
For-LySa: UML for Authentication Analysis?

Mikael Buchholtz1, Carlo Montangero2, Lara Perrone2, and Simone
Semprini3??

1
mib@imm.dtu.dk, Informatics and Mathematical Modelling, Technical University of

Denmark, Richard Petersens Plads, DTU-bldg. 321, DK-2800 Kgs. Lyngby, Denmark
2
monta@di.unipi.it, Dipartimento di Informatica, Università di Pisa,

Via F. Buonarroti 2 I-56127 Pisa, Italy
3
semprini@itc.it, Automated Reasoning Systems Division, ITC-IRST,

Via Sommarive 18, I-38050 Povo – Trento, Italy

Abstract. The DEGAS project aims at enriching standard UML-centred
development environments in such a way that the developers of global
applications can exploit automated formal analyses with minimal over-
head. In this paper, we present For-LySa, an instantiation of the DEGAS
approach for authentication analysis, which exploits an existing analysis
tool developed for the process calculus LySa. We discuss what informa-
tion is needed for the analysis, and how to build the UML model of an
authentication protocol in such a way that the needed information can
be extracted from the model. We then present our prototype implemen-
tation and report on some promising results of its use.

1 Introduction

Many years of research in formal methods have resulted in a wealth of analysis
tools that, in theory, may assist software designers in the development of high
quality products. In practice, however, these tools are often hard to use for non-
experts and their direct, practical impact is therefore limited.

The overall aim of this paper is to illustrate that formal analysis tools can
be used directly by designers of applications for global computing. To this end,
we follow the approach of the DEGAS project where the idea, as illustrated in
Figure 1, is to let developers use their own development environment while the
formal analysis takes place in its own verification environment. More precisely,
the development environment will be the Unified Modelling Language (UML)
that with is recent popularity in industry has a direct influence on many real
world applications. The verification environment uses process calculi, which are
behavioural models of systems, and the analysis of these calculi will therefore con-
centrate on behavioural aspects of systems. This nicely complements analyses of

? This work is partially funded by the Information Society Technologies programme
of the European Commission, Future and Emerging Technologies, under the IST-
2001-32072 project DEGAS.

?? This work was carried out when Simone Semprini was at the Dipartimento di Infor-
matica, Università di Pisa



Verification
environment

Unified
Modelling
Language

Extractor

Reflector

Process
calculi and 
analysis 
of these

Development
environment

Hidden from the developer

Fig. 1. Overview of the DEGAS approach to analysis of system design.

structural aspects such as well-typedness of object hierarchies and inter-diagram
consistency, which are the kind of analysis that are typically carried out on UML
today.

In order to perform analysis of the UML models in a verification environment
the first step is to use an extractor, which extracts the parts of the model that
will be relevant for the analysis and put these into the verification environment.
After the analysis has been completed, the analysis result is made available to
the developer using a reflector. To make this approach practical, from the point
of view of the developer, the extractor, the analysis, and the reflector will all be
automated and hidden from the developer. Thus, the developer will not need to
know the finer details of these elements but may concentrate on the UML design
of the system.

The main novelty of this paper, thus, is to illustrate that standard verification
tools can indeed be used to analyse security properties of UML models. To this
end, we give an overview of the For-LySa framework: an instantiation of the
DEGAS approach targeted at designers of security critical applications that use
network communication. Section 2 describes the application domain along with
the security property of authentication, which will be checked in the verification
environment based on the process calculus LySa [4]. Section 3 contains the UML
modelling of applications using secure network communication including some
additional features to cater for authentication analysis. Section 4 describes our
prototype implementation of the For-LySa framework and, finally, Section 5
concludes the paper and comments on future and related work.

2 Security Protocols and Authentication

In a global computing environment, applications are typically distributed onto
various host or principals, which communicate through a computer network.



These communication patterns constitute a network protocol, which comprises
the applications executed at the individual principals as well as their network
communication. While we may rely on (some of) these principals to be trustwor-
thy when executing the application, the network itself must be considered unsafe

in the sense that hostile principals might tamper with the network messages.
The usual remedy to protect network protocols from intervention by mali-

cious attackers is to apply cryptography so that parts of the messages may be
kept outside the control of the attacker. In this paper we will illustrate how
our approach works for a class of “classical” authentication protocols that use a
shared server and symmetric key cryptography where the same key is used for
encryption and decryption. This restricted, but representative, setup is chosen
primarily to kept the extractor simple and we foresee no other significant chal-
lenges, neither for the UML modelling nor for the verification tool, in catering
for more general scenarios. More precisely, we consider a network scenario in
which a special principal, S, initially shares a unique key with each of the prin-
cipals A1, . . . , An and B1, . . . , Bm and no other principals know these keys. The
purpose of an authentication protocol that operate in this scenario is to allow
two arbitrary principals Ai and Bj to be certain that a communication takes
place between precisely these two principals and no one else.

To meet this goal, Ai, Bj , and S may, for example, engage in the following
version of the Wide-mouthed-frog Protocol [5] (where we write {message}key for
a message encrypted under a key):

1. Ai → S : Ai, {Bj ,K}KSAi

2. S → Bj : {Ai,K}KSBj

3. Ai → Bj : {message}K

In the protocol, the principal Ai generates a session key K, which it sends to
the server, encrypted under the key KSAi

shared only between S and Ai. The
server decrypts the session key and forwards it encrypted to the Bj , which will
afterwards be able to decrypt message 3 send by Ai. It is important to stress that
both the message sequence and the internal action of each of the principals are
equally important parts of the description of the protocol. Therefore, all these
aspects will be modelled in UML in order to make the model amenable for a
precise analysis of whether a protocol obtains its goal.

We focus on checking an authentication property, which loosely speaking says
that “messages should end up in the right places”. For example, if we consider
the first message of the WMF, a property that we might like to have is that the
message Ai, {Bj ,K}KSAi

should end up at S, only. However, nothing prevents an
attacker from forwarding the two parts of the message to other principals than
S so this property does not hold if the protocol is under influence of an attacker.
Instead, the property we consider focuses on the parts of messages, which are
not under the control of the attacker, namely, the parts where encryption has
been applied. For example, the property that should hold for the first message
of WMF is that the encrypted message {Bj ,K}KSAi

should be decrypted at S,
only.



To specify the precise details in this kind of property we annotate the UML
model giving a name, `, to each point of encryption and each point of decryption.
Furthermore, each encryption point will be annotated with which decryption
points the encrypted message is intended to be decrypted at and, conversely, for
decryption.

Our verification environment is based around the processes calculi LySa and
a control flow analysis of this calculus [4]. LySa is a processes calculus in the π-
calculus tradition [12] but tailored specifically to model central aspects of security
protocols. The aim of the analysis is to tell whether authentication properties
are satisfied for all executions of a LySa process executed in parallel with an
arbitrary attacker process. The analysis will report all possible breaches of the
authentication properties in an error component ψ: finding a pair (`, `′) in ψ

means that something encrypted at ` might be decrypted at `′ thereby breaking
the specified authentication property.

The analysis works in form of a control flow analysis, which computes over-
approximations to the behaviour of all executions of a LySa process. In particu-
lar, it computes over-approximations to the error component, which means that
the analysis may report an error that is not actually there. However, it is proven
in [4] that the analysis will never report too few errors and also illustrated that
reporting too many errors is not at big problem in practice.

3 UML for Authentication Protocols

To model security protocols in a consistent way in UML, we define two UML pro-
files. They must be used when modelling specific protocols in order to make them
amenable for analysis. First we present the profile Static For-LySa that describes
how the concepts from the previous section, such as principals, keys, messages,
etc., are modelled in UML. Next, we introduce a second profile, For-LySa, that
is used to describe the dynamics of a protocol as well as the information needed
for the analysis. Rather than presenting the profiles in tabular form, we present
domain models, with the understanding that their classes and relations are the
stereotypes in the profile. Note that we have two profiles to keep distinct what
is actually needed to implement the protocol from what is additionally needed
for the analysis.

3.1 The Static For-LySa Profile

The classes and associations in the class diagram on Figure 2 define the stereo-
types in the profile Static For-LySa. The central classes in the diagram are
Principal, Key, and Msg (for messages).

Keys can either be a SessionKey generated for each session or it can be the
PrivateKey of a principal that is shared in advance with the Server. A Server is a
special kind of principal that knows the private keys of all the other principals
in the protocol. We represent this knowledge as an operation key() that, given



Fig. 2. The domain model.

a principal, returns its private key. The stereotype 〈〈singleton〉〉 ensures that in a
given protocol specification only one server is used.

The principals communicate and exchange messages as shown by the commu-
nicates and sentTo associations. To express communication, the operation msg()
can be invoked on the principal, which the message is sentTo. The specification
of this operation is that it copies its argument into variable in of the receiver.
For uniformity, and to ease the extraction process, we expect that the value of
variable out is passed to msg(), i.e. that messages are put into this variable and
then sent. Messages carry Payloads, some of which can be CryptedPayloads, which
carry Data in their contents. In summary, whenever a principal contributes to a
step of the protocol, it needs to keep track of two messages: an incoming mes-
sage that is left by msg() in its in variable, and triggers the contribution, and
the outgoing message that it builds in its out variable and then sends.

To specify a protocol, one needs to specify subtypes of Principal that intro-
duce specific operations to set the outgoing messages, using the parts of the
incoming ones as well as specific information held by the principal in private at-
tributes. These operations should be introduced in a standardised way, that we
will discuss in the sequel. The same applies to the operations that are needed to
disassemble the incoming messages. However, there are some generic operations
that can be used to build and open the messages. Some of these are left abstract,
namely crypt() and decrypt(), since we leave the choice of the cryptographic al-
gorithms open to further specialisation. In fact, the analysis treats encryption
as abstract operations so we would not get more precise analysis results by spe-
cialising these operations further. The other two generic operations, checkMsg()
and checkDecrypt() are null operations: they are introduced to allow the specifier
to express the checks that need to be done on the incoming messages, and on



Fig. 3. The WMF protocol overview.

the results of decryption actions, respectively. These checks can be conveniently
expressed as constraints in the sequence diagram that describes the dynamics
of the protocol in the For-LySa profile in Section 3.2. There, the protocol de-
signer can use checkMsg() and checkDecrypt() as placeholders, to introduce the
constraints on the incoming and decrypted data.

We assume that decrypt() leaves its result in variables of type DecryptedPay-
load that are named systematically for each relevant type of message, as we will
see later. In this way, the checks and the operations that build new messages can
exploit the results of decryptions in these variables. In a DecryptedPayload data
can be accessed via dd (of type Data). The distinction of Data and Decrypted-
Data is not strictly necessary, at this level of presentation, but it helps when
extending the model to introduce the decorations needed for the analysis, as we
will do in Section 3.2.

As an example of the use of Static For-LySa, we present the overview of
the WMF protocol, described in the previous section. Figure 3 presents the
structure of the protocol, showing the intended communications and the involved
messages. The types of the principals are named A, B, and S for the initiator,
the responder, and the server, respectively. The diagram also makes clear how
the message types are named systematically, Msg1, Msg2, and Msg3, according
to the order in which the messages are sent. The structure of each message is
specified in distinct diagrams such as the one in Figure 4 that makes clear how
the various parts of the message are named by systematically appending indexes
to their types. Similar diagrams are introduced for the other message types.

In the diagram in Figure 3 we also introduce the names of the operations
to build and dissect messages: for each message of type Msgi, there are opera-
tions premsgi in the sender and postmsgi in the receiver, to build and to open
the message, respectively. The semantics of these operation will be specified by
post-conditions. Finally, we introduce names for the local information of each
principal, like private keys, session keys, and temporary storage, such as vari-
able yK in principal B. This variable is needed by the responder to store the key,



Fig. 4. The structure of Msg1.

Fig. 5. The analysis model.

received in the second message, to be able to decrypt the third message sent by
the initiator.

3.2 The For-LySa Profile

The UML view of the concepts that are needed to perform the authentication
analysis are shown in Figure 5. In this figure, when we use the same names as
in Figure 2 we denote entities that are specialising homonymous entities in the
domain model. The other classes are new concepts, introduced for the analysis.
These classes, and their associations and constraints define profile For-LySa.

First of all, each message carries with it the definition of the source principal,
from which it is sent, along with the sink principal, which it should reach. Second,
each encrypted payload is decorated with Cryptopoints. The idea is that, for
each encrypted payload the annotations make explicit its origin, i.e. the point
in the narration where the payload is encrypted, and its destinations, i.e. the
set of the intended points of decryption. Similarly, for the decrypted data, the
annotations make explicit the destination, i.e. the point in the narration where
they are decrypted, and their intended origins, i.e. the set of expected places of
encryption. Each crypto-point is a label, that will be associated to a single point
of encryption (one of the premsgi) or decryption (postmsgi) in the dynamic view
of the protocol.



Fig. 6. The structure of Msg1 for the analysis.

As an example of the use of the For-LySa profile, Figure 6 presents the
complete description of Msg1 including the decorations needed to specify the
authentication property. The intended origin and destination of the encrypted
part of the first message of WMF are specified to be Acp1 and Scp1, respectively.
The stereotype 〈〈destIncludes〉〉 in Figure 6 is defined as the composition of the
two aggregations from CryptedPayload to Cryptopoint in Figure 5. Similarly for
〈〈origIncludes〉〉. Similar diagrams describe the remaining two messages in the
protocol.

To complete the WMF example, we need to address the dynamics of the
protocol and this is done in a sequence diagram shown in Figure 7. The diagram
adopts naming conventions consistent with those used in our scenario: the typical
initiator object of type A is named i, the responder object of type B is named j,
while the server object of type S is named s.

Each step in the protocol is divided into three sub-steps:

1. the sender packages the message,
2. the message is communicated,
3. the recipient processes the incoming message.

The third step is typically the most involved and includes tasks such as checking
that the message format is correct, decrypting the parts intended for the current
recipient, and storing the content of the

First, premsg1() builds the message in the out message of the sender. Second,
msg() sends it to the recipient where it is stored as the in message. Finally,
the recipient processes the received message by checking the message format
with checkmsg(), decrypting the relevant part with postmsg1(), and ensuring
the encrypted data also have the correct format with checkdecrypt(). When all
these checks succeed the protocol continues similarly with the second and third
messages (omitted for sake of space).

Operation msg(m: Msg) is polymorphic and accepts any message. However,
the effective type of the message that is exchanged in each step, has to be spec-
ified as a constraint on the argument of msg(), as shown in the diagram. The



Fig. 7. The sequence diagram for WMF.

other operations are not polymorphic, and have different names (and likely pa-
rameters) in each step. The signature of the operation is specified in the overview
diagram of the analysis level, which is otherwise similar to Figure 3 and is not
presented for space sake.

The operations are specified via post-conditions on the state of their prin-
cipal. Post-conditions are attached to the operations as constraints, as shown
in Figure 7 for premsgs and postmsgs. The natural place to attach these con-
straints would be the operations themselves, in the overview diagram, since they
are the definition of the operation semantics. However, it is easier to follow the
behaviour of the protocol having the post-condition attached to the call rather
than to the definition, in another diagram.

We use a very simple language to write post-conditions. There is a record
scope opener á la Pascal, for readability:

withx : T 〈condition〉

means that x is constrained to be of type T , and that its selectors need not be
prefixed by x in 〈condition〉. Conditions are conjunctions of equalities, where the
left hand side identifies a field of the object, and the right side is an expression
for its value. We use the standard dot notation to access object fields and to
navigate along associations.

Expressions are built out of constructors, like SetofCryptpoint and Datai;
operations like crypt and decrypt; variables, either parameters like p1 and p2,
or locals of the principal that performs the operation, like out, kA, and k; and
constants, i.e. the names of the objects, like i, and crypto-points labels, like Acp1.



The arguments to the constructors give values to the fields, in the order given
in the diagrams that introduce them. Singleton crypto-point sets are built from
the label, like in the last but one line of the post-condition for premsg1. The
factory method cp builds Cryptopoint objects out of labels.

There are a couple of assumptions, with respect to keys:

– private keys can be freely used in the operations of the owner, since they are
assumed to be initialised before the protocol starts;

– session keys must be initialised explicitly before they are used: for this pur-
pose the For-LySa profile has the predicate isNewKey() (see Principal in
Figure 5) that can be used in a constraint before the first use of the vari-
able. Using constraints leads to more concise diagrams than using explicit
initialising operations, and has a straightforward mapping in a restriction
operation in LySa.

As an example, the constraint attached to premsg1(i, s, i, j) in Figure 7
specifies that the value of the local variable out of initiator i of type A will be a
message of the form i, {j, k}kA, i.e. of the form of the message in the first step in
WMF. Also, it describes the annotations of the authentication property, where
Acp1 is the crypto-point associated with the encryption performed here, and
Scp1 is associated to the corresponding decryption in postmsg1.

The post-condition attached to postmsg1 defines the effect of decrypting the
message received by the server, in its variable theDecryptedPayload1 2. This is
an example of the convention on decrypting actions: they leave their results in
variables with names theDecryptedPayloadi, where i is the same index of the
corresponding CryptedPayload. In this example, the data are decrypted from the
incoming message using a key passed as a parameter to the operation.

A number of checks on the messages have to be made explicit, to express
dynamic constraints on the messages. These checks are expressed in UML as
invariant constraints attached to the checking operations, in the sequence dia-
gram. They are lists of equalities, with the syntax given above.

The source and sink of each message should be checked against the expected
value. Additional checks depends on the specifics of the protocol, like the third
condition attached to the third operation in Figure 7, which states that the clear
payload must be equal to the message source, i.e. in this protocol each initiator
can only speak for itself. Similarly, the next check, in the fifth operation, controls
that the incoming responder (the b field in the encrypted payload) is indeed the
intended one, namely j.

4 The For-LySa Prototype

We have developed a prototype implementation that can validate authentication
properties of applications modelled in UML using the For-LySa profiles. The
overall architecture of this For-LySa prototype follows the DEGAS approach on
Figure 1.



In the For-LySa prototype, UML models are designed with Rational XDE
version 1.5, and exported into XMI version 1.1, which is a standard, XML-based
way to represent UML models.

The extractor is written in Java and takes as input the XMI representation of
the UML model and delivers as output a corresponding LySa process annotated
with the security properties specified in the UML model. The implementation of
the extractor benefits from a generic Java library for writing extractors, which
has been developed within the DEGAS project as part of the Java version of
the PEPA Workbench [1]. The main operations of the extractor are: parsing the
XMI file, building an intermediate representation, and finally generating a LySa
process.

The verification tool is implemented in Standard ML and is available for
download on the Web [2]. It takes as input a parameterised LySa process gen-
erated by the extractor and makes a finite instantiation of the scenario with
i = 1, . . . , n and j = 1, . . . ,m of principals A and B, respectively. The analysis,
which is carried out on this finite instantiation of the scenario, returns an error
component, ψ, containing pairs of crypto-points where the authentication prop-
erty may be violated as explained in Section 2. The extractor has added indices
ij to these crypto-points such that they will, in general, be of the form `ij .

Our current prototype does not include a reflector, as such. We simply,
present the error component, ψ, to the developer. As illustrated in the next
section, this information can directly be of use to the developer.

4.1 A Case Study

Using the For-LySa prototype on our running example, the WMF protocol, the
analyser returns an empty error component, stating that no problems occur in
any execution of the protocol — even in the presence of an attacker.

More precisely, the For-LySa prototype validates the protocol deployed in
the scenario described in Figure 3 where additional attacker principals have ac-
cess to the network. The For-LySa prototype validates that the authentication
properties specified in the annotations to the UML model in Figure 6 and Fig-
ure 7 indeed hold for the WMF. That is, it validates that messages can only be
successfully decrypted at the places specified in the annotations no matter what
an attacker may try.

To illustrate the fine details that decides whether a protocol behaves correctly
or not consider a slightly modified version of the WMF protocol where the first
message is modified so that the identity of the responder is no longer encrypted.
This affects, of course, the construction of the message in premsg1() as well as
the checks made by the server in ckeckmsg(), postmsg1(), and ckeckdecrypt().

When we run the For-LySa prototype on this modified WMF protocol, it gives
a non-empty error component, i.e. it reports that the authentication properties
may be violated. Summarising the result in the error component, the analyser
reports that something may go wrong because:

– something encrypted at Acp1ij may be decrypted at Scp1,



– something encrypted at Acp2ij may be decrypted at Bcp2ij′ for j 6= j′, i.e.
at a wrong responder,

– something encrypted at Acp2ij may be decrypted at the attacker, and
– something encrypted at the attacker may be decrypted at Bcp2ij .

The first of these error messages signals that the encrypted part of the first
message may be decrypted at Scp1 but that the server expected something that
was not encrypted at Acp1ij . This may happen if the responders name, j, in
first message is substituted by the name of another principal, say j’, by the
attacker and is possible in the modified WMF because the responders name is
not encrypted. Next, in the second message, the server will forward the session
key to the principal j’ and consequently the thirds message may successfully be
decrypted at j’ i.e. at a wrong responder. This turns up as the second class of
error message above.

There is a similar kind of attack, which allows the attacker to substitute his
own name for the responders name in the first message and, consequently allows
him to interact with the protocol as illustrated by the two last error messages.

Presenting these error messages to the developer allows him to pinpoint the
precise places in the UML model where encryption fail to preserve authentication
as indented. Of course, repairing the protocol on the basis of this information
requires creativity on the part of the developer but the For-LySa prototype
allows him to quickly validate whether modifications have the desired effect.

5 Conclusion

An overall aim of the work presented in this paper is to provide software develop-
ers with a high-level interface to formal analysis tools. The For-LySa framework
specifically concentrates on using UML as the interface for developers of appli-
cations that contain secure network communication.

With the work presented here, we have reached a first milestone toward
this aim — and with a positive result. We have provided the For-LySa UML
profiles and illustrated how these may be used to model applications in our
target domain. Furthermore, we are able to perform automated extraction and
analysis, using the For-LySa prototype, thereby allowing developers to perform
analysis of their UML models with no particular effort on their part.

Before the For-LySa framework can be tested extensively in the field, the
loop of Figure 1 must be closed, to provide the relevant feed-back to the de-
signer with a reflector. The problem is to find a convenient way to represent the
illegal decryptions revealed by the analysis. This should be relatively straightfor-
ward except for the rather cumbersome task of automatically adding the error
messages to the UML diagrams in a visually appealing manner.

5.1 Related Work

The overall aim of our work somewhat similar to the aim of frameworks such
as Casper [11], CAPSL [6], CVS [7], and AVISS [3]. These frameworks all aim



at providing developers of security protocols with high-level interfaces for formal
analysis tools but unlike our approach they are based on ad-hoc notation, which
describes protocols in an “A→ B : message”-style. On one hand, this may lead
to more compact description of protocols than our but on the other hand we
have all the advantages of using a general purpose modelling language.

On the technical side, the information found in protocol descriptions in the
above frameworks is quite similar to the information captured in our message
sequence diagrams. Also, in the extraction we find similarities, in particular
with [11] that also has a target analysis formalism using a process calculus. The
extraction made in [11] is, however, somewhat simpler than ours because its high-
level language is designed so that is directly includes process calculi expression
at convenient places.

An important effort that shares the DEGAS focus on the UML is centred
on UMLsec [8]. This is a UML profile to express security-relevant information
within the diagrams in a system specification, and on the related approach to
secure system development [9]. UMLsec allows the designer to express recurring
security requirements, like fair exchange, secrecy/confidentiality, secure informa-
tion flow, secure communication link. Rules are given to validate a model against
included security requirements, based on a formal semantics for the used frag-
ment of UML, with a formal notion of adversary. This semantic base permits
in principle to check whether the constraints associated with the UML stereo-
types are fulfilled in a given specification. Work is ongoing to provide automatic
analysis support, with an approach similar to that of DEGAS: [9] proposes to
express protocols with sequence diagrams, translate them in first-order logic and
then exploit standard theorem-provers, like e-SETHEO, to reveal potential at-
tacks: [10]. The results of the analysis can be used to produce an attack scenario.
In our opinion, For-LySa provides a more intuitive way to express authentication
requirements that are less central in UMLsec: it should be worthwhile to assess
the feasibility of the integration of the two approaches.

References

1. The Java edition of the Pepa workbench. Website hosted by School of Informatics,
University of Edinburgh: http://homepages.inf.ed.ac.uk/s9905941/jPEPA/, May
2004.

2. LySa – a process calculus. http://www.imm.dtu.dk/cs LySa, May 2004. Web-
site hosted by Informatics and Mathematical Modelling, Technical University of
Denmark.

3. A. Armando, D. Basin, M. Bouallagui, Y. Chevalier, L. Compagna, S. Mödersheim,
M. Rusinowitch, M. Turuani, L. Viganò, and L. Vigneron. The AVISS security
protocol analysis tool. In CAV 2002, volume 2404 of Lecture Notes in Computer
Science, pages 349–353. Springer Verlag, 2002.

4. C. Bodei, M. Buchholtz, P. Degano, F. Nielson, and H. Riis Nielson. Automatic
validation of protocol narration. In Proceedings of the 16th Computer Security
Foundations Workshop (CSFW 2003), pages 126–140. IEEE Computer Society
Press, 2003.



5. M. Burrows, M. Abadi, and R. Needham. A logic of authentication. ACM Trans-
actions on Computer Systems, pages 18–36, 1990.

6. G. Denker, J. Millen, and H. Rueß. The CAPSL integrated protocol environment.
Technical Report SRI-CLS-2000-02, SRI International, 2000.

7. A. Durante, R. Focardi, and R. Gorrieri. A compiler for analyzing cryptographic
protocols using noninterference. ACM Transactions on Software Engineering and
Methodology, 9(4):488–528, 2000.

8. J. Jürjens. UMLsec: Extending UML for secure systems development. In UML
2002 – The Unified Modeling Language, volume 2460 of Lecture Notes in Computer
Science, pages 412–425, 2002.

9. J. Jürjens. Secure Systems Development with UML. Springer Verlag, 2004. To
appear.

10. J. Jürjens and T. A. Kuhn. Automated theorem proving for cryptograpich proto-
cols with automatic attack generation, 2004. Personal Communication.

11. G. Lowe. Casper: A compiler for the analysis of security protocols. Journal of
Computer Security, 6(1):53–84, 1998.

12. R. Milner, J. Parrow, and D. Walker. A calculus of Mobile processes (I and II).
Information and Computation, 100(1):1–77, 1992.


