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AbstratThe subjet of this master thesis is non-linear optimization using the SpaeMapping method with an interpolating surrogate model.The Spae Mapping method is useful in optimization problems, where the�ne model we wish to optimize is very omputationally expensive. Theinterpolating surrogate is based on a heap oarse model and serves as areplaement for the expensive model in order to minimize the number offuntion evaluations.An important part of the Spae Mapping algorithm is the Parameter Ex-tration, whih involves minimization of the residual between the surrogateand the �ne model, whih we aim to align. The Parameter Extration prob-lem does not always have a unique solution, and di�erent formulations arepresented in order to ensure this uniqueness.The thesis provides a presentation of the mathematial theory followed by theSpae Mapping algorithm. We then make a number of theoretial and pra-tial investigations onerning di�erent formulations of the residual de�ningthe Parameter Extration problem.The step length in forward di�erene approximations is analyzed, and theoptimal step length suited for the onsidered problems is found to be approx-imately 10−5. We make an analysis of the solutions to underdetermined andoverdetermined problems, hereby an analysis of the Marquardt equationsand of least squares problems with and without weighting fators. We lookat the e�et of adding a regularization term to the residual vetor and �nd,that this residual formulation orresponds to a speial ase of the Marquardtequations with the damping parameter 1 + µ.The presented Spae Mapping algorithm is tested in the various versions onthree test problems, and the results are ompared. The onvergene is fasterthan with lassial optimization algorithms. It is not possible to make gen-eral onlusions on the performane of the di�erent algorithm versions basedon the inluded test problems.Key words: Spae Mapping, non-linear optimization, interpolating sur-rogates, least squares problems, weighting fators, underdetermined and



vioverdetermined problems.



vii
ResuméDette eksamensprojekt omhandler ikke-lineær optimering med brug af SpaeMapping-metoden med interpolerende surrogater.Spae Mapping-metoden er anvendelig i optimeringsproblemer ved optime-ring af en �n model, som er meget dyr beregningsmæssigt. Det interpo-lerende surrogat er baseret på en billig grov model og erstatter den �nemodel i optimeringsproessen, hvorved vi mindsker antallet af tidskrævendefunktionsevalueringer.Et vigtigt delproblem i forbindelse med Spae Mapping-algoritmen er Pa-rameter-Ekstraktion, som involverer minimering af residuet mellem surro-gatet og den �ne model, som vi ønsker at mathe. Parameter-Ekstraktions-problemet har ikke altid en entydig løsning, og vi præsenterer forskelligeformuleringer med det formål at sikre en entydig løsning.Projektet præsenterer den matematiske teori efterfulgt af Spae Mapping-algoritmen. Herefter laves en række teoretiske og praktiske undersøgelservedrørende de forskellige formuleringer af residuet, som de�nerer Parameter-Ekstraktions-problemet.Skridtlængden i di�erenstilnærmelser analyseres, og den optimale skridt-længde, som er velegnet til de her betragtede problemer, bestemmes tilomkring 10−5. Vi analyserer løsninger til underbestemte og overbestemteproblemer, herunder Marquardts ligninger og mindste-kvadraters problemermed og uden vægtfaktorer. Vi betragter e�ekten af at medtage et regulari-seringsled i residuet, og �nder at en sådan residue-formulering svarer til etspeialtilfælde af Marquardts ligninger med dæmpningsparameteren 1 + µ.De forskellige versioner af den beskrevne Spae Mapping-algoritme afprøvespå tre testproblemer, og resultaterne sammenlignes. Konvergensen er hur-tigere end for klassiske optimeringsmetoder benyttet direkte på den �nemodel. Det er ikke muligt, at foretage generelle konklusioner om algorit-mens præstationer på basis af de her inkluderede testproblemer.Nøgleord: Spae Mapping, ikke-lineær optimering, interpolerende surro-gater, mindste-kvadraters problemer, vægtfaktorer, underbestemte og over-bestemte problemer.
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1
Chapter 1Introdution
1.1 Introdution to the Spae Mapping MethodThe Spae Mapping method is an optimization method used for engineeringdesign problems. The tehnique is useful, when the model that we wish tooptimize is omputationally expensive. In this ase the use of a lassial op-timization method diretly on the �ne model would result in a large numberof funtion evaluations, and is onsidered impossible in pratie. The goal isto lower the number of time-onsuming �ne model evaluations.The Spae Mapping method relies on the existene of two funtions mod-elling the same system: the �ne model, whih is very time-onsuming toevaluate, and a oarse model, whih is heap to evaluate. We wish to on-strut a surrogate model based on the oarse model, and let the surrogateserve as a replaement for the �ne model in the optimization proess. The�ne model is suessively evaluated in order to onstrut an interpolatingsurrogate model, whih is then used for optimization. The surrogate modelis at least as aurate as the oarse model. By aligning the surrogate modelwith the �ne model in more than one point we seek global as well as loalagreement of the two models.The interpolating surrogate is onstruted as a omposed mapping onsistingof both an input and an output mapping. This mapping is the Spae Map-ping onneting the oarse model responses with the �ne model responses.The design parameters are transformed by the input mapping, and the out-put mapping orrets the surrogate to ensure exat agreement of the re-sponses. We align both funtion values and gradients of the surrogate modelwith the �ne model and hereby wish, that the surrogate provides a goodapproximation in a large region of the design parameter spae.



2 Chapter 1. IntrodutionThe Spae Mapping-based optimization algorithm onsist of two sub-problems:
• The optimization of the surrogate model.
• The update of the surrogate, the so-alled Parameter Extration, whihdetermines the mapping parameters in order to ensure the agreementof the surrogate and the �ne model.1.1.1 Di�erent Spae Mapping TehniquesThe original Spae Mapping formulation is desribed in [4℄ and [5℄ and onlyinvolves an input mapping P : R

n → R
n, where:

P(x) = arg min
z∈Rn

‖c(z) − f(x)‖2
2 (1.1.1)We refer to (1.1.1) as the original Spae Mapping de�nition.The Spae Mapping methods with input mapping an be approahed in dif-ferent ways in order to ensure the uniqueness of the Spae Mapping. A fulloverview and further disussions of the various versions are provided by Ja-ob Søndergaard in [7℄. When only input mappings are used, we annot besure that the Spae Mapping tehnique provides the �ne model optimizer as asolution, unless ertain theoretial onditions are met. These onditions arestated in [7℄, hapter 4.1. The exat math between the �ne model and theoarse model response is therefore not likely in the original Spae Mapping,even though the mapped oarse model an provide a good approximation tothe �ne model over a large region of the parameter spae.When introduing an additional mapping, an output mapping, to de�nethe surrogate model, we an ensure the mathing, and hereby overome theresidual misalignment. On that ground the Spae Mapping tehniques withboth input and output mappings are to be preferred. With these tehniquesthe uniqueness of the Parameter Extration is still not ensured, whih is aproblem that an be solved in many ways.This report will only work with the Spae Mapping method with both inputand output mappings, providing an interpolating surrogate that gives exatalignment with the �ne model in the expansion point.1.2 Problem FormulationThe main subjet of this thesis is the Spae Mapping method based onan interpolating surrogate. We wish to investigate di�erent theoretial andpratial aspets of the method, with the main onern on the solution to



1.3 Mathematial Introdution 3the Parameter Extration problems. On this basis we present a Spae Map-ping algorithm and test the implementation of the algorithm on di�erenttest problems.In the report we analyze the following subjets:
• The approximation error from using forward di�erene approximationsas estimates for the derivatives, and hereby the optimal step length.
• Least squares problems.- The Marquardt equations.- The solution to the regularized problem.- The solutions to underdetermined and overdetermined least squaresproblems with and without weights.
• Di�erent formulations of the residual in order to ensure uniqueness ofthe Parameter Extration.- Redution of the number of input mapping parameters.- The e�et of using a regularization term in the Parameter Ex-tration problem.- The e�et of using weighting fators in the Parameter Extrationproblem.- The e�et of using normalization fators in the Parameter Ex-tration problem.The mathematial theory of the Spae Mapping method with interpolatingsurrogate is introdued, and the Spae Mapping algorithm is presented inpseudo-ode. We then onsider the theoretial and pratial investigationsof the subjets above. The various versions of the algorithm are tested nu-merially on three problems. Finally suggestions for future investigationsare proposed by listing some unresolved matters.1.3 Mathematial IntrodutionWe are aiming at solving an optimization problem of the form:

x∗ = arg min
x∈Rn

{H (f(x))}where H : R
m → R is a suitable objetive funtion, and x∗ ∈ R

n is theoptimal set of design parameters.We assume, that two models of the same system are available: A �ne butexpensive model, given by f : R
n → R

m and a oarse but heap model givenby c : R
n → R

m. The funtion vetors from a given parameter set are alsodenoted response vetors.The surrogate model s : R
n → R

m is de�ned by a omposite mapping: For



4 Chapter 1. Introdutioneah of the m responses we de�ne the input mapping Pi : R
n → R

n, whihperforms a linear transformation of the design parameters, and the outputmapping O : R
m → R

m, whih transforms the oarse model response. Theaim is to align the surrogate with the �ne model for all m responses.The input and output mapping parameters for i = 1, . . . m are:
Ai ∈ R

n×n, bi ∈ R
n, αi ∈ R, βi ∈ R.The linear transformation Pi for the ith response funtion is now de�ned as:

Pi(x) = Aix + bi (1.3.1)and the output mapping Oi as:
Oi(y) = αi (yi − ȳi) + βi (1.3.2)where ȳ is a onstant vetor. Gathering the input and output mappings wehave:

P =







PT
1...

PT
m






, O =







O1...
Om





The interpolating surrogate model is now de�ned by the omposition:
s = O ◦ c ◦P (1.3.3)When inserting the expressions for the input and output mappings we getthe surrogate model for the ith response given by:

si(x) = Oi (ci (Pi(x)))

= αi (ci (Pi(x)) − ci (Pi(x̄))) + βi

= αi (ci (Aix + bi) − ci (Aix̄ + bi)) + βiWe wish to align the responses of the surrogate model with the �ne modelin all m sampling points. In the kth iteration x(k) we must thereby have:
s(k)(x(k)) = f(x(k)) (1.3.4)where s(k) denotes the surrogate used in the kth iteration. We furthermorewant the surrogate model to approximate the �ne model at previous iterationpoints. An additional riterion for hoosing the mapping parameters is toaim for agreement of the Jaobians of the �ne model (denoted Jf ) and the



1.3 Mathematial Introdution 5surrogate model (denoted Js) in the urrent iterate. This leeds to the twoequations:
s(k)(x(j)) = f(x(j)) for j = 1, . . . , k − 1 (1.3.5a)

J(k)
s (x(k)) = Jf (x(k)) (1.3.5b)Equations (1.3.4) and (1.3.5) ensure the alignment of the surrogate modeland the �ne model both both wrt. the funtion responses and the Jaobiansin the urrent iterate as well as wrt. the funtion responses in all previousiterates. The goal is to have both loal and global agreement of the mod-els. The loal agreement is ensured by (1.3.4) and (1.3.5b), and the globalagreement by (1.3.5a).The initial values of the mapping parameters an be hosen as follows:We wish to start the iterations in the oarse model optimizer z∗, so that

x(1) = z∗. In iteration 0 we therefore want the surrogate model to be identi-al to the oarse model, whih is ensured by hoosing the input and outputmapping parameters as:
A

(0)
i = I

b
(0)
i = 0

α
(0)
i = 1

β
(0)
i = α

(0)
i ci(P

(0)
i (x(0)))



























for i = 1, . . . ,m (1.3.6)In this way the ith response of the 0th surrogate beomes:
s
(0)
i (x) = α

(0)
i

(

ci

(

P
(0)
i (x)

)

− ci

(

P
(0)
i (x(0))

))

+ α
(0)
i ci(P

(0)
i (x(0)))

= α
(0)
i

(

ci

(

P
(0)
i (x)

))

= ci(x) (1.3.7)Sine the oarse model is assumed to be heap to evaluate, the optimizer isfound by a standard optimization algorithm.In the following iterations the mathing (1.3.4) is ensured by hoosing theoutput mapping parameters αi and βi and the onstant x̄ in an appropriateway. By putting x̄(k) = x(k) we have the ith surrogate in the kth iteration:
s
(k)
i (x) = α

(k)
i

(

ci

(

P
(k)
i (x)

)

− ci

(

P
(k)
i (x(k))

))

+ β
(k)
iBy inserting the iterate x(k) in the surrogate funtion and then in (1.3.4) we�nd the value of β

(k)
i to be:



6 Chapter 1. Introdution
α

(k)
i

(

ci

(

P
(k)
i (x(k))

)

− ci

(

P
(k)
i (x(k))

))

+ β
(k)
i = fi(x

(k))

⇒ β
(k)
i = fi(x

(k))The ith response of the interpolating surrogate is now given by:
s
(k)
i (x) = α

(k)
i

(

ci

(

P
(k)
i (x)

)

− ci

(

P
(k)
i (x(k))

))

+ fi(x
(k)) (1.3.8)whih is valid for all k > 0.Beause of the hoie of x̄ the math (1.3.4) only depends on the outputparameter βi, and the αi's must be hosen appropriately based on (1.3.5).In eah iteration the next set of design parameters x(k+1) are found by min-imizing the surrogate (1.3.8) de�ned by the mapping parameters of the pre-vious iteration:

x(k+1) = arg min
x∈Rn

{

H
(

s(k)(x)
)} (1.3.9)It must be lari�ed, that the new iterate x(k+1) is only aepted, if it pro-dues a derease in the objetive funtion ompared to the previous iterate,ie. if H(f(x(k+1))) < H(f(x(k))). If this is not the ase, the alignments (1.3.4)and (1.3.5b) must be made with respet to the previous (and so far best)iterate. The unaepted iterate is only used in the global alignment equation(1.3.5a), and must not satisfy the gradient math. To handle suh an uphillstep regarding the �ne model objetive we use a trust region method for thesurrogate optimization.When the iterate x(k+1) is now available, the (k + 1)th set of mapping pa-rameters must be found. The response alignment (1.3.4) is already ensured.In order to satisfy the additional mathing (1.3.5) we de�ne the residualfuntion for the ith response:

r
(k+1)
i (Ai,bi, αi) =













s
(k+1)
i (x(1),Ai,bi, αi) − fi(x

(1))...
s
(k+1)
i (x(k),Ai,bi, αi) − fi(x

(k))

J
(k+1)
s,i (x(k+1),Ai,bi, αi) − Jf,i(x

(k+1))













(1.3.10)where Js,i and Jf,i are the gradients of fi and si wrt. x, ie. the transpose ofthe ith rows of the Jaobians of the �ne resp. the surrogate model wrt. the
x vetor. We �nd the next set of mapping parameters by minimizing theresidual:

{

A
(k+1)
i ,b

(k+1)
i , α

(k+1)
i

}

= arg min
Ai,bi,αi

‖r(k+1)
i (Ai,bi, αi)‖ (1.3.11)



1.3 Mathematial Introdution 7in some norm for all m responses. This proess of updating the parametersis alled Parameter Extration.The iterations ontinue in this way with optimization of the urrent surro-gate followed by the Parameter Extration, until the solution is found withina satisfying auray. Appropriate stopping riteria ould be based on therelative hange in the solution vetor or in the objetive funtion.1.3.1 Overview of The Spae Mapping AlgorithmBased on the previous setion we an now summarize the Spae Mappingmethod with the interpolating surrogate. The algorithm for solving theoptimization problem is outlined as follows:1. Given oarse model and �ne model.2. Set k = 0, hoose initial guess for the oarse optimizer x(0). Initializeinput and output mapping parameters A
(0)
i = I, b

(0)
i = 0, α

(0)
i = 1and β

(0)
i = α

(0)
i ci(x

(0)) for i = 1, . . . ,m.3. Optimize the surrogate model (1.3.8) to �nd the next iterate x(k+1) bysolving (1.3.9).4. Compute f(x(k+1)) and Jf (x(k+1)). Chek stopping riteria and ter-minate if satis�ed.5. Update mapping parameters A
(k+1)
i , b(k+1)

i and α
(k+1)
i for i = 1, . . . mby (1.3.11) with the residual given by (1.3.10).6. Set k = k + 1 and go to step 3.1.3.2 New Formulation of the Residual VetorIn the pratial implementation of the Spae Mapping algorithm we use dif-ferent versions of the residual vetor for the Parameter Extration. This isdone in order to ensure that the problem has a unique solution, and that thissolution should satisfy the loal and global agreement between the surrogateand the �ne model, that we aim for.On that ground we hereby de�ne the residual:

r
(k+1)
i (Ai,bi, αi) =

















w1 · a1 ·
(

s
(k+1)
i (x(1),Ai,bi, αi) − fi(x

(1))
)...

wk · ak ·
(

s
(k+1)
i (x(k),Ai,bi, αi) − fi(x

(k))
)

σ · d ·
(

J
(k+1)
s,i (x(k+1),Ai,bi, αi) − Jf,i(x

(k+1))
)















(1.3.12)It is noted, that the dimension of ri is (k + n), when we have found (k + 1)
x-iterates. The fators a1, . . . , ak and d are normalization fators used for



8 Chapter 1. Introdutionavoiding saling problems, in ase the responses are not of the same order ofmagnitude.The w-fators are weighting fators used in the �rst k elements of the resid-ual.The fator σ is a penalty fator only multiplied on the last n elements of theresidual vetor. The weighting fators and the penalty fator have the samee�et, but we distinguish between them, beause the fators have di�erentpurposes.The aim of the weighting fators is to give an individual priority to eah ofthe iteration points in the residual. In this way we an distinguish betweenpoints far from the urrent iterate and points loser to the urrent iterateand make the global agreement more or less aurate in a partiular point.The penalty fator is used to give the alignment of the gradients a ertainpriority ompared to the funtion value alignments in the previous points.If we inrease σ, we an ensure, that the gradients in the urrent point math.(1.3.12) is equivalent to (1.3.10), if we put all fators a1, . . . , ak, w1, . . . , wk,
d and σ equal to 1. The theory of setion 1.3 and the summarized algorithmin 1.3.1 are hereby still valid, when we use the residual (1.3.12) instead of(1.3.10). The new residual is equivalent to the residual (1.3.10) multipliedby a diagonal matrix.Throughout the rest of the report the residual we use is given by the de�ni-tion (1.3.12). If nothing else is mentioned the fators a1, . . . , ak, w1, . . . , wk,
d and σ have the value 1. The �rst k elements of the residual are referredto as the funtion value residual, whereas the last n elements are alled thegradient residual.1.4 AssumptionsIn optimization problems there an often be several optimizers, both globaland loal. The Spae Mapping method is not a global optimization method,and depending on the problem, we annot be sure, that the found solutionis the global optimizer, or even that this optimizer is unique.A number of onditions must be satis�ed in order to �nd a minimizer by theSpae Mapping method. These onditions are disussed in details in [7℄, andare not the subjet of this report.We assume the following:

• The sets {x∗} = arg min{H(f(x))} and {z∗} = arg min{H(c(x))} arenon-empty, ie. there exists at least one solution to both problems.



1.5 Previous Work and Implementation 9
• The oarse model optimizer z∗ and the �ne model optimizer x∗ areunique.
• All variables are real.
• The oarse model funtion and the �ne model funtion are both on-tinous and at least one time di�erentiable.
• The evaluation time for the oarse model is negligible.1.5 Previous Work and ImplementationThe Matlab programs made in onnetion with this thesis are workingin the existing SMIS (Spae Mapping Interpolating Surrogate) frameworkimplemented by Frank Pedersen. The framework is programmed in Mat-lab, but also involves some Fortran subroutines olleted in the F-pakage.This inluded F-pakage ontains di�erent algorithms for the solution of on-strained and unonstrained non-linear optimization problems. A detaileddesription of the Fortran subroutines is found in [13℄.The SMIS framework by Frank Pedersen inludes a number of algorithmsfor solving optimization problems with the Spae Mapping Method. Thedi�erent versions of the algorithms are plaed in their own diretory orre-sponding to the partiular formulation of the algorithm. The problems usedto test the algorithms are also plaed in eah of their own diretories. Fur-thermore the framework ontains a number of diretories with basi tools,suh as forward di�erene approximations, plot funtions et. A new tool-box has been added, this is the immoptibox programmed by Hans BruunNielsen [12℄. The framework an be augmented by adding a new algorithmor a new test problem plaed in the proper new Matlab diretory in theproper Matlab searh path.All Matlab ode programmed during the working period of this report isavailable at IMM's homepage, see [15℄. Some of the program �les are mod-ifations or augmented versions of existing ode, and some �les are madefrom srath.Appendix A provides a short user's guide for the SMIS framework, yet onlythe implementations and test problems used in this report are inluded.
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11
Chapter 2Implementation of The SpaeMapping AlgorithmIn this hapter the Spae Mapping algorithm will be outlined and disussed.The method an be parted into three algorithms: The main algorithm andtwo sub-algorithms. The main algorithm is summarized in the previous se-tion, and is referred to as Algorithm 1. Eah iteration in this algorithmonsists of two optimization proedures:The �rst optimization problem involves �nding the next iterate by minimiz-ing the surrogate model de�ned by the urrent mapping parameters. Thissub-algorithm is alled Algorithm 2.The seond optimization proedure - the Parameter Extration - onsists of
m optimization problems eah giving a new set of mapping parameters forthe orresponding surrogate model response. Algorithm 3 is used in eah ofthe m Parameter Extration problems.The three algorithms will be presented in pseudo-ode in the next setionsfollowed by omments on the involved parameters and proedures.2.1 The Spae Mapping AlgorithmThe algorithms follow the theoretial introdution in setion 1. Algorithm1 builds on the Matlab implementation by Frank Pedersen, but has beenhanged to a ertain extent. The optimization problem in Algorithm 2 issolved by alling a Fortran subroutine from the F-pakage. The algorithmis idential to the original and has not been altered. The algorithm is notdisussed in details and is presented here to give a full overview of the SpaeMapping method. Algorithm 3 used in the Parameter Extration is a new



12 Chapter 2. Implementation of The Spae Mapping Algorithmand di�erent formulation ompared to the existing framework by Frank Ped-ersen.Before presenting the main Spae Mapping algorithm we de�ne:
p : De�nes the norm used in the objetive funtion H : ‖·‖p. Possiblevalues are 1,2 or ∞, where the latter (minimax optimization) is usedthroughout this report.
∆ : Trust region radius used in Algorithm 2.
F : The objetive funtion in the optimization problem.The stopping riteria are de�ned by a number of optional parameters:
maxf1 : Maximal number of funtion evaluations in Algorithm 1.
maxf2 : Maximal number of funtion evaluations in Algorithm 2.
maxf3 : Maximal number of funtion evaluations in Algorithm 3.
εF : Used in stopping riterion for the objetive funtion.
εK : Used in stopping riterion for the gradient mathing.
εhx : Used in stopping riterion for the step length for x-iterates.
εhp : Used in stopping riterion for the step length for p-iterates.The values for the parameters used in the stopping riteria must be de�nedin the problem setup-�le, for more details see Appendix A.
2.1.1 The Main AlgorithmThe surrogate s is given by (1.3.8) and the ith residual funtion ri by thegeneral formulation (1.3.12).In the algorithm the supersript indexes (k) for iteration numbers are omit-ted to simplify the pseudo-ode. The lower index 'new' orresponds to theupper index (k+1), for referenes to the formulation of the theory in setion1.3. It is assumed, that the surrogate model and the residual funtion ineah iteration are de�ned by the urrent mapping parameters.



2.1 The Spae Mapping Algorithm 13Algorithm 1: Main Algorithm for Spae Mapping Iterations
k = 0; stop = 0; x ∈ R

n; ∆ = 10−1 · ‖x‖2

Ai = I; bi = 0; αi = 1; βi = αici(x) for i=1,...,mwhile not stopFind hnew = arg min‖h‖2≤∆‖s(x + h)‖p by Algorithm 2.Evaluate xnew = x + hnew, Snew = ‖s(xnew)‖p and dS = Snew − FChek stopping riteria dS ≥ 0 and ‖hnew‖2 < εhx · (‖x‖2 + εhx)Evaluate fnew = f(xnew) and Jf,new = Jf (xnew)and Fnew = ‖fnew‖p
dF = Fnew − F ; ρ = dF/dS
k = k + 1Add xnew and fnew to sorted internal datastruture
Active = |∆ − ‖hnew‖∞| < 10−2∆if dF < 0

x = xnew; f = fnew; Jf = Jf,new; F = FnewendChek stopping riteria dF < εF and k ≥ maxf1if ρ > 0.5 & Active
∆ = ∆ · 2else if ρ < 10−4

∆ = ∆/3endfor i = 1:mFind {Ai,new,bi,new, αi,new} = arg min{1/2 · rTi ri} by Algorithm 3.Set {Ai,bi, αi} = {Ai,new,bi,new, αi,new}endendSome remarks to Algorithm 1 are given below:InitializationThe initial guess for the oarse model optimizer is x, and the initialization ofthe parameters orresponds to the formulation in setion 1.3. The elementsof the orresponding surrogate model are given by (1.3.7) and are idential tothe oarse model elements. The �rst optimization before entering the mainloop hereby gives the oarse model optimizer. The value of the initial trustregion is reommended to be ∆ = 10−1 · ‖x‖2 aording to [13℄, but an bealtered by the user in the problem setup-�le, see Appendix A.



14 Chapter 2. Implementation of The Spae Mapping AlgorithmOptimization of the SurrogateIn the main loop the optimizer of the urrent surrogate funtion (de�ned bythe urrent mapping parameters) is found. The step hnew and the objetivefuntion gain ompared to the previous iterate is alulated. The formula-tion of the interpolating surrogate makes sure that s(k)(x(k)) = f(x(k)), sothat S(k) = F (k).Stopping CriteriaTwo stopping riteria are heked at this point:The hange in the surrogate funtion must be negative, if not the new iter-ate is atually a worse solution than the previous one, and we want to exit.This stopping riterion is inluded as a safety to avoid an in�nite loop. Theoptimization algorithm for the surrogate model uses a desent method, sowe are ensured a derease of dS. If dS = 0 we annot improve the surrogate,and we exit the loop.The seond stopping riterion is onerning the relative step length and isde�ned by the optional parameter εhx. The formulation makes sure that theriterion is also useful, when ‖x‖2 is lose to zero. If the solution vetor istoo lose to the previous one, we have not ahieved more information to geta new set of mapping parameters, and we are stuk at the urrent iterate.Cheking these two stopping riteria at this point of the algorithm makessure, that unneessary evaluations of the �ne model are avoided.Gain RatioWe ontinue the main loop with evaluations of f , Jf and the objetive fun-tion F in the new iterate. The gain ratio ρ is the ratio between the true gainand the predited gain. It serves as a measure for how well the surrogatemodel approximates the �ne model, and is used for updating the trust regionradius ∆.Internal Data StrutureThe iterate and the orresponding funtion vetor and Jaobian are addedto an internal data struture. The internal data struture ontains:



2.1 The Spae Mapping Algorithm 15
F : The objetive funtions of the iterates number 1 to k sorted in as-ending order.
X : Matrix with the iterates sorted aording to F .
dX : Row vetor with the norms of the distanes from the sorted iteratesin X to the best iterate.By this sorting the �rst element in F will be the best objetive funtionvalue so far, the �rst olumn in X will be the best iterate so far, and the�rst element in dX will be 0. The data is used in the Parameter Extrationproblem and also for doumentation and plotting after ended Spae Mappingiterations.The Ative FlagThis �ag is ative (= 1), if the new solution is lose to the boundary of thetrust region, in the sense that the length of the step must be in the openinterval ‖hnew‖∞ ∈]0.99 · ∆ , 1.01 · ∆[. In theory it is impossible to have
‖hnew‖∞ > ∆, but in pratie rounding errors an have an e�et. An ative�ag equal to 1 indiates, that the trust region onstraints are ative, and the�ag is used later for updating the trust region radius.Update of the IterateIf the objetive funtion has dereased, we wish to aept the new iterate,and use this as an initial value in the next surrogate optimization.Stopping CriteriaAt this point two additional stopping riteria are heked:We use the hange in the objetive funtion to formulate the stopping ri-terion: dF < εF . The relative hange an be used in ase F is not lose tozero in the optimizer.As a �nal safety towards an in�nite loop we exit, if the number of mainiterations has exeeded the maximum value maxf1.Update of the Trust RegionWe use the following updating strategy for the trust region radius ∆:If the gain ratio is larger than 0.5, and the new iterate is lose to the bound-



16 Chapter 2. Implementation of The Spae Mapping Algorithmary of the trust region, we inrease the trust region radius by a fator 2. Alarge value of ρ indiates, that the surrogate serves as a good approximationto the �ne model. Sine the ative �ag is 1, we have taken the largest steppossible in the latest iteration. We would then like to inrease ∆, and takelonger steps.If ρ is small, the surrogate is a poor approximation to the �ne model, andwe want to take smaller steps. A derease of the trust region is made, ifthe gain ratio is smaller than the value 10−4. This ondition is quite strit,beause of the fat that the surrogate has not yet been updated. By theupdate of the mapping parameters to follow, we hope that the surrogatemodel is improved. It is also important, that the trust region does not gettoo small, sine the optimization proedure of the surrogate model wouldthen get restrited.
Update of the Mapping ParametersThe mapping parameters are updated by Algorithm 3.Eah iteration in the main loop involves one evaluation of the �ne modelfuntion vetor and one evaluation of the �ne model Jaobian. The itera-tion ounter k is then equal to the number of f - and Jf -evaluations. Also anumber of oarse model evaluations (through the surrogate evaluation) areperformed. Sine these are onsidered heap ompared to the �ne modelevaluations, we are only interested in the �nal amount of �ne model evalua-tions.
2.1.2 The Algorithm for Surrogate OptimizationThe algorithm used to solve the optimization of the surrogate is outlined inpseudo-ode in the box below. Sine we are mainly onerned with Algo-rithm 1 and 3 in this report, Algorithm 2 is only disussed brie�y. We notethat the iteration ounter is used independently of the iteration ounter ofAlgorithm 1.



2.1 The Spae Mapping Algorithm 17Algorithm 2: Sub-algorithm for the Surrogate OptimizationGiven global trust region radius ∆ and initial parameter vetor x(0)Linear inequality onstraints: Â = [ I; −I]

b̂ = [ −x(0) + ∆; x(0) + ∆]Call to funtion minnonlin.Call to Fortran subroutine (non-linear optimization in the norm p).Initial loal trust region radius ∆/4stop if j ≥ maxf2or if h < εhx · ‖x‖2InitializationThe trust region radius ∆ is given by Algorithm 1. To ensure that the op-timizer of the surrogate funtion is inside the trust region, we introdue thelinear inequality onstraints given by:
x +

(

−x(0) + ∆
)

≥ 0 and −x +
(

x(0) + ∆
)

≥ 0whih is equal to the onditions:
x ≥ x(0) − ∆ and x ≤ x(0) + ∆See the user's guide in Appendix A for more information on how to handlethe ase where the original minimization problem is onstrained.Funtion Call to minnonlin and Fortran SubroutineThis funtion is a helping funtion that, depending on the problem type,makes another funtion all to the proper Fortran subroutine, see [13℄. Whihoptimization algorithm is used depends on the norm p, in whih we want tominimize the surrogate funtion, and of wether the objetive funtion is asalar funtion or a vetor funtion. Beause of the trust region approahthe optimization problem is always onstrained.Some of the Fortran subroutines use an optimization method with trust re-gion, in this ase the initial loal trust region is set to ∆/4. This loal trustregion has nothing to do with the global trust region ∆, whih ensures, thatthe surrogate optimizer is not too far from the previous iterate.



18 Chapter 2. Implementation of The Spae Mapping AlgorithmStopping CriteriaThe Fortran subroutines require two optional parameters used in the stop-ping riteria of the algorithm: The maximum number of iterations allowed(maxf3, and the parameter εhx whih is used in regard to the step length.The algorithm stops, when it suggests a step length h, when h < εhx · ‖x‖2.2.1.3 The Algorithm for Parameter ExtrationThe third algorithm, whih performs the Parameter Extration for eah ofthe m response funtions, is outlined below.Algorithm 3: Sub-algorithm for Parameter ExtrationGiven initial parameter vetor pk = [A(:); b; α]The objetive funtion is r and the last n rows of r are denoted g.The options in marquardt are given by opts.
j = 0; stop = 0; σ = 1
K = ‖g‖∞; Kr = ‖r‖∞while not stop

j = j + 1Find pnew = arg minp{1/2 · r(p)Tr(p)} by marquardt with opts
rnew = r(pnew); Knew = ‖gnew‖∞; Kr,new = ‖rnew‖∞
h = pnew − p; Accept = Knew < Kif Accept

p = pnew; K = Knew; Kr = Kr,newendif Knew < εK

stop = 1; breakelse if h < εhp · (‖p‖2 + εhp)
stop = 2; breakelse if j ≥ maxf3

stop = 3; breakelse if σ ≥ 103

stop = 4; breakendif σ < 103

σ = σ · 10endend



2.1 The Spae Mapping Algorithm 19This algorithm is onsidered independently of Algorithm 1 and 2, and anyreferenes to iterations only onern the present Algorithm 3.InitializationWe have given initial sets of the mapping parameters A, b and α orre-sponding to an arbitrary response. The mapping parameters are arrangedin the vetor pk, where k denotes the mapping parameters de�ning the kthsurrogate model. The residual funtion for the response is given by equa-tion (1.3.12). The options used in the marquardt-funtion are set in the
5-element vetor opts where:opts(1) : De�nes the initial value of the Marquardt parameter:: µ0 = opts(1)max{(JT0 J0)(i,i)}.opts(2) : Parameter used in stopping riteria for the gradient:: ‖F ′(p)‖∞ ≤ opts(2).opts(3) : Parameter used in stopping riteria for the step length:: ‖dx‖2 ≤ opts(3)(opts(3) + ‖p‖2).opts(4) : Maximal number of iterationsopts(5) : Lower bound on µ: µ = opts(5)max{(JTJ)(i,i)}.The penalty fator σ used in the gradient residual is initialized to 1. K is ameasure of the violation of the gradient math, and Kr of the mathing ofthe full residual.Optimization of the ResidualThe urrent residual is optimized by the Matlab-funtion marquardt im-plemented by Hans Bruun Nielsen to �nd the next parameter vetor. Thisnew solution is a result of a number of Marquardt steps, and the iterationsended beause one of the stoppping riterias mentioned above was ativated.The Marquardt algorithm is disussed further in setion 3.2. The residualfuntion vetor is evaluated in the new iterate, as well as the new values of
K and Kr and the step length.The Aept Flag and Update of the IterateSine we onsider the gradient math to be of great importane, we use thefator K to deide, wether the new set of parameters is better than the pre-vious. The parameter vetor is aepted (Accept = 1), only if the gradient



20 Chapter 2. Implementation of The Spae Mapping Algorithmmath residual has been dereased ompared to the previous iteration.Stopping CriteriaWe hek four stopping riteria and exit the loop, if either of them are sat-is�ed. The gradient math is onsidered satis�ed, if K is smaller than thevalue εK . Seondly if the step between two onseutive iterates is relativelysmall, the step length riterion is ativated. The third riterion stops theloop, if the number of iteration steps has exeeded the limit maxf3. Finallywe will only ontinue the iterations, while σ is below or equal to 103. Thisriterion is equivalent to using maxf3 = 4, if we hoose the updating strategybelow.Update of the Penalty FatorFor the penalty fator σ we use a simple updating strategy: σ is inreased bya fator 10 for eah main iteration. In this way we fore the gradient mathto beome of greater importane than the other elements of the residual.
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Chapter 3Theoretial and PratialInvestigations
3.1 Finite Di�erene Approximation
To run the SMIS algorithm the user must supply two Matlab-�les withimplementations of the oarse and �ne model and their Jaobians. For someproblems (inluding the TLT2 and TLT7 problems), no exat gradients areavailable, and the Jaobians are instead alulated by eg. di�erene approx-imations. In the test problems investigated in this report, the Jaobian isalulated by forward di�erene approximations by the Matlab-funtiondiffjaobian, see [15℄, implemented by Jaob Søndergaard. In the im-plementation of diffjaobian the step length is saled aording to theindependent variable x, so that h = η(1 + |x|). This formulation is useful inthe ase where |x| is very small, and we get h ≃ η. The value of η originallyhad the �xed value η =

√
εM , where εM is the mahine auray, but η anbe hanged by the user diretly in the m-�le.By the investigation of the TLT2 problem, some interesting features regard-ing the model funtions were diovered. The �ne, oarse and surrogate fun-tions are smooth, but the gradients (partial derivatives) wrt. both x and palulated from diffjaobian show a di�erent piture, when the step lengthis small. This motivated an investigation of the step length in diffjaobian.In the following setions the theory is simpli�ed by looking at salar fun-tions whenever possible.



22 Chapter 3. Theoretial and Pratial Investigations3.1.1 Optimal Step LengthThe Jaobians of both the �ne and oarse model are alulated by the Mat-lab-funtion diffjaobian. In the following the in�uene of the step lengthused in the di�erene approximation will be analyzed based on a salar ex-ample.Given a salar funtion f : R → R we ompute a forward di�erene approx-imation to the gradient of f in the point x by:
DF (x, h) =

f(x + h) − f(x)

h
(3.1.1)The Taylor expansion of f in the expansion point x is given by:

f(x + h) = f(x) + hf ′(x) +
h2

2
f ′′(x) + O(h3) (3.1.2)Inserting (3.1.2) in the forward di�erene approximation (3.1.1), we get:

DF (x, h) = f ′(x) +
h

2
f ′′(x) + O(h2)The trunation error ET is now:

ET = DF (x, h) − f ′(x)

= f ′(x) +
h

2
f ′′(x) + O(h2) − f ′(x)

=
h

2
f ′′(x) + O(h2) (3.1.3)and we see that the trunation error is O(h) for h → 0. If we also take therounding errors into aount, we get the �oating point numbers f̄(x+h) and

f̄(x) instead of f(x + h) and f(x):
f̄(x + h) = f(x + h)(1 + δ1), |δ1| ≤ KεM

f̄(x) = f(x)(1 + δ2), |δ2| ≤ KεMwhere the onstant K ≥ 1 and εM is the mahine auray.Inserting the above in the forward di�erene approximation (3.1.1) we get:
D̄F (x, h) =

f̄(x + h) − f̄(x)

h

=
f(x + h) − f(x)

h
+

δ1f(x + h) − δ2f(x)

h
= DF (x, h) + ER

= f ′(x) + ET + ER (3.1.4)



3.1 Finite Di�erene Approximation 23where the rounding eror is denoted ER. The worst possible rounding erroris when δ1f(x + h) and δ2f(x) have opposite signs, giving:
|ER| ≤

KεM (|f(x + h)| + |f(x)|)
h

≃ 2K|f(x)|εM

h
(3.1.5)The absolute total error is now given by the absolute di�erene between D̄Fand the real gradient:

|E| = |ET + ER| = |D̄F (x, h) − f ′(x)|
≃ Ah + O(h2) + B

εM

h
(3.1.6)The onstants A and B depend on the funtion values and seond derivativesin the neighbourhood of x, A ≃ 1

2 |f ′′(x)| and B ≃ 2K|f(x)|.Using the above we now onsider the ase when approximating the gradientswrt. the parameters in the x-vetor. The gradients appear in the Jaobiansof the �ne, oarse and surrogate models in the Parameter Extration prob-lem. We onsider an arbitrary response funtion with no index on f and
s. Eah of the rows of the gradient residual (the last n rows of the residualfrom (1.3.12)) has the form:

gi(x,p) = s′xi
(x,p) − f ′

xi
(x) (3.1.7)

x is a olumn vetor holding the design parameters, and the vetor p isholding the parameters A, b and α. To simplify the alulations we on-sider only the ith row of the gradient residual as a funtion of the variablevetors x and p (keeping all other parameters than xi �xed). Without lossof generality we also disregard the fators σ and d.The exat funtion gi(x,p) is replaed by the approximated funtion Gi(x,p)returned by theMatlab-funtion, where the di�erene approximation wrt. xiand the rounding errors gives the approximation to (3.1.7):
Gi(x,p) ≃ s(x + hxei,p) − s(x,p) + BεM

hx

− f ′
xi

(x)

=

(

s′xi
(x,p) − f ′

xi
(x) +

hx

2
s′′xixi

(x,p) + O(h2
x) + B

εM

hx

)

= gi(x,p) + Ahx + O(h2
x) + B

εM

hx

(3.1.8)where ei is a unit vetor in the ith diretion and hx is the step length. Theonstant A depends on the seond derivative of s, and B depends on thefuntion values of s in the interval x ∈ [x , x + h].



24 Chapter 3. Theoretial and Pratial InvestigationsBy omparing (3.1.8) with the exat funtion (3.1.7), we get the total errorfor eah of the gradient residual rows:
EG(hx) = ET + ER

≃ Ahx + O(h2
x) + B

εM

hx

(3.1.9)where the di�erentiation is wrt. xi for row number i, and the lower index of
x has been omitted for simpliity.When hx is large the total error is dominated by the trunation error (the�rst two terms), whereas the rounding error (the last term) dominates forsmall hx. To determine the optimal step length hx,opt in order to minimizethe total error we di�erentiate (3.1.9) negligating the O(h2

x) term and get:
E′

G(hx) = A − B
εM

h2
x

(3.1.10)Equalizing (3.1.10) with 0 we have the optimal step length minimizing theerror funtion:
E′

G(hx) = 0 ⇒ hx,opt =

√

εM
B

A
(3.1.11)In Matlab the unit round-o� is εM ≃ 10−16, so the step length should bearound 10−8

√

B
A
to give the smallest errors. In pratie we don't distinguishbetween the x-variables and hoose one suitable step length.With typial values of the derivatives of the surrogate model of: sx(x,p) ∼

10−3, s′′xx(x,p) ∼ 10−4 we get the approximate value of the optimal steplength hx,opt ∼ 10−7. Here we have used the values for the onstants
A = 1

210−4 and B = 2 · 10−3. The result agrees with �gure 3.1.1, wherethe error funtion (3.1.9) for these values of A and B is plotted as a funtionof the step length hx.We now analyse the ase where the di�erene approximation is made withthe p-parameters. We again onsider the ith row of the gradient residual,and look at the gradient with respet to the jth parameter in the vetor p.All other variables are kept �xed.We now have the (i, j)-element of the Jaobian:
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Figure 3.1.1: Errors as a funtion of the step length in the x-diretion
(Gi)

′
pj

(x,p) =
Gi(x,p + hpej) − Gi(x,p) + DεM

hp

≃ 1

hp

[

s′xi
(x,p + hpej) +

hx

2
s′′xixi

(x,p + hpej) + O(h2
x) + B1

εM

hx

]

− 1

hp

[

s′xi
(x,p) +

hx

2
s′′xixi

(x,p) + O(h2
x) + B2

εM

hx

]

+ D
εM

hp

≃ s′xi
(x,p + hpej) − s′xi

(x,p)

hp

+ D
εM

hp

+
hx

2hp

(

s′′xixi
(x,p + hpej) − s′′xixi

(x,p)
)

+ 2B
εM

hxhp (3.1.12)
D is a onstant depending on Gi(x,p). We have assumed, that the trun-ation errors O(h2

x) almost anel, and that the rounding error terms B1
εM

hxand B2
εM

hx
in the worst ase an be replaed by 2B εM

hx
. The variation of s′′xixiis assumed small, so the �rst term in the last line anels out. This reduesthe approximation of (Gi)

′
pj

to:
(Gi)

′
pj

(x,p) = s′′xipj
(x,p) + Chp + O(h2

p) + D
εM

hp
+ 2B

εM

hxhp
(3.1.13)where the onstant C depends on s′′′xpp(x,p). The gradient of gi wrt. to pjis

(gi)
′
pj

(p,x) = s′′xipj
(p,x)We get the total error for an element in the Jaobian matrix as a funtionof the step length hp:
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EG′(hp) = ET + ER

≃ Chp + O(h2
p)

+ D
εM

hp
+ 2B

εM

hxhp
(3.1.14)where the trunation errors are gathered in the �rst line and the roundingerrors in the seond. For Jaobian matrix element (i, j) the di�erentiationis made wrt. the ith x-variable and the jth p-parameter.When hx = 10−7 and the order of magnitude of s′′′xpp(x,p) is 10−3 the optimalstep length in the p-diretion is hp,opt ≃ 10−4. If we instead put hp = hx weget an approximate optimal step length of hp,opt ≃ 10−5 as shown in �gure3.1.2 for B = 2 · 10−3, C = 1

210−3 and D = 10−3.
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Figure 3.1.2: Errors as a funtion of the step length in the p-diretion3.1.2 Results from the TLT2 ProblemTo make quali�ed values for the step lengths hx,opt and hp,opt we onsiderthe gradient residual funtion and the partial derivatives wrt. the parametersin the p-vetor. These funtions have been investigated in Matlab for theTLT2 problem, whih is onsidered in setion 4.3. All omputations aremade with �xed x = z∗ = [90 , 90]T and the initial parameter vetor
p = [1 , 1 , 0 , 0 , 1]T orresponding to the diagonal matrix A =

[

1 0
0 1

],
b =

[

0
0

] and α = 1. First an investigation of the funtion G(p) made withthe step length hx = 10−8 and hp = 10−8. The gradient residual is alulatedin an area in the (x1, x2)-plane:As �gure 3.1.3 show the funtions are smooth in the area of relevant x-values, and the gradient g′p(x,p) is expeted to be smooth too. Nevertheless
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Figure 3.1.3: Gradient residualsthe �gures 3.1.4 - 3.1.5 show something di�erent.
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Figure 3.1.4: Funtions of p1 and p2
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28 Chapter 3. Theoretial and Pratial Investigationsparameters (orresponding to elements of A and b and the α-parameter).The same investigations made with a larger step length hx = 10−5 and
hp = 10−5 show a muh better piture:
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Figure 3.1.6: Funtions of p1 and p2
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3.2 The Marquardt Algorithm 293.2 The Marquardt AlgorithmThe Marquardt algorithm is an important part of the Parameter Extra-tion problem solved by Algorithm 3 in setion 2.1.3. The theory behind theMarquardt equation is brie�y listed, and the solution is analysed througha Singular Value Deomposition (SVD). The ases of underdetermined andoverdetermined equation systems are disussed.We disregard the lower index orresponding to the response number.The Marquardt method is a method for solving non-linear least squares prob-lems. The aim is to minimize the norm of a vetor funtion r : R
np → R

nr .We introdue the objetive funtion F (p) and wish to �nd:
p∗ = arg min

p∈R
np
{F (p)}where

F (p) =
1

2

nr
∑

i=1

(ri(p))2 =
1

2
r(p)Tr(p) (3.2.1)Minimizing the objetive funtion F (p) is equivalent to �nding the minimumof the norm of the vetor funtion r(p).When minimizing a linearized model of F based on a linear Taylor model of

r we get the Gauss-Newton step by solving the equation:
Jr(p)TJr(p)h = −Jr(p)Tr(p) (3.2.2)The matrix Jr(p)TJr(p) is symmetri and positive semide�nite. If the Jao-bian has full rank, Jr(p)TJr(p) is positive de�nite, giving a unique solutionto (3.2.2) and a step in a desent diretion. We introdue the damping pa-rameter µ and get the Marquardt equation:

(

Jr(p)TJr(p) + µI
)

h = −Jr(p)Tr(p) (3.2.3)The matrix Jr(p)TJr(p) + µI is now guaranteed to be positive de�nite, andthe Marquardt step is a desent diretion.3.2.1 Singular Value DeompositionThe Marquardt step is the solution to the equation:
(

JTJ + µI
)

h = −JTr (3.2.4)



30 Chapter 3. Theoretial and Pratial Investigationswhere the rank of the Jaobian is q. A singular value deomposition of Jprovides the matrix fatorization:
J = UΣVTwhere the matries U, V and Σ are:

U ∈ R
nr×nr , V ∈ R

np×np , Σ ∈ R
nr×np .The olumns of U and V form orthonormal bases for the vetor spaes R

nr ,
R

np respetively, and the matrix Σ is a 'diagonal' matrix with the singu-lar values on the main diagonal Σ(i,i) = σi, i = 1, . . . min{nr, np} and zeroseverywhere else. The singular values σ1, . . . σmin{nr ,np} appear in dereasingorder, and the �rst q values are stritly positive:
σ1 ≥ · · · ≥ σq > 0 and σq+1 = · · · = σmin{nr ,np} = 0The jth olumn in U resp. V is denoted uj resp. vj and we an write theJaobian and its transpose as a summation:

J =

q
∑

j=1

σjujv
T
j JT =

q
∑

j=1

σjvju
T
j (3.2.5)where the summation only runs to q, beause of the fat that σj = 0, j =

q + 1, . . . min{nr, np}. Hereby the matrix produt JTJ beomes:
JTJ =

q
∑

i=1

σiviu
T
i

q
∑

j=1

σjujv
T
j

=

q
∑

i=1

q
∑

j=1

σiσjviu
T
i ujv

T
j

=

q
∑

j=1

σ2
j vjv

T
jwhere we have used the harateristi feature of the orthonormal basis ve-tors:

〈ui,uj〉 = uTi uj =

{

1 for i = j,

0 for i 6= j
(3.2.6)We an write the step h ∈ R

np as a linear ombination of the basis vetors
vj , whih span the spae R

np :
h =

np
∑

j=1

ηjvj (3.2.7)



3.2 The Marquardt Algorithm 31and the squared norm of h is given by the inner produt:
||h||22 = 〈h,h〉 = 〈

np
∑

i=1

ηivi,

np
∑

j=1

ηjvj〉 =

np
∑

j=1

η2
j (3.2.8)Furthermore we an write the vetor funtion r ∈ R

nr by use of the basisvetors uj:
r =

nr
∑

j=1

ϕjujwith the oe�ients ϕj given by:
uTi r = uTi nr

∑

j=1

ϕjuj for i = 1, . . . , nr

⇒ ϕj = uTj r for j = 1, . . . , nrNow we an use (3.2.5) and the above relation to write the right hand sideof (3.2.4) as:
−JTr = −

q
∑

j=1

σjvju
T
j r = −

q
∑

j=1

σjvjϕj (3.2.9)and the left hand side as:
(

JTJ + µI
)

h =

(

q
∑

i=1

σ2
i viv

T
i + µI

)

np
∑

j=1

ηjvj

=

q
∑

i=1

np
∑

j=1

σ2
i viv

T
i ηjvj + µ

np
∑

j=1

ηjvj

=

q
∑

j=1

σ2
j ηjvj + µ

np
∑

j=1

ηjvj

=

q
∑

j=1

(σ2
j + µ)ηjvj + µ

np
∑

j=q+1

ηjvj (3.2.10)The only unknowns in this equation are the oe�ients ηj , j = 1, . . . np.Equating ((3.2.9)) and ((3.2.10)) gives:
q
∑

j=1

(σ2
j + µ)ηjvj + µ

np
∑

j=q+1

ηjvj = −
q
∑

j=1

σjϕjvj (3.2.11)



32 Chapter 3. Theoretial and Pratial InvestigationsMultipliating (3.2.11) with vTi for i = 1, . . . , np results in n equations of theform:
vTi q
∑

j=1

(σ2
j + µ)ηjvj + vTi µ

np
∑

j=q+1

ηjvj = −vTi q
∑

j=1

σjϕjvj for i = 1, . . . , npwhih by the property (3.2.6) of the orthonormal basis vetors give the npequations:
(σ2

j + µ)ηj = −σjϕj for j = 1, . . . , q

µηj = 0 for j = q + 1, . . . , npWe hereby get the oe�ients ηj :
ηj = − σjϕj

(σ2
j + µ)

for j = 1, . . . , q (3.2.12a)
ηj = 0 for j = q + 1, . . . , np (3.2.12b)From the above expressions we see, that if q < np we lak information aboutthe last np − q oe�ients of (3.2.12a), and the oe�ients are set to zero.This is the ase when the olumns of the Jaobian are linearly dependent.For the Gauss-Newton step without the damping parameter, the equationsystem giving the step is:

JTJh = −JTr (3.2.13)By using the SVD we an write (3.2.13) as:
q
∑

j=1

σ2
j ηjvj = −

q
∑

j=1

σjϕjvj (3.2.14)The oe�ients in (3.2.7) are now given by:
σ2

j ηj = −σjϕj for j = 1, . . . , q (3.2.15)We have no information for the last np − q oe�ients, and these an behosen freely. It follows from (3.2.8), that the length of the step h an be ex-pressed in terms of the oe�ients ηj . The shortest step is found by puttingall free oe�ients equal to zero. This step is the minimum norm solution



3.2 The Marquardt Algorithm 33to (3.2.13).
ηj = −ϕj

σj

for j = 1, . . . , q (3.2.16a)
ηj = 0 for j = q + 1, . . . , np (3.2.16b)Comparing the solution to the Marquardt equation (µ 6= 0) and the mini-mum norm solution to (3.2.13) we see, that for µ << σq the solutions arenearly idential. In this ase the Marquardt step gives a new iterate losestto the previous iterate, whih an be desirable to avoid ending up with asolution very far from the initial one.The Marquardt algorithm used in Algorithm 3 is the implementation byHans Bruun Nielsen [12℄. The initial value for the damping parameter µis given in the input argument vetor opts, in the sense that µ0 is saledaording to the maximal diagonal element of the matrix J(p(0))TJ(p(0)).The opts-vetor also provides a lower bound on µ. This ensures, that we donot have µ → 0, and thereby that the Marquardt equations always give asmall regularization e�et.Underdetermined System of EquationsIn the ase nr < np where the residual has less rows than the number ofparameters, the parameter solution is not well-de�ned. If the Jaobian atthe optimizer has full rank, then q = nr and the solution has np − nr freeparameters, and the Parameter Extration problem has an (np−nr)-in�nityof solutions. The size of the damping parameter determines the Marquardtstep in eah iteration. For a small µ-value ompared to the smallest singularvalue of J the solution is very lose to the minimum norm solution, whih isthe solution losest to the previous one.Overdetermined System of EquationsIn the ase of a quadrati Jaobian matrix, the solution is unique, providedthat the Jaobian has full rank. If not, the rank as before determines thenumber of free parameters.If we have more residual elements than parameters, we may not be able tosatisfy all equations. The least squares solution provided by the Marquardtalgorithm is the solution, that minimizes the residual.When regularizing the residual funtion wrt. the initial solution as desribedin setion 3.3 we always have more residual rows than unknown parameters,



34 Chapter 3. Theoretial and Pratial Investigationsand the rank of the Jaobian is guaranteed to be full.3.3 RegularizationIn the Spae Mapping algorithm the Parameter Extration involves the min-imization of the residual given by (1.3.12). We an not always be sure, thatthe solution to the Parameter Extration is unique. Di�erent tehniques anbe used to onstrain the solution spae, see for example [7℄ and [3℄ for otherstrategies and further disussion.One approah is to hoose the solution losest to the initial parameters. Byadding a regularization term to the residual vetor, the distane to the formersolution is penalized. In this setion we provide an analysis of the solutionto the regularized equation system.In the general ase we onsider the residual orresponding to an arbitraryresponse, and ommit the lower index to simplify the equations. The regular-ization is made using pk - the mapping parameters de�ning the kth surrogatemodel - and the modi�ed residual funtion is denoted r̂ :
r̂(p) = r̂ =

[

r(p)
(p − pk)

] (3.3.1)The �rst vetor funtion r is the original residual funtion (1.3.12) onsistingof nr rows, and the seond term is the regularization term, whih is added tothe vetor to ensure, that the optimizer p∗ is lose to the initial solution pk,whih is the mapping parameter vetor orresponding to the kth surrogate.When minimizing (3.3.1) by Marquardt we have:
F (p) =

1

2

nr+np
∑

i=1

(r̂i(p))2

=
1

2

nr
∑

i=1

(ri(p))2 +
1

2

np
∑

i=1

(pi − pi,k)
2

=
1

2
r(p)Tr(p) +

1

2
(p − pk)

T(p − pk) (3.3.2)The Jaobian matrix orresponding to (3.3.1) is given by:
Jr̂(p) = Jr̂ =

[

Jr

I

] (3.3.3)where Jr ∈ R
nr×np is the Jaobian of the funtion r and I ∈ R

np×np is theidentity matrix. The Marquardt step with the damping parameter µ is found



3.3 Regularization 35by the equation system:
(

JT̂r Jr̂ + µI
)

h = −JT̂r r̂ (3.3.4)where the next iterate is given by pnew = p + h The matrix multipliation
Jr̂(p)TJr̂(p) gives:

JT̂r Jr̂ =
[

JTr I
]

[

Jr

I

]

= JTr Jr + Iwhih inserted in (3.3.4) produes the left hand side of the equation system:
(

JT̂r Jr̂ + µI
)

h =
(

JTr Jr + (1 + µ)I
)

h (3.3.5)The right hand side is given by:
−JT̂r r̂ = −

[

JTr I
]

[

r

(p − pk)

]

= −
(

JTr r + (p − pk)
) (3.3.6)Inserting (3.3.5) and (3.3.6) in (3.3.4) gives the Marquardt step h as thesolution to:

(

JTr Jr + (1 + µ)I
)

h = −
(

JTr r + (p − pk)
) (3.3.7)It is seen from (3.3.7), that the last term on the right hand side vanishes for

p = pk, orresponding to the �rst Marquardt step.In eah iteration the Marquardt step h = p−pk is found by solving (3.3.7).In the �rst iteration the equation system orresponds to minimizing the fun-tion r(p) by the Marquardt method with the damping parameter 1 + µ. Inthe following steps the damping parameter is still 1 + µ, but the right handside is hanged, beause the regularization is made wrt. the initial set ofparameters. This orresponds to an inrease of the gradient JTr r as we movefurther away from the initial solution pk.By adding the regularization term to the residual vetor, we ensure that thefound solution is not too far from the initial solution. Sine the numberof unknowns is np and the number of rows in the residual vetor and it'sJaobian is now nr + np, we have an overdetermined equation system forall iterations. In the optimizer p∗ the gradient of the regularized residualfuntion is zero, whih means that:
Jr(p

∗)Tr(p∗) + (p∗ − pk) = 0 ⇒ Jr(p
∗)Tr(p∗) = −(p∗ − pk)



36 Chapter 3. Theoretial and Pratial InvestigationsThe gradient of the original residual funtion is equal to the negative dis-tane from the optimizer to the initial parameter vetor. If the optimizer isfar from the initial vetor we an not neessarily expet, that the originalresidual math is good. This motivates the use of weighting fators in theresidual.When taking the weighting fators in the residual funtion into onsiderationthe regularized residual vetor is given by:
r̂(p) =

[

W r(p)
V(p − pk)

] (3.3.8)with the residual orresponding to an arbitrary response
r(p) =













a1 ·
(

s(k+1)(x(1),p) − f(x(1))
)...

ak ·
(

s(k+1)(x(k),p) − f(x(k))
)

d ·
(

J
(k+1)
s (x(k+1),p) − Jf (x(k+1))

)













(3.3.9)The matries W ∈ R
nr×nr and V ∈ R

np×np are diagonal matries with theweight fator for element number i in the ith row:
W =





















w1 0. . .
wk

σ . . .
0 σ





















V =







v1 0. . .
0 vnp







The Marquardt step is found from the equation system:
(

JTr W2Jr + V2 + µI
)

h = −JTr W2r + V2(p − pk) (3.3.10)3.4 Variable Number of Mapping ParametersThe uniqueness of the solution to the Parameter Extration depends on thenumber of mapping parameters in relation to the number of elements in theresidual. But as disussed in setion 3.2 it really depends on the rank ofthe Jaobian of the residual. In this setion we onsider the input mappingseparately to analyze the e�et of the number of mapping parameters on thesurrogate model and it's derivatives.



3.4 Variable Number of Mapping Parameters 37In the following we onsider an arbitrary response funtion with no subsriptindex. The equations are visualized in the ase n = 2, whih an be general-ized to any value of n. The input mapping proposed in the Spae Mappingformulation (1.3.1) is a linear mapping:
z = P(x,p) = Ax + b =

[

A11 A12

A21 A22

] [

x1

x2

]

+

[

b1

b2

] (3.4.1)The z-vetor is the transformed design parameter vetor, whih is insertedin the oarse model funtion. We have inluded the vetor p in the formu-lation, sine the mapping also depends on the parameter vetor.We arrange the input mapping parameters in the vetor p ∈ R
(n(n+1)) withthe elements of A inserted rowwise (the output mapping parameter α is notonsidered here):

p =
[

A11 A12 A21 A22 b1 b2

]T (3.4.2)If we instead onsider the mapping as a funtion of the parameter vetor p,we an write (3.4.1) as:
z = H(x)p, H(x) =

[

x1 x2 0 0 1 0
0 0 x1 x2 0 1

] (3.4.3)where the matrix H ∈ R
n×(n(n+1)) depends on the x-variables. The matrixhas at most one element di�erent from zero in eah olumn. Beause of thetrailing identity matrix, it is obvious, that the rank of H is n, and onse-quently for a �xed x, there are in�nitely many p-vetors, that satisfy (3.4.3).We an hoose n2 variables freely.It must be lari�ed, that the equation for the input mapping is not solveddiretly in the form (3.4.1), sine the Parameter Extration is done by min-imizing the residual funtion1.In solving the Parameter Extration problem we need the Jaobian of thesurrogate model. Hereby we use the derivatives of the mapping wrt. both the

x- and the p-variables. By the formulations (3.4.1) and (3.4.3) the Jaobiansof P(x,p) wrt. x and wrt. p are easily seen to be:
P′

x(x,p) = A, P′
p(x,p) = H(x) (3.4.4)The surrogate model is given by the omposed mapping s = O ◦ c ◦ P:

s(x,p) = α (c (P(x,p)) − c (P(x̄,p))) + f(x̄)

= α (c(z) − c(z̄)) + f(x̄) (3.4.5)1Compare with the original Spae Mapping formulation (1.1.1), where (3.4.3) is solveddiretly



38 Chapter 3. Theoretial and Pratial InvestigationsWe use the hain rule to di�erentiate wrt. x:
s′x(x,p) = α

(

c′z(z) · P′
x(x,p)

)

= α
(

c′z(z) · A
) (3.4.6)and wrt. p:

s′p(x,p) = α
(

c′z(z) · P′
p(x,p)

)

= α
(

c′z(z) · H
) (3.4.7)Here we have inserted the expressions from (3.4.4). The gradients are rowvetors.The input mapping depends on both x and p and for a given set of x and

p, we get a ertain vetor z = P(x,p). An arbitrary hange in one of the
x-elements results in a new mapping vetor z+∆. But this new vetor ouldalso have been the result of a hange in the p-vetor. The only di�erene isthe saling of the hange, and the fat that hanging one x-element e�etsall the elements of z, while hanging one p-element only has an e�et on oneelement of z.In other words: we annot dinstinguish between hanges in the surrogate re-sponse as a result of altering the design parameters or altering the mappingparameters.If we also onsider the output mapping the p-vetor has an extra element,
α. The gradient of the surrogate wrt. p should the be augmented with theelement:

s′α(x,p) =
∂

∂α
[α (c (P(x,p)) − c (P(x̄,p))) + f(x)]

= c(z) − c(z̄) (3.4.8)The length of p is now n2 + n + 1.The Parameter Extration problem onsists of m minimization problems anduses many surrogate model funtion (and onsequently oarse model) eval-uations. Even though we onsider the oarse model omputationally fast toevaluate, the Parameter Extration is time-onsuming for large problems.This is a reason for wishing to redue the number of parameters.In order to redue the size of the parameter vetor we an use di�erent ap-proahes. One approah is to redue A to a diagonal matrix and keep theonstant vetor b.In the ase n = 2 we now have:
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P′

x(x,p) = A =

[

A11 0
0 A22

]

, P′
p(x,p) = H(x) =

[

x1 0 1 0
0 x2 0 1

](3.4.9)where np = 2n. The new redued matrix H is the result of eliminating theseond and the third olumn of the old H, sine we have eliminated theseond and third element of p. It is straightforward to produe the matries
A and H orresponding to an arbitrary element elimination of the full pa-rameter vetor p ∈ R

(n(n+1)).When using the diagonal matrix approah we redue the number of inputparameters by a fator n+1
2 . Aordingly we an expet a redution of thealulation time, whih an be useful in problems of large dimension.A di�erent approah ould be to alter the number of parameters for everymain iteration, with the aim of the possibility of repeatedly having a uniquesolution to the Parameter Extration. The length of the residual vetor isinreased by 1 for eah main iteration, starting at n for k = 0, and we anaugment the p-vetor with one extra element. The order of the elementsan be hosen in many ways, a suggestion would be to begin with p = [α]and augment with the diagonal elements of A one by one followed by the

b-elements. The initial value for the mapping parameters would still be
A

(0)
i = I, b(0)

i = 0, α
(0)
i = 1, and this initial value is valid, until the param-eter is ontained in p.3.5 The Penalty FatorThe solution to the Parameter Extration problem is not always unique,and there are many di�erent approahes to overome this problem. A wellknown approah in optimization problems is to penalize the equations, thatwe with guarantee wish to satisfy by multiplying with a large fator. It thesepenalized residual elements are not very small (or zero if possible), then theobjetive funtion 1/2 · rTr is large. Depending of ourse on the saling ofthe residual elements we are sure, that the penalized equations are satis�edin the solution, beause the solution minimizes the residual.In order to determine the e�et of the penalty fator σ introdued in equa-tion (1.3.12) on the solution we again onsider the ases, where the systemof equations is underdetermined and overdetermined.The formulation of the residual origins from the aim to align the surrogatemodel with the �ne model, and it depends on the models of the given prob-



40 Chapter 3. Theoretial and Pratial Investigationslem, if an exat math is possible in the ases, where we have either moreparameters than residual elements or the same number of both. Usuallyit is possible to satisfy all equations exatly, but one an �nd examples ofproblems, where it is not. We assume that the problems onsidered here areonsistent. In ase of a full rank onsistent problem the weighting of theresidual elements has no e�et on the solution. When the problem is rankde�ient the solution spae for the unweighted problem is the same as forthe weighted problem, and the two problems have idential minimum normsolutions.In the ase of an non-onsistent problem, the weighting fators an have ane�et.Underdetermined System of EquationsIf there are more parameters np than residual elements nr, the problem doesnot have a unique solution. The Jaobian of r is denoted Jr and has therank q, where q ≤ nr. There will then be an (np − q)-in�nity of solutionsto the Parameter Extration. For eah of the in�nitely many solutions weare then sure, that all nr equations are satis�ed, ie. r(p∗) = 0. Algorithm 3provides the solution de�ned by the Marquardt parameters µ.The multipliation with the weigthing fators now results in the residual Wrand the Jaobian WJr, where r and Jr refer to equation (3.3.9), and wherethe diagonal matrix W is given by (3.5.1):
W =





















w1 0. . .
wk

σ . . .
0 σ





















(3.5.1)In ase of a onsistent problem the solution to the penalized problem is thesame as the unpenalized solution. In this ase the penalty fators have noe�et on the solution.Overdetermined System of EquationsProvided that Jr has full rank in the ase where nr = np, the solution to theParameter Extration is unique. All the equations are satis�ed exatly, andsine r(p∗) = 0, then also W · r(p∗) = 0.If there are more equations than unknown parameters (nr > np), we �nd the



3.6 The Weighting Fators 41least squares solution by Algorithm 3. We annot be sure to satisfy all equa-tions, and the weight of eah equation determines, whih solution is found,sine this solution minimizes 1/2 · rTr. A large penalty fator will result ina solution that is guaranteed to satisfy the gradient residual, provided thatthe saling of the residual elements is not bad. If the problem on the otherhand is onsistent, the penalty fator has no in�uene.
3.6 The Weighting FatorsSine the weighting fators funtion in the same way as the penalty fatordisused in the previous setion, the analysis regarding the systems of equa-tions is also valid in the present setion.In the new Spae Mapping formulation we wish the mapping parametersto minimize the residual funtion (1.3.12), onsisting of the funtion valueresidual and the gradient residual. We assume, that we have made k+1 iter-ations in the main algorithm. The �rst iterate is x(0). The residual dependson k of the k + 1 iterates, as well as the gradient wrt. the design parametersin the best iterate, sine the funtion values of the �ne and surrogate modelsin the best iterate already math. The length of the residual vetor is de-noted nr and depends on the number of main iterations and the number ofdesign parameters (nr = k + n). With use of the regularization term nr alsodepends on the number of mapping parameters, in this ase nr = k+n+np.We introdue weighting fators for the funtion value residual rows denoted
wi for i = 1, . . . , k. The gradient residual is weighted with the penalty fator
σ, whih is disussed in setion 3.5.Linear Weight FuntionIn the implementation of the SMIS framework by Frank Pedersen, the weight-ing fators are given by a linear funtion depited in �gure 3.6.1.where εres is a given threshold value (the �gure shows εres = 0.25). Theweighting funtion dereases linearly from 1 to 0 as the distane to thebest iteration point grows, giving the expression for the weighting fators
w1, . . . , wk:
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Figure 3.6.1: Linear weight funtion
wi =











1 for dXi < εres

2 − dXi

εres
for dXi < 2εres

0 for dXi ≥ 2εresGauss Distributed Weight FuntionAnother approah is to let the weighting fators depend on the number ofresidual rows nr. The number of unknown parameters is np, hene we needat least np − n + 1 iterations to ensure, that the problem is not underdeter-mined.We hoose a weight funtion as a Gauss urve.
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Figure 3.6.2: Gauss distributed weight funtionHere the weighting fators are alulated from the expression:
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wi =

{

1 if nr < np

exp(−γ · dX2
i ) if nr ≥ np

(3.6.1)where the fator γ is determined by γ = − ln(εres)
¯dX

2 , with ¯dX orrespondingto the (np − n)th best iterate. This gives the weighting fator εres for thispartiular residual element. In this ways the weighting fators for the resid-ual elements orresponding to the best iterates are kept above or equal tothe threshold value εres, and all other points are onsidered low priority.The weighting funtion for εr = 0.10 is seen in �gure 3.6.2. If there are notenough rows in the residual to math the number of unknown parameters,all residual rows are weighted equally with a fator 1.If the Parameter Extration problem is overdetermined, the weighting fatorsmake sure that the best points are given the highest priority. As mentionedbefore the weighting fators do not in�uene the solution, if the system isonsistent. The threshold value is used to deide, how important a role the'unneessary' iterates should play in �nding the optimal parameter set.If the Parameter Extration problem is underdetermined, it is usually pos-sible to satisfy all equations exatly. In this ase the weighting fators haveno e�et on the solution, sine if r(p∗) = 0 then also W · r(p∗) = 0. Thestrategy for determining the weighting fators in the ase nr < np is there-fore not important, as long as the w's are not equal to zero.
3.7 The Normalization FatorsThe normalization fators a1, . . . , ak and d are multiplied on eah of theresidual elements as given by (1.3.12). This is done to avoid saling prob-lems in the residual funtion.The normalization fators theoretially have the same e�et as the weight-ing fators w and the penalty fator σ. But the normalization fators arenot used to onstrain the problem by penalizing some hosen elements, butsimply to ensure that all the equations are weighted equally in the residualvetor. If the residual elements are of very di�erent orders of magnitude, theweighting fators will not have the e�et that we aim for.



44 Chapter 3. Theoretial and Pratial InvestigationsA strategy for hoosing the normalization fators is to put:
aj =

1√
εM + ‖fi(xj)‖2

for j = 1, . . . , k (3.7.1)
d =

1√
εM + ‖Jf,i(x0)‖2

(3.7.2)
v =

1√
εM + ‖pk‖2

(3.7.3)where the iterates x0, . . . ,xk are the sorted iterates orresponding to setion3.6. The fator v in (3.7.3) is used for saling the regularization term, if thisis inluded in the residual formulation.Eah of the �rst k residual elements is the di�erene between the surrogateand the �ne model response in k di�erent iteration points. We sale theseresidual elements aording to the norm of the �ne model response in theiterate.The gradient residual is saled with the normalization fator d, whih isfound by means of the norm of the �ne model gradient. To avoid in�nitesaling fators, when ‖fi(xi)‖2 or ‖Jf,i(x0)‖2 are very small, we add √
εMto the denominator of all normalization fators.Finally the regularization term, when present, is saled aording to the ini-tial parameter vetor pk, whih holds the mapping parameters orrespondingto the kth surrogate model.



45
Chapter 4Test Problems
4.1 IntrodutionThe Spae Mapping method performed by the three algorithms in setion2.1 has been tested on various test problems. The two test problems TLT2and TLT7 are from the SMIS framework by Frank Pedersen. Another testproblem is the Rosenbrok funtion, whih has been tested in its lassialform as well as in an augmented version.The Spae Mapping method an produe very di�erent results, dependingon the implementation and the formulation of the residual. In all test runsthe implementation of the three algorithms orrespond to the desriptions inhapter 2.The tests have been performed on the SUN Fire 3800 server on the IMM sys-tem with the following data: 8 CPU, 16 GB RAM and the lok frequeny1200 MHz.A very important fator for the general performane of the Spae Mappingmethod is onneted with the Parameter Extration problems. As desribedin the previous hapter the formulation of the residual an be varied by theuse of normalization fators, weighting fators and regularization. Thesethree approahes an be ombined with the redution of the parameter ve-tor. There are many options to hoose from and every one of these optionshave an in�uene on the results.The test investigations presented here are onerned only with the formu-lation of the Parameter Extration problems. Through the work with theimplementation and the following test runs of the algorithms, the e�ets ofa ertain approah has been somewhat lari�ed. On the basis of this theoptions have been hosen to provide di�erent senarios, whih de�ne thealgorithms used. All senarios have been used on the three problem types.Before presenting the test results we de�ne the pro�les of the senarios.



46 Chapter 4. Test ProblemsIn every test run we must de�ne four tolerane options for use in the stop-ping ritera for the three algorithms. These options are:
εF : Stopping riterion for the objetive funtion.
εhx : Stopping riterion for the step length for x-iterates.
εhp : Stopping riterion for the step length for p-iterates.
εK : Stopping riterion for the gradient residual math.In the setup �le it is urrently only possible to set two tolerane parameters
ε1 and ε2, where the �rst is the desired auray for the main problem, andthe latter is the desired auray, when solving the Parameter Extrationproblem. We use ε1 = εF = εhx and ε2 = εhp = εK .Furthermore the maximal number of funtion evaluations in eah of the algo-rithms is needed. These values are set aording to the partiular problem.The options in marquardt must also be de�ned f. p. 19.The tolerane options and marquardt-options in some ases have an e�eton the results. On that ground we use either one of the following sets ofoptions, depending on the problem:

• ε1 = 10−14, ε2 = 10−4 and opts= [1e-8 1e-4 1e-4 200 1e-12℄.
• ε1 = 10−14, ε2 = 10−14 and opts= [1e-8 1e-14 1e-14 200 1e-12℄.The initial trust region radius for all test problems is ∆(0) = 10−1 · ‖x(0)‖2.The parameter η, that de�nes the step length in diffjaobian, is �xed at

η = 10−5 for both forward di�erene approximations wrt. x and wrt. p.The updating of the penalty fator is done only by the strategy in Algorithm3. Finally we only onsider minimax optimization orresponding to p = ∞in Algorithm 1 and 2, whereas Algorithm 3 orresponds to minimization inthe 2-norm.4.1.1 The Test SenariosFor showing the e�ets of a given approah regarding the residual de�nition,we ompare the test runs from di�erent residual pro�les. We here presentan overview of the investigated test senarios.RegularizationTo show the e�ets of inluding the regularization term in the residual vetorwe ompare the test runs with the pro�les:
• Regularization of the residual vetor as desribed in setion 3.3. Theregularization term is added to the residual vetor (1.3.12) whih nowhas nr = k + n + np elements.
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• No regularization of the residual vetor. The residual has the formu-lation (1.3.12) and onsists of nr = k + n elements.Both ases are inluding omplete normalization of the residual elements or-responding to aj = 1√

εM+‖fi(xj)‖2
for j = 1, . . . , k and d = 1√

εM+‖Jf,i(x0)‖2
.When the regularization term is present, it is multiplied with the normaliza-tion fator v = 1√

εM+‖p(0)
i ‖2

.The Normalization FatorsFor investigating the in�uene of the normalization fators we test the fol-lowing ases:
• Normalization of all residual elements: The normalization fators aregiven by aj = 1√

εM+‖fi(xj)‖2
for j = 1, . . . , k and d = 1√

εM+‖Jf,i(x0)‖2
.

• Partly normalization of the residual elements: Only the gradient resid-ual is saled orresponding to a1, . . . , ak = 1 and d = 1√
εM+‖Jf,i(x0)‖2

.
• No normalization of the residual elements: ai = 1 for i = 1, . . . , k and

d = 1.The Weighting FatorsThe e�et of the weighting fators are onsidered and we ompare the se-narios:
• No weighting of the funtion value residual, wi = 1 for i = 1, . . . , k.
• Weighting of the residual elements orresponding to the Gauss dis-tributed weight funtion, and the strategy in setion 3.6 with theweights w1, . . . , wk given by (3.6.1).The two ases are ombined with a omplete normalization of the residualelements.The Number of Mapping ParametersThe last test senario onerns the number of mapping parameters. Weonsider two ases:
• With a full-size parameter vetor: The number of mapping parametersis np = n2 + n + 1.
• With a redued parameter vetor orresponding to using a diagonalinput mapping matrix A: The number of mapping parameters is np =

2n + 1.



48 Chapter 4. Test ProblemsIn the problem setup-�le the size of p is ontrolled by the �ag diagA. FordiagA = 0 the input mapping matrix A is full, and for diagA = 1 we havea diagonal A.4.1.2 Visualization of The ResultsThe results of the Matlab runs of the test problems will be presented indi�erent ways. The SMIS framework ontains di�erent plotting programs,whih an be alled after the ended Spae Mapping iterations for a test prob-lem. The following plots are used to show the results:Convergene of the Iteration SequeneThe test problems all have known optimizers of the �ne and the oarse model,whih makes it possible to see if the Spae Mapping method onverges ornot. The optimizers x∗ and z∗ must be provided in the problem setup-�le.Two measures for the onvergene to the optimizer are plotted with di�erentplot symbols as a funtion of the iteration number:
� ‖x(k) − x∗‖2

♦ F (x(k)) − F (x∗)These plots are omparable with the results of [1℄. The formulations are stillvalid, when x∗ and F (x∗) are equal to zero.Approximation ErrorThe surrogate model provides an alternative to the �ne model, whih isheaper to evaluate than the �ne model. The surrogate model is used asa loal approximation to the �ne model, and the region, where the modelapproximation is good, is of interest. With the new Spae Mapping formula-tion with both input and output mappings, the surrogate and the �ne modelmath exatly in the expansion point. To evaluate the results we are inter-ested in the model mathing in the region around the expansion point. Themodel mathing of the surrogate model an be ompared with the mathingof a Taylor model, whih is used for approximation in lassial optimizationmethods.In lassial optimization with �rst order information available, we use a Tay-lor model to approximate the objetive funtion. The Taylor expansion is:
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f(x + h) = f(x) + Jf (x)h + O(‖h‖2

2)and when only using the �rst order information, we get the linearized model:
l(h) = f(x) + Jf (x)hThe approximation error is then given by f(x + h)− l(h). A measure of theapproximation error suitable for plotting is:

El(h) = ‖f(x + h) − l(h)‖2and it is obvious, that the error grows quadratially as we move from theexpansion point.In the Spae Mapping Method we use the surrogate model as an approxi-mation to the objetive funtion. The norm of the di�erene between thesurrogate and the �ne model an be used as a measure of the approximationerror given by:
Es(h) = ‖f(x + h) − s(x + h)‖2Beause of the new Spae Mapping formulation with the output mappingwe are ensured an exat funtion value math in the expansion point. Fur-thermore the residual funtion used in the Parameter Extration guaranteesa satisfatory gradient math in this point.For two-dimensional problems (n = 2) the two approximation errors El and

Es an be visualized in three-dimensional plots, with the errors plotted in aregion of the (x1, x2)-plane.Diret OptimizationThe SMIS framework also ontains two algorithms, whih an be used fordiret optimization based on �rst order derivatives of the �ne model. The�rst algorithm diret is an implementation of a �rst order method whihuses approximations to the �rst order derivatives from a Broyden update.The seond algorithm diretd exploits the gradients returned diretly fromthe model funtions.The iteration sequene from the diret optimization an be used to omparethe Spae Mapping method with the interpolating surrogate with a lassialoptimization method.



50 Chapter 4. Test Problems4.2 The Rosenbrok Problem4.2.1 IntrodutionThis test problem is based on the well-known non-linear funtion, the Rosen-brok funtion, a vetor funtion R
2 → R

2 (n = m = 2) with the optimizer
x∗ = [1 , 1]T. In this test problem the oarse model is idential with theRosenbrok funtion:

c(z) =

[

10(z2 − z2
1)

1 − z1

]with the optimizer z∗ = [1, 1]T. The �ne model is a transformed version ofthe oarse model de�ned by a linear transformation of the design parameters:
f(u) =

[

10(u2 − u2
1)

1 − u1

]

u(x) = Cx + dwhere C ∈ R
2×2 and d ∈ R

2. The �ne model optimizer x∗ satis�es u(x∗) =
z∗ giving:

z∗ = Cx∗ + d ⇒ x∗ = C−1(z∗ − d)and the solution x∗ is unique, provided that C is nonsingular.Sine we know the transformation given by C and d, the input mappingparameters Ai = C and bi = d for i = 1, 2 will give an exat math between
Pi(x) and u(x). With the output mapping parameters α1, α2 = 1 the sur-rogate model is exatly equal to the �ne model, sine for i = 1, 2:

si(x) = αi (ci (Pi(x)) − ci (Pi(x̄))) + fi(u(x̄))

= 1 · ci (Pi(x))

= fi(u(x))But as shown in setion 3.4, there are in�nitely many solutions to the inputmapping parameters Ai and bi giving Pi(x
∗) = z∗, and beause of theapproah in the Parameter Extration problem we annot be sure to �ndthe partiular solution, where Ai = C and bi = d for i = 1, 2. In fat themapping parameters for the two responses are probably not equal.As we shall see later the Rosenbrok funtion is speial, sine the seondresponse funtion only depends on x1.



4.2 The Rosenbrok Problem 514.2.2 Linear TransformationIn this example we use the following transformation of the �ne model:
u(x) = Cx + d =

[

1.1 −0.2
0.2 0.9

] [

x1

x2

]

+

[

−0.3
0.3

] (4.2.1)The orresponding �ne model optimizer rounded to 4 deimals is x∗ =
[1.2718 , 0.4951]T.
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x* = [ 1.2718 , 0.4951 ]TFigure 4.2.1: Contour plots of the Rosenbrok funtion: oarse model (left)and �ne model (right)We show the level urves of the oarse and �ne models in �gure 4.2.1, wherethe objetive funtion is F = ‖·‖2
2. The �ne model is very similar to theoarse model (the original Rosenbrok funtion) and the harateristi ba-nana shape is still present.In all the test results with the Rosenbrok funtion we use the options

ε1 = 10−14, ε2 = 10−14 and opts = [1e-8 1e-14 1e-14 200 1e-12℄. Theinitial guess for the oarse model optimizer is x(0) = [−1.2 , 1.0]T. We showthe iteration sequenes also after the algorithm has onverged to the opti-mizer.E�et of the RegularizationThe onvergene is very fast for both the ase with regularization and thease without. The performanes are shown in �gures 4.2.2 and 4.2.3.We notie the absene of the points of iteriation 6 in �gure 4.2.2, beausethe value 0 is not visible in the semilogarithmi plot.There are small di�erenes between the iteration sequenes of the two test
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Figure 4.2.3: Without regulariza-tionruns: The onvergene is a little faster without the regularization term addedto the residual vetor. When we solve the unregularized problem, we have
np = 7 and there is a possibility of an overdetermined Parameter Extrationproblem in iteration 6 and onwards. For this problem the underdeterminedParameter Extration problems do not have a negative e�et on the onver-gene rate, sine we �nd the �ne model optimizer before iteration 6.The iteration points orresponding to �gure 4.2.3 are shown in the (x1, x2)-plane with the objetive funtion F = ‖f(x)‖2

2. It is noted that the �rstiteration point plotted is the initial guess for the oarse model optimizer.The �rst evaluation of the �ne model is made in the point x(1) whih is theseond point plotted in �gure 4.2.3.
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E�et of the Normalization FatorsThe next test runs are made with all normalization fators equal to 1.The iteration sequenes in �gures 4.2.5-4.2.6 are almost idential with �gures4.2.2-4.2.3, and we onlude, that the normalization fators have pratiallyno e�et in the Rosenbrok problem.
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Figure 4.2.5: With regularizationand without normalization 0 2 4 6 8 10
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Figure 4.2.6: Without regulariza-tion and without normalizationE�et of the Weighting FatorsWe an not use this problem for testing the e�et of the weighting fators.The weighting fators from the Gauss distributed weight funtion approahare only di�erent from zero from iteration number 6. At this point the solu-tion is already found.E�et of the Number of Mapping ParametersIn this ase the results are very di�erent, when we use the redued parametervetor instead of the omplete. We test the performane of the algorithm inthe following three ases:
• With regularization
• Without regularization
• Without regularization and with weighting fatorsAll three ases are with normalization of the residual elements. The resultsare shown in �gures 4.2.7, 4.2.8 and 4.2.9.
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Figure 4.2.7: With regu-larization 0 5 10 15 20 25 30
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Figure 4.2.8: Withoutregularization 0 5 10 15 20 25 30
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Figure 4.2.9: Withoutregularization and withweightingThe onvergene is muh slower in all three ases ompared to �gures 4.2.2and 4.2.3. There is only a little di�erene in the iteration sequenes in �g-ures 4.2.7, 4.2.8 and 4.2.9 in the last iterations, when we are lose to theoptimizer. The onvergene rate is the same for all three ases.The table below shows the values of ‖x(k+1) − x∗‖2/‖x(k) − x∗‖2 for k =
1, . . . , 24 orresponding to the results of �gure 4.2.7.k ‖x(k+1)−x∗‖2

‖x(k)−x∗‖2
k ‖x(k+1)−x∗‖2

‖x(k)−x∗‖2
k ‖x(k+1)−x∗‖2

‖x(k)−x∗‖21 6.4062e-01 9 2.0771e-01 17 2.0771e-012 3.4325e-01 10 2.0770e-01 18 2.0768e-013 1.6551e-01 11 2.0770e-01 19 2.0758e-014 2.1301e-01 12 2.0769e-01 20 2.0725e-015 2.0869e-01 13 2.0769e-01 21 2.0764e-016 2.0793e-01 14 2.0769e-01 22 1.0000e+007 2.0778e-01 15 2.0769e-01 23 2.0577e-018 2.0774e-01 16 2.0770e-01 24 1.9426e-01We note that the asymptoti error onstant is approximately 0.2 from iter-ation 4 to 21. The results indiate linear onvergene.In the ase of the redued parameter vetor we have np = 5 unknown pa-rameters in every Parameter Extration problem. The transformation of the�ne model parameters is de�ned by a non-diagonal matrix C, and apparentlythis reates problems, when aligning the surrogate model with the �ne model.In �gure 4.2.10 the iteration points from �gure 4.2.8 are seen in the ontourplot of F = ‖f(x)‖2
2. It is similar to �gure 4.2.4, exept for the fat that alot of points are lustered near the optimizer x∗ = [1.2718 , 0.4951]T.
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Iteration pointsFigure 4.2.10: Sequene of iteration pointsOptimal Mapping ParametersThe Rosenbrok funtion is speial in the sense, that the two response fun-tions are qualitatively di�erent. The �rst response is a quadrati funtionand depends on both z1 and z2, whereas the seond is linear and only de-pends on z1. The Jaobian matrix is:
[

−20z1 10z2

−1 0

]Sine ∂c2/∂z2 = 0 and with referene to setion 3.4 equation (3.4.7) thismeans that:
∂s2(x,p)

∂p
= α2

(

c′2,z(z) · H
)

= α2

[

−1 0
]

[

x1 x2 0 0 1 0
0 0 x1 x2 0 1

]

= −α2

[

x1 x2 0 0 1 0
]We have no information of the mapping parameters A21, A22 and b2 on-erning z2, sine all the partial derivatives wrt. these parameters are zero.This in�uenes the Parameter Extration for response funtion number 2.The variables are never hanged during the residual optimization, and the�nal values are A21 = 0, A22 = 1 and b2 = 0 orresponding to the initialvalues.This theory is on�rmed when looking at the results from the Spae Map-ping algorithm. The optimal parameter sets are for the regularized ase anda full parameter vetor (�gure 4.2.2):
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A1 =

[

0.9567 −0.1489
0.0370 0.9930

]

b1 =

[

−0.0678
0

]

α1 = 0.9899

A2 =

[

1.0329 −0.1878
0 1

]

b2 =

[

0
0

]

α2 = 1.0649For the ase when A is redued to a diagonal matrix we get the optimalmapping parameters with use of the regularization term (�gure 4.2.7):
A1 =

[

0.7811 0
0 1.1721

]

b1 =

[

0.1609
0

]

α1 = 1.1091

A2 =

[

1 0
0 1

]

b2 =

[

0
0

]

α2 = 1The results with no regularization (�gure 4.2.8) are not qualitatively di�er-ent:
A1 =

[

0.7923 0
0 1.3003

]

b1 =

[

0.2548
0

]

α1 = 0.9997

A2 =

[

1 0
0 1

]

b2 =

[

0
0

]

α2 = 1It is noted, that the mapping parameters for response funtion 2 are iden-tial with the initial mapping parameters in both ases. This probably hassomething to do with the fat, that the seond response funtion is linearand only depends on the �rst variable.Diret OptimizationWe �nally present the results from diret optimization of the �ne model bythe two algorithms diret and diretd from the SMIS framework imple-mented by Frank Pedersen.Both iteration sequenes in �gure 4.2.11 onverge very slowly, whih is alsoseen from the plots in �gure 4.2.12.From the given initial guess x(0) = [−1.2 , 1] the iterates move through thevalley with a large number of small steps towards the optimizer. This be-haviour of the iteration sequene is avoided for the Spae Mapping algorithm.It is obvious, that the Spae Mapping algorithm is muh more e�ient thanthe lassial optimization algorithms onsidered here.
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Figure 4.2.11: Performane of diret optimization of the �ne model ('diret'left, 'diretd' right)
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Iteration pointsFigure 4.2.12: Iteration sequenes for diret optimization of the �ne model('diret' left, 'diretd' right)Summary of the Results
• The regularization seems to have slightly negative e�et on the on-vergene speed.
• The normalization fators have pratially no e�et on the onvergenespeed.
• The e�et of the weighting fators is not possible to investigate for thisproblem, beause the optimizer is found, before the hosen weightingstrategy has any in�uene.
• The redution of the mapping parameters results in a muh sloweronvergene rate.
• The optimal mapping parameters are pratially not in�uened by theregularization term.
• Several of the input mapping parameters are not hanged from theinitial values. This behaviour is aused by the harater of the problem.



58 Chapter 4. Test Problems4.2.3 The Augmented Rosenbrok FuntionTo test the Spae Mapping algorithm on a problem with a known solutionbut of larger dimension than the lassial Rosenbrok funtion we add twovariables and three equations to give the augmented Rosenbrok funtion
R

4 → R
5 with n = 4 and m = 5:

c(z) =













10(z2 − z2
1)

1 − z1

10(z3 − z2
4)

1 − z3

z2
1 + z2

2 + z2
3 + z2

4 − 4











The oarse model optimizer is z∗ = [1 , 1 , 1 , 1]T, where we have restritedthe solution spae to zi ≥ 0 for i = 1, 2, 3, 4, sine there is also an optimizerin z∗ = [1 , 1 , 1 , −1]T.The �ne model is again similar to the oarse model exept for the parametertransformation u(x):
f(u) =













10(u2 − u2
1)

1 − u1

10(u3 − u2
4)

1 − u3

u2
1 + u2

2 + u2
3 + u2

4 − 4











with the linear transformation of the x-vetor given by the matrix C ∈ R
4×4and the vetor d ∈ R

4. We hoose the transformation orresponding to:
u(x) = Cx + d =









1.1 −0.2 1.1 0.2
0.2 0.9 −0.2 0.9
1.1 0.2 1.1 −0.2
−0.2 0.9 0.2 0.9

















x1

x2

x3

x4









+









−0.3
0.3
−0.3
0.3







The �ne model optimizer is now:
[

0.5909 0.3889 0.5909 0.3889
]TWe begin the iteration proes with the initial guess for the oarse modeloptimizer x(0) = [−1.2 , 1.0 , −1.2 , 1.0]T. All test runs are made with

ε1 = 10−14, ε2 = 10−14 and opts = [1e-8 1e-14 1e-14 200 1e-12℄.E�et of the RegularizationIn �gure 4.2.13 we show the iteration sequene as a result of running theSpae Mapping algorithm with regularization of the Parameter Extrationproblem. Figure 4.2.14 shows the results without regularization. Both test



4.2 The Rosenbrok Problem 59runs are with full input mapping matries A.
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Figure 4.2.13: With regularization 0 2 4 6 8 10
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Figure 4.2.14: Without regulariza-tionAgain we get a slightly faster onvergene for the ase with no regularization,in whih the optimizer is found in 6 iterations. We have np = 21 unknownparameters. The senario with no regularization term is thereby underde-termined at least until the 18th iteration, but this has no e�et sine theoptimizer is found in the 6th iteration.
E�et of the Normalization FatorsThe normalization fators do pratially not e�et the results, when we solvethe regularized Parameter Extration problems, whih is shown in �gure4.2.15. In the ase without regularization the normalization fators have aslight positive e�et, as it is seen in �gure 4.2.16 ompared to �gure 4.2.14.The onvergene within the auray of 10−15 is now made in 7 iterations.
E�et of the Weighting FatorsThe in�uene of the weighting fators is not possible to investigate for thisproblem, sine the weighting funtion strategy will not have in�uene beforeiteration 18, where the algorithm has onverged to the optimizer.
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Figure 4.2.15: With regularizationand without normalization 0 2 4 6 8 10
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Figure 4.2.16: Without regulariza-tion and without normalizationE�et of the Number of Mapping ParametersThe algorithm does not onverge when only a diagonal matrix is used in theinput mapping. This applies for all test senarios.The number of mapping parameters is np = 9 in this ase. We must on-lude, that it is not possible to �nd a mapping only onsisting of these 9parameters, that aligns the surrogate model with the �ne model when thetransformation u(x) is de�ned by a non-diagonal matrix C. In the nextsubsetion we look at the solution from a full parameter vetor. It turns out,that several of the input mapping matries are atually similar to diagonalmatries exept for one or two rows.The de�nition of the transformation u(x) makes the redution of the param-eter vetor unsuitable for this problem.
Optimal Mapping ParametersWe now onsider the optimal mapping parameters. These an be omparedto the results of the original Rosenbrok funtion, sine the �rst two responsefuntions are idential. Also the added third and fourth response funtionshave similarities to the two �rst. The optimal mapping parameters for thisaugmented Rosenbrok funtion therefore has the same features as desribedin the previous setion 4.2.2.We bring the sets of optimal mapping parameters below for the ase orre-sponding to �gure 4.2.14.
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i Ai bi αi1 1.1768 0.0552 1.1768 -0.0552 -0.4595 0.8738-0.0973 1.5905 -0.5551 0.4694 00 0 1 0 00 0 0 1 02 1.0672 -0.1940 1.0672 0.1940 0 1.03070 1 0 0 00 0 1 0 00 0 0 1 03 1 0 0 0 0 0.74480 1 0 0 01.4855 0.2296 1.4682 -0.3074 0-0.2317 1.0428 0.2317 1.0428 0.32904 1 0 0 0 0 1.03070 1 0 0 01.0672 0.1940 1.0672 -0.1940 00 0 0 1 05 1.0832 0.2075 0.2989 0.2550 0.0831 1.19340.2044 1.1034 0.1611 0.3426 -0.02420.2974 0.1610 1.1579 0.2364 0.02620.2537 0.3435 0.2343 0.8789 0.0652

We note the following:- Response funtions 2 and 4 are only dependent on one design parametereah. Sine we have no information on the rest of the parameters, onlythe mapping parameters onerning the partiular design parameterhave been hanged from the initial values.- The 1st and the 3rd response funtions depend exlusively on two ofthe four design parameters, onsequently only the rows of A1 and A3orresponding to the two involved design parameters are di�erent fromthe initial values.- For response funtions 1, . . . , 4 some of the elements of Ai have thesame (absolute) values.- The 5th response funtion depends on all four design parameters, andall of the 21 mapping parameters have been altered during the itera-tions.We also notie that none of the mapping parameters orrespond to the so-lution Ai = C, bi = d and αi = 1.



62 Chapter 4. Test ProblemsSummary of the Results
• The regularization seems to have a slightly negative e�et on the on-vergene speed.
• The normalization fators have pratially no e�et on the onvergenerate.
• The e�et of the weighting fators is not possible to investigate for thisproblem, beause the optimizer is found before the hosen weightingstrategy has any in�uene.
• The algorithm does not onverge with a redution of the mappingparameters. This is aused by the de�nition of the problem.
• The optimal mapping parameters are losely related to the featuresof the response funtions. Several of the mapping parameters are nothanged ompared to the initial value.



4.3 The TLT2 Problem 634.3 The TLT2 Problem4.3.1 IntrodutionThe TLT2 problem is a design problem of a two-setion apaitively-loadedimpedane transformer. In this problem we wish to determine the optimallengths of the two transmission lines. The model is sampled at 11 frequenypoints giving 11 input re�etion oe�ient responses. With n = 2 and
m = 11 we have the �ne model funtion f : R

2 → R
11 and wish that theoptimal response funtion satis�es the design spei�ations:

‖f(x)‖∞ = max
1≤i≤11

|fi(x)| ≤ 0.50The main goal is to �nd the optimizer of the �ne model, even though thedesign spei�ations are satis�ed earlier in the optimization proess.The oarse model is a simpli�ation of the �ne model, not taking the ouplede�ets into aount. For more details on the physial aspets see [7℄.The oarse and the �ne model optimizers are:
z∗ =

[

90
90

]

x∗ =

[

74.233241580781367
79.265787256540477

]The �ne model optimizer is an estimate from some optimization algorithmavailable from the original setup �le from the SMIS framework by FrankPedersen.These design parameters give the responses as shown in �gure 4.3.1.
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Figure 4.3.1: Coarse and �ne model response in their respetive optimizersThe response in the optimal surrogate model is idential to the response inthe �ne model optimizer. The initial guess for the oarse model optimizer



64 Chapter 4. Test Problemsis set to x(0) = [100 , 60]. The Matlab-�les ztran2.m and ztran2f.m areimplementations of the oarse model and the �ne model. The Jaobians ofboth model funtions are alulated by diffjaobian.In the following we present the results from running the Spae Mapping al-gorithm in the various senarios. Eah test run has a alulation time ofabout two to �ve minutes.4.3.2 The Results of the Test RunsE�et of the RegularizationHere we run the tests with a full mapping parameter vetor orresponding toa full matrix A, ie. the number of parameters is np = 7. The toleranes forthe main problem and the subproblems are set to ε1 = 10−14 and ε2 = 10−4.The options used in the Marquardt algorithm are opts= [1e-8 1e-4 1e-4200 1e-12℄. The test runs produe the following iteration sequenes.
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Figure 4.3.2: With regularization 0 5 10 15
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Figure 4.3.3: Without regulariza-tionThe desired auray ε2 of the Parameter Extration problems has a ratherlarge value ompared to ε1, and orrespondingly the options used in thestopping riteria for marquardt are of the same size. This is hosen beauseit gives the best results. If we alter the options to ε2 = 10−14 and the opts-vetor to [1e-8 1e-14 1e-14 200 1e-12℄ the algorithm atually onvergesslower as shown in the �gures 4.3.4 and 4.3.5.This seems strange, sine one would expet a higher auray of the map-ping parameters, resulting in a better surrogate model and thereby a fasteronvergene. But this is not the ase. It is not obvious why this behaviouris present. An explanation ould be, that it is not possible to satisfy the
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Figure 4.3.4: With regularization 0 5 10 15
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Figure 4.3.5: Without regulariza-tiongradient math to the desired auray, and the marquardt-algorithm keepsiterating, atually produing a worse set of mapping parameters.In the ase of no regularization there is a possibility of having an overde-termined problem from the 6th iteration. At this point of the iteration, theiterate is already very lose to the optimizer, and it apparently is no problemthat the regularization term is not added.E�et of the Normalization FatorsThe normalization fators have an important in�uene on both the iterationsequene and on the surrogate model in the optimizer. The next �guresshow the performane of the algorithm with three ases of normalizationorresponding to setion 4.1.1:
• Normalization of all residual elements
• Only normalization of the gradient residual
• No normalizationFirst we onsider the ase of no regularization.We see that the onvergene is a little slower in ase 2, where a1, . . . , ak = 1,but d 6= 1. With no normalization the solution is not as good ompared tothe estimate of x∗.In the �gures 4.3.9-4.3.11 we see the approximation errors Es (light grid)and El (dark grid) orresponding to the three ases of saling.Here there is a big di�erene in the surrogate models: Case 1 with om-plete saling is a very bad approximation to the �ne model. But when we
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Figure 4.3.6: With nor-malization 0 5 10 15
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Figure 4.3.7: Only nor-malization of gradientresidual 0 5 10 15
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Figure 4.3.8: Withoutnormalization
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Figure 4.3.9: With nor-malization
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Figure 4.3.10: Only nor-malization of gradientresidual
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Figure 4.3.11: Withoutnormalizationuse only the normalization fator d for the gradient residual, the model iswell-behaved and provides a muh better approximation to the �ne model.The third ase with no saling of the residual vetor at all, provides a betterresult than the �rst ase, but the seond ase is still to prefer.For omparison we view the iteration sequenes in the ase of the regularizedresidual.
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Figure 4.3.12: With nor-malization 0 5 10 15
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Figure 4.3.13: Only nor-malization of gradientresidual 0 5 10 15
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Figure 4.3.14: Withoutnormalization
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Figure 4.3.15: With nor-malization
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Figure 4.3.16: Only nor-malization of gradientresidual
0

50

100

150 40
60

80
100

120
140

0

1

2

3

4

5

6

x
2

Approximation error for fine model Taylor appr. and surrogate model 
 with expansion point x = [ 74.21 , 79.29 ]

x
1

N
or

m
 o

f a
pp

ro
xi

m
at

io
n 

er
ro

r

Figure 4.3.17: WithoutnormalizationAs seen from �gures 4.3.12-4.3.14 the normalization fators are of no relevantimportane of the performane in the ase of regularization. The solutionis again less aurate in the third ase without any normalization. Alsothe surrogate model approximation errors in �gures 4.3.15-4.3.17 are almostuna�eted by the saling.We instead onsider the ase where we put a1, . . . , ak equal to 1, but stillhave the normalization fator d 6= 1, we get the results in �gure 4.3.18:
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Figure 4.3.18: With normalization only of gradient residualWe see that the partly normalization is resulting in a signi�antly bettersurrogate approximation error, whih is now better that the approximationerror from using a linear Taylor model.We onlude that for this partiular problem, the saling of the residual el-ements is important for the quality of the surrogate approximation, but notfor the onvergene.



68 Chapter 4. Test ProblemsE�et of the Weighting FatorsHere we test some e�ets of the weighting fators by looking at the ase withno regularization of the residual. The weighting fators have no e�et on theiteration sequene, as it is seen from the �gures 4.3.19 and 4.3.20.
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Figure 4.3.19: With normalizationand without weighting 0 5 10 15
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Figure 4.3.20: With normalizationand with weightingThe number of unknown parameters is np = 7, whih means, that the weight-ing fators will possibly in�uene the results from iteration 6 and onwards.But the surrogate model approximation error orresponding to the weightedase is similar to �gure 4.3.9, and serves as a poor approximation to the �nemodel.At last we onsider the weighting strategy ombined with only normalizationof the gradient residual. The results from this senario are shown in �gure4.3.21.Now the surrogate is again well-behaved, whih is aused by putting thenormalization fators a1, . . . , ak = 1.We onlude, that the weighting fators in this test problem are pratiallywithout in�uene on the results - both regarding performane of the SpaeMapping algorithm and regarding the quality of the surrogate model approx-imation in the optimizer.Referring to setion 3.1 we an only expet the results to be within theauray of the maximal errors from not using the exat gradients. The tol-erane used in these test results is ε1 = 10−14, whih is probably too strit.We therefore onlude, that the problem is not suited for investigating theweighting fators.
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Figure 4.3.21: With normalization only of gradient residual and with weight-ingE�et of the Number of Mapping ParametersWe here bring the results of the test runs with the diagonal input mappingparameter matrix A. In this ase we have np = 5 elements in the parametervetor p. There is a possibility of having an overdetermined system in iter-ation 4. The test runs are made with the tolerane parameters ε1 = 10−14,
ε1 = 10−4 and opts= [1e-8 1e-4 1e-4 200 1e-12℄. Figures 4.3.22 and4.3.23 show the results with a diagonal input mapping matrix in the regu-larized and the unregularized ase.
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Figure 4.3.22: With regularization 0 5 10 15
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Figure 4.3.23: Without regulariza-tionWe see that the onvergene is slower ompared to �gures 4.3.12 resp. 4.3.6both with and without the regularization term added, when only onsideringthe redued parameter vetor. The orresponding approximation errors forthe surrogate model and the Taylor model in the optimizer are depited in



70 Chapter 4. Test Problems�gures 4.3.24 and 4.3.25.
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Figure 4.3.24: With regularization 0
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Figure 4.3.25: Without regulariza-tionAgain the surrogate model approximation error is large for the unregularizedase ompared to the regularized. In �gure 4.3.25 the surrogate approxima-tion is not as good as the approximation with a linear Taylor model in mostaf the design parameter region.Also in this ase the tolerane options are of great importane. We run thealgorithm with smaller toleranes: ε1 = ε2 = 10−14 and the marquardt-options [1e-8 1e-14 1e-14 200 1e-12℄. As the results in �gures 4.3.26and 4.3.27 show, the onvergene is now as fast as with the full parametervetor. This applies for both the ase with regularization and the ase with-out regularization.
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Figure 4.3.26: With regularization 0 5 10 15
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Figure 4.3.27: Without regulariza-tionThe approximation errors Es and El orresponding to the regularized and



4.3 The TLT2 Problem 71unregularized tests, are seen in �gures 4.3.28 and 4.3.29. The approximationerror for the surrogate model is not better, when using a smaller toleranevalue.
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Figure 4.3.28: With regularization 0
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Figure 4.3.29: Without regulariza-tionWe onlude that the optional tolerane values are of great importane inthis problem. A smaller tolerane here results in faster onvergene, butthe surrogate approximation errors are not e�eted positively by the smallertolerane. In order to ensure good surrogate approximations over a largeregion of the design parameter spae, we must put the normalization fators
a1, . . . , ak equal to 1.Optimal Mapping ParametersFinally we look at the values of the mapping parameters in the optimal sur-rogate model. We have the initial mapping parameters Ai = I, bi = 0 and
αi = 1 for all response funtions i = 1, . . . , 11 in iteration 0. It is interestingto see how di�erent the optimal mapping parameters are from these values.We onsider two test senarios:

• With regularization and with normalization (�gure 4.3.15)
• Without regularization and with normalization (�gure 4.3.9)In the �rst ase a representative matrix A in the optimal surrogate modelis:

A =

[

1.09 0.10
0.05 1.07

]The elements of bi are of order of magnitude 10−3, and all values of theoutput mapping parameters α vary in the interval [0.75 , 1.45]. But for



72 Chapter 4. Test Problemsresponse funtion number 2 we have:
A2 =

[

−0.06 −1.27
−1.11 0.34

]

b2 =

[

−0.024
0.018

]whih is not lose to the identity matrix. We onlude that most of thematries A are not very di�erent from the initial identity matrix, and mostof the elements in b are lose to 0. The surrogate model with these mappingparameters is well-behaved as we have seen in �gure 4.3.15.But in the ase of no regularization we �nd a muh more varying piture.Some of the Ai's are lose to the identity matrix some are not, though all Ai-elements have absolute values between 0 and 3.5. Again response funtionnumber 2 is speial:
A2 =

[

−0.37 −0.31
2.12 1.70

]

b2 =

[

−93.91
−65.52

]

α2 = −12.85Some b-vetors have elements lose to 0, but as the result above shows thereare also examples of extremely di�erent b-values. The αi's vary between
−12.85 and 1.42. The surrogate model approximation error shown in �gure4.3.9 has extreme variation, whih ould be a onsequene of the variationsof the mapping parameters.This behaviour of the mapping parameters is probably onneted to themissing regularization term. In the regularization ase we fore the mappingparameters to be lose to the previous set, and in this way, we annot end upwith results very far from the initial values. We onlude, that if we do notregularize wrt. the previous parameter set, we ould end up with a solutionvery far from the previous.Finally we onsider the mapping parameters orresponding to �gure 4.3.10.Here the approximation error for the surrogate is not as large as before. Themapping parameters for response funtion 2 are now:

A2 =

[

4.08 4.52
−1.06 2.73

]

b2 =

[

−231.01
−72.83

]

α2 = −0.38Generally the mapping parameters in this ase still vary muh from responseto response, but apparently the surrogate approximation is better.Diret OptimizationFor omparing the Spae Mapping algorithm with a lassial optimizationalgorithm, we bring the following results from diret optimization of the �ne



4.3 The TLT2 Problem 73model by the two algorithms diret and diretd from the SMIS frameworkimplemented by Frank Pedersen.
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Figure 4.3.30: Performane of diret optimization of the �ne model (diretleft, diretd right)The diret-algorithm uses a Broyden updated approximation of the �rstorder partial derivatives, while the other uses the Jaobian diretly from the�ne model funtion.It is obvious, that the Spae Mapping algorithm is muh more e�ient thanthe lassial optimization algorithms.Summary of the ResultsBy running the di�erent versions of the Spae Mapping algorithm on thistest problem, we have seen, that the results are very di�erent. It is di�ultto onlude, why the results look as they do, and impossible to generalizethe behaviour to other problem types. But for this partiular problem theresults show the following:
• The regularization seems to have a positive e�et on both the onver-gene speed and the optimal surrogate aproximation.
• The normalization fators have only little e�et on the onvergenespeed, but a big in�uene on the quality of the surrogate approxima-tion, when we don't use regularization.
• The weighting fators do not seem to have a notiable e�et on eitherthe onvergene or the surrogate approximation.
• The redution of the mapping parameters still provides good onver-gene results, although the tolerane options have an e�et.
• The optimal mapping parameters are in�uened by the regularization



74 Chapter 4. Test Problemsterm.
• The tolerane options have an e�et on the iteration sequenes.



4.4 The TLT7 Problem 754.4 The TLT7 Problem4.4.1 IntrodutionThis design problem onerns a seven-setion apaitively-loaded impedanetransformer. The problem is similar to the TLT2 problem, but the dimen-sions are larger. Here we aim to �nd the optimal lengths of seven trans-mission lines, and we sample the model at 68 frequenies. With n = 7 and
m = 68 we now have f : R

7 → R
68 and the design spei�ations:

‖f(x)‖∞ = max
1≤i≤11

|fi(x)| ≤ 0.07We hereby wish to keep all 68 input re�etion oe�ient responses belowthe value 0.07. The main goal is to �nd the optimizer of the �ne model,even though the design spei�ations are satis�ed earlier in the optimizationproess.The optimizers x∗ and z∗ of the respetive models are:
z∗ =
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81.65148220976137
85.52171481989218
87.54698544710705
88.62554722596209
89.25567599948434
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84.87655093368730



















with the orresponding the response funtions in the �gure below.
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c(z*)Figure 4.4.1: Coarse and �ne model response in their respetive optimizersThe response in the optimal surrogate model is idential to the response inthe �ne model optimizer. The �ne model optimizer is an estimate from some



76 Chapter 4. Test Problemsoptimization algorithm available from the original setup �le from the SMISframework by Frank Pedersen, and this x∗ is used for omparison with thetest results.The initial guess for the oarse model optimizer is equal to the oarse opti-mizer.The oarse and �ne models are implemented in the MatLab-�les ztran7.mand ztran7f.m. The test runs of the TLT7 problem take at least two hourswhen the .The test problem is treated in [1℄ and [2℄. Here a di�erent saling is used,whih implies, that the optimal set of design parameters is approximately
1000 times smaller. Furthermore the problem is approahed in a di�erentway. The �ne and oarse model responses are omplex, and the tests fromthe artile use both the real and the omplex parts to produe response ve-tors of the double length, ie. 136 responses per evaluation. The results inthis report only uses the absolute value. In this way the surrogate modelontains the double amount of information, whih ould perhaps lead to abetter surrogate model. It is therefore unlikely, that the results in this reportare idential to the results of [1℄ and [2℄.The following test runs of the TLT7 problem are all with the tolerane op-tions ε1 = 10−14 and ε2 = 10−14. The options used in the Marquardtalgorithm are opts= [1e-8 1e-14 1e-14 200 1e-12℄.4.4.2 The Results of the Test RunsE�et of the RegularizationThe algorithm does not onverge to the optimizer in the ase where we usethe regularized residual in the Parameter Extration. When solving the un-regularized Parameter Extration problem we get the performane results ofthe algorithm depited in �gure 4.4.2. The result is with normalization ofthe residual elements and a full size parameter vetor.The optimizer is found in 10 iterations within the auray 10−16 of theobjetive funtion. The number of unknown mapping parameters in eah ofthe Parameter Extration problems is np = 57. In the ase of no regular-ization this means, that until iteration 51 we will have less equations thanunknowns. This is obviously not an obstale, sine we �nd the optimizer in
12 iterations.It is not known, why the test senario with the regularized Parameter Ex-tration problem does not onverge to the optimizer.
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Figure 4.4.2: Without regularizationE�et of the Normalization FatorsIn �gure 4.4.3 we see the iteration sequene for the ase of no normalizationof the residual vetor, orresponding to a1, . . . , ak = 1 and d = 1. The testis omputed with full parameter vetor.The onvergene is a little faster than the result from �gure 4.4.2.
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Figure 4.4.3: Without normalizationE�et of the Weighting FatorsWith no redution of the number of unknown mapping parameters in theParameter Extration we have np = 57, and hereby the weighting fatorsmay in�uene the results from iteration number 51. Beause the optimizeris already found at this point, we an not use this test senario to investigatethe in�uene of the weighting.



78 Chapter 4. Test ProblemsInstead we look at the senario with redution of the parameter vetor. Inthis ase we have np = 15, and some of the weighting fators will be di�erentfrom 1 from iteration 9 and onwards, if we use the strategy from setion3.6. Figure 4.4.5 on the right shows the iteration sequene with the use ofweighting strategy. For omparison the results without weighting are shownin �gure 4.4.4 on the left.
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Figure 4.4.4: Without weighting 0 5 10 15
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Figure 4.4.5: With weightingThe �gures are almost idential, and the weighting fators are pratiallywithout in�uene in this problem.
E�et of the Number of Mapping ParametersWe now show the results from using a redued parameter vetor, orrespond-ing to a diagonal matrix for the input mapping matrix A. Figure 4.4.6 is forthe regularized ase, and �gure 4.4.7 for the unregularized ase.The algorithm does not onverge in the �rst ase with regularization. In theseond ase the optimizer is found in 12 iteration steps with an auray of
10−15 on the �ne model objetive funtion. It is not known, why the testrun with regularization does not onverge to the optimizer.There is pratially no di�erene between the iterations with the full parame-ter vetor (�gure 4.4.2) and the redued parameter vetor (�gure 4.4.7). Thealgorithm works well when solving the unregularized Parameter Extrationproblem, and it has no e�et whether the problems are underdetermined ornot.
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Figure 4.4.7: Without regulariza-tionOptimal Mapping ParametersThis problem is of larger dimension than the other test problems, and wehave not investigated the optimal mapping parameters.Diret optimizationBelow we see the performane of the diretd-algorithm.
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Figure 4.4.8: Performane of diret optimization of the �ne modelThe lassial optimization method onverges in 127 iterations, and we on-lude that the Spae Mapping tehnique is very useful in this problem, sineit redues the number of �ne model evaluations with approximately a fator
10.



80 Chapter 4. Test ProblemsSummary of the Results
• When the Parameter Extration problem is regularized we have noonvergene to the optimizer, both in the ase of a full and a reduedparameter vetor.
• The normalization fators have little e�et on the onvergene speed.
• The weighting fators have pratially no in�uene on the results inthe ase of a redued parameter vetor.
• The redution of the mapping parameters has no e�et on the perfor-mane in this test problem.
• It is not possible to get as good onvergene results as the results from[1℄ and [2℄, probably beause the problem is not idential to the onesolved in this report.



81
Chapter 5Future Work
5.1 Improvements of the SMIS ImplementationA number of hanges of the implementation ould be made in order to makethe SMIS framework more �exible and user-friendly. Also the auray of theomputations ould be improved for some problems. The urrent frameworkonsists of many diretories and �les linked together in a ertain struture.The suggested hanges will therefore in�uene many of the inluded �les,whih will e�et the duration of the work involved.In the urrent implementation the gradients of the surrogate model wrt. theparameter vetor are alulated by forward di�erene approximations. Inorder to minimize the trunation errors, it would be an advantage to exploitthe exat gradients, if they are available.The Matlab-�le diffjaobian used to alulate the forward di�erene ap-proximation. In the urrent implementation the parameter η de�ning therelative step length is �xed at a ertain value, and an only be altered bymodifying the Matlab-�le diretly.



82 Chapter 5. Future WorkThe user friendliness ould be improved by inluding more optional param-eters to the problem setup-�le. The setup-�le should de�ne the followingoptional parameters:
∆ Initial trust region radius for Algorithm 1.
maxf1 Maximal number of funtion evaluations in Algorithm 1.
maxf2 Maximal number of funtion evaluations in Algorithm 2.
maxf3 Maximal number of funtion evaluations in Algorithm 3.
ηx Step length in diffjaobian when alulating Jaobian wrt. x.
ηp Step length in diffjaobian when alulating Jaobian wrt. p.
εF Used in the stopping riterion for the �ne model objetive funtion.
εK Used in the stopping riterion for the gradient mathing.
εhx Used in the stopping riterion for the step length for x-iterates.
εhp Used in the stopping riterion for the step length for p-iterates.opts Options for marquardt ([1e-8 1e-4 1e-4 200 1e-12℄).diagA Parameter de�ning the number of mapping parameters(0: full matrix A, 1: diagonal matrix A)Some of the above options are already used in the SMIS framework, ie. ∆,
maxf1, maxf2, and diagA, and also two tolerane parameters orrespondingto εF , εK , εhx and εhp.We also list some possible hanges in order to inrease the auray of theomputations:

• Introduing the step length parameter η as an input parameter to thefuntion diffjaobian.
• Making it possible to exploit exat gradients, if they are available.5.2 Suggestions for Further InvestigationsAs the investigations in this report have shown, there are a lot of unresolvedmatters onerning the solution of the Parameter Extration problem. Theproblem an be de�ned in various ways, as well as di�erent methods anbe hosen to perform the Parameter Extration. In ase there is more thanone solution, we an have an in�uene on whih solution is returned by theoptimization algorithm, if we hoose a partiular formulation of the residual.We now list some suggestions for future investigations:
• Testing the algorithm with more test problems.
• Investigating the e�ets of the optional tolerane parameters on the re-sults, hereby the tolerane parameters in relation to the errors expetedfrom not using exat gradients of the models, f. setion 3.1.



5.2 Suggestions for Further Investigations 83
• Providing a set of reommendable tolerane parameters.
• Testing di�erent strategies for updating the penalty fator.
• Testing other weighting fator strategies.
• Further investigations of how the number of mapping parameters in-�uene the results.
• Further analysis on the optimal mapping parameters.
• Testing di�erent strategies onerning the number of mapping param-eters, eg. releasing a parameter in every main iteration.
• Further analysis of the test results, eg. looking at the termination ri-teria for the sub-algorithms.
• Further analysis of the iteration sequenes.
• De�ning di�erent residual formulations, eg. letting the formulation de-pend on the number of iterates available. Possibly omitting the gradi-ent residual in the �rst iterations in order to minimize the number of�ne model evaluations.
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85
Chapter 6ConlusionIn this thesis a Spae Mapping algorithm has been presented and tested onsome test problems. We have made a number of investigations in order tomake a robust implementation and analyze the harater of the ParameterExtration problem in regard to the solutions, we an expet to �nd.The step length used in the �nite di�erene approximations is found to be ofgreat importane, in ase the exat gradients of the model are not available.The step length in�uenes both the trunation errors and the rounding er-rors, and based on results from the TLT2 problem and the theoretial errorfuntions, we �nd a suitable value for the step length to be approximately
10−5.The number of equations in the Parameter Extration problems dependson, how many main iterations we have made. A large part of the Param-eter Extration problems are therefore underdetermined, and onsequentlythere are in�nitely many solutions. There is also the possibility of having anoverdetermined problem, in whih ase we may be able to e�et the solutionby means of the residual formulation.The formulation of the residual inluding the normalization fators, theweighting fators and the penalty fator makes it possible to give eah ofthe residual elements an individual priority. In this way we an more orless hoose whih order of loal and global agreement the surrogate modelshould satisfy. The solution we �nd is in�uened by the hoie of the residualformulation.It must be lari�ed, that we are not always sure, that the various fators evenin�uene the results. This depends entirely on the harater of the problem,as disussed in setion ??.



86 Chapter 6. ConlusionWe have hosen to de�ne the Parameter Extration problems as least squaresproblems, and solve them by the Marquardt algorithm. The Marquardtmethod is well-suited for the problem, sine the damping parameter ontrolsthe step length and ensures, that the Marquardt equations have a uniquesolution.If the rank of Jris not full, the solution depends on the damping parameter
µ. For small µ-values the Marquardt solution is nearly idential to the mini-mum norm solution, whih is the solution losest to the previous one. In thisase the Marquardt equations give the same e�et as a form of regularizationwrt. the previous solution.If we regularize the problems, we are guaranteed, that the Parameter Ex-tration problems are overdetermined in all iterations. The regularizationterm ensures, that we �nd a solution lose to the previous solution. We haveshown, that solving the Parameter Extration problem for the regularizedresidual formulation orresponds to a speial ase of the Marquardt equa-tions with the damping parameter 1+µ and a hanged right hand side. Theregularization means, that we an not be sure to satisfy the gradient math,if the solution is far from the previous.The algorithm with the various residual formulations is tested on three prob-lems: The Rosenbrok problem in its original form and in the augmentedversion provides a theoretial example, and the TLT2 and TLT7 problemsare examples of engineering design problems of more pratial harater.The test results show, that the algorithm works well in ase of both solvingthe regularized and the unregularized problem. In several ases the latter isatually resulting in a faster onvergene to the optimizer, and the solutionis found, before there is a possibility of having overdetermined ParameterExtration problems. We onlude, that for the onsidered test problems itis no obstale, if the Parameter Extration problems are underdetermined.The Rosenbrok problem shows some interesting features onerning the op-timal mapping parameters. The Rosenbrok funtion is speial, beause theseond response funtion is linear and only depends on one of the designparameters. This has onsequenes for the mapping parameters through theiteration sequene, in the sense that several of the mapping parameters arenot hanged form the initial values.For the augmented Rosenbrok problem the same features are found for theoptimal mapping parameters.In the engineering design problem TLT2 we get good onvergene results forboth the residual version with and without the regularization term.



87But when we onsider the approximation errors from using the surrogatemodel de�ned by the optimal mapping parameters, the two versions givevery di�erent results.The regularized problem provides good surrogate approximations and gen-erally, the surrogate model is better than a lassial Taylor model approx-imation - not only over a large region of the design parameter spae, butalso near the expansion point. For the senario without regularization of theresidual we get a very poor surrogate model, even though the algorithm hasonverged to the �ne model optimizer.It shows, that for this problem the normalization fators have an in�uene.We ahieve aeptable results both regarding onvergene and the quality ofthe surrogate model approximation for saling of only the gradient residual.It is not possible to onlude anything in general on the normalization fa-tors, but in this ase they must be omitted to ensure a suitable surrogatemodel.The importane of the quality of the surrogate model approximation ofourse depends on the design problem: If we are only interested in theoptimal design parameters, the surrogate model is perhaps unimportant.But in modelling problems we may be interested in replaing the �ne modelwith the surrogate model and examining this instead at a low omputationalexpense. In suh a ase an unaurate surrogate approximation is not useful.The last test problem TLT7 is of larger dimension. The results here showfast onvergene in the ase of the unregularized Parameter Extration prob-lems, and the redution of the mapping parameters have no in�uene on theresults. But when the regularization term is added, there is no onvergene.It is not possible to explain this behaviour.It applies for all the onsidered test problems, that the Spae Mapping algo-rithm provides fast onvergene results ompared to lassial optimizationmethods.
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Appendix AShort User's Guide for TheSMIS FrameworkIn the following hapter a brief overview of the SMIS framework in Matlabis given.A.1 The Problem Setup-�leThe setup-�le for the given problem is plaed in the orresponding problemdiretory. The setup-�le ontains information on the �ne and oarse modeloptimizers and linear equality/inequality onstraints for the optimizationproblem.These are de�ned by:
A(1:leq,:)x + b(1:leq,:) = 0 and A(leq+1:l,:)x + b(leq+1:l,:) ≥ 0



90 Appendix A. Short User's Guide for The SMIS FrameworkThe setup-�le must return a struture S ontaining the following �elds:n The number of design parameters.m The number of n parameters.fine The m-�le implementing the �ne model funtion.oarse The m-�le implementing the oarse model funtion.parf Vetor with the sampling points for the �ne model.par Vetor with the sampling points for the oarse model.paro Struture with information used for plotting.xast The �ne model optimizer.zast The oarse model optimizer.A l-by-n matrix de�ning the onstraints (l = size(A, 1) − leq)b l olumn vetor de�ning the onstraints.leq Number of linear equality onstraints.x Initial guess for oarse model optimizer.delta Initial trust region radius for surrogate optimization problem.eps1 Used in stopping riterion for the main problem.eps2 Used in stopping riterion for the Parameter Extration problems.maxfun1 Maximal number of funtion evaluations in Algorithm 1.maxfun2 Maximal number of funtion evaluations in Algorithm 2(also used in Algorithm 3).p1 Norm de�ning the objetive funtion of the main problem.p2 Norm de�ning the objetive funtion of the ParameterExtration problems. When using the algorithm versionwith marquardt this option has no e�et.iontr Parameter used for ontrolling the omputation:1: starts algorithm, 2: starts algorithm and prints information.diagA Parameter de�ning number of mapping parameters(0: full matrix A, 1: diagonal matrix A)The options for marquardt are de�ned in the �le 'lmm' as eg. opts=([1e-81e-14 1e-14 200 1e-12℄).
A.2 Calling the Spae Mapping AlgorithmBefore starting the main algorithm the �ne and oarse model must eah beimplemented in an m-�le with the syntax:[f,df℄ = fine(x,t) and [,d℄ = oarse(x,t)The �les must be plaed in the proper problem diretory with the setup-�le



A.3 Plotting and Viewing Data 91from the previous setion.The Spae Mapping iterations are started by the jobontrol program bythe following all in the Matlab ommand window (the ommand must beexeuted in the Matlab diretory 'setup'):jobontrol(prob,job,datafile)The problem 'prob' is solved by the algorithm framework spei�ed by 'job',and the results are written to the mat-�le 'data�le' ontaining a strutureT with information on the iteration performane. The data�le is put in thesub-diretory 'output'.The job types used in this report are:12 The original SMIS4-algorithm implemented by Frank Pedersen.13 The modi�ed SMIS5-algorithm implemented with the marquardt-algorithm with regularization14 The modi�ed SMIS5m-algorithm implemented with the marquardt-algorithm without regularization.15 The modi�ed SMIS5mw-algorithm implemented with the marquardt-algorithm without regularization and with weighting fatorsA.3 Plotting and Viewing DataWhen the jobontrol ommand is exeuted suesfully, the results of thespae mapping iterations an be plotted by the all:jobontrol(prob,job,datafile)where the job number is replaed by '10' or '17'.Both jobs provide two plots:Choosing the job '10' Figure 1 is a semilogarithmi onvergene plot withthe relative norm of the di�erene between the urrent iteration and the op-timizer plotted for eah iteration number. Furthermore the �gure shows therelative di�erene between the norm of funtion values of the urrent andthe optimal iteration measured in the p1-norm.In �gure 1 from job '17' the points are not plotted relative to the best iter-



92 Appendix A. Short User's Guide for The SMIS Frameworkate, whih makes it more useful in the ase, where the optimizer and/or theoptimal funtion vetor is lose to or equal to 0.The seond �gure plots for both job types the trust region radius and thenorm of the step length for eah iteration.The data struture T an be loaded into the workspae or a �le by hangingto the Matlab path 'output' and typing the ommand:load datafile.
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Symbols and Notation
x : Design parameter vetor for �ne and surrogate model
z : Design parameter vetor for �ne and surrogate model
f : Fine model vetor funtion
c : Coarse model vetor funtion
s : Surrogate model vetor funtion
r : Residual vetor funtion
r̂ : Regularized residual vetor funtion
g : Gradient residual vetor funtion
O : Output mapping
P : Input mapping funtion
p : Mapping parameter vetor
A : Input mapping matrix
b : Input mapping vetor
α : Output mapping parameter
β : Output mapping parameter
h : Step vetor
e : Unit vetor
J : Jaobian matrix
I : Identity matrix
l : Linearized vetor funtion
K : Measure of gradient math violation
H : Objetive funtion
F : Objetive funtion for �ne model or in the Parameter Extration problem
S : Objetive funtion for surrogate model
n : Number of design parameters
m : Number of response funtions
np : Number of mapping parameters
nr : Number of residual elements
γ : Fator in weighting funtion
W : Diagonal weight matrix for residual funtion
V : Diagonal weight matrix for regularisation term
w : Weighting fator in W

v : Weighting fator in V



94 Appendix A. Symbols and Notation
a : Normalization fator for funtion value residual
d : Normalization fator for gradient residual
X : Matrix with sorted x-iterates
dX : Vetor with sorted distanes for x-iterates
F : Vetor with sorted distanes for x-iterates
E : Error funtion
µ : Damping parameter in Marquardt equation
Â : Matrix de�ning linear onstraints in Algorithm 2
b̂ : Vetor de�ning linear onstraints in Algorithm 2
∆ : Trust region radius
εM : Mahine auray
ε : Tolerane value
η : Fator de�ning the relative step length
DF : Forward di�erene approximationSubsript Indexes
i, j : Vetor/matrix index i, j
f, s : Corresponding to �ne model resp. surrogate model
x, p : Di�erentiation wrt. x resp. p
r, r̂ : Corresponding to residual resp. regularized residualSupersript Indexes
∗ : Optimizer
(k) : Iteration number
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