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Abstract

Program analysis is a long-history-studied field, which is used to determine properties of
programs at compile time without actually executing them. Traditionally, program analy-
sis has been developed and used to optimize compilers and programs in order to get better
performance, but recent development shows a promising and much wider application area
including validating security properties of Java programs and communication protocols.

A relatively new term in program analysis field is Flow Logic, which concerns about
specifying which criteria an analysis estimate should satisfy in order to be acceptable for
a program. More important, it separates the specification of an acceptable estimate from
the actual computation of the analysis information.

In this thesis, we concern about using flow logic to solve some data flow questions. In
particular, we show that data flow analysis can be expressed in term of flow logic. In order
to be thoroughly, both bit-vector analyses and monotone analyses are considered. As a
comparison, we implement bit-vector analyses in data flow approach, thus paving the way
to evaluate the relative advantage of both approaches. This evaluation is based on the
execution times of Succinct Solver running on constraints generated for certain scalable
benchmarks. The result is encouraging that, flow logic approach is degrees of complexity
polynomial better than data flow approach, as far as the analyses presented in this thesis
are concerned. As a conclusion, we give some strategies for specifying flow logic specifica-
tions for classical data flow analyses. Furthermore, The correctness and expressiveness of
Succinct Solver are examined as well.

Keywords

Program analysis, Succinct Solver, Alternation-free Least Fixpoint Logic, Flow Logic,
Data Flow Analysis, Framework
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Chapter 1

Introduction

Program analysis is a long-history-studied field, which is used to determine properties of
programs at compile time without actually executing them. Traditionally, program analy-
sis has been developed and used to optimize compilers and programs in order to get better
performance, for instance the information of variables usage can be used to optimize stor-
age allocation, but recent development shows a promising and much wider application area
including validating security properties of Java programs and communication protocols.

Unfortunately, in order to remain computable, analyses can only provide approximate
answers to certain questions, which may look like ”What is known about . . . in pro-
gram point . . .?”. There are two different kinds of statements: first, when a property
must hold for all possible execution paths, and second, when a property may hold for
some particular execution (there is no guarantee that it does not hold). Sometimes the
must-analysis(under approximation) finds less properties guaranteed than there actually
exist, similarly the may-analysis(over approximation) sometimes finds more properties
than these that actually might hold. The selection of the kind of approximation depends
on the analysis to be performed but no matter which one is chosen, it must be safely and
conservatively to guarantee an accurate analysis result. The nature of program analysis
is illustrated in Figure 1.1.

In general, many approaches exist for building program analyzers, including Data Flow
Analysis, Constraint Based Analysis, Abstract Interpretation and, Type and Effect Sys-
tems. A good and detailed introduction to program analysis is made in book [2].

Data flow analysis is a mature research area, where frameworks have been developed
to classify and solve different classes of data flow problems. These problems can be de-
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Figure 1.1: The Nature of Approximation

scribed using the formalisms of the different frameworks and a solution algorithm is then
selected.

The most popular framework for data flow analysis is the monotone framework. In this
framework, data flow problems are defined through lattices of values with a meet(join)
operator, often called the property space, and a family of transfer functions defined over
those lattices. Data flow problems are often represented as equations, which encode the
information at each node in terms of the information at relevant nodes and the transfer
functions. The solution to such a problem is then obtained by computing a fixed point
of the equation system. Classical data flow analyses within monotone framework include
Reaching Definition Analysis, Very Busy Expression Analysis, Available Expression Anal-
ysis and Live Variable Analysis, etc.

A relatively new term in program analysis field is Flow Logic [1], which is actually rooted
upon existing technologies and insights, especially from the classical areas of data flow
analysis, constraint base analysis and abstract interpretation. Flow logic concerns about
specifying which criteria an analysis estimate should satisfy in order to be acceptable for
a program. It separates the specification of an acceptable estimate from the actual com-
putation of the analysis information.

A flow logic specification defines: a) the universe of discourse for the analysis estimates,
which is usually given by complete lattices; b) the format of the judgement and c) the
defining clauses. The main benefit from this is that specification and implementation
become independently. Thus one can concentrate on specifying the analysis without con-
sidering about the implementation.

One important character of flow logic specifications is, they enjoy the Moore family prop-
erty, which ensures a best or most precise analysis result exists.
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Flow logic can be applied to a variety of programming paradigms, including imperative,
functional, object-oriented and concurrent constructs, and even a combination of different
paradigms. This is facilitated by its high abstraction: there is a clear separation between
specification and implementation for analyses.

Flow logic has been mostly used to specify constraint based analysis([15], [14], [13], etc).
In this thesis, we will continue to exploit flow logic by applying it to specify classical data
flow analyses.

From flow logic’s point of view, an analysis is divided two phases:

1. define a judgement, usually in clausal form, expressing the acceptability of an anal-
ysis estimate for a program.

2. compute the clauses to get a solution.

One advantage of such a division is that the second phase is independent of the kinds of
analyses as well as programming languages, therefore many state-of-the-art technologies
may be employed for computing the analysis information.

A lot of methods could serve for the computing task, like classical iterative-base worklist
algorithm and XSB prolog system. Here we shall use Succinct Solver 2.0 [3] as the back-
end of the analyses.

Succinct solver, by Nielson and Seidl, is a highly specialized tool calculating the least
solution for the given clause. A benefit of constructing such a constraint solver is that
solver technology may be shared among applications in a variety of programming lan-
guages and among many classes of problems.

A wide variety of applications have been used to validate the robustness of the speci-
fication language and to suggest the many other features to be provided by the Succinct
Solver in order to be a useful tool also for the non-expert-user. These applications in-
clude security properties of Java Card bytecode [14], access control features of Mobile
and Discretionary Ambients [15] and validations of protocol narrations formalized in a
suitable process algebra [13]. Additionally by now the Succinct Solver also incorporates
some mechanisms for transforming input ALFP clauses in order to assist in clause tuning
aiming at increasing performance and ease of use[6].

Finally, the performance of Succinct Solver against XSB Prolog has been validated. The
result is quite encouraging - not only Succinct Solver outperforms XSB Prolog with tabled
resolution [12] in optimum cases by exhibiting a lower asymptotic complexity, on a few
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cases Succinct Solver also has been able to deal with specification for which XSB Prolog
could not produce a solution.

1.1 Objectives

The thesis focuses on applying the flow logic approach to the specification of classical
data flow analyses within monotone framework for iterative programs and, in particular,
exploiting the use of succinct solver for their implementation.

As part of the research we conduct a number of experiments applying both flow logic
and data flow specifications to some scalable benchmarks. The expressiveness of ALFP is
also investigated.

1.2 Contributions

The contributions of the thesis can be divided into two parts,

1. Besides of the traditional data flow specification, in this thesis, we have developed
flow logic specifications for bit-vector framework analyses. By running on our scal-
able benchmarks, it shows the latter one can be solved more efficiently.
• Specifications are presented with respect to both data flow and flow logic ap-

proach
• The comparison of the efficiency of these two approaches are made.
• A general strategy about rewriting data flow specifications of bit-vector frame-

work analyses into flow logic specifications is developed.
2. Flow logic specification for some monotone framework analyses are specified. In-

cluded are detection of sign analysis, constant propagation analysis, interval analysis
and array bound analysis.

1.3 Organization

This thesis consists of five chapters of which this introduction is the first.

An overview of the remaining five chapters is given as the followings:
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In chapter 2 we clarify the syntax and semantics of WHILE language, in which the
programs to be analyzed are written. We also give a brief introduction to ALFP in
terms of the syntax and the semantics. The solver technologies are explained.

In chapter 3 we specify four classical analyses belonging to bit-vector framework in two
different ways, one is in the traditional data flow approach, the other is in flow logic
approach. A comparison of these two approaches is made, which shows that the
latter one outperforms the former one. Relationship between these two kinds of
specifications are analyzed.

In chapter 4 we extend the analyses to monotone framework. Detection of signs anal-
ysis, constant propagation analysis and array bounds analysis are presented. A
general strategy of writing flow logic specifications for monotone analysis is given.

In chapter 5 gives a conclusion for the thesis and proposes directions for future work
Appendix A contains timing strategy and how the results are presented.
Appendix B contains experiments result conducted on benchmark, b-m
Appendix C contains the guide for how to use the analyzers
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Chapter 2

Setting the Scene

One of the main characters of Flow logic is the separation of specification of analyses
and implementation of analyses. The analyses will be specified for a simple WHILE
language presented below; the actual analyses will be presented in the next chapter. The
implementation of the analyses will also be discussed later; however in this chapter we
shall present the generic tool the Succinct Solver, to be used for that.

2.1 WHILE Language

In the first part of this chapter, we shall concentrate on a small imperative language
WHILE. Before starting the analyses, we give the syntax and grammar of WHILE lan-
guage, in which programs to be analyzed are written. WHILE is a small Pascal-like
programming language. It is only composed by variable declaration and statement. Due
to the time limitation and our emphasis on intra-procedure analysis, neither procedures
nor functions can be defined.

2.1.1 Syntax

A program in WHILE is a series of variable declarations followed by a sequence of state-
ments.

Suppose we have a fixed countable set V ar of simple variables1, Arr of array names and
a countable set of Num of natural numbers. The set of programs p as well as variables

1in contrast to array elements
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v, expressions e, statements s and declarations dec are generated by the syntax shown in
Figure 2.1, where x ∈ V ar, A ∈ Arr, n, n1, n2 ∈ Num.

v ::= x | A[e]

e ::= true | false | n | v | e1 op e2 | ¬e

op ::= + | − | × | ÷ | ≤ | > | = | and | or

s ::= [v := e]l | [Skip]l | s1 ; s2 | If [e]l Then s1 Else s2

| While [e]l Do s | Begin dec s End

dec ::= Var x | Array A of [n1..n2] | dec1 ; dec2

p ::= INPUT dec1 OUTPUT dec2 s;

Figure 2.1: Abstract Syntax of WHILE Language

The primitive elements in WHILE are numbers as well as boolean values (true and false),
which are then used to construct complex variables and expressions. Here variables in-
clude simple variables and arrays indexed by an expression.

According to the nature of operators, expressions can be divide into three categories:
arithmetic expressions, boolean expressions and relational expressions but as we shall see
later we shall not need to distinguish between these expressions.

It is required that all variables in a program are declared before used. Array’s decla-
ration must indicate the name of the array as well as it’s lower and upper bounds. The
lower bound can be chosen freely and not necessary to be 02; but it is programmer’s
responsibility to make sure the lower bound should always less or equal than the upper
bound. Each statement may have its own variable declarations, these declared variables
are only locally to the statement, meaning that they are not valid outside the statement.

The declaration part of a program is divided into to two parts, which follow key words
INPUT and OUTPUT, respectively. Variables declared in both of them are global to the
whole program. The difference is the OUTPUT part contains variables, whose values are
going to be used after the very end point of the program. This is similar to the return
variable of a function. By now, these return variables are only used in the Live Variable

2not like in C or Java
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Analysis. We will come back to that later in Chapter 3.5.

If not explicitly stated, the notation in Figure 2.2 will be used throughout this thesis.

x, y ∈ V ar SimpleV ariable
m, n ∈ Num Numberal
e ∈ Exp Expression
s ∈ Stmt Statements
l ∈ Lab Labels
B ∈ Block Elementary Blocks
dec ∈ Dec Declarations
p ∈ Prog Program
A,C ∈ Arr Array Names

Figure 2.2: Notation of Thesis

To aid the analyses, we shall associate data flow information with single assignment state-
ments, skip statements and the tests that appear in conditionals and loops, each of which
is regarded as an elementary block. We also assume that distinct elementary blocks are
initially assigned distinct labels.

Example 2.1 One example WHILE program, calculating the sum of elements of array
A, is,

INPUT Array A of [2..4]
OUTPUT Var sum
Begin Var x

[x := 2]1;
While [x <= 4]2 Do
( [sum := sum + A[x]]3;

[x := x + 1]4)
End

2.1.2 Semantics

The Semantics allows us to pinpoint the precise meaning of programs. In order to avoid
possible ambiguity in the future, the semantics of WHILE is clarified in this section. Many
kinds of semantics would be appropriate but among the operational semantics we shall
now prefer natural semantics(big-step operational semantics) with environment and state.
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Since a program can be viewed as a combination of declaration and statement, we then
give the semantic of them separately. Before going into detail, some preparations have to
be done.

Firstly, we introduce a State, which associates each variable and array element with its
current value. It is defined as,

σ ∈ State = (V ar ∪Arr × Z) ↪→ Z ∪ T

where Z represents integer number and T contains the truth value (true and false).
Secondly, we define an environment ρ ∈ Env, which maps an array name to its upper and
lower bounds, represented as,

ρ ∈ Env = Arr → Z× Z

which is a total function since arrays are required to be declared before used.
Finally, an auxiliary total function E is used to determine the exactly value of an expres-
sion. The functionality of E is,

E : Exp → Env × State ↪→ Z ∪ T

and the definition is given in below table.

E [n](ρ, σ) = n

E [x](ρ, σ) = σ(x)
E [A[e]](ρ, σ)= σ(A, i) if i = E [e](ρ, σ)∈ Z

ρ (A) = (i1, i2)
and i1 6 i 6 i2

E [e1 op e2](ρ, σ) = w if E [e1](ρ, σ) = w1

E [e2](ρ, σ) = w2

and w = w1 op w2 is defined.
E [¬e](ρ, σ) = ¬w if E [e](ρ, σ) = w ∈ T

Any constant, say n, has the value n and the values of simple variables is determined by
looking up ρ. In the case, the expression is of the form A[e], e is evaluated followed by a
check on whether the result is an integer that falls within the bounds of array A, which
are obtained by looking up ρ. This makes sure no out of bound error may occur here. In
the case [e1 op e2], both e1 and e2 are evaluated followed by applying operator op on their
values. Expression ¬e has the negated value of e, providing that e has a boolean value.
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Semantics of Program

We shall begin with the semantics of program and then statements and declarations. When
come to the semantics of program, it’s initial environment ρ0 and state σ0 are empty and
therefore the semantic meaning of that program is computed wrt. its own declarations.

[progNS ]
< dec1, ρ0, σ0 >→ (ρ′, σ′) < dec2, ρ

′, σ′ >→ (ρ′′, σ′′) ρ′′ `< s, σ′′ >→ σ′′′

ρ0 `< INPUT dec1 OUTPUT dec2 s, σ0 >→ σ′′′

Symbol ”→” defines a transition system between two configurations. The idea of ρ `<
s, σ >→ σ′ is the execution of s from σ based on environment ρ will result in a new state
σ′. Similarly < dec, ρ, σ >→ (ρ′, σ′) means declaration dec will update the current ρ and σ
to new environment ρ′ and new state σ′. Both transition systems with be specified below.

Semantics of Statements

The semantic meaning of a statement in WHILE always returns a state. The environment
remains static unless we are dealing with a statement when environment is updated by
the corresponding program statement’s declaration. In this case, the statement will be
executed on the updated environment.

In Table 2.1, it is stated that in case of assignment statement, an array bound check-
ing is performed, which is the same as when performing E [A[e]], in order to ensure index
is always within the array bounds. In the case of composite statement, the semantic
meaning of the first statement is computed. The resulting state σ is then used in the
computation of the semantic meaning of the second statement. Thus ensure the second
statement is computed wrt. an updated state.

In case of a block statement3 the current environment ρ and state σ is updated by the
statement’s declarations as presented by < dec, ρ, σ >→ (ρ′, σ′); all global declarations in
the current environment ρ and state σ are overwritten by the local declarations stated in
the statement. Statement inside the block is then executed based on the new ρ and σ.
When the block is left, local variables are restored to the values held before entering the
block. This ensures that local variables and global variables with the same name won’t
be interfered.

This value restoration is done in two steps; firstly, all the local variables are collected
and secondly update the state σ by assigning the original values to those variables, which

3a statement has local variable declarations
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are corresponding to the following two operations.
Operation DV(Dec;Dec) collects variable names, which are locally to the block, from the
declaration part. In the case the declaration is for an array, all the elements within the
array’s bounds will be collected.

DV(V ar x; Dec) = {x} ∪ DV(Dec)
DV(Array A of [n1..n2]; Dec) = {(A, i) | n1 6 i 6 n2 if n1 ≤ n2} ∪ DV(Dec)
DV(ε) = ∅

ε appears in the third rule of above operation denotes empty list, which ensures the ter-
mination of the operation. The resulted set is used to indicate which variables should be
restored to the original value when a block is leaving.

Operation (σ′[X 7→ σ]) defines a transition from initial state to final state. The idea
of it is the state σ′ is the same as σ except for variables in set X, whose values are
specified by state σ.

(σ′[X 7→ σ])(x) =
{

σ(x) if x ∈ X ∩ V ar
σ′(x) if x ∈ V ar and x /∈ X

(σ′[X 7→ σ])(A, i) =
{

σ(A, i) if (A, i) ∈ X ∩ (Arr × Z)
σ′(A, i) if (A, i) ∈ (Arr × Z) and (A, i) /∈ X
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[assV ar
NS ] ρ `< x := e, σ >→ σ[x 7→ E [e](ρ, σ)]

[assArr
NS ] ρ `< A[e] := e′, σ >→ σ[(A, i) 7→ E [e′](ρ, σ)]

where i = E [e](ρ, σ) ∈ Z
ρ(A) = (i1, i2)

and i1 6 i 6 i2

[skipNS ] ρ `< Skip, σ >→ σ

[iftrue
NS ]

ρ `< s1, σ >→ σ′

ρ `< If e Then s1 Else s2, σ >→ σ′
if E [e](ρ, σ) = true

[iffalse
NS ]

ρ `< s2, σ >→ σ′

ρ `< If e Then s1 Else s2, σ >→ σ′
if E [e](ρ, σ) = false

[whiletrue
NS ]

ρ `< s, σ >→ σ′ ρ `< While e Do s, σ′ >→ σ′′

ρ `< While e Do s , σ >→ σ′′
if E [e](ρ, σ) = true

[whilefalse
NS ] ρ `< While e Do s , σ >→ σ if E [e](ρ, σ) = false

[compNS ]
ρ `< s1, σ >→ σ′ ρ `< s2, σ

′ >→ σ′′

ρ `< s1; s2, σ >→ σ′′

[blockNS ]
< dec, ρ, σ >→ (ρ′, σ′) ρ′ `< s, σ′ >→ σ′′

ρ `< Begin dec s End, σ >→ σ′′[DV (dec) → σ]

Table 2.1: Nature Semantics for Statement
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Semantics of Declaration

This section explains how σ and ρ are updated according to a set of declarations.

[decV ar
NS ] `< V ar x, ρ, σ >→ (ρ |x, σ |X)

where X ∈ {x} ∪ {(x, i) | i ∈ Z}

[decArr
NS ] `< Array A of [n1..n2], ρ, σ >→ (ρ[A 7→ (n1, n2)], σ |X)

where X ∈ {A} ∪ {(A, i) | i ∈ Z}

[decComp
NS ]

`< dec1, ρ, σ >→ (ρ′, σ′) `< dec2, ρ
′, σ′ >→ (ρ′′, σ′′)

`< dec1; dec2, ρ, σ >→ (ρ′′, σ′′)

[decEmpty
NS ] < ε, ρ, σ >→ (ρ, σ)

| is a restriction operator, which maps an element in ρ or σ(if there is such one) to
undef (undefined), corresponding to removing that element from the declaration.

ρ |A= ρ[A → undef ]
σ |x= σ[x → undef ] σ |(A,i)= σ[(A, i) → undef ]

In the case the declaration is for V ar x, the bounds information for array named x will
be removed from ρ. σ is updated by removing the values associated with V ar x as well
as with array x.
In the case the declaration is for array A, bounds of A in ρ are then updated to the
declared values. Values associated with V ar A and array A in σ are removed.

Example 2.2 Consider the program,

INPUT var x OUTPUT var y
Begin x:= 1;

Begin var x
x:= 5

End;
y:= x + 1

End

The x in x:= 5 relates to the local variable x, whereas the x in y:= x + 1 relates to the
global variable x that is also used in the statement x:= 1. Therefore, the statement y:=
x + 1 assigns y the value 2 rather than 6.
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Example 2.3 Suppose ρ(A) = (1,2) σ(x) = 5 σ(A, 1) = 1 σ(A, 2) = 2
Declaration (V ar A; Array x of [5, 6]) will result in

• after evaluating V ar A
ρ(A) = undef
σ(x) = 5 σ(A, 1) = undef σ(A, 2) = undef

• after evaluating Array x of [5, 6]
ρ(A) = undef ρ(x) = (5,6)
σ(x) = undef σ(x, 5) = undef σ(x, 6) = undef
σ(A, 1) = undef σ(A, 2) = undef

2.2 Succinct Solver 2.0

Succinct Solve, implemented in Standard ML, is a highly specialized tool which incorpo-
rates state-of-the-art approaches to constraints solving. One advantage of such a tool is
that it separates implementation considerations from specification and therefore increases
the likelihood that a correct and useful analysis can be developed with only a limited
effort. Furthermore, solver technology may be shared among applications in a variety of
programming languages and among many classes of problems.
To obtain easily readable formulae, Succinct Solver accept a subset of first order predi-
cate logic that allows the appropriate theoretical results to be established, which is the so
called Alternation-free Least Fixed Point Logic (ALFP for short). ALFP only disallows
those features of first order predicate logic that would make it impossible to ensure the
existence of a least solution.
Succinct Solver operates over finite domains and computes the least solution of the given
clause according to the universe. User can choose to input ALFP clauses to the solver
in either SML data structures, text file4, stdIN(standard input) or string and the output
can be one of the four forms as well. We hope the following example could give reader a
preliminary idea about what’s the least solution and how does ALFP looks like.

Example 2.4
The solving result by Succinct Solver for clause

R(a, a) ∧R(b, a) ∧R(c, a) ∧R(d, a) ∧ (∀x (R(b, x) ∧R(x, a)) ∨R(y, x) ⇒ Q(x))
4parsed by solver’s built-in parser
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is

The Universe: (a, b, c, d, y)
Relation R/2: (d, a), (c, a), (b, a), (a, a),
Relation Q/1: (a),

The Universe contains ground terms5. Note that free variable occurring in a formula
is also regarded as ground term, therefore y is also included in universe. The number
followed each name of relation indicates the aries of that relation (i.e. R is a two-ary rela-
tion). The working flow of Succinct Solver is that it iterative through all the atoms in the
universe to search for an atom, say n, such that either both R(b, n) and R(n, a) exists or
R(y, n) exists. If there is such an n, then n is known to be an interpretation of predicate Q.

In this chapter, we shall first give a brief introduction to ALFP, which could be able
to enable reader begin to use Succinct Solver, and then come a bit deeper into solver’s
internal structure aiming at showing reader some clause transformations, which may result
in better solver performance.

2.2.1 ALFP in Brief

The Alternation-free fragment of Least Fixed Point Logic(ALFP) extends Horn clauses by
allowing both existential and universal quantifications in pre-conditions, negative queries
(subject to the notion of stratification), disjunctions of pre-conditions and conjunctions
of conclusion. Also, ALFP formulas are subject to a strict syntactical left-to-right strat-
ification requirement (as known from Datalog) that allows negation to be dealt within a
convenient manner. Such stratified Least Fixed Point formulas are alternation-free.
The introduction of ALFP given in this section is in terms of syntax and the semantics.

Syntax

Given a fixed countable set X of variables, a countable set C of constant symbols, a finite
ranked alphabet R of predicate symbols and a finite set F of function symbols, the set
of ALFP clauses, cl, together with pre-conditions, pre and terms t, are generated by the
grammar showed in Figure 2.3.

In the syntax, R is a k-ary predicate symbol for k > 1, t1, t2, . . . denote arbitrary
variables. R(. . .) and ¬R(. . .) occurred in pre-conditions are called queries and negative
queries, respectively, whereas the others are called assertions of predicate R.
In order to deal with negations conveniently, a notion of stratification is introduced, which

5a term not containing variables
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t ::= c | x | f(t1, . . . , tk)

pre ::= R(t1, . . . , tk) | ¬R(t1, . . . , tk) | pre1 ∧ pre2

| pre1 ∨ pre2 | ∃x : pre | t1 = t2 | t1 6= t2
| 1 | 0

cl ::= R(t1, . . . , tk) | 1 | cl1 ∧ cl2
| pre ⇒ cl | ∀x : cl

Figure 2.3: Abstract Syntax of ALFP clauses

could be expressed by making use of a mapping rank : R → N that maps predicate sym-
bols to ranks in N(natural numbers). A clause cl is an alternation-free-Least F ixpoint
formula if it has the form cl = cl1 ∧ . . . ∧ cls and there is a function rank: R → N such
that for all j=1,. . .,s, the following properties hold:

1. all predicates of assertions in clj have rank j;
2. all predicates of queries in clj have ranks at most j; and
3. all predicates of negated queries in clj have ranks strictly less than j.

Intuitively, stratification ensures that a negative query is not performed until the relation
queried has been fully evaluated.

Example 2.5
We define an equality predicate eq and a non-equality predicate neq by the clause:

(∀x : eq(x, x)) ∧ (∀x : ∀y : ¬eq(x, y) ⇒ neq(x, y))

The clause has the form cl = cl1 ∧ cl2. By applying function rank on the clause, we have
rank(eq)= 1 and rank(neq) = 2 since they are assertions in cl1 and cl2, respectively.
Property 3 requires that rank(eq) should less than 2, which clearly holds. Therefore the
conditions are fulfilled.

Example 2.6
The following formula is ruled out by the function rank :

(∀x : ¬P (x) ⇒ Q(x)) ∧ (∀x : Q(x) ⇒ P (x))

This is because it is impossible to have rank(P) < rank(Q) and rank(Q)≤rank(P)(these
inequations are resulted from properties 3 and 2).
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In later chapters, we shall use t for representing a term, pre for pre-condition, p for
predicate symbol and cl for a clause.

Semantics

Given a non-empty and countable universe U of atomic values together with interpretations
ρ and σ for predicate symbols and free variables, respectively, we define the satisfaction
relations

(ρ, σ) |= pre and (ρ, σ) |= cl

for pre-conditions and clauses as in Table 2.2. Functionality of |= is defined as,

|= (ρ× σ × (pre ∪ cl)) → {true, false}

Here we write ρ(R) for the set of k-tuples(a1, . . . , ak) from U associated with the k-ary

(ρ, σ) |= R(x1, . . . , xk) iff (σ(x1), . . . , σ(xk)) ∈ ρ(R)
(ρ, σ) |= ¬R(x1, . . . , xk) iff (σ(x1), . . . , σ(xk)) /∈ ρ(R)
(ρ, σ) |= pre1 ∧ pre2 iff (ρ, σ) |= pre1 and (ρ, σ) |= pre2

(ρ, σ) |= pre1 ∨ pre2 iff (ρ, σ) |= pre1 or (ρ, σ) |= pre2

(ρ, σ) |= ∃x : pre iff (ρ, σ[x 7→ a]) |= pre for some a ∈ U
(ρ, σ) |= ∀x : pre iff (ρ, σ[x 7→ a]) |= pre for all a ∈ U
(ρ, σ) |= R(x1, . . . , xk) iff (σ(x1), . . . , σ(xk)) ∈ ρ(R)
(ρ, σ) |= 1 iff always
(ρ, σ) |= cl1 ∧ cl2 iff (ρ, σ) |= cl1 and (ρ, σ) |= cl2
(ρ, σ) |= pre ⇒ cl iff (ρ, σ) |= cl whenever (ρ, σ) |= pre
(ρ, σ) |= ∀x : cl iff (ρ, σ[x 7→ a]) |= cl for all a ∈ U

Table 2.2: Semantics of pre-conditions and clauses

predicate symbol R, we write σ(x) for the atom of U bound to x and finally σ[x 7→ a]
stands for the mapping that is as σ except that x is mapped to a.
The upper part of the Table 2.2 lists the rules for pre-conditions. In case of query R(args),
atoms in U , which are bound to x1, . . . , xk, are examined whether their combination is a
possible interpretation of R stored in ρ. In case of conjunction of queries, it is satisfiable
iff both queries are satisfiable. In case of existential quantification, it is satisfiable iff there
exists at least one atom in universe such that after adding it as a bound value of x to σ,
the pre-condition is satisfiable. In case of universal quantification, the only difference with
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existence quantification is the all the atoms in universe should satisfy the above condition.
Rules for clauses are listed in lower part of the table. 1 here represents the truth value,
therefore it always satisfiable. In case clause has the form pre ⇒ cl, satisfiability of cl is
checked only when pre is satisfiable.

2.2.2 Overview of the Succinct Solver

Succinct Solver aims at non-expert-user; understanding syntax and semantic are sufficient
for the user to write ALFP clauses and begin to use Succinct Solver. But things could
be done better. As mentioned in the beginning of this chapter Succinct Solver has some
internal mechanisms to assist in clause tuning in order to increase it’s performance, these
mechanism are general. User may design his own specifical clause transformation to solve
the clause more efficiently. In this section, we give an overview of the solver by sketching
the program structure and explain briefly functionalities of the main functions. It serves to
help reader understand the strategies about clause tuning given at the end of the section.
The Succinct Solver has been coded using a combination of recursion, continuations, prefix
trees and memoisation [4]. It incorporates most of the technology of differential worklist
solvers. However, rather than using an explicit worklist, it is based on the top-down solver
of Le Charlier and van Hentenryck [8]. This gives a rather robust solver with good time
and space performance.

Program Structure

The program structure of the solver is sketched in Figure 2.4, where three main modules
are shown.

Module Translate is responsible for parsing the ALFP clause from the text file and
transforming it into an internal representation to facilitate processing, where atoms and
predicate symbols are finally represented as integers. At the same time, it extracts the
useful static information, i.e. universe, etc, into the internal data structures.
The information in universe is used by the Output module to produce the final output.
The information of parsed clause is used by the Solve module to compute the solution to
the clause.
Module Solve then processes the clause and computes the solution by manipulating two
main data structures,

• env, which is a partial environment mapping variables to atoms of the universe. The
environment is constructed in a lazy fashion meaning that variables may not have
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Figure 2.4: Program Structure of Succinct Solver

been given their values when introduced by the quantifiers, hence the use of partial
environment;

• infl, which takes care of consumer registration. As mentioned before, the envi-
ronment employed by the solver is a partial one, it may happen that some query
R(x1, . . . , xk) inside a pre-condition fails to be satisfied at the given point in time,
but may hold in the future when a new tuple (a1, . . . , ak) has been added to the inter-
pretations of R. In this case, the current computation is suspended by constructing
a consumer for R and recording it in infl.

Main Functions

In this section, we take a closer look at the core module Solve and briefly explain its
working procedure.
The Solve module is primarily composed of two function, execute and check. The check
function deals with preconditions, while the execute function deals with clauses.

Check Given a clause and a set of partial environments, check will determine whether
ro not the clause will evaluate to true for all interpretations σ that are unifiable
with a partial environment. This is done by recursively processing the clause and
by updating the partial environments by collecting the binding of the instantiated
variables. New bindings for variables are obtained at the queries R(x1, . . . , xk).

Execute The intention of execute is to update the global data structure corresponding
to ρ (see Table 2.2). The function is executed in a recursive way that upon the
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termination, ρ contains all the computed interpretations for all predicate symbols.
Furthermore, whenever the function adds a new tuple (a1, . . . , ak) to the interpre-
tations of R, the list of consumers associated with R is activated, and thereby the
corresponding computations are resumed.

Strategies for Getting Better Performance

It is known that the actual formulation of the analysis has a great impact on the execution
time of the solver. In this section we provide two strategies to fasten the computation,
both of them are done by tuning clauses, which amounts to transforming the clause given
as input.
Experiments with the analysis of Discretionary Ambient [5] have also shown that both of
these strategies may significantly improve the efficiency of solving clauses.

• the Order of the Parameters of Relations
Succinct Solver uses prefix trees as an internal representation of relations[4]. There-
fore preferences are given to certain query patterns and imposing a potential large
penalty on other query patterns. A generalized strategy is to try to put the bound
parameters ahead of unbound parameters.

Example 2.7
Assume that a relation R(x1, x2) appears in a precondition where x2 is always bound
and x1 is always unbound. In this case, query the inverse relation R′(x2, x1) prefer-
able over querying R(x1, x2).

• the Order of Conjuncts in Preconditions
Pre-conditions are evaluated from left to right and in the context of an environ-
ment, which describes successful bindings of variables. When checking a query to
a relation R, the evaluation of remaining preconditions is performed for the new
environments, which are made by unifying the current environment with elements
in R. In this way, environments are propagated. If the unification fails, not further
work will be done. Therefore, the earlier the unification fails, the less environments
are propagated. One strategy is that putting queries, which restrict the variable
binding most, at the front of preconditions will increase efficiency.

Example 2.8

∀x (R(x, a) ∧R(b, x) ⇒ Q(x)) . . . (1)
∀x (R(b, x) ∧R(x, a) ⇒ Q(x)) . . . (2)

where a and b are constants and suppose relation R contains few elements with b



22 Chapter 2. Setting the Scene

as the first component but more elements with a as the second component, like in
example 2.1.
In this case, clause(2) will be more efficient than clause (1) as fewer environments
are propagated from the first query to R.
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Chapter 3

Bit-vector Framework

Program analysis concerns about some certain properties of programs. A lot of analyses
is defined according to different requirements. Despite a great difference between each
analysis, there are sufficient similarities to be abstracted in order to make an underlying
framework possible. One advantage to construct such a framework is that people is able
to concentrate on the general property of different analyses and design generic algorithms
to solve the problems of the same family, i.e. one of such an algorithm is iterative-based
worklist algorithm.

Generally speaking, there are two important ingredients in a framework,

Property Space L, which is used to represent the data flow information as well as the
combination operator, t: P(L) → L, which combines information from different
paths. This property space is actually a complete lattice. Furthermore, when imple-
menting analyses, it is always requires that L satisfies the Ascending (or Descending)
Chain Condition.

Transfer Function f(l): L → L for l is a possible label of the program in question,
which maps the information from one end of a block to the other end (i.e. from
entry to exit or the reverse). We defined a set F over L containing all the f(l),
which has two basic properties:
• has an identity function: there exists an f such that f(x) = x for all x
• closed under composition: if f1, f2 ∈ F , then f1 • f2 ∈ F

Figure 3.1 shows the relationship between different frameworks. In this chapter, we shall
focus on bit-vector framework and come to monotone framework in Chapter 4. One of
the most important similarity between analyses within bit-vector framework is that they
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Figure 3.1: Relationship between different frameworks

share the same data flow equations:

Analysis◦(l) =
{

ı if l ∈ E
t{Analysis•(l′) | (l′, l) ∈ F} otherwise

(3.1)

Analysis•(l) = (Analysis◦(l) ∩ kill(l)) ∪ gen(l) (3.2)

where

• t is ∩ or ∪
• F is either flow or reversed flow of a program
• E is the initial block or one of the final block of program
• ı specifies the initial or final analysis information
• kill(l) and gen(l) specify which information becomes invalid and valid after executing

the block labeled l

The notions ◦ and • used above are defined as:

Analysis ◦(l) contains as its elements the collected data-flow information im-
mediately before executing elementary block l, while Analysis •(l) contains the
information immediately after executing l, where Analysis is the abbreviation
of each analysis’s name.

Having data flow equations, the remaining question is how to solve these equations to
obtain an analysis result. This is actually done by Succinct Solver. Our task here is to de-
velop program analyzers, which take WHILE programs as input and specify the equations
in forms of ALFP clauses accepted by Succinct Solver. Therefore they serve as front-ends
of the Succinct Solver.

Here we concern about four classical analyses within bit-vector framework: reaching defini-
tion analysis, very busy expression analysis, available expression analysis and live variable
analysis. We will go into details of the first two analyses, which are regarded as comple-
ment, since one is forward may analysis whereas the other is backward must analysis.
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To each analysis, both data flow approach and flow logic approach are applied, therefore
two sets of ALFP clauses are generated. Experiments show that flow logic specifications
could be solved more efficiently than the other one.

3.1 General Program Information

Although program analyzers vary from one to another according different specifications(e.g.
different kill and gen set), they do share some common operations, which are used to ex-
tract basic information of the program to be analyzed. In this section, prior to defining
specification and implementation of individual analyzer, we introduce a bit about these
commonly used operations, all of which work in a recursive way. We present them in
SML-style notation below.

3.1.1 Blocks

As mentioned in chapter 2, elementary blocks are either assignments, conditionals in
branch statements (e.g. b in If [b]l Then . . . Else . . . and While [b]l Do . . .), or Skip state-
ments. Function blocks, applied to a statement, produces a set of elementary blocks.

blocks: Stmt → P(Block)

blocks([Skip]l) = {[Skip]l}
blocks([x := e]l) = {[x := e]l}
blocks(If [e]l Then s1 Else s2) = {[e]l} ∪ blocks(s1) ∪ blocks(s2)
blocks(While [e]l Do s) = {[e]l} ∪ blocks(s)
blocks(s1; s2) = block(s1) ∪ blocks(s2)
blocks(Begin dec s End) = blocks(s)

3.1.2 Initial label

Function init is used to acquire the initial label for a statement.

init: Stmt → Lab
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init([Skip]l) = l
init([x := e]l) = l
init(If [e]l Then s1 Else s2) = l
init(While [e]l Do s) = l
init(s1; s2) = init(s1)
init(Begin dec s End) = init(s)

Note that init returns a single element, which corresponding to the only entry point of a
program.

3.1.3 Final labels

Function final acquires final labels for a statement.

final: Stmt → P(Lab)

final([Skip]l) = {l}
final([x := e]l) = {l}
final(If [e]l Then s1 Else s2) = final(s1) ∪ final(s2)
final(While [e]l Do s) = {l}
final(s1; s2) = final(s2)
final(Begin dec s End) = final(s)

Whereas a sequence of statements can only has one single entry, it may have multiple
exits. Thus, final returns a set of elements.

3.1.4 Labels

Function labels returns all the block labels of a given statement.

labels: Stmt → P(Lab)

labels([Skip]l) = {l}
labels([x := e]l) = {l}
labels(If [e]l Then s1 Else s2) = {l} ∪ labels(s1) ∪ labels(s2)
labels(While [e]l Do s) = {l} ∪ labels(s)
labels(s1; s2) = labels(s1) ∪ labels(s2)
labels(Begin dec s End) = labels(s)

3.1.5 Flows and Reverse Flows

flow, defined as
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flow: Stmt → P(Lab × Lab)

is a mapping from statement to sets of flows.

flow([Skip]l) = ∅
flow([x := e]l) = ∅
flow(If [e]l Then s1 Else s2) = flow(s1) ∪ flow(s2) ∪ {(l,init(s1)), (l,init(s2))}
flow(While [e]l Do s) = flow(s) ∪ {(l,init(s))} ∪ {(l′, l) | l′ ∈final(s)}
flow(s1; s2) = flow(s1) ∪ flow(s2) ∪ {(l,init(s2)) | l ∈final(s1)}
flow(Begin dec s End) = flow(s)

Reverse flows are required when formulating backward analyses. Function

flowR: Stmt → P(Lab × Lab)

is defined by:

flowR(s) = {(l, l′) | (l′, l) ∈flow(s)}

3.1.6 Variable List

var is an operation over statement to collect all the variables declared inside it.

var: Stmt → P(V ar)

It is defined as,

var(Begin dec s End) = varD(dec) ∪ var(s)
var([Skip]l) = ∅
var([x := e]l) = ∅
var(If [e]l Then s1 Else s2) = var(s1) ∪ var(s2)
var(While [e]l Do s) = var(s)
var(s1; s2) = var(s1) ∪ var(s2)

where varD is an auxiliary function operates on declarations.

varD: Dec → P(V ar)

varD(Var x) = {x}
varD(Array A of [n1..n2]) = {(A, i) | n1 6 i 6 n2}

Example 3.1 Consider the following statement, Sum.

Begin Var x
[x := 1]1; While [x <= 10]2 Do [x := x + 1]3

End
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We have init(Sum)=1, final(Sum)={2}, var(Sum)={x} and labels(Sum)={1,2,3}. The
function flow produces the set

{(1, 2), (2, 3), (3, 2)}

The flowR is the set
{(2, 1), (3, 2), (2, 3)}

3.1.7 Expressions and Sub-expressions

Function exp operates over statement to collect all the non-trivial expressions appeared
in it. ”Trivial” here is defined as an expression is trivial if it is a constant or a sin-
gle variable1. In this thesis, we shall not be concerned with trivial expression: whenever
we talk about some expressions we will always be talking about the non-trivial expressions.

The functionality of exp is exp: Stmt → P(Exp) and it is defined as,

exp(Begin dec s End) = exp(s)
exp([Skip]l) = ∅
exp([x := e]l) = getExp(e)
exp(If [e]l Then s1 Else s2) = getExp(e) ∪ exp(s1) ∪ exp(s2)
exp(While [e]l Do s) = getExp(e) ∪ exp(s)
exp(s1; s2) = exp(s1) ∪ exp(s2)

where getExp(e) is used to determine whether e is an expression, namely whether it
contains more than one variables connected by operators.

getExp(n) = ∅
getExp(x) = ∅
getExp(A[e]) = ∅
getExp(e1 op e2) = {e1 op e2}

Function subExp: Exp → P(Exp) defined as,

subExp(n) = ∅
subExp(x) = ∅
subExp(A[e]) = subExp(e)
subExp(e1 op e2) = subExp(e1) ∪ subExp(e2) ∪ {e1 op e2} ∪ {e2 op e1}

is used to collect all the sub-expressions of a given expression. Note that, for simplicity’s
sake, we define sub-expression in a strict way. For example, a + b /∈ subExp(a + c + b).

1either a simple variable or an array element



3.1 General Program Information 29

3.1.8 Free Simple Variable and Free Array Name

Function Fv is a mapping from an expression to the free simple variables contained in
that expression. It is defined as:
Fv: Exp → P(V ar)

Fv(n) = ∅
Fv(x) = {x}
Fv(A[e]) = Fv(e)
Fv(e1 op e2) = Fv(e1) ∪ Fv(e2)

Note that in the case a simple variable appears in the index of an array element, it is also
regarded as a free simple variable.

Function FAv is a mapping from an expression to the free array names2 contained in
the expression, which is defined as:

FAv: Exp → P(Arr)

FAv(n) = ∅
FAv(x) = ∅
FAv(A[e]) = {A} ∪ FAv(e)
FAv(e1 op e2) = FAv(e1) ∪ FAv(e2)

Example 3.2 Consider an expression e = y + A[3] + A[x], where x and y are vari-
ables.
We have
subExp(e) = {y + A[3] + A[x], y + A[3], A[3] + A[x], }
Fv(e) = {y, x}
FAv(e) = {A}

3.1.9 Notation for Program

In the later sections of this chapter and the consequent chapters, we shall use the notation
S∗ to represent the statement of the program that we are analyzing, Block∗ to represent
the elementary blocks in S∗, Lab∗ to represent the labels appearing in S∗, Var∗ to represent
the variables appearing in S∗ and Exp∗ to represent the set of non-trivial expressions in

2names of arrays appear in an expression
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S∗, i.e.
Block∗ = blocks(S∗)
Lab∗ = labels(S∗)
Var∗ = var(S∗)
Exp∗ = exp(S∗)

3.2 Reaching Definition Analysis

A definition of a variable x is a statement that assigns, or may assign, a value to x. A
definition d reaches point p if there is a path from the point immediately following d to
p, such that d is not redefined along that path. Intuitively, if a definition d of variable x
reaches point p, then d might be the place at which the value of x used at p might last
have been defined.

Reaching Definition analysis(RD for short) is used to indicate:

at each program point, in which elementary block is each variable defined.

The information gained from this analysis is used, say, in calculating ud and du chains
as well as in Constant Folding transformation to determine which variable has a constant
value.

Example 3.3 Consider the following program:

[x := 1]1; [y := 2]2; If [x > 0]3 Then [x := x + 1]4 Else [y := y ∗ x]5

Here assignments labeled 1 and 2 reach the entry of 4 and 5.

3.2.1 Data Flow Approach

The analysis itself is defined by the pair of functions RD◦ and RD• mapping labels to sets
of pairs of variables and labels:

RD◦,RD• : Lab∗ → P(Var∗×Lab0
∗)

In order to deal with uninitialized variables, we use a special label ”Lab0” (at the very
beginning point, each variable is defined at lab0) and set Lab0

∗ = Lab∗ ∪ {lab0}.
It’s property space is a complete lattice

(P(Var∗×Lab0
∗), ⊆)

and the transfer function is

fRD
l (RD◦(l)) = (RD◦(l) \kill(l)) ∪ gen(l)
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Kill Component

The kill component are used to indicate at certain point of the program, which definition
for a variable is not valid any more (e.g. the variable has been re-defined).

Table 3.1 shows for each kind of elementary block what the kill components are.

1 [x := e]l {(x, lab0)} ∪
{(x, l′) | Bl′ is an assignment to x in S∗}

2 [A[n] := e]l {(A[n], lab0)} ∪
{(A[n], l′) | Bl′ is an assignment to A[n] or A[e] in S∗}

3 [A[e] := e′]l ∅
4 [Skip]l ∅
5 [e]l ∅

Table 3.1: Kill Component of RD Analysis

1. [x := e]l

In case, the current block is an assignment to a variable, x, we
• kill (x, lab0), since we know x is no longer defined outside the program.
• kill (x, l′), when Bl′ has the form [x := e]l

′
. Because now x is only defined in

block l

2. [A[n] := e]l

In case the current block is an assignment to an array, A, with a constant index
value, n, we
• kill (A[n], lab0) and (A[n], l′) If Bl′ has the form [A[n] := e]l

′
. Since at this

point, A[n] is only defined in elementary block l.
• kill (A[n], l′) If Bl′ has the form [A[e] := e′]l

′
. Because now no matter what

the value does x have, A[n] must be defined in block l, thus we can safely kill
(A[n], l′).

3. [A[e] := e′]l

In case the current block is an assignment to an array, A, with an index, e, we
kill nothing. The reason is the value of e is unknown, therefore it is unsafe to kill
anything.

4. [Skip]l and [e]l

Not necessary kill any thing, since no variable is defined or redefined here.
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Gen component

Gen component is used to indicate which definition of certain variable is generated at an
elementary block l.

1 [x := e]l {(x, l)}
2 [A[n] := e]l {(A[n], l)}
3 [A[e] := e′]l {(A[i], l) | (A, i) ∈ V ar∗}
4 [Skip]l ∅
5 [e]l ∅

Table 3.2: Gen Component of RD Analysis

1. [x := e]l

In case, the current block is an assignment to a variable, x, we generate (x, l), since
now x is defined in block l.

2. [A[n] := e]l

In case the current block is an assignment to an array, A, with a constant index
value, n, we generate (A[n], l), since now A[n] is defined in block l.

3. [A[e] := e′]l

In case the current block is an assignment to an array, A, with a variable index, e,
we generate (A[i],l), for (A, i) ∈ Var∗. Because at this point, all these array elements
may be defined in block l.

4. [Skip]l and [e]l

Not necessary gen any thing, since no variable is defined here.

Data Flow Equations

This analysis is a forward may analysis, calculating the smallest set satisfying RD◦. The
data flow equations of reaching definition are listed in figure 3.2.
Equation (1) takes care the initialization of entry information: all the variables are set to

defined outside program (here we use lab0 for that purpose) at the initial block. Equation
(2) says that, for non-initial blocks, information come from different paths are combined
together at the entry point. ∪ is used here, since reaching definition is a may analysis(over
approximation). Transfer function fRD is specified in equation (3).
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RD◦(l) =
{
{(x, lab0) | x ∈Var∗} if l = init(S∗) (1)⋃
{RD•(l′) | (l′, l) ∈ flow(S∗)} otherwise (2)

RD•(l) = (RD◦(l)�killRD(Bl)) ∪ genRD(Bl) where Bl ∈Block∗ (3)

Figure 3.2: Data Flow Equations of RD Analysis

Implementation

By now, we have the specification the RD analysis. The remaining question is to ”trans-
late” them into ALFP clauses. When implementing this RD analyzer, we employ the
following predicates,

Predicate Meaning
INIT(l) l is the initial label of program
FLOW(l1,l2) there exists a flow from l1 to l2
VAR(x) x is a variable in program
RDGEN(l1, x, l2) at block l1, (x, l2) is generated
RDKILL(l1, x, l2) at block l1, (x, l2) is killed
RDIN(l1, x, l2) at the entry of l1, x is defined at l2, viz.

(x, l2) ∈ RD◦(l1)
RDOUT(l1, x, l2) at the exit of l1, x is defined at l2, viz.

(x, l2) ∈ RD•(l1)

Generate Clauses
Clauses are generated using functions listed in chapter 3.1 as well as the specifications
defined above.

INIT(l) holds if init(S∗)= l

FLOW(l1, l2) holds if (l1, l2) ∈flow(S∗)

VAR(x) holds if x ∈Var∗
VAR(A′i) holds if (A, i) ∈Var∗
In case of array, all its elements whose indexes fall within the array bounds are generate
as variables. Additionally, we use A′i to represent A[i] in ALFP clause because symbol
”[” and ”]” are not recognized by Succinct Solver.

RDGEN(l, x, l′) ⇔ (x, l′) ∈ genRD(Bl) where Bl ∈Block∗
RDGEN(l, A′i, l′) ⇔ (A[i], l′) ∈ genRD(Bl) where Bl ∈Block∗
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RDKILL(l, x, l′) ⇔ (x, l′) ∈ killRD(Bl) where Bl ∈Block∗
RDKILL(l, A′i, l′) ⇔ (A[i], l′) ∈ killRD(Bl) where Bl ∈Block∗
RDGEN and RDKILL are generated according to the specifications of gen and kill. For
block labeled l, RDGEN(l, x, l′) holds if (x, l′) is generated by block l and RDKILL(l, x, l′)
holds if (x, l′) is killed by block l.

Finally, data flow equations are translated to the following three clauses,
∀l ∀x (INIT(l)∧VAR(x)) ⇒RDIN(l, x, lab0)
At the initial point, all the variables are defined at lab0.

∀l ∀x ∀l1 ∀l2 (RDOUT(l1, x, l2)∧FLOW(l1, l) ⇒RDIN(l, x, l2))
If flow(l1, l) exists and at exit of l1 x is defined at l2 then at entry of l, x is still defined at l2.

∀l ∀x ∀l1 (RDIN(l, x, l1) ∧ ¬RDKILL(l, x, l1))∨RDGEN(l, x, l1) ⇒RDOUT(l, x, l1)
At the exit of block l, variable x is defined at l1 providing that either (x, l1) is generated
by block l or at the entry of l x is defined at l1 and (x, l1) is not killed by block l.

Example 3.4 Consider the program piece,
[A[1] := 2]1; While [x < 5]2 Do (If [x > 0]3 Then [A[x] := x]4 Else [x := A[2]]5)
where array A is declared by Array A of [1..2]. Data flow specifications give rise to the
following clause

INIT(L1)∧
VAR(x)∧VAR(A′1)∧VAR(A′2)∧
FLOW(L1,L2)∧FLOW(L2,L3)∧FLOW(L3,L4)∧FLOW(L3,L5)∧FLOW(L4,L2)∧FLOW(L5,L2)∧

RDGEN(L1,A′1,L1)∧RDKILL(L1,A′1,L2)∧RDKILL(L1,A′1,L4)∧RDKILL(L1,A′1,Lab0)
RDGEN(L4,A′1,L4)∧RDGEN(L4,A′2,L4)∧
RDGEN(L5,x,L5)∧RDKILL(L5,x,Lab0)

(∀l INIT(l)⇒(∀x VAR(x)⇒RDIN(l, x,Lab0)))∧
(∀l ∀x ∀l1 (RDIN(l, x, l1)∧¬RDKILL(l, x, l1))∨RDGEN(l, x, l1)⇒RDOUT(l, x, l1))∧
(∀l ∀l1 ∀l2 ∀x RDOUT(l1, x, l)∧FLOW(l1, l2)⇒RDIN(l2, x, l))
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where Li represents label i. The result could be summarize to the below table.

RD◦ x A[1] A[2] RD• x A[1] A[2]
L1 Lab0 Lab0 Lab0 L1 Lab0 L1 Lab0
L2 Lab0 L5 L1 L4 Lab0 L4 L2 Lab0 L5 L1 L4 Lab0 L4
L3 Lab0 L5 L1 L4 Lab0 L4 L3 Lab0 L5 L1 L4 Lab0 L4
L4 Lab0 L5 L1 L4 Lab0 L4 L4 Lab0 L5 L1 L4 Lab0 L4
L5 L5 L5 L1 L4 Lab0 L4

3.2.2 Flow Logic Approach

Determining data flow equations using kill and gen components is a traditional approach
for specifying reaching definition analysis. It is classical, yet not very efficient when im-
plemented using the Succinct Solver, partial because of a large amount of unused elements
in kill set. Examining the following program piece,

[x := 1]1; [x := 2]2; [x := 3]3; [x := 4]4; [x := 5]5

the kill set for x at block 2 is {1, 2, 3, 4, 5}, while according to the program structure, it
is sure that x in block 2 can never be defined at {3, 4, 5}. Therefore, solving clauses
RDKILL(L2,x,L3), RDKILL(L2,x,L4) and RDKILL(L2,x,L5) becomes extra tasks for
Succinct Solver.

In this section, we present another approach for handling this analysis, the flow logic
approach, which is not only useful for Reaching Definition analysis but also applicable to
all the analyses within bit-vector framework. Comparisons about the efficiencies of these
two approaches are given at the end of each section.

WHILE language is known to be well-structure shown by its grammar, in the sense that
there is no abnormal exit in program(like GOTO statement). Consequently, it is naturally
to consider about analyzing programs with respect to their control flow structure.

An example of the control flow structure is shown in Figure 3.3. Note that s, s1, s2
in the figure maybe compositional statements, hence their structures are induced by ap-
plying the same rule.

Recall the data flow equations at the beginning of this chapter. These equations inspire
us to split the flowing information into two parts, inter-statement and intra-statement,
which takes care of the information flowing within a node and along an edge, respectively.
More precisely they specify the relationship between RD◦(l) and RD•(l)(for elementary
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Figure 3.3: Flow Relation of Forward Analysis

block l) as well as between RD•(l) and RD◦(l′)(for flow(l, l′)).

Our approach begins by constructing a flow graph for a given program in the way that,

• there is a node for each elementary block
• there is an edge from block l to block l′, if flow(l, l′) exists.

The two flowing information categories are handled separately by,

• for each node, figure out which information held at the entry is also going to be
held at the exit and which information is newly revealed to be held by analyzing the
current block, therefore it holds at the exit.

• for each edge from l to l′, specify the relationship between the starting and the
ending point. There are two cases according to the character of the performed
analysis, either the information held the starting point is contained in the ending
point or the other way around, corresponding to may analysis or must analysis.

Specification

Now we can define the shape of the information that is statically collected from a given
program and then used to check certain property of programs. The result of our analysis
here is a pair (RD◦, RD•), where they are abstract caches associating each labeled program
point and variable with its definition labels.

RD◦, RD• ∈ Ĉache = (Lab∗ × Var∗) → P(Lab)

For the formulation of the new approach for reaching definition analysis, we shall write

(RD◦, RD•) |= s and (RD◦, RD•) |= B
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for when (RD◦, RD•) is an acceptable analysis of statement s or elementary block B.
Therefore, the functionality of relation ”|=” is

|= : (Ĉache × Ĉache × (Stmt ∪ Block)) → {true, false}

The specifications of the analysis for elementary block and statement are listed in Table
3.3, where RD•(l) ⊆ RD◦(l′) is defined by

∀ x RD•(l, x) ⊆ RD◦(l′, x)

(RD◦, RD•) |= [x := e]l iff l ∈ RD• (l, x) ∧
∀ y y6=x ⇒ RD◦(l, y) ⊆ RD•(l, y)

(RD◦, RD•) |= [A[n] := e]l iff l ∈ RD• (l, A[n]) ∧
∀ y y6=A[n] ⇒ RD◦(l, y) ⊆ RD•(l, y)

(RD◦, RD•) |= [A[e] := e′]l iff ∀i (A,i)∈Var∗ ⇒ l ∈ RD• (l, A[i]) ∧
RD◦(l)⊆ RD•(l)

(RD◦, RD•) |= [Skip]l iff RD◦(l)⊆ RD•(l)

(RD◦, RD•) |= [e]l iff RD◦(l)⊆ RD•(l)
(RD◦, RD•) |= s1; s2 iff (RD◦, RD•) |= s1 ∧

(RD◦, RD•) |= s2 ∧
∀ l l∈final(s1) ⇒ RD•(l) ⊆ RD◦(init(s2))

(RD◦, RD•) |= If [e]l Then s1 Else s2 iff (RD◦, RD•) |= s1 ∧
(RD◦, RD•) |= s2 ∧
(RD◦, RD•) |= b ∧
RD•(l)⊆ RD◦(init(s1)) ∧
RD•(l)⊆ RD◦(init(s2))

(RD◦, RD•) |= While [e]l Do s iff (RD◦, RD•) |= s ∧
(RD◦, RD•) |= b ∧
RD•(l)⊆ RD◦(init(s)) ∧
∀l′ l′∈final(s) ⇒ RD•(l’)⊆ RD◦(l))

Table 3.3: Control Flow Analysis of RD for Elementary Blocks and Statements

The first five rules are responsible for linking the current label into the abstract caches.
For [x := e]l, we claim that at the exit of l, the definition point of x is l. All the other vari-
able except x preserve their definition information, because they are not touched in block
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l. Clauses for block [A[n] := e]l are defined in the same way as above. For [A[e] := e′]l,
since the value of e can not be determined, therefore we make all the elements of array A
being defined at l, other variables are still defined at the original places.

The last three rules contain ”recursive calls” demanding that sub-statements must be
analyzed in consistent ways using (RD◦, RD•). Clause RD•(l) ⊆ RD◦(l′) is defined in the
case flow(l, l′) exists. The idea is reaching definition analysis is a may analysis, RD◦(l′)
equals to the joining(∪) of the information from all its predecessors. Therefore, each
part(RD•(l)) is a subset of the whole(RD◦(l′)).

Implementation

Predicates used in implementing the flow logic specifications are INIT, VAR, RDIN and
RDOUT, the meanings of which are exactly the same as they are in the previous approach.

At the very beginning, all the variables are set to be defined at lab0 by the clause

∀l INIT(l) ⇒ (∀x VAR(x) ⇒ RDIN(l, x, Lab0))

Clauses for elementary blocks could be translated directly from the specifications. For
statements, we specify the below clause for flow(l1, l2)

∀x ∀l RDOUT(l1, x, l) ⇒ RDIN(l2, x, l)

Example 3.5 Returning to the program in Example 3.4. Flow logic specifications give
rise to the clause

INIT(L1)∧
VAR(x)∧VAR(A′1)∧VAR(A′2)∧
(∀l INIT(l)⇒(∀x VAR(x)⇒RDIN(l, x,Lab0)))∧

RDOUT(L1,A′1,L1)∧
(∀x ∀l RDIN(L1,x, l)∧x 6= A′1 ⇒RDOUT(L1,x, l))∧

(∀x ∀l RDIN(L2,x, l)⇒RDOUT(L2,x, l))∧

(∀x ∀l RDIN(L3,x, l)⇒RDOUT(L3,x, l))∧

RDOUT(L4,A′1,L4)∧
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RDOUT(L4,A′2,L4)∧
(∀x ∀l RDIN(L4,x, l)⇒RDOUT(L4,x, l))∧

RDOUT(L5,x,L5)∧
(∀y ∀l RDIN(L5,y, l)∧y 6= x ⇒RDOUT(L5,y, l))∧

(∀x ∀l RDOUT(L1,x, l)⇒RDIN(L2,x, l))∧
(∀x ∀l RDOUT(L2,x, l)⇒RDIN(L3,x, l))∧
(∀x ∀l RDOUT(L3,x, l)⇒RDIN(L4,x, l))∧
(∀x ∀l RDOUT(L3,x, l)⇒RDIN(L5,x, l))∧
(∀x ∀l RDOUT(L4,x, l)⇒RDIN(L2,x, l))∧
(∀x ∀l RDOUT(L5,x, l)⇒RDIN(L2,x, l))

The result of solving the above clause is exactly the same as the one in Example 3.4.

3.2.3 Comparison of Two Approaches

In order to do the comparison, we create a benchmark, namely a scalable program a-m
and develope two sets of clauses according to both data flow and flow logic specifications
mentioned before. The function of program a-m is to calculate the sums of counterparts
in m arrays, where each array has only two elements.

The measured execution times of Succinct Solver running on both sets of clauses are
shown in Figure 3.4. The plot is made using logarithmic scales on both axes, which shows
the running times of the Succinct Solver as a function of the size of the programs. Thus a
polynomial dependency will result in a straight line. Higher degrees of the polynomial will
appear as a steeper gradient. Hence, two polynomial with the same degree will appear as
parallel lines. The polynomial with the smallest coefficient will appear as the lowest of
the two lines. We refer to Appendix A for detail information about benchmarks as well as
the strategies for timing the experiments and presenting the result. Appendix B contains
comparisons based on another benchmark.

From Figure 3.4 we can see that Succinct Solver v2.0 solves the ALFP clause gener-
ated using flow logic approach much efficiently than the one generated using the classical
data flow approach by degrees of the complexity polynomial. This could be explained by
the range for selecting the kill components. As mentioned in the beginning of chapter
3.2.2, data flow approach always generates a large amount of kill components and in some
cases numbers of them are not relevant to the block under analyzing. These extra kill
components waste the final computation time of Succinct Solver. While in flow logic ap-
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Figure 3.4: Comparison of execution times on a-m

proach, no such kill component exists in the sense that information at exit of each block
comes from the information at the entry of the block excluding those killed by the block.
An extreme example could be

[x := 1]1; [x := 2]2; [x := 3]3; [x := 4]4; [x := 5]5

The kill components for block 1 are RDKILL(L1,x,L1), RDKILL(L1,x,L2), RDKILL(L1,x,L3),
RDKILL(L1,x,L4) and RDKILL(L1,x,L5). Information held at the exit of block 1 is spec-
ified by the clause

∀l ∀x ∀l1 (RDIN(l, x, l1) ∧ ¬RDKILL(l, x, l1))∨RDGEN(l, x, l1) ⇒RDOUT(l, x, l1)

Thus all the interpretations of predicate RDKILL have to be examined to ensure that
tuple (1, x, l1) is not one of them when it is a interpretation of RDIN.

While in flow logic approach information at exit of block 1 is specified by the clause

RDOUT(L1, x,L1)∧
(∀y ∀l RDIN(L1, y, l) ∧ y 6= x ⇒RDOUT(L1, y, l))

The calculation for the above clause is simpler: the definition point of each the variable
is not changed except the variable is x, in which case its definition point is L1 now. Thus
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the redundant check in solving data flow clause is avoided.

In benchmark a-m, 3/4 statements of the program are used to redefined variables. As
program is enlarged, more and more solving time is spend on examining whether one in-
terpretation of RDKILL exists or not, which results in data flow approach is degrees of
complexity polynomial worse than flow logic approach, as shown in Figure 3.4.

3.3 Very Busy Expression Analysis

In this section, we present very busy expression analysis (VB for short) using both data
flow and flow logic approaches.
An expression is very busy at the exit of a block if, no matter what path is taken from
the block, the expression must always be used before any of the variables occurring in it
are redefined. The aim of very busy expression analysis is to determine:

For each program point, which expressions must be very busy at the exit from
the point.

One possible optimization based on the result of very busy expression analysis is code
hoisting.

Example 3.6 Consider the program:

If [a > b]1 Then [x := a + b]2 Else [y := a + b]3

Expression a + b is very busy at the start of the conditional. Therefore it’s value could be
evaluated before block 1 and stored for later use. Optimization code hoisting will do this
job.

3.3.1 Data Flow Approach

The analysis is defined by the pair of function VB◦ and VB• mapping labels to sets of
expressions:

VB◦,VB• :Lab∗ → P(Exp)

It’s property space is a complete lattice

(P(Exp∗), ⊇)

and the transfer function is

fV B
l (VB◦(l)) = (VB◦(l) \kill(l)) ∪ gen(l)
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Kill Component

The kill component are used to indicate at certain point of the program, which expression
is no longer valid (e.g. its value has been changed).
Table 3.4 shows for each kind of elementary block what the kill components are.

1 [x := e]l {e1 ∈Exp∗ | x ∈Fv(e1)
2 [A[n] := e]l {e1 ∈Exp∗ | A ∈FAv(e1)
3 [A[e] := e′]l {e1 ∈Exp∗ | A ∈FAv(e1)
4 [Skip]l ∅
5 [e]l ∅

Table 3.4: Kill Component of VB Analysis

1. [x := e]l

In this case, the kill component includes the expressions appear in program, which
contain assignee x or any array element indexed by x, since the change of x’s value
will result in the change of the value of A[x].

2. [A[n] := e]l

In this case, the kill component includes the expressions which contain any array
element indexed by n or an expression. Expressions containing A[n] should be killed
as its value has changed and expressions containing A[e′′] should be killed because
its not sure that whether it is equal to A[n], hence kill it satisfies the requirement of
a must analysis.

3. [A[e] := e′]l

In this case each expression containing array element with an expression index should
be killed, because its value may changed.

4. [Skip]l and [e]l

Not necessary to kill any thing, since no variable’s value has changed here.

Gen Component

Gen component is used to indicate which expression becomes valid, meaning that its value
has been computed at an elementary block l. Note that in row 1, 2, 3 and 5, the subex-
pressions of e become valid, since their values have been computed.
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1 [x := e]l subExp(e)
2 [A[n] := e]l subExp(e)
3 [A[e1] := e]l subExp(e)
4 [Skip]l ∅
5 [e]l subExp(e)

Table 3.5: Gen Component of VB Analysis

Data Flow Equations

Very busy expression analysis is one of the four classical analyses within bit-vector frame-
work, meaning that it shares the standard data flow equations. Since it is a backward
must analysis, we are interested in the largest sets satisfying the equation for VB•.

VB•(l) =
{
∅ if l ∈final(S∗)⋂
{VB◦(l′) | (l′, l) ∈flowR(S∗)} otherwise

VB◦(l) = (VB•(l)�killV B(Bl)) ∪ genV B(Bl) where Bl ∈Block∗

Figure 3.5: Data Flow Equations of VB Analysis

Implementation

Specifying must analysis is a bit more complicated than may analysis, because:
Data flow equations of VB analysis demand that

VB•(l) =
⋂
{VB◦(l′) | (l′, l) ∈flowR(S∗)} if l /∈final(S∗)

This can not be implemented straight-forwardly when there is a dependency cycle existing
among blocks. Assume two reverse flow pairs exist, say (l1, l2) and (l2, l1), which may
happen for a While statement. Information at exit of l1 depends on the availability of
information at entry of l2 and the same thing for l2. One of them is needed to become
available in order for the other one to be available. Thus a dead lock happens here.
Therefore, rather than the above equation, we re-write it to:

VB•(l) ⊇VB◦(l′) if (l′, l) ∈flowR(S∗)

which corresponding to the clause

∀e e ∈ VB◦(l′) ∧ (l′, l) ∈ flowR(S∗) ⇒ e ∈ VB•(l)
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By doing in this way, the dependency cycle is broken: information could be transferred
smoothly between blocks. But this also allows the transference of unwanted information,
since the expression e held at the entry of l′ may not hold at entry of other predecessors
of block l. Thus the second step is to select and discard all these unwanted information.

As VB analysis is known to be a must analysis, it satisfies the descending chain con-
dition, meaning that there exists n such that l′n+1 v l′n. This can be understand as
information at each program point becomes less and less as the computation progresses.
Now the problem arise; it is natural to create interpretations for predicates but impossible
to remove certain interpretation. This problem could be solved by employing a flag, say
Valid and Invalid to indicate whether an information still holds. Therefore flag is set
to Valid when an interpretation is generated and whenever an interpretation should be
removed, we set its flag to Invalid.

We shall use the following predicates in the clause generated according to data flow spec-
ification. Predicates used in clauses and their meanings are listed in the below table.

Predicate Meaning
EXP(e) e is an expression
PLUS(x, y) expression x + y

RFLOW(l1,l2) there is a reverse flow from l1 to l2
VBGEN(l1, e) at block l1, e is generated
VBKILL(l1, e) at block l1, e is killed
VBIN(l1, e, flag) at the entry of l1, e is busy,

where flag is either Valid or Invalid indicating
whether this information is held any longer

VBOUT(l1, e, flag) at the exit of l1, e is busy,
where flag is either Valid or Invalid indicating
whether this information is held any longer

After incorporating the flag, data flow equations of VB analysis could be translated to the
following four clauses,

∀l ∀e (VBOUT(l, e,VALID) ∧ ¬VBKILL(l, e))∨VBGEN(l, e) ⇒VBIN(l, e,VALID) (1)
∀l ∀e VBOUT(l, e,INVALID) ∧ ¬VBGEN(l, e) ⇒VBIN(l, e,INVALID) (2)
∀l ∀e ∀l1 ∀f VBIN(l1, e, f)∧RFLOW(l1, l) ⇒VBOUT(l, e, f)) (3)
∀l ∀e ∀l1 VBOUT(l1, e,VALID)∧RFLOW(l, l1) ∧ ¬VBIN(l, e,VALID) ⇒
VBOUT(l1, e,INVALID)) (4)

The first two clauses take care about the relationship between the information at the exit
and entry of a block, while clause (1) states that an expression is valid at the entry of a
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block when either it is valid at the exit and is not killed in the block or it is generated in
the block; clause (2) states that if an expression is invalid at the exit of a block and it is
not one of the expressions generated in the block then it is still invalid at the entry of the
block. Relationship between two blocks is specified by the last two clauses. The idea is,
for each node, we first let it has all the information held by it predecessors, which similar
to a may analysis, and then select out the expressions not held any longer and set their
flags to Invalid. Clause (3) means that if reverse flow(l1, l) exists, all the expressions held
at the entry of l1, no matter valid or invalid are going to be held at the exit of l without
changed their validity. Clearly these expressions at the exit of l may be valid or invalid,
among all the valid expressions, if one is not valid at one predecessors, then it will be
marked as invalid. That is to say, an expression is valid at one node if and only if it is not
invalid at any of the predecessors. This work is done by clause (4).

Example 3.8 Assume a program contains the following statements
[A[1] := x + A[2]]1; [x := A[x] + y]2; If [x < 10]3 Then [A[1] := x + y]4 Else [x := x + y]5

and A[1] and A[2] are the only elements of array A
Clause generated according to data flow specifications is,

RFLOW(L2,L1)∧RFLOW(L3,L2)∧RFLOW(L4,L3)∧RFLOW(L5,L3)∧

VBGEN(L1,EXP(PLUS(x,A′2)))∧VBKILL(L1,EXP(PLUS(A′x, y)))∧
VBGEN(L2,EXP(PLUS(A′x, y)))∧VBKILL(L2,EXP(PLUS(x,A′2)))∧
VBKILL(L2,EXP(PLUS(x, y)))∧VBKILL(L5,EXP(PLUS(A′x, y)))
VBGEN(L4,EXP(PLUS(x, y)))∧VBKILL(L4,EXP(PLUS(A′x, y)))∧
VBGEN(L5,EXP(PLUS(x, y)))∧VBKILL(L5,EXP(PLUS(x,A′2)))∧
VBKILL(L5,EXP(PLUS(A′x, y)))∧VBKILL(L5,EXP(PLUS(x, y)))∧

(∀l ∀e (VBOUT(l, e,VALID)∧¬VBKILL(l, e))∨VBGEN(l, e)⇒VBIN(l, e,VALID))∧
(∀l ∀e VBOUT(l, e,INVALID)∧¬ VBGEN(l, e)⇒VBIN(l, e,INVALID))∧
(∀l ∀e ∀l1 ∀f VBIN(l1, e, f) ∧RFLOW(l1, l)⇒VBOUT(l, e, f))∧
(∀l ∀e ∀l1 VBOUT(l1, e,VALID)∧ RFLOW(l, l1)∧¬VBIN(l, e,VALID)⇒VBOUT(l1, e,INVALID))

The summarized result is presented below.

VB◦ Valid expressions VB• Valid expressions
L1 x + A[2] L1 A[x] + y
L2 A[x] + y L2 x + y
L3 x + y L3 x + y
L4 x + y L4
L5 x + y L5
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3.3.2 Flow Logic Approach

Generating ALFP Clauses

The flow graph of backward analysis is different with that of forward analysis in the sense
that there is an edge from block l to block l′ if flowR(l, l′) exists. One example is shown
in Table 3.6.

Detail specifications for VB analysis are listed in Table 3.6. Note that we handle the

Figure 3.6: Flow Relation of Backward Analysis

inter- and intra-statement flowing information in the same fashion as for reaching definition
analysis, meaning that we write

(VB◦, VB•) |= s and (VB◦, VB•) |= B

for when (VB◦, VB•) is an acceptable analysis of statement s or elementary block B,
where

VB◦, VB• ∈ Ĉache = Lab∗ → P(Exp)

In Table 3.6, it states that if the elementary block is an assignment or a test, all the
sub-expressions of the right-hand-side of that assignment or the test become valid at the
entry of that block. Furthermore, in case of [x := e]l valid expressions at exit of l are
still valid at entry of l provided that x is not a free variable of it. In case of [A[n] := e]l

and [A[e] := e′], expression at exit of l can go through the block to the entry if it does
not have A as a free array name of it. The lower part of the table mainly states that
for a reverse flow (l1, l2), it is always the case that VB•(l2) bVB◦(l1), where symbol b
represents the operator u and indicates the relationship between a flow pair. VB◦(l) b
VB•(l′) for flowR(l, l′) is defined as,
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∀ e (e,Valid) ∈ VB◦(l) ⇒ (e,Valid) ∈ VB•(l′)
∀ e (e,Invalid) ∈ VB◦(l) ⇒ (e,Invalid) ∈ VB•(l′)
∀ e (e,Valid) ∈ VB•(l′) ∧ (e,Valid) /∈ VB◦(l) ⇒ (e,Invalid) ∈ VB•(l′)

The first two clauses let the information, no matter it is valid or invalid, at entry of l
flows into the exit of l′. The third clause says that, information at the exit of l′ is valid
only when it holds at the entry of l. When there are more than one predecessors of l′,
information should be held at entry points of all the predecessors in order for it to be valid
at exit of l′.
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(VB•, VB◦) |= [x:= e]l iff ∀ e′∈ Exp(e) (e′,valid) ∈ VB◦(l) ∧
∀ e′ (e′,Valid)∈ VB•(l) ∧ x /∈ Fv(e′)
⇒ (e′,valid) ∈ VB◦(l)

(VB•, VB◦) |= [A[n]:= e]l iff ∀ e′∈ Exp(e) (e′,valid) ∈ VB◦(l) ∧
∀e1 (e1, Valid)∈ VB•(l) ∧ A /∈ FAv(e1)
⇒ (e1,valid) ∈ VB◦(l)

(VB•, VB◦) |= [A[e]:= e′]l iff ∀ e′∈ Exp(e) (e′,valid) ∈ VB◦(l) ∧
∀e1 (e1, Valid)∈ VB•(l) ∧ A /∈ FAv(e1)
⇒ (e1,valid) ∈ VB◦(l)

(VB•, VB◦) |= [skip]l iff VB•(l) ⊆ VB◦(l)

(VB•, VB◦) |= [e]l iff ∀e′ e′∈Exp(e) ⇒ (e′,valid) ∈ VB◦(l) ∧
VB•(l)⊆ VB◦(l)

(VB•, VB◦) |= s1; s2 iff (VB•, VB◦) |= s1 ∧
(VB•, VB◦) |= s2 ∧
∀l ∈ final(s1) VB◦(init(s2)) b VB•(l)

(VB•, VB◦) |= iff (VB•, VB◦) |= [e]l ∧
if [e]l then s1 else s2 (VB•, VB◦) |= s1 ∧

(VB•, VB◦) |= s2 ∧
VB◦(init(s1))b VB•(1) ∧
VB◦(init(s2))b VB•(1)

(VB•, VB◦) |= while [e]l do s iff (VB•, VB◦) |= [e]l ∧
(VB•, VB◦) |= s ∧
VB◦(init(s))b VB•(l) ∧
∀l′ ∈ final(s) VB◦(l)b VB•(l′)

Table 3.6: Control Flow Analysis of VB for Elementary Blocks and Statements
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Implementation

Besides the predicates explained in the data flow approach part, the following predicates
are used additionally.

• FAV(A, e), which indicates that element of array A has appeared in the expression
e. This equals to say A ∈FAv(e)

• FV(x, e), meaning that x appears in e, which equals to say x ∈Fv(e)

VB analyzer goes through the programs and collects all the expressions contained in each
statement. These expressions are then examined to check which array names and simple
variables have appeared in it, thus interpretations for predicates FAV and FV are estab-
lished.

VB◦(l) b VB•(l′) for flowR(l, l′) is translated to the clauses,

∀e ∀f VBIN(l, e, f) ⇒ VBOUT(l′, e, f)
∀e VBOUT(l′, e,Valid) ∧ ¬VBIN(l, e,Valid) ⇒ VBOUT(l′, e,Invalid)

These are the same as the clauses specify the inter-statement relationship in data flow
approach and we refer to that part for explanation.

Order of Clauses

Recall that mentioned in Chapter 2.1, alternation-free formulae are employed by Succinct
Solver. A clause cl is an alternation-free-Least F ixpoint formula if it could satisfy the
three properties of the function Rank. In order to deal with negated queries, we have
to decide the order of clauses carefully. Clauses used for VB analysis mainly have the
followed three forms. We skip both the arguments and other irrelevant predicates and
only list concerned predicates names here.

VBIN ⇒ VBOUT
VBOUT ⇒ VBIN
¬VBIN ⇒ VBOUT

Before feeding clauses into succinct solver, we have to re-order them such that clauses of
the third form are always placed at the end. We claim that the three properties, men-
tioned above, hold by doing that. Assume there are totally n clauses and m of them have
the negated queries(¬VBIN), which are the last ones. All the other clauses then occupy
the first n−m places. The whole picture looks like,
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n



. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

 n−m

¬VBIN⇒VBOUT
¬VBIN⇒VBOUT
¬VBIN⇒VBOUT

 m

From the upper part of the picture, it can be seen that Rank(VBOUT)≤n − m and
Rank(VBIN)≤n−m, since they act as queries and the lower part tells that Rank(VBIN)<n−
m + 1, the same as Rank(VBIN)≤n −m, because its in negated queries. Therefore, the
properties hold in the sense that there is a non-empty solution space for the above three
inequations.

Example 3.9 By analyzing the program in example 3.8, the following clause is gen-
erated according to flow logic specifications.

FV(x,EXP(PLUS(x, A′2)))∧FV(y,EXP(PLUS(A′x, y)))∧
FV(x,EXP(PLUS(x, y)))∧FV(y,EXP(PLUS(x, y)))∧
FAV(A,EXP(PLUS(x,A′2)))∧FAV(A,EXP(PLUS(A′x, y)))∧

VBIN(L5,EXP(PLUS(x, y)),VALID)∧
(∀e VBOUT(L5,e,VALID)∧¬FV(x,e)⇒VBIN(L5,e,VALID))∧

VBIN(L4,EXP(PLUS(x, y)),VALID)∧
(∀e VBOUT(L4,e,VALID)∧¬FAV(A,e)⇒VBIN(L4,e,VALID))∧

(∀e VBOUT(L3,e,VALID)⇒VBIN(L3,e,VALID))∧

VBIN(L2,EXP(PLUS(A′x, y)),VALID)∧
(∀e VBOUT(L2,e,VALID)∧¬FV(x,e)⇒VBIN(L2,e,VALID))∧

VBIN(L1,EXP(PLUS(x,A′2)),VALID)∧
(∀e VBOUT(L1,e,VALID)∧¬FAV(A,e)⇒VBIN(L1,e,VALID))∧

(∀e ∀f VBIN(L5,e, f)⇒VBOUT(L3, e, f))∧
(∀e VBOUT(L3,e,VALID)∧¬VBIN(L5,e,VALID) ⇒ VBOUT(L3,e,INVALID))∧

(∀e ∀f VBIN(L4,e, f)⇒VBOUT(L3, e, f))∧
(∀e VBOUT(L3,e,VALID)∧¬VBIN(L4,e,VALID) ⇒ VBOUT(L3,e,INVALID))∧
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(∀e ∀f VBIN(L3,e, f)⇒VBOUT(L2,e, f))∧
(∀e ∀f VBIN(L2,e, f)⇒VBOUT(L1,e, f))
The solving result is the same as one in example 3.8.

Comparison of Two Approaches

Figure 3.12 shows the execution time of Succinct Solver running on two sets of specifi-
cations. As it can be seen from Figure 3.12, the complexities of solve on the two sets

Figure 3.7: Comparison of execution times on a-m

are equal but for flow logic specification, it has a constant factor in its favor. The small
indication on the complexity polynomial is too small to be significant.

3.4 Available Expression Analysis

Available expression analysis (AE for short) will determine:

For each program point, which expressions must have already been computed,
and not later modified, on all paths to the program point.
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This information can be used to avoid the re-computation of an expression. For clarity,
we will concentrate on arithmetic expressions.

Example 3.10 In the following statement

[x := a + b]1; if [x > 1]2 Then [y := a + b]3 Else [y := x]4

expression a + b is available at block 3 since its value has been computed in block 1.

3.4.1 Data Flow Approach

An expression is killed in a block if any of the variables used in the expression is modified
in the block; we use the function

killAE : Block∗ → P(Exp)

to produce the set of non-trivial expressions killed in the block. An expression is generated

1 [x := e]l {e′ ∈Exp∗ | x ∈Fv(e′)
2 [A[n] := e]l {e′ ∈Exp∗ | A ∈FAv(e′)
3 [A[e] := e′]l {e′ ∈Exp∗ | A ∈FAv(e′)
4 [Skip]l ∅
5 [e]l ∅

Table 3.7: Kill Component of AE Analysis

when it is evaluated in the block and none of the variables used in the expression is modified
in the block. The set of generated non-trivial expressions is produced by the function:

genAE : Block∗ → P(Exp)

Available expression analysis is a forward must analysis calculating the largest sets sat-

1 [x := e]l {e′ ∈ subExp(e) | x /∈Fv(e′)
2 [A[n] := e]l {e′ ∈ subExp(e) | A /∈FAv(e′)
3 [A[e] := e1]l {e′ ∈ subExp(e1) | A /∈FAv(e′)
4 [Skip]l ∅
5 [e]l subExp(b)

Table 3.8: Gen Component of AE Analysis

isfying the equation for AE◦ showed in Figure 3.8.
Predicates used by AE analysis generator are,
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AE◦(l) =
{
∅ if l =init(S∗)⋂
{AE•(l′) | (l′, l) ∈flow(S∗)} otherwise

AE•(l) = (AE◦(l)�killAE(Bl)) ∪ genAE(Bl) where Bl ∈Block∗

Figure 3.8: Data Flow Equations of AE Analysis

Predicate Meaning
EXP(e) e is an expression
PLUS(x, y) expression x + y

FLOW(l1,l2) there is a flow from l1 to l2
VAR(x) x is a variable in program
AEGEN(l1, e) at block l1, e is generated
AEKILL(l1, e) at block l1, e is killed
AEIN(l1, e, flag) at the entry of l1, e is available,

where flag is either Valid or Invalid indicating
whether this information is held any longer

AEOUT(l1, e, flag) at the exit of l1, e is available,
where flag is either Valid or Invalid indicating
whether this information is held any longer

Clauses for statements could be generated directly according to the specifications. AE
analysis is a must analysis, thus a flag is employ to indicate whether an information is
still valid or not at each block. Similar to VB analysis, clauses specifying the data flow
equations are generated as,

∀l ∀e (AEIN(l, e,VALID) ∧ ¬AEKILL(l, e))∨AEGEN(l, e) ⇒AEOUT(l, e,VALID) (1)
∀l ∀e AEIN(l, e,INVALID) ∧ ¬AEGEN(l, e) ⇒AEOUT(l, e,INVALID) (2)
∀l ∀e ∀l1 ∀f AEOUT(l1, e, f)∧FLOW(l1, l) ⇒AEIN(l, e, f)) (3)
∀l ∀e ∀l1 AEIN(l1, e,VALID)∧FLOW(l, l1) ∧ ¬AEOUT(l, e,VALID) ⇒
AEIN(l1, e,INVALID)) (4)

Example 3.11 Consider the program in example 3.8. The clause generated for the pro-
gram is,

FLOW(L1,L2)∧FLOW(L2,L3)∧FLOW(L3,L4)∧FLOW(L3,L5)∧

AEGEN(L1,EXP(PLUS(x,A′2)))∧AEKILL(L1,EXP(PLUS(A′x, y)))∧
AEKILL(L2,EXP(PLUS(x,A′2)))∧AEKILL(L2,EXP(PLUS(x, y)))∧
AEKILL(L2,EXP(PLUS(A′x, y)))∧
AEGEN(L4,EXP(PLUS(x, y)))∧AEKILL(L4,EXP(PLUS(A′x, y)))∧
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AEKILL(L5,EXP(PLUS(x,A′2)))∧AEKILL(L5,EXP(PLUS(A′x, y)))∧
AEKILL(L5,EXP(PLUS(x, y)))∧

(∀l ∀e (AEIN(l, e,VALID)∧¬AEKILL(l, e))∨AEGEN(l, e)⇒ AEOUT(l, e,VALID)))∧
(∀l ∀e AEIN(l, e,INVALID)∧¬ AEGEN(l, e)⇒AEOUT(l, e,INVALID))∧
(∀l ∀e ∀l1 ∀f AEOUT(l1, e, f)∧FLOW(l1, l)⇒AEIN(l, e, f))∧
(∀l ∀e ∀l1 AEIN(l1, e,VALID)∧ FLOW(l, l1)∧¬AEOUT(l, e,VALID)⇒AEIN(l1, e,INVALID))

The summarized result is listed in the blow table.

AE◦ available expressions AE• available expressions
L1 L1 x + A[2]
L2 x + A[2] L2
L3 L3
L4 L4 x + y
L5 L5

3.4.2 Flow Logic Approach

The result of available expression analysis is a pair (AE◦, AE•), where

AE◦, AE• ∈ Ĉache = Lab∗ → P(Exp)

where elementary blocks and statements have to satisfy the result in order to be acceptable.

(AE◦,LV•) |= B and (AE◦,LV•) |= s

Rules for satisfiability of elementary blocks are listed in the upper part of Table 3.4.2. It
states that, in case of [x := e]l, all the sub-expressions of e, which do not have x as free
variable are valid at the exit of l. All the sub-expressions valid at the entry of l are still
valid at exit if x is not a free variable of it. In case of [A[m] := e]l, all the sub-expressions
of e of e, which do not contain element of array A, are valid at exit of l. Sub-expressions
valid at entry of l are still valid at exit provided that not element of array A are contained
in it. This condition is also applicable to [A[e] := e′]l. In case of test, sub-expressions of
the test become valid at the exit and all expressions valid at entry are valid at exit.

The lower part of the table shows the satisfiability rules of statements. Similar to VB
analysis, since available expression analysis is a must analysis, operator b is used to spec-
ify the relationship between a flow pair(i.e. AE•(l1) b AE◦(l2) when flow(l1, l2) exists),
the corresponding clause is,

∀e ∀f AEOUT(l1, e, f) ⇒ AEIN(l2, e, f)
∀e AEIN(l2, e,Valid) ∧ ¬AEOUT(l1, e,Valid) ⇒ AEIN(l2, e,Invalid)
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(AE◦,AE•) |= [x := e]l iff ∀e′(e′ ∈ subExp(e) ∧ x /∈Fv(e′) ⇒ (e′,Valid) ∈AE•(l))∧
∀e′ ((e′,Valid) ∈AE◦(l) ∧ x /∈Fv(e′) ⇒ (e′,Valid) ∈AE•(l))

(AE◦,AE•) |= [A[n] := e]l iff ∀e′ ∈ subExp(e) ∧A /∈FAv(e′) ⇒ (e′,Valid) ∈AE•(l)∧
∀e′ ((e′,Valid) ∈AE◦(l) ∧A /∈FAv(e′) ⇒ (e′,Valid) ∈AE•(l))

(AE◦,AE•) |= [A[e] := e′]l iff ∀e′ ∈ subExp(e) ∧A /∈FAv(e′) ⇒ (e′,Valid) ∈AE•(l)∧
∀e′ ((e′,Valid) ∈AE◦(l) ∧A /∈FAv(e′) ⇒ (e′,Valid) ∈AE•(l))

(AE◦,AE•) |= [Skip]l iff AE◦(l) =AE•(l)

(AE◦,AE•) |= [e]l iff ∀e′ ∈ subExp(e) ⇒ (e′,Valid) ∈AE•(l)∧
AE◦(l) ⊆AE•(l)

(AE◦,AE•) |= s1; s2 iff (AE◦,AE•) |= s1∧
(AE◦,AE•) |= s2∧
∀l (l ∈final(s1) ⇒AE◦(init(s2)) bAE•(l))

(AE◦,AE•) |= iff (AE◦,AE•) |= [e]l∧
If [e]l Then s1 Else s2 (AE◦,AE•) |= s1∧

(AE◦,AE•) |= s2∧
AE◦(init(s1)) bAE•(l)∧
AE◦(init(s2)) bAE•(l)

(AE◦,AE•) |= iff (AE◦,AE•) |= [e]l∧
While [e]l Do s (AE◦,AE•) |= s∧

AE◦(init(s)) bAE•(l)∧
∀l′(l′ ∈final(s) ⇒AE◦(l) bAE•(l′))

Table 3.9: Control Flow Analysis of AE for Elementary Blocks and Statements
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Example 3.12 Returning to the program in example 3.8. Flow logic analysis generator
will create the following clause

FV(x,EXP(PLUS(x, A′2)))∧FV(x,EXP(PLUS(A′x, y)))∧
FV(y,EXP(PLUS(A′x, y)))∧FV(x,EXP(PLUS(x, y)))∧
FV(y,EXP(PLUS(x, y)))∧
FAV(A,EXP(PLUS(x,A′2)))∧FAV(A,EXP(PLUS(A′x, y)))∧

AEOUT(L1,EXP(PLUS(x,A′2)),VALID)∧
(∀e AEIN(L1,e,VALID)∧!FAV(A, e)⇒AEOUT(L1,e,VALID))∧
(∀e AEIN(L2,e,VALID)∧!FV(x, e)⇒AEOUT(L2,e,VALID))∧
(∀e AEIN(L3,e,VALID)⇒AEOUT(L3,e,VALID))∧
AEOUT(L4,EXP(PLUS(x, y)),VALID)∧
(∀e AEIN(L4,e,VALID)∧!FAV(A, e)⇒AEOUT(L4,e,VALID))∧
(∀e AEIN(L5,e,VALID)∧!FV(x, e)⇒AEOUT(L5,e,VALID))∧

(∀e AEOUT(L1,e)⇒AEIN(L2,e))∧
(∀e AEOUT(L2,e)⇒AEIN(L3,e))∧
(∀e AEOUT(L3,e)⇒AEIN(L4,e))∧
(∀e AEOUT(L3,e)⇒AEIN(L5,e))

The result given by Succinct Solve is exactly the same as the one in data flow approach
example.

Figure 3.9 does not show a great degree difference of the complexity polynomial between
data flow specification and flow logic specification, rather the two lines are almost in
parallel and the degree difference is quite small.
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Figure 3.9: Effect of Defining AE Analysis in Flow Logic Approach
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3.5 Live Variable Analysis

A variable is live at the exit of an elementary block if there exists a path from the block
to a use of the variable that does not redefine the variable. The live variable analysis (LV
for short) will determine:

For each program point, which variable may be live at the exit from the point.

This analysis might be used as the basis for dead code elimination. If the variable is not
live at the exit form a block then, if the block is an assignment to the variable, the block
can be eliminated.

Example 3.13 In the program below

[x := 1]1; [x := 2]2 [y := y + x]3

variable x is not live at the exit of block 1, since its value is change in block 2 before used
in block 3.

3.5.1 Data Flow Approach

Live variable analysis is a backward may analysis, we are interested in the smallest set
satisfying the equation for LV•, which is specified in Figure 3.10.
By analogy with the previous analyses, we also need to define when an expression is killed
and when a block generates additional very busy expressions. For this, we use functions:

killvb : Block∗ → P(V ar)
genvb : Block∗ → P(V ar)

These functions are defined as in Table 3.10 and Table 3.11. Variable appearing as an

1 [x := e]l {x}
2 [A[n] := e]l {A[n]}
3 [A[e] := e′]l ∅
4 [Skip]l ∅
5 [e]l ∅

Table 3.10: Kill Component of LV Analysis

assignee of an assignment statement is going to be killed, except it is an array element
without a constant index. Skip statement and conditional do not kill variables. All the
free variables appear on the right-hand-side of an assignment statement or a conditional
are generated. Predicates used in the generated clause are
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1 [x := e]l Fv(e)
2 [A[n] := e]l Fv(e)
3 [A[e] := e′]l Fv(e′)
4 [Skip]l ∅
5 [e]l Fv(e)

Table 3.11: Gen Component of LV Analysis

LV•(l) =
{
∅ if l ∈final(S∗)⋃
{LV◦(l′) | (l′, l) ∈flowR(S∗)} otherwise

LV•(l) = (LV•(l)�killLV (Bl)) ∪ genLV (Bl) where Bl ∈Block∗

Figure 3.10: Data Flow Equations of LV Analysis

Predicate Meaning
FINAL(l) l is the label of a final block
RFLOW(l1,l2) there is a reverse flow from l1 to l2
LVGEN(l1, x) at block l1, variable x is generated
LVKILL(l1, x) at block l1, variable x is killed
LVIN(l1, x) at the entry of l1, x is live,
LVOUT(l1, x) at the exit of l1, x is live,

As mentioned in chapter 2.1, variables declared followed the keyword OUTPUT are the
return variables, meaning that their values will be held when the execution of programs
finishes. The idea is to have these variables live at the exit of final block. This is specified
by the clause

∀l FINAL(l) ⇒ (LVOUT(l, x))

where x is a return variable.
Data flow equations of LV analysis, similar to RD analysis, are specified by the clause

(∀l FINAL(l)⇒LVOUT(l, y))∧
(∀l1 ∀l2 ∀x LVIN(l1, x)∧RFLOW(l1, l2)⇒LVOUT(l2, x))∧
(∀l ∀x (LVOUT(l, x)∧¬LVKILL(l, x))∨LVGEN(l, x)⇒LVIN(l, x))

Example 3.14 Data flow specifications give rise to the following clause for the pro-
gram piece in example 3.8 (Suppose y is declared as a return variable)

FINAL(L4)∧FINAL(L5)∧
RFLOW(L2,L1)∧RFLOW(L3,L2)∧RFLOW(L4,L3)∧RFLOW(L5,L3)∧
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LVGEN(L5,x)∧LVGEN(L5,y)∧LVKILL(L5,x)∧
LVGEN(L4,x)∧LVGEN(L4,y)∧LVKILL(L4,A′1)∧
LVGEN(L2,A′1)∧LVGEN(L2,A′2)∧LVGEN(L2,y)∧LVKILL(L2,x)∧
LVGEN(L1,x)∧LVGEN(L1,A′2)∧LVKILL(L1,A′1)∧

(∀l FINAL(l)⇒LVOUT(l, y))∧
(∀l1 ∀l2 ∀x LVIN(l1, x)∧RFLOW(l1, l2)⇒LVOUT(l2, x))∧
(∀l ∀x (LVOUT(l, x)∧¬LVKILL(l, x))∨LVGEN(l, x)⇒LVIN(l, x))

Below table shows the summarized result

LV◦ live variables LV• live variables
L1 x,A[2], y L1 A[1], A[2], y
L2 A[1], A[2], y L2 x, y
L3 x, y L3 x, y
L4 x, y L4 y
L5 x, y L5 y

3.5.2 Flow Logic Approach

The result of live variable analysis is a pair (LV•, LV◦), where

LV•, LV◦ ∈ Ĉache = Lab∗ → P(V ar)

where elementary blocks and statements have to satisfy the result in order to be acceptable.

(LV•,LV◦) |= B and (LV•,LV◦) |= s

Live variable analysis is a forward may analysis, the relationship between LV◦(l1) and
LV•(l2) (for flowR) is

LV◦(l1) ⊆ LV•(l2)

Whether an elementary block is satisfiable is specified in Table 3.5.2. In case of [x := e]l or
[A[n] := e]l, free variables contained in e belong to LV◦(l) and furthermore, those variables
contained in the information at entry of l and not equal to the assignee of the statement
(i.e. x or A[n]) are contained in the exit information.

⊆ is used because information at LV•(l2) comes from all the blocks where there exists
a reverse flow from those blocks to l2. Thus, information of each block is a subset of the
whole.
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(LV•,LV◦) |= [x := e]l iff ∀x ∈Fv(e) ⇒ x ∈LV◦(l)∧
∀y (y ∈LV•(l) ∧ y 6= x ⇒ y ∈LV◦(l))∧

(LV•,LV◦) |= [A[n] := e]l iff ∀x ∈Fv(e) ⇒ x ∈LV◦(l)∧
∀y (y ∈LV•(l) ∧ y 6= A[n] ⇒ y ∈LV◦(l))∧

(LV•,LV◦) |= [A[e] := e′]l iff ∀x ∈Fv(e′) ⇒ x ∈LV◦(l)∧
LV•(l) ⊆LV◦(l)

(LV•,LV◦) |= [Skip]l iff LV•(l) =LV◦(l)

(LV•,LV◦) |= [e]l iff ∀x ∈Fv(e) ⇒ x ∈LV◦(l)∧
LV•(l) ⊆LV◦(l)

(LV•,LV◦) |= s1; s2 iff (LV•,LV◦) |= s1∧
(LV•,LV◦) |= s2∧
∀l ∈final(s1) ⇒LV◦(init(s1) ⊆LV•(l))

(LV•,LV◦) |=If [e]l Then s1 Else s2 iff (LV•,LV◦) |= [e]l∧
(LV•,LV◦) |= s1∧
(LV•,LV◦) |= s2∧
LV◦(init(s1)) ⊆LV•(l)∧
LV◦(init(s2)) ⊆LV•(l)

(LV•,LV◦) |=While [e]l Do s iff (LV•,LV◦) |= [e]l∧
(LV•,LV◦) |= s∧
LV◦(init(s)) ⊆LV•(l)∧
∀l′ ∈final(s) ⇒LV◦(l) ⊆LV•(l′)

Table 3.12: Control Flow Analysis of LV for Elementary Blocks and Statements
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Example 3.15 According the flow logic specifications, LV analyzer will generate the fol-
lowing clause for the program piece in example 3.8 (again, assuming y is a return variable)

FINAL(L4)∧FINAL(L5)∧
(∀l FINAL(l)⇒LVOUT(l, y))∧
LVIN(L5,x)∧LVIN(L5,y)∧
(∀y LVOUT(L5,y)∧y 6= x ⇒LVIN(L5,y))∧

LVIN(L4,x)∧LVIN(L4,y)∧
(∀y LVOUT(L4,y)∧y 6= A′1 ⇒LVIN(L4,y))∧

(∀y LVOUT(L3,y)⇒LVIN(L3,y))∧

LVIN(L2,A′1)∧LVIN(L2,A′2)∧LVIN(L2,y)∧
(∀y LVOUT(L2,y)∧y 6= x ⇒LVIN(L2,y))∧

LVIN(L1,x)∧LVIN(L1,A′2)∧
(∀y LVOUT(L1,y)∧y 6= A′1 ⇒LVIN(L1,y))∧

(∀xLVIN(L5,x)⇒LVOUT(L3,x))∧
(∀xLVIN(L4,x)⇒LVOUT(L3,x))∧
(∀xLVIN(L3,x)⇒LVOUT(L2,x))∧
(∀xLVIN(L2,x)⇒LVOUT(L1,x))

The result of solving the above clause is exactly the same as the one in the example
for data flow approach.

Figure 3.11 shows the execution time of Succinct Solver running on both data flow clause
and flow logic clause for LV analysis, which indicates that data flow clause is worse by
degrees of the complexity polynomial than the other one.
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Figure 3.11: Effect of Defining LV analysis in Flow Logic Approach
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3.6 Summary

Compared with data flow approach, applying flow logic approach to bit-vector analyses
may increase the solving efficiency. For may analyses, flow logic specifications clearly ex-
hibit a lower solving complexity but in the cases of must analyses, they are proved to be a
small constant factor better but fails to show any significant indication on the complexity
polynomials. This difference could be explained by considering the characters of analyses:
must analyses satisfy descending chain condition at each program point, meaning that in-
formation about each program point becomes less gradually as solving progresses. In order
to remove the un-useful information we invent a flag Valid. Consequently, information are
categorized to Valid and Invalid, which make both the specification and implementation
of must analyses more complicated than may analyses. It is somehow un-satisfiable as we
try to show the advantages of flow logic specifications compared to data flow specifications.
Some efforts have been put into achieving higher solving performance, as it is shown in
the below section. During the progress of implementing the four classical analyses, some
insights have been got, which enable us to conclude a general strategy for re-writing data
flow specifications to flow logic specifications. We present it in the last section of this part.

3.6.1 Optimize Flow Logic Specification

The optimization mentioned in this section is especially for very busy expression analysis,
but it may be applicable to other analyses if necessary.

• use the optimizing strategy given in chapter two
– re-order the parameters of relations

In VB specifications, we have the following clause querying whether a variable
x appears in expression e as a free variable,

∀ e . . . ∧ Fv(e, x) ∧ ⇒ . . .
where x is always bound to certain value. To facilitate the unification, we use
the following clause instead

∀ e . . . ∧ Fv(x, e) ∧ ⇒ . . .
The same optimization happens on querying FAv(e,A), which is changed to
FAv(A, e)

• apply different policies to different statements
One advantage of flow logic approach compared to data flow approach is that con-
straints are not specified generally, therefore it enable us to deal with flow informa-
tion differently according it’s property. For example, in VB analysis, from an entry
point’s view, information flowing from different exit points can be divided into two
parts,
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– information comes from single exit point
In this case, constraint can be defined as (for reverse flow(l1, l2)),

VB•(l2) ⊆VB◦(l1)

– information comes from multiple exit points
In this case, constraint can be defined as (for reverse flow(l1, l2)),

VB•(l2) bVB◦(l1)

where b is the same as in above section.
It can easily be seen that calculating b requires more time and spaces than that of
⊆, therefore use b only when necessary will save work. Here we formalize the cases
whether b or ⊆ should be used, respectively.

– b should be used for flowR(l1, l2) where there exists label l3 such that flowR(l3, l2)
exists

– ⊆ should be used for flowR(l1, l2) where there doesn’t exists label l3 such that
flowR(l3, l2) exists

According to above criterions, two b operators used in flow logic specification for
VB analysis described in chapter 3.3, can be conditionally optimized to ⊆, which
are listed in Table 3.13. For s1; s2, the only case when b must be used is the last
statement of s1 is a While [e]l Do s statement, if we regard s1 as composed by a
series of statements. In this case, information going into s1 comes from both s and
s2. For While [e]l Do s statement, information going into the final block of s only
originates from l, when the last statement of s is a While [e]l Do s statement, thus
using ⊆ saves work.
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Statement Before optimized After optimized

s1; s2
∀l ∈final(s1) ⇒
VB•(l) bVB◦(init(s2))

∀l ∈final(s1) ⇒VB•(l) bVB◦(init(s2))
if the last statement of s1 is a
While. . .Do statement
∀l ∈final(s1) ⇒VB•(l) ⊆VB◦(init(s2))
otherwise

While [e]l Do s
∀l′ ∈final(s) ⇒
VB•(l′) bVB◦(l)

∀l′ ∈final(s) ⇒VB•(l′) bVB◦(l)
if the last statement of s is a
While. . .Do statement
∀l′ ∈final(s) ⇒VB•(l′) ⊆VB◦(l)
otherwise

Table 3.13: Optimize Flow Logic Specification for VB analysis
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Figure 3.12: Effect of Optimizing Flow Logic Specification
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These optimization strategies can also be applied to AE analysis since it is a must anal-
ysis, too. Figure 3.12 shows the execution time of Succinct Solve running on data flow
specification and optimized flow logic specification of VB analysis and AE analysis. It can
be seen that the optimization of flow logic clause will increase the efficiency. This increase
is by degrees of the complexity polynomial.

3.6.2 Strategy to Write Flow Logic Specification from Data Flow Spec-
ification

In this section, we briefly explain how to write flow logic specification for bit-vector frame-
work analyses. Actually, kill and gen components in data flow analysis can be used to the
re-writing.

Again, we split the information into two parts, inter-statement, which is related to kill
and gen components and intra-statement, which is related to the flow structure of the
program.

inter-statement

For each statement, we do it in two steps and below forward analysis is used as example.
For backward analysis, just change Analysis•(l) to Analysis◦(l).

• information becomes valid after executing the statement, which corresponding to
gen components.
∀ x ∈ gen(l) ⇒ x ∈Analysis•(l)

• which information originally held at entry (exit) point becomes un-held when comes
to exit (entry) point. This is roughly corresponds to kill component, except that
these kill components are select from the entry (exit) point.
∀ x ∈ Analysis◦(l) ∧ x /∈ kill(l) ⇒ x ∈Analysis•(l)

In practical, x ∈ gen(l) should be detailized to x satisfied the condition of gen and x /∈
kill(l) to x does not satisfied the condition of kill.

intra-statement

How to specify the information relationship depends on whether it is a forward or backward
analysis. In this part, we shall use the word pair(l1, l2) to represent flow(l1, l2) for forward
analysis and represent flowR(l1, l2) for backward analysis. We also distinguish between may
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and must analysis. The reason is that operator of may analysis is t, which corresponding
to ⊆ in practical, while u is the operator of must analysis corresponding to b. The
following table shows the relationship between l1 and l2 for pair(l1, l2).

forward backward

may Analysis•(l1) ⊆Analysis◦(l2) Analysis◦(l1) ⊆Analysis•(l2)
must Analysis◦(l2) bAnalysis•(l1) Analysis•(l2) bAnalysis◦(l1)

In case of forward may analysis, all the information at exit of l1 becomes a part of
information at entry of l2. In case of backward may analysis, information at the entry of l1
is a subset of information held at exit of l2. This relationship is similar for must analysis,
except that symbol b is used instead of ⊆ because of the nature of the u operator.





71

Chapter 4

Monotone Framework

In last chapter, we have presented some classical analyses belonging to bit-vector frame-
work. Now let’s go further from bit-vector framework to a wider range - monotone frame-
work.
Monotone framework is a more general concept than bit-vector framework in the sense
that

Property Space Property space of bit-vector framework is P(D) for a finite set D, while
for monotone framework it is a complete lattice (L,v)

Transfer Function Bit-vector analyses require that the transfer functions have the form

Analysis•(l) = (Analysis◦(l)\kill(l)) ∪ gen(l)

while in monotone framework, it is only required that each transfer function is
monotone, meaning that l v l′ implies f(l) v f(l′). The data flow equations for
analyses within monotone framework are,

Analysis◦(l) =
{

ı if l ∈ E
t{Analysis•(l) | (l′, l) ∈ F} otherwise

(4.1)

Analysis•(l) = f(Analysis◦(l)) (4.2)

Some classical monotone analyses include detection of signs analysis, constant propagation
analysis and array bound analysis, etc. The data flow specifications of these analyses have
been well-developed. In this chapter, we present flow logic specifications of these analyses.
Specification of detection of signs analysis is presented first and the other two analyses
are developed based on it.
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4.1 Detection of Signs Analysis

Detection of Sign Analysis (DS for short) is used to determine:

At each program point, whether a variable is negative, zero or positive (whether
it’s sign is -, 0 or +)

The sign information of a variable may be further used for, say array bound analysis.

Example 4.1 Consider the program piece:

[x := 1]1; [y := 2]2; [z := x + y]3; [x := −z]4

At block 3, z has the sign ”+” and x has the sign ”−” at block 4.

4.1.1 Specification

Detection of signs analysis is a forward may analysis.
The flow logic analysis for detection of signs analysis comprises judgments for elementary
block B and statement s, which are of the form

(DS◦,DS•) |= B and (DS◦,DS•) |= s

Like before, DS◦ and DS• are abstract caches, which map variables to their signs at each
block.

DS◦,DS• ∈ Ĉache = Lab∗ → (Var∗ → P(Sign))

Sign = {−, 0,+} includes all the possible signs of variables.

Specifications for elementary blocks and statements are presented in Table 4.1.1 and ex-
plained below. In the case a block is an assignment statement, all the variables except
assignee preserve their signs information held at the entry of block; the assignee, if it is
not of the form A[e], then has the signs of the expression on the right-hand side of the
statement. In the case the assignee is A[e], all the elements of array A will have the three
possible signs. In the case of skip statements and conditionals, the information at the
exit of the block is exactly the same as at the entry, since no sign of variables has been
changed.
The signs of expressions are determined by function ADS , the functionality of which is,

ADS : Exp→ (ŜtateDS →Sign)
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ADS is defined as,

ADS [n]σ̂ =


{−} if n < 0
{0} if n = 0
{+} if n > 0

ADS [x]σ̂ = σ̂(x)
ADS [A[n]]σ̂ = σ̂(A[n])
ADS [A[e]]σ̂ = {−, 0,+}
ADS [e1 + e2]σ̂ = ADS [e1]σ̂ +̂ ADS [e2]σ̂

where σ̂ ∈ ŜtateDS is an abstract state to specify for each variable its signs.

σ̂ ∈Var∗ → P(Sign)

In the specifications of Table 4.1.1, DS◦(l)(l∈Lab∗) works as the σ̂. For example, DS◦(l, x) =
{0,+} indicates x is larger or equal than zero at block l.

The sign of constant n depends on whether n is a negative, positive number or num-
ber zero. Sign of variable x or A[n] is determined by looking up the abstract cache DS◦,
which stores the sign information about variables at each block. We approximate the sign
of expression-index array, say A[e], to all the three possibilities, since usually the value of
e is hard to estimate. The sign of the addition of two expressions are then determined by
applying +̂ to the signs of both expressions.
Function symbol +̂ corresponds to operator +, where +̂: Sign × Sign → P(Sign) is given
by:

S1+̂S2 = {s1+̂s2 | s1 ∈ S1, s2 ∈ S2}

+̂ − 0 +
− {−} {−} {−, 0,+}
0 {−} {0} {+}
+ {−, 0,+} {+} {+}

where S1, S2 ⊆ Sign.
The first row and column of the table list the signs of operantes, while the corresponding
cells contain all the possible signs of the result of addition; simply mathematic knowledge
tells that the sum of a negative (positive) number and zero can only be negative (positive).
The addition of a negative and a positive number could be either negative, zero or positive.
In this thesis, we only consider about +, other operators, like −, ×, ÷ could be defined
in a similar way.
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(DS◦,DS•) |= [x := e]l iff ∀v v ∈ ADS [e](DS◦(l)) ⇒ (x, v) ∈DS•(l)
∀y ∀v (y, v) ∈DS◦(l) ∧ y 6= x ⇒ (y, v) ∈DS•(l))

(DS◦,DS•) |= [A[n] := e]l iff ∀v v ∈ ADS [e](DS◦(l)) ⇒ (A[n], v) ∈DS•(l)
∀y ∀v (y, v) ∈DS◦(l) ∧ y 6= A[n] ⇒ (y, v) ∈DS•(l))

(DS◦,DS•) |= [A[e] := e′]l iff ∀i (A, i) ∈Var∗ ⇒ {(A[i],−), (A[i], 0), (A[i],+)} ⊆DS•(l)
∀y ∀v ∀i (y, v) ∈DS◦(l) ∧ y 6= A[i] ⇒ (y, v) ∈DS•(l))

(DS◦,DS•) |= [Skip]l iff DS◦(l) =DS•(l)

(DS◦,DS•) |= [e]l iff DS◦(l) =DS•(l)
(DS◦,DS•) |= s1; s2 iff (DS◦,DS•) |= s1∧

(DS◦,DS•) |= s2∧
∀l (l ∈final(s1) ⇒DS◦(init(s2)) ⊆DS•(l))

(DS◦,DS•) |= iff (DS◦,DS•) |= [e]l∧
If [e]l Then s1 Else s2 (DS◦,DS•) |= s1∧

(DS◦,DS•) |= s2∧
DS◦(init(s1)) ⊆DS•(l)∧
DS◦(init(s2)) ⊆DS•(l)

(DS◦,DS•) |= iff (DS◦,DS•) |= [e]l∧
While [e]l Do s (DS◦,DS•) |= s∧

DS◦(init(s)) ⊆DS•(l)∧
∀l′(l′ ∈final(s) ⇒DS◦(l) ⊆DS•(l′))

Table 4.1: Control Flow Analysis of DS for Elementary Blocks and Statements
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Specifications for statements of detection of signs analysis are similar to reaching defini-
tion analysis; each statement needs to satisfy the analysis result. Furthermore, informa-
tion flowing between statements have the subset relationship. Suppose flow(l1, l2) exists,
information held at the exit of l1 is a part of information at entry of l2, hence

DS◦(l1) ⊆ DS•(l2)

4.1.2 Implementation

Before going into the details of implementation, let’s take a look at predicates used in the
generated clause.

Predicates Meaning
DSIN(l, x, s) at the entry of l, x has the sign s, viz.

(x, s) ∈ DS◦(l)
DSOUT(l, x, s) at the exit of l, x has the sign s, viz.

(x, s) ∈ DS•(l)
ADD(s1, s2, s3) the sum of numbers with sign s1 and s2 has the sign s3

Predicate symbol ADD here corresponds to +̂. According to the definition of +̂, the clause
below about predicate ADD is generated

ADD(−,−,−) ∧ ADD(−, 0,−) ∧ ADD(−,+,−) ∧ ADD(−,+, 0) ∧ ADD(−,+,+) ∧
ADD(0,−,−) ∧ ADD(0, 0, 0) ∧ ADD(0,+,+) ∧
ADD(+,−,−) ∧ ADD(+,−, 0) ∧ ADD(+,−,+) ∧ ADD(+, 0,+) ∧ ADD(+,+,+)

At the very beginning, there is no sign information about variable. As the analyzer comes
to the first assignment statement, information becomes available. Recall that DS◦(l) works
as the abstract state σ̂ to evaluate the possible signs of an expression. It is implemented
in the following way,

ADS [n]DS◦(l) =


{−} if n < 0
{0} if n = 0
{+} if n > 0

ADS [x]DS◦(l) = {v | (x, v) ∈DS◦(l)}
ADS [A[n]]DS◦(l) = {v | (A[n], v) ∈DS◦(l)}
ADS [A[e]]DS◦(l) = {−, 0,+}
ADS [e1 + e2]DS◦(l) = {v | ADD(v1, v2, v)}

where v1 ∈ ADS [e1]DS◦(l) and v2 ∈ ADS [e2]DS◦(l)

which corresponds to the definition of ADS . Clearly, DS◦(l) stored the signs information
of each variable at block l, thus v is a possible of variable x or A[n] if (x, v) or (A[n], v)
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∈ DS◦(l). Note that the signs of expression e1 + e2 is determined in a recursive way that
suppose v1 and v2 are the signs of e1 and e2, respectively, then v is a sign of e1 + e2

providing that the addition of e1 and e2 gives rise to a value having a sign v.
The type of each block determines intra-statement information, while the relationship be-
tween blocks determines inter-statement information. Information at one entry of certain
block is gathered from all its predecessors. For flow(l1, l2), the following clause is generated

∀x ∀s DSOUT(l1, x, s) ⇒ DSIN(l2, x, s)

Example 4.2 Consider the program piece

[x := 1]1; [y := 2]2; [A[y] := 2]3; [A[2] := x + y]4;

where array A is declared as Array A of [1..2]. The clause generated for the above
program is,

ADD(N,N, N)∧ADD(N,Z,N)∧ADD(N,P, N)∧ADD(N,P, Z)∧ADD(N,P, P )∧
ADD(Z,N,N)∧ADD(Z,Z,Z)∧ADD(Z,P, P )∧
ADD(P,N, N)∧ADD(P,N, Z)∧ADD(P,N, P )∧ADD(P,Z, P )∧ADD(P, P, P )∧

DSOUT(L1, x, P )∧
(∀y ∀v DSIN(L1, y, v) ∧ y 6= x ⇒DSOUT(L1, y, v))∧

DSOUT(L2, y, P )∧
(∀x ∀v DSIN(L2, x, v) ∧ x 6= y ⇒DSOUT(L2, x, v))∧

DSOUT(L3, A′1, N)∧DSOUT(L3, A′1, Z)∧DSOUT(L3, A′1, P )∧
DSOUT(L3, A′2, N)∧DSOUT(L3, A′2, Z)∧DSOUT(L3, A′2, P )∧
(∀x ∀v DSIN(L3, x, v) ∧ x 6= A′1 ∧ x 6= A′2 ⇒DSOUT(L3, x, v))∧

(∀v1 ∀v2 ∀v DSIN(L4, x, v1)∧DSIN(L4, y, v2)∧ADD(v1, v2, v) ⇒DSOUT(L4, A′2, v))∧
(∀x ∀v DSIN(L4, x, v) ∧ x 6= A′2 ⇒DSOUT(L4, x, v))∧

(∀x ∀v DSOUT(L1, x, v) ⇒DSIN(L2, x, v))∧
(∀x ∀v DSOUT(L2, x, v) ⇒DSIN(L3, x, v))∧
(∀x ∀v DSOUT(L3, x, v) ⇒DSIN(L4, x, v))

where N(for negative),Z(for zero),P (for positive) represent −, 0,+, respectively; A′i rep-
resents A[i] and Li represents the block with label i. The summarized result given by
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Succinct Solver is,

DS◦ x y A[1] A[2] DS• x y A[1] A[2]
L1 L1 {+}
L2 {+} L2 {+} {+}
L3 {+} {+} L3 {+} {+} {−, 0,+} {−, 0,+}
L4 {+} {+} {−, 0,+} {−, 0,+} L4 {+} {+} {−, 0,+} {+}

where blank cells indicate no information is available about the signs of variables.

4.2 Constant Propagation Analysis

Constant propagation is similar to but a bit more complicated than the detection of signs
analysis in the sense that DS analysis only approximates the sign information about every
variable at each block while constant propagation analysis approximates not the sign but
the constant value of each variable.
Constant Propagation Analysis (CP for short) is used to indicate:

For each program point, whether or not a variable has a constant value when-
ever execution reaches that point.

The information obtained from the analysis can be used, for instance, as the basis for an
optimization Constant Folding, which replace all uses of variables by constant value.

Example 4.3 Consider the program piece:

[x := 1]1; If[x < 1]2 Then [y := x + y]3 Else [z := x + z]4;

At block 3 and 4, x has constant value 1, hence these two blocks may be rewritten to
[y := 1 + y]3 and [z := 1 + z]4.

4.2.1 Specification

Constant propagation analysis is forward must analysis.
A variable had constant value means that it has either an integer or boolean value. In order
to capture the case where a variable is non-constant, symbol > is introduced. Furthermore,
we shall use symbol ⊥ to indicate no information is available. Thus abstract caches CP◦
and CP• are defined as

CP◦,CP• ∈ Ĉache = Lab∗ → (Var∗ → (Z ∪ T)>⊥)
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where (Z ∪ T>
⊥) = (Z ∪ T ∪ {>,⊥})

Operation on (Z ∪ T)>⊥ is then defined by taking v1 ôp v2 = v1 op v2 if v1, v2 ∈ Z,
v1 ôp v2 = ⊥ if v1 = ⊥ or v2 = ⊥ and v1 ôp v2 = > otherwise.

ôp ⊥ v1 >
⊥ ⊥ ⊥ ⊥
v2 ⊥ v1 op v2 >
> ⊥ > >

where op ∈ {+ ,− ,× ,÷ }
For each node, information from different predecessors are combined by t(Join) operator.

t ⊥ v1 >
⊥ ⊥ ⊥ ⊥
v2 ⊥ v1 (if v1 = v2) v2

⊥ (if v1 6= v2)
> ⊥ v1 >

where v1 and v2 represent constant values.
The analysis result is the pair (CP◦,CP•). An elementary block or a statement is accept-
able if and only if it satisfies the result pair.

(CP◦,CP•) |= B and (CP◦,CP•) |= s

The detail specifications are listed in Table 4.2.1.
Specifications for assignment statements are different depending on the kinds of assignees.
But in assignment statements, all the variables except assignee preserve their information
held at the entry of that block, since only the assignee may change its value. The constant
information of assignees is then decided by the constant information of the right-hand side
expressions. In case of [A[e] := . . .]l, all the elements of array A are mapped to >. Its
safe to do that because the exactly value of e is undetermined. In case of skip statement
and conditional e, exit information is exactly the same at entry information, because no
variable has changed its value.
Similar to DS analysis, we define a function ACP to evaluate the whether an expression
has a constant value, the functionality of which is,

ACP : Exp→ (ŜtateCP →Value)

where Value ∈ (Z ∪ T)>⊥. ACP is defined as,

ACP [n]σ̂ = n
ACP [x]σ̂ = σ̂(x)
ACP [A[n]]σ̂ = σ̂(A[n])
ACP [A[e]]σ̂ = >
ACP [e1 op e2]σ̂ = >
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σ̂ ∈ ŜtateCP is an abstract state and for each variable x, σ̂(x) will give information about
whether or not x is a constant and in the latter case which constant.

σ̂ ∈Var∗ →Value

Values of x and A[n] are simply determined by looking up σ̂; any expression-indexed
array element is thought to have > and rather than ACP [e1]σ̂ ôp ACP [e2]σ̂, expression
e1 op e2 will be approximated to >. This simplifies the specification and implementation
but causes losing of preciseness. The reason for doing in this way is because Succinct
Solve lacks the ability to do arithmetic calculations. Therefore the computation work has
to be done by the analyzer to calculate the operation result of any two values. But the
problem is the generator has no idea about the value of each variable, thus the only way
for it to compute is to enumerate all the constant values appeared in the program and
apply the operation to each of the two values. This method is not only un-efficient but
even un-computable in some cases.
Again, CP◦ works as the σ̂ in the specifications.

In the lower part of Table 4.2.1, specifications for statements are presented. For each
node, information come from different predecessors are combined by t,

CP◦(l) = tCP•(li)

where flow(li, l) exists. CP is a must analysis, and as mentioned in VB analysis the formula
of the above form can not be implemented directly, rather it should be re-written to

CP◦(l2) = CP◦(l2) t CP•(l1)

for all li, where flow(l1, l2) exists. In the specifications, we shall use

CP•(l1) j CP◦(l2)

to represent it.
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(CP◦,CP•) |= [x := e]l iff ∀v v ∈ ACP [x](CP◦(l)) ⇒ (x, v) ∈CP•(l)
∀y ∀v (y, v) ∈CP◦(l) ∧ y 6= x ⇒ (y, v) ∈CP•(l))

(CP◦,CP•) |= [A[n] := e]l iff ∀v v ∈ ACP [A[n]](CP◦(l)) ⇒ (A[n], v) ∈CP•(l)
∀y ∀v (y, v) ∈CP◦(l) ∧ y 6= A[n] ⇒ (y, v) ∈CP•(l))

(CP◦,CP•) |= [A[e] := e′]l iff ∀i (A, i) ∈Var∗ ⇒ (A(i),>) ∈CP•(l)∧
∀y ∀v ∀i (y, v) ∈CP◦(l) ∧ y 6= A[i] ⇒ (y, v) ∈CP•(l))

(CP◦,CP•) |= [Skip]l iff CP◦(l) =CP•(l)

(CP◦,CP•) |= [e]l iff CP◦(l) =CP•(l)
(CP◦,CP•) |= s1; s2 iff (CP◦,CP•) |= s1∧

(CP◦,CP•) |= s2∧
∀l (l ∈final(s1) ⇒CP◦(init(s2)) jCP•(l))

(CP◦,CP•) |= iff (CP◦,CP•) |= [e]l∧
If [e]l Then s1 Else s2 (CP◦,CP•) |= s1∧

(CP◦,CP•) |= s2∧
CP◦(init(s1)) jCP•(l)∧
CP◦(init(s2)) jCP•(l)

(CP◦,CP•) |= iff (CP◦,CP•) |= [e]l∧
While [e]l Do s (CP◦,CP•) |= s∧

CP◦(init(s)) jCP•(l)∧
∀l′(l′ ∈final(s) ⇒CP◦(l) jCP•(l′))

Table 4.2: Control Flow Analysis of CP for Elementary Blocks and Statements
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4.2.2 Implementation

Predicates used in clauses and their meanings are listed in the below table.

Predicate Meaning
LAB(l) l is a label of the program

l ∈blocks(p)
JOIN(v1, v2, v3) the join of v1 and v2 gives rise to v3

v1 t v2 = v3

R(x) x is a constant or non-constant value
x ∈ (Z ∪ T>

⊥)
CPIN(l, x, v) at entry of block l, x has value v

where v could be either constant or non-constant value
CPOUT(l, x, v) at exit of l, x has value v

where v could be either constant or non-constant value

Initially, we assume all the variables at each block of the program have non-constant
values, therefore they are mapped to > by the clause

(∀ l. LAB(l) ⇒ (∀ x. VAR(x) ⇒ CPIN(l, x, TOP)))

Information flows from one block to another, if there exists a flow between them. The
information at the entry of a block is always the t of all the information held at the exit
of its predecessors. Predicate symbol JOIN is used to represent this operator. Interpreta-
tions of JOIN are computed by the following clauses,

∀ x. R(x) ⇒JOIN(R(TOP), R(x), R(x))
∀ x. R(x) ⇒JOIN(R(x), R(TOP), R(x))
∀ x. R(x) ⇒JOIN(R(BOT), R(x), R(BOT))
∀ x. R(x) ⇒JOIN(R(x), R(BOT), R(BOT))
∀ x. ∀ y.R(x)∧R(y) ∧ x = y ⇒JOIN(R(x), R(y), R(x))
∀ x. ∀ y.R(x)∧R(y) ∧ x 6= y ∧ x 6=TOP∧y 6=TOP∧x 6=BOT∧y 6=BOT
⇒JOIN(R(x), R(y), R(BOT))

The first four clauses say that the Join of > and x, no matter what value x has, is
still x and the Join of ⊥ and x is ⊥. The Join of two equal values is that value and the
Join of two un-equal constant values are ⊥.
Now we are able to specify the clause for the relationship between l1 and l2, if flow(l1, l2
exists.

∀x ∀v1 ∀v2 ∀v3 CP•(l1, x, v1)∧CP◦(l2, x, v2)∧JOIN(v1, v2, v3) ⇒CP◦(l2, x, v3)
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This clause could be read as: for any variable, say x, if at the exit of l1 and the entry of
l2, it has value v1 and v2, respectively, then at the entry of l2, x will have a new value v3,
providing that v3 = v1 t v2.

Example 4.4 Consider the program piece

[y := 3]1;
If [x > 5]2 Then [x := 3]3 Else [x := y]4;
While [A[x] > 3]5 Do [A[1] := x + 4]6;
[A[x] := 3]7

Constant propagation analysis will create the following clause,

LAB(L1)∧LAB(L2)∧LAB(L3)∧LAB(L4)∧ LAB(L5)∧LAB(L6)∧LAB(L7)∧
VAR(x)∧VAR(y)∧VAR(A′1)∧VAR(A′2)∧
R(3)∧R(4)∧
(∀x R(x)⇒ JOIN(R(TOP), R(x), R(x)))∧
(∀x R(x)⇒ JOIN(R(x), R(TOP), R(x)))∧
(∀x R(x)⇒ JOIN(R(BOT), R(x), R(BOT)))∧
(∀x R(x)⇒ JOIN(R(x), R(BOT), R(BOT)))∧
(∀x ∀y R(x)∧R(y)∧x = y ⇒ JOIN(R(x), R(y), R(x)))∧
(∀x ∀y R(x)∧R(y)∧x 6= y∧x 6=TOP∧y 6=TOP∧x 6=BOT∧y 6= BOT⇒ JOIN(R(x), R(y), R(BOT)))∧
(∀l LAB(l)⇒ (∀x VAR(x)⇒CPIN(l,x,R(TOP))))∧

CPOUT(L1,y,R(3))∧
(∀x ∀v CPIN(L1,x, v)∧x6=y ⇒ CPOUT(L1,x, v))∧

(∀x ∀v CPIN(L2,x, v)⇒ CPOUT(L2,x, v))∧

CPOUT(L3,x,R(3))∧
(∀y ∀v CPIN(L3,y, v)∧y6=x ⇒ CPOUT(L3,y, v))∧

(∀v CPIN(L4,y, v)⇒ CPOUT(L4,x, v))∧
(∀y ∀v CPIN(L4,y, v)∧y 6= x ⇒ CPOUT(L4,y, v))∧

(∀x ∀v CPIN(L5,x, v)⇒ CPOUT(L5,x, v))∧

CPOUT(L6,A′1,R(TOP))∧
(∀x ∀v CPIN(L6,x, v)∧x 6= A′1 ⇒ CPOUT(L6,x, v))∧

CPOUT(L7,A′1,R(TOP))∧
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CPOUT(L7,A′2,R(TOP))∧
(∀x ∀v CPIN(L7,x, v)∧x 6= A′1 ∧ x 6= A′2 ⇒ CPOUT(L7,x, v))∧

(∀x ∀v CPOUT(L1,x, v)⇒ CPIN(L2,x, v))∧
(∀x ∀v CPOUT(L2,x, v)⇒ CPIN(L3,x, v))∧
(∀x ∀v CPOUT(L2,x, v)⇒ CPIN(L4,x, v))∧
(∀x ∀v1 ∀v2 ∀v3 CPOUT(L3,x, v1)∧CPIN(L5,x, v2)∧JOIN(v1, v2, v3)⇒CPIN(L5,x, v3))∧
(∀x ∀v1 ∀v2 ∀v3 CPOUT(L4,x, v1)∧CPIN(L5,x, v2)∧JOIN(v1, v2, v3)⇒CPIN(L5,x, v3))∧
(∀x ∀v1 ∀v2 ∀v3 CPOUT(L6,x, v1)∧CPIN(L5,x, v2)∧JOIN(v1, v2, v3)⇒CPIN(L5,x, v3))∧
(∀x ∀v CPOUT(L5,x, v)⇒ CPIN(L6,x, v))∧
(∀x ∀v CPOUT(L5,x, v)⇒ CPIN(L7,x, v))

The solving result given by Succinct Solver about the above clause could be summarized
to the below table,

CP◦ x y A[1] A[2] CP• x y A[1] A[2]
L1 > > > > L1 > 3 > >
L2 > 3 > > L2 > 3 > >
L3 > 3 > > L3 3 3 > >
L4 > 3 > > L4 3 3 > >
L5 3 3 > > L5 3 3 > >
L6 3 3 > > L6 3 3 > >
L7 3 3 > > L7 3 3 > >

4.3 Array Bounds Analysis

Based on detection of signs analysis, we could develop a more complicated analysis-Array
bounds analysis. Detection of signs analysis concerns about the signs of each individual
variable but could not record the interdependencies between signs of variables (e.g. two
variables, say x and y will always have the same sign); while array bounds analysis does
better than it in the sense that the analysis results may reflect the relationship between
the signs and variables.
Array bounds analysis (AB for short) is used to determine

both the signs and the difference in magnitude between the possible values of
two variables at each program point

The information obtained could be used to tell whether an array index is always within
the bounds of the array. If this within-the-bounds information is confirmed, a number of
run-time checks may be eliminated.
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Example 4.5 Consider the statements,

[y := 3]1; If [x < 10]2 Then [x := y + 1]3 Else [x := y + 5]4

At blocks 3 and 4, both x and y are positive numbers. The magnitude difference x and y
is +1 at block 3 and is either 0 or > +1 at block 4.

4.3.1 Specification

Array bounds analysis is a forward may analysis.
Like before, we define two abstract caches AB◦ and AB•, which map a pair of variables
to their signs and magnitude difference at each block.

AB◦,AB• ∈ Ĉache = Lab∗ → ((Var∗ ×Var∗) → (Sign× Sign× Range)

where Sign = {−, 0,+} and Range = {< −1,−1, 0,+1, > +1} is defined as the difference
between the absolute values of two integers. More precisely, assume the values of the pair
of variables are z1 and z2 and z = |z1| − |z2|, then

z ∈ Range =


< −1 if z < −1
−1 if z = −1
0 if z = 0
+1 if z = +1
> +1 if z > +1

Elementary blocks and statements must satisfy the analysis result in order to be accept-
able.

(AB◦,AB•) |= B and (AB◦,AB•) |= s

Table 4.3.1 and Table 4.3.1 contain the control flow specifications for elementary blocks
and statements, where ODD(x) and EVEN(x) indicate whether x is an odd or an even
number and S(n) is used to determine the sign of constant n.
Generally speaking, it needs some intelligence to judge the difference in magnitude of two
variable according to an assignment statement. Here we only list some possible forms of
expressions on the right-hand side of a assignment statement. In the case the expression is
too complicated hence the it’s hard to determine the range, we simply set the magnitude
difference between assignee x and other variables to all the possibilities, say < −1,−1, 0,+1
and > +1.
In case of [x := n]l, x will have the sign of n and the ranges between x and other variables
could be either < −1,-1,0,+1 or > +1. Information between other variables than x
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remains the same. In case of [x := y]l([x := A[n]]l), information about x is replaced by
the information of y(A[n]) and ranges between x and other variables are also changed to
the ranges between y(A[n]) and the variables. In case of [x := A[e]]l, since the value of
x is undetermined, the sign and range information about x could be all the possibilities.
In case of [x := y + n]l, the difference between x and y could be roughly determined by
whether n is 1, odd number or even number. Clearly, when n = 1 magnitude difference
between x and y could only be +1; when n is odd (even), magnitude difference could be
either +1(0) or > +1. The sign of x is decided by the sign of y + n at block l. In case of
[x := y+z]l, [x := y+A[n]]l and [x := y+A[e]]l we simply set the sign of x and magnitude
difference between x and other variables to all the possibilities. In case of the assignee is
expression-indexed array, say A[e], information about all the array elements are set to all
the possibilities.
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(AB◦,AB•) |= [x := n]l iff • ∀v ∀y ∀v1 ∀v2 ∀r ∀r1

v = S(n) ∧ (x, y, v1, v2, r) ∈AB◦(l)∧RANGE(r1) ⇒
(x, y, s, v2, r1) ∈AB•(l)∧
• ∀y ∀z ∀v1 ∀v2 ∀r (y, z, v1, v2, r) ∈AB◦(l)∧
y 6= x ∧ z 6= x ⇒ (y, z, v1, v2, r) ∈AB•(l))

(AB◦,AB•) |= [x := y]l iff • ∀v1 ∀v2 ∀r (x, y, v1, v2, r) ∈AB◦(l) ⇒
(x, y, v2, v2, 0) ∈AB•(l)∧

(or [x := A[n]]l) • ∀z ∀v1 ∀v2 ∀r (y, z, v1, v2, r) ∈AB◦(l) ∧ z 6= x ⇒
(x, z, v1, v2, r) ∈AB•(l)∧
• ∀y ∀z ∀v1 ∀v2 ∀r (y, z, v1, v2, r) ∈AB◦(l)∧
y 6= x ∧ z 6= x ⇒ (y, z, v1, v2, r) ∈AB•(l))

(AB◦,AB•) |= [x := y + n]l iff • n = 1 ∧ ∀v ∀v1 ∀v2 ∀v3 ∀r (x, y, v1, v2, r) ∈AB◦(l)∧
ADD(v2,+, v) ⇒ (x, y, v, v2,+1) ∈AB•(l)∧
• n 6= 1∧ODD(n) ∧ ∀v ∀v1 ∀v2 ∀r (x, y, v1, v2, r) ∈AB◦(l)∧
v = S(n)∧ADD(v2, v, v3) ⇒
{(x, y, v3, v2,+1), (x, y, v3, v2, > +1)} ⊆AB•(l)∧
• n 6= 1∧EVEN(n) ∧ ∀v ∀v1 ∀v2 ∀r (x, y, v1, v2, r) ∈AB◦(l)∧
v = S(n)∧ADD(v2, v, v3) ⇒
{(x, y, v3, v2, 0), (x, y, v3, v2, > +1)} ⊆AB•(l)∧
• ∀y ∀z ∀v1 ∀v2 ∀r (y, z, v1, v2, r) ∈AB◦(l)∧
y 6= x ∧ z 6= x ⇒ (y, z, v1, v2, r) ∈AB•(l))

(AB◦,AB•) |= [x := others]l iff • ∀v ∀r ∀v1 ∀v2 ∀r1 ∀y SIGN(v)∧RANGE(r)∧
(x, y, v1, v2, r1) ∈AB◦(l) ⇒ (x, y, s, v2, r) ∈AB•(l)∧
• ∀y ∀z ∀v1 ∀v2 ∀r (y, z, v1, v2, r) ∈AB◦(l)∧
y 6= x ∧ z 6= x ⇒ (y, z, v1, v2, r) ∈AB•(l))

(AB◦,AB•) |= [A[e] := e′]l iff • ∀i ∀v ∀r ∀r1∀y ∀v1 ∀v2 (A, i) ∈Var∗∧SIGN(v)∧RANGE(r)∧
(A[i], y, v1, v2, r1) ∈AB◦(l) ⇒ (A[i], y, v, v2, r) ∈AB•(l)∧
• ∀i ∀y ∀z ∀v1 ∀v2 ∀r A[i] ∈Var∗ ∧ (y, z, v1, v2, r) ∈AB◦(l)∧
y 6= A[i] ∧ z 6= A[i] ⇒ (y, z, v1, v2, r) ∈AB•(l))

(AB◦,AB•) |= [Skip]l iff AB◦(l) =AB•(l)
(AB◦,AB•) |= [e]l iff AB◦(l) =AB•(l)

Table 4.3: Control Flow Analysis of AB for Elementary Blocks
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(AB◦,AB•) |= s1; s2 iff (AB◦,AB•) |= s1∧
(AB◦,AB•) |= s2∧
∀l (l ∈final(s1) ⇒AB◦(init(s2)) ⊆AB•(l))

(AB◦,AB•) |= iff (AB◦,AB•) |= [e]l∧
If [e]l Then s1 Else s2 (AB◦,AB•) |= s1∧

(AB◦,AB•) |= s2∧
AB◦(init(s1)) ⊆AB•(l)∧
AB◦(init(s2)) ⊆AB•(l)

(AB◦,AB•) |= iff (AB◦,AB•) |= [e]l∧
While [e]l Do s (AB◦,AB•) |= s∧

AB◦(init(s)) ⊆AB•(l)∧
∀l′(l′ ∈final(s) ⇒AB◦(l) ⊆AB•(l′))

Table 4.4: Control Flow Analysis of AB for Statements

For inter-statement information flow, suppose flow(l1, l2) exists, information at the exit of
l1 is a subset of it at the entry of l2, therefore

AB•(l1) ⊆ AB◦(l2)
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4.3.2 Implementation

Predicates used in clauses and their meanings are listed in the below table.

Predicate Meaning
INIT(l) l is the initial label of the program
ADD(s1, s2, s3) the sum of numbers with sign s1 and s2 has the sign s3

SIGN(s) s is a possible sign
s ∈ {−, 0,+}

RANGE(r) r is a possible range
r ∈ {< −1,−1, 0,+1, > +1}

ABIN(l, x, y, s1, s2, r) at entry of block l, x and y have signs s1 and s2, respectively
and the difference is r

ABOUT(l, x, y, s1, s2, r) at exit of block l, x and y have signs s1 and s2, respectively
and the difference is r

Before specifying the clauses for blocks and statements, predicates SIGN and RANGE are
constructed by the clause

SIGN(−) ∧ SIGN(0) ∧ SIGN(+)∧
RANGE(< −1) ∧ SIGN(−1) ∧ SIGN(0) ∧ SIGN(+1) ∧ SIGN(> +1)

At the very beginning, each variable pair at the initial block is mapped to a tuple (>,>,>).
Note that to avoid redundancy, (x, y) and (y, x) are regarded as the same pair. For each
variable pair, say (x, y), analyzer will generate the clause(assume L1 is the label of initial
block)

ABIN(L1, x, y,>,>,>)

Clauses for elementary blocks is determined by the kinds of the blocks, as it is specified
in Table 4.3.1. In case of [x := y +n]1, three kinds of specifications are given according to
the property of n. It is then the analyzer’s responsibility to judge whether n is number 1
,an odd number or an even number, depending on which clause is created.
For example,

• if n = 1, the clause will be

∀s1 ∀s2 ∀s3 ∀r ABIN(l, x, y, s1, s2, r)∧ADD(+, s2, s3) ⇒ABOUT(l, x, y, s3, s2,+1)

• if n is an odd and positive number, the clause will be

∀s1 ∀s2 ∀s3 ∀r ABIN(l, x, y, s1, s2, r)∧ADD(+, s2, s3) ⇒
(ABOUT(l, x, y, s3, s2,+1)∧ABOUT(l, x, y, s3, s2, > +1))



4.3 Array Bounds Analysis 89

• if n is an even and negative number, the clause will be

∀s1 ∀s2 ∀s3 ∀r ABIN(l, x, y, s1, s2, r)∧ADD(−, s2, s3) ⇒
(ABOUT(l, x, y, s3, s2, 0)∧ABOUT(l, x, y, s3, s2, > +1))

Clauses for blocks other than [x := y + n]1 are then quite straight forward and can be
generated directly from the specifications.
Clause for relationship between blocks is specified as, (for flow(l1, l2))

∀x ∀y ∀s1 ∀s2 ∀r ABOUT(l1, x, y, s1, s2, r) ⇒ ABIN(l2, x, y, s1, s2, r)

which tells that information about any two variables held at the exit of l1 still holds at
the entry of l2.

Example 4.6 Let’s return to the program piece in example 4.4. The clause generated by
AB analyzer is

ADD(N,N,N)∧ADD(N,Z,N)∧ADD(N,P,N)∧ADD(N,P,Z)∧ADD(N,P,P)∧
ADD(Z,N,N)∧ADD(Z,Z,Z)∧ADD(Z,P,P)∧
ADD(P,N,N)∧ADD(P,N,Z)∧ADD(P,N,P)∧ADD(P,Z,P)∧ ADD(P,P,P)∧
VAR(x)∧VAR(y)∧VAR(A′1)∧VAR(A′2)∧
SIGN(N)∧SIGN(Z)∧SIGN(P)∧
RANGE(LEN1)∧RANGE(EN1)∧RANGE(EZ)∧RANGE(LEP1)∧RANGE(EP1)∧

ABIN(L1,x, y,TOP,TOP,TOP)∧ABIN(L1,x, A′1,TOP,TOP,TOP)∧
ABIN(L1,x,A′2,TOP,TOP,TOP)∧ABIN(L1,y, A′1,TOP,TOP,TOP)∧
ABIN(L1,y, A′2,TOP,TOP,TOP)∧ABIN(L1,A′1, A′2,TOP,TOP,TOP)∧

(∀x ∀v1 ∀v2 ∀r1 ∀r (ABIN(L1,y, x, v1, v2, r1)∨ABIN(L1,x, y, v2, v1, r1))∧RANGE(r)⇒
ABOUT(L1,y, x,P, v2, r))∧
(∀x ∀z ∀v1 ∀v2 ∀r ABIN(L1,x, z, v1, v2, r)∧x 6= y ∧ z 6= y ⇒ABOUT(L1,x, z, v1, v2, r))∧

(∀x ∀y ∀v1 ∀v2 ∀r ABIN(L2,x, y, v1, v2, r) ⇒ABOUT(L2,x, y, v1, v2, r))∧

(∀y ∀v1 ∀v2 ∀r1 ∀r (ABIN(L3,x, y, v1, v2, r1)∨ABIN(L3,y, x, v2, v1, r1))∧RANGE(r)⇒
ABOUT(L3,x, y,P, v2, r))∧
(∀y ∀z ∀v1 ∀v2 ∀r ABIN(L3,y, z, v1, v2, r)∧y 6= x ∧ z 6= x ⇒ABOUT(L3,y, z, v1, v2, r))∧

(∀v1 ∀v2 ∀r (ABIN(L4,x, y, v1, v2, r)∨ABIN(L4,y, x, v2, v1, r))⇒ABOUT(L4,x, y, v2, v2,EZ))∧
(∀z ∀v1 ∀v2 ∀r (ABIN(L4,y, z, v1, v2, r)∨ABIN(L4,z, y, v2, v1, r))∧z 6= x ⇒
ABOUT(L4,x, z, v1, v2, r))∧
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(∀y ∀z ∀v1 ∀v2 ∀r ABIN(L4,y, z, v1, v2, r)∧y 6= x ∧ z 6= x ⇒ABOUT(L4,y, z, v1, v2, r))∧

(∀x ∀y ∀v1 ∀v2 ∀r ABIN(L5,x, y, v1, v2, r) ⇒ABOUT(L5,x, y, v1, v2, r))∧

(∀v1 ∀v2 ∀v3 ∀r (ABIN(L6,A′1, x, v1, v2, r)∨ABIN(L6,x,A′1, v2, v1, r))∧ADD(v2, P, v3)⇒
(ABOUT(L6,A′1, x, v3, v2, EZ)∧ABOUT(L6,A′1, x, v3, v2, LP1)))∧
(∀y ∀z ∀v1 ∀v2 ∀r ABIN(L6,y, z, v1, v2, r)∧y 6= A′1∧z 6= A′1 ⇒ABOUT(L6,y, z, v1, v2, r))∧

(∀x ∀v ∀v1 ∀v2 ∀r ∀r1 (ABIN(L7,A′1, x, v1, v2, r)∨ABIN(L7,x,A′1, v2, v1, r))∧
SIGN(v)∧RANGE(r1)⇒ABOUT(L7,A′1, x, v, v2, r1))∧
(∀x ∀v ∀v1 ∀v2 ∀r ∀r1 (ABIN(L7,A′2, x, v1, v2, r)∨ABIN(L7,x,A′2, v2, v1, r))∧
SIGN(v)∧RANGE(r1)⇒ABOUT(L7,A′2, x, v, v2, r1))∧
(∀y ∀z ∀v1 ∀v2 ∀r ABIN(L7,y, z, v1, v2, r)∧y 6= A′1 ∧ y 6= A′2 ∧ z 6= A′1 ∧ z 6= A′2 ⇒
ABOUT(L7,y, z, v1, v2, r))∧

(∀x ∀y ∀v1 ∀v2 ∀r ABOUT(L1,x, y, v1, v2, r)⇒ABIN(L2,x, y, v1, v2, r))∧
(∀x ∀y ∀v1 ∀v2 ∀r ABOUT(L2,x, y, v1, v2, r)⇒ABIN(L3,x, y, v1, v2, r))∧
(∀x ∀y ∀v1 ∀v2 ∀r ABOUT(L2,x, y, v1, v2, r)⇒ABIN(L4,x, y, v1, v2, r))∧
(∀x ∀y ∀v1 ∀v2 ∀r ABOUT(L3,x, y, v1, v2, r)⇒ABIN(L5,x, y, v1, v2, r))∧
(∀x ∀y ∀v1 ∀v2 ∀r ABOUT(L4,x, y, v1, v2, r)⇒ABIN(L5,x, y, v1, v2, r))∧
(∀x ∀y ∀v1 ∀v2 ∀r ABOUT(L6,x, y, v1, v2, r)⇒ABIN(L5,x, y, v1, v2, r))∧
(∀x ∀y ∀v1 ∀v2 ∀r ABOUT(L5,x, y, v1, v2, r)⇒ABIN(L6,x, y, v1, v2, r))∧
(∀x ∀y ∀v1 ∀v2 ∀r ABOUT(L5,x, y, v1, v2, r)⇒ABIN(L7,x, y, v1, v2, r))

Like in DS analysis, item N,Z and P represent symbol −,0 and +, respectively. Fur-
thermore, LEN1 stands for less and equal than negative one(< −1), EN1 stands for equal
to negative one(−1), ZE stands for equal to zero(0), EP1 stands for equal to positive
one(+1) and LEP1 stands for larger and equal than positive one(> +1).
The solving result given by Succinct Solver is listed below. To facilitate reading, here we
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only present the summarized information at the beginning point of each block.

AB◦ variable signs and difference information
L2 (y, x) (+,>, {< −1,−1, 0,+1, > +1})

(y, A[1]) (+,>, {< −1,−1, 0,+1, > +1})
(y, A[2]) (+,>, {< −1,−1, 0,+1, > +1})

L3 (y, x) (+,>, {< −1,−1, 0,+1, > +1})
(y, A[1]) (+,>, {< −1,−1, 0,+1, > +1})
(y, A[2]) (+,>, {< −1,−1, 0,+1, > +1})

L4 (y, x) (+,>, {< −1,−1, 0,+1, > +1})
(y, A[1]) (+,>, {< −1,−1, 0,+1, > +1})
(y, A[2]) (+,>, {< −1,−1, 0,+1, > +1})

L5 (x, y) (+,+, {< −1,−1, 0,+1, > +1})
(x, A[1]) (+,>, {< −1,−1, 0,+1, > +1})

(+,+, {< −1, 0})
(x, A[2]) (+,>, {< −1,−1, 0,+1, > +1})
(y, A[1]) (+,>, {< −1,−1, 0,+1, > +1})
(y, A[2]) (+,>, {< −1,−1, 0,+1, > +1})

L6 (x, y) (+,+, {< −1,−1, 0,+1, > +1})
(x, A[1]) (+,>, {< −1,−1, 0,+1, > +1})

(+,+, {< −1, 0})
(x, A[2]) (+,>, {< −1,−1, 0,+1, > +1})
(y, A[1]) (+,>, {< −1,−1, 0,+1, > +1})
(y, A[2]) (+,>, {< −1,−1, 0,+1, > +1})

L7 (x, y) (+,+, {< −1,−1, 0,+1, > +1})
(x, A[1]) (+,>, {< −1,−1, 0,+1, > +1})

(+,+, {< −1, 0})
(x, A[2]) (+,>, {< −1,−1, 0,+1, > +1})
(y, A[1]) (+,>, {< −1,−1, 0,+1, > +1})
(y, A[2]) (+,>, {< −1,−1, 0,+1, > +1})

The tuple of the signs and difference information column for each variable pair, say (x, y)
contains the signs of x and y, respectively as well as all the possible ranges of these two
variables,i.e. {< −1, 0} indicates both < −1 and 0 might be the magnitude difference
between x and y.

4.4 Summary

In this chapter, we present flow logic specifications and implementations of three analyses,
all the which are monotone analyses. These three analyses include detection of signs
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analysis, constant propagation analysis and array bounds analysis. The latter two are
developed based on detection of signs analysis. But constant propagation is different from
the other two in the sense that it is a must analysis. Thus its specifications for statements
is also different, which is explained in the below part.
Strategies of writing flow logic specifications for monotone analyses are similar to bit-
vector monotone in the sense that information are split into two categories, within a
block and between blocks, and treated separately. These two categories correspond to the
specifications for elementary blocks and statements. For elementary blocks, specifications
state both the information newly generated by analyzing the corresponding block and
the information transferred from the beginning to the ending point of the block. For
statements, specifications state the information relationship between two blocks. What
exactly the relationship is depends on the nature of the analysis, must or may. In case of
may analysis, information at one block is a subset of the information at its successor. In
case of must analysis, this relationship is not fixed and subjects to particular analysis, i.e.
the t operator in constant propagation analysis.
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Chapter 5

Conclusion

Quite often, it is desirable to predict in advance the set of values resulting from programs
and verify certain properties regarding their runtime behavior. For this purpose, the area
of static program analysis offers compile-time computable techniques that can be used to
safely approximate properties and values of programs without the need to execute them
directly on computers. The functionality covered by static analyzers is wide and ranges
from simple syntactic verifications that can be used in program transformations to com-
plex runtime properties related to issues of security and optimization. In general, many
approaches exist for building static analyzers, the main four of them are: Data Flow Anal-
ysis; Constraint Based Analysis; Abstract Interpretation; and Type and Effect System.
Based on these approaches, a new term, Flow Logic, is proposed by Nielson and Nielson.
It is based on constraint based analysis but also allows to integrate state-of-the-art insights
from data flow analysis and abstract interpretation.

Flow logic focuses on specifying what it means for an analysis estimate to be accept-
able for a program. One of the most important features of flow logic is that it separates
the specification from the actual implementation of analysis. Thus the specification can
be given differently depending on the interest in implementation details. There are two
sets of criteria emerging for classifying flow logic specifications:

• abstract versus compositional, and
• succinct versus verbose

In this thesis, we present flow logic specifications for a variety of data flow analyses, all of
which are compositional, meaning that the analysis is defined by inductive methods and
verbose, meaning that it reports all the internal flow information. As a comparison, data
flow specifications of four classical bit-vector analyses are presented as well.
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For all the analyses concerned in this thesis, specifications of them are expressed and
implemented in ALFP forms, which are then accepted by Succinct Solver as input clauses.

Succinct Solver is a generic tool for solving program analysis problems specified in Al-
ternating Least Fixed Point Logic and it has been used by a lot of research projects as
the back-end constraint solver. In this thesis, Succinct Solver is continually employed to
compute the least solutions for all the implemented data flow and flow logic specifications.
For the flow logic implementations of all classical bit vector analyses, it exhibits a lower
asymptotic complexity. For monotone framework analyses, Succinct Solver shows its ex-
pressiveness and correctness when calculating the final result.

5.1 Summarized Insights

Although, bit-vector analyses are developed using two different approaches, there are
some connections between the two kinds of specifications, in the sense that the flow logic
specifications may be developed based on the data flow specifications. In the summary
parts of chapter 3 and 4, we give some insights for writing flow logic specifications for
both bit-vector analyses and monotone analyses. These insights could be summarized to

• for each block, specify
1. the information newly generated by analyzing the block
2. the information not being affected by the block, meaning that if it holds before

analyzing the block, then it still holds when leaving the block
• if there is a flow (or reverse flow) relationship existing between a pair of blocks,

specify what’s the relationship between information held by these two blocks. Nor-
mally, it could be a subset or superset relation depending on whether a may or must
analysis is performed.
for may analysis , the operator is t meaning that information at the beginning

point of one block, say l, is always a superset of the information coming from the
ending points of each predecessor of l1. Which point of a block is a beginning
point or ending point is determined by the direction of the analysis (i.e. the
direction of the flows).
In case of forward analyses , information flows from the exit of a block to

the entry of another block, thus the beginning point of block l is the entry
of the block. For each flow(l1, l2),

Analysis•(l1) ⊆ Analysis◦(l2)
1Here predecessor or successor is defined according to the direction of flow
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where Analysis is the name of the performed analysis
In case of backward analyses , information flows from the entry of a block

to the exit of another block, thus the beginning point of block l is the exit
of the block. For each reverse flow(l1, l2)

Analysis◦(l2) ⊆ Analysis•(l1)

for must analysis , the operator is u meaning that information at the beginning
point of a block is a subset of the information coming from its predecessor. In
order to deal with u, we introduce a flag, Valid or Invalid, for each information
at certain block to indicate whether it still holds or not. After incorporating
the flag, operator u is represented by the symbol b.
In case of forward analyses , information flows from the exit of a block to

the entry of another block. Thus the relationship between blocks is, if
flow(l1, l2) exists,

Analysis◦(l2) b Analysis•(l1)

In case of backward analyses , information flows from the entry of a block,
say l1, to the exit of another block, say l2. Thus

Analysis•(l1) b Analysis◦(l2)

5.2 Future Work

The restriction on time left us with no choice but to cut down on some areas, which include

5.2.1 Combine analyses to get a more precise analysis result

In the WHILE language developed for the analyses, we extend variables to include arrays.
This makes it more closely to the programming languages in the real world and paves
the way to analyzing those languages. But when come to certain array element with an
expression index, say A[e], we always estimate it to all the possible elements in array A.
For example, in reaching definition analysis, if the assignee of an assignment statement is
A[e], all the elements of array A are thought to be defined at this block. It is a safe yet a
less precise approximation. If the value of e can be estimated to a more narrow range than
the bounds of array A, then its not necessary to regard all the element of A as defined at
the current block. This requires an approximation on the value of e, which can be done
by applying another analysis. In this section, we use some examples to illustrate that the
combination of analyses may yield a more precise result than single analysis.
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Detection of Signs analysis + Reaching Definition Analysis

The result given by DS analysis reveals the possible signs of variables at each program
point, which can be used to estimate the value of an expression. This information is quite
useful for RD analysis.

Example 5.1 Consider the statement

[y := −1]1; [x := 0]2; if [x > 0]3 Then [A[x] := x + A[1]]4 Else [A[y] := A[x]]5

where array A is declared as Array A of [−2..1]. The defined place of each element of A
given by RD analysis could be summarized to the below table

RD• defined place
L4 (A[−2], lab0), (A[−2],L4)

(A[−1], lab0), (A[−1],L4)
(A[0], lab0), (A[0],L4)
(A[1], lab0), (A[1],L4)

L5 (A[−2], lab0), (A[−2],L5)
(A[−1], lab0), (A[−1],L5)
(A[0], lab0), (A[0],L5)
(A[1], lab0), (A[1],L5)

At the exit of block 4 (block 5), all the elements are defined at either block lab0 or block 4
(block 5) because the values of x and y, each of which works as an index of A, are unknown.
But Detection of Signs analysis estimates that at block 4, x has the sign 0 (e.g. x = 0) and
at block 5, y is a negative number. By utilizing this information, now RD analysis could
say that, at block 4, A[0] is defined at block 4 while other elements of A are defined at
block lab0 and at block 5, since y is negative, all the elements of A with negative indexes
are defined at either block lab0 or block 4; other elements then can only be defined at
lab0. Note that actually RD analysis can not use the information gained from DS analysis
directly, as long as its current specifications are not changed. One possibility is to have
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Succinct Solver to do this job. Now, the RD analysis is able to give the result,

RD• defined place
L4 (A[−2], lab0)

(A[−1], lab0)
(A[0],L4)
(A[1], lab0)

L5 (A[−2], lab0), (A[−2],L5)
(A[−1], lab0), (A[−1],L5)
(A[0], lab0)
(A[1], lab0)

By comparing the above two tables, clearly we get a more precise result by combining
these two analyses.

Constant Propagation analysis + Reaching Definition Analysis

Constant Propagation analysis approximates the value of each variable to either a non-
constant or a certain constant. Thus, for example, if x is estimated to constant 6, then
approximating the value of A[x] is equal to approximate the value of A[6].

Example 5.2 Returning to the previous example statement, the result of CP analy-
sis will show that at block 4, x has constant value 0 and at block 5, y has value −1, Thus
these two blocks can be rewritten to [A[0] := 0+A[1]]4 and [A[−1] := A[0]]5, respectively.
This step could be done by, say, constant folding optimization. Applying RD analysis to
the new statement can yield the following result

RD• defined place
L4 (A[−2], lab0)

(A[−1], lab0)
(A[0],L4)
(A[1], lab0)

L5 (A[−2], lab0)
(A[−1],L5)
(A[0], lab0)
(A[1], lab0)

Again, the preciseness of the analysis result is improved.
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Array Bounds Analysis + Reaching Definition Analysis

Array Bounds Analysis is used to estimate the signs and magnitude difference between
a pair of variables, which normally appear as a variable and an array bound. This in-
formation can also used to improve the preciseness of RD analysis. For example, if the
bounds of array A are declared to be the values of y and z, which is immediately followed
by the statement [A[x] := 6]l, approximating the signs and magnitude difference between
x and y, x and z may help to determine which elements of A are defined at block l. This
requires that the bounds of arrays have to be declared dynamically according to the values
of variables. But in our WHILE language array bounds must be declared statically, mean-
ing that they must be certain constants. Thus for the WHILE language, we can not use
the combination of AB and RD analyses, which may be possible for other programming
languages. We won’t go deeper into it here.

5.2.2 Use other methods to implement flow logic specifications

Besides Succinct Solver, there are some other methods for computing the least solutions
to program analysis problems considered in data flow analysis. One of them is the well-
known worklist algorithm. It might be of interest to compare Succinct Solver to worklist
algorithm with respect to their efficiencies for solving constraints as well as data flow
equations. But to do that, it is required to make some extensions to worklist algorithm in
order for it to accept ALFP clauses.

5.2.3 Extend Succinct Solver to have more features

Another area of relevant is most likely to be improving Succinct Solver by incorporating
some extra features. Over the recent years, a lot of effort has been put into increasing
the integrity and efficiency of Succinct Solver. But during the whole period of developing
analyzers, we find that occasionally some more powerful features are required in order to
solve the problems at hand.

One example would be adding simple arithmetic and boolean calculation abilities and
thus extend pre-condition in ALFP to include

pre ::= t1 op t1

where t1 and t2 are terms and op is either an arithmetic or boolean operator.

If this calculation ability is available, constant propagation, for instance, could be bene-
fited from it in the sense that, as mentioned in chapter 4.2, the approximate will be more
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precisely when evaluating statement of the form [x := e1 op e2]l.

We believe that by incorporating these extra features in the Succinct Solver, its usage
as a generic tool could be enhanced for other research projects.
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Appendix A

Test Setup

A.1 Test Suites

A.1.1 Program a-m

The basic structure of scalable program a-m is,

i := 1;
while i ≤ 2 do

(result[i] := result[i] + A[i];
i := i + 1)

The function of program a-m is to get the sum of m matrixes, stored in array named
result, meaning that it has m above program pieces.

A.1.2 Program b-m

Scalable program b-m is used to calculate the sum of all the positive values held by
elements of array A

while i ≤ m do
(If A[i] > 0 Then result := result + A[i]
Else result := result)

The size of array A corresponds to parameter m.
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A.2 Timing the Experiments

The working procedure of Succinct Solver is split into two distinct steps. In the initializa-
tion step the clauses are loaded into memory and all internal structure are initialized. In
the solving step the actual analysis result is then computed. These two steps are timed
separately and only the time for second step are measured. All times are collected with-
out the time specifically used for garbage collection, which are less informative as they
show great variation when the same experiment is repeated. Times measured in all the
experiments are in the term of CPU-time, which is recorded by the SML interpreter.

A.3 Presenting the Results

Taking the approaches of [5], we assume the execution time t for solving step can be
expressed as a function of program size m,

t = c ·mr + c0

for some number r ∈ R. Due to separation of initialization and solving we assume c0 to be
0, since when m=0 no time is used. In subsequent chapters, we shall plot corresponding
values of t and m on a double logarithmic scale, meaning that the above formula is
rewritten to log t = log c + r · log m. In this way, r can be recognized as the degree of
curves, which facilitate us to estimate c and r.
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Appendix C

User’s Guide

C.1 Installation Guide

The analyzers require the following softwares to be installed:

• Moscow ML version 2.01 available at
http://www.dina.dk/~sestoft/mosml.html

• New Jersey SML version 110.0.7 available at
http:://www.smlnj.org

• The Succinct Solver version 2.0 available at
http://www.imm.dtu.dk/cs_SuccinctSolver/

Follow the installation procedures at the respective websites. Next, the program analyzers
should be installed:

• Download the file
http://www.student.dtu.dk/~s020937

• Unpack the analyzers.rar, which creates a subdirectory called analyzers
• Edit the file analyzers/run.sml and set the values of parameters

1. set pro_name to the path and name of the file containing the program to be
analyzed.

2. set analyzer to the name of analyzer to be performed (please see C.2 for the
name of each analyzer)

3. set dest_dir to the directory Application/Examples/ in your installation of
the Succinct Solver (typically the directory HORN/Application/Examples in
your Succinct Solver installation)

Now, the analyzers are ready to run. For example, to run the file run.sml (1) change to
the directory analyzer, (2) start Moscow ML (e.g. by typing mosml in a shell), and (3)
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execute the command use ”run.sml”

The generated ALFP clause for the program is then contained in the file

Application/Examples/result.cl

Succinct Solver is needed to be run to compute the result for the clause. This can be done
by (1) change to the directory Application, (2) start New Jersey SML (e.g. by typing
sml in a shell), (3) compile Succinct Solver by executing the command use ”run”, and (4)
execute the command ex(”result”). The final result for solving the clause can be found in
the file Application/Examples/result.cl.al

C.2 Names of Analyzers

• Reaching Definition data flow analyzer – rd.sml
• Reaching Definition flow logic analyzer – rdimp.sml
• Very Busy Expression data flow analyzer – vb.sml
• Very Busy Expression flow logic analyzer – vbimp.sml
• Available Expression data flow analyzer – ae.sml
• Available Expression flow logic analyzer – aeimp.sml
• Live Variable data flow analyzer – lv.sml
• Live Variable flow logic analyzer – lvimp.sml
• Detection of Signs analyzer – ds.sml
• Constant Propagation analyzer – cp.sml
• Array Bounds analyzer – ab.sml
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