
Probabilistic public-key con�dence

valuation model for a Peer to Peer PKI

Tomasz Cholewi«ski

LYNGBY 2004
MSc THESIS
NR. 47/2004

IMM

Trykt af IMM, DTU

3

Preface

This Master's thesis is the result of work carried out from 02.02.2004 to 12.07.2004 at the de-
partment of Informatics and Mathematical Modeling of the Technical University of Denmark
(DTU).

Intended audience

This thesis is not only a theoretical study but it also aims to provide a set of library routines
that could serve as a basis for developing a practical Peer 2 Peer PKI implementation.

Readers are assumed to have a basic knowledge of Java and Object Oriented Programming
(OOP) required to understand the code excerpts and algorithms presented in this thesis.

It is also helpful if the reader is familiar with the concepts of Peer to Peer, Public Key Infras-
tructure, Authenticity and Trust. However the thesis does give a cursory introduction to each
of those topics along the way.

Acknowledgments

The work has been done under the supervision and guidance of Associate Professor Christian
Damsgaard Jensen, to whom I wish to extend thanks for feedback, comments and support.

4

5

Abstract

Peer to Peer systems are becoming widespread throughout the Internet and pervasive computing
systems. Existing PKI infrastructures - both hierarchical and non-hierarchical cannot be directly
ported to P2P environments. This is because existing PKIs rely heavily on the presence of CAs,
which act as a "trusted third party" in the system. The problem of feasibility of implementation
of various functions performed by PKI systems in such an environment is analyzed.

The goal of this thesis is to explore the possibility of implementing a Peer to Peer PKI system
based on the idea behind the PGP Web of Trust and a probabilistic algorithm to evaluate
the con�dence in a public-key from a CA, which is described in the paper "Modeling a PKI
Infrastructure" by Ueli Maurer [19]. The public-key valuation model makes assumptions about
trust in the "trusted third party" explicit, which allows the system to use key-servers that are
not completely trusted. This is particularly helpful in a wireless P2P environment targeted by
this work.

The feasibility of implementation of the probabilistic con�dence parameter valuation model is
evaluated using a software prototype.

The conclusions drawn during the design and implementation phases of the prototype serve as
a basis of an overall feasibility evaluation. A problem is identi�ed involving the complexity of
calculations of higher level trust paths. Further research paths are outlined, including sensitivity
analysis for �nding certi�cation paths which contribute most to the end-value of the con�dence
parameter.

Keywords

Peer to Peer, P2P, Public Key Infrastructure, PKI, PGP Web of Trust, Trust, Authenticity, Java

6

7

Contents

1 Introduction 11

1.1 Peer to Peer . 11

1.2 Wireless . 12

1.2.1 Wireless Infrastructure . 12

1.2.2 Ad-Hoc . 12

1.3 Security in Mobile Ad hoc networks . 13

1.4 Peer to Peer Public Key Infrastructure . 13

2 Public Key Infrastructure 15

2.1 Introduction . 15

2.2 X.509 . 16

2.2.1 Certi�cate acquisition problem . 17

2.2.2 Uniqueness of Distinguished Names problem 17

2.2.3 Certi�cate Revocation problem . 18

2.3 Present day Public Key Infrastructure . 18

2.3.1 PGP's Web of Trust . 18

2.3.2 Simple Distributed Security Infrastructure and Simple Distributed Key
Infrastructure . 20

2.3.3 Probabilistic Trust . 21

2.4 Summary . 21

3 Peer to Peer Systems 23

3.1 History . 24

3.2 Ad Hoc networks . 26

3.2.1 Ad Hoc network technology . 27

3.2.2 Wireless Peer to Peer . 27

3.3 Summary . 28

8 CONTENTS

4 Peer to Peer PKI: Probabilistic con�dence valuation logic 29

4.1 Introduction . 29

4.2 Public-key certi�cation mechanism . 30

4.3 Syntax . 31

4.3.1 Statements . 31

4.4 Derivation rules . 33

4.5 Probabilistic model . 33

4.6 Probabilistic con�dence valuation . 34

4.7 Summary . 35

5 Design 37

5.1 Algorithm . 37

5.1.1 Finding a certi�cation path . 37

5.1.2 Finding a trust path . 38

5.1.3 Calculating the con�dence value . 41

5.1.4 Peer to Peer environment . 42

5.2 Summary . 42

6 Prototype Implementation 45

6.1 UML Diagram . 45

6.2 threaded_test_harness.java . 45

6.3 Scenario_writer.java . 45

6.4 PNode.java . 47

6.5 PNodeClient.java . 48

6.6 PNodeServer.java . 48

6.7 Statement.java . 49

6.8 View.java . 49

6.9 permutations.java . 50

6.10 Network.java . 50

6.11 BellmanFord.java . 51

7 Evaluation 53

7.1 Performance . 53

7.2 Contributions made to the �eld . 54

7.3 Further research . 54

CONTENTS 9

8 Summary 55

A Source Code 59

A.1 Statement.java . 59

A.2 View.java . 63

A.3 Network.java . 68

A.4 Paths.java . 70

A.5 BellmanFord.java . 72

A.6 Node.java . 75

A.7 PNode.java . 75

A.8 PNodeClient.java . 81

A.9 PNodeServer.java . 83

A.10 threaded_test_harness.java . 85

B Scenario File 89

10 CONTENTS

11

Chapter 1

Introduction

1.1 Peer to Peer

The Internet and all of today's networks are changing. There has been a tremendous increase
in both the required and supplied bandwidth - the networks have evolved from �xed line kilobit
speed dialup connections to wired multigigabit �bre and multimegabit wireless connections. In
1962, the �rst commercially available modem boasted a transfer speed of 300 bits per second
full duplex. In 2002 Fujitsu alone delivered a commercially available DWDM system - the
FLASHWAVE 7700 capable of delivering 1.76 Terabits per second. Achievable speeds in Internet
2 [1] are heading into the Gbps range [2] - which usually means that transfer rates are limited
by the speed of hard drives at the client machines.

This often means that the usual client-server concept is not applicable any more. An example
of this is the so-called slashdot e�ect. The slashdot.org website is a technology-oriented weblog
which delivers news and insight on current issues in the world of hi-tech. However due to the
number of readers visiting the site (well over 700000) external websites included as part of the
news entries often fail due to excessive load within minutes of the article being posted. This is
called the ./ e�ect (pronounced slashdot e�ect) and refers to a situation where the available server
bandwidth or other resources (cpu time, available ports) are quickly consumed by large numbers
of well connected (high bandwidth) clients. This leads to the slashdotted server appearing o�ine
or unresponsive.

One example of an attempt to deal with the scalability issue is the evolution of �le sharing
networks - the usual approach calls for extensive distributed server architectures with dedicated
high speed connections and clusters present where the query density is likely to be the largest.
However such designs are costly and have to be hardened against hardware and software failures.
The recent inexpensive approach calls for numerous simple clients to act as servers as well as
clients thus participating in the load carrying capacity of the network. It requires no prior
infrastructure, and the system scales proportionally to the number of users. Each new user
contributes a part of his/her cpu time and network connection to enhance the capabilities of the
entire system for the bene�t of other users.

This situation, where a client can also play the role of the server simultaneously is at the very
core of the de�nition of Peer to Peer. Although this thesis will mainly focus on P2P networks
linking wireless devices in an ad-hoc way, it should be clear that P2P is a much broader concept -
one that encompasses all kinds of wired/wireless and hybrid networks and a variety of protocols.
Peer to Peer is further described in chapter 3 on page 23.

12 Chapter 1. Introduction

Throughout the following sections, the peers will be referred to as nodes, the communication
between them will be assumed as wireless. The reason behind this is that ad-hoc wireless P2P
networks are on the extreme end of dynamic networks, and the concepts derived here should be
easily applicable to wired P2P networks.

1.2 Wireless

The concept of wireless communication is by no means new, but recent years have shown a
huge improvement in wireless communication technology. The available networks range from
cellular systems such as the GSM 900/1800 [5] and PCS 800/1900 [4] - digital circuit switched
mobile telephony networks, GPRS [6], EDGE [7] - packet switched cellular data and UMTS [8],
CDMA2000 [9] - packet switched cellular data/telephony networks. In the world of short range
computer networks there are the radio frequency WLAN [10], Bluetooth [11], HomeRF (WLAN
alternative, working group disbanded in 2003) [12] and infrared IrDA [13] networks. There are
also very short range specialized wireless radio frequency modes of communication - RFID [15]
and NFC [14]. In this variety of communication technologies there is great potential for making
our lives easier. Cellular telephony is already taken for granted - most industrialized countries
have more mobile phones than �xed line.

1.2.1 Wireless Infrastructure

The typical wireless infrastructure consists of mobile terminals - user equipment, and Base Station
Transmitters - transmitter masts, that constitute a single or multiple cells. Telephone networks
interconnect mobile devices with no infrastructure existing between the mobile phone and the
BTS transmitter. This allows a high degree of �exibility, as deployment cost in sparsely populated
areas is very low compared to wired infrastructure solutions. First generation networks o�ered
only analogue connection setup and transmission. Second (GSM) and third (UMTS) generation
networks o�er full digital voice and data transmission functions. The only drawback is that user
terminals (mobile phones) cannot directly communicate to each other even if they are in direct
range. The connection setup phase always sets up the circuit through a BTS and call and billing
center. Use of short-range ad-hoc transmission technologies is required to interconnect mobile
devices without using any infrastructure (wired or wireless).

1.2.2 Ad-Hoc

Ad-hoc networks are a relatively new concept which appeared with the introduction of radio
frequency and infrared wireless communication modes for mobile devices. An ad-hoc network
can be de�ned as a network that doesn't require existing infrastructure in order to work. This
opens up a host of possibilities such as ad-hoc networking in emergency situations, disaster
recovery, medical facilities, battle zones and ad-hoc sensor dust deployment.

An ad-hoc network is merely a collection (be it physical or logical) of mobile devices, when two
users wishing to exchange information need not be in range of themselves, just other devices
in the network. As long as there are other nodes in the ad-hoc construct that can relay in-
formation further on, the notion of ad-hoc networking is preserved. Technology-wise - WLAN,
Bluetooth, HomeRF, IrDA are a means of connecting mobile devices that are in range of the
built-in transceiver. With an added layer of software routing, true ad-hoc can be achieved

1.3 Security in Mobile Ad hoc networks 13

No infrastructure, no connection to an extranet, and non homogeneous participating devices
mean that such an environment is unique in terms of many of the paradigms we take for granted
on the Internet. One of them is the issue of creating and maintaining an e�cient PKI.

Ad-hoc networks are further discussed in section 3.2 on page 26.

1.3 Security in Mobile Ad hoc networks

All networks call for some kind of security which allows users to communicate without fear of
being misguided or attacked. A PKI is usually the prerequisite to authentication and authoriza-
tion of users in networks where company secrets and money are involved. PKI itself deals with
the issuing and verifying certi�cates. A certi�cate is a binding between an entity and a public
key. It is a way of ensuring that the public key corresponds to the individual or entity with
which we wish to communicate. How the PKIs achieve the objective of positive identi�cation
and veri�cation of individuals or entities is implementation speci�c and is discussed in detail in
chapter 2 on page 15.

1.4 Peer to Peer Public Key Infrastructure

This thesis establishes a theoretical foundation covering the evolution of the Public Key Infras-
tructure, the Peer to Peer paradigm and Ad-Hoc networks. This foundation is then used to
introduce a novel approach to designing an ad-hoc PKI - probabilistic con�dence parameter val-
uation [19]. A software prototype is then designed and developed in order to prepare a feasibility
evaluation of the concept. This thesis focuses on the PKI in the context of ad-hoc networks.
Such an implementation is particularly challenging, as present day hierarchical PKIs require
�xed, dependable infrastructure to be in place in order to function. Additionally a reliable con-
nection to that infrastructure is required for each participant. Ad hoc environments o�er no
�xed, predictable infrastructure that would allow such an implementation. Additionally in the
�xed client server world clients can usually assume that the server is trustworthy, while in the
mobile ad-hoc world, each node is potentially hostile. A new kind of approach for realizing a PKI
is chosen and examined. Various approaches including the chosen probabilistic trust algorithm
by Ueli Maurer [19], section 2.3.3 are presented in chapters 3 and 4. The chosen algorithm is
used as a basis for the design of a Java library in chapter 5. The following chapter - chapter 6 on
page 45 discusses the Java implementation of the Ad hoc PKI algorithm. Finally, the design and
implementation are evaluated in chapter 7 on page 53 and a summary is presented in chapter 8
on page 55. The source code is presented in Appendix A.

14 Chapter 1. Introduction

15

Chapter 2

Public Key Infrastructure

2.1 Introduction

Traditional symmetric cryptography calls for the sender and receiver of a message to share a
cryptographic key. This prior requirement often creates a problem if the two parties do not
have a secure way of establishing the cryptographic key. This is known as the key distribution
problem. Should an attacker intercept the initial communication and obtain the key, then he
can easily read the messages exchanged by the two parties. Solutions to this problem involve key
agreement algorithms - such as the Di�e-Hellman exchange, or key distribution through secure
out-of-band methods. Keys could be for example exchanged using courier, in person or through
secure delivery services. However this all means that cryptography is well out of reach of ordinary
people. The necessary breakthrough is to devise a method of transmitting a cryptographic key
over an insecure channel.
The concept of the PKI or Public Key Infrastructure dates back to a revolutionary 1976 paper by
Whit�eld Di�e and Martin E. Hellman [17]. There they introduce the foundations of public key
cryptography, which essentially allows people to go around the secret key distribution problem.
A cryptographic key would essentially be split into a public and private key. The public key could
be made readily available to anyone who asked, and freely transmitted over insecure channels.
The private key would have to be held more secret than a ATM card PIN - it would never have
to leave the user's system. The �rst published public key algorithm is RSA in a 1978 paper by
Rivest, Shamir and Adleman [25]. It is based on a simple mathematical transformation:

• Key Generation
Generate two large primes p and q
n = p · q
m = (p− 1)(q − 1)
Choose e, coprime to m
Find d, such that (d · e)modm = 1
[e, n] - public key
[d, n] - private key

• Encryption C = P emodn

• Decryption P = P dmodn

16 Chapter 2. Public Key Infrastructure

In order to send an encrypted message to a user Bob, Alice would have to obtain Bob's pub-
lic key, and encrypt the message using that key. Once she did that, the only person that can
decipher the message is Bob, with his corresponding private key. As a consequence Di�e and
Hellman suggested the notion of a public key distribution system called the Public File. This
system would allow the lookup of a public key corresponding to a name in the system - a way for
Alice to obtain Bob's public key. This kind of repository roughly corresponds to today's Trusted
Repositories - an entity that signs all of its communication with the user.
There are essentially a number of problems associated with the Public File. The repository has
to be secured against all possible intrusions, as an attacker could try and modify the existing
public keys, so that they corresponded to his own private key. Additionally the repository would
have to be prepared to take a large load of user queries - each attempt at encrypted communi-
cation would have to result in a query to the online repository. The solution to these problems
is addressed as an extension of the concept of the Public File in a 1978 B.Sc. paper by Loren M.
Kohnfelder [18]. Kohnfelder introduces the concept of an identity certi�cate, which is essentially
a signed message from the Public File containing Bob's public key and a plaintext �eld contain-
ing Bob's name. This serves as a means to take the brunt of the security requirements from the
Public File and shift it to the user. As each certi�cate is essentially self-contained, and it only
requires access to the public key of the repository for veri�cation purposes, the number of queries
to the repository itself is reduced dramatically. Additionally the security requirements on the
repository are substantially relaxed, only the private key used to sign the certi�cates needs to
be guarded, so that it is not used to issue bogus certi�cates.
This chapter will introduce the basic concepts behind PKI using X.509 as the prime example,
and then moving on to cover the more current developments in the world of Public Key Infras-
tructures.

2.2 X.509

The concept of a repository containing user certi�cates is the very foundation of the design of
a Public Key Infrastructure. The �rst practical attempt at producing a worldwide public key
infrastructure is part of the e�orts to provide a secure access mode to X.500 directories. X.500
in essence a hierarchical database that would be administered by dominant telecommunications
companies around the world.
At the core of the X.500 concept is the DN, or Distinguished Name, which is composed of RDN's,
or Relative Distinguished Names, by traversing the hierarchy of the directory. An example is
shown in �gure 2.1.

The �gure shows a sample X.500 tree, where at the top is the root node, then country level nodes
(C=), organization level node (O=), organization unit node(OU=). Additional node types are of
course possible, as X.500 was designed as a single global directory solution.
X.509 certi�cates essentially contained the issuer DN, the subject DN, a validity period and
the public key itself. The problem with these kinds of certi�cates is that their rigid structure
does not allow insertion of other useful information into the certi�cate - e.g. the subject's
address, organizational structure. Additionally the DN is essentially meaningless outside the
X.500 hierarchy. Given that X.500 directories were never widely deployed, this has led to the
DN �elds being misused in an attempt to provide unique names to each of the certi�cates.
Another problem that the X.509 certi�cates face is the unclearly de�ned CRL's, or Certi�cate
Revocation Lists. A more detailed view on the problems a PKI is likely to face is given below.

2.2 X.509 17

Root

C=US
C=UK

C=DK

O=DTU

OU=IMM

Figure 2.1: Sample X.500 tree

2.2.1 Certi�cate acquisition problem

As mentioned before, X.500 is not really deployed worldwide. This causes a number of problems
with X.509 certi�cates, one of which is obtaining a certi�cate in the �rst place. The original model
simply called for retrieving the certi�cate from a repository, however no centralized certi�cate
repositories exist. Instead many solutions simply bundled the necessary certi�cates for issuers -
e.g. a S/MIME signature includes the certi�cates that are needed for veri�cation and a Secure
Socket Layer [16] connection simply exchanges the necessary certi�cates during the initialization.
Pretty Good Privacy [24] generally requires the user to obtain the certi�cate by some out of band
means - e.g. by going to the recipient's website and downloading the certi�cate or by mailing
the user asking for the certi�cate in advance.

However such o�ine and varied distribution methods make the hard problem of certi�cate revo-
cation even harder.

2.2.2 Uniqueness of Distinguished Names problem

The integral part of any certi�cate is the name of the user that the public key belongs to.
However, if the certi�cates are to be accepted worldwide, then the name of the user has to be
unique. The best approach to this is to include a context along with the name. For example
the name John Smith is essentially meaningless in the worldwide context, the person may be
a resident or a former resident of the United States, or any other English speaking country.
However if the name John Smith is paired with a unique identi�er - such as an email, or social
security number (along with the country that the social security number belongs to) the name
becomes unique. The only other requirement is that a third party wanting to acquire a certi�cate
for John Smith needs to be able to construct a Distinguished Name to single out the certi�cate
that belongs to the particular John Smith that they want to talk to.

18 Chapter 2. Public Key Infrastructure

2.2.3 Certi�cate Revocation problem

However secure a system is designed to be, there are always weaknesses or mistakes made which
lead to private keys being compromised. If such a situation occurs, it calls for declaring the
corresponding certi�cate invalid - as attackers can easily take advantage of the leaked private
key, and assume the identity of the legitimate user for fraudulent activities. The solution that
X.509 uses is of CRL's, or Certi�cate Revocation Lists. These are simply lists containing the
identi�ers of certi�cates which are no longer considered valid. It is the responsibility of the
application using X.509 certi�cates to retrieve a current CRL, before processing a certi�cate. As
this solution is modeled after check and credit card black lists, it is fraught with problems in the
digital age. For one is the question of availability - if each of millions of desktop users were to
retrieve a CRL, the required distribution framework would have to rival many of the commercial
giants such as Akamai [30] or Google [31]. There is also the question of time frame between
new CRL's being issued - in the electronic age, it is theoretically possible that a leaked private
key is used within a few seconds of the compromise taking place. However, most likely a CRL
issuing time of 1 minute should stop most possible fraud (there is also the question of detecting
that a certi�cate has been compromised). Even so, the distribution framework for CRL's would
consume immense resources in terms of bandwidth and processing power - customers would have
to pay for using such facilities. More realistically, CRL's are issued once a month or less often.

2.3 Present day Public Key Infrastructure

To date there exists no global PKI infrastructure. As X.500 has never been widely deployed,
neither was X.509. Specialized PKIs have appeared, the most notable example being Netscape's
website SSL [16] certi�cates based on X.509v3. These use the PKCS set of standards for the
format of certi�cates, keys and digitally signed and encrypted objects and any of the available
repository solutions - LDAP for example. Certi�cates are obtained by contacting a company that
provides and maintains their own PKI infrastructure servers - examples are Verisign, Thawte
Consulting, RSA Security Inc, etc. All mainstream SSL capable browsers come bundled with a
complete list of global root authorities, maintained by the aforementioned companies, that can
be used to verify a server certi�cate.

PEM is the solution that has adopted the X.509 approach for email. The original X.509 certi�-
cates are meant to be used to allow the user access to the corresponding X.500 subtree. PEM
changes the focus of X.509 certi�cates for the purpose of identifying the user as the sender of a
message.

2.3.1 PGP's Web of Trust

The main idea behind Philip Zimmerman's Web of Trust [3] is to become independent of rigid
certi�cation hierarchies. Figure 2.2 shows a side-by-side comparison between the certi�cation
hierarchy based on the X.509 concept and the Web of Trust concept. In the certi�cation hierarchy,
the certi�cation server closest to the user issues the actual certi�cate, but the server certi�cate
is signed and issued by a higher level certi�cation server. Only the root server certi�cate is self-
signed. In PGP certi�cation, clients generate their own self-signed certi�cates, and certi�cate
authenticity is veri�ed by checking other user's signatures on a certi�cate.
PGP is introduced when there still was not a single global CA root that certi�cates could be

2.3 Present day Public Key Infrastructure 19

Certificate Certificate Certificate Certificate Certificate

CA Poland CA Holland CA Denmark

CA USA CA Europe

Root CA

Certificate A

CertificateCertificate

Certificate B

Certificate

Certification hierarchy

Web of Trust

Figure 2.2: Certi�cation hierarchy and Web of Trust

reliably signed by, and the chances for a CA like that appearing were rather small. An X.509
certi�cate is signed with one or more CA's private keys and to verify the certi�cate it is enough
to retrieve the public keys of the individual CA's and check their signatures on Bob's certi�cate.
In the Web of Trust, one �rst has to obtain the certi�cate from a certi�cate store, for example
by sending an email with the subject

GET prz@mit.edu

to the email address

pgp-public-keys@keys.pgp.net

the response, given that such an ID exists in the database, should be an ASCII encoded version
of the certi�cate of Philip Zimmerman [23]. However, there exists no guarantee that the key was
actually created by Philip. As the email is never veri�ed at any stage (nor is there any reliable
method of veri�cation), any individual could have created a public key with the name Philip
Zimmermann, email prz@mit.edu and submitted it to the PGP keystore. Therefore before using
the certi�cate to encrypt a message to the creator of PGP, one should verify the authenticity of

20 Chapter 2. Public Key Infrastructure

the certi�cate. This could for example be done by out of band means such as a phone call or
a visit to Philip Zimmermann to obtain and check the public key properties. These properties
include a human readable hash of the key (called a �ngerprint), key length and key id. However
this could prove to be di�cult if one lives on a di�erent continent than the person I wish to email.
Although the website of Philip Zimmerman does list a �ngerprint of the certi�cate, HTTP is in
itself not a secure protocol, and a man-in-the middle attack is possible if unlikely. Fortunately
PGP o�ers another method of verifying the authenticity of a certi�cate. Provided I have a trusted
certi�cate of a person say Bob, that has veri�ed and and put a signature on Phil Zimmerman's
certi�cate, I can assign a degree of trust to the certi�cate in question. This can extend to a longer
chain of "acquaintances" e�ectively forming a certi�cation chain. This is the basis of the Web of
Trust. Multiple certi�cation paths may exist, and it is possible to de�ne how many certi�cation
paths there need to exist to make a certi�cate trusted. This is done in belief that if a percentage
of the parties we are dealing with is corrupt, then there may exist a certi�cation path vouching
for the authenticity of an otherwise fake certi�cate. However it is a viable assumption that not
all parties will be corrupt, and that genuine certi�cation paths will exist.
One of the key di�erences between X.509 and PGP is that PGP is primarily meant for the task
of digitally signing and encrypting email messages. Although the recent releases by the PGP
Corporation [24] try to adapt PGP to tasks such as �le and partition encryption, the standard
remains very focused. The next section discusses one of the alternatives to PGP and X.509 that
tries to combine simplicity of application and �exibility - the ability to adapt to a variety of
environments, not just digital directories or electronic mail.

2.3.2 Simple Distributed Security Infrastructure and Simple Distributed Key
Infrastructure

Simple Distributed Security Infrastructure or SDSI is a new PKI concept that avoids using global
certi�cate hierarchies and globally unique names (in the X.500 sense). It is proposed in 1996 by
Ronald Rivest and Butler Lampson [21] as an alternative to the in�exible and overly complicated
X.509 hierarchy and as a more general solution than the Web of Trust.
Similarly to PGP's Web of Trust, there is no prede�ned hierarchy and the system relies on keys
alone to provide the functionality. The central part of SDSI is the notion of a principal which is
essentially a designated public key used to verify the statements of the principal. All principals
are made equal in terms of functionality - they act as peers and can provide and request signed
statements from other principals. The issue of providing globally unique names is solved by
local name spaces and designated distinguished root principals. Functionality similar to PGP's
email-based unique names is obtained by using the DNS distinguished root principal, so that an
email address:

rivest@mit.edu

becomes:

(ref: DNS!! edu mit rivest)

In the above, DNS is the name of the principal and the !! at the end indicates that DNS is a
distinguished root principal. Such principals are always referred to by the same name from
the other principals. This is as opposed to normal principals, which can be referred to by
di�erent (possibly con�icting) local names from di�erent principal namespaces. Distinguished
root principals exist to provide for global uniquely resolvable names.
Simple Public Key Infrastructure (SPKI) by C. Ellison et al. [22] builds on the notion of SDSI

2.4 Summary 21

and allows the name spaces and authorization based on principals. SDSI only had identity and
membership certi�cates, while SPKI uses naming, authorization certi�cates, certi�cate revocation
and revalidation lists (CRLs). A basic SPKI authorization certi�cate is a mapping of the form:

authorization -> key

where the keyholder's name is provided as an optional naming certi�cate mapping of the form:

authorization -> key -> name

The separation of the mappings allow for more security, as only the authorization mapping needs
to be kept absolutely secure. Additionally SPKI de�nes ACL's more arbitrarily than SDSI. In
the former, each entry in the ACL need not be a subject name, it may be the subject key or be
implementation dependent.

2.3.3 Probabilistic Trust

Another approach to developing a PKI without a �xed infrastructure is the one proposed by
Ueli Maurer [19] in 1996. The paper does not de�ne a full working PKI infrastructure, instead it
focuses on the reasoning that can be used to verify the authenticity of a public key. The concept
builds on the Web of Trust in the sense that certi�cation paths are considered in verifying the
authenticity of public keys. However Ueli Maurer states that authenticity and trust are rarely
absolutes - it is not always possible to say that something is fully authentic, or de�nitely fake. In
real life we base our decisions on partial beliefs - e.g. we believe that someone is who he claims
he is, but stay vigilant. Therefore trust and authenticity ranges from completely untrusted and
unauthentic to fully trusted and authentic. It may be useful to assign a number between 0 and
1 to such statements - Ueli Maurers paper describes an algorithm that gives meaning to these
"weights" as a probability of a statement being true in a well de�ned random experiment.
PGP's Web of Trust a user can de�ne the minimum number of existing certi�cation paths to
cause a particular public key to be trusted. On the other hand, the certi�cation paths may be
interdependent, cyclic and contain relationships that cannot be captured by the Web of Trust
(the users in seemingly disjoint certi�cation paths may belong to the same organization and if
one is corrupt, the other users in the organization are more than likely to be corrupt as well).
Ueli Maurer's paper de�nes a method that is general enough to capture such interrelationships.
Additionally through the notion of trust, there need not exist full certi�cation paths from Alice to
Bob. Alice may trust another entity to "vouch" for another entity's certi�cate, thereby bridging
any gaps in the certi�cation path.
The Peer to Peer PKI implementation in this paper uses Ueli Maurer's algorithm as part of the
solution. The rationale for this decision is given in section 4 and the detailed description of the
algorithm in section 5.

2.4 Summary

This section introduces the basic concepts of asymmetric cryptography and Public Key Infras-
tructure as the solution to the key distribution problem. This approach is used in the X.500
standard in the form of th X.509 certi�cate standard. Problems faced by the PKI are presented
in section 2.2:

• Certi�cate acquisition problem

22 Chapter 2. Public Key Infrastructure

• Uniqueness of Distinguished Names problem
• Certi�cate Revocation Problem

Although X.500 and X.509 were never widely deployed in their original form, many derived
systems are created and used. X.500 was designed to be versatile, however in present day
networks, it seems specialized systems are much more popular. Netscape's SSL certi�cates
use X.509v3 certi�cates hierarchy for certifying websites. PGP's Web of Trust is a working
solution for encrypting and signing e-mails and it doesn't require a certi�cation hierarchy to
work. SPKI is a specialized system for authorization, and similarly to PGP it doesn't require
�xed certi�cation hierarchies. Finally, probabilistic trust is introduced as a new concept for
determining the authenticity of a public key in an infrastructure-less environment. The next
chapter will focus on such environments - peer to peer systems, and chapter 4 discusses the
concept of probabilistic trust in detail.

23

Chapter 3

Peer to Peer Systems

Peer to Peer is a relatively new concept that serves as an alternative to the traditional client-
server model. In this model, each node takes on a role of client and server simultaneously. Each
node is capable of performing a transaction acting as either server or client. Nodes in a Peer to
Peer network can be very diverse in terms of capabilities, processing power, bandwidth available,
etc. Each of them needs to be able to support at least a minimum set of functions of a particular
P2P protocol.

Figure 3.1 compares the Peer to Peer and Client-server concepts. In Peer to Peer, there is no
visible hierarchy - each device acts as a peer to other devices. Client-server, on the other hand
has a clear distinction of roles played by the devices.

Client-Server Peer to Peer

Figure 3.1: Client-Server and Peer to Peer

Currently the most widely known example of P2P applications are the �lesharing networks on
the Internet. What started as a client-server architecture with elements of P2P communication

24 Chapter 3. Peer to Peer Systems

- like Napster, has evolved to fully distributed Peer to Peer arrangements like Gnutella. Such
networks have the attributes desirable to the application - they scale easily with the number of
users increasing, the capabilities of the network increases as well, limited only by the e�ciency
of the protocol governing the transactions. Additionally P2P guarantees survivability - as �le-
sharing networks are often targeted by recording and �lm industry associations, due to copyright
abuse, today's networks cannot be shut down, unless each and every node is disconnected from
the network.

3.1 History

The Internet is originally intended to be a Peer to Peer network. As its original purpose is to con-
nect academic centers as equals, each host would act as both a client and a server for ftp, email,
etc. Although the protocols themselves are based on a client - server model, the data exchange
is kept symmetric, hence the similarity to the P2P model. Later as the Internet grows larger and
becomes more commercial, the client - server model becomes dominant. Most computers aren't
expected to run ftp or http services, yet almost all of them use this services from servers located
throughout the Internet. The inexpensive ADSL and Cable modem ISP connections further
enhanced the notion that users download more than they upload - the typical upload speed of an
ADSL model is 64/128 kbit/s, while the download speed can be of the order of 512/768 kbit/s.
In essence users with their desktop computers were considered clients on the Internet. The Peer
to Peer model is now returning in the form of various applications. Home and desktop machines
now can collaborate without any prede�ned infrastructure and form collaborative groups, share
�les, computing power, act as distributed search engines, etc. Privacy is also bene�ting from
this change, as the Peer to Peer mode of communication can be made di�cult to spy on - one
example of this is the Freenet project [26]. It can be referred to as the secure, anonymous Inter-
net within the Internet. Participating nodes donate a part of their cpu, bandwidth and storage
resources and these form a kind of virtual web, where no content can be traced back to its origin
or forcefully removed.

It is important to note, that �lesharing networks have given P2P a form of notoriety - due to
the common association between Peer to Peer, �lesharing and copyright infringement. Another
reason for this is that as mentioned in the previous paragraph, networks were being built up with
the strong client - server data �ow model in mind. Peer to peer changes all that and equalizes
the upload and download �ows, sometimes saturating the asymmetric Internet connections. The
concept, however, is much larger than �lesharing, and a lot of �lesharing networks are used for
lawful purposes. One example of �lesharing that is mostly used for good purposes is BitTorrent
[27]. The idea behind BitTorrent is to utilize the Peer to Peer principle to help with distributing
large �les across the Internet. The �rst user in the network hosts the seed - the original �le. New
nodes connect to the �rst user on a peer to peer basis and download portions of the �le becoming
servers of the portion of the �le they already have themselves. In this manner, the more users
are interested in acquiring the large �le, the faster the process of downloading and sharing takes
place. The protocol does not include search features, and the peer to peer networks are created
solely for the purpose of easing the load on a server - as users in the BitTorrent association
download portions of the �le from other users, the usage of the bandwidth on the originating
server is minimal. To give a few examples of the protocol being used for lawful purposes:

3.1 History 25

1. Knoppix distributing ISO images of their Linux operating system [29]
2. Machinima* site "Red vs Blue" distributes episodes of their own production [28]

*Machinima - The term concerns the rendering of computer-generated imagery (CGI)

with ordinary PCs and the 3D engines of �rst person shooter video games in real-time

(on the computer of either the creator or the viewer) rather than o�ine with huge render

farms. - Wikipedia.org

Peer to peer also extends beyond the concept of �lesharing networks. Many such uses actually
preceded �lesharing entirely. Two notable examples are the Usenet and DNS which, while not
pure Peer to Peer, can be considered the grandparents of today's Peer to Peer systems.

Usenet started around 1979 as a simple protocol based on the Unix to Unix copy protocol, or
UUCP. The idea behind it is that a Unix machine would dial another Unix machine, exchange
�les and disconnect. This is extended to exchanging data such as email �les and article postings.
The dial-in method is later replaced by the TCP/IP transport layer, and the protocol modeled
after UUCP is called Network News Transport Protocol [32] or NNTP and is in widespread use
today. No clear-cut hierarchy exists within the Usenet world, except for the hierarchy in the
article system itself. A server joins the article exchange by establishing a connection with an
already participating server and exchanging articles on a regular basis. A user then can read
the articles in the Usenet system by contacting one of the participating servers - each of the
servers has access and can carry the full Usenet tra�c, although some choose to carry only a
part of it in order to reduce the load. In addition to the article distribution between servers
being done on a P2P basis, the article hierarchy itself lacks any centralized control. The whole
process of adding and removing newsgroups is democratic with one notable exception - the alt.*
branch, in which a single user can create a newsgroup by himself. Usenet contains a simple
Peer to Peer �ood avoidance system - each message carries a Path header, which contains the
names of the servers it has passed through. Each server checks the header for their own name
and will not attempt to retransmit a message it has already transmitted once on a particular link.

DNS is a hybrid Peer to Peer and hierarchical system. It evolved as a solution to the problem
that plagued the early Internet - name resolution is originally done via the means of a hosts.txt
that contained the names and corresponding IP addresses of all servers on the Net. As the classic
way of distributing the updated �le is to ftp it to all the machines on the Net, it quickly turned
out that with the growing number of machines, the task was becoming simply unmanageable.
This called for a solution that would mean constructing an online distributed database that
would respond to DNS queries. The database had to be distributed not centralized because as
the system grew, the �ux of information and queries would simply overwhelm any single machine.
The obvious solution is to use the Peer to Peer model, where as the number of users grows, so
does the DNS system. Each node would act as both a client and a server - taking queried and
propagating them (querying other nodes) if it couldn't answer itself. The hierarchy is necessary
to ensure order in the network - the way URL's are constructed dictates the hierarchy in the
DNS system. The highest order DNS nodes handle the top-level domains - such as .com .org, the
national top-level domains such as .dk .pl .es etc. The lower order domains follow lower in the
hierarchy - like the amazon.com subdomain or the yahoo.com. The hierarchy can be dynamically
extended to cover any depth. As today's Internet shows, the system still works remarkably well
- having scaled from thousands to hundreds of millions of hosts over the course of 21 years [20].
This proves the viability and power behind the concept of Peer to Peer.

26 Chapter 3. Peer to Peer Systems

3.2 Ad Hoc networks

As mentioned in section 1.2 on page 12 an ad-hoc network can be de�ned as a network that
does not require existing infrastructure in order to work. These are well suited to needs of a
temporary nature or ones that require networks to be formed in the �eld, on the �y.

Body Area Networks are an application of ad-hoc networks that interconnects wearable digital
platforms and makes them available to the user. One example could be a headset and watch
displays interconnecting with the user's mobile phone and PDA. The devices then may cooperate
- e.g. an audible sound may be played during a mobile phone conversation announcing that there
is a scheduled meeting on the PDA.

Personal Area Networks interconnect Body Area Networks of di�erent people in vicinity and
allow them to interact with the environment. The applications for this may include interactions
with:

• Information kiosks
• Electronic news stands
• Internet access points
• Building Area Networks and others

Users will be able to exchange electronic calling cards, �les, etc.

Other scenarios where Ad Hoc networks may be used are for example:

• Emergency services and disaster recovery
• Medical institutions
• Battle�eld networking
• Sensor dust

Hospitals and emergency services can make use of as hoc technology by e.g. providing each patient
with a chip to replace the patient's medical history card. Furthermore devices monitoring the
patient's condition can interface to the hospital network and keep track of the vital statistics,
alerting doctors to any sudden changes.

Disaster recovery situations are ones where Ad hoc technology is already used. In such situations
e�ective communication and coordination is essential. The TErrestrial Trunked RAdio (TETRA)
[33] communications system provides reliable wireless communications for emergency services
around the world and in any location. Furthermore teams may use Wireless LAN technology to
establish command locations and interface them to mobile teams via wireless interfaces. Victims
in numerous disasters managed to notify the search and rescue teams by using their GSM phones
- the teams can then triangulate the signal and coordinate e�orts to help the survivors.

Battle�eld networking is also a �eld, where instant information and coordination is essential
to success and minimizing casualties on both sides. The soldier will be equipped with a HUD
and wearable computer providing a tactical uplink to the command center. The soldier will
transmit his location and estimates on encountered resistance, and will in turn receive similar
information gathered and processed from other soldiers in the vicinity. Using bulky and heavy
satellite transmitters for this purpose is not an option, therefore a secure wireless Ad hoc network
is established on the battle�eld linking the soldiers together.

3.2 Ad Hoc networks 27

Sensor dust is a novel concept, where multiple small and simple sensor devices are deployed over
a large area. These then establish an Ad Hoc network using low power short range transmitters
and start sending sensor and location information over the network. Such smart dust sensor
networks can be deployed in hostile environments, as such a network can still function if a large
percentage of devices malfunctions.

3.2.1 Ad Hoc network technology

Ad-hoc networks are usually de�ned as a temporary association of nodes, serving a speci�c func-
tion. Ad-hoc networks tend to be very dynamic, and varying in size and complexity. The most
widely used and largest ad-hoc networks are the cellular telephony networks. These started as
analogue circuit switched AMPS/TACS networks, then evolved to 2G GSM [5](900MHz/1800MHz
European)/PCS [4](800MHz/1900MHz US band used for GSM/CDMAOne/iDEN/D-AMPS)
digital circuit switched networks. The newest addition to the mobile phone family is the 3G dig-
ital packet switched mobile telephony standard - WCDMA (UMTS [8] in Europe and FOMA/J-
Phone in Japan) and CDMA2000 [9] in the US.

The smaller wireless computer networking technologies are mainly IrDA [13], Bluetooth [11] and
802.11a-g standards (WLAN [10] and others). One or more of these technologies are embedded
in today's PDA's and portable computers. Furthermore watches and other portable devices are
beginning to have support for wireless networking technologies.

Figure 3.2 shows a comparison between wireless infrastructure and ad-hoc environments. Wire-
less infrastructure requires the presence of Base Transmitter Stations, while ad-hoc requires no
pre-existing infrastructure.

Wireless infrastructure Ad-Hoc wireless

Figure 3.2: Wireless infrastructure and Ad-Hoc

3.2.2 Wireless Peer to Peer

In today's world, mobile devices have much greater capabilities than they used to - palmtops now
come with 400MHz CPU's, 256MB of RAM and large storage, making them a match for desktop

28 Chapter 3. Peer to Peer Systems

computers from a few years ago. If this trend continues, then the complexity of applications
that are available on such devices are more than likely to match desktop, wired computers. The
mobility and ability to form ad-hoc associations is an added bonus that e�ectively extends the
scope of such applications. The most basic example is that a single device needs not have a direct
connection to every other mobile node in its vicinity. As long as the low power transceiver can
reach nodes that in turn can forward packets to further nodes, the reach of an individual mobile
node is greatly extended with power requirements only slightly increased - due to forwarding of
other nodes' packets.

3.3 Summary

This chapter introduces the Peer to Peer concept in detail. A brief history of P2P is presented.
The very concept of the Internet is based on P2P - all machines were meant to serve as both
clients and servers at the same time. Commercialization of the Internet and the introduction
of ADSL changed this approach, and the Internet began to follow the client-server concept.
However, with the growth of number of clients, the required server architectures are no longer
cost-e�ective. The solution is to go back to the P2P concept, where each client would also share
part of the service provision. File sharing networks such as Napster and Kazaa evolved out of this
concept, and became synonymous with the otherwise general term Peer to Peer. A particularly
interesting application of P2P is introduced in section 3.2 - Ad-Hoc networks. In infrastructure-
less situations wireless devices can interact using P2P to create dynamic networks. Emergency
services and battle�eld communication are mentioned as primary applications. The probabilistic
trust valuation concept introduced in the previous chapter is applicable in such environments.
Chapter 4 will discuss the concept in detail.

29

Chapter 4

Peer to Peer PKI: Probabilistic

con�dence valuation logic

4.1 Introduction

As mentioned in the introduction and stated in the two previous chapters, the goal of this report
is to extend the work done in the �eld of infrastructure-less PKIs. The paper by Ueli Maurer
"Modelling a Public-Key Infrastructure" is particularly important for this report, as many of the
theoretical guidelines presented there are used as basis for the practical implementation presented
in this report.

A PKI will be thought of here as a heterogeneous peer-to-peer network of nodes. The implemen-
tation focuses on the probabilistic public-key con�dence valuation model, which is providing a
means of performing two basic functions that are part of any PKI:

• Retrieving and verifying the authenticity of user Bob's public-key
• The ability to contribute to the distributed PKI by providing statements attesting to the
authenticity of other user's public-keys

The algorithm focuses in particular on user queries and the ability to retrieve certi�cates and
statements about certi�cates from the network. Aspects of storage of certi�cates and statements
on nodes are also addresses. Certi�cates can be stored using a number of methods - the hash
tables in particular was used in the implementation presented in this report.

Drawing motivation from previous work such as PGP by Philip Zimmerman [23] and the afore-
mentioned "Modelling a PKI Infrastructure" by Ueli Maurer [19] the implementation e�ectively
uses multiple certi�cation paths through a network. A con�dence parameter is introduced, which
is assigned to each of the individual statements comprising the certi�cation path. The paths are
then aggregated using probabilistic argumentation, and an aggregate con�dence parameter is
obtained. This parameter can then be used to make threshold-logic decisions about whether to
allow a Node to perform a certain action or not.

Similarly to other publications [35] in the �eld of cryptography, the examples and explanations
will be given using �ctitious Actors. The actors involved will be as follows:

30 Chapter 4. Peer to Peer PKI: Probabilistic con�dence valuation logic

Name Node ID Role
Alice Node 0 Wants to obtain authenticity information about Bob
Bob Node 3 or 4 Passive
Carol Node 1 Responds to Alice's queries
Dave Node 2 Responds to Alice's queries
Eve Node 3 Responds to Alice's queries

It is important to note, that although the actors are referred to as Alice, Bob, Carol, Dave, Eve,
they need not represent actual users. They will most likely be the access-control encryption
mechanism on a user device, a peer-to-peer application or similar.

4.2 Public-key certi�cation mechanism

Alice can only be certain about Bob's public-key when there have been speci�c conditions met.
Alice should have received Bob's certi�cate - containing his public key and a signed statement
that the public-key belongs to Bob. Furthermore Alice has to be convinced of the certi�cate's
authenticity. Alice has to also trust the entity that signed Bob's certi�cate.

Propagation of authenticity of public-keys is done in a straight-forward way. The method is
already used in PGP's "Web of trust", where a certi�cation chain must exist from Alice to Bob,
so that Alice may trust Bob's certi�cate. PGP's "Web of trust" means in this context a web of
certi�cates, as trust is treated as a separate issue.

An example of a certi�cation chain is shown on �gure 4.1 below:

Alice Carol Dave Bob

Certificate Certificate Certificate

Figure 4.1: Certi�cation chain

The certi�cation chain shows a situation, where Alice can be assured of the authenticity of Bob's
public key by verifying a certi�cation chain. Carol's certi�cate is signed with Alice's signature,
Dave's certi�cate is signed by Carol, and Bob's certi�cate is signed by Dave. Therefore a chain of
valid certi�cate signatures exists, so that Alice can be assured of the validity of Bob's certi�cate
and in turn of the authenticity of his public key.

As an extension to the certi�cation chain, and as suggested in [19], trust and recommendations
are introduced. A recommendation can be thought of a signed statement testifying to the
trustworthiness of a particular entity. This can be compared to real life, where recommendations
play a very important role. For example in the recruitment process for a job, a prospective
employer will be looking for good references from former employers of the person he wishes to

4.3 Syntax 31

hire. Such recommendations are considered explicit, as they refer to the person in particular.
One may also consider references that are implicit - such as that a former Rangers operative
would be perfect for a job at a security company.

In con�dence parameter valuation, Alice has to trust a particular node if she is to accept a signed
certi�cate or signature from that node and consider it as valid. The relation that Alice is ready
to accept signed statements from another node will be referred to as trust. The relation that
a particular node can recommend another node as trustworthy to Alice will be referred to as a
recommendation of level 2. The recommendation that a particular node can recommend another
node as trustworthy to Alice will be referred to as a recommendation of level 3 and so on.

Recommendations play an important role, but can also be considered sensitive information. For
example, it may not be a good idea to let Alice tell the nodes around her whether she trusts
them or not.

An example of a certi�cation chain with trust statements is shown in �gure 4.2

Alice Carol Dave Bob

Certificate Certificate Certificate

Trust

Trust

Trust

Figure 4.2: Certi�cation chain with trust

It is easy to see the certi�cation chain from Alice to Bob, however the trust statements require
a few words of explanation. Every node in the certi�cation chain except Alice and Bob needs to
be trusted. This is due to the fact that Alice trusts herself, and she need not consider Bob as
trustworthy for issuing signed statements about other nodes' certi�cates nor their trustworthi-
ness. Alice is only interested in verifying the authenticity of Bob's public-key - the con�dence in
the statement AutA,B. Trust in Bob - TrustA,B is optional.

4.3 Syntax

4.3.1 Statements

The term point of view used here will refer to a set of information a node has obtained about
the network. This will be the certi�cations and trust of the node itself in other nodes currently

32 Chapter 4. Peer to Peer PKI: Probabilistic con�dence valuation logic

present in the network, as well as certi�cations and recommendations of other nodes.

In describing the state of the network, and the points of views of nodes, the following kinds of
statements are used:

• Authenticity of public keys. AutA,C pronounced as "Belief in the authenticity of Node C's
public key in view of Alice". Graphically this statement is represented as an edge from A
to C.

• Trust TrustA,C,1 pronounced as "Belief that Node X is trustworthy for signing certi�cates
in view of Alice". A trust of higher level TrustA,C,i is pronounced as "Belief that Node X
is trustworthy for issuing recommendations of level i-1 in view of Alice". Graphically this
is represented as a dashed edge from A to C.

• Certi�cates CertB,C pronounced as "Belief in authenticity of Node C's public key in view
of Node B". This basically means that Alice has obtained C's public key signed by B.

• Recommendations RecB,C,i pronounced as "Belief that Node C is trustworthy for issuing
recommendations of level i-1 in view of Node B". This basically means that Alice has
obtained a statement of Trust of level i from Node B for Node C, signed by Node B.

Therefore, the example from �gure 4.2 can be redrawn as shown in �gure 4.3

Alice Carol Dave Bob

AutA,C CertC,D CertD,B

TrustA,C,1

TrustA,D,1
TrustA,B,1

Figure 4.3: Certi�cation chain with trust

It is important to note, that when describing the network, the meaning of the statements becomes
relative. E.g. in the network shown in �gure 4.3, from Alice's point of view the network looks
like this:

{AutA,C , CertC,D, CertD,B, T rustA,C,1, T rustA,D,1, T rustA,B,1}

However, from the point of view of Dave, the network looks like this:

{CertA,C , CertC,D, AutD,B, RecA,C,1, RecA,D,1, RecA,B,1}

Some of the Aut and Cert statements have swapped place, while all TrustA,..,1 statements have
become RecA,..,1(recommendation that a given node is trustworthy for issuing signed statements).

4.4 Derivation rules 33

4.4 Derivation rules

This section will introduce the derivation rules that can be used to derive new statements from
a given view.

The two basic derivation rules that are used throughout this report are presented below:

∀X, Y : AutA,X , T rustA,X,1, CertX,Y =⇒ AutA,Y (4.1)

The above states that given Alice's belief in the authenticity of X's public key, and given Alice's
belief in trustworthiness of X to sign certi�cates, should X sign Y's public key and give it to
Alice, Alice will draw the conclusion that Y's public-key is authentic.

∀X, Y, i ≥ 1 : AutA,X , T rustA,X,i+1, RecX,Y,i =⇒ TrustA,Y,i (4.2)

4.5 Probabilistic model

Equation 4.2 is the derivation statement used when reasoning about trust. The �rst two terms on
the left side of the equation say that Alice has to believe in the authenticity of X's public key and
trust X is trustworthy for issuing recommendations of level i. Should X sign a recommendation
statement of level i for node Y, Alice will draw the conclusion that Node Y is trustworthy for
issuing recommendations of level i-1.

Applying the �rst rule, it is easy to derive new statements from the network given in �gure 4.3.

AutA,C , T rustA,C,1, CertC,D =⇒ AutA,D

AutA,D, T rustA,D,1, CertD,B =⇒ AutA,B

Therefore it was possible to derive the desired statement AutA,B. As mentioned before, the trust
statement TrustA,B,1 was not required to complete the derivation.

Figure 4.4 shows a more complicated example, with higher level trust statements.

The derivation of statement AutA,B is also quite straightforward, as long as we keep in mind that
trust and recommendations of level i TrustA, .., i/RecA, .., i imply trust and recommendations
of lower levels. Therefore we can state:

AutA,C , T rustA,C,1, CertC,D =⇒ AutA,D

AutA,C , T rustA,C,3, RecC,D,2 =⇒ TrustA,D,2

AutA,D, T rustA,D,1, CertD,B =⇒ AutA,B

and optionally, the trust for Bob can also be derived:

AutA,D, T rustA,D,2, RecD,B, 1 =⇒ TrustA,B,1

The two examples also show that if the view does not contain any recommendations of level
higher than 1, then Alice has to trust every intermediate node in the certi�cation path.

34 Chapter 4. Peer to Peer PKI: Probabilistic con�dence valuation logic

Alice Carol Dave Bob

AutA,C CertC,D CertD,B

TrustA,C,3 RecC,D,2 RecD,B,1

Figure 4.4: Certi�cation chain with higher level trust

4.6 Probabilistic con�dence valuation

The problem of computing the con�dence value for a statement AutA,B can be solved by explicitly
calculating all the views V that contain the statements necessary to derive AutA,B and summing
the probabilities of the views. This is, however, akin to an exhaustive search and cannot be
applied e�ectively in networks consisting of a large number of nodes.

Ueli Maurer proposes [19] a more e�cient approach that takes the minimal subsets V1, V2, . . . Vp

that lead to derivation of AutA,B. Then the statement AutA,B can be derived from any subset of
Sa that contains one or more of the minimal subsets. The probability that the statement AutA,B

can be derived will be referred to as the con�dence parameter conf(AutA,B).

Therefore the probability of AutA,B can be expressed as follows:

conf(AutA,B) = P (
p∨

i−1

(Vi ⊆ V iewA)) (4.3)

The above formula is expanded according to the inclusion-exclusion principle which states that
[34]:
Given a p− system1 Sa = {Si}p

i=1 consisting of sets S1, . . . , Sp

P (S1 ∪ S2 ∪ . . . ∪ Sp) =
∑

1≤i≤p

P (Si)−
∑

1≤i1≤i2≤p

P (Si1 ∩ Si2)

+
∑

1≤i1≤i2≤i3≤p

P (Si1 ∩ Si2 ∩ Si3)

− . . . + (−1)p−1P (S1 ∩ V2 ∩ S3 ∩ . . . ∩ Vp) (4.4)

We should also note that each view Vi is in fact a collection of statements Si:

1p− system: a sequence of subsets of a set S. The subsets may be empty or have non-empty intersections.

4.7 Summary 35

Vi = {S1, S2, . . . , Sk}1≤k≤p (4.5)

The probability that a given subsequence Vi ⊆ V iewA is expressed as:

P (Vi ⊆ V iewA) = P (S1 ⊆ V iewA) · P (S2 ⊆ V iewA) · . . . · P (Sk ⊆ V iewA) (4.6)

It is worth noting that

P ((Vi ⊆ V iewA) ∩ (Vj ⊆ V iewA))
= (P (S1 ⊆ V iewA)·P (S2 ⊆ V iewA)·. . .·P (Sk ⊆ V iewA))∩(P (S1 ⊆ V iewA)·P (S2 ⊆ V iewA)·. . .·P (Sl ⊆ V iewA))
= P (S1 ⊆ V iewA)·P (S2 ⊆ V iewA)·. . .·P (Sk ⊆ V iewA)·P (S1 ⊆ V iewA)·P (S2 ⊆ V iewA)·. . .·P (Sl ⊆ V iewA)

(4.7)

And noting that if the views Vi, Vj contain intersecting statements P (Vi ⊆ V iewA) ∩ P (Vi ⊆
V iewA) = P (Vi ⊆ V iewA), the con�dence value conf(AutA,B) can then be expressed as:

conf(AutA,B) =
∑

1≤i≤p

P (Vi ⊆ V iewA)

−
∑

1≤i1≤i2≤p

P ((Vi1 ∪ Vi2) ⊆ V iewA)

+
∑

1≤i1≤i2≤i3≤p

P ((Vi1 ∪ Vi2 ∪ Vi3) ⊆ V iewA)

− . . . + (−1)p−1P ((V1 ∪ V2 ∪ V3 ∪ . . . ∪ Vp) ⊆ V iewA) (4.8)

4.7 Summary

Probabilistic con�dence valuation is inspired by the PGP Web of Trust. A certi�cation chain
used to verify the authenticity of public-keys is extended with the concept of trust. Alice has
to be aware of a certi�cation chain to Bob, and she has to trust every intermediate node either
directly or through a higher level trust path. The concepts of authenticity and trust can be used
to capture a number of interrelations in networks of nodes. Basic syntax is introduced along
with derivation rules that can be used to reason about authenticity and trust.

36 Chapter 4. Peer to Peer PKI: Probabilistic con�dence valuation logic

37

Chapter 5

Design

This chapter introduces the design of the software prototpe used to verify the feasibility of
the probabilistic con�dence valuation concept. Chapter 3.2 introduces the theoretical basis for
con�dence parameter calculation. This chapter builds on the theory and presents a number of
algorithms that can be used to implement a software prototype.

5.1 Algorithm

Based on the theory discussed in section 4 the algorithms that need to be developed are:

• Syntax handling
• Finding a certi�cation path
• Finding a trust path
• Calculating the con�dence value (Inclusion-Exclusion principle)
• Peer to peer harness

5.1.1 Finding a certi�cation path

The �rst step to acknowledging a certi�cate of node B in the network is �nding a chain of
certi�cates that links A and B. The derivation rules contained in Ueli Maurers paper are as
follow:

∀X, Y : AutA,X , T rustA,X,1, CertX,Y =⇒ AutA,Y (5.1)

∀X, Y, i ≥ 1 : AutA,X , T rustA,X,i+1, RecX,Y,i =⇒ TrustA,Y,i (5.2)

Equation (5.1) is of special importance here. It implies, that to make a statement AutA,B there
needs to exist, at a minimum, a chain of certi�cates e.g:

{AutA,X , CertX,Y , CertY, Z, CertZ, B} (5.3)

Therefore an algorithm for �nding certi�cation paths through a network of nodes needs to be
designed. The natural candidate is the Bellman-Ford algorithm. The algorithm operates on an
adjacency matrix representation of a network of nodes.

The algorithm can be written using the following pseudo code:

38 Chapter 5. Design

BELLMAN-FORD(V[])

1 Initialize d[] to 65535 and pi[] to -1

2 d[0]=0

3 for i=1 to length of V[] - 1

4 for each edge (u,v) in V[]

5 RELAX(u,v,w)

RELAX(u,v,w)

1 if d[v]> d[u] + w(u,v)

2 then d[v] = d[u] + w(u,v)

3 pi[v] = u

The algorithm operates on the assumption that the shortest path to a node is the collection of
locally shortest paths. Therefore each iteration it passes through all the edges in the network,
relaxing them - checking if the value at the destination vertex is greater than the value at the
source vertex plus the weight of the path. The iteration is repeated n times, where n is the
number of nodes in the network.

The Bellman-Ford algorithm alone is insu�cient for the task of locating independent certi�cation
paths. Ideally we would like to �nd all possible certi�cation paths so as to maximize the obtained
con�dence value. I have developed a recursive solution building on the B-F algorithm:

CERTPATHS(Sa)

1 Initialize Results[]

2 Path=BellmanFord(Sa)

3 If Path is not null, and it is not in Results[]

4 store Path in results

5 for integer i=1 to number of statements in Path

6 remove statement i from Sa

7 CERTPATHS(Sa)

This algorithm will obtain the shortest path using the Bellman-Ford algorithm, then iterate
through the certi�cation statements comprising the path and remove them one at a time, calling
BellmanFord(Path) recursively with each iteration. As the optimal path is 'broken' the Bellman-
Ford algorithm will �nd the next best path, and the process continues recursively until all paths
are found. This algorithm is much better than an exhaustive search, however it can be considered
quite aggressive. It will work very well for small networks, where it will make best use of the
available resources. For larger views, however, genetic algorithms could be considered to �nd
unique certi�cation paths. This is, however, outside the scope of this report.

5.1.2 Finding a trust path

Going back to Ueli Maurers derivation rules:

∀X, Y : AutA,X , T rustA,X,1, CertX,Y =⇒ AutA,Y (5.4)

∀X, Y, i ≥ 1 : AutA,X , T rustA,X,i+1, RecX,Y,i =⇒ TrustA,Y,i (5.5)

After �nding a certi�cation path, the next step is to ensure that each step along the way is trusted
by the source node. The algorithm developed here uses a modi�ed version of the Bellman-Ford
algorithm where the additive relaxation of the edges is replaced by multiplicative relaxation.

5.1 Algorithm 39

Bob0.8

Carol0.8

Alice

David

0.7

0.7

0.6 0.8

2:0.6

1:0.75

1:0.8

Figure 5.1: Example network

BELLMAN-FORD(V[])

1 Initialize dd[] to 0.0 and pi[] to -1

2 dd[0]=1.0

3 for i = 1 to length of V[] - 1

4 for each edge (u,v) from V[]

5 RELAX(u,v,w)

RELAX(u,v,w)

1 if d[v]< d[u] * w(u,v)

2 then d[v] = d[u] * w(u,v)

3 pi[v] = u

There is, however a problem with this approach which can be demonstrated by looking at the
example in �gure 5.1. The network is small, comprising of 4 nodes, 6 certi�cation and 4 trust
edges. By applying the algorithm described in section 5.1.1 it is easily found that the possible
certi�cation paths through the network are:

A−X −B

A− Y −B

A−X − Y −B

A− Y −X −B

These certi�cation paths are represented by the following certi�cation statements:

V1 = {AutA,X , CertX,B}
V2 = {AutA,Y , CertY,B}

V3 = {AutA,X , CertX,Y , CertY,B}
V4 = {AutA,X , CertY,X , CertX,B}

40 Chapter 5. Design

The next step calls for �nding the trust statements to support the given certi�cation paths. The
paths are found using the modi�ed Bellman-Ford algorithm for each node in the certi�cation
path except the source node A and the destination node B

V1 = {AutA,X , CertX,B}+ {TrustA,X,1} = {AutA,X , CertX,B, T rustA,X,1}
V2 = {AutA,X , CertX,B}+ {TrustA,Y,1} = {AutA,X , CertX,B, T rustA,Y,1}

V3 = {AutA,X , CertX,Y , CertY,B}+ {TrustA,X,1, T rustA,Y,1}
= {AutA,X , CertX,Y , CertY,B, T rustA,X,1, T rustA,Y,1}

V4 = {AutA,X , CertY,X , CertX,B}+ {TrustA,Y,1, T rustA,X,1}
= {AutA,X , CertY,X , CertX,B, T rustA,Y,1, T rustA,X,1}

In the above the probabilities that the trust paths are contained in V iewA are as follows:

V1 : P (TrustA,X,1) = 0.7
V2 : P (TrustA,Y,1) = 0.85

V3 : P (TrustA,X,1) · P (TrustA,Y,1) = 0.7 · 0.85 = 0.595
V4 : P (TrustA,Y,1) · P (TrustA,X,1) = 0.85 · 0.7 = 0.595

I will now suggest an alternative trust path for views V3 and V4, V3 and V4 become:

V3 = {AutA,X , CertX,Y , CertY,B, T rustA,Y,2, T rustA,Y,1, RecY,X,1}
V4 = {AutA,X , CertY,X , CertX,B, T rustA,Y,2, T rustA,Y,1, RecY,X,1}

Due to the fact that the second level trust TrustA,Y,2 implies the existence of TrustA,Y,1 we can
say that:

P (TrustA,Y,2 ⊆ V iewA) · P (TrustA,Y,1 ⊆ V iewA) = P (TrustA,Y,2 ⊆ V iewA)

Given the above, the probability that the trust paths are contained in V iewA are now:

V3 : P (TrustA,Y,1) · P (TrustA,Y,2) · P (RecY,X,1) = 0.7 · 0.9 = 0.63 ≥ 0.595
V4 : P (TrustA,Y,1) · P (TrustA,Y,2) · P (RecY,X,1) = 0.7 · 0.9 = 0.63 ≥ 0.595

The example shows that due to second and higher level relationships it is not possible to optimally
�nd global trust views as locally optimal ones do not necessarily form globally optimal ones. It
is the belief of the author that an exhaustive search would be necessary to �nd globally optimal
trust paths for trust levels higher than one. Therefore the algorithm developed will focus on
trust level 1 and sub optimally on higher trust levels.

Developing an algorithm that can handle higher level trust optimally without performing an
exhaustive search is considered suitable for further research. Genetic or neural network solutions
could provide a way for solving this issue.

5.1 Algorithm 41

5.1.3 Calculating the con�dence value

The problem of computing the con�dence value for a statement AutA,B can be solved by explicitly
calculating all the views V that contain the statements necessary to derive AutA,B and summing
the probabilities of the views. This is, however, akin to an exhaustive search and cannot be
applied e�ectively in networks consisting of a large number of nodes.

[19] proposes a more e�cient approach that takes the minimal subsets V1, V2, . . . Vp that lead
to derivation of AutA,B. Then the statement AutA,B can be derived from any subset of Sa

that contains one or more of the minimal subsets. Therefore the probability of AutA,B can be
expressed as in equation (4.8), repeated for convenience below:

conf(AutA,B) =
∑

1≤i≤p

P (Vi ⊆ V iewA)

−
∑

1≤i1≤i2≤p

P ((Vi1 ∪ Vi2) ⊆ V iewA)

+
∑

1≤i1≤i2≤i3≤p

P ((Vi1 ∪ Vi2 ∪ Vi3) ⊆ V iewA)

− . . . + (−1)p−1P ((V1 ∪ V2 ∪ V3 ∪ . . . ∪ Vp) ⊆ V iewA) (5.6)

Mathematically speaking, the representation of conf(AutA,B) given above is very elegant, how-
ever programistically it presents a challenge. I have developed a recursive algorithm for solving
equation (4.8) given an initial set of views V . The algorithm consists of two parts and is presented
below in pseudo code:

The recursive part of the algorithm is PERMUTATIONS(V, i, prefix) and is de�ned as below:

PERMUTATIONS(V[], i, prefix):

1 initiate Results[]

2 if i = 2

3 for integer j = 0 to length of V[] - 1

4 for integer k = j + 1 to length of V[]

5 store probability of (V[j] + V[k]) int Results[]

6 else

7 for integer j = 1 to length of V[] - i + 1

8 PERMUTATIONS(Views V[1..length], i-1, probability of View V[0])

The above algorithm takes as arguments a pair size i and set of views V . It then performs
permutations as seen in equation (4.8) and stores the individual probabilities in the result array.
For example the call

PERMUTATIONS({V1, V2, V3}, 2)

will yield

{P ((V1 ∪ V2) ⊆ V iewA), P ((V1 ∪ V3) ⊆ V iewA), P ((V2 ∪ V3) ⊆ V iewA)} (5.7)

in the result bu�er.

The CONFIDENCE(V[][]) algorithm uses PERMUTATIONS(V[], i, prefix) in the calculation
of equation (4.8) as seen below:

42 Chapter 5. Design

CONFIDENCE(V[][])

1 Result = 0

2 For each view V in V[][]

3 Result = Result + probability of V[]

4

5 For integer i=2 to length of V[][] - 1

6 Array K[] = Permutations(V[],i,null)

7 For integer j=0 to length of K

8 if j is divisible by 2 then Result = Result + K[j]

9 else Result = Result - K[j]

The variable Result is used to store the �nal value of conf(AutA,B). First the variable is initial-
ized to 0 and the probabilities of views V1 . . . Vp are added together. Next the recursive algorithm
PERMUTATIONS(V[], i, prefix) is called with increasing pair sizes from 2 to lengthofV []− 1.
The contents of the PERMUTATIONS(V[], i, prefix) result bu�er are added or subtracted from
Result depending on whether the pair size is divisible by 2.

This is a very concise and easy to understand way to solve equation (4.8), and can work for a
theoretically unlimited number and size of views V[]. In practice it will be limited by available
memory and maximum values of primitive data types used to store the variables.

5.1.4 Peer to Peer environment

The di�erent algorithms presented in this chapter require a P2P test harness to provide a con-
sistent binding. The solution that is proposed in this paper is designed for maximum clarity
of concept. Communication between instances of network nodes is performed using native Java
sockets. Queries are sent using XML and instances of the same class - network nodes - can act as
peers - both clients and servers. A way onward would be to replace the socket-based Peer to Peer
harness with a full P2P infrastructure such as JXTA. JXTA o�ers the following functionality:

• Service advertisement
• Service discovery
• logical P2P groups

Service advertisement and discovery is a useful feature that would allow for real-life implemen-
tations in the P2P environment. In the prototype presented in this paper, the nodes need to be
made aware of the location of other nodes through user interaction. With JXTA the discovery
and advertisement processes would be fully automated. The JXTA framework was not used in
the prototype for a number of reasons. The �rst reason is clarity - the software prototype is to
serve as a means for evaluating the feasibility of the probability valuation concept. Furthermore
JXTA is often referred to as not fully mature - the system is still under development and not
always stable. As this thesis was prepared in limited allotted time, the design decision was made
not to use JXTA.

5.2 Summary

This chapter builds on the concepts introduced in the previous chapters, and presents the design
of a software prototype that can be used to study the feasibility of the probabilistic trust valuation

5.2 Summary 43

concept. Algorithms and approaches are shown for syntax handling, �nding a certi�cation and
trust paths and calculating the con�dence value. A socket and XML based peer to peer test
harness is used as a binding for the various modules of the prototype.

The design phase leads to several interesting conclusions about the feasibility of probabilistic
con�dence valuation. Finding trust paths for level 1 trust is relatively easy, however with the
introduction of higher level statements, the problem becomes signi�cantly harder. No algorithm
except for exhaustive search can be suggested, as higher level trust introduces dependencies into
the trust graph - the existence of a higher level trust statement implies the existence of a lower
level trust statement.

The next chapter presents the actual implementation of the software prototype. The evaluation
of the software is presented in chapter 7.

44 Chapter 5. Design

45

Chapter 6

Prototype Implementation

This section will present the actual implementation. It starts with an UML diagram presenting
an overview of how the classes intertwine. The following sections will go through the class �les
one by one presenting which part of the design they realize, and presenting the implementation
choices made. The code for the prototype is presented in Appendix A. A sample XML scenario
�le is presented in Appendix B.

6.1 UML Diagram

6.2 threaded_test_harness.java

instances with instantiated threads and waiting until they successfully complete their execution
- using the java.lang.Thread.join(long arg0) method. Once the PNode threads have all �nished,
PNode[0].Sa contains a view with the statements retrieved from the network. This view may then
be used to perform con�dence parameter calculations using the boolean p2p2ki.Paths.getResults(View
V, int dest) command.

6.3 Scenario_writer.java

Scenario �les can be either created by altering the existing XML scenario �les by hand or by
using the supplied generator class. The sample code included is the code that is used to generate
Example4_7.xml. By convention used in this implementation the instances of the PNode class
are stored in a Nodes[] array. The size of the array should always be set to the number of nodes
in the scenario. In our case this is:

PNode Nodes[] = new PNode[4];

Next, each node is con�gured using the getter and setter functions de�ned. The available settings
are:

• void p2p2ki.PNode.setConnectPorts(int[] ports) - sets the array of ports that Alice
will connect to to obtain the information about the other nodes in the network. Use of this
setter should be restricted to Node 0 - Alice.

46 Chapter 6. Prototype Implementation

0..1

statements

0..1

hook

0..1

hook

0..1

String.valueOf(statements[i].hashCode())

0..1

Sa

0..1

edge

0..1
vertices

0..1

V

0..1

N

Void :) (run
String :)Byte[]:bytes (getString

)PNode:hook, Integer:ListenPort, Integer:NodeName (PNodeServer
) (PNodeServer

Integer : NodeName
670 = Integer : ListenPort

PNodeServer

Void :) (run
Byte[] :)String:str (getBytes

)PNode:hook, Integer:SeekNode, Integer:connectPort, String:connectAddress, Integer:ConnectNodeName, Integer:NodeName (PNodeClient
) (PNodeClient

667 = Integer : connectPort
localhost" = String : connectAddress

Integer : SeekNode
Integer : NodeName

Integer : ConnectNodeName

PNodeClient

Runnable

«interface»

«reference»

Void :)Integer:Name (setSeekNode
Void :)Integer:Name (setNodeName

Void :) (run
Socket :)Integer:port (getServerSocket

Integer :) (getSeekNode
Integer :) (getNodeName

Integer :) (getName
PublicKey :)String:Name (getCertificate

Void :)Statement:statement (addExtStatement
Void :)RSAPublicKey:publicKey, String:Name (addCertificate

Boolean :)String:is (Process
) (PNode

Boolean : listening
Integer : listenPort

Integer : connectPorts
String : connectAddresses

String : certificates
Integer : SeekNode
Integer : NodeName

PNode

)Integer:a (Vertex
) (Vertex

Vertex

View :)Integer:dest, View:V, Network:N (getCertPath
Void :) (Print

)View:V (Network
)Integer:a (Network

Integer : vertex_hi

Network

0..1

Boolean :)View:V (isUnique
Boolean :)Integer:dest, View:V (getResults

Boolean :)Integer:dest, View:V (getPaths
Void :) (Print

Void :) (Init

Integer : position

Paths

Result

Boolean :)View:V (isEqual
View :) (getValidTrustNet

View :)Integer:dest, View:CertPath (getTrustView
View :) (getTrustRec

Double :) (getMultipliedold
Double :) (getMultiplied

Integer :) (getMaxTrustLevel
View :) (getAutCert

)View:a (View
)Statement:a (View

)Integer:length (View

) (View
View :)Integer:position (Truncate

View :) (RemoveStubs
View :)Statement:S (Remove

Void :) (Print
View :)View:Va (Add

View

Byte[] :) (toByteArray
Boolean :)Statement:a (isTrustFor

Boolean :)Statement:a (isParallel
Boolean :)Statement:a (isEqual

Integer :) (hashCode
View :)View:VSa (getTrustPath
Boolean :)Object:anObject (equals

)Double:valu, Integer:leve, Integer:t, Integer:fro, Integer:typ (Statement
)Double:valu, Integer:t, Integer:fro, Integer:typ (Statement

)Byte[]:bytes (Statement
) (Statement

Void :) (Println
Void :) (Print

Double : value
Integer : type

Integer : to
Integer : level
Integer : from

Statement

Boolean :) (modifiedBF
View :) (getView

Void :) (Printdd
Void :) (Print

)Integer:des, View:Vi, Network:Ne (BellmanFord
Boolean :) (BF

Integer : pi
Integer : dest

Double : dd
Integer : d

BellmanFordstatementStore

Figure 6.1: UML Diagram of the probabilistic public key valuation model implementation

6.4 PNode.java 47

Load scenario file
Instantiate

communication
threads

Perform
calculations on
obtained view

Display result

Figure 6.2: Threaded_test_harness.java �ow

• void p2p2ki.PNode.setConnectAddresses(String[] addresses) - sets the array of URLs that
Alice will connect to to obtain the information about the other nodes in the network. Used
in companion with the void p2p2ki.PNode.setConnectPorts(int[] ports) method. Use of this
setter should be limited to Node 0 - Alice.

• void p2p2ki.PNode.setCertificates(String[] certnames) - sets an array of paths that
will be used to load public certi�cates into the nodes in the network. For simplicity the cer-
ti�cates are stored on a common directory on the hard drive and are read in at initialization
time. After this time, the certi�cates are only exchanged using socket communication.

• void p2p2ki.PNode.setStatementStore(Statement[] statements) - sets an array of
statements that the particular node is willing to make about the network surrounding
it. The contents primarily re�ect the contents of the certi�cate store - Cert statements
from the point of view of Alice.

• void p2p2ki.PNode.setNodeName(int Name) - used to set the node name. Should be an
integer starting at 0 for Alice.

• void p2p2ki.PNode.setSeekNode(int Name) - used to set the node being seeked out.
Should only be used for Node 0 - Alice.

The con�gured network is saved into an XML scenario �le with the �lename provided as an
argument. If the �le already exists, the user will be presented with a prompt to either overwrite
the existing �le or exit.

6.4 PNode.java

The base class used when instantiating nodes in the network. Depending on settings this class
will instantiate either PNodeClient or PNodeServer communication thread objects. PNode.java
is the representation of a single node on the network and can play the role of both server and
client - hence the peer to peer role.

Each object contains four hashtables:

• public Hashtable AutStore - stores the certi�cates read in at initialization time. The
name AutStore implies that although from the point of view of Alice, the certi�cates are
Cert statements, from the point of view of the particular node they are Aut statements -
the node may play the role of Alice later on.

• public Hashtable statementStore - stores the statements the node can make about the
network.

• public Hashtable extAutStore - stores the certi�cates Alice may collect from the net-
work.

• public Hashtable extStatementStore - stores the statements Alice may collect from the
network.

48 Chapter 6. Prototype Implementation

These hashtables are accessed using appropriate getter

• public String[] getCerti�cates()
• public Statement[] getStatementStore()

and setter functions:

• public void setCertificates(String[])

• public void setStatementStore(Statement[])

• synchronized public void addCertificate(String, RSAPublicKey)

• synchronized public void addExtStatement(Statement)

The last two setter functions are particularly interesting. When Alice instantiates a number of
communication PNodeClient threads, they can securely store the obtained information in Alice
using the synchronized mode setters. The synchronized classi�er makes sure that the given
method can only be held by one thread at a time. Failure to control this would result in a shared
variable violation - corruption of stored information would result.

6.5 PNodeClient.java

This class is used by PNode.java as a communications thread object. Whenever Alice wishes to
query another node about its view of the network, Alice can instantiate a PNodeClient object
using the following statement:

p2p2ki.PNodeClient.PNodeClient(int NodeName, int ConnectNodeName, String connectAddress, int connectPort, int SeekNode, PNode hook)

The parameters are:

• int NodeName - the name of the PNode instantiating the client. The client identi�es itself
with the instantiating node.

• int ConnectNodeName - the name of the node to connect to
• String connectAddress - the URL of the node to connect to
• int connectPort - the port on the above URL to connect to
• int SeekNode - the name of the node being sought on the network
• PNode hook - a handle used to return information to the instantiating PNode

The instantiated PNodeClient will then attempt to connect to the given node and send a XML
query of the form:

"<Query><DestNode Name="3"/></Query>\n"

where "3" stands for int SeekNode. The client then waits for a response on the same socket
and processes the obtained certi�cates and statements storing them using PNode hook and the
appropriate synchronized setter functions.

6.6 PNodeServer.java

This class is also used by PNode.java as a communications thread. Each node in the network can
instantiate a listen server that waits and responds to XML queries from Alice. The instantiation
is done using the following line:

p2p2ki.PNodeServer.PNodeServer(int NodeName, int ListenPort, PNode hook)

The parameters are:

6.7 Statement.java 49

• int NodeName - the name of the instantiating PNode class
• int ListenPort - the port at which the server thread should listen for queries
• PNode hook - PNode hook that is used when generating responses to queries

The instantaiated PNodeServer will stand by and listen for a XML query, respond on the same
socket and exit.

6.7 Statement.java

The class is the core part of the syntax handling framework as shown in a section of the UML
diagram - 6.1. The class is used for performing comparison operations on statements and as a
basis for higher level syntax classes. The most important methods are:

• public boolean isEqual(Statement a) - returns true if the statement in the instance
and the argument are equal

• public int hashCode() and public boolean equals(Object anObject) - required meth-
ods to be able to store Statement objects in a Hashtable. The hashCode method returns
a string representing the contents of the statement, and the equals method returns true
only if the argument object is is of type Statement and if it is equal to the statement stored
in the called object.

• public boolean isParallel(Statement a) - returns true if the source and destination
node IDs are the same. This method is used when checking for dependent statements (such
as TrustA,C,1 and TrustA,C,2).

The class also contains getters and setters for the publicly available members. The duality of
access (public members and getters/setters) is necessary to allow for saving scenario �les using
XMLEncoder. Each class saved using XMLEncoder must implement getters and setters for all the
public members that are to be saved.

6.8 View.java

Second class in the core syntax handling framework. A view is essentially an array of statements.
The methods available can be used to perform useful manipulation functions such as adding or
removing a Statement from a View. The most important methods are as follows:

• public View Add(View Va) - Used to add two views together. In particular the second
view may consist of a single statement, and then the function serves as adding a single
Statement to a View.

• public View getAutCert() - Returns a view containing only Aut and Cert statements
from the view stored in the called object. Used when locating a certi�cation path.

• public View getTrustRec() - Returns a view containing only Trust and Rec statements
from the view stored in the called object. Used when �nding trust paths.

• public View getValidTrustNet() - When used on a view containing only Trust and
Rec statements, the method will verify whether �rst level Rec statements are backed up
by appropriate second or higher level Trust and Rec statements. Used when searching for
a trust path through the network.

• public View getTrustView(View CertPath, int dest) - When used on a view contain-
ing a certi�cation path, the method will �nd trust paths for each node in the network and
return the aggregate trust view.

50 Chapter 6. Prototype Implementation

• public double getMultiplied() - Finds P (V ⊆ V iewA) - for independent statements,
this is simply a multiplication of the individual probabilities P (Si ⊆ V iewA). When
dependent methods are encountered, they are not multiplied together - only the highest
level statement is considered, the existence of lower level statements is implied.

As can be seen above, the class is heavily used in di�erent parts of the implementation - when
looking for certi�cation and trust paths, and when calculating the con�dence parameter.

6.9 permutations.java

The permutations.java class handles the core part of solving the inclusion-exclusion equation
to obtain the con�dence parameter as discussed in 5.1.3. The class is �rst called using:

static public double solveEquation(View V[])

where View V[] represents the array of minimal views from which AutA,B can be derived. The
method then calls the static

perm(View V[], int pair_size, View prefix)

method which recursively calculates the required combinations of views. The method is a direct
implementation of the algorithm presented in section 5.1.3.

The main challenge when implementing this class was the choice of the size of the result bu�er.
The bu�er is declared as:

public static DoubleBuffer ResultBuffer = DoubleBuffer.allocate(nnn)

When evaluating the performance of the implementation, it became apparent that the allocation
and clearing of this bu�er was taking a considerable amount of time - about 50% of execution
time for a network of 4 nodes, 4 certi�cation paths and nnn= 262144. nnn was chosen to be 1024,
which is su�cient for medium and small networks. For larger networks, nnn should be increased
for networks of more than 8 nodes and 12 certi�cation paths.

The limit set is considered su�cient, as with Trust being a quickly fading resource, networks of
more than 2-3 hops are unlikely to produce valid views from which AutA,B can be derived.

6.10 Network.java

The Network.java class is a helper class designed to convert a view of a network to an adjacency
matrix representation suitable for the BellmanFord shortest path algorithm. The design choice
was made for performance reasons. The views are unsorted by design, and therefore each scan of
the Bellman Ford algorithm would need to deduce the network structure from the view. Bellman
Ford algorithm is likely to run faster on its native adjacency matrix representation - a structured
network representation.

The conversion from view to adjacency matrix representation is done using the constructor:

public Network(View V)

Furthermore, the Network.java class contains the method used to �nd the certi�cation path
through the network:

6.11 BellmanFord.java 51

public View getCertPath(Network N, View V, int dest)

where Network N is the adjacency matrix representation of View V. The latter contains only Aut
and Cert statements. int dest contains the name of the destination node. The source node is
assumed to be Node 0.

6.11 BellmanFord.java

The class BellmanFord.java implements two kinds of the Bellman Ford shortest path algorithm.
It is �rst initialized with the constructor:

public BellmanFord(Network Ne, View Vi, int des)

where Network Ne is the adjacency matrix representation of View Vi. int des is the name of
the destination node.

One of the two Bellman Ford algorithms is then called:

• Standard Bellman Ford - Implements the general additive, lower value is best Bellman Ford
algorithm as discussed in 5.1.1. The result is stored in the int d[] minimum distance and
int pi[] previous node arrays.

• Modi�ed Bellman Ford - Implements the multiplicative, higher value is best Bellman Ford
algorithm as discussed in 5.1.2. The result is stored in the double dd[] minimum distance
and int pi[] previous node arrays.

The calling object then uses the public View getView() method. This method returns the
resulting int pi[] array as a certi�cation path, matching int pi[] against the stored View Vi.

52 Chapter 6. Prototype Implementation

53

Chapter 7

Evaluation

The probabilistic con�dence valuation concept has been proven to be mostly feasible for imple-
mentation. A set of algorithms were developed and documented based on theoretical foundations.
It was, however, noted that higher level trust paths require an exhaustive search to be performed.
This presents an obstacle on the way to a practical implementation. A further research path
would need to focus on developing an algorithm that could �nd higher level trust paths in less-
than-exhaustive time.

7.1 Performance

The execution time of the implementation was tested on a number of small to medium networks
from 4 to 8 nodes, with 2 to 12 certi�cation paths. It was found that the algorithm scales
reasonably well. For large networks, however, sensitivity analysis would be in order, as the
algorithm attempts to �nd all available paths between source and destination nodes. This is
extremely bene�cial in small networks, of Trust-1 type, however in larger networks some paths
can readily be discarded as they contribute little to the �nal con�dence parameter.

The table shown below summarizes the performance runs of the software prototype:

Scenario Run1 Run2 Run3 Run4 Run5 Avg. Comment
Example4_3.xml 70ms 80ms 80ms 90ms 90ms 82ms 3 nodes, 1 certi�cation path
Example4_4.xml 110ms 120ms 110ms 110ms 111ms 112.2ms 4 nodes, 2 certi�cation paths
Example4_5.xml 131ms 110ms 140ms 130ms 130ms 128.2ms 5 nodes, 2 certi�cation paths
Example4_6.xml 160ms 110ms 120ms 120ms 120ms 126ms 4 nodes, 3 certi�cation paths
Example4_7.xml 120ms 140ms 130ms 131ms 140ms 132.2ms 4 nodes, 4 certi�cation paths

It is important to note that the measurements show that the execution time is very short - on the
order of 100ms. This is a length of time which can't be measured accurately. In non-real time
operating systems, there are numerous factors in�uencing the execution time of programs. The
execution time varied a lot from execution to execution, and it can be seen that the setup overhead
time - memory allocation etc. - is comparable with the execution time of the algorithm. Execution
time for 1 certi�cation path was 82ms on average, and it was 112.2ms for two certi�cation paths.
The main conclusion that can be reliably made about the algorithm is that the execution time
is very short, and that it scales reasonably well. Optimizations to the path search algorithm -
sensitivity analysis can de�nitely optimize scalability further.

54 Chapter 7. Evaluation

7.2 Contributions made to the �eld

This thesis demonstrates a complete design and implementation of a software prototype for
evaluating the probabilistic con�dence valuation concept. Peer to Peer, ad-hoc environments
present a new challenge to designing an e�ective PKI. Probabilistic con�dence valuation may
prove to be the solution that enables numerous applications utilizing next generation wireless
hand held devices.

A set of algorithms for realizing the core concept behind the Peer to Peer PKI is presented. The
algorithms for handling the probabilistic con�dence valuation syntax, �nding certi�cation and
trust paths and calculating the con�dence value are presented.

7.3 Further research

Further work on the prototype could be done in order to move closer to a practical implementation
of a Peer to Peer PKI. A number of development paths are outlined below:

• elaborate XML data exchange protocol
• algorithm for handling higher level trust
• JXTA framework implementation
• Extend the path �nding algorithm with sensitivity analysis, so that only the paths con-
tributing most to the end result are considered

The prototype nodes use XML queries to ask for information from other nodes in the network.
This could be extended to a more general XML based protocol, allowing for peer version num-
bering, capabilities, service advertisement etc.

The design phase identi�ed a problem with the algorithm for �nding higher level trust paths - an
algorithm that would �nd a set of optimal trust paths in the network would require an exhaustive
search to be performed. This is unacceptable in any practical implementation, therefore further
research is needed to overcome this problem.

A P2P harness using JXTA's service advertisement and discovery could be used in a �nal imple-
mentation of a Peer to Peer PKI

Finally, although the prototype is quite fast with execution times on the order of 100ms-160ms,
the scalability and speed could be improved further by introducing sensitivity analysis to the
certi�cation path search. The algorithm should be able to discard paths which contribute least
to the �nal con�dence parameter value.

55

Chapter 8

Summary

Implementing a PKI in a Peer to Peer environment presents a challenge. The wireless Peer
to Peer environment lacks the infrastructure necessary to implement a X.509-style PKI. X.509
requires the presence of a hierarchy of certi�cation servers - a root server with a self-signed
certi�cate and regional servers whose certi�cates are signed by the root server. These servers
then issue signed certi�cates for individual entities. In an ad-hoc environment we cannot assume
that there will be a connection to the infrastructure certi�cate servers. Therefore there is a need
to introduce a new concept - the Peer to Peer PKI.

The P2P PKI is based on a core concept introduced by Ueli Maurer - probabilistic con�dence
valuation. This idea builds on the PGP Web of Trust concept, where the usual certi�cation hier-
archy is replaced by a chain of certi�cates. Each entity issues their own self-signed certi�cate, and
contributes to the system by signing other entities' certi�cates. An entity wishing to determine
the validity of another entitie's certi�cate needs to �nd a complete chain of signatures leading to
the other entity. Probabilistic con�dence valuation extends this concept in two ways. First of all
the concept of trust is introduced. In addition to �nding a certi�cation chain, the entity needs
to trust each node along the way. The other enhancement is the de�nition of the probability
that a given statement - be it authenticity or trust - is valid. Therefore each statement in the
certi�cation and trust chains has a probability assigned. This can then be used to determine the
overall con�dence parameter by solving the inclusion-exclusion equation.

This thesis presents the design, implementation and evaluation of a software prototype. The
prototype is used to evaluate the core concept behind the Peer to Peer PKI - the probabilistic
con�dence valuation. In a given network of nodes, and given probabilities assigned to the indi-
vidual statements a set of algorithms is developed to calculate the con�dence parameter for the
statement AutA,B - Alice's belief that Bob's certi�cate is authentic.

The design of the software prototype pointed to some signi�cant �ndings. The design and im-
plementation of algorithms for �nding the con�dence parameter for a level 1 trust network is
relatively easy. The algorithms for �nding certi�cation and trust paths are based on the well
known and e�cient Bellman-Ford algorithm. The inclusion-exclusion equation can be calcu-
lated using a recursive algorithm presented in this thesis. However, the introduction of higher
level trust complicates the valuation of the con�dence parameter. Higher level trust statements
imply the existence of lower level trust statements, which introduces interdependencies in the
trust graph of the network. An algorithm that would �nd optimum trust paths would requires
exhaustive search time, which is acceptable theoretically, but not in a practical implementation.

56 Chapter 8. Summary

Future research in this area could concentrate on improving scalability of the algorithm by
introducing sensitivity analysis to the path �nding algorithms. Additionally, theoretical work
could be done in order to �nd a less-than-exhaustive algorithm for determining the trust path
in a higher level trust network.

57

Bibliography

[1] Internet2 consortium http://www.internet2.edu/about/ Last visited on 11.07.2004
[2] SUNET Internet2 Land Speed Record: 69.073 Pbmps http://proj.sunet.se/LSR2/. Last

visited on 11.07.2004.
[3] Philip Zimmerman's Web of Trust http://www.rubin.ch/pgp/weboftrust.en.html. Last vis-

ited on 11.07.2004.
[4] Personal Communications Service (PCS) http://wireless.fcc.gov/services/broadbandpcs/.

Last visited on 11.07.2004.
[5] Global System for Mobile Communications http://www.gsmworld.com/technology/gsm.shtml.

Last visited on 11.07.2004.
[6] General Packet Radio Service (GPRS) http://www.gsmworld.com/technology/gprs/index.shtml.

Last visited on 11.07.2004.
[7] Enhanced Data Rates for Global Evolution (EDGE)

http://www.gsmworld.com/technology/edge/index.shtml. Last visited on 11.07.2004.
[8] Universal Mobile Telecommunications System (UMTS) http://www.umts-forum.org/. Last

visited on 11.07.2004.
[9] CDMA2000 - a registered trademark of Qualcomm

http://www.cdmatech.com/solutions/cdma2000_3g_solutions.jsp?L2=cdma2000_3g_solutions.
Last visited on 11.07.2004.

[10] Wireless Fidelity / Wireless LAN (WLAN)
http://www.wi-�.org/OpenSection/why_Wi-Fi.asp?TID=2. Last visited on 11.07.2004.

[11] Bluetooth https://www.bluetooth.org/spec/. Last visited on 11.07.2004.
[12] Home RF http://www.palowireless.com/homerf/about.asp Last visited on 11.07.2004
[13] IrDA http://www.irda.org/displaycommon.cfm?an=1. Last visited on 11.07.2004.
[14] Near Field Communication (NFC)

http://www.semiconductors.philips.com/markets/identi�cation/products/nfc/. Last visited
on 11.07.2004.

[15] Radio Frequency Identi�cation http://www.aimglobal.org/technologies/r�d/. Last visited
on 11.07.2004.

[16] Secure Socket Layer (SSL) http://wp.netscape.com/security/techbriefs/ssl.html. Last vis-
ited on 11.07.2004.

[17] W.Di�e and M.E.Hellman, "New directions in cryptography," IEEE Trans. Inform. Theory,
IT-22, 6, 1976, pp.644-654. Available at: http://citeseer.ist.psu.edu/di�e76new.html

[18] L. Kohnfelder, "Towards a Practical Public-Key Cryptosystem", Available at:
http://theses.mit.edu/Dienst/UI/2.0/Composite/0018.mit.theses/1978-29/1

[19] Ueli Maurer. "Modelling a public-key infrastructure." In Computer Security - ESORICS'96.
Springer-Verlag, 1996. Available at: http://citeseer.ist.psu.edu/maurer96modelling.html

[20] Andy Oram. "Peer-to-Peer: Harnessing the Power of Disruptive Technologies"(Chapter 1).
March 2001. Available at: http://www.oreilly.com/catalog/peertopeer/chapter/ch01.html

58 BIBLIOGRAPHY

[21] R. L. Rivest and B. Lampson, "SDSI - A Simple Distributed Security Infrastructure". April
1996.

[22] C. Ellison et al., "RFC 2693 - SPKI Certi�cate Theory", September 1999, Available at:
ftp://ftp.isi.edu/in-notes/rfc2693.txt

[23] Philip Zimmerman. http://www.philzimmermann.com/. Last visited on 11.07.2004.
[24] PGP Corporation. http://www.pgp.com/. Last visited on 11.07.2004.
[25] Rivest, R. L., Shamir, A., Adleman, L. A. "A method for obtaining digital signatures and

public-key cryptosystems", Communications of the ACM, Vol.21, Nr.2, 1978, S.120-126.
Available at: http://citeseer.ist.psu.edu/rivest78method.html

[26] The Freenet Project http://freenet.sourceforge.net/. Last visited on 11.07.2004.
[27] BitTorrent http://bitconjurer.org/BitTorrent/. Last visited on 11.07.2004.
[28] Red vs Blue http://www.redvsblue.com/. Last visited on 11.07.2004.
[29] Knoppix ISO images http://www.knoppix.net/get.php Last visited on 11.07.2004
[30] Akamai http://www.akamai.com/index_�ash.html. Last visited on 11.07.2004.
[31] Google http://www.google.com/. Last visited on 11.07.2004.
[32] Network News Transport Protocol (NNTP) http://www.ietf.org/rfc/rfc977.txt. Last visited

on 11.07.2004.
[33] TErrestrial Trunked RAdio (TETRA) http://www.tetramou.com/. Last visited on

11.07.2004.
[34] Mathworld. Inclusion-Exclusion principle

http://mathworld.wolfram.com/Inclusion-ExclusionPrinciple.html Last visited on
11.07.2004

[35] Bruce Schenier. "Applied Cryptography: Protocols, Algorithms and Source Code in C".
John Wiley & Sons Inc. November 1995.

59

Appendix A

Source Code

A.1 Statement.java

package p2p2ki;

import java.io.ByteArrayInputStream;

import java.io.ByteArrayOutputStream;

import java.io.IOException;

/**

* @author Tomasz Cholewinski s020054

*/

public class Statement {

public int type;

public int from;

public int to;

public int level;

public double value;

public Statement(){}

public Statement(int typ, int fro, int t, int leve, double valu) throws Exception

{

if(typ!=1 && typ!=3) new Exception("Statement must be of type Trust or Rec");

if(valu<0 || valu>1) new Exception("Value must be between 0 and 1");

type=typ; from=fro; to=t; level=leve; value=valu;

}

public Statement(int typ, int fro, int t, double valu) throws Exception

{

if(typ!=0 && typ!=2) new Exception("Statement must be of type Aut or Cert");

if(valu<0 || valu>1) new Exception("Value must be between 0 and 1");

type=typ; from=fro; to=t; value=valu;

60 Appendix A. Source Code

}

public boolean isEqual(Statement a)

{

if(a.type==type && a.from==from && a.to==to && a.level==level) return true;

else return false;

}

public boolean equals(Object anObject)

{

if((anObject.getClass()==Statement.class)&&(this.isEqual((Statement)anObject)))

return true;

else return false;

}

public boolean isParallel(Statement a)

{

if(a.from==from && a.to==to) return true;

else return false;

}

public void Print()

{

if(this==null) System.out.println("Undefined");

System.out.print(" ");

switch(this.type)

{

case 0: System.out.print("Aut"+this.value+" ");break;

case 1: System.out.print("Trust"+this.value+" ");break;

case 2: System.out.print("Cert"+this.value+" ");break;

case 3: System.out.print("Rec"+this.value+" ");break;

case -1: System.out.print("Stub ");break;

default: System.out.print("Unk ");break;

}

System.out.print(""+this.from+"->"+this.to);

}

public void Println()

{

Print();System.out.println();

}

public View getTrustPath(View VSa) throws Exception

{

try

{

BellmanFord BelF =

new BellmanFord(

A.1 Statement.java 61

new Network(VSa.getTrustRec()), VSa.getTrustRec(), this.from);

if(BelF.modifiedBF()) {return BelF.getView();}

else return new View();

}

catch(Exception e) {throw new Exception(e);}

}

public int hashCode()

{

String Return = ""+type+from+to+level+value;

return Return.hashCode();

}

public byte[] toByteArray() throws IOException

{

ByteArrayOutputStream result = new ByteArrayOutputStream();

result.write(type);

result.write(from);

result.write(to);

result.write(level);

result.write(String.valueOf(value).getBytes());

return result.toByteArray();

}

public Statement(byte[] bytes)

{

ByteArrayInputStream result = new ByteArrayInputStream(bytes);

type=result.read();

from=result.read();

to=result.read();

level=result.read();

byte value[] = new byte[result.available()];

result.read(value,0,result.available());

this.value= (new Double(new String(value))).doubleValue();

}

/**

* Returns the from.

*/

public int getFrom() {

return from;

}

/**

* The from to set.

*/

public void setFrom(int from) {

62 Appendix A. Source Code

this.from = from;

}

/**

* Returns the level.

*/

public int getLevel() {

return level;

}

/**

* The level to set.

*/

public void setLevel(int level) {

this.level = level;

}

/**

* Returns the to.

*/

public int getTo() {

return to;

}

/**

* The to to set.

*/

public void setTo(int to) {

this.to = to;

}

/**

* Returns the type.

*/

public int getType() {

return type;

}

/**

* The type to set.

*/

public void setType(int type) {

this.type = type;

}

/**

* Returns the Value.

*/

public double getValue() {

return value;

}

/**

* The Value to set.

*/

public void setValue(double value) {

A.2 View.java 63

this.value = value;

}

}

A.2 View.java

package p2p2ki;

/**

* @author Tomasz Cholewinski s020054

*/

public class View {

public Statement statements[];

public View(){}

public View(int length)

{

statements = new Statement[length];

}

public View(Statement a[])

{

statements = new Statement[a.length];

for(int i=0; i<a.length; i++) statements[i]=a[i];

}

public View(View a)

{

statements = new Statement[a.statements.length];

for(int i=0; i<a.statements.length; i++) statements[i]=a.statements[i];

}

public View Add(View Va)

{

if(this.statements==null || this.statements.length==0)

if(Va.statements==null || Va.statements.length==0) return new View();

else return Va;

if(Va.statements==null || Va.statements.length==0)

if(this.statements==null || this.statements.length==0) return new View();

else return this;

View V = new View(Va.statements.length+this.statements.length);

64 Appendix A. Source Code

for(int i=0; i<Va.statements.length; i++) V.statements[i]=Va.statements[i];

for(int i=0; i<this.statements.length; i++)

V.statements[Va.statements.length+i]=this.statements[i];

//Worst case result length is the sum of the lengths of the two views.

View Result = new View(Va.statements.length+this.statements.length);

int position=0; boolean found=false;

Result.statements[position++]=V.statements[0];

for(int i=1; i<V.statements.length; i++)

for(int j=0; j<position; j++)

{

if(V.statements[i].isEqual(Result.statements[j])) j=position;

else if(j==position-1) Result.statements[position++]=V.statements[i];

}

//Truncate the result.

return Result.Truncate(position);

}

public View getAutCert()

{

if(this.statements.length==0) return new View();

View Set=this;

int position=0;

View Result = new View(Set.statements.length);

for(int i=0; i<Set.statements.length; i++)

{

if(Set.statements[i].type==0 || Set.statements[i].type==2)

Result.statements[position++]=Set.statements[i];

}

return Result.Truncate(position);

}

public int getMaxTrustLevel()

{

if(this.statements==null) return 0;

int max_trust=0;

for(int i=0; i<this.statements.length; i++)

if(this.statements[i].level>max_trust)

max_trust=this.statements[i].level;

return max_trust;

}

A.2 View.java 65

public double getMultiplied()

{

if(this!=null)

{

double Result=1;

for(int i=0; i<statements.length; i++)

if(this.statements[i].type==1||this.statements[i].type==3)

{

int max_trust=0;

for(int j=0; j<this.statements.length; j++)

if(this.statements[j].isParallel(this.statements[i]) && this.statements[j].level>max_trust)

max_trust=this.statements[j].level;

if(this.statements[i].level==max_trust) Result*=statements[i].value;

}

else Result*=statements[i].value;

return Result;

}

else return 0.0;

}

public View getTrustRec()

{

if(this.statements.length==0) return new View();

View Set=this;

int position=0;

View Result = new View(Set.statements.length);

for(int i=0; i<Set.statements.length; i++)

{

if(Set.statements[i].type==1 || Set.statements[i].type==3)

Result.statements[position++]=Set.statements[i];

}

return Result.Truncate(position);

}

public View getTrustView(View CertPath, int dest) throws Exception

{

try

{

View Result = new View();

View TrustNet = this.getValidTrustNet();

for(int i=0; i<CertPath.statements.length; i++)

if(CertPath.statements[i].from!=0 && CertPath.statements[i].from!=dest)

66 Appendix A. Source Code

{

View Trust = CertPath.statements[i].getTrustPath(this);

if(Trust.statements!=null && Trust!=null) Result=Result.Add(Trust);

else return new View();

}

return Result.RemoveStubs();

}

catch(Exception e) {throw new Exception(e);}

}

public View getValidTrustNet()

{

if(this.statements==null) return new View();

//Prepare the result buffer

View Result = this.getTrustRec();

int position=0;

//Get the nmax maximum trust level in the view

int nmax=0;

for (int i=0; i<this.statements.length; i++)

if((this.statements[i].type==1 || this.statements[i].type==3)

&&this.statements[i].level>nmax) nmax=this.statements[i].level;

//If no trust statements were found in the view, return an empty view

if(nmax==0) return new View();

//This could use a network adjacency matrix...

//Iterate through the network nmax times

for(int i=0; i<nmax; i++)

{

for(int j=0; j<Result.statements.length; j++)

{

boolean found=false;

if(Result.statements[j].type==-1||Result.statements[j].type==1) found=true;

for(int k=0; k<Result.statements.length; k++)

{

if(Result.statements[k].to==Result.statements[j].from &&

Result.statements[k].level>Result.statements[j].level)

{found=true; break;}

}

//if no valid trust neighbours were found, insert a stub instead of the statement

if(!found) Result.statements[j]=new Statement();

}

A.2 View.java 67

}

return Result.RemoveStubs();

}

public boolean isEqual(View V)

{

if(this.statements.length!=V.statements.length) return false;

for(int i=0; i<V.statements.length; i++)

if(!(this.statements[i].isEqual(V.statements[i]))) return false;

return true;

}

public void Print()

{

if(this.statements==null) System.out.println("Null");

else

{

for(int i=0; i<this.statements.length; i++) this.statements[i].Print();

System.out.println();

System.out.println(" (Multiplied value is "+this.getMultiplied()+")");

}

}

public View Remove(Statement S)

{

if(this.statements==null) return new View();

if(S==null) return this;

if(this.statements.length>=1)

{

if(this.statements.length==1 && this.statements[0]==S) return new View();

if(this.statements.length==1 && this.statements[0]!=S) return this;

View Result = new View(this.statements.length-1);

int pos=0;

for(int i=0; i<this.statements.length; i++)

if(this.statements[i]!=S) Result.statements[pos++]=this.statements[i];

return Result;

}

//if the this View is empty return a new empty view.

return new View();

}

public View RemoveStubs()

{

68 Appendix A. Source Code

if(this.statements!=null)

{

View Result = new View(this.statements.length);

int position=0;

for(int i=0; i<this.statements.length; i++)

if(this.statements[i]!=null)

Result.statements[position++]=this.statements[i];

return Result.Truncate(position);

}

else return new View();

}

public View Truncate(int position)

{

if(position==0) return new View();

View ActualResult = new View(position);

for(int i=0; i<position; i++) ActualResult.statements[i]=this.statements[i];

return ActualResult;

}

}

A.3 Network.java

package p2p2ki;

/**

* @author Tomasz Cholewinski s020054

*/

public class Network {

public class Vertex

{

public Statement edge[];

public Vertex() {}

public Vertex(int a) {edge=new Statement[a];}

}

public int vertex_hi;

public Vertex vertices[];

public Network(int a)

{

vertices=new Vertex[a];

A.3 Network.java 69

}

public Network(View V) throws Exception

{

try

{

if(V.statements==null) return;

/*

* Scan for the highest nunmbered vertex in the View

* The source vertex S always has the id of 0.

*/

vertex_hi=0;

for(int i=0; i<V.statements.length; i++)

{

if(V.statements[i].from>vertex_hi) vertex_hi=V.statements[i].from;

if(V.statements[i].to>vertex_hi) vertex_hi=V.statements[i].to;

}

vertices = new Vertex[vertex_hi+1];

for(int i=0; i<=vertex_hi; i++)

{

int type_tmp[]=new int[256];

int to_tmp[]=new int[256];

double value_tmp[]=new double[256];

int level_tmp[]=new int[256];

int position=0;

for(int j=0; j<V.statements.length; j++)

if(V.statements[j].from==i)

{

to_tmp[position++] = V.statements[j].to;

value_tmp[position-1] = V.statements[j].value;

level_tmp[position-1] = V.statements[j].level;

type_tmp[position-1] = V.statements[j].type;

}

vertices[i]= new Vertex();

if(position!=0)

{

vertices[i].edge = new Statement[position];

for(int k=0; k<position; k++)

vertices[i].edge[k]=new Statement(type_tmp[k], i, to_tmp[k], level_tmp[k], value_tmp[k]);

}

else

{

Statement s[] = {new Statement()};

vertices[i].edge = s;

}

70 Appendix A. Source Code

}

}

catch(Exception e) {throw new Exception(e);}

}

public View getCertPath(Network N, View V, int dest)

{

//Bellman-Ford algorithm

BellmanFord BelF = new BellmanFord(N,V.getAutCert(),dest);

//Check if a shortest route can be found

if(BelF.BF()) return BelF.getView();

else return new View();

}

public void Print()

{

for(int i=0; i<this.vertices.length; i++)

{

System.out.print("Vertex "+ i + " :");

for(int j=0; j<this.vertices[i].edge.length; j++)

System.out.print(" "+this.vertices[i].edge[j].to+",");

System.out.println();

}

}

}

A.4 Paths.java

package p2p2ki;

/**

* @author Tomasz Cholewinski s020054

*/

public class Paths {

private static View Result[] = new View[256];

private static int position=0;

/*

* The purpose of the recursive getPaths function is to take an initial view,

* determine if there is a shortest path from node 0 to node dest and iterate

* recursively through the path removing statements - "breaking" the shortest path

* in order to obtain the next best shortest path, then "breaking" it and so on. The

* recursion proceeds to such a depth that a new shortest path cannot be found so that

A.4 Paths.java 71

* eventually all unique paths are found.

*/

public static boolean getPaths(View V, int dest) throws Exception

{

try

{

Network N = new Network(V.getAutCert());

if(N.vertex_hi<dest) return false;

View Res = N.getCertPath(N, V, dest);

if(Res.statements==null) return false;

else

{

View Trust=V.getTrustView(Res,dest);

if (Trust.statements!=null && isUnique(Res.Add(Trust))) Result[position++]=Res.Add(Trust);

for (int i=0; i<Res.statements.length; i++)

getPaths(V.Remove(Res.statements[i]), dest);

return true;

}

}

catch(Exception e) {throw new Exception(e);}

}

public static void Init()

{

Result = new View[256];

position = 0;

}

public static void Print()

{

for(int i=0; i<position; i++)

Result[i].Print();

}

public static boolean isUnique(View V)

{

for(int z=0; z<position; z++)

{

if(Result[z].isEqual(V)) return false;

}

return true;

}

public static boolean getResults(View V, int dest) throws Exception

{

try

{

72 Appendix A. Source Code

Init();

if(getPaths(V, dest))

{

View ActualResult[] = new View[position];

for(int i=0; i<position; i++)

{

ActualResult[i]=Result[i];

System.out.print("Path "+(i+1)+":");

ActualResult[i].Print();

}

double result=permutations.solveEquation(ActualResult);

System.out.println("P(Aut(0->"+dest+"))="+result);

return true;

}

else return false;

}

catch(Exception e) {throw new Exception(e);}

}

}

A.5 BellmanFord.java

package p2p2ki;

/**

* @author Tomasz Cholewinski s020054

*/

public class BellmanFord {

private class MDBF { double dd[]; int pi[]; MDBF(){}}

public int d[];

public double dd[];

public int dest;

public Network N;

public int pi[];

public View V;

/*

* The initializer for the BellmanFord class. Takes a View Vi,

* a network Ne (obtained from the view Vi) and an integer destination dest.

*/

public BellmanFord(Network Ne, View Vi, int des)

{

if(Ne.vertices==null || Vi==null) return;

N = Ne;

A.5 BellmanFord.java 73

V = Vi;

dest = des;

d = new int[N.vertices.length+1];

pi = new int[N.vertices.length+2];

dd = new double[N.vertices.length+1];

}

public boolean BF()

{

if(d==null) return false;

for(int i=0; i<=N.vertices.length; i++)

{

d[i]=65535;

pi[i]=-1;

}

d[0]=0;

pi[N.vertices.length+1]=dest;

for(int i=1; i<=N.vertices.length-1; i++)

{

for(int j=0; j<N.vertices.length; j++)

for(int k=0; k<N.vertices[j].edge.length; k++)

if(d[N.vertices[j].edge[k].to]>(d[j]+1))

{

d[N.vertices[j].edge[k].to]=d[j]+1;

pi[N.vertices[j].edge[k].to]=j;

}

}

if(N.vertex_hi<dest || d[dest]==65535) return false;

return true;

}

public View getView()

{

View Result = new View(V.statements.length);

int position=0;

int to_node=pi[N.vertices.length+1];

int from_node=pi[dest];

if(N.vertex_hi<dest || (d[dest]==65535 && dd[dest]==0.0)) return new View();

while(from_node!=-1)

{

for(int j=0; j<V.statements.length; j++)

if(V.statements[j].from==from_node && V.statements[j].to==to_node)

Result.statements[position++]=V.statements[j];

to_node=pi[to_node];

from_node=pi[from_node];

}

74 Appendix A. Source Code

return Result.Truncate(position);

}

public boolean modifiedBF()

{

if(dd==null) return false;

for(int i=0; i<=N.vertices.length; i++)

{

dd[i]=0.0;

pi[i]=-1;

}

dd[0]=1.0;

pi[N.vertices.length+1]=dest;

for(int i=1; i<=N.vertices.length-1; i++)

{

for(int j=0; j<N.vertices.length; j++)

for(int k=0; k<N.vertices[j].edge.length; k++)

if(dd[N.vertices[j].edge[k].to]<(dd[j]*N.vertices[j].edge[k].value))

{

dd[N.vertices[j].edge[k].to]=dd[j]*N.vertices[j].edge[k].value;

pi[N.vertices[j].edge[k].to]=j;

}

}

if(N.vertex_hi<dest || dd[dest]==0.0) return false;

return true;

}

/*

* Functions Print() and Printdd() are used to print out

* the contents of the instance of the BellmanFord object.

* Used for debugging and verbose output.

*/

public void Print()

{

N.Print();

V.Print();

System.out.print("d: ");

for(int i=0; i<d.length; i++) System.out.print(" "+d[i]);

System.out.println();

System.out.print("pi: ");

for(int i=0; i<pi.length; i++) System.out.print(" "+pi[i]);

}

public void Printdd()

{

N.Print();

V.Print();

A.6 Node.java 75

System.out.print("dd: ");

for(int i=0; i<dd.length; i++) System.out.print(" "+dd[i]);

System.out.println();

System.out.print("pi: ");

for(int i=0; i<pi.length; i++) System.out.print(" "+pi[i]);

}

}

A.6 Node.java

A.7 PNode.java

package p2p2ki;

import java.io.BufferedInputStream;

import java.io.FileInputStream;

import java.io.IOException;

import java.io.StringReader;

import java.net.ServerSocket;

import java.net.Socket;

import java.security.PrivateKey;

import java.security.PublicKey;

import java.security.cert.CertificateFactory;

import java.security.cert.X509Certificate;

import java.security.interfaces.RSAPublicKey;

import java.util.Enumeration;

import java.util.Hashtable;

import javax.xml.parsers.DocumentBuilder;

import javax.xml.parsers.DocumentBuilderFactory;

import javax.xml.parsers.ParserConfigurationException;

import org.w3c.dom.Document;

import org.w3c.dom.Element;

import org.w3c.dom.Node;

import org.w3c.dom.NodeList;

import org.xml.sax.InputSource;

import org.xml.sax.SAXException;

/**

* @author Tomasz Cholewinski s020054

*/

public class PNode implements Runnable{

76 Appendix A. Source Code

public int listenPort;

public int connectPorts[];

public String connectAddresses[];

public int NodeName;

public int SeekNode;

public String certificates[];

public boolean listening;

public Hashtable AutStore = new Hashtable();

public Hashtable extStatementStore = new Hashtable();

public Hashtable extAutStore = new Hashtable();

public Hashtable statementStore = new Hashtable();

public PrivateKey priv_key;

public View Sa = new View();

private DocumentBuilder parser;

public PNode(){}

public void setConnectPorts(int ports[])

{

if(ports!=null)

{

connectPorts = new int[ports.length];

for(int i=0; i<ports.length; i++) connectPorts[i]=ports[i];

listening=false;

}

}

public void setConnectAddresses(String addresses[])

{

if(addresses!=null)

{

connectAddresses = new String[addresses.length];

for(int i=0; i<addresses.length; i++) connectAddresses[i]=addresses[i];

listening=false;

}

}

public int[] getConnectPorts()

{

if(!listening) return connectPorts;

else return null;

}

public void setNodeName(int Name){NodeName=Name;}

A.7 PNode.java 77

public void setSeekNode(int Name){SeekNode=Name;}

public void setListenPort(int port)

{

if(port!=0)

{

listenPort=port;

listening=true;

}

}

public int getListenPort()

{

if(listening) return listenPort;

else return 0;

}

public boolean Process(String is)

throws SAXException, IOException, ParserConfigurationException

{

// Create a DOM builder and parse the XML fragment

DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();

Document d = factory.newDocumentBuilder().parse(new InputSource(new StringReader(is)));

NodeList nodes = d.getDocumentElement().getChildNodes();

Node node_i = nodes.item(0);

if (node_i.getNodeType() == Node.ELEMENT_NODE

&& ((Element) node_i).getTagName().equals("DestNode")

&& (((Element) node_i).getAttributes().item(0).getNodeValue()!=String.valueOf(NodeName)))

return true;

return false;

}

public Socket getServerSocket(int port) throws IOException

{

ServerSocket srv = new ServerSocket(port);

Socket socket = srv.accept();

return socket;

}

public void run()

{

try

{

if(listening)

{

78 Appendix A. Source Code

Runnable runnable = new PNodeServer(NodeName,listenPort,this);

Thread ListenServer = new Thread(runnable);

ListenServer.start();

ListenServer.join(5000); //4 second timeout

if(ListenServer.isAlive())

{

System.out.println(NodeName+

": Timeout occurred; Server "+NodeName+"-0 has not finished. Stopping.");

ListenServer.stop();

}

else System.out.println(NodeName+": Server "+NodeName+"-0 has finished");

}

else

{

Thread ConnectClient[] = new Thread[connectAddresses.length];

for(int i=0; i<connectAddresses.length; i++)

{

Runnable runnable =

new PNodeClient(NodeName, i+1, connectAddresses[i], connectPorts[i], SeekNode, this);

ConnectClient[i] = new Thread(runnable);

ConnectClient[i].start();

}

for(int i=0; i<connectAddresses.length; i++)

{

long delayMillis = 5000; // 5 second timeout

ConnectClient[i].join(delayMillis);

if (ConnectClient[i].isAlive())

{

System.out.println(NodeName+

": Timeout occurred; Client "+NodeName+"_"+i+" has not finished. Stopping.");

ConnectClient[i].stop();

}

else

{

System.out.println(NodeName+": Client "+NodeName+"-"+i+" has finished");

}

}

/*

* Once all the client threads have succesfully or unsuccesfully exit, collate

* the results into a usable view.

*/

View Sa = new View();

for (Enumeration e = extStatementStore.elements() ; e.hasMoreElements() ;)

{

Statement statement[]={(Statement)e.nextElement()};

A.7 PNode.java 79

Sa=Sa.Add(new View(statement));

}

for (Enumeration e = statementStore.elements() ; e.hasMoreElements() ;)

{

Statement statement[]={(Statement)e.nextElement()};

Sa=Sa.Add(new View(statement));

}

this.Sa=Sa;

}

}

catch (InterruptedException e) {System.out.println(e);}

catch (Exception e) {System.out.println(e);}

}

// Used to read a certificate

public void setCertificates(String certnames[])

{

try

{

certificates = new String[certnames.length];

for(int i=0; i<certnames.length; i++)

{

certificates[i]=certnames[i];

RSAPublicKey publicKey; //Used to store the public key in the object

X509Certificate Cert; //used to store the X509 certificate object

String Name; //Contains the name read from the public certificate

FileInputStream fis = new FileInputStream(certnames[i]);

BufferedInputStream bis = new BufferedInputStream(fis);

CertificateFactory cf = CertificateFactory.getInstance("X.509","BC");

Cert = (X509Certificate)cf.generateCertificate(bis);

publicKey = (RSAPublicKey)Cert.getPublicKey();

String CertS = Cert.getSubjectDN().toString();

//Acquire the node name stored in the certificate

Name = CertS.split("CN=")[1].split("[,\n\r\f]")[0];

//Store the new certificate in the AutStore hashtable

AutStore.put(Name, publicKey);

}

}

catch (Exception e) {System.out.println(e);e.printStackTrace();}

}

synchronized public void addCertificate(String Name, RSAPublicKey publicKey)

{

extAutStore.put(Name, publicKey);

}

80 Appendix A. Source Code

synchronized public void addExtStatement(Statement statement)

{

extStatementStore.put(String.valueOf(statement.hashCode()),statement);

}

/**

* The statementStore to set.

*/

public void setStatementStore(Statement statements[])

{

for(int i=0; i<statements.length; i++)

statementStore.put(String.valueOf(statements[i].hashCode()),statements[i]);

}

public String[] getCertificates()

{

return certificates;

}

public PublicKey getCertificate(String Name)

{

return (PublicKey)AutStore.get(Name);

}

public int getName()

{

return NodeName;

}

/**

* Returns the connectAddresses.

*/

public String[] getConnectAddresses()

{

return connectAddresses;

}

/**

* Returns the statementStore.

*/

public Statement[] getStatementStore()

{

Statement statement[] = new Statement[statementStore.size()]; int position=0;

for (Enumeration e = statementStore.elements() ; e.hasMoreElements() ;)

statement[position++]=(Statement)e.nextElement();

return statement;

A.8 PNodeClient.java 81

}

/**

* Returns the nodeName.

*/

public int getNodeName() {

return NodeName;

}

/**

* Returns the seekNode.

*/

public int getSeekNode() {

return SeekNode;

}

}

A.8 PNodeClient.java

package p2p2ki;

import java.io.BufferedReader;

import java.io.BufferedWriter;

import java.io.ByteArrayOutputStream;

import java.io.IOException;

import java.io.InputStreamReader;

import java.io.OutputStreamWriter;

import java.math.BigInteger;

import java.net.InetAddress;

import java.net.InetSocketAddress;

import java.net.Socket;

import java.net.SocketAddress;

import java.security.KeyFactory;

import java.security.NoSuchAlgorithmException;

import java.security.NoSuchProviderException;

import java.security.interfaces.RSAPublicKey;

import java.security.spec.InvalidKeySpecException;

import java.security.spec.RSAPublicKeySpec;

import java.util.StringTokenizer;

/**

* @author Tomasz Cholewinski s020054

*/

public class PNodeClient implements Runnable{

public String connectAddress="localhost";

public int connectPort=8667;

public int NodeName;

public int SeekNode;

82 Appendix A. Source Code

public int ConnectNodeName;

private PNode hook;

public PNodeClient(){}

public PNodeClient(int NodeName, int ConnectNodeName,

String connectAddress, int connectPort, int SeekNode, PNode hook)

{

this.NodeName=NodeName;

this.connectPort=connectPort;

this.connectAddress=connectAddress;

this.SeekNode=SeekNode;

this.hook=hook;

this.ConnectNodeName=ConnectNodeName;

}

public void run()

{

try

{

InetAddress ConnectAddress = InetAddress.getByName(connectAddress);

SocketAddress sockaddr = new InetSocketAddress(ConnectAddress, connectPort);

Socket tx_socket = new Socket();

tx_socket.setReceiveBufferSize(256);

int timeoutMs = 2000; // 2 second timeout

tx_socket.connect(sockaddr, timeoutMs);

BufferedWriter wr = new BufferedWriter(new OutputStreamWriter(tx_socket.getOutputStream()));

BufferedReader rd = new BufferedReader(new InputStreamReader(tx_socket.getInputStream()));

wr.write("<Query><DestNode Name=\""+SeekNode+"\"/></Query>\n");

wr.flush();

String str;

while ((str = rd.readLine()) != null)

{

if(str.startsWith("PublicKey"))

{

RSAPublicKeySpec KeySpec =

new RSAPublicKeySpec(

new BigInteger(getBytes(str.split(":")[1].split("=")[2])),

new BigInteger(getBytes(str.split(":")[1].split("=")[3])));

KeyFactory kf = KeyFactory.getInstance("RSA","BC");

RSAPublicKey publicKey = (RSAPublicKey)kf.generatePublic(KeySpec);

hook.addCertificate(str.split(":")[1].split("=")[1],publicKey);

System.out.flush();

}

else if(str.startsWith("Statement"))

{

Statement statement = new Statement(getBytes(str.split(":")[1]));

hook.addExtStatement(statement);

A.9 PNodeServer.java 83

}

}

tx_socket.close();

}

catch (IOException e) {System.out.println(NodeName+": "+e);System.out.flush();}

catch (NoSuchAlgorithmException e) {System.out.println(NodeName+": "+e);System.out.flush();}

catch (NoSuchProviderException e) {System.out.println(NodeName+": "+e);System.out.flush();}

catch (InvalidKeySpecException e) {System.out.println(NodeName+": "+e);System.out.flush();}

}

private static byte[] getBytes(String str)

{

ByteArrayOutputStream bos = new ByteArrayOutputStream();

StringTokenizer st = new StringTokenizer(str, "-", false);

while(st.hasMoreTokens())

{

int i = Integer.parseInt(st.nextToken());

bos.write((byte)i);

}

return bos.toByteArray();

}

}

A.9 PNodeServer.java

package p2p2ki;

import java.io.BufferedReader;

import java.io.BufferedWriter;

import java.io.InputStreamReader;

import java.io.OutputStreamWriter;

import java.net.ServerSocket;

import java.net.Socket;

import java.security.interfaces.RSAPublicKey;

import java.util.Enumeration;

/**

* @author Tomasz Cholewinski s020054

*/

public class PNodeServer implements Runnable{

public int ListenPort=8670;

public int NodeName;

84 Appendix A. Source Code

public PNode hook;

public PNodeServer(){}

public PNodeServer(int NodeName, int ListenPort, PNode hook)

{

this.NodeName=NodeName;

this.ListenPort=ListenPort;

this.hook=hook;

}

public void run()

{

try

{

ServerSocket srv = new ServerSocket(ListenPort);

Socket rcv_socket = srv.accept();

BufferedWriter wr =

new BufferedWriter(new OutputStreamWriter(rcv_socket.getOutputStream()));

BufferedReader rd =

new BufferedReader(new InputStreamReader(rcv_socket.getInputStream()));

String str= rd.readLine();

if(hook.Process(str))

{

for (Enumeration e = hook.AutStore.elements() ; e.hasMoreElements() ;)

{

RSAPublicKey publicKey=(RSAPublicKey)e.nextElement();

String Name=(String)hook.AutStore.get(publicKey);

wr.write("PublicKey:"+"="+Name+"="+

getString(publicKey.getModulus().toByteArray())+

"="+getString(publicKey.getPublicExponent().toByteArray())+"\n");

wr.flush();

}

for (Enumeration e = hook.statementStore.elements() ; e.hasMoreElements() ;)

{

Statement statement = (Statement)e.nextElement();

wr.write("Statement:"+getString(statement.toByteArray())+"\n");

wr.flush();

}

}

rcv_socket.close();

}

A.10 threaded_test_harness.java 85

catch(Exception e)

{System.out.println(NodeName+": "+e);System.out.flush();}

}

private static String getString(byte[] bytes)

{

StringBuffer sb = new StringBuffer();

if (bytes == null) return null;

for(int i=0; i<bytes.length; i++)

{

byte b = bytes[i];

sb.append((int)(0x00FF & b));

//Make sure that the int is no more than 8 significant bits

if(i+1 <bytes.length)

{

sb.append("-");

}

}

return sb.toString();

}

}

A.10 threaded_test_harness.java

package p2p2ki;

import java.beans.XMLDecoder;

import java.io.BufferedInputStream;

import java.io.FileInputStream;

/**

* @author Tomasz Cholewinski s020054

*

* The threaded_test_harness.java file is the entry point for the implementation

* of the trust propagation model for the Master's thesis by Tomasz Cholewinski.

*

* 2004

*

*/

public class threaded_test_harness {

public static void main(String[] args) {

86 Appendix A. Source Code

try

{

if(args.length!=1)

throw new Exception("Invalid arguments passed, please supply the scenario file name");

//Load the scenario file

XMLDecoder decoder =

new XMLDecoder(new BufferedInputStream(new FileInputStream(args[0])));

PNode Nodes[] = (PNode[])decoder.readObject();

decoder.close();

Thread Threads[] = new Thread[Nodes.length];

//This is the point where the start of the performance measurement is taken

long StartTime = System.currentTimeMillis();

//Initialize the Nodes (Instantiate the threads and run them)

for(int i=0; i<Nodes.length; i++)

{

System.out.println("Main: Running node "+Nodes[i].NodeName); System.out.flush();

Runnable runnable = Nodes[i];

Threads[i] = new Thread(runnable);

Threads[i].start();

}

//Wait for all the threads to finish executing, terminate them if timeout is hit

for(int i=0; i<Nodes.length; i++)

{

long delayMillis = 6000; // 6 second timeout

try

{

Threads[i].join(delayMillis);

if (Threads[i].isAlive())

{

System.out.println(

"Main: Timeout occurred; thread "+Nodes[i].NodeName

+" has not finished. Stopping.");

Threads[i].stop();

}

else

{

System.out.println("Main: Thread "+i+" has finished");

}

}

catch (InterruptedException e) {e.printStackTrace();}

}

/*

* Once all the threads have finished, there should reside a usable Sa view on Nodes[0].

A.10 threaded_test_harness.java 87

* This View can then be used to compute the trust propagation in the network

*/

System.out.println("\n====="+args[0]+"=====");

System.out.println("The view obtained from the network:");

Nodes[0].Sa.Print();

System.out.println("========================");

/*The static Paths.getResults performs the computation

*of the trust paths and trust propagation

*/

if(!Paths.getResults(Nodes[0].Sa, Nodes[0].getSeekNode()))

System.out.println("The given view did not contain a trust path");

//End of performance measurement

long RunTime = System.currentTimeMillis()-StartTime;

System.out.println("Main: Total execution time was "+RunTime+" miliseconds");

System.out.flush();

}

catch (Exception e) {e.printStackTrace();}

}

}

88 Appendix A. Source Code

89

Appendix B

Scenario File

<?xml version="1.0" encoding="UTF-8"?>

<java version="1.4.2_03" class="java.beans.XMLDecoder">

<array class="p2p2ki.PNode" length="3">

<void index="0">

<object class="p2p2ki.PNode">

<void property="certificates">

<array class="java.lang.String" length="1">

<void index="0">

<string>1_certificate.pem</string>

</void>

</array>

</void>

<void property="connectAddresses">

<array class="java.lang.String" length="2">

<void index="0">

<string>localhost</string>

</void>

<void index="1">

<string>localhost</string>

</void>

</array>

</void>

<void property="connectPorts">

<array class="int" length="3">

<void index="0">

<int>8667</int>

</void>

<void index="1">

<int>8668</int>

</void>

<void index="2">

<int>8669</int>

</void>

</array>

90 Appendix B. Scenario File

</void>

<void property="seekNode">

<int>2</int>

</void>

<void property="statementStore">

<array class="p2p2ki.Statement" length="2">

<void index="0">

<object class="p2p2ki.Statement">

<void property="to">

<int>1</int>

</void>

<void property="value">

<double>0.9</double>

</void>

</object>

</void>

<void index="1">

<object class="p2p2ki.Statement">

<void property="level">

<int>1</int>

</void>

<void property="to">

<int>1</int>

</void>

<void property="type">

<int>1</int>

</void>

<void property="value">

<double>0.7</double>

</void>

</object>

</void>

</array>

</void>

</object>

</void>

<void index="1">

<object class="p2p2ki.PNode">

<void property="certificates">

<array class="java.lang.String" length="1">

<void index="0">

<string>2_certificate.pem</string>

</void>

</array>

</void>

<void property="listenPort">

<int>8667</int>

</void>

91

<void property="nodeName">

<int>1</int>

</void>

<void property="statementStore">

<array class="p2p2ki.Statement" length="1">

<void index="0">

<object class="p2p2ki.Statement">

<void property="from">

<int>1</int>

</void>

<void property="to">

<int>2</int>

</void>

<void property="type">

<int>2</int>

</void>

<void property="value">

<double>0.8</double>

</void>

</object>

</void>

</array>

</void>

</object>

</void>

<void index="2">

<object class="p2p2ki.PNode">

<void property="listenPort">

<int>8668</int>

</void>

<void property="nodeName">

<int>2</int>

</void>

<void id="StatementArray0" property="statementStore"/>

<void property="statementStore">

<object idref="StatementArray0"/>

</void>

</object>

</void>

</array>

</java>

