'avg

f'max (2favg)

Raw fitness

S
ca

le
d

 fi
tn

es
s

Figure 6.9: Undesirable Linear Scale

At that time, I can’t scale
f ’

max = 2f ’
avg (6.3)

I just map the minimal raw fitness ’fmin’ to a scaled fitness ’f’min’ = 0 to

6.2 Tabu Search algorithm 47

scale it as much as possible, which is shown in Figure 6.10.

0

0 fmin
favg fmax

f'min

f'avg

f'max (< 2favg)

Raw fitness

S
ca

le
d

 fi
tn

es
s

Figure 6.10: Modified Linear Scale

In this way, linear scaling helps prevent premature in early stage and speed
up improvement in the end run.

6.2 Tabu Search algorithm

I wish one could have more choice to gain an efficient way for solving this
problem. Therefore here I choose another metaheuristic algorithm-Tabu search
algorithm.

Tabu search (TS)[17] is proposed in its current form by Fred Glover in 1986
and An enormous amount of applications and variations of TS has been pro-
posed since then to solve a wide range of hard optimization problems such
as job shop scheduling, the traveling salesman problem, resource planning,
telecommunications, VLSI design, financial analysis, scheduling, space plan-
ning and energy distribution.

TS is an iterative procedure designed for the solution of optimization prob-
lems. It is ”a meta-heuristic superimposed on another heuristic”. The basic
idea of Tabu search is to explore the search space of all feasible solutions
by a sequence of moves and some moves in Tabu list are forbidden to avoid
entrainment in cycles (Hence ”Tabu”) and escape from locally optimal but

48 Chapter 6. Metaheuristic algorithm

not globally optimal solutions. Tabu-list contains moves which have been
made in the recent past but are forbidden for a certain number of iterations.
Sometimes, a Tabu move can be overridden, when it is deemed favorable.
Forgetting that a move is Tabu could lead to a solution which is the best
obtained so far.

An iteration in a Tabu search showed in Figure 6.11.

Current Solution

Define neighborhood

Evaluate
neighborhood

Pick best non-Tabu
neighbour

Figure 6.11: Tabu iteration

From Figure 6.11, it can be seen there are three most important elements
in the Tabu search. The first is neighbor definition (move definition). The
second is the Tabu list, which help identify cycling. The use of Tabu list is
showed in Figure 6.12. The last is neighbor evaluation, which help to find
best neighbor.

Tabu List
Memory techniques
that help identify cycling

Tabu List
Memory techniques
that help identify cycling

Figure 6.12: The use of Tabu list

Processing in Figure 6.13 is the basic steps I design and several important
variables is emphasized here.

First, the neighborhood, search space in one iteration, is created by inverting
calculation for each binary number of the original binary string or the best

6.2 Tabu Search algorithm 49

one from last calculation and hamming distance is only one between original
one. Selecting hamming distance one is because the length of binary string
(like chromosome in GA) is general long, the number of neighborhood is
exponentially growing with the length of difference and Tabu search need
calculate all neighborhood’s fitness value. This let longer hamming distance
impossible. Second, to speed up searching in Tabu list. A hash table is created
to be Tabu List that contains calculated and discarded binary string. Tabu
move can not be overridden. To evaluate neighborhood, LSG fitness function
which showed in chapter 5.2 is used. Finally, for limiting the calculation and
comparing with GA, stopping criterion for this problem is the same as GA.

TABU()
{
 Choose initial solution s

 s*=s; k=1
 repeat
 {

 Generate VN(s, k) N(s)

 Choose the best s^ in V

 s=s^

if f(s)<f(s*) then s*=s

 k=k+1
 }

until stopping condition is met

return s*
}

//randomly input a sequence of a binary code string;

//s*=current best solution which is derived from a binary
//code string I just input; k: the number of circulation
//that responds to the stopping condition

//here I create the neighborhood of this binary number by
//Boolean inversion calculation for every digit, and a
//Tabu list memory that contains history moves

//choose a best binary number in the neighborhood I just
//created that can bring the maximum value for the
//polynomial

//this binary number that denoted by s^ is the best
//solution in the neighborhood in the whole
//neighborhood

//compare the best binary number in the neighborhood to
//the original number, choose a better one that can bring
//the maximum value for the polynomial.

//repeat above steps for the best binary number I just
//chose

//here I decide that the number of iteration great than
//600 and after 10 times circular calculation for the
//above steps, if no improvement (here means cannot
//find an objective value which is bigger than that of 10
//times before) happens for the objective value, stop the
//calculation.

//the best solution in search processing

Figure 6.13: Tabu search processing

[40] shows the advantage of Tabu search is not bounded by linearity and

50 Chapter 6. Metaheuristic algorithm

yields relatively better solutions than previously intractable problems, but
the deficient of Tabu Search is it assumes fast performance evaluation. In
other words, if neighborhood evaluation needs long time, the performance
of Tabu search maybe poor. Unfortunately, evaluating a test vector’s fitness
generally takes relative long time, this foreshow Tabu search yields poor
performance than GA. Experiment results also proof it, which is showed in
Table 9.4.

51

Chapter 7

Test

In this project, test is a really hard work and this is because of two reasons.
The first, it is a very complicated system and there are about 20,000 lines
C# code in the system. The second, the algorithm used in this work is under-
termined algorithm, it needs pseudorandom generator and each run of test
generation is different.

For the second problem, I just fix the seed of pseudorandom generator to
generate same sequence input steam. Then test generator can generate same
test sequence.

For the first problem, divided and conquer design principle is used to solve
problem. Total test work is divided into four stages and I try to debug bugs
as early stages as possible, because the cost of tracing a bug is much cheaper
in early stages.

1. Test for each procedure.
2. Test for each class.
3. Test for each function block in system framework, which is showed in

Figure 2.1.
4. Test for whole system.

In the first stage and second stage, statement coverage and marginal test is
used. Simple test case is designed for test. In these two stages, because test
block is not complicated and I try to find as many bugs as possible, I trace
each sentence to find potential faults. Most of bugs are found in these two
stages in this project.

In the third and last stage, because the test block is too complicated for
simple test case to cover each statement, ISCAS89 benchmark circuits are
used in test. Because benchmark circuits are general very large, it is hard to

52 Chapter 7. Test

judge the test result whether it is right or not. In this case, test program is
designed to analyze result. For instance, I test circuit simulator block, which
includes X algorithm, critical path tracing and differential fault simulator, by
benchmark circuit ’s5378’ which has 3000 gates and the result showed that X
algorithm detected 200 faults, differential fault simulator detected 190 faults
and critical path tracing detected 170 faults. Of course, I don’t know whether
these faults are all really detected by the test vector or not. So I use two test
programs to analyze the result. The first test program is designed according
to Formula 7.1. If violating the rule, there are bugs in system. Another
test program is compare the results from my simulator with a parallel fault
simulator download from CAD web site (http://www.cad.polito.it/tools/) to
determine whether there are bugs or not.

CPTDF ⊆ DFDF ⊆ XDF (7.1)

• CPTDF: detectable faults determined by critical path tracing
• DFDF: detectable faults determined by differential fault simulation
• XDF: detectable faults determined by X algorithm

In some cases, I can determine the result by funtional specification. For in-
stance, I test a logic simulated based ATPG (LSG). The aim of LSG is to
generates test sequence that contain new partial states as much as possi-
ble, if some old partial states are frequently appears,then there are bugs in
program.

In the last stage, bug is hard to trace and fix. It often takes one or two days
to fix a bug. In this project, all detected bugs are fixed.

53

Chapter 8

Benchmark test run on C++
and C#

This project is implemented by C# on Visual Studio .NET 2002 development
environment. The .NET languages are ”semi-compiled” like Java. Source code
in the .NET world is compiled into the Microsoft Intermediate Language
(MSIL) and is run on the .NET Common Language Runtime (CLR) engine.
Other ATPG already published is mostly written by C++. Fully compiled
language like C++ is faster than semi-compiled language. Benchmark test
will compare the algorithm’s efficiency between these ATPGs.

In proposed ATPG, two data structures, hash table and array list (a data
structure combination array and list), and two operations, float point com-
parison and addition, are widely used. So I wrote three benchmark test cases.

• Hashtable: The hashtable test primarily measures the efficiency of the
default hash implementation and function, i.e. create a new hash table,
add item and access item. For c#, It uses class hashtable, and for C++,
map list is used:

• The List test primarily measures the efficiency of the default list im-
plementation. For C#, class Arraylist is used, and for C++, vector is
used.

• Bubble sort: bubble sort measure the comparison and addition of float
point number. In each item, there are two float point numbers. Item’s
value equals the addition of the two numbers in the item. Bubble sort
test is sorting a number of items according to item’s value.

C# is compiled by Microsoft’s Visual Studio .NET 2002. C++ is compiled by
Microsoft’s Visual C++ version 6.0. I wanted to let the compilers optimize
as much as possible. The optimization settings I settled on were as follows:

54 Chapter 8. Benchmark test run on C++ and C#

Bubble (s) Hash (s) List (s)
C# 10.56 6.24 0.41
C++ 0.581 0.51 0.11
Times of speed up 18.2 12.2 3.7

Table 8.1: Comparison C# and C++

• Visual C#: used ”release” configuration, turned on ”optimize code”
within Visual Studio.

• Visual C++: used ”release” configuration, turned on ”whole program
optimization”, set ”optimization” to ”maximize speed.”

Before running each set of benchmarks I defragged the hard disk, rebooted,
and shut down unnecessary background services. I ran each benchmark at
least three times and selected the best score from each component, assuming
that slower scores were the result of unrelated background processes getting
in the way of the CPU and/or hard disk. Start-up time for each benchmark
was not included in the performance results. The benchmarks ran on the
following hardware:

Type: Compaq HP D530 CMP

Desktop CPU: Pentium 4- 2GHz

RAM: 512MB

OS: Windows XP Pro SP 1

File System: NTFS

From Table 8.1, I can observe C++ is much faster than C#. Because hash
table is much more dominated in my ATPG (gate node and fault list is saved
in hash table) than array list, I estimate that if my ATPG is written by C++,
the speed in performance will be increased more than 15 times.

55

Chapter 9

Experiment Result

In this project, The circuit analysis and simulation part is about 6000 lines
C# code. I implemented three GA based ATPG and one Tabu search based
ATPG. They are GA with linear scale proportional selection based LSG, GA
with linear scale stochastic universal selection based LSG, GA with linear
scale proportional selection based CSG and Tabu search based LSG. Each
GA algorithm and Tabu search algorithm are about 1200 lines including 200
lines code for fitness function calculation. It is compiled in Microsoft’s Visual
Studio .NET 2002 Version 7.0.9466 and running on Microsoft .NET Frame-
work 1.0 Version 1.0.3705. Tests were generated for the ISCAS89 sequential
benchmark circuits on a Pentium 4 2 GHz processor with 512M memory.

As showed in last chapter 6, I fixed the number of population to 32, max
number of generation to 600 to limit the execution time, max length of test
sequence to 20000. In finish condition, I fixed max length of last generation,
which is not improve fitness value, to 10 and max length of last test sequence
undetected fault to 4000 to limit the execution time. I also mark the last
detected vector to the sequence length and run 3 times for each circuit. (I
can’t run more times for each circuit because it is too time consuming. Just
for running three times, it take me 4 weeks to simulated all the test cases in
four workstations). Each result is the average from three run and round to
integer. A new random seed was used for each run.

There are three parameters, selection method, length of test sequence in a
chromosome and mutation rate, need to be determined by experiment results.
To find the best combination parameters for proposed LSG. The best selec-
tion method and length of test sequence in a chromosome are found in the
first experiment, which mutation rate is fixed into 0.01. Then best mutation
rate are found in the second experiment, which use best selection method

56 Chapter 9. Experiment Result

Sequence
length in a

Best numbers Total detected faults Avg time of gener-
ation a vector (s)

chromosome SUS GA PS GA SUS GA PS GA SUS GA PS GA
1 2 9 8102 8160 0.12 0.15
10 5 6 8938 8971 0.28 0.3
20 6 8 8919 8990 0.37 0.38
40 9 5 8907 8868 0.6 0.61
100 6 8 8727 8743 0.69 0.96

Table 9.1: Experiment results for various sequence length in a chromosome

and length of test sequence in a chromosome found in the first experiment.

In the first experiment, I want to compare proportional selection and stochas-
tic universal selection and find the optimal length of test sequence in a chro-
mosome. I fixed mutation rate to 0.01. I tried 5 different lengths of sequence,
1, 10, 20, 40 and 100. Standard deviations are given in parentheses.

The result is showed in appendix’s Table A.1 to A.10. In Table A.1, A.2,
A.8, I also calculate the standard deviation for detected faults. The results
show all deviation is less than 2% of the number of detected faults. It is a
very low value. The critical data is counted in Table 9.1.

In Table 9.1,

• ”SUS GA”means genetic algorithm with linear scale stochastic univer-
sal selection.

• ”PS GA” means genetic algorithm with linear scale proportional selec-
tion.

• ”Best numbers” means how many best results (detect the most faults)
each selection method achieves. For instance, compare PS GA, SUS GA
find more fault in circuit S838 and s1494 in sequence length 1, so Best
numbers is 2.

• ”Total detected faults” is addition of detected fault in all test circuits.
• ”Avg time of generation a vector (s)” is average time GA finds a vector.

The default time unit is second.

Though stochastic universal selection is less noise than proportional selec-
tion, from Column ”Best numbers” and ”Total detected faults”, proportional
selection looks better than stochastic universal selection. For natural selec-
tion, individual is randomly selected one by one according their fitness value,
which is like proportional selection and GA is an algorithm that mimics
natural selection. I think this is one reason why proportional selection’s per-
formance is better than stochastic universal selection here. Another reason

57

is, according to the column ”Avg time of generation a vector (s)”, ”PS GA”
use longer time than ”SUS GA” in generating a vector. This means there is
more iterations in generation of ”PS GA” than ”SUS GA”. Normally, more
iterations leads to better result.

The effectiveness of global optimization in the end of section can be proofed
here. From ”Avg time of generation a vector (s)”, It can be observed that
the time increases when sequence length increases. This is because search
space is exponentially extended by sequence’s length in a chromosome. To
find optimal result, it needs more iteration. Column ”Best numbers” and
”Total detected faults” shows with sequence length increasing, the results
become better at first, but results become worse when length is larger than
10 (SUS GA) and 20 (PS GA). This is because increase sequence’s length
can help to find global optimal value, but this will extend search space and
finding optimal value will be harder and harder. Table 9.1 also shows the
balance sequence length for ”SUS GA” is 10 and for ”PS GA” is 20.

Next, the effects of mutation rate on fault coverage were investigated. Be-
cause Table 9.1 shows that PS GA with sequence length 20 can detect the
most faults, I use its GA parameters and various mutation probabilities from
0.01 to 0.5 respectively to find the best mutation rate. The result shows in
appendix’s Table A.8 and Table A.11 to Table A.16.

Table 9.2 shows the critical value.

mutation rate Best numbers Total detected faults Total sequences’ length
0.01 6 8990 109320
0.025 3 8955 86140
0.05 7 8981 103080
0.075 4 8933 98820
0.1 3 8876 115780
0.25 2 8726 99660
0.5 3 8692 120100

Table 9.2: Experiment results 1 for various mutation rate

Meaning of ”Best numbers” and ”Total detected faults” is the same as Ta-
ble 9.2. ”Total sequences’ length”means total test sequences’ length generated
for all test circuits. Mutation rate 0.05 gets the best result in column ”Best
numbers” and mutation rate 0.01 gets the best result in the results of col-
umn ”Total detected faults” and when mutation rate greater than 0.05, total
detected faults just decreased with mutation rate increasing. Especially for
mutation rate 0.5, total sequences’ length is the largest but detected faults

58 Chapter 9. Experiment Result

is least. From these data, it can be concluded that mutation rate around
between 0.01 and 0.05 is best for proposed ATPG.

According Figure 1.1, ATPG’s run time is divided into meta-heuristic al-
gorithm and fault simulation run time. Which one is dominated? Table 9.3
shows GA run time is dominated. In most of test circuit, about 90%’s CPU
time is used for GA algorithm to generate test sequence and only 10% CPU
time used in fault simulation. This tells us that metaheuristic algorithm is
very important to ATPG, improving performance of metaheuristic algorithm
will lead great improvement of ATPG.

As shown in chapter 5.4, in the end of test generation, the combination GA
need 32 times X algorithm to search best test vectors. X algorithm takes
much shorter time than fault simulation, so the overhead of 32 times of X
algorithm is not high.

GA Total GA Run time / Fault
Circuit Run Time(s) Run Time(s) Total Run Time coverage
s349 678 725 0.935 0,922
s510 614 654 0.939 0,957
s641 1390 1544 0.900 0,865
s713 1366 1529 0.893 0,826
s838 5516 7741 0.712 0,431
s1196 6071 6547 0.923 0,987
s1238 5937 6450 0.920 0,938
s1423 9087 11950 0.760 0,793
s1488 7121 7711 0.923 0,952
s1494 7618 8259 0.922 0,948
Total 45398 53110 - -

Average - - - 0.8619

Table 9.3: Experiment results 2 for various mutation rate

Then, I simulated Tabu search algorithm based ATPG. Like GA, I fixed max
number of generation to 600 to limit the execution time, max length of test
sequence to 20000. In finish condition, I fixed max length of last generation,
which is not improve fitness value, to 10 and max length of last test sequence
undetected fault to 4000 to limit the execution time. I also optimize for test
sequence length of 10 instead of only one test vector. Table A.17 in appendix
shows the simulation result. Table 9.1 shows the comparison of PS GA and
Tabu search.

PS GA’s Data is from appendix’s Table A.7. One chromosome also contains
10 test vectors like Tabu search. Table 9.4 shows in each test circuits, PS GA

59

can find more faults than Tabu Search, whereas total run time and sequences’
length generated by Tabu search is much longer than PS GA. This is because
of two reasons.

• In ATPG, neighborhood evaluation generally takes long time, whereas
Tabu search assume fast performance evaluation, this lead Tabu search
to yield poor performance.

• GA has more probability to get global optimal result than Tabu search.
GA search from a set of solutions and do a multi directional search in
search space. This like parallel running several Tabu search.

Comparing with GA, Tabu search is not a good choice in our case.

Total Total Total
Best numbers detected faults sequences length run time

Tabu Search 0 7180 97550 95446
PS GA 6 7658 81350 32087

Table 9.4: Comparison of PS GA and Tabu

Then I tried to simulate and find best parameter for combination method
based ATPG (CSG), which combining LSG and FSG. In last experiment, it
can be observed that proportional selection is better than stochastic universal
selection, best mutation probability is in the range from 0.01 to 0.05 and the
best length of test sequence are in the range from 10 to 20. This conclusion is
used in this experiment to select the parameters. I fix the selection method
in proportional selection and change mutation rate from 0.01 to 0.05 and
step is 0.01 and select the length of test sequence in chromosome 10 and 20.
According to the mutation rate and length of test sequence in a chromosome,
simulation is divided into 10 groups. Which is showed in Table 9.5.

The benchmark circuits used in simulation are s349, s510, s641, s713, s838,
s1196, s1238, s1423, s1488, s1494. The result is showed in appendix Table
A.18 to Table A.27. The critical data is counted in Table 9.6.

From Table 9.6, it can be seen that selecting 10 test vector in a chromosome
is better than 20. Group 1 and 3 can detect the most faults. Group 2 has
shortest test sequence and run time. Trade-off test sequence’s length and fault
coverage, I compare Group 2 with PS GA which Data is from appendix’s
Table A.7. The result showed in Table 9.7.

From the Table 9.7, it can be observed that in all benchmark circuits, CSG’s
performance is better than PS GA. On average, CSG improves the fault
coverage about 1.4%, decrases sequence’s lengh about 68.8% and accelerate

60 Chapter 9. Experiment Result

Group Mutation rate length of test sequence in a chromosome
Group 1 0.01 10
Group 2 0.02 10
Group 3 0.03 10
Group 4 0.04 10
Group 5 0.05 10
Group 1 0.01 20
Group 2 0.02 20
Group 3 0.03 20
Group 4 0.04 20
Group 5 0.05 20

Table 9.5: Groups in experiment

Total Total Total
Group No. detected faults sequences length run time
Group 1 9127 66340 37089
Group 2 9112 32170 20203
Group 3 9127 53560 31490
Group 4 9096 52540 34118
Group 5 9117 71170 48193
Group 6 9063 85820 46430
Group 7 9063 65860 36886
Group 8 9078 70410 47667
Group 9 9090 87600 61101
Group 10 9081 83600 53746
total (Sequence
length in a
chromosome is
10)

45579 275780 169693

total (Sequence
length in a
chromosome is
20)

45375 393290 245830

Table 9.6: Experiment of CSG

the run time about 52.5%. Because CSG need 32 times more X algorithm in
each test generation, the improvement of run time is less than improvement
of sequence’s lengh. From the data shows in Table 9.7, comparing with LSG,
CSG improves the performance much.

Last, I compare CSG with the following art of state ATPG.

61

Flt.det Sequence Length Run Time
Circuit CSG PS GA Improve CSG PS GA Improve CSG PS GA Improve
s349 342 332 3% 70 300 76.7% 16 50 68%
s510 564 558 1.1% 530 4200 87.4% 212 334 36.5%
s641 406 404 0.5% 470 1620 71% 227 445 49%
s713 480 480 0% 530 1940 72.7% 169 499 66.1%
s838 478 462 3.5% 510 17500 97.1% 488 6773 92.8%
s1196 1236 1229 0.6% 6300 10980 42.6% 3321 4798 30.8%
s1238 1277 1279 0.2% 3080 15080 79.6% 1569 5097 69.2%
s1423 1428 1347 6% 7230 19160 62.3% 7244 11448 36.7%
s1488 1446 1446 0% 9250 16820 45% 4123 6484 36.4%
s1494 1455 1453 0.1% 4200 15480 72.9% 2834 6563 56.8%
Total 9112 8990 1.4% 32170 103080 68.8% 20203 42491 52.5%

Table 9.7: Compare PS GA and CSG

• Hitec [25], a deterministic ATPG.
• Strategate [23], a GA-fault simulation based test generator.
• Proptest [28], a compaction fault simulation based test generator.
• Locstep [26], a logic-simulation-based test generator that targets max-

imizing global states visited (not state partitioning).

The result in Table 9.8 show that in all test cases, our approach which use
state partitioning detects more fault than Locstep which is also a logic-
simulation-based ATPG, but doesn’t use state partitioning. This shows state
partitioning is useful in removing the noise and guide the search direction.
Comparing with other fault-simulation-based ATPG and deterministic ATPG,
proposed ATPG detects the most faults in six of nine test circuits. In the rest
of the test circuits, our approach performed worse than two fault-simulation-
based test generators. This is because our partition algorithm is a heuristic
and might not always provide best searching direction than others. Proposed
ATPG’s run time is much longer than other approach. There are two rea-
sons. The first, C# compiler is a semi-compiler. The performance of program
written by C# is much slower than C and C++. Considering this, our im-
plementation is not much slower than others. The second, I just finish these
code in three months, because of time limitation, there are sveral optimiza-
tion techniques not implemented and time limitation also doesn’t allow me
do any code optimization, whereas, other ATPG used their university’s high
performance library of fault simulation and GA.

62 Chapter 9. Experiment Result

Proposed Hitec STRATEGATE Protest LOCSTEP
circuit flt.det Time flt.det Time flt.det Time flt.det Time flt.det Time
s349 342 16 332 462 NA NA NA NA NA NA
s641 406 227 404 4.8 404 NA 404 30 404 NA
s713 480 169 475 6.7 476 79 476 37 475 NA
s1196 1236 3321 1239 5.5 1239 89 1239 28 NA NA
s1238 1277 1569 1283 8.2 1282 NA 1283 43 1268 NA
s1423 1428 7244 723 50040 1414 4572 1416 277 1274 NA
s1488 1446 4123 1444 990 1444 NA 1444 119 1425 NA
s1494 1455 2834 1453 576 1453 456 1453 126 NA NA
s5378 3635 62454 3238 941 3639 136080 3643 676 3059 7545

Table 9.8: Comparison with other ATPG

63

Chapter 10

Conclusion

An efficient sequential ATPG, which combines the advantage of LSG and
FSG, is presented. A highly accurate fitness function based on state partition
is used to evaluate candidate test vector in order to achieve good quality test
sets. In metaheuristic algorithm, I optimize test sequence instead of single
test vector to get global optimization and use experiment to find optimal
sequence length.

I use GA and Tabu search algorithm to find optimal test vector. Compare
these two algorithms, Tabu search is not the ideal metaheuristic where neigh-
borhood evaluation takes long time and it is not suitable in our case.

In GA, I investigate the effectiveness of stochastic universal selection and
proportional selection. Based on experiment, I find proportional selection,
which achieves high fault coverage than stochastic universal selection. I also
use experiment to find optimal mutation rate, because Variations in mutation
rate have important effect on fault coverage.

At the last, I compare proposed CSG with other art of state ATPG. In most
of test circuits, our ATPG detects the most faults. It approves our algorithm
is efficient.

64 Chapter 10. Conclusion

65

Chapter 11

Acronym

AS:
ATPG:
CLB:
CLR:
CSG:
DA:
FF:
FFR:
FIFO:
FSG:
FTP:
GA:
LSG:
MSIL
NN:
PI:
PO:
PPO:
PPI:
PS:
PS_GA:
RTP:
SA:
SUS:
SUS_GA:

Ant systems
Automated test pattern generation
Combinational logic block
Common language runtime
Combination-simulated based generator
Deterministic annealing
Flip-Flop
Fan-out free region
First in first out
Fault simulation based generators
Forward time processing
Genetic algorithm
Logic simulation based test generators
Microsoft Intermediate Language
Neural Networks
Primary input
Primary output
Output of the flip-flop
Input of the flip-flop
proportional selection
Genetic algorithm with proportional selection
Reverse time processing
Simulated annealing
Stochastic universal selection
Genetic algorithm with stochastic universal selection

66 Chapter 11. Acronym

67

Bibliography

[1] Evolutionary algorithms. Lecture slides on Large-Scale Optimization 02715,
DTU. URL http://www.imm.dtu.dk/courses/02715/, 2004.

[2] T. M. Barnes. Using genetic algorithms to find the best generators for half-
rate convolutional coding. North Carolina State University.

[3] A. S. Bjarnadoettir. Solving the vehicle routing problem with genetic algo-
rithms. Master’s thesis, DTU, 2004.

[4] K. K. Chang Kim. Yong, Saluja. Sequential test generators: past, present and
future. Integration, the VLSI Journal, 26(1-2):41–54, December 1998.

[5] W.-T. Cheng and J. H. Patel. Proofs: a super fast fault simulator for sequen-
tial circuits. European Design Automation Conference, pages 475–479, March
1990.

[6] Y. S. D. G. Saab and J. A. Abraham. Cris: A test cultivation program for
sequential vlsi circuits. Proc. Int’l Conf. Computer-aided Design (ICCAD
92), IEEE CS Press, Los Alamitos, Calif., pages 216–219, 1992.

[7] C. Darwin. Britannica concise encyclopedia from encyclopia britannica. URL
http://concise.britannica.com/ebc/article?eu=387589, 2004.

[8] T. M. N. E. M. Rudnick and J. H. Patel. Methods of reducing events in se-
quential circuit fault simulation. Proc. Int. Conf. on Computer Aided Design,
pages 546–549, Nov. 1991.

[9] G. S. G. Elizabeth M. Rudnick, Janak H. Patel and T. M. Niermann. Se-
quential circuit test generation in a genetic algorithm framework. IEEE-CAS
: Circuits and Systems, ACM Press, New York, NY, pages 698–704, 1994.

[10] A. G. et al. Efficient spectral techniques for sequential atpg. Proc. IEEE
Design Automation and Test in Europe Conf. (DATE 01), IEEE CS Press,
Los Alamitos, Calif., pages 204–208, 2001.

[11] E. E. et al. Digital logic simulation in a time based, table driven environment-
part 2 parallel fault simulation. Computer, 8:38–79, May 1975.

[12] E. M. R. et al. Application of simple genetic algorithms to sequential circuit
test generation. Proc. European Design and Test Conf. (ED and TC 94),
IEEE CS Press, Los Alamitos, Calif., pages 40–45, 1994.

[13] E. M. R. et al. Fast sequential circuit test generation using high-level and
gate-level techniques. Design Automation and Test in Europe (DATE ’98),
pages 570–576, February 1998.

[14] J. B. et al. A new hybrid genetic algorithm for the capacitated vehicle routing
problem. Journal of the Operational Research Society, 41(2), pages 179–194,
2003.

[15] J.-F. C. et al. a guide to vehicle routing heuristics. Journal of the Operational
Research Society, 53, pages 512–522, 2002.

68 BIBLIOGRAPHY

[16] S. S. et al. Iterative computer algorithms with application in engineering:
Solving combinatorial optimization problems, chapter 3. IEEE Computer
Society, 1999.

[17] G. F. Tabu search A tutorial. Interfaces, 20(4), 1990.
[18] D. E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine

Leraning. Addison-Wesley, Reading, Mass., 1989.
[19] F. J. F. J.P. Shen, W. Maly. Inductive fault analysis of mos ic’s. IEEE Design

and Test of Computers Vol., 2/12:13–26, December 1985.
[20] H. K. Lee and D. S. Ha. Hope: an efficient parallel fault simulator for syn-

chronous sequential circuits. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 15(9), September 1999.

[21] M. B. M. Abramovici and A. Friedman. Fault Simulation in Digital Systems
Testing and Testable Design. Computer Science Press, Reading, MA, 1992.

[22] P. M. M. Abramovici and D. Miller. Critical path tracing - an alternative to
fault simulation. IEEE Design and Test of Computers.

[23] E. M. R. M. S. Hsiao and J. H. Patel. Sequential circuit test generation using
dynamic state traversal. Proc. European Design and Test Conf. (ED and TC
96), IEEE CS Press, Los Alamitos, Calif., pages 22–28, 1996.

[24] Z. Michalewicz. Genetic Algorithm + Data Structures = Evolution Programs,
volume 3rd. Springer-Verlag, revised and extended edition edition, 1996.

[25] T. M. Niermann and J. H. Patel. Hitec: A test generation package for se-
quential circuits. Proc. European Design Automation Conf. (EURODAC 91),
IEEE CS Press, Los Alamitos, Calif., pages 214–218, 1991.

[26] I. Pomeranz and S. M. Reddy. Locstep: A logic-simulation-based test gen-
eration procedure. IEEE Trans. CAD of Integrated Circuits and System,
16(5):544–554, May 1997.

[27] I. Pomeranz and S.M.Reddy. Fault simulation based test generation for com-
binational circuits using dynamically selected subcircuits. Proc. Int’l Conf.
Computer Design (ICCD 99), IEEE CS Press, Los Alamitos, Calif., pages
412–417, 1999.

[28] I. P. R. Guo and S.M.Reddy. A fault simulation based test pattern generator
for synchronous sequential circuits. Proc. VLSI Test Symp. (VTS 99), IEEE
CS Press, Los Alamitos, Calif., pages 260–267, 1999.

[29] K. T. S. Sheng and M. Hsiao. Effective safety property checking using
simulation-based sequential atpg. Proc. Design Automation Conf. (DAC 02),
ACM Press, New York, 2/12:813–818, 2002.

[30] B. K. S.B. Akers, S. Park and A. Swaminathan. Why is less information from
logic simulation more useful in fault simulation? 1990 IEEE International
Test Conference, pages 786–800, 1990.

[31] S. Sheng and S. Hsiao. Efficient sequential test generation based on logic
simulation. IEEE Design and Test of Computers, 19(5):56–64, May 2002.

[32] T. Siriwan and P. Nilagupta. Hpgast: High performance ga-based sequential
circuits test generation on beowulf pc-cluster. ANSCSE2000, 2000.

[33] K. Son. Fault simulation with parallel value list algorithm. VLSI Systems
Design, 6/12:36–43, December 1985.

[34] F. Stassen. Test pattern generation. in Lecture Notes on Test of Digital Logic
ID, DTU, pages 3.9–3.19, January 1992.

[35] F. Stassen. Testability analysis. Lecture Notes on Test of Digital Logic ID,
DTU, pages 5.1–5.9, January 1992.

[36] F. Stassen. Fault modeling. Lecture slides on Test of Digital Logic ID, DTU,
2003.

BIBLIOGRAPHY 69

[37] F. Stassen. Fault simulation. Lecture slides on Test of Digital Logic ID, DTU,
2003.

[38] G. Syswerda. Uniform crossover in genetic algorithms. International Confer-
ence on Genetic Algorithms. Los Altos, CA: Morgan Kaufman, 3, 1989.

[39] J. H. P. Thomas M. Niermann, Wu-Tung Cheng. Proofs: a fast, memory
efficient sequential circuit fault simulator. Proceedings of the 27th ACM/IEEE
conference on Design automation, pages 535–540, June 1990.

[40] E. R. TYanto Prasetio. Tabu search: overview and example. IndE 510, May
2002.

70 BIBLIOGRAPHY

71

Appendix A

Appendix

A.1 X algorithm

X algorithm [30] is a one-pass, linear-time algorithm that determines a set
of undetectable faults for a given test vector. It is a conservative algorithm
which can’t detected all undetectable faults.

The basic version of X algorithm is used in combination circuit. The idea is
that the fault free circuit is simulated first, then circuit is scan from each PO
to PI to see whether each fault can find a sensitization path to propagate fault
to PO. X algorithm can easily extended to sequential circuit by considering
PPO and PPI in scan.

Next, I will introduce some terms and lemma used in X algorithm first, then
I will describe the procedure of X algorithm. The last, I will propose some
heuristic used in improving efficiency of X algorithm. All text, showed later,
is come from [30]. To keep the descriptions of the algorithms simple and easy-
to-read, I will restrict myself to circuits made up of NAND gates and fanout
nodes, the algorithms can easily generalized to accommodate other Boolean
gate type.

1. Term and Lemma

• Sensitization Path: Given a circuit and an input vector, a path
from a lead L1 to a lead L2 is said to be a sensitization path
if a fault on lead L1 will change the value at L2 and at every
intermediate lead on that math.

• Control vector: we define an input vector to an n-input NAND
gateas a controlling vector if it puts 0’s on two or more input lines

72 Appendix A. Appendix

of that gate and no primary input has iso-parity paths to all of
these 0-valued lines.

• Lemma 1: If the input vector of a NAND-gate is a controlling
vector then the output of that gate will remain unchanged under
the presence of a single stuck fault on any other lead in the circuit.

2. procedure of Algorithm
Input: A combinational circuit, a test vector and values on every lead
obtained through logic simulation Output: A partial assignment of the
circuit indicated by marking a subset of leads with a ”*” and with an
”X”. The logic values on the leads marked ”X” indicated undetected
fault.
Procedure:

(a) Mark all of the output leads .
(b) processing the nodes of the circuit in reverse topological order(from

the outputs to the inputs), for each node, based on the type of the
node do:
NAND gate:
• If the output o fthe NAND gate is marked X then mark all of

its inputs as X.
• If the output of the NAND gate is marked and the output

value is a 0 then mark all of the input leads
• If the output of the NAND gate is marked the output value

is a 1 and the input is a contolling vector then mark all input
leads X.

• If the output of the NAND gate is marked , the output value is
a 1 and the input is not a controlling vector; then arbitrarily
choose one of the input leads with the value 0 and mark it
with a *(there will be at least one such input lead) and mark
all other input leads X.

Fanout Node: If all of the branches are marked X then mark the
stem X; otherwise, mark the stem .

End.
3. Other heuristics X algorithm offers a certain amount of choices when

processing the NAND-gate. The choice consists of choosing an input
lead with the value0, when more than one input to the gate has the
value 0. THe chosen lead will be marked . In [30], Two heuristic, Star
detected faults heuristics and Fan-out propagation heuristic are pro-
posed.

• Star detected faults heuristics when we faced with a choice of
more than one 0 valued input to a NAND-gate, we ask if one of

A.1 X algorithm 73

the 0-valued input leads to the gate has already been detected. If
so, we choose that input lead to mark with a .

• Fan-out propagation heuristic when we faced with a choice of
more than one 0 valued input to a NAND-gate, we check to see
if one of these inputs is a branch of a fanout, one of whose other
branches has already been marked .

74 Appendix A. Appendix

A.2 Experiment results

Circuit Total Fault #flt.det Vector length Time

s349 350 317(0.3) 4713 117
s510 564 377(0.7) 4045 69
s641 467 398(4.5) 2690 211
s713 581 472(0.2) 1542 131
s838 931 422(0) 19456 2744
s1196 1242 1108(0.9) 7392 742
s1238 1355 1140(4.8) 19836 1999
s1423 1515 1398(20.1) 14354 3231
s1488 1486 1218(22.3) 6728 835
s1494 1506 1251(15.9) 2878 350

Table A.1: SUS GA: mutation rate is 0.01, length of test sequence in a chro-
mosome is 1

Circuit Total Fault #flt.det Vector length Time

s349 350 323(0) 1500 108
s510 564 498(0.3) 2200 125
s641 467 404(0) 11900 1047
s713 581 480(0.3) 15900 1239
s838 931 445(3.2) 17080 4626
s1196 1242 1232(2.9) 14110 5060
s1238 1355 1276(6.0) 17160 6140
s1423 1515 1389(19.5) 12550 8012
s1488 1486 1442(11.7) 14100 4187
s1494 1506 1449(6.9) 17590 4800

Table A.2: SUS GA: mutation rate is 0.01, length of test sequence in a chro-
mosome is 10

Circuit Total Fault #flt.det Vector length Time

s349 350 323 640 102
s510 564 560 7820 871
s641 467 404 1020 298
s713 581 480 760 243
s838 931 402 17860 5914
s1196 1242 1231 17600 6491
s1238 1355 1272 11380 4132
s1423 1515 1361 11580 8172
s1488 1486 1437 8840 3387
s1494 1506 1449 8180 2675

Table A.3: SUS GA: mutation rate is 0.01, length of test sequence in a chro-
mosome is 20

A.2 Experiment results 75

Circuit Total Fault #flt.det Vector length Time

s349 350 323 720 220
s510 564 564 880 210
s641 467 404 3240 1540
s713 581 480 1760 880
s838 931 404 18680 12077
s1196 1242 1236 19680 11381
s1238 1355 1280 14560 9182
s1423 1515 1334 13200 12161
s1488 1486 1439 18320 8863
s1494 1506 1443 12680 6414

Table A.4: SUS GA: mutation rate is 0.01, length of test sequence in a chro-
mosome is 40

Circuit Total Fault #flt.det Vector length Time

s349 350 323 900 587
s510 564 564 1500 782
s641 467 404 7600 1945
s713 581 480 6600 1871
s838 931 390 12500 16490
s1196 1242 1227 16500 13008
s1238 1355 1277 19400 11359
s1423 1515 1244 16500 13008
s1488 1486 1407 18800 11950
s1494 1506 1411 17000 10740

Table A.5: SUS GA: mutation rate is 0.01, length of test sequence in a chro-
mosome is 100

Circuit Total Fault #flt.det Vector length Time

s349 350 318 2528 104
s510 564 382 37 1
s641 467 402 4750 528
s713 581 475 7005 829
s838 931 422 19456 3585
s1196 1242 1148 19542 2448
s1238 1355 1166 18395 2316
s1423 1515 1400 12971 3343
s1488 1486 1222 5244 582
s1494 1506 1225 3799 421

Table A.6: PS GA: mutation rate is 0.01, length of test sequence in a chro-
mosome is 1

76 Appendix A. Appendix

Circuit Total Fault #flt.det Vector length Time

s349 350 323 760 73
s510 564 542 370 29
s641 467 404 770 182
s713 581 480 1440 374
s838 931 448 17440 4484
s1196 1242 1236 14330 4020
s1238 1355 1279 16360 4659
s1423 1515 1371 19070 9970
s1488 1486 1440 12030 2774
s1494 1506 1448 17350 3948

Table A.7: PS GA: mutation rate is 0.01, length of test sequence in a chro-
mosome is 10

Circuit Total Fault #flt.det Vector length Time

s349 350 323(0) 160 27
s510 564 560(0.3) 7820 871
s641 467 404(0) 1660 519
s713 581 480(0) 2200 715
s838 931 464(0.3) 19480 6607
s1196 1242 1237(3.1) 17920 6244
s1238 1355 1274(11.7) 10260 3474
s1423 1515 1360(10.9) 18780 12126
s1488 1486 1441(5.7) 16860 5983
s1494 1506 1447(1.9) 14180 5250

Table A.8: PS GA: mutation rate is 0.01, length of test sequence in a chro-
mosome is 20

Circuit Total Fault #flt.det Vector length Time

s349 350 323 920 244
s510 564 564 960 163
s641 467 404 1600 613
s713 581 480 1320 517
s838 931 407 14480 8469
s1196 1242 1224 9080 4392
s1238 1355 1278 14600 6913
s1423 1515 1319 17200 17278
s1488 1486 1428 18840 10361
s1494 1506 1441 17480 9272

Table A.9: PS GA: mutation rate is 0.01, length of test sequence in a chro-
mosome is 40

A.2 Experiment results 77

Circuit Total Fault #flt.det Vector length Time

s349 350 323 800 514
s510 564 564 1200 493
s641 467 404 4800 3544
s713 581 480 2900 2325
s838 931 437 11000 12141
s1196 1242 1229 17000 12846
s1238 1355 1279 19800 16056
s1423 1515 1207 17500 29538
s1488 1486 1410 17200 14579
s1494 1506 1410 19000 14960

Table A.10: PS GA: mutation rate is 0.01, length of test sequence in a chro-
mosome is 100

Circuit Total Fault #flt.det Vector length Time

s349 350 323 140 25
s510 564 543 600 85
s641 467 404 1240 404
s713 581 480 900 305
s838 931 463 17100 7836
s1196 1242 1236 19480 7596
s1238 1355 1278 17580 7726
s1423 1515 1336 13080 9839
s1488 1486 1442 6960 3255
s1494 1506 1450 9060 4174

Table A.11: PS GA: mutation rate is 0.025, length of test sequence in a
chromosome is 20

Circuit Total Fault #flt.det Vector length Time

s349 350 323 300 50
s510 564 558 4200 334
s641 467 404 1620 445
s713 581 480 1940 499
s838 931 462 17500 6773
s1196 1242 1229 10980 4798
s1238 1355 1279 15080 5097
s1423 1515 1347 19160 11448
s1488 1486 1446 16820 6484
s1494 1506 1453 15480 6563

Table A.12: PS GA: mutation rate is 0.05, length of test sequence in a chro-
mosome is 20

78 Appendix A. Appendix

Circuit Total Fault #flt.det Vector length Time

s349 350 323 520 93
s510 564 561 10480 1721
s641 467 404 1140 338
s713 581 480 820 257
s838 931 452 19200 9093
s1196 1242 1233 14900 5296
s1238 1355 1277 17160 5974
s1423 1515 1310 14440 10195
s1488 1486 1445 11980 5998
s1494 1506 1448 8180 4512

Table A.13: PS GA: mutation rate is 0.075, length of test sequence in a
chromosome is 20

Circuit Total Fault #flt.det Vector length Time

s349 350 323 440 76
s510 564 559 4060 668
s641 467 404 1480 420
s713 581 480 1760 544
s838 931 397 18740 8597
s1196 1242 1234 19820 6749
s1238 1355 1274 16700 6699
s1423 1515 1320 18520 13139
s1488 1486 1435 19660 8979
s1494 1506 1450 14600 6519

Table A.14: PS GA: mutation rate is 0.1, length of test sequence in a chro-
mosome is 20

Circuit Total Fault #flt.det Vector length Time

s349 350 323 680 108
s510 564 498 80 12
s641 467 404 1160 309
s713 581 479 1580 431
s838 931 394 14720 5983
s1196 1242 1232 19300 6256
s1238 1355 1272 11420 3743
s1423 1515 1274 19400 11569
s1488 1486 1421 18580 7350
s1494 1506 1429 12740 5233

Table A.15: PS GA: mutation rate is 0.25, length of test sequence in a chro-
mosome is 20

A.2 Experiment results 79

Circuit Total Fault #flt.det Vector length Time

s349 350 323 900 133
s510 564 540 140 22
s641 467 404 2180 544
s713 581 480 1720 459
s838 931 402 19060 7377
s1196 1242 1226 17920 5866
s1238 1355 1271 19940 6430
s1423 1515 1202 19240 11495
s1488 1486 1415 19380 7471
s1494 1506 1429 19620 8102

Table A.16: PS GA: mutation rate is 0.5, length of test sequence in a chro-
mosome is 20

Circuit Total Fault #flt.det Vector length Time

s641 467 403 1900 2090
s713 581 388 6990 10043
s1196 1242 1217 16900 15963
s1238 1355 1262 18720 15807
s1423 1515 813 19380 31721
s1488 1486 993 17290 11726
s1494 1506 994 16570 8043

Table A.17: Tabu search: length of test sequence in a chromosome is 10

Circuit Total fault Flt.det Vector length Time

s349 350 341 70 14
s510 564 564 530 306
s641 467 406 410 211
s713 581 480 480 194
s838 931 490 16890 6341
s1196 1242 1237 12010 6643
s1238 1355 1275 9110 4846
s1423 1515 1433 11200 11152
s1488 1486 1446 8640 3825
s1494 1506 1455 7000 3557

Table A.18: CSG: mutation rate is 0.01, length of test sequence in a chromo-
some is 10

80 Appendix A. Appendix

Circuit Total Fault #flt.det Vector length Time

s349 350 341 100 14
s510 564 564 900 1225
s641 467 406 460 194
s713 581 476 520 260
s838 931 490 18220 7332
s1196 1242 1236 16460 8192
s1238 1355 1276 11820 5630
s1423 1515 1379 14240 13316
s1488 1486 1443 12600 5619
s1494 1506 1452 10500 4653

Table A.19: CSG: mutation rate is 0.01, length of test sequence in a chromo-
some is 20

Circuit Total Fault #flt.det Vector length Time

s349 350 342 70 16
s510 564 564 530 212
s641 467 406 470 227
s713 581 480 530 169
s838 931 478 510 288
s1196 1242 1236 6300 3321
s1238 1355 1277 3080 1569
s1423 1515 1428 7230 7244
s1488 1486 1446 9250 4123
s1494 1506 1455 4200 2834
s5378 4603 3635 62454 16900

Table A.20: CSG: mutation rate is 0.02, length of test sequence in a chromo-
some is 10

Circuit Total Fault #flt.det Vector length Time

s349 350 341 100 14
s510 564 564 900 1125
s641 467 406 460 194
s713 581 476 520 260
s838 931 490 1260 507
s1196 1242 1236 8460 4210
s1238 1355 1276 15820 7535
s1423 1515 1379 12240 11446
s1488 1486 1443 10600 4727
s1494 1506 1452 15500 6868

Table A.21: CSG: mutation rate is 0.02, length of test sequence in a chromo-
some is 20

A.2 Experiment results 81

Circuit Total Fault #flt.det Vector length Time

s349 350 340 50 12
s510 564 564 930 560
s641 467 406 320 172
s713 581 480 210 190
s838 931 496 16400 7172
s1196 1242 1236 8680 5089
s1238 1355 1276 14700 8285
s1423 1515 1428 5640 6449
s1488 1486 1446 3030 1623
s1494 1506 1455 3600 1907

Table A.22: CSG: mutation rate is 0.03, length of test sequence in a chromo-
some is 10

Circuit Total Fault #flt.det Vector length Time

s349 350 343 60 12
s510 564 564 600 859
s641 467 406 280 135
s713 581 480 430 247
s838 931 476 16840 9158
s1196 1242 1236 13800 8393
s1238 1355 1278 8720 5530
s1423 1515 1387 14800 14499
s1488 1486 1446 7380 4396
s1494 1506 1455 7500 4438

Table A.23: CSG: mutation rate is 0.03, length of test sequence in a chromo-
some is 20

Circuit Total Fault #flt.det Vector length Time

s349 350 341 1100 23
s510 564 564 1370 1971
s641 467 406 210 121
s713 581 480 1410 878
s838 931 461 19970 9289
s1196 1242 1237 5840 3541
s1238 1355 1276 9130 5242
s1423 1515 1430 8080 9444
s1488 1486 1446 2680 1988
s1494 1506 1455 2750 1621

Table A.24: CSG: mutation rate is 0.04, length of test sequence in a chromo-
some is 10

82 Appendix A. Appendix

Circuit Total Fault #flt.det Vector length Time

s349 350 343 120 30
s510 564 564 400 539
s641 467 406 220 133
s713 581 480 460 311
s838 931 482 16680 11799
s1196 1242 1239 13200 7752
s1238 1355 1277 18460 10367
s1423 1515 1398 12220 13915
s1488 1486 1446 15500 9733
s1494 1506 1455 10340 6522

Table A.25: CSG: mutation rate is 0.04, length of test sequence in a chromo-
some is 20

Circuit Total Fault #flt.det Vector length Time

s349 350 341 70 16
s510 564 564 950 1056
s641 467 406 350 171
s713 581 480 260 148
s838 931 480 16400 6565
s1196 1242 1238 9720 5140
s1238 1355 1278 18750 10864
s1423 1515 1429 16450 17228
s1488 1486 1446 7080 3716
s1494 1506 1455 1140 3289

Table A.26: CSG: mutation rate is 0.05, length of test sequence in a chromo-
some is 10

Circuit Total Fault #flt.det Vector length Time

s349 350 343 60 14
s510 564 564 480 648
s641 467 406 300 147
s713 581 480 620 345
s838 931 491 16880 8738
s1196 1242 1236 13200 9631
s1238 1355 1275 14980 7462
s1423 1515 1385 13880 13982
s1488 1486 1446 10420 5747
s1494 1506 1455 12780 7032

Table A.27: CSG: mutation rate is 0.05, length of test sequence in a chromo-
some is 20

