
Design of CMOS Cell Libraries for
Minimal Leakage Currents

Master’s Thesis

by

Jacob Gregers Hansen, s973741

August 13th., 2004

Supervisor: Flemming Stassen

Project number: 55
Informatics and Mathematical Modelling
Computer Science and Engineering
Technical University of Denmark

Preface

Preface

This report is part of the results from the master’s thesis project ’Design of CMOS Cell
Libraries for Minimal Leakage Currents’ conducted at Informatics and Mathematical Mod-
elling (IMM), Computer Science and Engineering division (CSE), Technical University of
Denmark (DTU) from February to August 2004.

This project was conducted as a part of three independent, but collaborative master’s
thesis. The original idea for this work was conceived by Peter Østergaard Nielsen from
Vitesse Semiconductor Corporation, Denmark.

I would like to thank my colleagues Martin Hans and Michael Kristensen for inspiring
cooperation. Further I would like to thank Alberto Nannarelli for valuable insights and the
administrative staff of IMM for helping me speed up the project work.

Jacob Gregers Hansen, Copenhagen 2004.

Abstract

Abstract

Leakage due to scaling down CMOS device sizes will be the major power consumption
source in cell based IC design in a few years. This work addresses the problem of this
leakage, investigating the possibilities of utilizing alternative logic families instead of static
CMOS for the creation of a low leakage cell library. For this purpose, MTCMOS, CPL and
Domino logic are investigated for leakage characteristics and are found unusable for low
leakage design.

Using cell libraries of small logic cells for IC design is found to be the major reason for
much of the leakage. Synthesizing without cell boundaries by building larger cells reduces
the leakage problem greatly. A new synthesis flow and cell library is proposed.

Keywords: Low leakage CMOS, CPL, Domino, MTCMOS, MacroCMOS, Synthesis for
low leakage design.

Resumé

Lækstrømme forårsaget af de evigt krympende transistorstørrelser vil om få år være den
største kilde til effektforbrug i CMOS cellebaseret IC design. Mulighederne for at anvende
andre logikfamilier end statisk CMOS til design af et lavlæk cellebibliotek bliver i denne
opgave undersøgt. Tre mulige kandidater, MTCMOS, Domino og CPL, bliver undersøgt og
findes ubrugelige til lavlækdesign.

Anvendelsen af cellebiblioteker af små, logiske celler findes at være årsagen til meget
af lækket. Der foreslås i stedet en ændring af synteseværktøjer mod at syntetisere designs
uden grænser mellem cellerne ved at sammenbygge logikken til større celler, under anven-
delse af et foreslået cellebibliotek.

Stikord: Lavlæk CMOS, CPL, Domino, MTCMOS, MacroCMOS, Syntese af lavlæk de-
sign.

CONTENTS

1 Introduction 9

1.1 Invention of MOSFET transistors . 9

1.2 Synthesis of cell based designs . 10

1.3 The problem of leakage currents . 11

1.4 Possible solutions . 11

1.5 Objectives for this work . 12

1.6 Overview of the report . 12

2 Design of Cell Libraries 15

2.1 The role of cell libraries . 15

2.2 The contents of cell libraries . 16

2.3 Synthesis of cell based designs . 19

2.4 Implicit cell library contents . 21

3 Leakage Current Simulation and Theory of Power Consumption 23

3.1 Scaling device dimensions . 23

3.2 The effect of device dimension scaling on leakage currents 26

3.3 Leakage current modelling using HSPICE . 30

3.4 The leakage of logic gates . 33

3.5 Designing for low leakage . 34

4 Presentation of Logic Families 37

4.1 Logic selection criteria . 37

4.2 Survey of logic families . 38

4.3 Static CMOS logic . 40

4.4 MTCMOS . 41

4.5 CMOS Domino logic . 41

4.6 Complementary Pass-Transistor logic . 43

4.7 MacroCMOS . 45

5 Logic Family Evaluation Methods 47

5.1 Logic families comparison . 47

5.2 Logic family specific simulation approaches . 50

7

6 Evaluation of Logic Families 57

6.1 Static CMOS . 57

6.2 Cutting off power supply . 58

6.3 Complementary pass-transistor logic . 61

6.4 Domino logic . 64

6.5 MacroCMOS . 68

7 Discussion of Results 73

7.1 Results . 73

7.2 The chosen candidate for cell library implementation 75

8 A Cell Library for Low Leakage 77

8.1 Synthesis of MacroCMOS . 78

8.2 The MacroCMOS cell library . 79

8.3 Optimizing a design for low leakage with MacroCMOS 82

8.4 Further issues . 85

9 Conclusion and Future Work 89

9.1 Conclusion . 89

9.2 Future work . 90

A Project Description 91

B A Cell Library in the Liberty Format 93

B.1 General definitions, settings and units . 93

B.2 Cell specific data . 94

C Model Cards For Simulation 95

C.1 180nm High-Speed BPTM Model Cards . 95

C.2 180nm Low-Leakage BPTM Model Cards . 98

C.3 130nm High-Speed BPTM Model Cards . 101

C.4 100nm High-Speed BPTM Model Cards . 104

C.5 70nm High-Speed BPTM Model Cards . 107

C.6 70nm Low-Leakage BPTM Model Cards . 109

D Minimal Static CMOS Cell Library 111

D.1 CyHP - Compact yet High Performance . 111

E A MacroCMOS Cell 115

E.1 An example MacroCMOS cell . 115

F Contents of Included Disk 121

F.1 The Contents of the Included Disk . 121

Bibliography 123

CHAPTER 1

INTRODUCTION

Contents
1.1 Invention of MOSFET transistors 9
1.2 Synthesis of cell based designs . 10

1.2.1 Cell libraries . 10

1.3 The problem of leakage currents 11
1.4 Possible solutions . 11
1.5 Objectives for this work . 12
1.6 Overview of the report . 12

The aim of this chapter is to describe the problem that this work intends to solve. The development
of MOS transistors, synthesis tools and cell libraries is described to introduce the origin of the
leakage current problem. Possible solutions to the leakage current problem are presented forming the
basis for the objectives set in this work. Last, an overview of this report is given.

1.1 Invention of MOSFET transistors
For the past two decades Complementary Metaloxide Silicon (CMOS) technology has played
an ever more important role in the integrated circuits industry. Not that MOS field-effect
transistor (MOSFET) technology is new. It was already proposed in 1925 by J. Lilienfield[1],
but problems with materials prevented production attempts of MOSFET transistor. The re-
search of MOSFETs gave birth to bipolar transistors, which were easier to produce and
became the dominant transistor technology for decades.

Further research in silicon processing yielded the silicon planar process, which made
MOSFET devices possible around 1960. Single-polarity p-type transistors were favored un-
til the emergence of nMOS silicon-gate technology in 1971. The first patents of CMOS gates
were filed in 1967 by Fairchild Semiconductor Research and Development patenting the
CMOS concept and three basic gates: the inverter, the nand-gate and the nor-gate.

Though more complex to design, CMOS devices had one great advantage: low power
consumption. The first CMOS inverters dissipated nanowatts of power compared with mil-
liwats for pMOS or bipolar devices. So, CMOS was initially used for low power devices
such as watches. In the pre-LSI days when circuitry built with CMOS technology con-
sumed much more area than pMOS or bipolar circuitry, CMOS was primarily used where
power and not area was the critical parameter. But as device sizes shrunk and technology
improved to support larger chip sizes, more circuitry could be built into every chip, dimin-
ishing the area concerns and raising the need for low power circuitry, especially since the
device density skyrocketed. CMOS transistors and the static CMOS logic family were the
answer, and they still are. Static CMOS is today the best preferred technology for IC design
in terms of power dissipation, area and operational speed.

9

10 Introduction

1.2 Synthesis of cell based designs

Designing circuits in the early days was done by skilled full-custom hardware designers,
laying out as much as thousands of transistors per working day. But as the number of
devices per chip grew exponentially over time, this design flow was no longer feasible.
Automation was needed, and the first synthesis and place & route tools saw the day.

Synthesis tools have come a long way from mere scripting of small logic blocks to the
powerful synthesis tools of today, capable of synthesizing abstract, high-level coded de-
signs into RTL-level netlists of predefined logic cells and their interconnects. These synthe-
sis tools include algorithms for numerous optimization techniques enabling the automation
of a great variety of optimizations for power dissipation, area, operational speed etc. With
numbers of devices approaching hundreds of millions on a chip, optimizations such as re-
timing or clock gating have become infeasible to do manually. Synthesis tools have truly
become indispensable.

The modern synthesis tools and synthesis methodologies originate from a time when
the main problem was utilizing the chip surface’s ever growing potential for devices effi-
ciently. For this purpose, higher level hardware description languages such as Verilog and
VHDL were invented and synthesis tools were created. The task of synthesizing designs
written in these languages is done by breaking the problem into smaller problems until a
level of boolean functions on a RTL level is reached. The synthesis tool then matches the
boolean expression against boolean functions supplied by a cell library consisting of a va-
riety of cells implementing boolean functions in logic hardware. The synthesis tool imports
timing, power and area specifications from the cell library and optimizes the design ac-
cording to cost functions defined by the design engineer. Hereby, very large designs can
be implemented and optimized to a certain extent without the design engineer ever laying
out a single transistor.

1.2.1 Cell libraries

This design flow requires a cell library of predefined logic circuits implementing a selected
range of logic functions, characterized for power, area and timing. Further, a model for
incorporating wires between internal nodes is required for a complete timing verification.
Defining the set of logic functions the cell library is offering, and accurately modelling and
simulating electrical characteristics of logic gates of transistors is the job of the cell library
designer.

Using cells built with static CMOS logic eases the workload of both the cell library de-
signer and the synthesis tool as static CMOS cells are stable and predictable enough to be
cascaded like putting Lego-blocks together. Further, if a logic function does not match the
wanted boolean expression entirely, a few inverters or smaller gates are fitted in regards
to timing requirements. If a path is too slow, a cell with higher drive is put instead of the
slower one. Static CMOS cells will always work, but might be slower than expected. De-
signing conservatively for the worst case will eliminate most errors.

Connecting blocks like Lego-blocks has a few costs, though. A small area overhead in
comparison with full-custom design must be expected since not all functions are present
in the cell library. Further, dynamic power consumption suffers a bit from this procedure
due to the area or logic functional overhead. Nonetheless, architectural design decisions
and incorporating new optimization algorithms have reduced the power consumption, and
area is no longer a critical parameter due to the process developments.

All in all, using a synthesis tool and a static CMOS cell library is a very efficient way to
build VLSI systems with minimum penalties. But, a problem has been lurking in the future
and will soon become the major problem of the integrated circuits industry the years to
come. The problem is power consumption due to leaking devices. This consumption does
not depend on activity or operational speed, but rather the shear number of leaking devices
in the circuitry. And that number is increasing exponentially.

1.3. THE PROBLEM OF LEAKAGE CURRENTS 11

1.3 The problem of leakage currents

Leaking devices will soon be the major concern of the IC design industry. As device sizes
have been scaled down to keep up the exponential growth of device density and to enable
lower supply voltages, reducing the dynamic power dissipation, MOSFET transistors are
beginning to conduct current when they are in ’off’-mode. MOS transistors have always
conducted a bit of current in their ’off’-mode, but until recent years the problem has not
been big enough to get worried about. When the industry embraces the new sub-100nm
technologies though, these currents will be the reason for almost half of the total power
dissipation in an integrated circuit.

Lowering power consumption is critical for further improvements for operational speed
in high-speed applications and for low-power consumption in battery-supplied applica-
tions such as cellular phones. Reducing the unwanted currents, called leakage currents or
simply leakage, is vital for further growth in IC designs.

Leakage has two components: Subthreshold leakage and gate-oxide leakage. Subthresh-
old leakage consists of source-drain currents when the transistor is supposed to be non-
conducting. These currents are now flowing through the substrate of the transistors due
to effects near the active regions of transistors that heavily depend on the length of the
transistor gate. Gate-oxide leakage comes from currents tunnelling through the very thin
oxide layer between gate and source, drain or bulk. Clearly, both types of leakage depend
on the device sizes, and also depend on the voltages at the terminals. Further, altering the
doping of the substrate, the threshold voltage, Vth, can be changed enabling the design of
low leakage transistors with higher Vth values. Though, high-Vth have weaker drive and
will deteriorate the speed of the circuitry.

1.4 Possible solutions

A leaking transistor can be perceived as a switch with a parallel resistor. Putting the switch
in ’off’ mode, the resistor keeps on drawing currents past the switch (see Figure 1.1).
Hereby a integrated circuit becomes a vast array of parallel resistors leaking between the
voltage rails.

Rleak

Figure 1.1: The transistor as a switch and as a leaking device.

With this picture in mind, the problem of current day synthesis tools and small static
CMOS cells become clear. Using large numbers of small gates containing very few transis-
tors each is the cause of the problem. This is the manner in which the number of leaking
resistors (transistors) is maximized and the resistance on each path is reduced to the mini-
mum. The resistance can be increased by using high-Vth low leakage transistors, but these
transistor reduce the speed of the circuitry.

A solution to this problem could be to go back to the decision of selecting static CMOS
as logic family. If devices had been leaking as much two decades ago as they will do within
a few years, small cell static CMOS might not have been selected as the logic family of the
future. Instead other interesting logic families might have prevailed. In this work different
logic families will be discussed and two, Domino logic and Complementary Pass-transistor
Logic, have been selected for closer low leakage evaluation.

Another solution is found in a characteristic of leakage currents: As the leakage power
dissipation is not dependent on activity, but is an ever present power dissipation source,
cutting off power to inactive regions may save quite large fractions of the total power dissi-

12 Introduction

pation. This is especially interesting for applications that do only operate in a small fraction
of the time. Therefore, this concept is taken under evaluation in this work.

The third solution presented here came through a study of transistor characteristics.
Connecting transistors in series (stacking), which will be shown to decrease leakage con-
siderably, will be proven to be a good solution to the problem. Building larger logic blocks
on-the-fly in the synthesis process and including optimization algorithms for leakage re-
ductions can yield very large savings in the power budget. This approach will require
changes in the synthesis process and complete redesign of current cell libraries. Changes to
the synthesis process of today and a new cell library are proposed in this work.

A fourth, and very well explored possible solution, is to replace all transistors with
high-Vth (low leakage) transistors, which will postpone the leakage problem for quite some
years. This is though only possible when adequate time slack is available, since low-leakage
transistors are slower by nature. Therefore, this work is based in the area where time re-
quirements are just met or met by a fraction of the paths in the design. This is the setting
for this work: Reducing leakage currents where slow, high-Vth are not possible to use, or
only usable to some extent.

1.5 Objectives for this work

The main objective of this Master’s Thesis is thus to evaluate logic families alternative to
static CMOS for the creation of a low leakage cell library. This is achieved through imple-
mentations of simulation cases utilizing the selected logic families, followed by simulation
case comparison and evaluation of the characteristics of the logic families. For this pur-
pose a static CMOS library of cells is designed and simulated to perform as a basis for
comparison. This library of cells is minimized in number of cells in to order to explore the
limitations of standard cell IC design, but still serves as a fair comparison set for further
logic family evaluation.

It will be shown in Chapter 6 that the logic family evaluation does not give an indication
that an alternative logic family could prevail over static CMOS. Therefore, the objectives are
expanded to explore how transistor characteristics can be taken into account when design-
ing static CMOS cells for low leakage. Whether combining areas of logic into larger blocks,
built on-the-fly by the synthesis tool, can prove to be an effective way of reducing leakage
power dissipation is then the main objective.

This new synthesis process requires synthesis tools to be altered and cell libraries to be
completely redesigned. This design area is explored and a proposal for a new cell library
and synthesis tool will be presented in Chapter 8.

This work is carried out as an independent work in collaboration with two other Mas-
ter’s projects: Architectural Aspects of Design for Low Static Power Consumption by Mar-
tin Hans[2], and Incorporating Leakage Current Considerations in Logic Synthesis by Michael
Kristensen[3].

The official project description is placed in Appendix A.

1.6 Overview of the report

To enable easy reading of this report, the specific organization of the report is given here.
As has already been seen from the opening pages of the report, only chapter and section
titles are for clarity given in the contents list. Further contents of the individual chapters
may be found in the beginning of each chapter.

This work spans over a number of research areas that all affect each other. These areas
include: Design of cell libraries, transistor technology, logic family design, power modelling
and synthesis. To evaluate logic families for cell library design, three areas are particularly
important. These areas are: Design of cell libraries, leakage current simulation and theory
of power consumption, and logic family design. These three areas will be described in the

1.6. OVERVIEW OF THE REPORT 13

Evaluation of Logic Families

Discussion of Results

A Cell Library for Low Leakage

Logic Familiy
Evaluation Methods

Design of Cell Libraries Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Presentation of
Logic Families

Leakage Current Simulation &
Theory of Power Consumption

Figure 1.2: Flow of the report.

first three chapters of this report to form the basis for the evaluation work described in the
following chapters.

The flow of this report is depicted in Figure 1.2. This figure will be repeated at the
beginning of each chapter with markings showing the placement of the specific chapter in
the entire report flow. Here follows a short description of the contents of the eight following
chapters.

Chapter 2 introduces the design of cell libraries and the synthesis flow of today and dis-
cusses the future of cell libraries taking the rising problem of leakage current into account.
The contents of cell libraries and the process of cell library design are explored.

Cell library design requires accurate simulation of electrical characteristics of logic cells.
For this purpose chapter 3 gives a investigation of how the power consumption of inte-
grated circuits is simulated, with special focus on the leakage currents in CMOS designs as
device sizes grow smaller. This chapter also introduces the transistors models and simula-
tion approaches.

Alternative logic families are presented in chapter 4 which investigates logic families
through a short survey of the characteristics of each logic family in terms of power and
ease of design. Based on this discussion a number of target logic families are selected for
evaluation. How the logic families are evaluated is presented in chapter 5, which also de-
scribes how fair comparisons are achieved between logic families.

Chapter 6 presents the simulation work based on techniques described in chapters 3
and 5, and the results from the work.

Chapter 7 evaluates the results from all simulations and describes why static CMOS is
chosen for the creation of the low leakage cell library. The new cell library is presented in
chapter 8, which also describes the changes in the synthesis flow that are required to be
done in order to use the library. Chapter 9 concludes on the work and presents topics for
future work and projects.

Hereafter follows the appendices. The contents and numbering of the appendices will
be clarified when referred to in the report.

14 Introduction

CHAPTER 2

DESIGN OF CELL LIBRARIES

Contents
2.1 The role of cell libraries . 15
2.2 The contents of cell libraries . 16

2.2.1 Modelling propagation delay in cell libraries 17
2.2.2 Modelling power dissipation in cell libraries 18

2.3 Synthesis of cell based designs . 19
2.3.1 The cell library/synthesis tool interface 20

2.4 Implicit cell library contents . 21
2.4.1 The static CMOS cell library . 22

Designing cell libraries requires an understanding of how a cell library is used
by synthesis tools in order to asses what information it must contain and how
the information must be structured. This chapter presents what an available
cell library contains and discusses how timing, power, area etc. of logic cells is
represented in the cell library and how this information is used by a synthesis
tool.
Clearly, the cell library constitutes the interface between the physical world and
the logical synthesis world. Yet, only a fraction of the possible logic functions are
present in a cell library for practical reasons. The benefits of having cell libraries
versus the drawbacks that this interface imposes are discussed.

2.1 The role of cell libraries

A cell library of today plays three key roles in the synthesis process. Firstly, it supplies the
synthesis tool with a list of cells implementing logical functions from which the synthesis
tool can pick and build larger functions. The cell library also delivers area, timing and
power characteristics of the cells to enable the synthesis tool to optimize the design in
respect to design goals set by the designer. Figure 2.1 depicts the flow.

Secondly the cell library contains all the information needed by the place & route tool
to create a floorplan of the design optimized to certain constraints set by the designer. The
place&route tool can then import technology specific wireload models supplied by the cell
library and create a netlist of the entire design. This netlist in unison with the cell library
implements a model of the design including locigal function, area, power and timing for
both cells and interconnects (from wireload models). This can be used to verify the design
by backannotation to the synthesis tool. Supplying good wireload models is the third role
of the cell library.

15

16 Design of Cell Libraries

Cell library Cell library

if a >= 2 then
 b <= "0010";
 c <= "1100";
endif;

...

process controlB()

Cell library

Placement Routing

Area, dimensions etc. Wire load models

Synthesis

Logic functions, delays,

drive strength etc.

Figure 2.1: Synthesis, placement and routing using data from a cell library.

From this description of the roles of the cell library it is evident that the cell library needs
to include the following:

• A compilation of cells including information of: Logic function, area, timing, dynamic
and leakage power consumption

• Wireload models for both synthesis and place & route

• The physical layout of the cells for the place & route tool

• A library of symbols and other graphics for the graphic interfaces of all tools etc.

Since this work is about characterization of logic cells in terms of power consumption
and timing, the term ’cell library’ here refers to the first two points in unison. The STM
180nm DKHCMOS8D[4] cell library available at IMM/DTU will serve as example of a cell
library.

2.2 The contents of cell libraries
The 180nm cell library available for this project contains both high-speed and low-leakage
cells. This cell library will here serve as example to illustrate the design of cell libraries
process. The cell library uses the LIBERTY file format, which will be described here. A
sample of the cell library is included in Appendix B on page 932.1. All references to actual
tables and values are pointed at Appendix B

The LIBERTY file format contains two parts: General definitions and models followed
by the cells in the cell library. The first part contains:

• Global values such as temperature, unit declarations, and settings for the synthesis

• Wire load models for wires formulated by resistance, capacitance, slope, area and
fanout length

• Wire load selection criteria defining which wire load model to use depending on area

• Templates for propagation delay lookup tables with input net transition and output
capacitance as parameters

• Templates for power dissipation lookup tables with input net transition and output
capacitance as parameters

These values are printed for the synthesis tool to inform the tool under which assump-
tions the simulations of the cells have been done, and how the following electrical speci-
fications of the cells are to be read. The cells follow hereafter. The description of the cells
contain these data:

2.1All information in this sample has been manipulated in structure and values for copyright protection pur-
poses.

2.2. THE CONTENTS OF CELL LIBRARIES 17

Dcell Dwire

Dtotal

Figure 2.2: Total gate delay split into cell and wire delay.

Scalar values:

• Area

• Average leakage power

• Logic function

• Maximum capacitance

Lookup tables:

• Input dependent leakage power values

• Switching power, both for rising and falling transition

• Rise and fall output delay

• Rise and fall output transition time

With these values the synthesis tool is able to calculate the total area consumption, tim-
ing of the circuit with statistical wire loads, and the power dissipation with random inputs.
Doing place & route and backannotating the design with input value information produces
a realistic picture of whether the timing requirements of the circuit are met, and a reason-
ably good power dissipation prediction.

2.2.1 Modelling propagation delay in cell libraries

In the LIBERTY cell library format delays are modelled as gate delays and wire delays. The
delay model used[5] can be expressed as:

Dtotal = Dcell + Dwire (2.1)

The delay is modelled as the sum of the cell delay and wire delay (Figure 2.2). The cell
delay is the time from a input value transition reaches 50% of its final value till the output
of the cell has changed to 50% of its final value. This is depicted in the left hand side of
Figure 2.3.

The propagation delay depends on the slope of the input value transition and the to-
tal capacitance on the output. The lookup tables for gate delay is therefore a table with
capacitance and input value transition slope as parameters.

The delay of wires is read from lookup tables with resistance and capacitance as param-
eters, to model what delay that wire causes. A number of wire load models are available
modelling a variety of wire lengths and capacitive loads on these. Statistical area dependent
models are used to evaluate which wire load model is to be used for each wire. Backanno-
tating the real wire length improves the accuracy of the model, and until it is done the delay
models rely only on statistical, and possibly very conservative, wire delay models.

18 Design of Cell Libraries

90%

100%

voltage

Input

Output

timetransition
t

10%

Input

Output

timecell,riseD

50%

100%

voltage

Figure 2.3: Rise time and rise transition of a cell.

Changing output
state 1
Steady

state 2
Steady

Power

state 1
Steady

Power

Changing output
state 2
Steady

timetime

P Pleak leak

Pdyn,int
Pdyn,cap

Figure 2.4: Power consumption before, during and after an output transition. A cell library repre-
sentation.

2.2.1.1 Calculation of Total Propagation Delay

Calculation of the total delay is performed in three steps:

1. Calculate total output capacitance: Wire capacitance + total gate input capacitance

2. Look up the rise/fall-time of the cell using the calculated output capacitance and the
input transition time as parameters

3. Add wire delay. This is calculated from adding the wire load model to the output
transition

2.2.2 Modelling power dissipation in cell libraries

Modelling power dissipation in the cell library is done by dividing it into three categories:
Input dependent leakage, Pleak, internal dynamic switching power Pdyn,int and dynamic
power consumption due to charging and discharging of output capacitances Pdyn,cap [5].
Figure 2.4 illustrates a probable power dissipation over time of an output transition of a
cell.

The peak of the power consumption graph on the left is due to internal power consump-
tion such as charging/discharging of internal nodes and short circuit switching power. The
slower falling slope after the peak is due to the capacitive wire or gate load on the output.
There is quite some overlap, off course. Before and after the output transition two different
input state dependent leakage currents are responsible for the entire power consumption
in these regions.

A model of the power consumption is shown on the right hand side of Figure 2.4.
Pdyn,int depends on the slope of the input transition. A low slope causes increased short

2.3. SYNTHESIS OF CELL BASED DESIGNS 19

circuit power consumption. Pdyn,cap naturally depends on the capacitive load on the out-
put, which totals the wire load capacitance and the total input capacitance of connected
logic gates.

Denoting the frequency of output signal transitions (the toggle rate) by TR the entire
power model can be expressed in one relation:

P = Pleak + Pdyn,int + Pdyn,cap = h(vi,0, vi,1...) + Eswitch ∗ TR + Ecap ∗ TR (2.2)

h is an input state dependent leakage power function of the input state, where vi,j is the
j’th input value to the i’th cell. This value is read from the input state dependent leakage
power lookup table (leakage_power). If input values are unknown the default leakage power
value is used.

Eswitch is the switching energy required to change output state due to a transition from
one to another input state. This value is looked up in the rise_power or fall_power lookup
tables. The internal power consumption depends on the input transition time and the total
output capacitance, which are the parameters for the lookup tables.

The last component is Pdyn,cap which depends only on the output capacitance. This
factor is summed into Eswitch for practical reasons.

2.2.2.1 Calculating power consumption

The calculation of the power consumption follows in three steps for each cell:

1. When a input transition occurs: Determine what output transition the input transition
causes and lookup the rise or fall power consumption for that transition

2. Then, lookup the leakage power consumption caused by both input vectors and add
a average of these values to the total power consumption

3. If no input transitions occur, just lookup the leakage of the cell and add it to the total
power consumption

Leakage power dissipation as a function of input states requires the leakage to be ex-
pressed in lookup tables with input vectors as parameter. The leakage at any moment can
then be expressed as the total sum of leaking gates according to their respective input states.
If input states are unknown, an average value read from the cell library is used.

2.3 Synthesis of cell based designs

How to represent area, power and propagation delay for each cell is described above. These
values can be derived by either simulation of a full-custom design of the cells or by elec-
trical simulation of a transistor netlist in for example SPICE. Yet, before these simulations
can begin, one need to decide which cells to put in the cell library. To evaluate this, a look
is taken on the synthesis process.

Figure 2.5 presents a simplified synthesis case where an abstract problem is synthesized
into logic cells. Here the add-function is broken down into sub-problems iteratively until a
level of boolean expressions is reached. No further synthesis or optimizations can be done
without a cell library.

The cell library supplies a range of logic functions for the synthesis tool to pick from.
In Figure 2.5 the synthesis tool picked a cell matching the ’Carry’-expression perfectly (1).
If this cell was not available, the synthesis tool would have to go back to the boolean ex-
pression level and reorder the logic to fit smaller cells from which the larger one could be
built(2).

20 Design of Cell Libraries

A +o oB

C0

Sum0

A + B

Sum1

1 1

1C

.

Gate

Carry = AB+AC+BC

Sum = A xor B xor C

Z = A + B

Boolean expressions

Sub−problem

Problem

(1) (2) (3)

Figure 2.5: A synthesis flow of mapping an abstract problem into logic cells.

Optimization then follows in several steps. Possibly some of the paths through the in-
creased levels of logic depth are not fast enough and must be compensated by increasing
the drive strength of the gate. If this is still not enough to meet the timing requirements,
logic optimizations must be done to improve speed. Since NAND-gates are typically faster
than AND/OR-gates, the NAND-gates replaced the AND/OR-gates(3) in the right hand
side of Figure 2.5.

2.3.1 The cell library/synthesis tool interface

From the example above it is evident that selecting logic cells for a cell library can be done
in different ways. An analysis of the most common cells could be conducted and the cell
library could be built with these cells, small as large.

Another way is to ignore the larger cells and build a large variety of smaller cells with
widely different drive strength, gate delay etc, so that larger functions can be synthesized
with minimum overhead.

A third way is to build large cells with both inverted and non-inverted inputs and out-
puts. These multi-purpose cells could be used in many places, reducing the need for other
cells which allows for more complex cells to be put in the cell library.

No matter what approach is taken to selecting the cells, only a limited number of these
cells are feasible to put in a cell library. This is mainly due to the shear simulation and
design time it requires to design by hand and simulate cells. Looking into the cell library
available in this project, 777 different cells are present. More than 80% of these cells are
drive buffers, repeaters and inverters in different sizings. Sorting these out, 157 unique
combinational logic cells remain. The distribution of the number of cells versus the number
of inputs is depicted in Figure 2.6. It is clear, that designers behind the cell library have
chosen a mix of a good deal of rather small, three- or four-input cells, and added a smaller
number of commonly used larger cells.

2.3.1.1 Limits of cell libraries

This interface of supplying the synthesis tool with only a limited number of cells clearly
has some disadvantage. First, it cannot contain all logic functions, so smaller cells have
to be cascaded. Secondly, as all cells are not available with inverted/non-inverted inputs,
inverters have to be put in numerous places. This is a further important as the number of
cells and logic depths increase.

Thirdly, if a cell is just a bit too slow or too fast no improvements can be done, and the
synthesis tool has to redesign the logic expression, if no slightly faster cell is available. A

2.4. IMPLICIT CELL LIBRARY CONTENTS 21

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 1 2 3 4 5 6 7 8 9

C
e
l
l
s

Inputs

Figure 2.6: Distribution of the number of cells versus number of inputs.

fourth reason is, that for low leakage applications the cell library with a fixed number of
cells is not good either. The possibilities of reducing leakage are hereby limited to replac-
ing high-speed, high-leakage cells with reduced-speed, low-leakage cells. In many cases
there is not enough time slack for this replacement, and high-leakage cells are therefore
necessary. The limitations of using cell libraries will be further discussed in Chapter 8.

2.4 Implicit cell library contents
There are some characteristics, that are not expressed explicitly in the cell library, that the
synthesis tool needs to be aware of in order to synthesize utilizing the cell library. First of
all the synthesis tool needs to know the characteristics of the logic family with which the
cell library has been constructed. For a given logic family there are limitations and issues
that must be considered:

Connection of cells Can combinational logic be built simply by connecting logic cells like
Lego blocks only taking the timing (sum of propagations delays) into account? Or
do cells alter their electrical characteristics dependent on the characteristics of the
previous logic stage?

Value stability Can signals be assumed to remain stable in value as long as the cells are fed
with supply power an input values are stable? Or are there dynamic characteristics
of the logic family that prevent this assumption? A notion of drive strength and drive
limitations has to be formulated for each logic family.

Clocking issues Are cells simple logic functions or do they need a clock signal requiring
the synthesis tool to build logic considering the timing of the clock for each cell?

These considerations are defining the way the synthesis tool has to synthesize a given
design to a cell library built on a given logic family. Other considerations are:

Leakage current Do cells leak the same amount of current with all possible input combi-
nations or can power be saved by building the logic utilizing statistical information
in order to put as many cells in their low leakage state as long as possible?

Power versus speed What are the tradeoffs for the given logic family when it comes to
power versus speed? Is high speed and low power impossible to achieve at the same
time? And what does it cost in terms of area to pursue?

22 Design of Cell Libraries

These considerations have to be done for the given library of logic cells and the results
be built into the synthesis tool cost functions and synthesis operation style.

2.4.1 The static CMOS cell library

The 180nm static CMOS library available at the department is a fully characterized cell
library in terms of the above mentioned issues. The synthesis of static CMOS is the topic of
numerous papers.

Since static CMOS circuits both produce the output values and drive the value by con-
necting the output pins to either VDD or VSS , the task of the synthesis tool in terms of logic
synthesis is reduced to combining the cells to form the correct larger logic blocks. Deter-
mining the output load of all cells and selecting cells with given drive strength tells the
synthesis tool the total propagation delay of all paths in the design. If the delay is larger
than the allowed value, the synthesis tool can either reorder the logic blocks, select faster
cells or cells with more drive strength to boost the speed of the path. No specific connection
considerations are needed with static CMOS.

Furthermore, since the static CMOS drives the output actively, outputs remain stable as
long as the cells is fed by power and stable input signals. Static CMOS is not a dynamic
or clocked (hence the name ’static’) family so the synthesis tool can do the synthesis in
respect to timing by just verifying that the critical path of combinational logic between two
registers is no longer than the clock period.

The ease of synthesis with static CMOS is one of the key features that helped static
CMOS become the most widely used logic family in VLSI design. Static CMOS Cell libraries
can be derived from simulation of the electrical characteristics gates and wires. Gates are
modelled by transistor netlists and wires are included as simulations of statistical RC wire
loads. Together these are capable of implementing simple logical functions and their in-
terconnects. This approach of pre-defining static CMOS cells implementing simple logical
functions and pre-determining the electrical and delay characteristics lists benefits as very
fast synthesis, pre-testable cells, pre-layout statistical wireload estimation and in general
faster optimization by re-synthesis.

Yet, as this approach is very good for static CMOS, it may not be feasible for other logic
families. Some logic families are not suitable for the static CMOS approach of connecting
layer by layer of logic within time bounds. And cells implemented with certain other logic
families do not preserve their logic output values over time. It is evident that the interface
between cell library and synthesis tool has to be reevaluated when other logic families are
taken into consideration.

CHAPTER 3

LEAKAGE CURRENT SIMULATION
AND THEORY OF POWER
CONSUMPTION

Contents
3.1 Scaling device dimensions . 23
3.2 The effect of device dimension scaling on leakage currents 26

3.2.1 p-n junction reverse bias current . 26
3.2.2 Subthreshold leakage . 26
3.2.3 Gate leakage . 30

3.3 Leakage current modelling using HSPICE 30
3.3.1 The Berkeley Predictive Technology Model 30
3.3.2 Predicting the future with BPTM model cards 31
3.3.3 Assumptions . 32
3.3.4 Device sizes . 32

3.4 The leakage of logic gates . 33
3.4.1 Stacking of transistors . 33
3.4.2 Leakage as function of input combinations 34

3.5 Designing for low leakage . 34

The aim of this chapter is to describe the effect of scaling down MOS devices on
the dynamic and leakage power consumption. Projections of the future in terms
of device sizes, supply voltages and power estimations are presented and used to
estimate the magnitude of the leakage problem in the future.
Evaluating the leakage of logic gates is done through simulation with HSPICE.
Transistor model cards used for these simulations are presented, and an intro-
ductory study of the effect of stacking transistors is given. Since stacking will
be shown to have a great effect on the leakage, considerations for utilizing this
and other facts for the design of low leakage gates are presented in the end of this
chapter.

3.1 Scaling device dimensions
For the purpose of increasing performance and density, and lowering the power consump-
tion, MOS devices have been scaled for more than 30 years. With more than 30% improve-
ment in delay times per technology generation, a doubling of microprocessor performance

23

24 Leakage Current Simulation and Theory of Power Consumption

 10

 100

 1000

 1990 1995 2000 2005 2010

D
e
v
i
c
e

l
e
n
g
t
h

(
n
m
)

Year

(a) Technology node

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 1990 1995 2000 2005 2010

S
u
p
p
l
y

V
o
l
t
a
g
e
(
V
)

Year

(b) Supply voltage

Figure 3.1: Projected development in device sizes and supply voltage [9]

have been achieved every two years [6]. To keep power consumption down, supply volt-
ages have been lowered. Hence, the transistor threshold voltage (Vth) has to be scaled ac-
cordingly to maintain the high drive current and to maintain the performance improve-
ment of 30% per technology generation dictated by Moore´s Observation3.1

Power consumption of integrated circuits has become the major technical problem of
the semiconductor industry. This problem has to be dealt with at all levels to make the
exponential growth in device density possible in the future. So far, large achievements in
reducing the power dissipation has come from voltage scaling and parallelizing designs
to preserve computational speed. Voltage scaling is very effective due to the power dis-
sipations quadratic dependency of the supply voltage. Total power consumption can be
expressed in this equation[7]:

P = Pdynamic + Pstatic = ACV 2f + V Ileak (3.1)

This equation expresses that the total power dissipation originates from two main sources:
1) Dynamic power dissipation, that includes the charging and discharging of capacitances
and 2) Static power dissipation produced by leaking devices. Dynamic power also includes
switching power dissipation, which is often expressed[8]:

Psc = (β/12)(VDD − 2VT)3(τ/T) (3.2)

Taking a look at the computational speed versus voltage supply this equation comes in
handy[7]:

f ∼ (V − Vth)α

V
(3.3)

The term α is an experimentally derived constant, that for current technology is approx-
imately 1.3.

Combining equation 3.1 and 3.3 it is evident why voltage scaling is so effective. The
computational speed of a circuit decreases approximately linear with decreasing voltage,
but the power consumption drops quadratically with decreasing voltage supply. Therefore,
halving voltage supply and doubling hardware in parallel preserves computational speed
and decreases dynamic power consumption by around 50%. Projected supply voltages and
device sizes are depicted in figure 3.1.

Though, leaking devices causing static power consumptions have become just as power
hungry as the dynamic sources of power dissipation. Equation 3.1 states that the static

3.1Moore’s Law is an inaccurate name for the law since it is not a mathematical (or legislative) law at all.
Moore´s Observation, which it is more accurately called in many sources, depends on a survey of the development
of integrated circuits versus time. As this relationship cannot hold forever, Moore´s Law is best called Moore´s
Observation.

3.1. SCALING DEVICE DIMENSIONS 25

Possible trajectory

if high−k dielectrics

reach mainstream

production

10

10

10

10

−6

10
−4

−2

0

2

N
o

rm
al

iz
ed

 t
o

ta
l

ch
ip

 p
o

w
er

 d
is

si
p

at
io

n

1990 1995 2005 2010 2015 20202000

Gate length

Dynamic power

Sub−threshold

leakage

Gate−oxide

leakage

300

250

200

150

100

50

0

P
h

y
si

ca
l

g
at

e
le

n
g

th
 (

n
m

)

Figure 3.2: Total chip dynamic and static power dissipation trends assuming doubling of on-chip
devices every two years. Based on the International Technology Roadmap for Semiconductors[10]
and [7]

power dissipation depends linearly on the voltage supply, which may lead to the inter-
pretation that static power consumption puts an end to voltage scaling. This is not entirely
correct since the term Ileak is exponentially dependant on the supply voltage as well, which
is why voltage scaling and hardware doubling still works in many cases in the future for
lowering total power consumption[2].

Yet, as hardware is doubled and devices are leaking, the leakage power dissipation
grows to be the major fraction of the total power dissipation. Figure 3.2 shows projected
dynamic and leakage power dissipation together with projected device sizes. The leakage
component is broken in to two contributors:

• Subthreshold leakage, Isubth, which is the drain-source current when the transistor is
in its non-conducting state.

• Gate-oxide leakage, Igate, is the total amount of leakage currents through the gate
oxide due to tunnelling etc.

Figure 3.3 depicts subthreshold leakage and gate-oxide of a leaking nMOS-transistor.

The right hand side of Figure 3.3 shows paths of gate-oxide leakage. Gate-oxide leakage
is not modelled in this work, but will be discussed shortly in section 3.2.3, where reasons
for leaving out gate-oxide leakage are given. The term leakage or IOFF in this work refers
to subthreshold leakage currents only.

There are numerous further ways of reducing the total power consumption. Clock-
gating, bus-encoding and switching activity reduction schemes are a few. All of them tar-

I subth

IGS

IDG

VSSVSS

GBI

VDD VDD

Figure 3.3: Subthreshold leakage and gate leakage of an nMOS transistor.

26 Leakage Current Simulation and Theory of Power Consumption

� � � � � � � � � � � �
� � � � � � � � � � � �� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �� � � � � � � � � � � �
� � � � � � � � � � � �

� �� �
� �
� � � �� �

� �
� �

I

I

1

Gate

well

Source

Gate

Drain

p− well

n+

I

n+
2

Figure 3.4: Summary of leakage currents mechanisms.

get primarily the dynamic power consumption though. The scope here is mainly leakage
currents and only the leakage part of the total power consumption will be discussed. Yet,
when a solution is presented it is discussed whether the solution causes increased dynamic
power consumption.

3.2 The effect of device dimension scaling on leakage currents
IOFF is influenced by threshold voltage (Vth), the physical dimensions of the channel, chan-
nel/surface doping, drain/source junction depth, gate oxide thickness and VDD [6].

Scaling down Vth increases the leakage drastically due to the weak inversion state leak-
age which is a function of Vth and is not due to the transistor channel length. Leakage in
long channels are dominated by drain-well and well-substrate reverse biased p-n junctions.

3.2.1 p-n junction reverse bias current

When building structures with layers of doped silicon and electrically charging them, cur-
rents will unavoidably leak through the silicon. From drain and source regions a reverse
bias p-n junction leakage current flows into the well region (Figure 3.4, I1). This current
has two main components: Firstly, the minority carrier drift near the edge of the deple-
tion region and secondly the electron-hole pair generation in the depletion region. Both
components are heavily dependent on the doping level of the source and drain regions.
When heavily doped drain/source regions together with short-channel-effect enhance-
ments, such as halo-doping [11] are used, p-n junction reverse bias currents increase signif-
icantly.

3.2.2 Subthreshold leakage

The most severe of all leakage currents in deep submicron devices is the subthreshold leak-
age current[6]. When the gate voltage drops below Vth a weak inversion conduction current
is still present in the MOS transistor (Figure 3.4, I2). Ideally the MOS transistor should be
nonconducting as the gate voltage reaches below Vth, but instead the subthreshold cur-
rent decreases exponentially with decreasing gate voltage. This forms a linear slope with
log Isubth as function of Vth, see figure 3.5. Evidently the subthreshold current at zero gate
voltage increases exponentially as Vth is decreased.

Considering a n-channel transistor with source connected to ground, Vg < Vth and drain-
source voltage | Vds |≥ 0.1V the almost entire voltage drop occurs over the reversed bias

3.2. THE EFFECT OF DEVICE DIMENSION SCALING ON LEAKAGE CURRENTS 27

lo
g

 I
D

Low−V

High−V

DD

DD

VG (V)
0V

St

−1

Figure 3.5: Drain current versus gate voltage at two different drain voltages.

substrate-drain p-n junction. Under these conditions the electrostatic potential variations
are very small and the electric field formed by the gate is negligible, causing the number
of mobile carriers to be small. In this case the drift component of the subthreshold drain-
to-source current is negligible and subthreshold conduction is dominated by the diffusion
current. The carriers move by diffusion along the surface causing a current which is expo-
nentially dependant on the gate voltage.

The weak inversion current can be expressed by:

Ids = µ0Cox
W

L
(m− 1)(vT)2 × e

Vg−Vth
mvT × (1− e

−vDS
vT) (3.4)

where

m = 1 +
Cdm

Cox
= 1 +

(εsi/Wdm)
εox/tox

= 1 +
3tox

Wdm
(3.5)

The threshold voltage of the transistor is denoted Vth and the thermal voltage vth =
KT/q. Cox is the gate oxide capacitance and µ0 is the zero bias mobility. K is the Boltzmann
constant, T is the temperature in Kelvin and q is the electron charge. m is the subthreshold
swing coefficient or body effect coefficient for the transistor. Wdm is the maximum width of
the depletion layer and tox is the thickness of the gate oxide. Cdm and Cox are the depletion
layer capacitance and the capacitance of the insulator layer.

From equation (3.4) it can be seen that the subthreshold current is independent of the
drain-source voltage for VDS larger than just a few vT . This seems counter-intuitive, since
one would expect the drain-source voltage to have great impact in the leakage current.
Equation (3.4) does not hold for small devices due to effects such as drain-induced barrier
lowering and body-effect, and is merely printed here to show the leakage currents depen-
dency of gate width, length and gate voltage in longer devices. It confirms that the leakage
grows exponentially with Vg . This dependency is expressed in the subthreshold slope (St)
which described the inverse slope of the linear part of the Isubth/Vth-graph (figure 3.5).

St = (
d(log10Ids)

dVg
)−1 = 2.3

mkT

q
(1 +

Cdm

Cox
) (3.6)

A low value of the parameter St is desirable since it expresses the amount of voltage,
the gate voltage has to be reduced in order to reduce subthreshold leakage a certain factor.
Or in other words, how easily (and to which extent) leakage can be reduced. St values for
a bulk CMOS process are typically around 80 to 120 mV per decade. The value of St can be
improved by lowering the oxide thickness or lowering the substrate doping, increasing the
maximum depletion layer width.

In the following sections the most dominant effects causing deviations from equation
(3.4) leading to altered leakage in small devices will be described. These effects are drain-
induced barrier lowering and the body effect. Further effects are ’narrow width effect’ and

28 Leakage Current Simulation and Theory of Power Consumption

y/L0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1

C

B

A

Figure 3.6: Energy bands at the surface versus distance normalized to the channel length L from
source to drain. Curve A depicts a long-channel device, curve B a short-channel device. Curve C
represents a short-channel device with high drain bias.

’Vth roll-off’. These effects will not be discussed here, as they are determined by the device
sizes alone and is not altered by reconfiguring transistors.

3.2.2.1 Drain-induced barrier lowering

In long devices the drain and source regions are far enough apart for the electrical field
and depletion regions induced into the device by these regions to have any impact in the
threshold voltage. Hence the threshold voltage is almost independent of the channel length
and drain bias. In a short-channel device, on the other hand, source and drain depletion
width and source-drain potential have great effect on the energy band bending over a con-
siderable portion of the device. Threshold voltage and thereby subthreshold currents of
short-channel devices vary with the drain bias. This effect is called drain-induced barrier
lowering (DIBL).

Figure 3.6 depicts three different energy bands near the surface of a long device (A)
and two short devices (B and C), charged by relative low drain-source voltage except (C)
which is driven by higher voltage. The threshold voltage equals the maximum energy level
a charge carrier has to achieve to move between the source and drain terminals.

It is evident that decreasing channel lengths reduces the threshold voltage. Increasing
drain voltage causes further Vth lowering in the short-channel device, but does not affect
the long-channel device. This is due to the flatness of the curve in the middle (or the high
slopes near drain and source), which originates from the extension of the non-affected area
under the gate.

Ideally DIBL does not change the St-slope, but it reduces Vth. Higher surface and chan-
nel doping can reduce the DIBL effect [6]. DIBL certainly has to be taken into account when
designing new technologies as supply voltage lowering not only slows the circuits down,
but counters the DIBL-effect and raises the threshold voltage which further slows circuits
down. This is especially important when considering multi-Vth-designs [12]. The effects of
DIBL is shown on Figure 3.7.

3.2.2.2 Body effect

Devices built from numerous MOS transistors are typically made on a common substrate.
All MOS transistors therefore share the same substrate and hence the same substrate po-
tential Vsubstrate. Yet, as transistors are connected in series to form gating functions, it is
no longer possible to guarantee the same source potential for all transistors. Source to sub-
strate voltage (VSB) may increase along the chain of transistors when moving along the
chain away from VSS . This increase in VSB widens the bulk depletion region and increases

3.2. THE EFFECT OF DEVICE DIMENSION SCALING ON LEAKAGE CURRENTS 29

lo
g

 I
D

DD

VG (V)
0V

High−V

Low−VDD

DIBL

GIDL

Weak inversion and

junction leakage

Figure 3.7: Leakage current contributors as function of gate length.

the threshold voltage. This effect is known as the body effect. The following equation ex-
presses the threshold voltage equation [1, 6]:

Vth = Vfb + 2ψB +

√
2εstqNa(2ψB + Vsb)

Cox
(3.7)

where Vfb is the flat band voltage, Na is the doping density in the substrate, and ψB =
(KT/q) ln(Na/ni) is the difference between the Fermi potential and the intrinsic potential
on the substrate. Looking at the Vth’s dependency of the bulk-source potential, it is evident
that the Vth is more sensitive to Vbs with high bulk doping concentrations. The substrate
sensitivity can be expressed as: [6]

dVth

dVbs
=

√
εstqNa/2(2ψB + Vsb)

Cox
(3.8)

At zero Vsb the substrate sensitivity is Cdm/Cox equal to m − 1 which explains, why m
is also referred to as the body effect coefficient.

3.2.2.3 Modelling subthreshold leakage

The entire subthreshold leakage current including weak inversion, DIBL and body effect
can be expressed by the following equation. [6, 13]

Isubth = A× e
1

mvT
(VG−VS−Vth0−γ′×VS+η×VDS) × (1− e

−vDS
VT) (3.9)

where

A = µ0C
′
ox

W

Leff
(vT)2e1.8e

−∆Vth
ηvT (3.10)

Vth0 is the zero bias threshold voltage. For small values of Vsb the body effect is nearly
linear with respect to Vs, so the body effect is represented here as γ′Vs. The DIBL coefficient
is denoted η, and Cox is the gate oxide capacitance, µ0 is the zero bias mobility and m is
the subthreshold swing coefficient for the transistor. The term ∆Vth is introduced here to
account for the transistor-to-transistor leakage variations [6].

Equation (3.9) and (3.10) are the equations used in this project to model subthreshold
leakage. The same equations are used in the transistor models[13], which will be used in
the simulation work.

30 Leakage Current Simulation and Theory of Power Consumption

3.2.3 Gate leakage

To keep up the electrical field strength under the gate as voltages are being scaled down,
gate oxide thickness has continuously been reduced. This causes the gate to become leaky,
leaking current into drain, source and bulk dependant on the voltages in these nodes. Gate-
oxide leakage, or simply gate leakage, totals all the direct tunnelling currents from gate to
source, drain and bulk (Figure 3.4 and 3.3). The thin oxide further introduces leakages such
as gate-induced drain leakage (GIDL), which increases the leakage from drain to gate as
gate voltage reaches 0V, and further increases the leakage exponentially if gate voltage
should drop below 0V [14]. GIDL is incorporated in Figure 3.7

Gate leakage will be dominant as device sizes hit 65nm [15] around the year 2007 [7]. Yet,
this form of leakage is projected to get under control by using high-k dielectric materials
under the gate (Figure 3.2).

Different materials such as ZrO2 and Ta2O5 have been investigated for this purpose,
but unfortunately the bandgap reduces with increasing permittivitty, which is why mate-
rials with very high-k values tend to cause leakage due to thermal emissions [9]. Until new
materials have been investigated, gate leakage will be a major contributor to the leakage
problem.

Modelling gate leakage is very difficult, and the main work done in this field is based
on statistical models based on measurements from real processes [16]. Various models
are presented in many papers, and no uniform model can be derived from these. This is
partly because gate-oxide tunnelling is a quantum-mechanical process impossible in clas-
sical physics and not entirely understood yet[14].

A good estimation of gate leakage can be obtained by multiplying a statistical gate leak-
age per transistor width of the process by the total width of transistors in the design. This
method is suggested in [7]. But one must bear in mind, that not all devices produce gate
leakage due to aspects of the transistor configuration. A transistor with the same voltage on
all terminals does not produce leakage currents. A stack of nMOS transistors for instance
with gate voltages at 0V will not all leak from drain to gate. Especially not if another stack
of nMOS transistors is pulling the output low. Hence, gate leakage is dependant upon input
combinations.

This work does not include gate leakage evaluations as the only way to reduce this
form of leakage is through changing the materials in the fabrication process. Reconfiguring
transistors and changing logic families cannot reduce gate leakage sufficiently to be worth
going for. Therefore, the SPICE models have been selected not model leakage.

In the evaluation of dynamic logic families, gate leakage plays a big role in the construc-
tion of these. Therefore a statistical model is formulated from the statistical data presented
in this chapter. The stacking effect on gate leakage described just above will be evaluated
where it might yield beneficial results in terms of numbers of leaking devices.

3.3 Leakage current modelling using HSPICE
All simulations of propagation delays and leakage currents in this work were done using
Synopsys r HSPICE. 3.2 Transistors are modelled with the Berkeley Predictive Technology
Model (BPTM[17]) model cards compliant with the Berkeley Short-channel IGFET Model
version 3 (BSIM[18]) model. This section gives brief information about the simulation pro-
cess using HSPICE, BPTM and BSIM.

3.3.1 The Berkeley Predictive Technology Model

The BSIM model is on the homepage described as a physics-based, accurate, scalable, ro-
bustic and predictive MOSFET SPICE model for circuit simulation. In the literature it is

3.2Synopsys HSPICE version 2004.03 with AvanWaves 2004.03 as graphical interface

3.3. LEAKAGE CURRENT MODELLING USING HSPICE 31

Process Leff Tox Vth−n Vth−p Rdsw−n Rdsw−p VDD

70nm LL 38nm 16Å 0.30V -0.35V 150 Ω/2 280 Ω/2 1.0V
70nm HS 38nm 16Å 0.15V -0.16V 150 Ω/2 280 Ω/2 1.0V
180nm LL 100nm 40Å 0.4V -0.4V 450 Ω/2 250 Ω/2 1.2V
180nm HS 100nm 40Å 0.25V -0.25V 450 Ω/2 250 Ω/2 1.2V

Figure 3.8: Model card parameters for 70nm and 180nm LL and HS transistors

frequently used as basis for circuit simulation and is widely used by most semiconduc-
tor manufacturers world wide[18]. For the BSIM model a range of BPTM transistor model
cards is available in device sizes 180nm down to 70nm. On the BPTM site a generator for
model cards is offered, that can produce model cards with user specified parameters. The
parameters are:

• Leff , effective gate length.

• Tox, gate oxide thickness.

• Vt, threshold voltage.

• Rdsw, drain/source parasitic resistance.

Estimating these four parameters enables the generation of nMOS and pMOS model
cards for any process within some limits specified by the generator.

In this work four nMOS/pMOS-pairs of transistor model cards have been generated this
way. A high-speed (low-Vth) and a low-leakage (high-Vth) pair, both in 180nm and 70nm
versions. The value of Vth was for the 180nm high-speed process copied from the STM
DKHCMOS8 cell library and for the 70nm high-speed(HS) process taken from [19]. For the
low-leakage (LL) versions the maximum Vth allowed by the BPTM model card generator
were selected. Values recommended by BPTM for Tox and Rdsw were used. Table 3.8 shows
selected model parameters.

To enable sufficient current drive Vth is often set to be VDD/4 [19]. In the low-leak tran-
sistors in Table 3.8 this design rule-of-thumb has been altered to be VDD/3 to further en-
hance the low-leakage performance of the LL transistors. All model cards created for this
project is attached in Appendix C.

3.3.2 Predicting the future with BPTM model cards

To give an impression of the difference in leakage currents in 180nm and 70nm technolo-
gies, figure 3.9 was produced through SPICE simulation of the eight transistors. Figure

 1

 10

 100

 1000

 10000

 50 100 150 200 250 300 350 400

(a) Leakage vs. gate length of nMOS transistors

 1

 10

 100

 1000

 10000

 50 100 150 200 250 300 350 400

(b) Leakage vs. gate length of pMOS transistors

Figure 3.9: Leakage in pico-Amps (pA) of nMOS and pMOS transistors. Both 180nm and 70nm
transistors versus device length in nm. The top two lines represent HS transistors, and LL transis-
tors bellow.

32 Leakage Current Simulation and Theory of Power Consumption

3.9(a) shows the leakage of the 180nm (blue and purple) and 70nm (red and green) nMOS
transistors in HS and LL versions.

The difference in leakage is very clear. The minimum sized 70nmLL transistor leaks
13pA, and 5871pA for the 70nmHS. In the 180nm case the leakages are 2.5pA and 70pA
respectively. The pMOS 70nm transistor leaks 3956pA and 39pA in HS and LL versions
respectively. For the 180nm transistors the leakages are 145pA and 4.5pA in HS and LL
versions respectively.

The difference is very clear. The leakage of a 70nmHS transistor is a factor of 84 higher
than the 180nmHS nMOS transistor. The difference between HS and LL transistors is even
more expressed in 70nm technology than in 180nm technology.

Surprisingly, through simulation it was found that the pMOS transistor (except the
70nmHS case) leaks more than the corresponding nMOS transistor. The literature states,
that the opposite should be the case. All BPTM models seem to have this behavior.

The leakage currents do not decrease exponentially with long device sizes. After 2∗Lmin

the leakage seems to increase a bit and flatten out at a certain level. This is due to the
derivation of Vth which depends on a number of either experimentally or calculatory ap-
proximated factors[20]. The model cards therefore have maximum accuracy near minimum
device sizes.

3.3.3 Assumptions

To enable fair comparison between logic families, the surrounding circuitry behaves ac-
cording to a set of assumptions given here:

• Input values reach perfect (0V or VDD) value and are noise free.

• Voltage supply lines are perfect in voltage values and do not swing when power is
drawn from them.

• Outputs of the circuit under test drive a capacitor equal to ten times the gate capaci-
tance for the given technology.

The first two assumptions prevent logic families coping miserably with low quality in-
put values and voltage supplies to perform equally miserably. Clearly, when designing
circuitry utilizing these logic families, steps would be taken to improve input and voltage
supply voltage level stabilities. All simulations are done assuming room temperature (25
degrees Celcius).

3.3.4 Device sizes

Since no design rules for a 70nm process could be found, the minimum width of a nMOS
transistor was adopted from [21] and linearly scaled with device size. The same approxima-
tion lies behind other device sizes that could not be located in the literature. The minimum
width of a pMOS transistor is set to 1.5 ∗Wmin,n

3.3 to balance designs for maximum speed.

Whenever a width or length of a device is mentioned in this work, it refers to n times
the minimum width Wmin or minimum length Lmin, respective to whether it is a pMOS or
nMOS device. Table 3.10 shows these sizes.

3.3This figure is approximated from
√

µn
µp

, which is the typical way to balance the widths [22]. In this work

there is no clear reason to alter this relation.

3.4. THE LEAKAGE OF LOGIC GATES 33

Feature Description Calculus DS = 70nm DS = 180nm
Lmin,n Minimum gate length nMOS 1 * DS 70nm 180nm
Lmin,p Minimum gate length pMOS 1 * DS 70nm 180nm
Wmin,n Minimum gate width nMOS (280/180)* DS 108nm 280nm
Wmin,p Minimum gate width nMOS 1.5*(280/180) * DS 162nm 420nm
ASn Area of source nMOS (400/180) * DS * Wmin,n 16800nm2 120000nm2

ASp Area of source pMOS (400/180) * DS * Wmin,p 25200nm2 180000nm2

ADn Area of drain nMOS (400/180) * DS * Wmin,n 16800nm2 120000nm2

ADp Area of drain pMOS (400/180) * DS * Wmin,p 25200nm2 180000nm2

PSn Perimeter of source nMOS 2*((400/180)*DS+Wmin,n) 526.8nm 1359.2nm
PSp Perimeter of source pMOS 2*((400/180)*DS+Wmin,p) 634.8nm 1639.2nm
PDn Perimeter of drain nMOS 2*((400/180)*DS+Wmin,n) 526.8nm 1359.2nm
PDp Perimeter of drain pMOS 2*((400/180)*DS+Wmin,p) 634.8nm 1639.2nm

Figure 3.10: Feature sizes of transistors with device sizes (DS) 180nm and 70nm.

3.4 The leakage of logic gates

The entire discussion above about leakage in transistors was focused on a single non-
conducting transistor connected with maximum voltage drop across it. Due to the expo-
nential dependency of IOFF to VDS , leakage is very much changed when several non-
conducting transistors are put in series, as the VDS voltage drop is shared by the serialized
transistors.

Forming logic gates depends upon configuring transistors in parallel and in serial, and
the gate will leak depending on how these transistors are connected. Hence, designing logic
gates for low leakage must take into account the effects of staking transistors.

3.4.1 Stacking of transistors

The leakage through series-connected transistors in a stack with more than one non-conducting
device reduces the leakage by at least an order of magnitude [9]. As device sizes are dimin-
ishing, and thereby the DIBL effect increases, the stacking effect increases. Therefore, the
stacking factor, defined as the ratio between the leakage of a single versus a stack of tran-
sistors, will increase in the future. Stacking transistors is a promising way of reducing leak-
age. Firstly due to the stacking effect itself, and secondly because a stack of non-conducting
transistors will have increasing source voltages the closer they are placed to the output (at
VDD), which increases the body effect, reducing leakage further.

Estimating the leakage of a stack of transistors is rather simple if the transistors are ho-
mogenous and in one unbroken line. But when using different transistor sizes and connect-
ing other paths midways in the stack, the task becomes quite difficult. In [13] a promising
pseudo-algorithm is given for estimating leakage. Using HSPICE and the BSIM3 model,
the stacking effect is modelled by an iterative approach.

Figure 3.11 shows different transistor configurations leaking into ground. The differ-
ence between one single and two transistors in series is evident. The difference is nearly
a factor of nine. As expected the right-most configuration leaks twice the amount of the
second configuration. The two configurations with three transistors show the importance
of placing transistors correctly in a stack.

Due to body effects it is better to place the single transistor near ground (near VDD for
pMOS transistors) than near the output, which might seem counterintuitive. Voltages on
the midway of the stacks are written on the figure. These voltages show the great effect of
the body effect, since the voltages indicate much higher resistance in the upper transistors.
These low voltages cause the rightmost of the three-transistor configurations to be superior
in terms of leakage compared with the leftmost.

34 Leakage Current Simulation and Theory of Power Consumption

I Leak = I Leak = I Leak = I Leak = I Leak =
VSS

VDD VDD

VSS

VDD

VSSVSS

VDD

57mV 57mV

VSS

VDD

668pA

73mV 42mV

1185pA724pA 1337pA

(a) (b) (c) (d) (e)

5831pA

Figure 3.11: Leaking stacks of 70nm HS transistors. The voltage denotes the voltage measured in
the middle of the stack when full VDD=1V is supplied to the stack.

3.4.2 Leakage as function of input combinations

The leakage of a gate depends heavily upon input combinations[13]. The difference be-
tween the leakage in different input states can be orders of magnitude. Figure 3.11 serves
a good example here. Assigning the input values 0 and 1 on configuration b), the config-
uration leaks as configuration a). Assigning logic 1s to one of the two topmost transistors
in configuration e) makes this configuration leak twice the leak of configuration a). This
leakage is a factor of 8.7 larger than if all inputs in configuration e) were set to logic zero.

Comparing again a) and e), and assigning zero’s to the lower transistors and random
inputs to the top transistors, another leakage determining factor is evident. In 50% of the
time, configuration a) will leak through one transistor. Configuration e) will leak through
two parallel transistors in 75% of the time. This makes configuration e) much more leaky
than a). Taking the average of the leakage, configuration e) leaks more than configuration
a) by a factor of 2.79. Configuring transistors for low leakage is clearly beneficial.

3.5 Designing for low leakage
The characteristics of transistor described in this chapter can be used to design circuitry
for low leakage. The following list provides the key points of this chapter for use in low
leakage design. The list describes characteristics of nMOS transistors. pMOS transistors
have equal characteristics.

1. Transistors near the output are most affected by the DIBL effect, lowering their Vth.

2. Transistors that are not directly connected to VSS are affected by the body-effect in-
creasing their Vth.

3. The leakage of a transistor depends heavily upon the gate length and Vth.

4. Stacking of transistors reduces the leakage greatly.

5. The leakage of a gate depends on the input state

When design a region of circuitry (a logic gate for example) placing as few transistors
near the output(1) and VSS(2) as possible will reduce the leakage. This can be achieved by
reconfiguring the transistors in the stacks.

Reducing the leakage can be done by increasing the gate length(3) or Vth of the tran-
sistors. This reduces the drive strength of the transistor, so available time slack must be
available.

Leakage can also be saved by using building logic gates with an increased number of
transistors in series (in stacks) (4). A larger with high stacks of transistors will therefore
leak less than a cascade of smaller cells in many cases.

3.5. DESIGNING FOR LOW LEAKAGE 35

Since the leakage is input dependent (5), a gate can be supplied with a low leakage input
vector when it is inactive.

These considerations help selecting logic families for leakage evaluation, which is the
topic of the following chapter.

36 Leakage Current Simulation and Theory of Power Consumption

CHAPTER 4

PRESENTATION OF LOGIC FAMILIES

Contents
4.1 Logic selection criteria . 37
4.2 Survey of logic families . 38

4.2.1 Static logic styles . 38
4.2.2 Differential logic styles . 39
4.2.3 Clocked and dynamic logic styles 40

4.3 Static CMOS logic . 40
4.4 MTCMOS . 41
4.5 CMOS Domino logic . 41

4.5.1 Trading speed for low leakage . 42
4.6 Complementary Pass-Transistor logic 43

4.6.1 Possible problems with CPL . 44
4.7 MacroCMOS . 45

4.7.1 Larger cells for transistor stacking 45
4.7.2 Logic optimizations for low leakage 45
4.7.3 Utilizing speed for leakage reduction 46

The aim of this chapter is to give a short survey of logic families. Based on
this survey the logic families for further evaluation are selected. These fami-
lies are CPL and Domino logic. These logic families together with MTCMOS
and static CMOS are further introduced and their benefits and drawbacks in
terms of power consumption, ease of design, and characteristic features such as
robustness to voltage swings and process variations are discussed.

4.1 Logic selection criteria
Logic families have been developed for a number of purposes. Some have been developed
with focus on increased speed, reduced power or reduced area. Furthermore, logic families
aimed at avoiding heavy peak current loads on the voltage supplies or aimed at reducing
the noise emissions from the circuitry etc. have been developed to solve or reduce problems
encountered in the IC design world.

Many of them have had their era, which ended when new problems were encountered
that other logic families were better to cope with, making them better overall. Improve-
ments in the IC fabrication process have solved or introduced problems, changing the cir-
cumstances for the choice of logic family.

37

38 Presentation of Logic Families

For a long time static CMOS was the logic family of choice in overall terms of power,
area and speed. But, since the leakage problem will only grow in the future, this choice may
have to be reconsidered. One topic of this work is selecting and evaluating alternative logic
families that may experience a come-back in the main industry due to the rising leakage
problem.

As described in the introduction and explained more closely in Chapter 3 the leakage
problem can be narrowed down to a coarse relation:

Pleak = VDD

∑
n

Ipath(n) = V 2
DD

∑
n

1
Rpath(n)

(4.1)

In this equation n is the total number of paths from VDD to VSS , and Rleak is the steady
state equivalent average resistance of the leaking paths considering all possible input com-
binations.

Since VDD is predefined when designing cell libraries, only two factors remain to adjust.
These factors are n and Rleak, the number of paths between the voltage sources and the
resistance on these paths. Therefore, the logic families in question in this work either:

• Reduce the number of leaking paths
- This can be achieved for example by reordering logic to serialize transistors and
reduce parallel transistors constructs.

• Increase the equivalent resistance of the paths
- Stacking transistors, adding high-Vth in series etc. are ways of doing this.

• Derive low-leakage input vectors
- Since the leakage depends on input values, the input vectors causing the least leak-
age can be applied in inactive periods.

In this chapter a short survey of logic families will be given, discussing which of them
are interesting in respect to the three topics above. Thereafter a presentation of static CMOS
logic and the selected three design styles; Complementary Pass-Transistor Logic, Domino
and MacroCMOS, are presented and evaluated for leakage current characteristics.

4.2 Survey of logic families
Before selecting the logic families for evaluation, a survey was conducted. The logic fam-
ilies in this survey are here presented in three categories: Static, differential and dynamic
logic families. Representative logic families are here described by category.

4.2.1 Static logic styles

Static CMOS is evaluated in this work to form basis for comparison with other logic fam-
ilies. By building small static CMOS cells of logic with simple logic functions, not much
more than changing the Vth of the transistors can be done. Voltage sources can be discon-
nected from the logic to reduce leakage in periods of no activity. MTCMOS[23] (Multiple
Threshold CMOS) is a way of doing this, adding power routing transistors in series with
regular static CMOS logic4.1. This is quite interesting since battery powered equipment is
typically inactive for most of the time. Therefore MTCMOS is investigated in this work.

Replacing the pull-up or pull-down network with a weak pMOS or nMOS transistor is
the design style of Pseudo-n(p)MOS (Figure 4.1). The weak transistor will cause the block
to leak less with high output for a pMOS transistor, since the output voltage can drop

4.1There seems to be quite some alternating interpretations of this abbreviation. Multiple-Threshold CMOS,
MTCMOS, is interpreted both as the power routing scheme as used here in this work, and the idea of altering the
threshold voltage by changing the bulk potential.

4.2. SURVEY OF LOGIC FAMILIES 39

B

A

A

A

B

B Z

CPL

VDD

B

A

GND

Weak

Z

Pseudo−nMOS

VSS

Z

n−logic
block

block

p−logic

VDD

VSS

Lector logic CVSL CCMOS

VDD

A

B

A B

ZZ

Z

Clk

n−logic
block

block

p−logic

VDD

VSS

VSS

VSS

Figure 4.1: Logic AND-gates designed with: Pseudo-nMOS, Lector logic, CVSL and CCMOS
logic.

without changing the logic function of the block. But, as the leakage of the following block
is dependant of the quality of the input value, this will cause the following logic block to
leak severely.

Complementary Pass-Transistor Logic (CPL) is very interesting since it reduces the need
for connections to the voltage sources and maximized the number of transistor in series.
CPL is selected for evaluation.

Lector logic[24] is an enhancement to static CMOS where a cross coupled pair of pMOS
and nMOS transistors is put between the pull-up and pull-down networks(Figure 4.1). This
puts an extra non-conducting transistor in series with all paths when signals are at a steady
value. Yet, this method increases the propagation delay. Scaling up transistors to overcome
this overhead will increase the leakage, and it is doubtful how big the benefit of adding a
single transistor in series could be.

As described, low leakage design is obtained by increasing the resistance of the paths in
the design and generally reducing the number of them. This can be achieved by replacing
small logic blocks by larger more complex blocks. Chapter 2 describes the limitation of cell
libraries of blocks consisting of a limited number of logic gates. Breaking this boundary
by designing cells on the fly can reduce leakage by enabling the design of logic cells fully
customized taking leakage current considerations into account. This is investigated. The
improved static CMOS ’logic family’ is here called MacroCMOS.

4.2.2 Differential logic styles

Cascade Voltage Switch Logic (CVSL) [1] is a logic style where two complementary nMOS
switch structures are constructed and then connected in a pair of cross-coupled pMOS pull-
up transistors(Figure 4.1). All inputs are needed in both inverted and non-inverted form
and the pair of pull-down networks doubles the hardware needed. Yet, CVSL gates can
be built to be very fast as the pull-down load on the nMOS network is minimized when
leaving out the complementary pull-up network. The pull-up network can also be clocked
to reduce power consumption, making this gate a dynamic gate. In this way the CVSL gate
practically becomes two complementary Domino gates with double hardware and double
power consumption, which is why Domino must be more efficient than CVSL.

MOS Current Mode Logic (MCML)[25] is like CVSL built from a pair of pull-down net-
works and a resistor replacing the pMOS pull-up transistors. A constant current is drawn
through the pair of nMOS networks [26], which flows through one of the networks condi-
tionally to the inputs forming a very fast gate.

In general differential logic is not interesting in this work. It requires doubling of out-
puts for inverted and non-inverted inputs/outputs which will double the number of leak-
ing paths. One could argue, that the currents flowing are not leakage, but dynamic current
since the current is used for the fast changing of output values. Yet, reducing the total

40 Presentation of Logic Families

A

B Z

(A , B) = (0 , 1)

VDD

Z

A

VDD

Z

VSS

VSS

B

A

B

A B

VSS VSS

I

I

leak

leak

Figure 4.2: A static CMOS AND-gate. Logic symbol, transistor netlist and leakage.

power consumption is goal here, so reducing the leakage causing an increased dynamic
power consumption beyond the reduction in leakage power consumption is not useful.

4.2.3 Clocked and dynamic logic styles

In the dynamic logic domain there are three very interesting logic families. These are Clocked
CMOS (CCMOS), Domino Logic and NP Domino Logic (Zipper CMOS).

CCMOS is built from regular static CMOS with added serial clocking transistors near
the output to disconnect the output from the pull-up and pull-down logic networks. The
clocking transistors will not introduce much overhead in dynamic power consumption, es-
pecially if the clock signal is only turned off in inactive periods. Leakage current is reduced
by the stacking effect of inserting the clocking transistors in series. Yet, the speed of the
circuit is affected by these transistors.

Domino Logic on the other hand is not affected negatively by the clocking transistors,
but these transistors are the key to the very fast operation of the Domino gates. The leakage
of the gates can be reduced by these transistors and the speed be utilized for further leak-
age current reductions. Further, cascading Domino logic blocks alternating between nMOS-
and pMOS-implementations reduce the need for inverters. This is called NP Domino Zip-
per Logic. Domino Logic is therefore selected as a target logic family for evaluation.

The selected logic families for evaluation are then: static CMOS, MTCMOS, CPL, Domino
and MacroCMOS which will be discussed further in the following sections.

4.3 Static CMOS logic

Circuitry in static CMOS logic is built using a p-MOS pull-up network driving the output
high when the inputs are at certain values and a n-MOS pull-down network driving the
output low at all other input combinations. A boolean function is implemented by config-
uring the p-MOS and n-MOS logic networks in a way that there exists one or more paths
from either VDD or VSS to the output through conducting transistors. The computation of
the output value and the driving of this output is thereby done by the same transistors. This
is illustrated in Figure 4.2 where the green parts illustrate conducting paths in the network.

Having transistors both doing the computation of the output value and the driving of
the output (hence the name ’static’) is a great advantage of static CMOS since it greatly
improves the circuits robustness to noise and irregularities in supply voltages. Internal
nodes and outputs are strongly driven by short paths to the voltage sources enabling fast
circuitry that is rather insensitive to input and voltage source noise. This eases the design
of cell libraries and coding of synthesis tools and leaves the chip designer with a minimum
of technology considerations in the design phase.

This great advantage though is growing to be the greatest disadvantage of the static
CMOS family in terms of leakage power dissipation as dimensions grow smaller. At all

4.4. MTCMOS 41

times either the p− or n−MOS network is conducting leaving only a semi-nonconducting
n− or p−MOS network blocking the path between the voltage rails for every path.

This is illustrated in the right hand side of Figure 4.2 where the conducting transistors
have been removed and the non-leaking transistor grayed out. The leakage currents of
this AND-gate flows through two single transistors forming high leakage in comparison
with the logical effort of the gate. To keep up computational speed, more complex logical
functions are built from connecting a number of small gates. This causes the number of
paths needed from VDD to VSS to rise introducing further leakage.

Trying to avoid leakage currents, one could design the circuitry of a static CMOS cell
using high-Vth transistors, which inherently reduces the computational speed of the cell.
Another way is to size up transistors responsible for most of the leakage. Both solutions
lead to slower circuits, and an improvement to the leakage current problem that is depen-
dant on how much speed one would be willing to sacrifice. Hence, static CMOS is not the
optimal logic family for high-speed low-leakage circuit design.

The leakage of a cell is dependent on the input values to the cell[27]. Deriving a low-
leakage input vector is possible through simulation and applied in inactive periods of time.
Special latches can be designed to produce the low leakage input vector when a ’inactive’-
signal dictates it[28]. Yet, deriving these input vectors can be highly time consuming, and
the results depend on the logic depth. As logic depth increases the likelihood decreases that
a good low-leakage input vector causing all cells to leak minimally can be found.

Summing up the key benefits and drawbacks of static CMOS:

Advantages: Fast, robust, easy to design and synthesize
Disadvantages: High leakage, low-leak input vectors difficult to derive

4.4 MTCMOS

MTCMOS, which in this work refers to the cutting off power supply concept, will be eval-
uated for possible incorporation in current cell libraries. Adding power routing transistors
inside every cell and adding a ’on’ signal to the cell will allow for design, where the syn-
thesis tool can derive a controller to turn specific cells off, and on during operation. Cells
can also be connected to the same ’on’-signal to enable for turning on/off regions of logic.

In theory, this could reduce the leakage problem in inactive periods of operation con-
siderably. The leakage power consumption savings must be so large, that a controller can
be build consuming less power than the power saved. Further, adding transistors in series
with power rails may increase the propagation delay of the cells. This delay overhead must
not exceed the delay overhead of using a low-leakage cell, or else a low-leakage cell would
be preferred due to ease of design, no controller overhead etc.

MTCMOS will be further explored in section 5.2.1.

4.5 CMOS Domino logic

Logic blocks in CMOS Domino logic are built from an nMOS pull-down network that is
precharged through a clocked pMOS transistor driving the drain region of the nMOS net-
work high in half the clock phase, denoted the precharge phase[29]. Thereafter the capacity
of the network is discharged through a series nMOS clocking transistor conditionally dis-
charging the network drain region. The output of the domino logic gate is driven by an
inverter that is dynamically fed by the drain region of the nMOS network. This makes the
domino logic a non-inverting logic with dynamically held output values driving output
inverters. Figure 4.3 (left) depicts a Domino logic AND-gate.

During the evaluation phase of the clock the nMOS network can at most make one
transition (from logic ’1’ to logic ’0’) allowing the output inverter to shift from logic 0 to

42 Presentation of Logic Families

VDD

B

A

Clk

VSS

Z

B

A

Clk

VSS

Z

VDD VDD

B

A

Clk

VSS

Ileak

(A,B,Clk) = (1,1,1)

Z

I leak

Figure 4.3: A Domino AND-gate. Basic gate, bleeder transistor added and leakage.

logic 1. Any number of domino logic gates can therefore be cascaded provided that all
gates can evaluate within the evaluate phase of the clock.

Domino logic is designed for speed. The precharging and discharging of internal nodes,
which might seem a waste of power, is the price of achieving very fast cascaded logic. After
the precharge period the pMOS precharge transistor stops conducting reducing the load on
the nMOS discharge transistor to only pulling down the capacitance of the nMOS network.

The primary stage of domino logic will draw some short circuit current as both clocked
transistors change state at the same time, but the following stages will have their precharge
transistor fully non-conducting when the (conditionally only-rising-edge) input values ar-
rive. Hereby the pull-down load on the nMOS-network and clocking transistor is mini-
mized causing input values to propagate very fast through the stages driven by fast invert-
ers4.2.

4.5.1 Trading speed for low leakage

The speed of Domino logic can be utilized to gain advantages in terms of leakage power
dissipation. Firstly, the pMOS-transistor has half the clock period to pull up the network to
VDD. This does not require a very strong transistor, and according to the length of the clock
period this transistor can be sized to be just adequate to pull up the network. This will
reduce the leakage considerably, as either a high-Vth transistor can be used, or a low-Vth

transistor, both sized to leak the least.

Secondly, reducing the drive strength of the nMOS pull-down transistor until the speed
of the gate matches the same gate in static CMOS, will reduce the leakage even further. The
resulting gate consists of a nMOS network equivalent to the nMOS network of the static
CMOS gate with added low-leakage pull-up/down transistors in series. Due to stacking
effects this cell will leak less in the precharge phase. Depending on the logic function of the
gate and the clock period, the gate will leak more or less than static CMOS in the evaluate,
due to the pMOS network replaced by the pMOS clocking transistor.

Since Domino logic is a dynamic logic depending upon a capacitive charge to hold the
state of the gate, leaking devices may cause failure in the device. Especially gate leakage
is a problem for dynamic logic blocks, as the two gate regions of the inverter in Figure 4.3
will leak and alter the dynamically held voltage node on their gates. This can be helped by
adding a state-holding transistor (a so called bleeder or keeper device[30]), which naturally
has costs both in terms of dynamic and leakage power dissipation.

4.2The analogy here is, that the capacitances in the cascaded Domino logic blocks are discharged like falling
Domino bricks, that can only fall, and only be raised (precharged) by hand.

4.6. COMPLEMENTARY PASS-TRANSISTOR LOGIC 43

Z

A

A

C

C

Z

B B

A

B

VDD

A

B

Z
Z

Figure 4.4: CPL XOR gates in three versions: Yano’s 2-input, Wang’s 2-input and a 3-input [31].

Advantages: Fast
Leakage current reductions easy to obtain

Disadvantages: Increased dynamic power consumption
Sensitive to process variations
Difficult to design due to clocking issues

4.6 Complementary Pass-Transistor logic

Static and dynamic structures have been described above. These structures are based on
the idea of either ’evaluate and drive’ or ’precharge, evaluate and drive dynamically’. Both
types of structures draw power from the voltage supply to drive outputs causing dynamic
power dissipation in every logic depth level. Static structures draw current from the voltage
supply to drive the outputs by directly connecting them the appropriate voltage supply.
Dynamic structures draw current from the supply in order to form an electric charge large
enough to drive the output dynamically for a period of time.

An alternative way is to avoid connecting outputs statically or dynamically to the volt-
age supply, but to drive the outputs by connecting them conditionally to the inputs. This
is the concept of complementary pass-transistor logic (CPL). This approach was developed
to save dynamic power, area and increase speed [31], but was later superseded by static
CMOS again [32]. This was due to the increased number of nodes and transistors required
to produce both inverted and non-inverted signals causing higher wiring overhead as well.
[32]. In this work the leakage current issues of CPL makes it an interesting contender for
low power design once more.

Opposite static CMOS where transistors gates are driven by inputs, CPL utilizes the con-
ditional conductance of a transistor to conduct logic input values. Therefore pass-transistor
gates are built of nMOS and/or pMOS transistors with sources typically connected to the
inputs and drains to outputs or internal nodes, and transistor gates are controlled by input
values or by internal nodes. Pass-gates are typically drawn horizontally to emphasize the
flow of logic values from inputs(left) to outputs(right), as can be seen from Figure 4.4.

Driving outputs by the inputs inherently limits the need for connections to either VDD

or VSS as many of the output values can be derived from conducting input values directly.
In some cases, though, connects are still needed. Regions of logic supplied by a number
of inputs can only produce output values that are present in the set of inputs. Hence, a
region supplied by logic zero’s alone will have no voltage source to produce a logic one
on the output. For an AND-gate for example this not a problem since the output value is
always represented in the input values, but a NAND-gate is not possible to design without
inverting the output.

44 Presentation of Logic Families

Furthermore, when driving logic values one must use an appropriate (nMOS or pMOS)
transistor to be able to drive the value well enough, which raises the need for inverted
input values. Hence, a choice must be made between producing the inverted input values
needed for an implementation that is not connected to the voltage supplies, or saving the
inverters by making connections to VDD and VSS to drive logic values.

4.6.1 Possible problems with CPL

The speed of the gate is naturally dependent of the drive strength of the previous gate,
the load on the output and the drive strength of the gate itself. One could speculate that
reducing the number of supply connections, the three factors mentioned before will all
worsen reducing the speed of the gates exponentially as logic depth increases. Yet, as no
power is lost by pulling the intermediate outputs high or low using voltage supplies, a high
output drive is not needed.

Considering a chain of logic blocks in static CMOS, a change in input value traverses
through the chain forming a sharp edged wave. This is due to the amplification of each
inverter step giving a strong logic ’0’ or ’1’ as function of the input voltage. Considering for
comparison a long chain of blocks in CPL with reduced number of voltage source connects,
a small change in input value will change the output, propagating right through, without
the need to wait for each step to trigger and change output value. In this way the output
changes slowly (low slope), but might reach the final value as fast as static CMOS.

This is clearly beneficial in terms of leakage due the low number of leaking paths, but
the low slope of the output causes the last stage to consume large amounts of dynamic
power due to switching currents. Furthermore, when drive buffers or inverters are left out
to save leakage, the quality of internal signals are inherently reduced and get prone to
external noise which cause gate voltages to fluctuate and cause subthreshold leakage.

This problem is increased in magnitude when cascading CPL gates. The multiple volt-
age drops over consecutive transistors add to the reduction of signal quality and might
even reduce the stability and render outputs unusable even after a number of cascaded
steps without driving buffers[31]. This fact and the fact that designing CPL gates is more
complicated task, both in terms of formulating logic expressions and in terms of power
modelling, are the two main concerns of utilizing CPL for low leakage cell design.

CPL will be evaluated in more depth in section 5.2.2.

Advantages: Reduced number of connects to voltage sources improve leakage
Dynamic power consumption can be reduced by CPL in certain cases

Disadvantages: Difficult to design
High speed requirements may prevent leakage current reductions
Low quality and unstable signals may cause leakage and even failure

VDD

VSS

VDD

VSS

VDD

VSS

VDD

VSS

VDD

VSS

t

I

In
A B C D E

t

I

In
A B C D E

VDD

VSS VSS

VDD

A B C D E A,B,C and D E

t

A B C D E

A

Out Out E

Figure 4.5: Power characteristics of a traversing input values. Static CMOS to the left with switch-
ing current peaks. To the right a CPL implementation with fewer connects to voltage sources.

4.7. MACROCMOS 45

Figure 4.6: 4-input NAND-gates in two versions: cascaded small gates and one larger gate.

4.7 MacroCMOS

MacroCMOS presented in this work is not a classic logic family itself, but rather a proposed
improvement for lower leakage in static CMOS cell based designs. As found earlier the
boundaries between logic cells in cell libraries limit the possible optimizations that can
done in terms of leakage power. Synthesizing hardware without these boundaries enables
the construction of larger customized logic blocks that will have greatly improved leakage
current characteristics.

In the beginning of this chapter it was found that leakage current reduction is achieved
by reducing the number of paths and/or increasing the resistance on these paths. Both can
be done by replacing a number of smaller gates with larger, more complex gates forming
the same logic function, which is the concept of MacroCMOS. Larger gates can be designed
much more leakage power efficient, because of the stacking effect, improved logic opti-
mization possibilities and the utilization of gained speed for low leakage.

4.7.1 Larger cells for transistor stacking

As described in Chapter 3, the stacking of transistors can be utilized to reduce leakage
by orders of magnitude. This is due to the fact that stacking non-conducting transistors
decreases the leakage exponentially because of IOFF ’s exponential dependency of VDS . By
applying random input values to the transistors the number of non-conducting transistors
will be statistically higher the more transistors that are stacked reducing leakage.

Figure 4.6 shows a small example of the concept. Here the inverted output of two 2-
input NAND-gates drive a third NAND-gate to form a larger NAND-gate. Taking a look at
the transistor configurations it is evident that a high number of short paths exist drawing
considerable amounts of leakage current. The same figure shows the larger NAND-gate as
a stand alone device, and here the number of leaking paths is greatly reduced. Further, the
path of nMOS transistors contain four nMOS devices which will reduce leakage drastically
in most of the 16 possible input states. Measuring with HSPICE with random inputs, the
large NAND-gate consumes leakage power more than a factor of ten less than the equiva-
lent small gate implementation.

4.7.2 Logic optimizations for low leakage

The second effect of using larger, fully customized cells is the possibility of further logic
optimizations. Using the same example from Figure 4.6 one will notice that the two invert-
ers have been cancelled out through logic optimization, and only four pMOS pull-up paths
are needed. This reduces leakage a large amount, since inverters and single transistors are
the most leaking devices.

Most cell libraries contain a basic four-input NAND-gate, so the example seems a bit far
fetched. But the inspection of the 0.18µm STM cell library available at IMM/DTU showed
that from the 777 cells of the library only 157 different logic blocks are available. The rest are
duplicates with altered drive strengths, drive buffers in various drive strengths etc. Most
of these cells have a maximum of five inputs and larger cells are typically special purpose
like eight-input multiplexors etc.

Larger functional blocks are built from either smaller blocks or by adding a few invert-
ers on the inputs of a larger cell, which is costly in the leakage current budget. Hence, a

46 Presentation of Logic Families

more elaborate and very real example must be devised to prove the benefits of logic opti-
mizations when ignoring cell logic boundaries.

Logic optimizations are not always possible though. During the work of this project it
became apparent, that some logic gates perform badly when built into a larger cell. Chapter
8 elaborates more on this subject.

4.7.3 Utilizing speed for leakage reduction

Once more figure 4.6 serves as an example. Building the four-input NAND-gate and com-
paring the timing of the gate to the timing of the cascaded two-input case, the larger cell
will have improved pull-up propagation delay due to the directly connected single pMOS
transistors. This can be utilized to save leakage. Sizing these transistors to be adequately
weak, leakage current is reduced in the (1,1,1,1)-input state.

In a more elaborate example paths can be found that have lower pull-up or pull-down
delay than other parallel paths. Transistors on these paths can be sized to reduce leakage,
or even replaced by low leaking high-Vth transistors.

In some cases it is not possible to utilize speed for leakage reduction since the derived
larger cell is slower than the equivalent smaller cell implementation. If no reasonable im-
provements can be done to improve speed without increasing the leakage beyond the leak-
age of the smaller cell implementation a larger cell implementation is not feasible. Chapter
8 discusses this further.

Generally, this approach seems optimal since it uses a well known static logic family
that is easy to design and test. It carries all the benefits of static CMOS and remedies to
a certain extend the leakage current problem. Further, many synthesis approaches can be
reused and design engineers do not need to change their work flow. Fully customized cells
can be built in a post synthesis process, which allows for the reuse of most synthesis tools
and design methods, including architectural considerations. This will also be discussed
further in Chapter 8.

Advantages: Numerous possible optimizations for low leakage
No loss in speed through optimizations
Low leakage input vectors easy to define due to low logic depth

Disadvantages: Cell library of predefined logic function blocks not possible

CHAPTER 5

LOGIC FAMILY EVALUATION
METHODS

Contents
5.1 Logic families comparison . 47

5.1.1 A static CMOS basis for comparison 48
5.1.2 Logic family comparison steps . 49

5.2 Logic family specific simulation approaches 50
5.2.1 Cutting off power supply . 50
5.2.2 Complementary pass-transistor logic 51
5.2.3 Domino Logic . 52
5.2.4 MacroCMOS gates . 53

Evaluation of the logic families requires great care taken when devising fair and
comparable simulation cases. The same care has to be taken when designing a
fair and average-case set of static CMOS logic gates to enable fair comparison.
Furthermore, the results from the simulation cases need further treatment in
order to give comparable values. This chapter describes the considerations done
for designing simulation cases and generating a static CMOS set of gates for
comparison. Then, the steps of building and optimizing the logic blocks built
with the selected logic families is described. After these general remarks specific
implementation remarks are given for each logic family.

5.1 Logic families comparison
Comparing logic families is a delicate task. Firstly, every logic family has its characteristic
pros and cons when utilizing the family in certain design styles or even building specific
logic blocks. Secondly, the design space of logic gates is vast. All transistors can be scaled in
gate length and width and be connected in many alternative ways forming the same logic
function. Furthermore, the building of larger logic functions from smaller logic gates can
be done in numerous ways, which adds to the size of the design space for a logic function
with speed and power (and area) as critical design parameters.

Comparing logic families by comparing specific example logic functions can evidently
only be done with success when taking great care of the selection of the logic functions
to be implemented. Logic functions for simulation must be selected not to favor certain
logic families, and timing and speed requirements must also be defined to emphasize a
fair comparison. Furthermore, comparisons with the static CMOS logic family can only be
done when the logic families are being compared to fair average-case implementations of
logic functions in static CMOS. Devising these implementations is the first task.

47

48 Logic Family Evaluation Methods

T pd

Leak

Optimum of minimum
sized transistors

Optimal solutions

Non−optimal solutions

Void design space

Figure 5.1: Speed/power design space with the optimal curve as a boundary between non-optimal
and impossible solutions.

5.1.1 A static CMOS basis for comparison

The need for a fair comparison basis is evidently shown by the following example. An
example logic gate utilizing the static CMOS logic family that is so poorly designed that
any logic family will prevail over static CMOS is easily devised. Consider a static CMOS
NOR-gate with one very wide and one very long nMOS transistor. This gate will draw large
leakage currents in its high output state and it will have a large worst case propagation
delay due to the slow long-channel nMOS transistor. This gate can be built in any logic
family with better performance in terms of leakage power and speed if, that is, the static
CMOS nor-gate is designed poorly enough. That implies that great care must be taken
when designing the basis for comparisons.

This basis itself must be an optimum solution regarding a defined cost function with
speed, power, etc. as function parameters. For comparison a set of gates must be designed
to have a fair relation between speed and leakage power, not giving great advantage to
either of the two, which may rule out specific logic families. This means that a tradeoff
between speed and power is needed, which lies on the optimal curve in the speed/power
design space.

5.1.1.1 Optimal curves

In the vast ’speed/power’-design space of implementation solutions three regions can be
defined. Figure 5.1 illustrates this. For every propagation delay (inverse speed) an opti-
mum solution can be found in terms of low leakage power, and vice versa, i.e. if a max-
imum propagation delay is defined (typically by the clock speed) there exists an optimal
low-leakage solution for this given logic family. On the other hand if a maximum leakage
current limit is defined, then a minimum propagation delay exists, defining the optimal so-
lution. Both solutions are present as a point on the optimal solution curve. The space above
the curve represents all non-optimal solutions. The space below the curve is void, and no
solution can be found here (or the curve would not be a optimal solution curve).

Defining a set of gates to represent the static CMOS logic family in comparisons is done
by first deciding the device sizings of the gates. This is found as a point on the optimum
solution curve. One optimum solution is building logic gates with all minimum sized tran-
sistors. This solution is not the best solution in terms of either leakage power or speed, but
it is represented on the optimal solution curve.

This can be argued by looking at the characteristics of MOS transistors. Starting out with
minimum sized transistors one could improve speed by increasing the width of the transis-
tors, but this will increase the leakage of the gate as well. Or one could reduce leakage by
increasing the gate lengths, but this will reduce the drive strength and thereby the speed

5.1. LOGIC FAMILIES COMPARISON 49

T pd

Leak

alternative logic family

static CMOS

sized transistors
Optimum of minimum

Figure 5.2: Finding an optimal solution in the speed/power design space for a given logic family
compared with static CMOS.

of the gate. If one would define, that the maximum propagation delay and leakage current
of the gate must be the equivalent to the minimum sized transistor gate, no improvements
can be made. Therefore this solution is on the optimal solution curve.

One could argue that both the transistor width and length could be increased to improve
the solution, but that solution would be the same as returning to an older technology with
larger device sizes. Therefore the minimum sized static CMOS gates are used as a basis of
logic family comparison.

5.1.1.2 Selecting a set of logic gates

Clearly not all possible logic gates can be simulated in reasonable time, and that would not
be necessary either. As stated in [33], 20 logic gates are necessary to form a valid comparison
set of gates. The work done in [33] is based upon minimizing a cell library by excluding the
logic gates that were used least often when synthesizing a set of simulation circuits. This
library of only 20 logic cells including flip-flops forms a complete cell library reduced to
only 20 cells with minimum delay and power dissipation overhead. The 20 cells described
in this paper is used here as comparison basis representing the static CMOS logic family.

5.1.2 Logic family comparison steps

Comparison between logic families is now possible by building the selected logic blocks
utilizing the given logic families with minimum sized transistors. For each logic family this
gives a point in the speed/power-graph. This point will be situated on the optimal solution
curve for the given logic family, due to the utilization of minimum sized transistors. If this
point lies below the curve for static CMOS, proof has been found that this logic family is
better for the implementation of the specific logic block.

Further improvements to the implementation can be done decreasing the leakage of
the gate by paying some speed. This is illustrated in Figure 5.2. Here an implementation
has been proved to be better than the equivalent implementation in minimum sized static
CMOS logic. The zigzagged curve represent iterative improvements to the implementa-
tion towards the goal of minimum leakage under the same time constraint as for the static
CMOS logic implementation. Drawing a curve through the iteratively achieved solutions
yields a piece of the optimal solution curve of this logic family for this specific logic func-
tion.

The above described procedure is the approach taken in the analysis of logic families in
this work. First a basis is built in static CMOS (minimum size) and then the equivalent is

50 Logic Family Evaluation Methods

Inactive−mode
low leakage
controller

ONOther
controller

Inputs

VDD

VSS
Virtual−VSS

Virtual−V

VSS

VDD

DD

ON

ON

A

B

C

Figure 5.3: A inactive-mode low leakage controller, controlling the power supply to virtual supply
voltage rails powering logic blocks (A, B and C).

built in the logic family under evaluation. If the achieved solution is better than the static
CMOS solution in terms of speed, an iterative approach is taken to utilize the gained time
slack slowing down the logic block and achieving less leakage power consumption.

On the other hand, if the solution should prove to be worse, steps are taken to improve
the speed taking the leakage current into consideration. Hence, the propagation delay of
the logic block is the critical parameter, and the leakage current is derived as the product of
improvements done under the strict timing limit. The final solutions can then be compared
directly in terms of leakage current.

5.2 Logic family specific simulation approaches

In this section the approaches to simulate the specific logic families together with the tech-
nique of cutting off power supply in inactive periods are described. General considerations
and remarks about the expected results are also given here.

5.2.1 Cutting off power supply

Leaking devices cause power consumption not only when the circuitry is working, but also
in inactive periods, as described in Chapter 3. The fraction of the total power consumption
that is caused by leakage current is dependent upon the utilization of the circuit, i.e. the
percentage of the time a given circuitry is working. For a system with parts with low uti-
lization, this fraction grows quite high.

An obvious method of leakage current reduction is to cut off the power to inactive re-
gions of logic by routing the voltage supplies through transistors controlled by a designated
’inactive-mode low leakage controller’. This is often called MTCMOS in the literature[23].
Using transistors to cut off power to large areas of logic causes large voltage swings and
possible failure when re-activating the circuitry. To avoid this, small regions of logic can be
cut off and reactivated independently using a more complex controller and several cut off
transistor stages.

Figure 5.3 shows the concept. The controller can listen to inputs or other controllers,
such as a controller of an input queue, to be able to decide when to put the logic blocks into
sleep mode.

5.2. LOGIC FAMILY SPECIFIC SIMULATION APPROACHES 51

5.2.1.1 Voltage supply swings

The virtual supply voltage rails, from which the logic block will be drawing power, will
naturally be affected by the voltage drop over the two transistors. This voltage drop is
dependant on the current drawn by the logic block, which leads to swings in the virtual
supply voltage when the logic block is working. These swings impact the propagation de-
lay of the logic block causing increased delay. Increasing the drive strength by sizing up
the width of the supply voltage transistors reduce the voltage swings and the voltage drop,
but inherently causes increased leakage when power is to be cut off from the logic block.

Increasing the length of the power supply transistors reduces the leakage, but reduces
the drive strength of the transistors further increasing the virtual supply voltage swings.
Using high-Vth transistors may reduce the leakage without causing a too severe increase in
propagation delays that may be remedied by sizing up the width of the transistors and still
saving leakage power overall.

It is clear that a study of the effects of adding circuitry for cutting off power supply
must be conducted. The width, length and threshold voltage of the transistors feeding the
virtual supply voltage rails are the parameters for this study. The outputs are propagation
delays and leakage current measurements for a set of logic blocks designed for simulation
purpose.

The set consists of two simulation cases, which will be shown to be sufficient for this
study. In the first case the logic block is represented by a resistor simulating a leaking cir-
cuit. This rather simple case enables comparisons of the effectiveness of adding the supply
voltage transistors in different sizings without taking the dynamic characteristics of the
logic block into consideration.

This forms the basis for the second case where a logic block consisting of a ’NAND-
NOR’ structure is simulated for propagation delay and leakage current. Comparing the
results from this case to the simplified resistor case helps locate characteristics originating
from this specific (NAND-NOR) simulation case that might invalidate the general conclu-
sion derived from this simulation.

5.2.2 Complementary pass-transistor logic

Investigations of low power logic styles reported in the literature are mainly based on full-
adder designs [32]. A full-adder consists of a 3-input XOR gate and an 6-input AND-OR
structure. This forms a good basis design for exploring logic style dependent benefits and
drawbacks.

The XOR gate is in many logic families impossible to improve on, i.e. very few opti-
mizations can be achieved by transistor reconfiguration. Due to the input passing nature of
CPL, XOR gates can be designed using very few transistors, which is one of the key benefits
of CPL. The AND-OR structure can be optimized in different ways when utilizing different
logic families, so this structure is too an interesting design for logic family evaluation. The
full-adder will be used in all logic family evaluations.

5.2.2.1 CPL design styles

In CPL quite a few ways of designing XOR gates are possible. Figure 5.4 depicts three
different implementations. The implementation to the left is a mix of static CMOS and
pass-gates. This design includes two inverters, which are expensive in terms of leakage.

Wang’s XOR gate in the middle of Figure 5.4 is a true CPL gate including only one
inverter for driving the output value. Eliminating the inverter yields a XNOR gate with
weak pull-up with inputs A=1 and B=1 [32].

The third XOR-gate is 3-input true CPL XOR-gate[31]. This gate is built of only nMOS
transistors, and as the pull-up of these transistors grows more limited as the number of

52 Logic Family Evaluation Methods

Connects to VSS: 2
Connects to VDD: 2
Total transistors: 8

Connects to VDD: 2Connects to VDD: 2
Total transistors: 6

Connects to VSS: 2

Total transistors: 12

Connects to VSS:1

Z

A

A

C

C

Z

B B

A

B

VDD

A

B

Z
Z

Figure 5.4: Three different implementations of XOR gates in complementary pass-transistor logic
with different number of connections to the power rails.

transistors in series increases, a better implementation can be built adding pMOS transis-
tors to form pass-gates instead of single nMOS pull-up/pull-down transistors.

In the evaluation of CPL all three different types of XOR implementations were sim-
ulated and both speed and leakage power characteristics were explored. The speed gain
from changing static CMOS to CPL would have been used to further decrease the leakage
of the CPL gates. Though, due to very poor results from this analysis, no further simulation
was done in CPL.

From the XOR case it was determined that the weakly driven signals cause more leakage
power consumption than what was saved due to reduced number of supply connections.
This will be described further in Section 6.3.

5.2.3 Domino Logic

The investigation of Domino logic relies on two key evaluations. First, it is determined
to which extent the clocking transistors in a Domino block can be designed to reduce the
leakage in the block in both clock phases. Secondly, gate leakage is taken into account as
measures must be taken to guarantee the functionality of Domino blocks under the pres-
ence of leaking gates.

5.2.3.1 Transistor scaling for low leakage

Scaling a Domino block down in speed to match static CMOS by scaling the clocking tran-
sistors to save leakage is done in a series iterative steps. First the pMOS transistor is scaled
to be exactly strong enough to pull up the stage. This is shown in Figure 5.5 in the Precharge
phase of the clock. The arches a, b and c represent a too strong, an appropriate and a too
weak pull up respectively. It is, off course, not possible to pull up entirely to VDD within
a given clock phase, so another required minimum value must be set. Here, the pull-up is
required to pull-up to Vth/8, which was found to be achievable without too severe impact
on leakage through the pMOS device. The clock frequency is set to 1GHz.

Secondly, the nMOS pull-down transistor is sized to be exactly strong enough. This is
shown in the Evaluate-phase of Figure 5.5. Here arches d, e and f represent a too weak,
an appropriate and a too strong pull-down respectively. The pull-down nMOS transistors

5.2. LOGIC FAMILY SPECIFIC SIMULATION APPROACHES 53

Clk

Clk

t tba
t

b

a

c

d

e
f

VSS

VDD

EvaluatePrechargeClk :

VSS

VDD

In network
nMOS

Out

Figure 5.5: A Domino block with clocking transistors. The pull-up and pull-down of the block.

does not have the entire Evaluate clock phase to pull down, as following Domino blocks
are waiting for the output. The maximum pull-down time including the propagation delay
of the output inverter is set to be the propagation time of the corresponding static CMOS
gate. The maximum propagation delay without the inverter delay is shown on Figure 5.5
as tb − ta.

After the nMOS transistor has been sized for minimum leakage, pull-up and pull-down
times are checked again, to verify operation again with the added capacitive load caused
by the larger nMOS device. A optimal solution is found by iteratively sizing the two tran-
sistors. The design chosen for simulation is again the full-adder, which will enable easy
comparison with CPL and static CMOS implementations.

5.2.3.2 Simulating gate leakage

Gate leakage, although generally not included in this work, will have a very bad influence
on the performance of dynamic logic. When gates in the output inverter start leaking, the
dynamically held input to the inverter must be helped by a bleeder transistor to keep the
high signal value. Designing a MOS device to keep an internal nodes voltage value very
near VDD is a tradeoff between keeping a high quality signal value using a large pMOS
device causing little subthreshold leakage in the inverter, but large amounts of leakage
through the rest of the Domino block, or using a smaller device causing the opposite effects.

Clearly, gate leakage causes further leakage when trying to remedy the effects of gate
leakage. In this study the gate leakage will be approximated by an resistor connected from
ground to the dynamically held nodes. The analysis described above in the previous section
then repeated with the added current source.

5.2.4 MacroCMOS gates

The evaluation of MacroCMOS gates is done in three steps. First, the full-adder is again
used for comparison reasons. Then a block is built to show that the benefits of logic opti-
mization without cell boundaries is a powerful way of reducing leakage. Further, the third
simulation case explores the decreases in leakage that building larger cells for transistor
stacking may bring.

5.2.4.1 The full-adder

The concept of MacroCMOS is to form larger gates from either smaller gates or direct
boolean expression synthesis to reduce leakage through logic optimizations and stacking of
transistors. The full-adder design is not optimal to show the benefits from using MacroC-
MOS due to the parallelism of the full-adder design, that includes two entirely disjoint
components. It will still be designed for comparison purposes.

54 Logic Family Evaluation Methods

A C

A B C

A B C

A B C

C0

Sum0A0,B0

AB+AC+BC Sum1

A1,B1

(A0B0+A0C0+B0C0)
A1B1+(A1+B1)*

C2

AB+AC+BC

C0

A0,B0

Sum0

AB+AC+BC

A1,B1

Sum1

C2

C1

B

Figure 5.6: A 2-bit standard full-adder and a leakage improved MacroCMOS 2-bit full-adder.

Figure 5.6 shows a possible way to construct a larger block from the smaller ones. Two
full-adders have been joined into one block by including the carry-computation in the sum-
computation in the next stage. The carry C1 does not exist anymore, but the corresponding
evaluating networks have been incorporated in the 3-input XOR gate in the next stage.

The component calculating C2 becomes somewhat larger since C1 does not exist, so the
carry C2 must be determined from the four input values and C0. Comparing the C2 carry
generator to the original one, it is evident that a AND function (*) is introduced which is
good in terms of leakage because this implies chaining transistors in series. The full-adder
is selected to be used in the evaluation of MacroCMOS for comparison.

5.2.4.2 Logic optimization

To investigate what logic optimizations can be done to a circuit when the limitations of cell
libraries are ignored, a logic block is devised for simulation. The STM cell library available
at IMM/DTU offer a modest number of larger cells with a maximum of five or six inputs.
These cells are inherently not optimal in terms of leakage due to the fact that they have been
designed for common purpose usage. Therefore a logic block matching a cell in a common
cell library is applied with inputs that enable logic optimization in MacroCMOS, but not
possible with current cell libraries. This optimization is not possible with the current cell
libraries, but only when manufacturing cells on-the-fly.

A larger logic block, for example, connected with the same input connected to more
than one input terminal could be rebuild to reduce leakage. This is done by reconfiguring
the transistors, removing superfluous transistors and resizing other transistors to reduce
leakage while still keeping the original timing of the gate.

5.2.4.3 Larger cells for transistor stacking

Evaluating the benefits from building larger cells for stacking is a delicate matter since the
results will depend heavily of the particular simulation case. As will be shown in section
6.5 the leakage per input of a XOR-gate increases when replacing a larger XOR-gate with
smaller ones in cascade, while the opposite is true for a NAND-gate.

5.2. LOGIC FAMILY SPECIFIC SIMULATION APPROACHES 55

This implies that a randomized case consisting of a variety of different gates in cascade
is needed where optimization can be done, and from which general optimization methods
can be derived. Here, an 11-input gate with total of 9 distinct inputs will be examined for
this purpose.

56 Logic Family Evaluation Methods

CHAPTER 6

EVALUATION OF LOGIC FAMILIES

Contents
6.1 Static CMOS . 57
6.2 Cutting off power supply . 58

6.2.1 The resistor case . 58
6.2.2 The Nand-Nor case . 59
6.2.3 Discussion of results . 60

6.3 Complementary pass-transistor logic 61
6.3.1 Wang’s XOR gate . 62
6.3.2 Yano’s XOR Gate . 63
6.3.3 Discussion of results . 64

6.4 Domino logic . 64
6.4.1 The Domino XOR block . 65
6.4.2 The Domino And-Or block . 65
6.4.3 Gate leakage . 66
6.4.4 Discussion of results . 68

6.5 MacroCMOS . 68
6.5.1 The full-adder . 69
6.5.2 Logic optimizations . 69
6.5.3 Larger cells for MacroCMOS . 70
6.5.4 Limitations of MacroCMOS . 71
6.5.5 Discussion of results . 71

This chapter describes the evaluation of target logic families through the sim-
ulation cases presented in Chapter 5. The results from each evaluation will be
discussed. The following chapter contains a comparative discussion of all the
simulation results. The files used for simulation are included in the attached
disk. Appendix F gives a short outline of the contents of the disk.

6.1 Static CMOS

For the purpose of comparison between the selected logic families, the minimized set of 20
logic cells described in [33] was implemented and simulated with HSPICE.

57

58 Evaluation of Logic Families

On

VDD

VSS

On

 0
 2

 4
 6

 8
 10

 12
 14

 16
Gate length 0

 2
 4

 6
 8

 10
 12

 14
 16

Gate width

 0

 5

 10

 15

 20

Leakage

Figure 6.1: Leakage current of a 36.5 Ohm resistor driven by virtual voltage supply transistors.

Leakage currents were measured as steady state leakage current drawn from the voltage
supply through the circuit for every possible input. The average leakage current was then
calculated under the assumption that every input value combination is equally frequent.

The input vectors causing minimum and maximum leakage current were recorded to-
gether with the corresponding leakage current to enable derivation of low leakage input
vectors at a later stage. To measure propagation delays of the circuits the worst case shift
from one to another input vector causing maximum output delay was predicted by hand
and investigated by simulation.

Further descriptions of the 20 cells, including logic functionality, transistor netlists and
simulation results, is printed in Appendix D.

6.2 Cutting off power supply

As described in section 5.2.1 cutting off power supply to inactive regions of logic MTCMOS
style will reduce the effect of leaking devices in the total power budget. The investigation
of the effects of doing so is explored in this section. The technique is explored through two
cases, a resistor case and a NAND-NOR case, which is described in the following sections.

6.2.1 The resistor case

The investigation of the possibility of cutting off power supply to inactive regions of logic
begins with routing power to a linear resistor through virtual voltage supply transistors
and simulating for a range of transistor widths and lengths. Figure 6.1 shows the leakage
current (in nano-Amps) of a 36.5 MΩ resistor driven by 70nm HS supply transistors sized in
the range 1 to 16 times Wmin and Lmin. The resistor value of was selected by approximating
the resistance of the NAND-NOR-structure as:

R(V) =
U

ILeak
=

1V

2ILeak−nand + ILeak−nor
=

1V

2 ∗ 7.9nA + 11.65nA
= 36.5MΩ, V = VDD

(6.1)

Figure 6.1 depicts the leakage current as function of length and width of the voltage
supply transistors. The width is set to in the range 1 to 16 times Wmin and length steps
through 1, 2, 4, 8, and 16 times Lmin. The leakage current grows approximately linearly
with transistor width as expected and is reduced non-linearly with increasing gate length.

For a given gate width and increasing gate length it is easily seen that the leakage drops
off sharply when increasing the gate length to 2 times Lmin and it is expected that the
leakage drops further with increased gate length. This change is not visible from figure
6.1 though due to the characteristics of the transistor model cards as described in section

6.2. CUTTING OFF POWER SUPPLY 59

 0
 2

 4
 6

 8
 10

 12
 14

 16 0
 2

 4
 6

 8
 10

 12
 14

 16

 0
 0.5

Leak(nA)

WidthLength

 1
 1.5
 2

 2.5
 3

 3.5
 4

(a) Leakage

 2
 4

 6
 8

 10
 12

 14
 16 0

 2
 4

 6
 8

 10
 12

 14

 10

 20

 30

 40

 50

 60

 70

LengthWidth

T rise

(b) Propagation delay

Figure 6.2: Leakage current and rising edge propagation delay of a nand-nor structure
driven by virtual voltage supply transistors.

3.3.2. Instead the curve becomes slightly bend upwards with medium long gate lengths, as
shown in figure 3.9 on page 31.

6.2.2 The Nand-Nor case

The resistor is now substituted by a 2-input NOR gate driven by two 2-input NAND gates.
This NAND-NOR structure can be cascaded to explore deeper logic depths, but it was
found that a no further conclusions could be drawn that way other than that the propaga-
tion delay problem increased in magnitude.

First the leakage current through the circuit was measured for the same range of gate
lengths and widths as in the resistor case. Figure 6.2(a) depicts this. The same relation be-
tween gate length, width and leakage current can be observed. The bending of the curve
here seems much more pronounced than in the resistor case. This is due to the decreased
leakage current in general. The decrease of leakage current comes from the chaining of the
non-linear transistors, where the current drawn is exponentially falling with decreasing
VDS , see equation (3.9). Figure 6.2(a) in comparison with figure 6.1 shows that the NAND-
NOR example does not show characteristics that could invalidate further exploration of
this technique.

Adding transistors in series alters the timing of the circuit. Even though the power rout-
ing transistors are set in conducting mode for a large period of time, and thereby the volt-
ages on the drain regions of these transistors are pulled to VSS and VDD respectively, the
timing of the circuit is changed. This is due to the current drawn by the logic blocks mak-
ing the virtual voltage supplies swing in voltage. This behavior is examined by measuring
propagation delay of the NAND-NOR stage fed by power routing transistors in the before
used sizes. Figure 6.2(b) presents this propagation delay. 6.1

6.2.2.1 Added delay

The minimum propagation delay is achieved with the maximum width of 16 times Wmin.
The propagation delay is then 102 to 108 ps for gate length varying between 1 and 16 times
Wmin. Scaling down the gate width to Wmin increases the propagation delay to the range
140 to 646 ps. The NAND-NOR stage without power routing transistors has a total delay
of 72 ps according to Table D.1 in Appendix D. 6.2

Routing power through transistors is evidently not without cost in terms of timing.
Hence, saving leakage power utilizing power routing transistors comes down to a tradeoff
between speed and power in the end.

6.1Please note that the graph is rotated in comparison with the leakage graph to show the curvature of the
graph.

6.2Falling delay of a nand2-gate, 28 ps, plus the rising delay of a nor-gate, 44 ps. This has been verified by
simulation.

60 Evaluation of Logic Families

Circuit Width Length Prop. delay Leakage
Regular voltage supply - - 72 ps 27.45 nA
Cut off voltage supply HS 6*Wmin 4*Lmin 126 ps 1.06 nA
Cut off voltage supply LL 6*Wmin 4*Lmin 135 ps 0.0147 nA
Difference HS + 75% - 96.1%
Difference LL + 87.5% - 99.95%

Figure 6.3: Propagation delay and leakage at different power routing transistor widths and
lengths.

Comparing data from figure 6.2(b) and 6.2(a) a good tradeoff is selected at the point
(W,L) = (6,4). Here the timing is in the flat area of the timing graph and the leakage current
is in the low range of the leakage graph. Table 6.3 presents this situation with propagation
delay in ’on’ mode and leakage current in ’off’ mode. The same simulation was conducted
with low-leakage (LL) power supply transistors. The general conclusions are the same, but
the specific results are inherently different.

It is clear that the great reduction in leakage current has a cost of speed of the circuit.
As described, this is due to swings in the virtual voltage sources as the logic block draws
power. Figure 6.4 shows the extent of the voltage swing for power routing transistors of
minimum dimensions. As the output is driven high, the voltage difference between the
virtual Vdd and ground gets as low as 0.67V, which is a 33% decreased supply. Sizing the
width of the supply transistor up to 4 times Wmin decreases this swing to 9%.

The regular Vdd can be raised to compensate for this voltage swing, and this was done
in the tradeoff situation mentioned in Table 6.3. The supply voltage was increased until
the timing of the circuit was back to its original level. At Vdd = 1.24V the timing was
comparable to original timing of the circuit. This increase in supply voltage leads to an
increase of the leakage of the circuit in ’on’ mode from 27.4nA to 53.4nA and to increased
dynamic power consumption, which will not be pursued here further.

Symbol Wave
D0:tr0:v(z))

D0:tr0:v(vdd2))
D0:tr0:v(gnd2))

V
o
l
t
a
g
e
s

(
l
i
n
)

-50m

0

50m

100m

150m

200m

250m

300m

350m

400m

450m

500m

550m

600m

650m

700m

750m

800m

850m

900m

950m

1

1.05

1.1

1.15

1.2

Time (lin) (TIME)
2n 2.05n 2.1n 2.15n 2.2n

VDD

GND

Z (OUTPUT)

**

Figure 6.4: Virtual ground and virtual Vdd voltage swings under rising edge shift of a nand-nor
structure.

6.2.3 Discussion of results

Clearly, cutting off power can reduce the leakage current of logic blocks, but it does come at
some expenses. The timing is unavoidably affected, demanding a tradeoff between speed
and leakage power to be made. Great improvements to the leakage problem can be made

6.3. COMPLEMENTARY PASS-TRANSISTOR LOGIC 61

B

B

AA C C

Z

Z
A

B

VDD

Z

Wang’s 3−input CPL XOR gate 3−input CPL XOR−gate

Figure 6.5: Wang’s 2-input and a 3-input[31] CPL XOR-gate.

this way when the timing allows for it, but achieving a solution with minimum timing
overhead is difficult without scaling the power cutoff transistors into the very large.

The timing overhead can be sought to be remedied by increasing the supply voltage. Yet
it was shown that a very high increase (2̃4%) was needed to restore the circuit to full speed.
This voltage increase causes the entire circuit to leak more and consume considerably more
dynamic power. If enough time slack was available in the design, a more feasible way of
leakage current reduction would be to utilize the time slack for replacing high-speed with
low-leakage transistors. Using only one of the two power routing transistors to reduce the
effects on the propagation delay only solves the problem partially and reduces the low
leakage benefits.

The leakage power consumption savings only apply in inactive mode. This greatly lim-
its the usage of this method, but as it introduces no power overhead (other than the power
consumed by the controller) nothing can be lost (other than computational speed). Care
has to be taken when designing this way, though. Supply voltage swings may reduce the
noise margins of the gate resulting in failure in the worst case. [27, 34]

Summing up, adding power cutoff transistors reduces the leakage current in the cir-
cuitry, but has drawbacks:

• Added area is needed for transistors, controller and routing

• Added delay for all circuits with reasonably sized power supply transistors

• No power saving in ’on’ mode

• A customized controller is needed consuming hardware designers time and possibly
introducing design faults

• Unstable supply lines may introduce failure

6.3 Complementary pass-transistor logic

The investigation of CPL begins with design and simulation of the two different 3-input
XOR gates described in [32] and [31]. The layout of the two selected implementations was
earlier depicted in figure 6.5. These two designs will here be denoted as Wang’s and Yano’s
XOR gates, due to the author (Yano) of the paper where the design were adopted from [35].
A 3-input XOR gate is built from two 2-input Wang’s XOR gates in cascade. Wang’s 2-input
XOR gate will be examined here followed by an analysis of the properties of the cascaded
Wang’s XOR gate.

For comparison, a 2-input and 3-input static CMOS gates were simulated for propaga-
tion delays and leakage current. Leakage was measured both with and without the internal
inverters. Results are shown in Table 6.1.

62 Evaluation of Logic Families

Family Logic gate Tpd rise Tpd fall Leakage Leakage w/o inverters
Static CMOS 2-input XOR 58 ps 121 ps 17.7 nA 7.9 nA
Static CMOS 3-input XOR 320 ps 160 ps 25.37 nA 10.6 nA

Table 6.1: 2- and 3-input XOR gates in static CMOS cells simulated with 70 nm HS BPTM model
cards.

6.3.1 Wang’s XOR gate

Table 6.1 sets the design boundaries for the CPL designs. Regarding these boundaries
Wang’s 2-input XOR gate was implemented and simulated. The results from this analy-
sis is shown in Figure 6.2. Leakage is in this table the total leakage of the gate without the
leakage of driving inverters on inputs. The leakage of 9.9nA is quite surprising as there are
no connections to VSS . The leakage flows from VDD to ground through the inputs.

As the inputs are ideal voltage sources (as described in Section 3.3.3), HSPICE draws any
amount of current from this node to ensure perfect input voltage levels. By closer inspection
it becomes evident that with the (0,0)-input combination, two nMOS transistors in parallel
are leaking causing high leakage levels. In the (0,1)-input situation the gates of the inverter
is driven by a weak logic ’1’ which causes the inverter to leak considerably. Since the main
part of the leakage of the gate originates from leakage through the nMOS transistors, these
were sized up in length within the propagation delay limits. This design is the ’improved’
design in Figure 6.2. Leakage was reduced by almost a factor of four.

Family Logic gate Tpd rise Tpd fall Leakage w/o output inv.
CPL Wang’s 2-input XOR 52 ps 91 ps 9.9 nA
CPL Impr. Wang’s 2-input XOR 72 ps 121 ps 2.56 nA
CPL Wang’s 3-input XOR 72 ps 102 26.2 nA
CPL Impr. Wang’s 3-input XOR 108 ps 159 ps 5.05 nA

Table 6.2: 2-input and 3-input XOR gates in static CMOS cells simulated with 70 nm High Speed
BPTM model cards.

Cascading CPL XOR gates will enhance the overall speed of the circuit in comparison to
static logic families, as described in Section 4.6. Cascading two 2-input Wang’s XOR gates to
form a 3-input XOR gate needed in the full-adder investigates this theory. The gained time
slack was utilized by sizing up the inverters to reduce leakage power dissipation. Results
from these simulations are also shown in Figure 6.2.

As theorized the speed penalty of cascading XOR gates is very low and only raises the
falling-edge propagation delay by a little more than 10% in the worst case. The ’improved’
version is slowed down to reduce leakage power dissipation by a factor of more than five.

6.3.1.1 Non-ideal input voltage sources

Reduction in leakage of a factor of four to five is a considerable achievement. Yet, the leak-
age in these circuits originate from ’voltage source to input’-leakage which must be consid-
ered more thoroughly.

Since inputs are ideal voltage sources, the input values are always guaranteed to be the
specified value and stable. This assumption is not valid from a real input, since this input is
being driven by other logic circuits. The assumption is valid, though, as long as no power
is drawn from the input source. No current is drawn when:

• The circuit is in a stable state,

• Inputs are only connected to transistor gates that do not draw currents to drive signal
values and

• Transistors gates do not leak, see Section 3.2.3.

6.3. COMPLEMENTARY PASS-TRANSISTOR LOGIC 63

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 20 40 60 80 100 120 140 160 180

n
A

mV

XOR gate leakage versus input voltage

Figure 6.6: Leakage current of a 2-input Wang’s XOR gate with self-induced, alternated input
value on one input.

Since Wang’s XOR gate uses the inputs to drive the input to the inverter high, leakage
current can flow out through the inputs when they are at their low value. Therefore a ideal
input voltage source is not a realistic assumption in this case. Input values will be driven
by logic on the input, which has a certain IDS/Vout-characteristic, i.e. depending on the
current the logic has to conduct the input value changes in voltage.

Substituting the ideal input voltage source by a voltage source with a resistor in series
simulates a more real input source in the steady state. By altering the resistance value the
input values alternates. Figure 6.6 depicts the leakage current of a 2-input Wang’s XOR gate
as function of input value. The main reason for this increase is, that the input both drives
the nMOS transistor disconnecting it from the pMOS pull-up network and as pull-down
voltage source. Adding some resistance to the input increases the input value above VSS

(due to the leakage current through the resistor) which increases the conductance of the
nMOS transistor leading again to increased leakage and so forth. This happens for both
inputs.

6.3.2 Yano’s XOR Gate

The Yano 3-input XOR gate is a gate driven only by input values and has no connec-
tions to either VDD or VSS . Output values are inverted to form the correct values and to
drive following logic circuits. This gate was implemented and simulated, and leakage cur-
rent values are depicted in Table 6.3. The three columns contain leakage current measure-
ments from input inverters (II), output inverters (OI) and current drawn from inputs (In)
in the steady state. The high leakage current originates from the weak pull-up of nMOS-
transistors causing the output inverters to operate close to the boundary to the cutoff re-
gion. At around 800mV on the gates of the output inverters, these inverters leak consider-
ably.

Introducing pass-gates instead by adding pMOS transistors remedies this situation. The
main problem is then the current drawn from the inputs. This might have been reduced by
sizing up transistor length, but as it was found, that the gate was slower than the static
CMOS implementation, nothing can be done about the leakage problem.

64 Evaluation of Logic Families

Family Logic gate II Leak OI Leak In Leak
CPL Basic 3-input XOR 6.6 nA 110.2 nA 9.1 nA
CPL 3-input XOR with pass-gates 6.4 nA 2.3 nA 9 nA
CPL Impr. 3-input XOR - - -

Table 6.3: Propagation delay and leakage of a 3-input Yano’s XOR gate in three implementations:
Basic nMOS gate, pass-gate implementation and leakage reduced implementation using pass-gates.
70 nm High Speed.

6.3.3 Discussion of results

In the Yano XOR gate there are no connections to voltage sources and the output is con-
nected to the gates of inverters, so no leakage current should be possible internally in the
gate. Yet by closer inspection of the circuitry it becomes apparent that there are paths from
the node B to node B containing only one nMOS transistor. No matter what value A might
assume, one nMOS transistor will be conducting and one not. The same applies to the value
C. Picking two random discreet values for the inputs A and C and disregarding the con-
ducting transistors, the Yano’s XOR gate becomes 4 nMOS-transistors in parallel driven by
inverters of opposite output values. This is the explanation of why the CPL gate leaks more
than the equivalent static CMOS implementation. Adding pMOS-transistors to form pass-
gates just increases the problem as the leakage through these transistors adds to the sum of
leakage.

Wang’s XOR gate suffers from somewhat the same problem. Using input values to drive
outputs directly causes the leakage from the few, but present, voltage sources to affect input
values causing further leakage. So in general it can be concluded that removing voltage
sources and using input values to drive internal nodes affects the internal signal value
stability and causes inverters and drive buffers to leak considerably. CPL reduces the need
for transistors due passing of input values, but this in terms increases the leakage through
paths that are maybe not so easily identified. Leaking paths are even harder to predict if
CPL were to be used for cell based design, as the leakage source and drain in many cases
will placed in two different cells.

In general it must be concluded that:

• Signal value variations due to passing of input values are hard to control causing
considerable leakage

• Increasing the number of transistors in series further alters signal values causing in-
creased leakage

• The speed gained by CPL does not give enough time slack to improve the logic gates
sensitivity to signal variations

Due to these conclusions no further work on complementary pass-transistor logic was
done. The other half of the full-adder, the AND-OR circuitry, is by inspection predicted to
perform equally bad in terms of leakage power dissipation.

6.4 Domino logic

The investigation of Domino logic begins with the full-adder design. The XOR and AND-
OR structures were designed in static CMOS for comparison. Two versions has been made
available. First the CyHP based version built from the 20 smaller gates. Secondly, as the
full-adder components are typically available in any cell library, the components were also
designed as compound gates an simulated for leakage and propagation times. The results
are shown in Table 6.4.

6.4. DOMINO LOGIC 65

Family Logic gate Tpd rise Tpd fall Leakage
CyHP CMOS 3-input XOR 242 ps 179 ps 35.4 nA
Static CMOS 3-input XOR 320 ps 160 ps 25.37 nA
CyHP CMOS 6-input AND-OR - 95 ps 16.95 nA
Static CMOS 6-input AND-OR - 99 ps 25.37 nA

Table 6.4: Static CMOS and CyHP based compound gates for full-adder design.

B

ABA

C

Clk

VSS

VDD

Z
Clk

A

VDD

Clk

B

A A

Z

A

BB

CC

VSS

Clk

B

Figure 6.7: Transistor netlists of the AND-OR (left) and 3-input XOR Domino logic gates.

6.4.1 The Domino XOR block

The XOR gate was implemented in a nMOS pull-down Domino block and simulated. Fig-
ure 6.7 depicts this block. First the basic gate was investigated. The leakage of the block
was clearly much reduced and the pull-down propagation time was less than the equiva-
lent time of the static CMOS gate. Table 6.5 shows results from this simulation.

The time slack was utilized to size up the length of the pMOS device to 4.5 ∗ Lmin. The
nMOS device could, within time bounds, be scaled to 1.4 ∗ Lmin. This design is called the
improved design. The leakage hereby was reduced by up to a factor of 16.

Further, by instead using low-leakage clocking transistors the leakage could further be
reduced. The leakage of this optimized gate is around 4.9pA which is a factor of 3,000 less
than the static CMOS implementation.

Family Logic gate Tpd-fall Leak, Clk=0 Leak, Clk=1
Domino 3-input XOR - 2.23 nA 3.31 nA
Domino impr. 3-input XOR 159 ps 0.715 nA 0.198 nA
Domino LL 3-input XOR 158 ps 0.0049 nA 0.0048 nA

Table 6.5: Propagation delay and leakage of a 3-input Domino XOR gate in three implementations:
Basic nMOS gate, improved gate sized to match the timing of static CMOS, and the same approach
with low-leak transistors instead.

6.4.2 The Domino And-Or block

Using a nMOS Domino logic block for the AND-OR case (Figure 6.7) yields equally good
results. The simulation run is essentially the same as for the XOR logic block. First a basic
implementation proved to be superior in time, so the time slack was used to built the im-
proved lower leakage design by transistor sizing. Thereafter low-leakage transistor replaced
the high-speed clocking transistor, and even better results were achieved. The results are
shown in Table 6.6

66 Evaluation of Logic Families

Family Logic gate Tpd-fall Leak, Clk=0 Leak, Clk=1
Domino 6-input AND-OR - 2.22 nA 2.93 nA
Domino impr. 6-input AND-OR 65 ps 0.743 nA 0.197 nA
Domino LL 6-input AND-OR 98 ps 0.0166 nA 0.0456 nA

Table 6.6: Propagation delay and leakage of a 6-input Domino AND-OR gate in three implemen-
tations: Basic nMOS gate, improved gate sized to match the timing of static CMOS, and the same
approach with low-leak transistors instead.

6.4.3 Gate leakage

Domino logic by the above simulations almost seems too good to be true. And unfortu-
nately it is. The reason is, that the simulations do not incorporate the fact, that the gates
that are driven by the dynamically held pre-output node are leaking and quickly drain the
capacitively charge held there.

Without incorporating a gate leakage model in the simulations of the two designs above
this was not a problem since the subthreshold leakage was minimal and did not affect the
dynamically held node. But considering gate leakage steps have to be taken to ensure, that
the dynamic gate can hold its state the entire evaluate clock phase with leaking gates.

6.4.3.1 Estimating Gate Leakage

As described in section 3.2.3 many different models for gate leakage can be found in the
literature. The models are typically based on a statistical study from a given process, from
which a model has been formulated by exponential regression. These models contain fac-
tors specific for the given process. Hence, since no analysis could be found with the same
model parameters and supply voltages as used here in this work, these models do not
apply in this case.

Instead, a rather crude model can be formed from the knowledge, that around the year
of introduction of 70nm processes, the total gate leakage will be equally large as the total
subthreshold leakage. A design built with the simulated CyHP library with maybe 40%
registers will have a average subthreshold leakage of around 4nA per transistor in (non-
conducting state) in the design.

One study, though, is very interesting in this respect. The paper [36] incorporates gate
leakage models for a 70nm process into BPTM transistor models and simulates for gate
leakage. The gate leakage printed in the paper is 50nA per nMOS transistor with VDD = 1V
and Tox=10Å. The gate leakage decreases with an order of magnitude for each added 2Å
gate-oxide thickness or each added 0.3V to VDD.

The transistor models in this work have 16Å gate-oxide thickness. This is oxide thick-
ness not allow for much voltage scaling. In a real process, the Tox must be assumed to
be thinner. Furthermore, process variations can easily cause several Ångström variations
in the oxide thickness causing up to several orders of magnitude [37] increase in the gate
leakage.

Using a process with 1V supply voltage and gate-oxide thickness 10 will then leak 50nA
per transistor. Process variations can increase this problem by more than an order of mag-
nitude, since only a process variation in the gate-oxide of 2Å is required to cause this.
Assuming no process variations the gate leakage still causes major problems for dynamic
logics.

6.4.3.2 The Domino XOR Gate With Leaking Gates

To evaluate the impact of leaking gates on the total leakage of Domino gates, a resistor
(Rleak) was connected with the output and ground, like in Figure 6.9. Assuming gate leak-
age of either the 4nA estimated in this work, or the 50nA from [36], the resistor value be-

6.4. DOMINO LOGIC 67

 50

 100

 150

 200

 250

 300

 350

 200 300 400 500 600 700 800 900 1000

V
o
l
t
a
g
e

d
r
o
p

Clock frequency

Figure 6.8: Voltage change(mV) of a dynamically held output as function of clock frequency(MHz).

comes 125MΩ and 10MΩ respectively, when two transistor gates are driven by the dynam-
ically held output.

Precharging the dynamically held output to VDD and applying a non-pulldown input
vector, the effect of leakage can be measured in the end of the evaluate phase. Figure 6.8
shows the voltage drop, the dynamically held node experiences, as function of clock fre-
quency. Naturally, as the clock frequency is increased, the voltage drop decreases due to
the shortened time the output has to be held high dynamically.

The leakage currents of 8nA and 100nA are simulated by the Rleak resistor, and the 3-
input XOR with the achieved leakage improvements is examined again. The dynamically
held node can be kept high by using a bleeder transistor or simply by a resistor. The resistor
will can be sized very precisely to match the leakage.

Calculating the resistance value follows these steps: The leakage is set to 100nA and the
maximum voltage drop is relaxed from VDD/8 to VDD/4 to ease the design of the bleeder
device. With these values the resistor becomes:

Rpull−up =
VDD/4
Ileak

=
0.04V

100nA
= 4 ∗ 105Ω (6.2)

In the case, where the nMOS network is supposed to pull-down, the resistor will then
leak 1V/40.000Ω = 2.5µA, which is unacceptable. An alternative way is to use a bleeder
transistor, that can be turned off, when the output is at certain levels. This is depicted on
Figure 6.9. This turns the logic family into a semi-static family, though.

The design of this transistor is rather difficult. The transistor has to be able to deliver
100nA at a drain-source voltage of 40mV . This transistor has to be quite strong to achieve
this. Though, the transistor must not be too strong to prevent the nMOS network from being
able to pull-down. Either a very wide transistor is needed or a ultra-low Vth transistor is
needed. Both will leak considerably.

Here, a simulation setup was made consisting of the 3-input XOR gate with 1GHz clock
frequency and the maximum voltage drop of 40mV . A low-Vth transistor was used as
bleeder transistor and sized to match the required drive strength at 100nA at 40mV drain-
source voltage.

First, the bleeder transistor was measured to be pulling high adequately at the device
sizes L = 9 ∗ Lmin,W = 1 ∗ Wmin. Adding this transistor causes the pull-down nMOS
transistor to be inadequate and therefore was sized up to W = 4 ∗ Wmin. The pull-up
pMOS transistor was no longer capable of pulling high, so the length of that transistor had
to be reduced to L = 3.5 ∗ Lmin.

68 Evaluation of Logic Families

Clk

Clk

down network

nMOS pull−

VSS

VDD

Z

Rleak

VSS

Bleeder

Clk

Clk

down network

nMOS pull−

VSS

VDD

Z

VSS

R leak

resistor
Pull−up

Figure 6.9: Adding a resistor to the output simulates leaking gates. Possible solutions could be to
add a pull-up transistor or resistor.

With the resistor connected the gate leaks around 100nA, naturally. This leakage is
though the worst case leakage, which all Domino gates are not experiencing. Removing
the resistor the leakage remains around 50nA. This is partly due to the altered clocking
transistors, and also due to the output inverter. As the bleeder and clocking pMOS device
leaks into the gate region of the output inverter, the voltage on the gates increases and
causes high leakage.

6.4.4 Discussion of results

Domino logic seems very promising in the first part of this analysis with no leaking gates.
The clocked operation of the dynamic logic family allows for low leakage transistors to be
put in series with all paths. Operational speed is initially faster and can be lowered with
large benefits to leakage current reductions.

Yet, when gate leakage is introduced, Domino logic is not usable. Dynamic logic families
are inherently not built for driving outputs in longer than very short periods of time and
only with very limited currents. Adding leaking gates to a dynamically held node requires
a keeper device to keep voltage values stable, which requires the clocking transistors to be
resized to perform correctly. This causes these transistors to leak considerably more than
the case with no gate leakage.

In Chapter 3 the arrival of high-k dielectrics is predicted (Figure 3.2) to reduce the gate
leakage problem to be negligible. Until new dielectrics have been introduced in the pro-
cess, dynamic logic families are not feasible for deep-submicron design. Further issues not
covered in this work affect Domino logic. If Silicon-on-Insulator is used, dynamic circuits
become very sensitive to parasitic capacitances in the circuitry, especially on the bulk-side
of the gate (the parasitic bipolar effect, PBE). To reduce this effect, keeper transistors are
needed to guarantee a full pull-down/up on all nodes in the precharge clock phase[38].
These transistor will also leak, further disproving the usage of dynamic logic style for low
leakage design.

6.5 MacroCMOS

The evaluation of MacroCMOS follows in three steps. First, the full-adder is implemented
in MacroCMOS fashion. Secondly, a circuit showing the possible logic optimization when
building cells on-the-fly. The third evaluation consists of a large block, that is optimized to
match the best case Synopsys implementation.

Before these analyses were done, a proof-of-concept simulation run was completed. The
results from this survey are described in the end of this section.

6.5. MACROCMOS 69

6.5.1 The full-adder

The full-adder as described in section 5.2.4 was implemented in transistor netlists. The
evaluation consisted of three implementations: A CyHP for comparison, a large cell imple-
mentation and the MacroCMOS implementation.

The large cell implementation was here done for comparison since a typical cell library
would contain cells for the full-adder. These consisted of the 4-input XOR and the AND-OR
structure in two big cells. The MacroCMOS cell was implemented as described in section
5.2.4.

The evaluation of the three circuits follow the same steps as for the other logic families.
The results from this analysis is presented in Table 6.10.

Design Average leakage Saved leakage
CyHP 52.7 nA -
Large cells 46 nA 12.7%
MacroCMOS 35.2 nA 33.2%

Figure 6.10: Results from the full-adder analysis of MacroCMOS

6.5.2 Logic optimizations

A rather small cell was built to demonstrate the logic optimizations that are not possible
when using a cell library. The small six-input cell has the logic function as depicted in
Figure 6.11(1). The fact that C is connected to two different inputs led to great reductions in
leakage.

If this cell did not exist in the cell library (for this simplified example), the six-input
version(1) or a NAND-equivalent(2) would have to be used. The transistor netlist of the
six-input version is presented as (3) in Figure 6.11 and the MacroCMOS implementation is
on the right hand side, (4).

The logic optimizations are clear. The pMOS transistor with C on the gate can be sized
up in length or replaced by a LL transistor since it easily matches the two chains in pull-up
delay. The nMOS device with C on the gate is in series with all pull-down paths. As shown
in Figure 3.11 on page 34 this structure leaks far less than the original pull-down structure.
The results from this analysis are presented in Table 6.12.

The inverter leakage is not included in the total leakage since it depends on the specific
example whether the inverter is needed in different implementation styles. If the equal
inverting gate was used as example, the inverter would have been needed in the CyHP
case and not the MacroCMOS case. With or without inverters, MacroCMOS leaks less than
the CyHP implementation.

It is quite evident, that larger cells save leakage. Including knowledge of the input prob-
abilities internal optimizations can be done saving leakage power.

This is quite a small example to demonstrate logic optimization with. A larger example
is given in the following section. Logic optimization is further discussed in Chapter 8.

B

A

D

E

C

B

A

D

E

CZ Z c c

c

(1) (2) (3) (4)

c

c

c

Figure 6.11: 1: The small gate. 2: CyHP implementation. 3: Transistor netlist of the 6-input cell
library cell. 4: Optimized transistor netlist.

70 Evaluation of Logic Families

Design Average leakage Minimum leakage Inverter leakage
CyHP 11.62 nA 8.6 nA -
6-input large cell 4.9 nA 0.69 nA 4.7 nA
MacroCMOS 3.8 nA 0.37 nA 4.7 nA
Saved: 58%/67% 92%/96% -

Figure 6.12: Results from logic optimization beyond cell boundaries.

 20

 30

 40

 50

 60

L
e
a
k
a
g
e

i
n

n
A

Synopsys Design Compiler

Improved MacroCMOS gate

Basic MacroCMOS gate

Inputs sorted by leakage

Leakage versus input

Figure 6.13: 1: The small gate. 2: CyHP implementation. 3: Transistor netlist of the 6-input cell
library cell. 4: Optimized transistor netlist.

6.5.3 Larger cells for MacroCMOS

A large logic block was built to show the benefits of MacroCMOS. Due to the size of this
block and the number of steps of optimizing the block, the description of the block and the
optimizations are placed in Appendix E.

The logic block was built from a cascade of randomly selected smaller, 2- and 3-input
cells, and random inputs were assigned to the primary logic level. This produced a 9-input
logic block with seven different logic gates included.

First the leakage was evaluated with the CyHP library. Then Synopsys Design Compiler
was used to do logic optimizations on the circuit. Design Compiler’s solution was then built
in transistor netlists and simulated for leakage and timing.

The equivalent MacroCMOS implementation was then built to compete with Design
Compilers best logic optimization. The MacroCMOS cell was built to match the timing of
the Design Compiler derived circuit.

The leakage current of the 9-input gate was measured with all 512 possible input value
combinations. These leakages are presented in figure 6.13 sorted by the leakage value. It is
evident, that even the basic MacroCMOS gates leaks less than the best possible implemen-
tation with the cell library.

Further results from this analysis are shown in figure 6.14. The results are normalized to
the results from the basic gate. The optimizations done the MacroCMOS are not complete
since automation would have been needed for this task. Only the obvious sources of leak-
age was removed. A better solution can be attained by automation. The complete analysis
of this circuit can be found in Appendix E.

The optimizations done in this example were only focussed on the combinational logic
without the inverters. Clearly, the inverters could be part of the optimization process where
some of the time slack can be dedicated to reducing the very leaky inverters. Comparing
the performance of MacroCMOS to Synopsys Design Compiler can be done by removing

6.5. MACROCMOS 71

Design Saved avg. leakage Saved min. leakage
Basic gate (66.53 nA) (45.73 nA)
Synopsys optimization (HS) 33.5% 38.1%
MacroCMOS basic 42.7% 38.3%
MacroCMOS opt. for low leakage 63% 74.2%

Figure 6.14: Results of the MacroCMOS and Synopsys optimization of a larger cell.

Design Average leakage Minimum leakage
Synopsys optimization (HS) 24.87 nA 13.3 nA
MacroCMOS opt. for low leakage 14.63 nA 1.4 nA
Leakage reduction 41% 89.5%

Figure 6.15: The leakage reduction of using MacroCMOS versus Synopsys Design Compiler. With-
out inverters.

the leakage from the inverters and comparing the leakages of the two implementations.
This way only the optimized bits are compared. The results from this comparison is shown
in figure 6.15.

6.5.4 Limitations of MacroCMOS

Not every logic block can be built with MacroCMOS to save leakage. To prove this, a variety
of NAND and XOR gates were build with minimum sized transistors and simulated for
leakage currents. The average leakage current of the gates are presented in table 6.16.

It is evident, that a NAND-gate reduces in leakage when the number of inputs is in-
creased. Yet, due to the complexity of the XOR gate, this gate increases in leakage per input
when larger XOR gates are build.

Gate/Inputs: 2 3 4 8
NAND 3.9 nA 4.5 nA 2.1 nA 0.68 nA
XOR 15.4 nA - 91.4 -

Figure 6.16: Average leakage of a NAND and XOR gate with minimum sized transistors.

6.5.5 Discussion of results

The evaluation of MacroCMOS was done with three example circuits. The first was the full-
adder that though not very suited for a MacroCMOS implementation proved to reduce the
leakage by around 30% in comparison with the large cell implementation.

The second example was the 6-input gate that could be optimized due to a redundancy
in the input values. Here, this simple optimization which reduced the logic depth by one
lead to 23% leakage reduction in the average case compared to a typical library cell and 47%
reduction in the minimum leakage input state. Comparing with the CyHP implementation,
the reductions were 67% and 96% respectively.

The third and final example was the large 9-input gate. Here, MacroCMOS proved to be
comparable to the Synopsys Design Compilers best implementation even before MacroC-
MOS optimizations had begun. After optimizing a few places in the gate, the leakage was
reduced to half of the Synopsys implementation. Ignoring the inverters, which were not
optimized, the MacroCMOS cell leaked nearly a factor of 10 less.

It was not possible to optimize the cell fully by hand. For this task automation is needed.
In this example just a few transistors were optimized to match the timing of the Synopsys
version of the gate. By further inspection of the transistor netlists presented in Appendix E
is becomes clear, that there still are redundant transistors, which have not been sorted out in
the manual optimization process. These would most definitely have been optimized away
in an automated process, which both saves the leakage of these transistors, and allows for

72 Evaluation of Logic Families

other transistors to be scaled for lower leakage. It is believed by the author, that an even
much better result could have been achieved given enough time to derive a automated
process.

MacroCMOS will be discussed further in the following chapters.

CHAPTER 7

DISCUSSION OF RESULTS

Contents
7.1 Results . 73

7.1.1 MTCMOS . 73
7.1.2 Complementary pass-transistor logic 73
7.1.3 Domino logic . 74
7.1.4 MacroCMOS . 74

7.2 The chosen candidate for cell library implementation 75

This chapter will present the key reasons for the selection of the logic family for
implementation of a cell library. Results from the previous simulations will be
discussed briefly to determine whether or not general conclusions can be drawn
from the example simulation cases.

7.1 Results
The results from the simulations are presented here in short and the candidate for a cell
library implementation is selected based on these considerations.

7.1.1 MTCMOS

Cutting off power to a region in periods of no activity proved a good solution to reduce
leakage. A factor of 2000 and even more can be saved depending on the amount of speed
one would be willing to sacrifice. The factor of 2000 came with a delay penalty of 87.5%.

An implementation built with low-leakage transistors can be sized to match this per-
formance. This implementation would not need a controller, that cannot be switched off,
or extra hardware. Therefore, MTCMOS did not prove to be better than an existing LL/HS
cell based implementation.

7.1.2 Complementary pass-transistor logic

From the analysis of CPL for low leakage applications a list of problems emerged. Reducing
the number of connections to the voltage rails make the signals sensitive to noise and in
general weakly driven. This causes inverters and other driving units to leak considerable.

73

74 Discussion of Results

The concept of having multiple stages after each other without voltage rail connections
reduces the leakage due to the left out connections, but causes the reduced voltage value
quality and thereby leakage.

Furthermore, as the same signal is used as input value and voltage source, the circuitry
becomes very sensitive to process variations and long wires, both causing non-ideal con-
nections between the logic blocks.

An XOR gate that matched the speed of the equivalent CMOS gate was built with a leak-
age reduction of around 50%, but this gate was proven to be very sensitive to variations in
input value levels. Introducing gate leakage would further have increased these problems.
These problems will apply to any circuit built with CPL logic.

In general, is not a possible to design for low leakage using the CPL logic family. In this
work it is not explored whether CPL can be utilized to further decrease the leakage of a
design built from low-leakage transistors. It can be speculated that LL transistors are not
so sensitive to the described effects. Yet again, one would probably choose to increase Vth

even further for this purpose instead.

7.1.3 Domino logic

Domino logic, or many dynamic logic families in general, are very interesting in low leak-
age terms. The division of the clock-phase into a precharge and a evaluate phase allows for
very low-leakage implementations. The increased speed of these logic families can be used
for further reducing the leakage.

In this work very good results were presented. That is, until gate leakage was intro-
duced. Preserving the dynamically held node disallows the clear separation between the
clock phases and thereby the pull-up and pull-down logic.

In the analysis a quite potent gate leakage of 100nA was applied. If a smaller gate leak-
age was applied, the result would have been the same though7.1. The problem was not the
magnitude of the gate leakage, but the fact, that the bleeder transistor would have to op-
erate at very low source-drain voltages, requiring a transistor with high drive. So, in the
nA-range this is not feasible.

When new high-k dielectrics have been fully developed, dynamic logics should defi-
nitely be reconsidered for low leakage design.

7.1.4 MacroCMOS

The design style proposed in this work is MacroCMOS. The analysis here totals three ex-
ample implementations. It is usually difficult to prove something in general from a few
examples. Yet, the examples show general optimizations that are not possible with current
cell libraries.

The full-adder example showed, that this design which is very parallel and not very
optimal for MacroCMOS could be built with around 33% leakage reduction. The six-input
AND-OR gate showed that logic optimization without a static cell library enables optimiza-
tions for low leakage. Further, it proved that larger cells leak less than smaller.

The nine-input MacroCMOS cell design proved, that in many cases a randomly gener-
ated logic block can be built with the same delays and with far better leakage reductions
than using current synthesis tools and cell libraries. This is not always true, it is proven
also. The XOR gate is better left out of a larger block in many cases. The synthesis tool must
explore design space in every case to search for the best solution.

7.1The case with 8nA gate leakage was simulated for verification. Equally bad results were encountered.

7.2. THE CHOSEN CANDIDATE FOR CELL LIBRARY IMPLEMENTATION 75

7.2 The chosen candidate for cell library implementation
The theory that stacking transistors by building larger blocks of logic seems to be proven
by the examples given. Large blocks can be built just to be just as fast as cascaded smaller
blocks reducing the leakage of the total circuitry.

MacroCMOS is therefore chosen to be the candidate for building a cell library. Building
cells on-the-fly requires a new synthesis process, or at least some changes in the synthesis
flow. These changes and the possible optimizations possible when using MacroCMOS will
be discussed in the next chapter.

76 Discussion of Results

CHAPTER 8

A CELL LIBRARY FOR LOW
LEAKAGE

Contents
8.1 Synthesis of MacroCMOS . 78

8.1.1 Current synthesis . 78

8.1.2 Proposed synthesis flow . 79

8.2 The MacroCMOS cell library . 79
8.2.1 Data required by the cell estimator 80

8.2.2 Data required by the cell generator 80

8.2.3 The total of new requirements to cell libraries 81

8.2.4 Modelling propagation delay in a MacroCMOS cell library 81

8.2.5 Modelling power consumption in a MacroCMOS cell library . . . 82

8.2.6 Layout of MacroCMOS cells . 82

8.3 Optimizing a design for low leakage with MacroCMOS 82
8.3.1 Input optimizations . 82

8.3.2 Internal scaling . 83

8.3.3 Structural considerations . 83

8.3.4 Trading time slack for low leakage 84

8.3.5 Gaining time slack . 84

8.4 Further issues . 85
8.4.1 Physical synthesis . 85

8.4.2 Gate leakage . 86

8.4.3 Dynamic power consumption . 86

8.4.4 MOS device degradation . 86

This chapter describes the new synthesis flow proposed in this work. This new
synthesis flow sets new requirements to the cell libraries. A cell library designed
to match the requirements set by the synthesis tool is proposed.
With the MacroCMOS cell library and synthesis tool a range of optimization
algorithms can be devised to take advantage of this new synthesis paradigm. A
number of possible optimizations enabled by using MacroCMOS style synthesis
is presented in the end of this chapter.

77

78 A Cell Library for Low Leakage

RTL level

Boolean expressions

Abstract problem

Cell library

Layout / Wireload + Check

Final check

Retiming

RTL level

Boolean expressions

Abstract problem

Retiming

Cell estimator

Cell generator

Layout / Wireload + Check

Final check

B

A

D

C

E

Figure 8.1: Current and MacroCMOS synthesis work flows.

8.1 Synthesis of MacroCMOS

Since the MacroCMOS cells are created on-the-fly, additional steps are required in the syn-
thesis process. Figure 8.1 presents a possible synthesis flow of a current synthesis tool, and
the changes required to alter this flow to a proposed MacroCMOS cell synthesis flow.

8.1.1 Current synthesis

In a current synthesis flow the abstract problem is broken down into sub-problems until
an RTL level of boolean expressions is reached. The full-adder example given in Figure 2.5
demonstrates this. The design is in the boolean expression step represented by graphs of
logic. Breaking these graphs into sub-graphs that can be mapped down into logic cells is
done iteratively using the logic functions supplied by the cell library.

Since cells cannot be scaled during synthesis, but only replaced by the limited number
of equivalent cells with other drive strength, this step can be quite time consuming. One
could speculate that a cell library with an infinite number of cells would be perfect for this
task. Yet, as the design space increases dramatically when the number of cells is increased,
this might not be beneficial in terms of synthesis time consumption.

If no solution can be found at this level, the synthesis tool must go back and reorder
the logic (Figure 8.1,A). When a solution is found, the cells are laid out by a place&route
tool and wire loads are determined. If this solution does not meet the timing requirements,
maybe a single cell could be changed (B). Else, one would have to go back to either rewrit-
ing the design code or change the design parameters given to the synthesis tool.

The main boundary here is the interface between the synthesis tool and the cell library. If
a cell can not be found, that matches the requirements, a complete reordering of the logic is
required. Further, the possibilities for logic optimizations for low leakage are, as discussed,
very much limited.

8.2. THE MACROCMOS CELL LIBRARY 79

8.1.2 Proposed synthesis flow

The task of synthesizing a cell and simulating it for electrical characteristics is a heavy task.
And, as the synthesis tool has to explore the design space for a leakage power optimal
design, this task becomes infeasible to complete in reasonable time.

Instead a cell estimator and cell generator is proposed. This estimator uses a cell library
of predefined structures to estimate a variety of different implementations of the region of
logic to find an optimum solution. The boolean expression level supplies a logic function,
output drive strength and delay limits for each output to the cell estimator. The estimator
then creates an optimum solution due to a cost function of leakage, dynamic power, area
etc., regarding the requirements.

The cell estimator does not fully simulate the cell, but predicts what the partition of the
logic, the transistor configuration and transistor sizings produce the best solution under
the requirements given. With conservative predefined structures and wire load models,
a conservative solution can be found, that is not the optimum solution, but very likely a
near-optimum solution. If no solution can be found, the synthesis has to reorder, retime or
regroup the logic (C).

A cell generator is then used to lay out the transistor netlists designed by the estimator.
Only these optimal solutions have to be fully laid out. If the finished cell does not meet
the requirements, the cell generator must be invoked to regenerate the cell with even more
conservative parameters (D).

After simulation of electrical characteristics, the entire design is laid out and wire loads
are added. A check is performed to validate the design against the design constraints.
Smaller adjustments can be performed by invoking the cell generator (E). If more severe
adjustments have to be made, earlier steps have to be invoked again.

8.1.2.1 Infinite loops

At all levels it must be ensured, that infinite loops do not occur. That is, if two conflict-
ing adjustments are done alternatingly forever, and no convergence towards a solution is
possible.

Caching is a powerful tool to fight this problem. By caching earlier solutions the tools
can be made to prevent these solutions from been retried. Another way is to limit the num-
ber of retries every level in the synthesis flow is allowed to do.

Caching the transistor lists from the cell estimator after a cell has been finished can speed
up the cell generation when the cell can be reused in a future design. The cell generator
still needs to be invoked though, to get the optimum low-leakage cell and to take new
circumstances into account.

8.1.2.2 Post-synthesis resynthesizing for low leakage

The proposed synthesis flow requires a complete restructuring of current synthesis flows.
Another alternative way is possible, though. Synthesizing a design with a current synthesis
tool produces a netlist of logic gates for the place & route tool.

This netlist could be read by a post-synthesis tool, that locates areas of logic for the de-
sign of larger low-leakage cells. This tool can read from the cell library the area, timing etc.
for the cells in question, and then generate a lower leaking cell matching these character-
istics. Clearly, this does not produce as good a solution as the proposed flow, but it will
require less alternations to a current synthesis flow.

8.2 The MacroCMOS cell library
Defining a cell library with smaller predefined structures might overcome the problem of
slow full custom synthesis, and allow for deeper exploration of the design space for better

80 A Cell Library for Low Leakage

Figure 8.2: Pull-down graphs in the MacroCMOS cell library.

solutions.

A possible way is to include predefined pull-up and pull-down networks in a new cell
library, from which larger cells can be built. It is infeasible to design a static cell library
with all possible logic functions. But allowing the synthesis tool to combine predefined
networks, either serially or in parallel, all possible logic functions can be evaluated for
leakage, propagation delay etc. This forms a cell library with virtually infinite cells. A few
of the structures are depicted in figure 8.2.

The number of structures needed in this library is only a small fraction of all possible
logic functions, as these can be built from combining networks. How these networks must
be described in the cell library for use in this synthesis process is explored through the
requirements set to the cell library by the cell estimator and the cell generator.

8.2.1 Data required by the cell estimator

The job of the cell estimator is to express the logic function using the structures available in
the cell library. Leakage can be evaluated very closely with the transistor netlist completed.
Switching power and propagation delay associated with all input transitions together with
cell area is estimated by the cell estimator.

To complete these tasks the cell estimator requires these data in the cell library for each
structure:

• Logic function, as definition of pull-up/pull-down expression

• Structure area, a statistical value

• Drive strength formulated by tables of pull-up/down delay according to output ca-
pacitance and resistance parameters

• Total capacity on all outputs

• Leakage as function of all input states

Furthermore, the cell estimator needs wire load models for external wires. Internal wire
loads are included statistically in the values described above. This can be accepted as most
of the wire load lies in the external wires. The external wire load models could well be
implemented like in the Liberty format.

8.2.2 Data required by the cell generator

The cell generator does the job of producing the actual cell designed by the cell estimator.
This process must be completed through laying out the transistors according to layout rules
for the specific process, which must be included in the cell library. For simulation, accurate
transistor models for the specific transistors must be included also. The cells real area and
leakage is determined in this step.

To improve the speed of the layout process, either earlier cells can be reused from a
cache, or predefined and already laid out structures which only need slight modification
can be reused.

8.2. THE MACROCMOS CELL LIBRARY 81

Internal wires have to be included in this step. During simulation of a cell, wire models
of internal wires are needed. External wire loads can be added in two ways. Either the
wire loads are added as statistical models in this step and the cell is simulated. Or the wire
loads are first added after all cells have been laid out, and then the circuit is fitted through
simulation.

A good solution would be to use the statistical wire load models to size the transistors
and then lay them out. When all have been laid out final adjustments can be made by
retrieving the actual wire loads from the design. No matter where in the process wire loads
are added, the cell library is required to include wire load models.

Further considerations, such as noise sources, rules about layout etc. which are not cov-
ered here, need to be incorporated in the cell library as well.

From this description of the task of the cell generator it is evident, that the cell library is
further required to include the following:

• Layout design rules for the given process

• Transistor models for simulation

• Internal wire load models

• Global values such as voltages, temperatures, operating conditions etc.

8.2.3 The total of new requirements to cell libraries

Comparing the new cell library to the library described in Chapter 2, a list of changes is
needed. These changes are presented here in two sections: The general contents and the
cell specific contents. First the general values:

Current cell libraries A MacroCMOS cell library
Wire load models Wire load models. Both internal and external.
Timing look up tables with input net transi-
tion and output capacitance as parameters

Timing lookup tables with input net transi-
tion and output load formulated as output ca-
pacitance and resistance

Power look up tables with input net transi-
tion and output capacitance as parameters

Statistical power lookup tables with load and
input net transition as parameters

For each cell/structure these changes are needed:

Current cell libraries A MacroCMOS cell library
Area per cell Area per network, statistical
Average leakage power Average leakage power according to device

sizes
Logic function Pull-up/down function
Input dependent leakage values Input dependent leakage values
Switching power, rising and falling transition Switching power due to load, either rising or

falling according to network. Statistical
Output delay Output delay according to capacitive and re-

sistive load
Output transition time Output transition time according to internal

and external load

8.2.4 Modelling propagation delay in a MacroCMOS cell library

Modelling propagation delay can be done by approximating the worst case load on a tran-
sistor stack by a capacitative load through a resistor. Including tables of resistance and
capacitance in the cell library, the cell estimator can evaluate the worst case pull-up/pull-
down delay by estimating the load and then looking up the propagation delay.

82 A Cell Library for Low Leakage

A

CB

R

C

Tpd

Figure 8.3: Modelling propagation delay.

Figure 8.3 gives the general idea. For each structure with different transistor sizings a ta-
ble of propagation delays is required. Interpolation between equal structures with different
transistor sizings is possible if the difference between sizings is reasonably small.

When the cell has been assembled in the cell estimator, wire loads are added, and propa-
gation delays are checked again. More factors such as input transition time etc. are included
in the cell generator step, which is done by real simulation. The tables need to be conser-
vative enough to ensure, that the cell generator can generate the cell by the specifications
from the cell estimator.

8.2.5 Modelling power consumption in a MacroCMOS cell library

Energy dissipation per switch is in the cell estimator evaluated by a conservative guess
formulated by the number and sizes of transistor gates. Further, each structure might carry
a statistical model with capacitive and resistive load as parameters to model, how much
short circuit power one can expect to be drawn through the structure. In general is dynam-
ical power consumption easiest to evaluate through simulation.

Modelling leakage currents can be done through a lookup table for each structure. For
each input state a leakage current is given in the table. Leakage currents can easily be mod-
elled with lookup tables as long as the structures are not connected in series. With serially
connected structures, the leakage is the same or less as the least leaking structure in total
average.

8.2.6 Layout of MacroCMOS cells

The layout is automated by the cell generator. Yet, not every transistor netlist with any siz-
ings can be lain out. Transistors cannot be unlimitedly wide for example. If a standardized
approach to layout is taken and the space between the voltage rails is constant, transistors
will have to be broken into several pieces. Figure 8.4 demonstrates a place with narrow
width between the voltage rails. Here an inverter is broken into four transistors to be able
to fit in.

In a real implementation of a MacroCMOS cell library a list of design limits must be
derived to guide and limit the cell generator to reasonable design.

8.3 Optimizing a design for low leakage with MacroCMOS

With a synthesis process and cell library in place, the task is to devise how low leakage
designs can be built efficiently. A range of possible optimizations will be investigated here.

8.3.1 Input optimizations

As seen in section 6.5.2 building cells with knowledge of the input connections can save
leakage power. This was due to two reasons. First, due to redundancy transistors could be

8.3. OPTIMIZING A DESIGN FOR LOW LEAKAGE WITH MACROCMOS 83

V

V

DD

SS

A
A

Figure 8.4: Layout of a 4*Wmin inverter with limited space.

removed, minimizing the paths between the voltage rails. Secondly, the increased speed
allowed for transistors to be resized reducing the leakage.

Knowledge of inputs values can also be useful in the synthesis for low leakage. If a
working model of a design in a HDL is available, statistical information about signal values
can be extracted. The synthesis tool at the boolean expression level hand over statistical
information to the cell estimator. If no model is available, statistical information can be
extracted directly from the design. An eight-input AND-gate can be assumed to produce a
logic zero on the output for the major part of the time.

This statistical information can be used to help structure the logic blocks beneficially.
If a signal is typically ’0’, the nMOS transistor that is fed by this signal should be placed
closest to VSS , due to the leakage dependency of the structure of transistors (Figure 3.11).

8.3.2 Internal scaling

Appendix E contains a larger example of building a MacroCMOS block. Here, the leakage
reductions were achieved through stacking of transistors and sizing them to make propa-
gation delays equal for all signals. LL transistors were also possible to use.

This scaling of transistors is not possible if not enough available time slack is available.
In the example the timing was first violated, but through sizing up critical transistor was
matched to the original cell. Building larger cells often introduces fast and slow paths in
parallel. The slow ones can be sized to match the long in speed, and hence reduce leakage.
These can be sized to be even more low leakage than regular high-Vth transistors.

Further sizing can be done as a cell can be built to match the timing requirements exactly,
and not just be within timing bounds.

8.3.3 Structural considerations

Not every block can be built from smaller blocks for leakage reductions with success. Figure
8.5 depicts three attempts to build a larger block from a stochastically chosen logic block A
and a 2-input cell.

With the AND-gate leakage will be reduced considerably due to added transistor near
VDD. The nMOS transistor near VSS will add some leakage when the block A tries to pull up
and X is a logic one. This is though only in a fraction of the time, and the nMOS transistor
can be sized to leak less regarding the total delay. The same arguments can be used with
the OR-gate.

The XOR-gate does not show this benefit. The cell has to be implemented by copying
the pull-up/down (Pu/Pd) networks and form duals of the logic. The logic increases in
number of transistors and dependent on the logic function of A this can be good or bad in
terms of leakage. If A is an OR-gate it is beneficial (shown in the 9-input cell example) to
build a compound gate, but if A is another XOR gate, the cells are better left as two 2-input
cells (as shown from the proof-of-concept in section 6.5.4).

84 A Cell Library for Low Leakage

X

X

X

AI

X

Y
A

Z
I A

X

X X

X X

Pu

Pu Pd

Z

Pd*

*

I
Z Z

Y
A ZI

X

AI Z

Figure 8.5: Building a larger block from any logic block and a smaller block.

Evaluation of each specific case is needed.

In general dividing large logic depths into smaller areas to build MacroCMOS cells can
have great effect on the leakage of the final design. In section 6.5.3 (and Appendix E) it
was beneficial to include the OR-gate in the XOR-gate, but not the AND-gate or other con-
structs.

8.3.4 Trading time slack for low leakage

With a static cell library of high-speed (HS) and low-leakage (LL) cells, leakage power op-
timizations are typically done by replacing HS cells with the corresponding LL cells. Since
LL cells have higher propagation delays, this procedure is only possible when enough time
slack is available.

Figure 8.6 presents this. On the left hand side of the figure the distribution of all path
delays is shown in black. The red line indicates the percentage of low-leakage cells. As the
path delay increases, the possibilities of replacing high-speed cell with corresponding low-
leakage version diminish due to timing issues. Therefore, most LL cells will be placed on
low delay paths.

The right hand side of Figure 8.6 represents the same concept. Here the paths have been
sorted by path delay and are presented with the largest delays horizontally in the top of
the figure. When timing allows for it, a cell is replaced with a LL cell. If more time slack is
available this procedure is repeated until all cells are low-leakage cells. In the figure two
replacements are depicted.

Three regions are of interest here. The region A represents paths which are somewhat
too fast for their timing requirement, but not fast enough to use LL cells. The regions B and
C represents paths where all, or a maximum number of, cells have been replaced by LL
cells, but they still have some time slack available for optimization.

When the difference in propagation delays of HS and LL cells supersede the available
time slack, no optimizations can be done when using a cell library of static cells. If cells
could be scaled to match the time slack, a great deal of leakage would be saved. Since
the drive of a transistor scales linearly with gate length (equation 3.4 on page 27) and the
leakage scales exponentially (equation 3.5 on page 27), scaling up the transistor gate length
to match the timing requirement causes the leakage to exponentially.

8.3.5 Gaining time slack

The full-adder example from Chapter 3 showed that building logic blocks together in
MacroCMOS blocks can produce logic blocks that are faster than the original one. This
time slack can be used to lower the leakage of the cell by using LL transistors or scale the
length up of some or all transistors.

8.4. FURTHER ISSUES 85

t pdt maxt pd

Percentage

t max

100%

n%

P
at

hs
 s

or
te

d
by

 p
ro

pa
ga

tio
n

de
la

y

Percentage LL cells

Distribution of paths

Added LL delay

A

B

Delay of a LL path

Delay of a HS path

C

Figure 8.6: Distribution of path delays with percentage of LL cells (in red). On the right hand side:
All paths sorted by path delay. The delay overhead of using LL cells (in red).

t max

t

A

B

Stage 1 Stage 2

A
ll

pa
th

s
so

rt
ed

 b
y

de
la

y
in

 S
ta

ge
 1

Figure 8.7: Retiming to meet timing requirements (A). Further retiming to balance delays in two
pipeline stages(B)

Another way of gaining time slack is by retiming. Retiming is for many purposes such
as dividing logic between pipeline stages to meet timing requirements, and it can also be
used to equalize the time slack on both sides of a pipeline register for example.

By moving a part of the delay from a stage that barely meets the timing requirements
to a stage with available time slack the time slack on both sides of the register is balanced
(Figure 8.7). This enables further leakage reductions by trading time slack for low leakage.
This can only be done if the structure of the logic allows for it.

8.4 Further issues

This work has covered MacroCMOS in areas of design, synthesis and cell library design.
Many other issues must be taken into consideration when planning new cell libraries and
synthesis tools. Some of the considerations these considerations will be discussed briefly
here.

8.4.1 Physical synthesis

It was not possible to find any synthesis flow and cell library that is similar to MacroC-
MOS. Physical synthesis tools are not new, and a variety of proposed synthesis flows are
presented in the literature. Yet, the literature is mostly concerned about physical synthesis
for circuit verification[39] or for logic optimizations[40, 41, 42]. Both of them are not aimed
at low leakage design. But, they do prove that physical synthesis is possible.

86 A Cell Library for Low Leakage

8.4.2 Gate leakage

As described in Chapter 3 gate leakage is dependent on the voltages at the terminals of
the transistors. An exponential dependency of the gate-drain, gate-source and gate-bulk
voltages must be expected. With current decreasing gate-oxide thicknesses and without
improved oxides there is not much to do about the gate leakage else than changing the
voltages.

In a stack of all non-conducting transistors the entire VDD voltage drop is shared by the
transistors according to the configuration and sizing of the transistors. Therefore, the gate
leakage per transistor can be expected to be lower for larger stacks of transistors. If random
input values are applied gates might begin to leak in different directions in and out of the
stack causing more leakage. Yet, a small cell will typically leak maximally through the gate
at all input states. Therefore, a larger gate must be considered to be less gate leaking than
equivalent small cells.

8.4.3 Dynamic power consumption

Dynamic power consumption is not covered in this work. In Chapter 3 dynamic power is
modelled as the total power consumption dissipated by charging and discharging capaci-
tances plus the short circuit power consumption.

Depending on the logic function built with MacroCMOS the number of transistors either
increases or decreases. So, it is difficult to predict whether MacroCMOS cells will consume
more or less dynamic power due to charging capacitances. But, with decreasing device
sizes the capacitive load due to wires will supersede the gate capacitive load. Therefore,
the gate capacitance will become less important.

What is becoming more important is power dissipation due to short circuit currents in
the switching period. Building larger cells that in general contain higher transistor stacks,
this short cut current may be minimized. This is due to the fact, that input value transitions
may arrive at different times causing more transistors to be in their non-conducting mode
at all times.

A fact that may counter this expectation is, that larger cells will probably produce low
output transition slopes. These outputs, routed into the next cell, will bring the following
transistors in semi-conducting mode in much of the time. Yet, as a stack is built from an
increased number of devices, the total resistance on the paths keeps the switching current
down. The ’MOS device degradation’ section elaborates on this subject.

8.4.3.1 Switching activity

The output switching activity of a larger cell must be expected to be lower than the total
switching activity of a cascade of smaller cells. This is due to the missing internal nodes
that for an input vector transition do not switch numerous times before all previous levels
of logic have stabilized at their final levels. Further, the increased propagation delay of a
larger cell in comparison with a single smaller cell dampens glitches in the circuit. This
further reduces the switching activity.

Even though a switch in output state is bound to be more expensive in power the re-
duced switching activity and robustness to glitches will counter this effect.

8.4.4 MOS device degradation

Due to the low rising and falling output transition slopes, MOS devices are in a semi-
conducting mode for an increased period of time. In current small-cell designs this has
a bad effect on the MOS devices since increased wear and electromigration are effects of
these increased currents.

8.4. FURTHER ISSUES 87

V
o
l
t
a
g
e
s

(
l
i
n
)

0

100m

200m

300m

400m

500m

600m

700m

800m

900m

1000m

C
u
r
r
e
n
t
s

(
l
i
n
)

-14u

-12u

-10u

-8u

-6u

-4u

-2u

0

2u

Time (lin) (TIME)
1n 1.1n 1.2n 1.3n 1.4n 1.5n

**

Figure 8.8: IV dd for 1-, 2-, 3- and 4-device stacked inverter.

V
o
l
t
a
g
e
s

(
l
i
n
)

0

100m

200m

300m

400m

500m

600m

700m

800m

900m

1000m

C
u
r
r
e
n
t
s

(
l
i
n
)

-14u

-12u

-10u

-8u

-6u

-4u

-2u

0

2u

Time (lin) (TIME)
1n 1.1n 1.2n 1.3n 1.4n 1.5n

**

Figure 8.9: IV dd for 1-, 2-, 3- and 4-device stacked inverter. The device pair closest to the output
has a 150ps time shifted input.

Low input slopes do not necessarily cause massive short circuit currents though. A
70nm HS inverter was simulated with an input transition slope of 1V

500ps = 2V/ns. The
same experiment was done building an inverter with two, three and four devices in series
in both the pull-up and pull-down networks. The currents drawn from VDD is depicted on
Figure 8.8.8.1

It is evident, that the more devices that are placed in series, the lower peak current
is flowing through the stack. Furthermore, as input signals arrive at different time points
the devices will be in different conducting states at all times. Figure 8.9 shows the same
four stacks with the device pair nearest to the output being driven by the same input, just
delayed by 150ps. The single-inverter is driven by the normal non time-shifted input.

The results from this analysis did not show an indication that larger cells increase switch-
ing currents. Therefore, in combination with the fact, that larger cells reduce the switching
activity, MOS device degradation is no more a problem in MacroCMOS than in regular
CMOS.

8.1The currents are negative in value since HSPICE measures it as ’current into the node VDD

88 A Cell Library for Low Leakage

CHAPTER 9

CONCLUSION AND FUTURE WORK

Contents
9.1 Conclusion . 89
9.2 Future work . 90

9.1 Conclusion

The main objective of this work was to evaluate possible logic families other than static
CMOS for low leakage design. This task was completed in a series of analyses.

The effects on leakage of scaling down device sizes was explored and rules of thumb for
low leakage design of gates were presented. Based on these leakage considerations, a sur-
vey of logic families was conducted and MTCMOS, CPL and Domino logic were selected
for closer leakage evaluation.

MTCMOS proved to be unusable since the delay overhead of adding the power rout-
ing transistors matches the overhead of using low-leakage transistors instead, which is an
equally good and more design friendly approach. CPL failed due to reduced signal qual-
ity on internal nodes causing more leakage than gained by removing connections to the
voltage supply rails.

Domino logic proved to be very good at reducing the subthreshold leakage. Yet, when
gate leakage was taken into consideration, the benefits were lost as a keeper device would
have to be added to maintain the dynamically held node.

The proposed design style, MacroCMOS, was investigated through three example sim-
ulation cases. MacroCMOS was found to be more efficient in reducing the leakage than
a current synthesis tool with a current cell library. This was proven for both smaller and
larger cells, that are not present in the cell library.

Through the study of transistor characteristics it was found that the main reason for the
magnitude of the leakage problem is the usage of static cell libraries and current synthesis
tools. The cell libraries offer only a limited number of cells, and typically these cells only
have a small number of inputs. Assuming that larger logic functions can be built from these
small cells without much overhead is not correct when including leakage considerations.
Furthermore, the limited interface between synthesis tool and cell library consisting of a
limited list of logic functions prevents many of the optimizations needed for low leakage
design. Small cell synthesis for low leakage is not feasible in the future.

For the synthesis of MacroCMOS logic a new synthesis flow and cell library was pro-
posed. Optimizations for low leakage such as logic optimizations, internal scaling, struc-
tural considerations and the efficient utilization of time slack for low leakage were pre-
sented and proven to work through the examples given. Retiming for low leakage was

89

90 Conclusion and Future Work

presented here also. Furthermore, it was discussed how the entire time slack available can
be used for lowering the leakage of a circuit.

Although a logic family could not be found to replace static CMOS and change the
way low leakage design is done, this work demonstrated a new way of using static CMOS
for low leakage. Incorporating more logic in every (larger) cell and benefiting from the
optimizations now made possible proved to be a viable way to reduce the leakage problem
in the future.

Changing the design flow towards utilization of an alternative logic family than static
CMOS would have had great costs. Not only synthesis tools and cell libraries needed to
be changed, but also the designers would have to adjust their work flow and their archi-
tectural knowledge of IC design. Therefore, continuing the design flow in static CMOS
with in MacroCMOS style preserves much of the work that has been done in the areas of
optimizations on the architectural and synthesis levels.

The static CMOS logic family is generally recognized as the best overall performing
logic family in terms of power consumption, area and timing. This work has concluded
that static CMOS still will be the best performing logic family in the future even when the
leakage problem is taken into consideration. Yet, the small cell based synthesis flow will
have to be rethought incorporating aggressive leakage current reduction schemes, such as
the MacroCMOS design style.

9.2 Future work
From this work a number of future work topics arises. Here, a short list of topics are pre-
sented. This list is not complete; more topics will arise when further work has been com-
pleted.

• Logic optimizations for low leakage presented in this work is not an exhaustive anal-
ysis of the research area. Further logic optimizations and even more elaborate im-
provements or transistor reconfigurations can be done. This area can be explored to
improve the efficiency of an automated full custom synthesis flow like MacroCMOS.

• The implementation of a synthesis tool, or post-synthesis tool, and cell library are
future work topics.

• Optimization algorithms for fast full custom synthesis taking leakage into considera-
tion is an area of research for the future.

• Fast layout and accurate simulation of gates built on-the-fly is also an interesting
topic.

• When high-k dielectric materials have been fully implemented in productions dy-
namic logic style could be reevaluated for low leakage applications.

A PROJECT DESCRIPTION

Number: 55
Master’s Thesis Project:
Title: Design of CMOS cell libraries for minimal leakage currents
Student: Jacob Gregers Hansen
Period: 17.02.2004 - 13.08.2004
Project description:

Objectives
The objective of this MSc thesis work is to investigate optimal design under the presence
of static gate leakages, and to device how design rules and trade-offs are altered.

Description
A main concern during the design of System-on Chips (SOCs) is the power budget,
especially battery supplied systems are considered. In general, dynamic and static
contributions constitute total power dissipation.
Dynamic power is primarily consumed by the information processing in the charging
and discharging of internal capacitances. As such, dynamic power consumption is
proportional to these capacitances, the switching frequency and the supply voltage.
Static power consumption, on the other hand, is caused by leakage currents while the
circuit is idle, i.e. not performing computations.
One key attraction of CMOS is negligible static power consumption. However, with de-
creasing device sizes this property is no longer satisfied due to subtreshold conduction.
The reason for this is that for smaller devices, supply voltages are reduced. For speed,
this in turn forces a reduction in threshold voltages. As a consequence, transistors are
no longer turned off satisfactorily, i.e. drain currents contributes significantly to power
losses in the transistor non-conductive state. For a 0.13µm process, the static losses may
constitute almost 50% of the total power consumption.
The issue has been addressed by offering libraries of gates and cells in both low-VT
and high-VT versions. This offers the option of fast, low-VT cells with high static power
losses where timing is critical, and a slower, high-VT design for other parts. Traditional
synthesis tools do not offer the means to optimize for multiple-VT libraries to reduce
static power consumption. The solution, using such known synthesis tools, consists
of synthesizing a design using a low-VT library, under the constraint that timing and
performance requirements are met. Then, in a post-synthesis phase, the back-annotated
circuit is analyzed with respect to power consumption and the circuit modified, replacing
low-VT by high-VT library cells whereever possible. The update process does not involve
any re-synthesis steps.
This thesis work addresses the design of logic families using different transistor config-
urations to realize libraries representing alternatives in the speed-power design space
and under various technologies. This includes the generation of a 90nm library or better
from an existing library, and the characterization of this library for use in a synthesis
tool. The thesis work will be performed in parallel with two other MSc thesis works in
a collaborative but independent effort. One work focusses on the incorporation of static
power consumption metrics in the synthesis process, while the other work concentrates
on the architectural aspects of multiple-VT libraries.

Supervisor: Flemming Stassen

91

92 Project Description

B A CELL LIBRARY IN THE LIBERTY
FORMAT

B.1 General definitions, settings and units

/ ***
Synopsys Technology File genstf version 5.7.1
Options used:

force_incr on
...

Process values given:
Library nominal: 0.5

...
Voltage values given:

Library nominal: 1.6
Tech-file best case: 1.8

...
Temperature values given:

Library nominal: -40.0
...

*** /
library(CORELIB8DLL) {

delay_model : table_lookup;
/ *** /

time_unit : "1ns";
voltage_unit : "1V";

...
slew_lower_threshold_pct_rise : 10 ;
slew_upper_threshold_pct_rise : 90 ;
input_threshold_pct_fall : 50 ;

...

/ ** /
wire_load(maxarea_000980) {

resistance : 0.00023
capacitance : 0.00018
slope : 9.35
area : 0
fanout_length(1 , 9.35)

}

...
wire_load_selection(default_by_area){

wire_load_from_area(0 , 980 , maxarea_000980)
wire_load_from_area(980 , 4540 , maxarea_004540)

... }
lu_table_template(table_1) {

variable_1 : input_net_transition ;
variable_2 : total_output_net_capacitance ;
index_1 (" 0.01, 0.06, 0.3, 1.2, 2.4 ");
index_2 (" 0.003, 0.048, 0.24, 0.72, 1.44 ");

} power_lut_template(power_table_1) {
variable_1 : input_transition_time ;
variable_2 : total_output_net_capacitance ;
index_1 (" 0.01, 0.06, 0.3, 1.2, 2.4 ");

93

94 A Cell Library in the Liberty Format

index_2 (" 0.003, 0.03, 0.09, 0.18 ");
}

B.2 Cell specific data
/ *** /
/ * ---

2 Input AND, 1x Drive
--- * /
cell(AN2LL) {

area : 22.48 ;
cell_leakage_power : 35.41850 ;
leakage_power() { / * A_F_Z_F * /

value : 24.24400 ;
when : "A * B" ;

} ... Leakage at the other input combinations
pin(Z) {

direction : output ;
function : "A * B";

max_capacitance : 0.15400 ;
internal_power() {

related_pin : "A" ;
/ * A_R_Z_R * /
rise_power(power_table_1) {

values("0.01535, 0.05314, 0.13548, 0.26114", \
"0.01586, 0.05335, 0.13505, 0.26018", \
"0.01584, 0.05230, 0.13602, 0.26183", \
"0.01401, 0.05567, 0.13743, 0.26302", \
"0.02585, 0.06101, 0.15350, 0.26486");

}
/ * A_F_Z_F * / - fall_power(power_table_1) { [fall power values]}

}
timing() {

related_pin : "A" ;
timing_sense : positive_unate ;
/ * A_R_Z_R * /
cell_rise(table_2) {

values("0.06745, 0.13468, 0.24035, 0.51625", \
"0.08550, 0.15714, 0.30764, 0.53527", \
"0.15755, 0.22440, 0.38087, 0.60772", \
"0.32411, 0.50778, 0.55775, 0.78351", \
"0.51021, 0.60055, 0.75015, 0.47572");

}
rise_transition(table_2) { [rise transition values]
}
/ * A_F_Z_F * /
cell_fall(table_2) {

values("0.08885, 0.15204, 0.27230, 0.55115", \
....

}
fall_transition(table_2) { [fall transition values]
}
timing_label : "A_Z" ;

[everything is repeated for input B] } / * end of library * /

C MODEL CARDS FOR SIMULATION

*** --

*** BPTM 0.18, 0.13, 0.10 and 0.07 micron technologies

*** --

*** This library of model cards was

*** created by Jacob Gregers Hansen on 17 April 2004 ***
*** This library of transistor models contains MOSFETs based on the

*** Berkeley Predictive Technology Model parameters / technology cards.

*** No responsibility is assumed for the use of the information stated

*** ***

C.1 180nm High-Speed BPTM Model Cards

*** --

*** BPTM 0.18 micron high speed technology Vtn=0.25 Vtp=-0.25

*** --

.LIB BPTM180HSN_LIB .SUBCKT nmosths Drain Gate Source
Bulk + M=1 W=10e-6 AD=’(6e-07) * w’ PD=’2 * (6e-07)+w’
NRD=0 + L=10e-6 AS=’(6e-07) * w’ PS=’2 * (6e-07)+w’
NRS=0 .param WOTn=’9.35338e-08-(4.19715e-15/l)-(1.50197e-14/w)’

M1 Drain Gate Source Bulk BPTM180HSN_TYP + W=W L=L
AS=AS AD=AD PS=PS PD=PD M=M NRD=NRD NRS=NRS

.model BPTM180HSN_TYP NMOS +Level = 49

+Lint = 4.e-08 Tox = 4.e-09 +Vth0 = 0.3999 Rdsw = 250

+lmin=1.8e-7 lmax=1.8e-7 wmin=1.8e-7 wmax=1.0e-4 Tref=27.0 version
=3.1 +Xj= 6.0000000E-08 Nch= 5.9500000E+17 +lln= 1.0000000
lwn= 1.0000000 wln= 0.00 +wwn= 0.00
ll= 0.00 +lw= 0.00 lwl= 0.00
wint= 0.00 +wl= 0.00 ww= 0.00
wwl= 0.00 +Mobmod= 1 binunit= 2
xl= 0 +xw= 0 binflag= 0 +Dwg= 0.00
Dwb= 0.00

+K1= 0.5613000 K2= 1.0000000E-02 +K3= 0.00
Dvt0= 8.0000000 Dvt1= 0.7500000 +Dvt2= 8.0000000E-03
Dvt0w= 0.00 Dvt1w= 0.00 +Dvt2w= 0.00
Nlx= 1.6500000E-07 W0= 0.00 +K3b= 0.00
Ngate= 5.0000000E+20

+Vsat= 1.3800000E+05 Ua= -7.0000000E-10 Ub=
3.5000000E-18 +Uc= -5.2500000E-11 Prwb= 0.00 +Prwg= 0.00
Wr= 1.0000000 U0= 3.5000000E-02 +A0= 1.1000000
Keta= 4.0000000E-02 A1= 0.00 +A2= 1.0000000
Ags= -1.0000000E-02 B0= 0.00 +B1= 0.00

+Voff= -0.12350000 NFactor= 0.9000000 Cit= 0.00
+Cdsc= 0.00 Cdscb= 0.00 Cdscd= 0.00
+Eta0= 0.2200000 Etab= 0.00 Dsub=
0.8000000

95

96 Model Cards For Simulation

+Pclm= 5.0000000E-02 Pdiblc1= 1.2000000E-02 Pdiblc2=
7.5000000E-03 +Pdiblcb= -1.3500000E-02 Drout= 1.7999999E-02
Pscbe1= 8.6600000E+08 +Pscbe2= 1.0000000E-20 Pvag= -0.2800000
Delta= 1.0000000E-02 +Alpha0= 0.00 Beta0= 30.0000000

+kt1= -0.3700000 kt2= -4.0000000E-02 At=
5.5000000E+04 +Ute= -1.4800000 Ua1= 9.5829000E-10
Ub1= -3.3473000E-19 +Uc1= 0.00 Kt1l= 4.0000000E-09
Prt= 0.00

+Cj= 0.00365 Mj= 0.54 Pb= 0.982
+Cjsw= 7.9E-10 Mjsw= 0.31 Php= 0.841
+Cta= 0 Ctp= 0 Pta= 0
+Ptp= 0 JS=1.50E-08
JSW=2.50E-13 +N=1.0 Xti=3.0
Cgdo=2.786E-10 +Cgso=2.786E-10 Cgbo=0.0E+00
Capmod= 2 +NQSMOD= 0 Elm= 5
Xpart= 1 +Cgsl= 1.6E-10 Cgdl= 1.6E-10
Ckappa= 2.886 +Cf= 1.069e-10 Clc= 0.0000001
Cle= 0.6 +Dlc= 4E-08 Dwc= 0
Vfbcv= -1 .ENDS .ENDL

.LIB BPTM180HSP_LIB .SUBCKT pmosths Drain Gate Source
Bulk + M=1 W=10e-6 AD=’(6e-07) * w’ PD=’2 * (6e-07)+w’
NRD=0 + L=10e-6 AS=’(6e-07) * w’ PS=’2 * (6e-07)+w’
NRS=0

M1 Drain Gate Source Bulk BPTM180HSP_TYP + W=W L=L
AS=AS AD=AD PS=PS PD=PD M=M NRD=NRD NRS=NRS

.model BPTM180HSP_TYP PMOS +Level = 49

+Lint = 3.e-08 Tox = 4.2e-09 +Vth0 = -0.42 Rdsw = 450

+lmin=1.8e-7 lmax=1.8e-7 wmin=1.8e-7 wmax=1.0e-4 Tref=27.0 version
=3.1 +Xj= 7.0000000E-08 Nch= 5.9200000E+17 +lln= 1.0000000
lwn= 1.0000000 wln= 0.00 +wwn= 0.00
ll= 0.00 +lw= 0.00 lwl= 0.00
wint= 0.00 +wl= 0.00 ww= 0.00
wwl= 0.00 +Mobmod= 1 binunit= 2
xl= 0.00 +xw= 0.00 +binflag= 0 Dwg= 0.00
Dwb= 0.00

+ACM= 0 ldif=0.00 hdif=0.00
+rsh= 0 rd= 0 rs= 0 +rsc=
0 rdc= 0

+K1= 0.5560000 K2= 0.00 +K3= 0.00
Dvt0= 11.2000000 Dvt1= 0.7200000 +Dvt2= -1.0000000E-02
Dvt0w= 0.00 Dvt1w= 0.00 +Dvt2w= 0.00
Nlx= 9.5000000E-08 W0= 0.00 +K3b= 0.00
Ngate= 5.0000000E+20

+Vsat= 1.0500000E+05 Ua= -1.2000000E-10 Ub=
1.0000000E-18 +Uc= -2.9999999E-11 Prwb= 0.00 +Prwg= 0.00
Wr= 1.0000000 U0= 8.0000000E-03 +A0= 2.1199999

C.1. 180NM HIGH-SPEED BPTM MODEL CARDS 97

Keta= 2.9999999E-02 A1= 0.00 +A2= 0.4000000
Ags= -0.1000000 B0= 0.00 +B1= 0.00

+Voff= -6.40000000E-02 NFactor= 1.4000000 Cit= 0.00
+Cdsc= 0.00 Cdscb= 0.00 Cdscd= 0.00
+Eta0= 8.5000000 Etab= 0.00 Dsub=
2.8000000

+Pclm= 2.0000000 Pdiblc1= 0.1200000 Pdiblc2=
8.0000000E-05 +Pdiblcb= 0.1450000 Drout= 5.0000000E-02
Pscbe1= 1.0000000E-20 +Pscbe2= 1.0000000E-20 Pvag=
-6.0000000E-02 Delta= 1.0000000E-02 +Alpha0= 0.00
Beta0= 30.0000000

+kt1= -0.3700000 kt2= -4.0000000E-02 At=
5.5000000E+04 +Ute= -1.4800000 Ua1= 9.5829000E-10
Ub1= -3.3473000E-19 +Uc1= 0.00 Kt1l= 4.0000000E-09
Prt= 0.00

+Cj= 0.00138 Mj= 1.05 Pb= 1.24
+Cjsw= 1.44E-09 Mjsw= 0.43 Php= 0.841
+Cta= 0.00093 Ctp= 0 Pta=
0.00153 +Ptp= 0 JS=1.50E-08
JSW=2.50E-13 +N=1.0 Xti=3.0
Cgdo=2.786E-10 +Cgso=2.786E-10 Cgbo=0.0E+00
Capmod= 2 +NQSMOD= 0 Elm= 5
Xpart= 1 +Cgsl= 1.6E-10 Cgdl= 1.6E-10
Ckappa= 2.886 +Cf= 1.058e-10 Clc= 0.0000001
Cle= 0.6 +Dlc= 3E-08 Dwc= 0
Vfbcv= -1 .ENDS .ENDL

98 Model Cards For Simulation

C.2 180nm Low-Leakage BPTM Model Cards

*** --

*** BPTM 0.18 micron low leakage technology Vtn=0.4 Vtp=-0.4

*** --

.LIB BPTM180LLN_LIB .SUBCKT nmostll Drain Gate Source
Bulk + M=1 W=10e-6 AD=’(6e-07) * w’ PD=’2 * (6e-07)+w’
NRD=0 + L=10e-6 AS=’(6e-07) * w’ PS=’2 * (6e-07)+w’
NRS=0 .param WOTn=’9.35338e-08-(4.19715e-15/l)-(1.50197e-14/w)’

M1 Drain Gate Source Bulk BPTM180LLN_TYP + W=W L=L
AS=AS AD=AD PS=PS PD=PD M=M NRD=NRD NRS=NRS

.model BPTM180LLN_TYP NMOS +Level = 49

+Lint = 4e-08 Tox = 4e-09 +Vth0 = 0.5499 Rdsw = 250

+lmin=1.8e-7 lmax=1.8e-7 wmin=1.8e-7 wmax=1.0e-4 Tref=27.0 version
=3.1 +Xj= 6.0000000E-08 Nch= 5.9500000E+17 +lln= 1.0000000
lwn= 1.0000000 wln= 0.00 +wwn= 0.00
ll= 0.00 +lw= 0.00 lwl= 0.00
wint= 0.00 +wl= 0.00 ww= 0.00
wwl= 0.00 +Mobmod= 1 binunit= 2
xl= 0 +xw= 0 binflag= 0 +Dwg= 0.00
Dwb= 0.00

+K1= 0.5613000 K2= 1.0000000E-02 +K3= 0.00
Dvt0= 8.0000000 Dvt1= 0.7500000 +Dvt2= 8.0000000E-03
Dvt0w= 0.00 Dvt1w= 0.00 +Dvt2w= 0.00
Nlx= 1.6500000E-07 W0= 0.00 +K3b= 0.00
Ngate= 5.0000000E+20

+Vsat= 1.3800000E+05 Ua= -7.0000000E-10 Ub=
3.5000000E-18 +Uc= -5.2500000E-11 Prwb= 0.00 +Prwg= 0.00
Wr= 1.0000000 U0= 3.5000000E-02 +A0= 1.1000000
Keta= 4.0000000E-02 A1= 0.00 +A2= 1.0000000
Ags= -1.0000000E-02 B0= 0.00 +B1= 0.00

+Voff= -0.12350000 NFactor= 0.9000000 Cit= 0.00
+Cdsc= 0.00 Cdscb= 0.00 Cdscd= 0.00
+Eta0= 0.2200000 Etab= 0.00 Dsub=
0.8000000

+Pclm= 5.0000000E-02 Pdiblc1= 1.2000000E-02 Pdiblc2=
7.5000000E-03 +Pdiblcb= -1.3500000E-02 Drout= 1.7999999E-02
Pscbe1= 8.6600000E+08 +Pscbe2= 1.0000000E-20 Pvag= -0.2800000
Delta= 1.0000000E-02 +Alpha0= 0.00 Beta0= 30.0000000

+kt1= -0.3700000 kt2= -4.0000000E-02 At=
5.5000000E+04 +Ute= -1.4800000 Ua1= 9.5829000E-10
Ub1= -3.3473000E-19 +Uc1= 0.00 Kt1l= 4.0000000E-09
Prt= 0.00

+Cj= 0.00365 Mj= 0.54 Pb= 0.982
+Cjsw= 7.9E-10 Mjsw= 0.31 Php= 0.841
+Cta= 0 Ctp= 0 Pta= 0

C.2. 180NM LOW-LEAKAGE BPTM MODEL CARDS 99

+Ptp= 0 JS=1.50E-08
JSW=2.50E-13 +N=1.0 Xti=3.0
Cgdo=2.786E-10 +Cgso=2.786E-10 Cgbo=0.0E+00
Capmod= 2 +NQSMOD= 0 Elm= 5
Xpart= 1 +Cgsl= 1.6E-10 Cgdl= 1.6E-10
Ckappa= 2.886 +Cf= 1.069e-10 Clc= 0.0000001
Cle= 0.6 +Dlc= 4E-08 Dwc= 0
Vfbcv= -1 .ENDS .ENDL

.LIB BPTM180LLP_LIB .SUBCKT pmostll Drain Gate Source
Bulk + M=1 W=10e-6 AD=’(6e-07) * w’ PD=’2 * (6e-07)+w’
NRD=0 + L=10e-6 AS=’(6e-07) * w’ PS=’2 * (6e-07)+w’
NRS=0

M1 Drain Gate Source Bulk BPTM180LLP_TYP + W=W L=L
AS=AS AD=AD PS=PS PD=PD M=M NRD=NRD NRS=NRS

.model BPTM180LLP_TYP PMOS +Level = 49

+Lint = 3e-08 Tox = 4.2e-09 +Vth0 = -0.57 Rdsw = 450

+lmin=1.8e-7 lmax=1.8e-7 wmin=1.8e-7 wmax=1.0e-4 Tref=27.0 version
=3.1 +Xj= 7.0000000E-08 Nch= 5.9200000E+17 +lln= 1.0000000
lwn= 1.0000000 wln= 0.00 +wwn= 0.00
ll= 0.00 +lw= 0.00 lwl= 0.00
wint= 0.00 +wl= 0.00 ww= 0.00
wwl= 0.00 +Mobmod= 1 binunit= 2
xl= 0.00 +xw= 0.00 +binflag= 0 Dwg= 0.00
Dwb= 0.00

+ACM= 0 ldif=0.00 hdif=0.00
+rsh= 0 rd= 0 rs= 0 +rsc=
0 rdc= 0

+K1= 0.5560000 K2= 0.00 +K3= 0.00
Dvt0= 11.2000000 Dvt1= 0.7200000 +Dvt2= -1.0000000E-02
Dvt0w= 0.00 Dvt1w= 0.00 +Dvt2w= 0.00
Nlx= 9.5000000E-08 W0= 0.00 +K3b= 0.00
Ngate= 5.0000000E+20

+Vsat= 1.0500000E+05 Ua= -1.2000000E-10 Ub=
1.0000000E-18 +Uc= -2.9999999E-11 Prwb= 0.00 +Prwg= 0.00
Wr= 1.0000000 U0= 8.0000000E-03 +A0= 2.1199999
Keta= 2.9999999E-02 A1= 0.00 +A2= 0.4000000
Ags= -0.1000000 B0= 0.00 +B1= 0.00

+Voff= -6.40000000E-02 NFactor= 1.4000000 Cit= 0.00
+Cdsc= 0.00 Cdscb= 0.00 Cdscd= 0.00
+Eta0= 8.5000000 Etab= 0.00 Dsub=
2.8000000

+Pclm= 2.0000000 Pdiblc1= 0.1200000 Pdiblc2=
8.0000000E-05 +Pdiblcb= 0.1450000 Drout= 5.0000000E-02
Pscbe1= 1.0000000E-20 +Pscbe2= 1.0000000E-20 Pvag=
-6.0000000E-02 Delta= 1.0000000E-02 +Alpha0= 0.00
Beta0= 30.0000000

100 Model Cards For Simulation

+kt1= -0.3700000 kt2= -4.0000000E-02 At=
5.5000000E+04 +Ute= -1.4800000 Ua1= 9.5829000E-10
Ub1= -3.3473000E-19 +Uc1= 0.00 Kt1l= 4.0000000E-09
Prt= 0.00

+Cj= 0.00138 Mj= 1.05 Pb= 1.24
+Cjsw= 1.44E-09 Mjsw= 0.43 Php= 0.841
+Cta= 0.00093 Ctp= 0 Pta=
0.00153 +Ptp= 0 JS=1.50E-08
JSW=2.50E-13 +N=1.0 Xti=3.0
Cgdo=2.786E-10 +Cgso=2.786E-10 Cgbo=0.0E+00
Capmod= 2 +NQSMOD= 0 Elm= 5
Xpart= 1 +Cgsl= 1.6E-10 Cgdl= 1.6E-10
Ckappa= 2.886 +Cf= 1.058e-10 Clc= 0.0000001
Cle= 0.6 +Dlc= 3E-08 Dwc= 0
Vfbcv= -1 .ENDS .ENDL

C.3. 130NM HIGH-SPEED BPTM MODEL CARDS 101

C.3 130nm High-Speed BPTM Model Cards

*** --

*** BPTM 0.13 micron technology

*** --

.LIB BPTM130N_LIB .SUBCKT nmost Drain Gate Source
Bulk + M=1 W=10e-6 AD=’(6e-07) * w’ PD=’2 * (6e-07)+w’
NRD=0 + L=10e-6 AS=’(6e-07) * w’ PS=’2 * (6e-07)+w’
NRS=0 .param WOTn=’9.35338e-08-(4.19715e-15/l)-(1.50197e-14/w)’

M1 Drain Gate Source Bulk BPTM130N_TYP + W=W L=L
AS=AS AD=AD PS=PS PD=PD M=M NRD=NRD NRS=NRS

.model BPTM130N_TYP NMOS +Level = 49

+Lint = 2.5e-08 Tox = 3.3e-09 +Vth0 = 0.332 Rdsw = 200

+lmin=1.3e-7 lmax=1.3e-7 wmin=1.3e-7 wmax=1.0e-4 Tref=27.0 version
=3.1 +Xj= 4.5000000E-08 Nch= 5.6000000E+17 +lln=
1.0000000 lwn= 0.00 wln= 0.00 +wwn=
1.0000000 ll= 0.00 +lw= 0.00 lwl= 0.00
wint= 0.00 +wl= 0.00 ww= 0.00
wwl= 0.00 +Mobmod= 1 binunit= 2
xl= 0 +xw= 0 binflag= 0 +Dwg= 0.00
Dwb= 0.00

+K1= 0.3661500 K2= 0.00 +K3= 0.00
Dvt0= 8.7500000 Dvt1= 0.7000000 +Dvt2= 5.0000000E-02
Dvt0w= 0.00 Dvt1w= 0.00 +Dvt2w= 0.00
Nlx= 3.5500000E-07 W0= 0.00 +K3b= 0.00
Ngate= 5.0000000E+20

+Vsat= 1.3500000E+05 Ua= -1.8000000E-09 Ub=
2.2000000E-18 +Uc= -2.9999999E-11 Prwb= 0.00 +Prwg= 0.00
Wr= 1.0000000 U0= 1.3400000E-02 +A0= 2.1199999
Keta= 4.0000000E-02 A1= 0.00 +A2= 0.9900000
Ags= -0.1000000 B0= 0.00 +B1= 0.00

+Voff= -7.9800000E-02 NFactor= 1.1000000 Cit= 0.00
+Cdsc= 0.00 Cdscb= 0.00 Cdscd= 0.00
+Eta0= 4.0000000E-02 Etab= 0.00 Dsub=
0.5200000

+Pclm= 0.1000000 Pdiblc1= 1.2000000E-02 Pdiblc2=
7.5000000E-03 +Pdiblcb= -1.3500000E-02 Drout= 0.2800000
Pscbe1= 8.6600000E+08 +Pscbe2= 1.0000000E-20 Pvag= -0.2800000
Delta= 1.0100000E-02 +Alpha0= 0.00 Beta0= 30.0000000

+kt1= -0.3400000 kt2= -5.2700000E-02 At= 0.00
+Ute= -1.2300000 Ua1= -8.6300000E-10 Ub1=
2.0000001E-18 +Uc1= 0.00 Kt1l= 4.0000000E-09
Prt= 0.00

+Cj= 0.0015 Mj= 0.7175511 Pb= 1.24859
+Cjsw= 2E-10 Mjsw= 0.3706993 Php=
0.7731149 +Cta= 9.290391E-04 Ctp= 7.456211E-04 Pta=

102 Model Cards For Simulation

1.527748E-03 +Ptp= 1.56325E-03 JS=2.50E-08 JSW=4.00E-13
+N=1.0 Xti=3.0 Cgdo=2.75E-10 +Cgso=2.75E-10
Cgbo=0.0E+00 Capmod= 2 +NQSMOD= 0 Elm= 5 Xpart= 1
+Cgsl= 1.1155E-10 Cgdl= 1.1155E-10 Ckappa= 0.8912 +Cf=
1.113e-10 Clc= 5.475E-08 Cle= 6.46 +Dlc= 2E-08
Dwc= 0 Vfbcv= -1 .ENDS .ENDL

.LIB BPTM130P_LIB .SUBCKT pmost Drain Gate Source Bulk
+ M=1 W=10e-6 AD=’(6e-07) * w’ PD=’2 * (6e-07)+w’ NRD=0
+ L=10e-6 AS=’(6e-07) * w’ PS=’2 * (6e-07)+w’ NRS=0

M1 Drain Gate Source Bulk BPTM130P_TYP + W=W L=L
AS=AS AD=AD PS=PS PD=PD M=M NRD=NRD NRS=NRS

.model BPTM130P_TYP PMOS +Level = 49

+Lint = 2.e-08 Tox = 3.3e-09 +Vth0 = -0.3499 Rdsw = 400

+lmin=1.3e-7 lmax=1.3e-7 wmin=1.3e-7 wmax=1.0e-4 Tref=27.0 version
=3.1 +Xj= 4.5000000E-08 Nch= 6.8500000E+18 +lln= 0.00
lwn= 0.00 wln= 0.00 +wwn= 0.00
ll= 0.00 +lw= 0.00 lwl= 0.00
wint= 0.00 +wl= 0.00 ww= 0.00
wwl= 0.00 +Mobmod= 1 binunit= 2
xl= 0 +xw= 0 binflag= 0 +Dwg= 0.00
Dwb= 0.00

+K1= 0.4087000 K2= 0.00 +K3= 0.00
Dvt0= 5.0000000 Dvt1= 0.2600000 +Dvt2= -1.0000000E-02
Dvt0w= 0.00 Dvt1w= 0.00 +Dvt2w= 0.00
Nlx= 1.6500000E-07 W0= 0.00 +K3b= 0.00
Ngate= 5.0000000E+20

+Vsat= 1.0500000E+05 Ua= -1.4000000E-09 Ub=
1.9499999E-18 +Uc= -2.9999999E-11 Prwb= 0.00 +Prwg= 0.00
Wr= 1.0000000 U0= 5.2000000E-03 +A0= 2.1199999
Keta= 3.0300001E-02 A1= 0.00 +A2= 0.4000000
Ags= 0.1000000 B0= 0.00 +B1= 0.00

+Voff= -9.10000000E-02 NFactor= 0.1250000 Cit=
2.7999999E-03 +Cdsc= 0.00 Cdscb= 0.00
Cdscd= 0.00 +Eta0= 80.0000000 Etab= 0.00
Dsub= 1.8500000

+Pclm= 2.5000000 Pdiblc1= 4.8000000E-02 Pdiblc2=
5.0000000E-05 +Pdiblcb= 0.1432509 Drout= 9.0000000E-02
Pscbe1= 1.0000000E-20 +Pscbe2= 1.0000000E-20 Pvag=
-6.0000000E-02 Delta= 1.0100000E-02 +Alpha0= 0.00
Beta0= 30.0000000

+kt1= -0.3400000 kt2= -5.2700000E-02 At= 0.00
+Ute= -1.2300000 Ua1= -8.6300000E-10 Ub1=
2.0000001E-18 +Uc1= 0.00 Kt1l= 4.0000000E-09
Prt= 0.00

+Cj= 0.0015 Mj= 0.7175511 Pb= 1.24859
+Cjsw= 2E-10 Mjsw= 0.3706993 Php=

C.3. 130NM HIGH-SPEED BPTM MODEL CARDS 103

0.7731149 +Cta= 9.290391E-04 Ctp= 7.456211E-04
Pta= 1.527748E-03 +Ptp= 1.56325E-03 JS=2.50E-08
JSW=4.00E-13 +N=1.0 Xti=3.0
Cgdo=2.75E-10 +Cgso=2.75E-10 Cgbo=0.0E+00
Capmod= 2 +NQSMOD= 0 Elm= 5
Xpart= 1 +Cgsl= 1.1155E-10 Cgdl= 1.1155E-10
Ckappa= 0.8912 +Cf= 1.113e-10 Clc= 5.475E-08
Cle= 6.46 +Dlc= 2E-08 Dwc= 0
Vfbcv= -1 .ENDS .ENDL

104 Model Cards For Simulation

C.4 100nm High-Speed BPTM Model Cards

*** --

*** BPTM 0.10 micron technology

*** --

.LIB BPTM100N_LIB .SUBCKT nmost Drain Gate Source
Bulk + M=1 W=10e-6 AD=’(6e-07) * w’ PD=’2 * (6e-07)+w’
NRD=0 + L=10e-6 AS=’(6e-07) * w’ PS=’2 * (6e-07)+w’
NRS=0 .param WOTn=’9.35338e-08-(4.19715e-15/l)-(1.50197e-14/w)’

M1 Drain Gate Source Bulk BPTM100N_TYP + W=W L=L
AS=AS AD=AD PS=PS PD=PD M=M NRD=NRD NRS=NRS

.model BPTM100N_TYP NMOS +Level = 49

+Lint = 2.e-08 Tox = 2.5e-09 +Vth0 = 0.2607 Rdsw = 180

+lmin=1.0e-7 lmax=1.0e-7 wmin=1.0e-7 wmax=1.0e-4 +Tref=27.0
version =3.1 +Xj= 4.0000000E-08 Nch= 9.7000000E+17 +lln=
1.0000000 lwn= 1.0000000 wln= 0.00 +wwn=
0.00 ll= 0.00 +lw= 0.00 lwl= 0.00
wint= 0.00 +wl= 0.00 ww= 0.00
wwl= 0.00 +Mobmod= 1 binunit= 2 xl=
0.00 +xw= 0.00 binflag= 0 +Dwg= 0.00
Dwb= 0.00

+ACM= 0 ldif=0.00 hdif=0.00
+rsh= 7 rd= 0 rs= 0 +rsc= 0
rdc= 0

+K1= 0.3950000 K2= 1.0000000E-02 K3= 0.00
+Dvt0= 1.0000000 Dvt1= 0.4000000 Dvt2=
0.1500000 +Dvt0w= 0.00 Dvt1w= 0.00
Dvt2w= 0.00 +Nlx= 4.8000000E-08 W0= 0.00
K3b= 0.00 +Ngate= 5.0000000E+20

+Vsat= 1.1000000E+05 Ua= -6.0000000E-10 Ub=
8.0000000E-19 +Uc= -2.9999999E-11 +Prwb= 0.00 Prwg=
0.00 Wr= 1.0000000 +U0= 1.7999999E-02 A0=
1.1000000 Keta= 4.0000000E-02 +A1= 0.00
A2= 1.0000000 Ags= -1.0000000E-02 +B0= 0.00
B1= 0.00

+Voff= -2.9999999E-02 NFactor= 1.5000000 Cit= 0.00
+Cdsc= 0.00 Cdscb= 0.00 Cdscd= 0.00
+Eta0= 0.1500000 Etab= 0.00 Dsub=
0.6000000

+Pclm= 0.1000000 Pdiblc1= 1.2000000E-02 Pdiblc2=
7.5000000E-03 +Pdiblcb= -1.3500000E-02 Drout= 2.0000000
Pscbe1= 8.6600000E+08 +Pscbe2= 1.0000000E-20 Pvag= -0.2800000
Delta= 1.0000000E-02 +Alpha0= 0.00 Beta0= 30.0000000

+kt1= -0.3700000 kt2= -4.0000000E-02 At=
5.5000000E+04 +Ute= -1.4800000 Ua1= 9.5829000E-10
Ub1= -3.3473000E-19 +Uc1= 0.00 Kt1l= 4.0000000E-09

C.4. 100NM HIGH-SPEED BPTM MODEL CARDS 105

Prt= 0.00

+Cj= 0.0015 Mj= 0.72 Pb= 1.25
+Cjsw= 2E-10 Mjsw= 0.37 Php= 0.773
+Cjgate= 2E-14 Cta= 0 Ctp= 0 +Pta=
0 Ptp= 0 JS=1.50E-08
+JSW=2.50E-13 N=1.0 Xti=3.0
+Cgdo=3.493E-10 Cgso=3.493E-10 Cgbo=0.0E+00
+Capmod= 2 NQSMOD= 0 Elm= 5
+Xpart= 1 cgsl= 0.582E-10 cgdl=
0.582E-10 +ckappa= 0.28 cf= 1.177e-10
clc= 1.0000000E-07 +cle= 0.6000000 Dlc= 2E-08
Dwc= 0 .ENDS .ENDL

.LIB BPTM100P_LIB .SUBCKT pmost Drain Gate Source Bulk
+ M=1 W=10e-6 AD=’(6e-07) * w’ PD=’2 * (6e-07)+w’ NRD=0
+ L=10e-6 AS=’(6e-07) * w’ PS=’2 * (6e-07)+w’ NRS=0

M1 Drain Gate Source Bulk BPTM100P_TYP + W=W L=L
AS=AS AD=AD PS=PS PD=PD M=M NRD=NRD NRS=NRS .model BPTM100P_TYP
PMOS +Level = 49

+Lint = 2.e-08 Tox = 2.5e-09 +Vth0 = -0.303 Rdsw = 300

+lmin=1.0e-7 lmax=1.0e-7 wmin=1.0e-7 wmax=1.0e-4 +Tref=27.0
version =3.1 +Xj= 4.0000000E-08 Nch= 1.0400000E+18
+lln= 1.0000000 lwn= 0.00
wln= 0.00 +wwn= 1.0000000 ll= 0.00
lw= 0.00 +lwl= 0.00 wint= 0.00
wl= 0.00 +ww= 0.00 wwl= 0.00
Mobmod= 1 +binunit= 2 xl= 0.00
xw= 0.00 +binflag= 0 Dwg= 0.00
Dwb= 0.00

+ACM= 0 ldif=0.00
hdif=0.00 +rsh= 7 rd= 0
rs= 0 +rsc= 0 rdc= 0

+K1= 0.3910000 K2= 1.0000000E-02
K3= 0.00 +Dvt0= 2.6700001 Dvt1= 0.5300000
Dvt2= 5.0000000E-02 +Dvt0w= 0.00 Dvt1w= 0.00
Dvt2w= 0.00 +Nlx= 7.5000000E-08 W0= 0.00
K3b= 0.00 +Ngate= 5.0000000E+20

+Vsat= 1.0500000E+05 Ua= -5.0000000E-10
Ub= 1.5000000E-18 +Uc= -2.9999999E-11 +Prwb= 0.00
Prwg= 0.00 Wr= 1.0000000 +U0=
5.5000000E-03 A0= 2.0000000 Keta=
4.0000000E-02 +A1= 0.00 A2= 0.9900000
Ags= -0.1000000 +B0= 0.00 B1= 0.00

+Voff= -7.0000000E-02 NFactor= 1.5000000
Cit= 0.00 +Cdsc= 0.00 Cdscb= 0.00
Cdscd= 0.00 +Eta0= 0.2500000 Etab= 0.00
Dsub= 0.8000000

+Pclm= 0.1000000 Pdiblc1= 1.2000000E-02

106 Model Cards For Simulation

Pdiblc2= 7.5000000E-03 +Pdiblcb= -1.3500000E-02 Drout=
0.9000000 Pscbe1= 8.6600000E+08 +Pscbe2=
1.0000000E-20 Pvag= -0.2800000 Delta=
1.0100000E-02 +Alpha0= 0.00 Beta0= 30.0000000

+kt1= -0.3400000 kt2= -5.2700000E-02
At= 0.00 +Ute= -1.2300000 Ua1= -8.6300000E-10
Ub1= 2.0000001E-18 +Uc1= 0.00 Kt1l=
4.0000000E-09 Prt= 0.00

+Cj= 0.0015 Mj= 0.7175511
Pb= 1.24859 +Cjsw= 2E-10 Mjsw= 0.3706993
Php= 0.7731149 +Cjgate= 2E-14 Cta= 9.290391E-04
Ctp= 7.456211E-04 +Pta= 1.527748E-03 Ptp= 1.56325E-03
JS=2.50E-08 +JSW=4.00E-13 N=1.0
Xti=3.0 +Cgdo=3.49E-10 Cgso=3.49E-10
Cgbo=0.0E+00 +Capmod= 2 NQSMOD= 0
Elm= 5 +Xpart= 1 cgsl= 0.582E-10
cgdl= 0.582E-10 +ckappa= 0.28 cf= 1.177e-10
clc= 5.4750000E-08 +cle= 6.4600000 Dlc= 2E-08
Dwc= 0 .ENDS .ENDL

C.5. 70NM HIGH-SPEED BPTM MODEL CARDS 107

C.5 70nm High-Speed BPTM Model Cards

*** --

*** BPTM 0.07 micron high speed technology Vtn=0.15 Vtp=-0.16

*** --

.LIB BPTM70HSN_LIB .SUBCKT nmosths Drain Gate Source
Bulk + M=1 W=10e-6 AD=’(6e-07) * w’ PD=’2 * (6e-07)+w’
NRD=0 + L=10e-6 AS=’(6e-07) * w’ PS=’2 * (6e-07)+w’
NRS=0 .param WOTn=’9.35338e-08-(4.19715e-15/l)-(1.50197e-14/w)’

M1 Drain Gate Source Bulk BPTM70HSN_TYP + W=W L=L
AS=AS AD=AD PS=PS PD=PD M=M NRD=NRD NRS=NRS

.model BPTM70HSN_TYP NMOS +Level = 49

+Lint = 1.6e-08 Tox = 1.6e-09 +Vth0 = 0.1902 Rdsw = 150

+lmin=7.0e-8 lmax=7.0e-8 wmin=0.7e-7 wmax=1.0e-4 +Tref=27.0
version =3.1 Xj= 2.9999999E-08 Nch= 1.2000000E+18 +lln= 1.0000000
lwn= 1.0000000 wln= 0.00 wwn= 0.00 +ll= 0.00 lw= 0.00 lwl=
0.00 wint= 0.00 wl= 0.00 +ww= 0.00 wwl= 0.00 Mobmod=1 binunit= 2
xl= 0.00 xw= 0.00 +Lmlt= 1 Wmlt= 1 binflag= 0 Dwg= 0.00 Dwb= 0.00

+ACM= 0 ldif=0.00 hdif=0.00 rsh= 6 rd= 0 rs= 0 rsc= 0 rdc= 0

+K1= 0.3700000 K2= 1.0000000E-02 K3= 0.00 +Dvt0= 1.3000000 Dvt1=
0.5000000 Dvt2= 2.9999999E-02 Dvt0w= 0.00 +Dvt1w= 0.00 Dvt2w= 0.00
Nlx= 7.0000000E-08 W0= 0.00 +K3b= 0.00 Ngate= 5.0000000E+20

+Vsat= 1.1500000E+05 Ua= 5.0000000E-10 Ub= 1.0000000E-18 Uc=
-2.9999999E-11 +Prwb= 0.00 Prwg= 0.00 Wr= 1.0000000 U0=
2.5000000E-02 A0= 1.5000000 +Keta= 4.0000000E-02 A1= 0.00 A2=
1.0000000 Ags= -1.0000000E-02 +B0= 0.00 B1= 0.00

+Voff= -0.1500000 NFactor= 1.5000000 Cit= 0.00 Cdsc= 0.00 Cdscb=
0.00 +Cdscd= 1.0000000E-14 Eta0= 0.2000000 Etab= 0.00 Dsub=
1.0000000

+Pclm= 0.2500000 Pdiblc1= 1.2000000E-02 Pdiblc2= 7.5000000E-03
+Pdiblcb= -1.3500000E-02 Drout= 1.5000000 Pscbe1= 8.6600000E+08
+Pscbe2= 1.0000000E-20 Pvag= -0.2800000 Delta= 1.0000000E-02
+Alpha0= 0.00 Beta0= 30.0000000

+kt1= -0.3700000 kt2= -4.0000000E-02 At= 5.5000000E+04 +Ute=
-1.4800000 Ua1= 9.5829000E-10 Ub1= -3.3473000E-19 +Uc1= 0.00 Kt1l=
4.0000000E-09 Prt= 0.00

+Cj= 0.0015 Mj= 0.72 Pb= 1.25 Cjsw= 2E-10 Mjsw= 0.37 +Php= 0.77
Cjgate= 2E-14 Cta= 0 Ctp= 0 Pta= 0 Ptp= 0 +JS=1.50E-08
JSW=2.50E-13 N=1.0 Xti=3.0 +Cgdo=4.094E-10 Cgso=4.094E-10
Cgbo=0.0E+00 Capmod= 2 +NQSMOD= 0 Elm= 5 Xpart= 1 cgsl= 1E-10
cgdl= 1E-10 +ckappa= 0.08 cf= 1.266e-10 clc= 1.0000000E-07 cle=
0.6000000 +Dlc= 1.6E-08 Dwc= 0 .ENDS .ENDL

.LIB BPTM70HSP_LIB .SUBCKT pmosths Drain Gate Source
Bulk + M=1 W=10e-6 AD=’(6e-07) * w’ PD=’2 * (6e-07)+w’

108 Model Cards For Simulation

NRD=0 + L=10e-6 AS=’(6e-07) * w’ PS=’2 * (6e-07)+w’
NRS=0

M1 Drain Gate Source Bulk BPTM70HSP_TYP + W=W L=L
AS=AS AD=AD PS=PS PD=PD M=M NRD=NRD NRS=NRS

.model BPTM70HSP_TYP PMOS +Level = 49

+Lint = 1.5e-08 Tox = 1.7e-09 +Vth0 = -0.213 Rdsw = 280

+lmin=7.0e-8 lmax=7.0e-8 wmin=0.7e-7 wmax=1.0e-4 +Tref=27.0
version =3.1 Xj= 2.9999999E-08 Nch= 1.2000000E+18 +lln= 1.0000000
lwn= 0.00 wln= 0.00 wwn= 1.0000000 +ll= 0.00 lw= 0.00 lwl= 0.00
wint= 0.00 wl= 0.00 ww= 0.00 +wwl= 0.00 Mobmod= 1 binunit= 2 xl=
0.00 xw= 0.00 +Lmlt= 1 Wmlt= 1 binflag= 0 Dwg= 0.00 Dwb= 0.00

+ACM= 0 ldif=0.00 hdif=0.00 rsh= 7 rd= 0 rs= 0 rsc= 0 rdc= 0

+K1= 0.3800000 K2= 1.0000000E-02 K3= 0.00 Dvt0= 2.2000000 +Dvt1=
0.6500000 Dvt2= 5.0000000E-02 Dvt0w= 0.00 Dvt1w= 0.00 +Dvt2w= 0.00
Nlx= 8.0000000E-08 W0= 0.00 K3b= 0.00 Ngate= 5.0000000E+20

+Vsat= 8.5000000E+04 Ua= 1.8000000E-09 Ub= 3.0000000E-18 +Uc=
-2.9999999E-11 Prwb= 0.00 Prwg= 0.00 Wr= 1.0000000 +U0=
1.4500000E-02 A0= 1.2000000 Keta= 4.0000000E-02 +A1= 0.00 A2=
0.9900000 Ags= -0.1000000 B0= 0.00 B1= 0.00

+Voff= -0.1500000 NFactor= 1.2000000 Cit= 0.00 Cdsc= 0.00 +Cdscb=
0.00 Cdscd= 0.00 Eta0= 0.2700000 Etab= 0.00 Dsub= 0.9500000

+Pclm= 0.5500000 Pdiblc1= 1.2000000E-02 Pdiblc2= 7.5000000E-03
+Pdiblcb= -1.3500000E-02 Drout= 0.9000000 Pscbe1= 8.6600000E+08
+Pscbe2= 1.0000000E-20 Pvag= -0.2800000 Delta= 1.0100000E-02
+Alpha0= 0.00 Beta0= 30.0000000

+kt1= -0.3400000 kt2= -5.2700000E-02 At= 0.00 Ute= -1.2300000
+Ua1= -8.6300000E-10 Ub1= 2.0000001E-18 Uc1= 0.00 +Kt1l=
4.0000000E-09 Prt= 0.00

+Cj= 0.0015 Mj= 0.72 Pb= 1.25 Cjsw= 2E-10 Mjsw= 0.37 +Php= 0.77
Cjgate= 2E-14 Cta= 0 Ctp= 0 Pta= 0 Ptp= 0 +JS=1.50E-08
JSW=2.50E-13 N=1.0 Xti=3.0 +Cgdo=3.853E-10 Cgso=3.853E-10
Cgbo=0.0E+00 Capmod= 2 +NQSMOD= 0 Elm= 5 Xpart= 1 cgsl= 0.6422E-10
cgdl= 0.6422E-10 +ckappa= 0.08 cf= 1.266e-10 clc= 1.0000000E-07
cle= 0.6000000 +Dlc= 1.5E-08 Dwc= 0 .ENDS .ENDL

C.6. 70NM LOW-LEAKAGE BPTM MODEL CARDS 109

C.6 70nm Low-Leakage BPTM Model Cards

*** --

*** BPTM 0.07 micron low leakage technology Vtn = 0.35V Vtp = 0.30V

*** --

.LIB BPTM70LLN_LIB .SUBCKT nmostll Drain Gate Source
Bulk + M=1 W=10e-6 AD=’(6e-07) * w’ PD=’2 * (6e-07)+w’
NRD=0 + L=10e-6 AS=’(6e-07) * w’ PS=’2 * (6e-07)+w’
NRS=0 .param WOTn=’9.35338e-08-(4.19715e-15/l)-(1.50197e-14/w)’

M1 Drain Gate Source Bulk BPTM70LLN_TYP + W=W L=L
AS=AS AD=AD PS=PS PD=PD M=M NRD=NRD NRS=NRS

.model BPTM70LLN_TYP NMOS +Level = 49

+Lint = 1.6e-08 Tox = 1.6e-09 +Vth0 = 0.3902 Rdsw = 150

+lmin=7.0e-8 lmax=7.0e-8 wmin=0.7e-7 wmax=1.0e-4 +Tref=27.0
version =3.1 Xj= 2.9999999E-08 Nch= 1.2000000E+18 +lln= 1.0000000
lwn= 1.0000000 wln= 0.00 wwn= 0.00 +ll= 0.00 lw= 0.00 lwl=
0.00 wint= 0.00 wl= 0.00 +ww= 0.00 wwl= 0.00 Mobmod=1 binunit= 2
xl= 0.00 xw= 0.00 +Lmlt= 1 Wmlt= 1 binflag= 0 Dwg= 0.00 Dwb= 0.00

+ACM= 0 ldif=0.00 hdif=0.00 rsh= 6 rd= 0 rs= 0 rsc= 0 rdc= 0

+K1= 0.3700000 K2= 1.0000000E-02 K3= 0.00 +Dvt0= 1.3000000 Dvt1=
0.5000000 Dvt2= 2.9999999E-02 Dvt0w= 0.00 +Dvt1w= 0.00 Dvt2w= 0.00
Nlx= 7.0000000E-08 W0= 0.00 +K3b= 0.00 Ngate= 5.0000000E+20

+Vsat= 1.1500000E+05 Ua= 5.0000000E-10 Ub= 1.0000000E-18 Uc=
-2.9999999E-11 +Prwb= 0.00 Prwg= 0.00 Wr= 1.0000000 U0=
2.5000000E-02 A0= 1.5000000 +Keta= 4.0000000E-02 A1= 0.00 A2=
1.0000000 Ags= -1.0000000E-02 +B0= 0.00 B1= 0.00

+Voff= -0.1500000 NFactor= 1.5000000 Cit= 0.00 Cdsc= 0.00 Cdscb=
0.00 +Cdscd= 1.0000000E-14 Eta0= 0.2000000 Etab= 0.00 Dsub=
1.0000000

+Pclm= 0.2500000 Pdiblc1= 1.2000000E-02 Pdiblc2= 7.5000000E-03
+Pdiblcb= -1.3500000E-02 Drout= 1.5000000 Pscbe1= 8.6600000E+08
+Pscbe2= 1.0000000E-20 Pvag= -0.2800000 Delta= 1.0000000E-02
+Alpha0= 0.00 Beta0= 30.0000000

+kt1= -0.3700000 kt2= -4.0000000E-02 At= 5.5000000E+04 +Ute=
-1.4800000 Ua1= 9.5829000E-10 Ub1= -3.3473000E-19 +Uc1= 0.00 Kt1l=
4.0000000E-09 Prt= 0.00

+Cj= 0.0015 Mj= 0.72 Pb= 1.25 Cjsw= 2E-10 Mjsw= 0.37 +Php= 0.77
Cjgate= 2E-14 Cta= 0 Ctp= 0 Pta= 0 Ptp= 0 +JS=1.50E-08
JSW=2.50E-13 N=1.0 Xti=3.0 +Cgdo=4.094E-10 Cgso=4.094E-10
Cgbo=0.0E+00 Capmod= 2 +NQSMOD= 0 Elm= 5 Xpart= 1 cgsl= 1E-10
cgdl= 1E-10 +ckappa= 0.08 cf= 1.266e-10 clc= 1.0000000E-07 cle=
0.6000000 +Dlc= 1.6E-08 Dwc= 0

.ENDS .ENDL

110 Model Cards For Simulation

.LIB BPTM70LLP_LIB .SUBCKT pmostll Drain Gate Source
Bulk + M=1 W=10e-6 AD=’(6e-07) * w’ PD=’2 * (6e-07)+w’
NRD=0 + L=10e-6 AS=’(6e-07) * w’ PS=’2 * (6e-07)+w’
NRS=0

M1 Drain Gate Source Bulk BPTM70LLP_TYP + W=W L=L
AS=AS AD=AD PS=PS PD=PD M=M NRD=NRD NRS=NRS

.model BPTM70LLP_TYP PMOS +Level = 49

+Lint = 1.5e-08 Tox = 1.7e-09 +Vth0 = -0.353 Rdsw = 280

+lmin=7.0e-8 lmax=7.0e-8 wmin=0.7e-7 wmax=1.0e-4 +Tref=27.0
version =3.1 Xj= 2.9999999E-08 Nch= 1.2000000E+18 +lln= 1.0000000
lwn= 0.00 wln= 0.00 wwn= 1.0000000 +ll= 0.00 lw= 0.00 lwl= 0.00
wint= 0.00 wl= 0.00 ww= 0.00 +wwl= 0.00 Mobmod= 1 binunit= 2 xl=
0.00 xw= 0.00 +Lmlt= 1 Wmlt= 1 binflag= 0 Dwg= 0.00 Dwb= 0.00

+ACM= 0 ldif=0.00 hdif=0.00 rsh= 7 rd= 0 rs= 0 rsc= 0 rdc= 0

+K1= 0.3800000 K2= 1.0000000E-02 K3= 0.00 Dvt0= 2.2000000 +Dvt1=
0.6500000 Dvt2= 5.0000000E-02 Dvt0w= 0.00 Dvt1w= 0.00 +Dvt2w= 0.00
Nlx= 8.0000000E-08 W0= 0.00 K3b= 0.00 Ngate= 5.0000000E+20

+Vsat= 8.5000000E+04 Ua= 1.8000000E-09 Ub= 3.0000000E-18 +Uc=
-2.9999999E-11 Prwb= 0.00 Prwg= 0.00 Wr= 1.0000000 +U0=
1.4500000E-02 A0= 1.2000000 Keta= 4.0000000E-02 +A1= 0.00 A2=
0.9900000 Ags= -0.1000000 B0= 0.00 B1= 0.00

+Voff= -0.1500000 NFactor= 1.2000000 Cit= 0.00 Cdsc= 0.00 +Cdscb=
0.00 Cdscd= 0.00 Eta0= 0.2700000 Etab= 0.00 Dsub= 0.9500000

+Pclm= 0.5500000 Pdiblc1= 1.2000000E-02 Pdiblc2= 7.5000000E-03
+Pdiblcb= -1.3500000E-02 Drout= 0.9000000 Pscbe1= 8.6600000E+08
+Pscbe2= 1.0000000E-20 Pvag= -0.2800000 Delta= 1.0100000E-02
+Alpha0= 0.00 Beta0= 30.0000000

+kt1= -0.3400000 kt2= -5.2700000E-02 At= 0.00 Ute= -1.2300000
+Ua1= -8.6300000E-10 Ub1= 2.0000001E-18 Uc1= 0.00 +Kt1l=
4.0000000E-09 Prt= 0.00

+Cj= 0.0015 Mj= 0.72 Pb= 1.25 Cjsw= 2E-10 Mjsw= 0.37 +Php= 0.77
Cjgate= 2E-14 Cta= 0 Ctp= 0 Pta= 0 Ptp= 0 +JS=1.50E-08
JSW=2.50E-13 N=1.0 Xti=3.0 +Cgdo=3.853E-10 Cgso=3.853E-10
Cgbo=0.0E+00 Capmod= 2 +NQSMOD= 0 Elm= 5 Xpart= 1 cgsl= 0.6422E-10
cgdl= 0.6422E-10 +ckappa= 0.08 cf= 1.266e-10 clc= 1.0000000E-07
cle= 0.6000000 +Dlc= 1.5E-08 Dwc= 0 .ENDS .ENDL

D MINIMAL STATIC CMOS CELL LIBRARY

This appendix contains the description of the minimized (CyHP[33]) Static CMOS Cell Library
used for comparisons in this work. The 20 cells are presented here, followed by the simulation results
from the HSPICE simulations, and finally the transistors netlists used for simulation.

D.1 CyHP - Compact yet High Performance
The Compact yet High Performance Library for Short Time-to-Market with New Technolo-
gies paper [33] introduces the work the authors have done to make a minimized static
CMOS cell library. The CyHP library includes only 11 or 20 cells depending on how much
delay and power overhead one would be willing to accept. The delay overhead is only 2%
(5% of only 11 cells are being used) in comparison with a 400 cell library, and the power
overhead is around 17% for the 20-cell library. The process in which these cells are built is
not noted in the paper, but one must assume, that the power figures will be different with
current processes. Yet, the work of finding a minimizes set of cells is still useful, as it helps
defining a minimized set in this work also. Power and delay figures are measured in this
appendix for comparison purposes.

The types, names, descriptions and equivalent names in the STM 180nm HCMOS8 cell
library (LL for low-leakage, HS for high-speed) for the 20 cells are:

Type Name Description STM name
Flip-flops D-FF x1 Flip-flop 1x drive FDM1HS
Flip-flops D-FF x2 Flip-flop 2x drive FDM1HSD
Flip-flops D-FFN x1 Flip-flop 1x drive, negative edge triggered n/a
Inverters INV x1 Inverter, 1x drive IVHS
Inverters INV x2 Inverter, 2x drive IVHSP
Inverters INV x4 Inverter, 4x drive IVHSx4
Inverters INV x8 Inverter, 8x drive IVHSx8
Inverters INV x16 Inverter, 16x drive IVHSx16
Primitive gates 2-NAND x1 2-input NAND gate, 1x drive ND2HS
Primitive gates 2-NAND x2 2-input NAND gate, 2x drive ND2HSP
Primitive gates 2-NOR x1 2-input NOR gate, 1x drive NR2HS
Primitive gates 2-NOR x2 2-input NOR gate, 2x drive NR2HSP
Primitive gates 3-NAND x1 3-input NAND gate, 1x drive ND3HS
Primitive gates 3-NOR x1 3-input NOR gate, 1x drive NR3HS
Primitive gates 2-XNOR x1 2-input XNOR gate, 1x drive ENHS
Compound gates 2-InvNAND x2 2-input NAND gate, 1 inverted input, 2x drive ND2AHSP
Compound gates 2-InvNOR x2 2-input NOR gate, 1 inverted input, 2x drive NR2AHSP
Compound gates 2-AND-NOR x1 3-input gate: (A AND B) NOR C, 1x drive AO6HS
Compound gates 2-OR-NAND x1 3-input gate: (A OR B) NAND C, 1x drive AO7HS
Multiplexors 2-MUXInv x1 2-input multiplexor, 1 inverted input MUX2INHS

Figure D.1: The CyHP 20 cell library simulated with 70nm BPTM modelcards. All mini-
mum sized transistors.

The propagation delays in Table D.1 are measured as the worst case propagation delay
from the input reaches 90% of its final value till the output has reached 90% of its final
value. this is shown in Figure D.2. The input vectors contain the inputs (A, B, C, ...) in that
order, where ’A’ is the input connected to the transistor closest to the output in a transistor
stack. For flip-flops the two bits given in this table represents the current output state of the
register and the next state half-way propagated through the register.

111

112 Minimal Static CMOS Cell Library

Circuit Model card Average leak Max. leak. Input Min.leak. Input Tpd fall Tpd rise
and-nor3 70nm HS 10.15 16.23 (010) 4.32 (111) 70 190
or-nand3 70nm HS 5.32 11.6 (100) 3.98 (010) 58 90
inv-nand x2 70nm HS 19.01 27.48 (10) 9.2 (01) 52 26
inv-nor x2 70nm HS 18.7 31.2 (01) 12.02 (10) 20 80
nand3 70nm HS 3.51 11.82 (111) 0.346 (000) 78 58
mux2 70nm HS 16.4 19.6 (001) 13.9 (000) 70 61
nand2 70nm HS 4.6 7.9 (11) 0.668 (00) 28 29
nand2 x2 70nm HS 9.2 15.8 (11) 1.34 (00) 24 24
nor3 70nm HS 3.2 17.48 (000) 0.085 (111) 25 90
nor x1 70nm HS 4.48 11.65 (00) 0.182 (11) 17 44
nor x2 70nm HS 8.9 23.3 (00) 0.363 (11) 14 40
xnor 70nm HS 17.7 21.47 (00) 15.8 (11) 58 121
inv 70nm HS 4.85 5.8 (0) 3.95 (1) 20 30
inv x2 70nm HS 9.78 11.66 (0) 7.9 (1) 18 27
inv x4 70nm HS 19.55 23.3 (0) 15.8 (1) 18 25
inv x8 70nm HS 39.13 46.6 (0) 31.6 (1) 17 23
inv x16 70nm HS 78.43 93.6 (0) 63.26 (1) 16 20
dff + 70nm HS 24.45 25.4 (01) 23.5 (00) 70 68
dff + x2 70nm HS 29 27.5 (01) 31.2 (10) 61 70
dff - 70nm HS 24.45 25.4 (00) 23.5 (01) 70 68

Table D.1: Minimum, maximum and average leakage current and propagation delays for 20 static
CMOS cells simulated with 70 nm High Speed BPTM model cards. All currents are in nano-Amps
and all times in pico-seconds.

VSS

VDD
VDD

VSS

90%of V

10% of V

DD

DD

T Trise fall

OutIn

Figure D.2: Measuring rising and falling output propagation delay

D.1. CYHP - COMPACT YET HIGH PERFORMANCE 113

A

B

A B

A

B

A

B

A A

B B

A

B

A B C

ClkClk
ClkClk

Clk

Clk

Clk

Clk

D_FF

XNOR OR_NAND

C A

B

A B

C

NOR NOR3

A B

A

B

A

B

C

A B C

B

S

A

S S

B A

NAND NAND3 MUX

INV

A B

A

B

INV_NAND INV_NOR

B

A

A B

C

A B

CA

B

AND_NOR3

S

Figure D.3: Transistor netlists for the CyHP 20 cell library. Different drive strength are modelled
as multiplying the width of the output driving transistors with the drive strength factor. Negative
edge triggered flip-flops were built by replacing Clk with Clk

114 Minimal Static CMOS Cell Library

E A MACROCMOS CELL

E.1 An example MacroCMOS cell

For the purpose of demonstrating the optimizations possible by building MacroCMOS
cells, this example has been constructed. A logic function was derived by arbitrarily se-
lecting 2- and 3-input logic gates using as many different logic functions as possible. Inputs
to the gates were assigned pseudo-randomly also.

The logic expression is:

Z =(((A AND B)OR(C NAND D))AND(C NAND E)AND(D NOR F NOR G))XOR (H
OR I)

which in logic gates is presented like this:

A

B

C

D

C

E

H

I

Z

D

F

G

Figure E.1: The basic design

E.1.1 Synopsys optimizations

To explore what optimizations are possible with current synthesis tools and cell libraries,
Synopsys Design Compiler was used to optimize the basic design logically.

The result was a design, where two large inverting gates, were used combined with four
smaller gates. This design, depicted in Figure E.2, is the best solution under relaxed timing
constraints. If the timing would be set much tighter, Synopsys comes up with the design in
Figure E.3. Here, almost only NAND-gates have been used due to them being the fastest
multi-input logic gate in the cell library.

A

B

C

D

F

G

E

H

I

Z

Figure E.2: The basic design optimized under loose timing bounds

115

116 A MacroCMOS Cell

A

B

F

G

D

E

C

I

H

Z

Figure E.3: The basic design optimized for speed

E.1.2 Leakage evaluation of the three designs

As no 70nm cell library is available to Synopsys, the CyHP cell library from Appendix D is
used to evaluate the leakage of the designs. Whenever a cell is not present in the CyHP cell
library the leakage of the cell is approximated from reconfiguration of the CyHP cells. For
example can an AND-gate be approximated by a NAND-gate with inverted output. The
leakage will then be the leakage of a NAND-gate and a inverter together.

Further, a NAND4-gate was simulated for fairness, as this gate most probably would be
in any cell library. In the ’Synopsys optimization’ the two larger cells were also designed
to show the difference between the full small-cell implementation and the implementation
with the two larger cells.

Design Average leakage Minimum leakage
Basic gate 66.53 nA 45.73 nA
Synopsys optimization 44.27 nA 28.3 nA
Synopsys opt. for speed 56.83 nA 38.58 nA

Where the designs were not simulated (but built from the CyHP table) the minimum
leakage was evaluated by hand, by assessing the best low-leakage input vector. It was con-
firmed, that larger cells quite reduce the work load of finding such a vector.

E.1.3 The MacroCMOS implementation

The cell was now implemented in a MacroCell fashion. The first attempt was to draw the
XOR gate and then replace the respective pull-up and pull-down paths with corresponding
paths from the other gates. That is, if the output α from logic gate β is connected to a pMOS
transistors gate, this pMOS transistor is replaced by the dual of β´s pull-down network.

Iteratively repeating this procedure yields one large gate that implements the entire
logic block. The transistor netlist is presented in Figure E.4.

This block will definitely leak less than the original gate due to the decreased number
of paths and the increased number of transistor on each path. But as the XOR gate was
the skeleton for construction of the gate, every input is required in both inverted and non-
inverted form. Inverting all inputs will cost as much leakage current as the basic gate.

The logic block was therefore built in a more inverter-regarding way. This was done by
dividing the logic into larger blocks, that can be built as inverting blocks, see Figure E.5.
The big logic block is then optimized by inverting it on the output and then pushing the
inverters back towards the inputs by inverting functions and inputs. This implementation
is called the MacroCMOS implementation. The netlist of it is depicted in Figure E.6. With
this dividing of the logic block, the design was simulated for leakage. The block was a bit
slower than the original design, so it was sped up a bit by transistor sizing.

E.1. AN EXAMPLE MACROCMOS CELL 117

H I

VDD

H

I

A

B

E C

D

F

G

A B

C

D

E

C D F G

C D

H I

G

F

D

C E

A

B

C D

VSS

H

I

A B

D

C C

E

D F G

Z

Figure E.4: The entire logic block as one MacroCMOS transistor netlist

118 A MacroCMOS Cell

A

B

C

D

C

E

D

F

G

H

I

Z

Figure E.5: Dividing the logic into larger areas in a beneficial way.

A B

C

D

C

E

D F G

D

F

G

C E

B

A

C D

VDD

T

VSS

VDD

I H H

IT

T

T

HI

T

I

H

Z

VSS

Figure E.6: The transistor netlist of the logic divided into two large blocks.

Figure E.7 shows simulation results. The top line (the dotted) represents the distribution
of leakage currents at all 512 input states for the Synopsys logic optimized version (not the
speed-optimized version). The much darker curve represents the results from the MacroC-
MOS version optimized to match the same speed as the Synopsys optimized version.

A variety of leakage optimizations can be done to the MacroCMOS block. By inspection
of Figure E.6 transistors are located that can be sized for low leakage. The three D, F and
G transistors in parallel have relative fast pull-down in comparison with the serialized
transistor. By increasing the length of these three transistors the total leakage is reduced
considerably without affecting the delay of the cell beyond the equivalent delay of the
Synopsys optimized version.

By iteratively adjusting the sizings of the transistors to match the timing of the Syn-
opsys optimized version, optimizations were graduately achieved. Only the most obvious
optimization was done since the workload of manually simulating and sizing transistors is
very high. Clearly this has to be automated in a synthesis tool. The last and lowest curve
represents results from simulating the MacroCMOS gate after leakage optimizations.

Table E.8 summarizes the results from these simulations.

E.1. AN EXAMPLE MACROCMOS CELL 119

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

6
5
0

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

I
n
p
u
t

Leakage in nA

L
e
a
k
a
g
e

v
e
r
s
u
s

i
n
p
u
t

S
yn

op
sy

s
D

es
ig

n
C

om
pi

le
r

Im
pr

ov
ed

 M
ac

ro
C

M
O

S
 g

at
e

B
as

ic
 M

ac
ro

C
M

O
S

 g
at

e

Figure E.7: Leakage current distribution with all input 512 (9 inputs) sorted by leakage value.

Design Average leakage Minimum leakage
Synopsys version 44.27 nA 29.1 nA
MacroCMOS basic 38.12 nA 28.2 nA
MacroCMOS opt. for low leakage 24.33 nA 17.2 nA

Figure E.8: Synopsys Design Compiler versus MacroCMOS

120 A MacroCMOS Cell

F CONTENTS OF INCLUDED DISK

F.1 The Contents of the Included Disk
The included disk provides the used SPICE simulation files, transistor model cards etc.
together with a digital version of this report.

All files are compressed into the file disk.tar.gz. Here a list of the contents is given:

/Report - all files used to write this report

../FIG - all figures in this report

../PoC - not-included Proof-of-Concept of MacroCMOS

../Report.pdf - digital version of the report

/netlists - folder for all netlists/SPICE files

/netlists/allTransistors.lib - all modelcards in a library

../20cells - netlists for the 20 CyHP cells

../simulationCases - folder for the simulation work

../../20cellsSimulation - the simulation of the 20 cells

../../../LeakageEvaluation - evaluation of leakage for the 20 cells

../../../TpdEvaluation - evaluation of propagation delay of the 20 cells

../../CPL - the simulation of CPL

../../MacroCMOS - the simulation of MacroCMOS

../../Domino - the simulation of Domino logic

../../LeakageSurvey - the simulation of the introductory leaking device survey

../../MTCMOS - the simulation of MTCMOS

If problems should be encountered reading the disk, the files will also be available on
the following URL: http://www.izaq.dk/pep/disk.tar.gz

121

122 Contents of Included Disk

BIBLIOGRAPHY

[1] N. H. E. Weste and K. Eshraghian, Principles of CMOS VLSI Design. Addison-Wesley
Pubslishing Company, Second Edition ed., 1993.

[2] Martin Hans, “Architectural Aspects of Design for Low Static Power Consumption,”
2004.

[3] Michael Kristensen, “Incorporating Leakage Current Considerations in Logic Synthe-
sis,” 2004.

[4] STMicroelectronics, “CORELIB8DHS / CORELIB8DLL HCMOS8D 3.1 Users Man-
ual,” 2001.

[5] Synopsys Corporation, Library Compiler: Modelling Timing and Power. 2003.

[6] K. Roy, S. Mukhopadhyay, and H. Mahmoodi-Meimand, “Leakage Current In Deep-
Submicron CMOS Circuits,” Journal of Circuits, Systems and Computers, vol. 11, no. 6,
pp. 575–600, 2002.

[7] N. sung koim, T. Austin, D. Blaauw, T. Mudge, K. Flautner, J. S. Hu, M. J. Ir-
win, M. Kandemir, and V. Narayanon, “Leakage Current: Moore´s Law Meets Static
Power,” IEEE Computer Society, 2003.

[8] C. Svensson and A. Alvandpour, “Low Power and Low Voltage CMOS Digital Circuit
Techniques,” ISPLED, 1998.

[9] G. Sery, S. Borkar, and V. De, “Life Is CMOS: Why Chase the Life After?,” Intel Corpo-
ration, 2001.

[10] V. I. Authors, “International Technology Roadmap for Semiconductors 2003 Editions,”
2003.

[11] S. Thompson, P. Packan, and Mark Bohr, Intel Corporation,
“MOS Scaling Transistor Challenges for the 21st Century,”
http://www.intel.com/technology/itj/q31998/articles/art_3.htm, 2003.

[12] C. K. And, “Dynamic VTH Scaling Scheme for Active Leakage Power Reduction,”
vol. citeseer.ist.psu.edu/572435.html, 1998.

[13] Z. Chen, L. Wei, M. Johnson, and K. Roy, “Estimation of standby leakage power in
CMOS circuits considering accurate modeling of transistor stacks,” International Sym-
posium on Low Power Electronics and Design, vol. Proceedings of the 1998 international
symposium on Low power electronics and design, 1998.

[14] G. McFarland and M. Flynn, “Limits of Scaling MOSFETs,” 1995.

[15] Y. Zhang, D. Parikh, and K. S. et.al., “HotLeakage: A Temperature-Aware Model of
Subthreshold and Gatge Leakage for Architechts,” 2003.

[16] D. Lee and W. K. et.al., “Simultaneous Subthreshold and Gate-Oxide Tunnelling Leak-
age Current Analysios in Nanometer CMOS Desing,” 2003.

[17] X. Xiand, J. He, M. Dunga, and B. Heydari, “The Berkeley Predictive Technology
Model3 ver. 3.0 Homepage,” http://www-device.eecs.berkeley.edu/ bsim3.html, 1998.

123

Bibliography 124

[18] C. Hu, “BSIM Model for Circuit Design Using Advanced Technologies,” 2001 Sympo-
sium on VLSI Circuits Digest of Technical Papers, 2001.

[19] D. Sylvester and K. Keutzer, “Rethinking Deep-Submicron Circuit Design,” Computer,
vol. 32, no. 11, pp. 25–33, 1999.

[20] W. Liu, X. Jin, and J. C. et.al., “BSIM 3v3.2.2 MOSFET Model,” Department of Electrical
Engineering and Computer Sciences, vol. University of California, Berkeley, 1999.

[21] F. Stassen, “Design Rules and Electrical Parameters for a 0.18 micron CMOS Process,”
Informatics and Mathematical Modelling, Computer Science and Engineering, Technical Uni-
versity of Denmark, 2004.

[22] J. M. Rabaey and M. Pedram, Low Power Design Methodologies. 1996.

[23] J. Kao and A. Chandrakasan, “Mtcmos sequential circuits,” Proceedings of the 27th Eu-
ropean Solid-State Circuits Conference, pp. 332–335, 2001.

[24] N. Hanchate and N. Ranganathan, “LECTOR: A Technique for Leakage Reduction in
CMOS Circuits,” 2004.

[25] A. Ghani, “High-speed low-power design in cmos,” Master’s Thesis at Department of
Informatics and Mathematical Modelling, Technical University of Denmark, 2002.

[26] F. Stassen, Practical Aspects of CMOS Layout. Technical University of Den-
mark/Department of Information Technology, 1996.

[27] Q. Wang and S. B. K. Vrudhula, “Static Power Optimization of Deep Submicron CMOS
Circuits for Dual Vt Technology,” 1998.

[28] J. P. Halter and F. N. Najm, “A Gate-Level Power Reduction Method for Ultra-Low-
Power CMOS Circuits,” 1997.

[29] D. V. Campenhout, T. Mudge, and K. A. Sakallah, “Timing Verification of Sequential
Dynamic Circuits,” 1999.

[30] S. K. Karandikar and S. S. Spatnekar, “Technology Mapping for SOI Domino Logic
Incorporating Solutions for the Parasitic Bipolar Effect,” 2001.

[31] A. P. Chandrakasan, S. Sheng, and F. I. (Robert W. Brodersen, “Low-Power CMOS
Digital Design,” IEEE Journal of Solid-State Circuits, vol. 27, no. 4, pp. 473–484, 1992.

[32] R. Zimmermann and W. Fichtner, “Low-Power Logic Styles: CMOS Versus Pass-
Transistor Logic,” IEEE Journal of Solid-State Circuits, vol. 32, no. 7, pp. 1–12, 1997.

[33] N. M. Duc and T. Sakurai, “Compact yet high performance (CyHP) library for short
time-to-market with new technologies,” in Proceedings of the 2000 conference on Asia
South Pacific design automation, pp. 475–480, ACM Press, 2000.

[34] J. Kao, Chandrakasan, and D. Antoniandis, “Transistor Sizing Issues and Tool For
Multi-Threshold CMOS Technology,” Proc. of DAC’97, vol. June 1997, 1997.

[35] K. Y. et. al., “A 3.8 ns CMOS 16 x 16 multiplier using complementary pass-transistor
logic,” IEEE Journal of Solid-State Circuits, vol. 25, pp. 388–395, 1990.

[36] F. Hamzaoglu and M. R. Stan, “Circuit-level techniques to control gate leakage for
sub-100nm CMOS,” in Proceedings of the 2002 international symposium on Low power
electronics and design, pp. 60–63, ACM Press, 2002.

[37] Y. Xu, Z. Luo, and X. Li, “A Maximum Total Leakage Current Estimation Method,”
2004.

[38] S. K. Karandikar and S. S. Sapatnekar, “Technology Mapping for SOI Domino Logic -
Incorporating Solutions for the Parasitic Bipolar Effect,” DAC, vol. June 18-22, 2001.

Bibliography 125

[39] M. Lefebvre, D. Marple, and C. Sechen, “The Future of Custom Cell Generation in
Physical Synthesis,” 34th Design Automation Conference, 1997.

[40] T. Ekebrand and N. Funke, “A Parameterizable Standard Cell Generator,” 2003.

[41] D. Bhattacharya and V. Boppana, “Design Optimization with Automated Flex-Cell
Creation,” 2002.

[42] Various Authors from Intel Corporation, “Library Architecture Challenges for Cell-
Based Design,” Intel Technology Journal, vol. 08, no. 01, pp. 61–67, 2004.

