

High-Level

Design and Analysis

Of

Web Applications

Ziv Yosef Shapira

Kgs. Lyngby, 2004
IMM-THESIS-2004-42

 2

Technical University of Denmark

Informatics and Mathematical Modelling

Building 321, DK-2800 Lyngby, Denmark

Phone +45 45253351, Fax +45 45882673

reception@imm.dtu.dk

www.imm.dtu.dk

IMM-THESIS: ISSN 1601-233X

mailto:reception@imm.dtu.dk
http://www.imm.dtu.dk/

 3

Preface

This report constitutes my Master of Science Thesis, written during
the period from January 29th to June 30th, 2004. The thesis was
written at the Informatics and Mathematical Modelling department
(IMM) at the Technical University of Denmark (DTU).

My supervisor has been Associate Professor Michael Reichhardt
Hansen from the Safe and Secure IT-Systems group. I would like
to thank Prof. Hansen for his great help, patience and assistance in
writing this thesis. His insights and comments have been extremely
helpful in the course of the project.

A special thanks to Jóan P. Petersen and Mikael O. Jensen for their
friendly support during my entire study period.

Finally, I want to thank my wife, Betza, for her love and support
throughout this busy period. To my parents, Ilana and Yoram
Shapira - your help and guidance are an ongoing inspiration.

Kgs. Lyngby, June 30th, 2004

Ziv Yosef Shapira

 4

Abstract

Design of the Human Computer Interaction (HCI), i.e. the screen
structure, and Interaction Patterns, i.e. the architecture of
navigation between the screens, has developed in the transition to
Web applications architecture. The influence of the new
architecture on the design is influenced by the technologies, such
as Web browsers and communication protocols, such as HTTP.
However, the methods in which this design is created or illustrated
have remained basic, such as textual description or illustrative.
There is also a lack of ability to relate the proposed design and the
original system requirements. Furthermore we found it difficult to
investigate properties of the design automatically because the
description is often not formalized. Types of such properties would
be: navigational, functional and architectural.

In this thesis we investigate a method both for generating effective
designs of Web application navigational schemes and for
describing the design. We relate between system requirements and
Web Interaction Patterns (a.k.a. Navigational Design Patterns). We
also introduce a software application which allows pattern designer
to define patterns or combine basic patterns into more complex
ones. A Web-application designer can use the tool to describe the
design using patterns and investigate the design properties
automatically.

A case study is introduced to demonstrate both the theoretical and
the practical parts of this thesis. The current design of the system is
compared to a proposed design using the application, developed
during this thesis.

 5

Keywords

Web applications, Navigational patterns, HCI, Software Design

 6

Table of Contents
Preface..3
Abstract ..4
Keywords ...5
Chapter 1 – Introduction ..9

Objectives.. 11
Background ... 12
CampusNet Example .. 15
Contribution ... 19
Thesis Organization .. 20

Chapter 2 - Setting the Scene...23
Position within the Software Design Process.. 24
Functional Requirements .. 25
Elements of Navigational Design .. 27
Expressing the Design .. 28
Reusability and Maintenance .. 31
Diagnosis... 32

Chapter 3 - Navigational Design Patterns..35
Pattern Types .. 36
Elements of Navigational Design Patterns .. 38
Basic Navigational Design Patterns .. 46
Combining Navigational Design Patterns.. 52
Summary and Discussion.. 55

Chapter 4 - Navigational Patterns Definition Language..57
Motivation .. 57
Concepts ... 59
Functional Programming - SML... 60
Functional Requirements .. 62
Pattern Types .. 64
Elements of Navigational Design Patterns in NPDL.............................. 66
Defining Basic Patterns ... 70
Defining Complex Patterns using Combination..................................... 71
Instantiation of Patterns... 72
Diagnosis of Designs... 74
Summary and Discussion.. 76

Chapter 5 - CampusNet Use Case..79
Use Case Analysis .. 79
Processes in the System... 79
Design Problems Identified ... 80
Functional Requirements in CampusNet... 82

 7

Navigational Design Patterns in CampusNet .. 83
Other Modules... 97
Authorizations.. 100
Summary and Discussion.. 100

Chapter 6 - Visual Tool for Designers...103
Main Functionalities... 103
Discussion ... 108

Chapter 7 – Conclusion..111
Contributions ... 112
Discussion ... 114
Conclusions... 116
Further Work.. 117

Bibliography ..119
Appendix A - Code Samples..123

Screen Components Code .. 123
CampusNet Design in NPDL... 125
CampusNet Design Diagnosis Report... 129

 8

 9

Chapter 1 – Introduction

It is difficult to conceive a quality software product without a well-
defined and tested design behind it. Ideally, any design is based on
best-practice solutions, compact and tested (as a whole and in
parts) after being produced, so that it provides a solid and error-
free basis for the implementation and maintenance phases. In
recent years, more and more applications are implemented using
Web technologies. Soon after establishing the design guidelines, it
has been realized that best-practice solutions must be defined
abstractly so that they can be applied to new designs which require
such a solution. The first to define design patterns as means of
abstraction was Christopher Alexander [AIS1]. Although patterns
have started as ways of solving problems on the business logic
layer of the application design (e.g. OOAD), the need for patterns
on the navigational level (user interface) has soon been identified.

Web technologies have produced navigational design problems for
traditional Client/Server software engineers. For example, due to
the statelessness of the hypertext protocol HTTP, it is not trivial to
maintain information about (or even identify) the user at each
request. Another characteristic property is the user interface, which
is a standard Web Browser, as opposed to a tailored user interface
in client/server architecture. The user interface design has to match
existing browsers capabilities rather than adapting the client to the
Web application architecture. Another example would be the
ability to potentially access any screen in the Web application
using an HTTP request rather than following the navigation route
dictated by the application's user interface. This possibility does
not exist in applications based on client/server architecture and
requires attention in the navigational design phase of Web

 10

applications (for example, due to security concerns).

Although Web architecture differs from client/server architecture,
it is still important to define navigational design principles. These
principles match the requirements of the new web technologies on
the one hand, but also retain classic software engineering concepts,
since the Web application is still a software product. However for
Web applications the patterns are still not fully adapted to some of
the unique features of Web technologies [RSL3]. Software
engineers are in the process of accumulating the set of problems
that are encountered during Web-applications navigational design
[RSL1]. Many of these problems are common and are encountered
often, though the context may differ. This is the incentive for
producing navigational design patterns, similar to classical
software design patterns, which have existed for about a decade
[GHJV].

Currently, design of the navigation in WA is based on either
elaborate textual description or on graphical representation of the
design [MHG1 and RSL3]. Both of these methods are problematic
for several reasons. First, they are not standard which means that
both implementers and other designer may have difficulty
understanding the intentions of the original designer or
misinterpret the intentions. Also, the ability to diagnose design
properties, such as navigation schemes, authorization breach and
behavior in exceptions (e.g. Wrong login or illegal input), in terms
of navigation is greatly impaired in large designs due to this
complex means of describing them. Another problem is the
difficulty to identify which (if any) parts of the design can be
reused once it needs to be extended and describe how to do this,
due to the complexity of the description.

 11

Generally, the navigational designer requires a standard and
efficient (compact) way of describing the design so it is robust,
extensible and reusable. It also needs to be fully comprehensible to
colleagues, developers and testers.

Objectives

This thesis aims to define and demonstrate the use of a standard
and compact language for defining and extending navigational
design patterns. Furthermore the language is used for describing
the designs of WA and is a basis for algorithms that perform
properties analysis, such as can each screen be reached or which
screen is most navigated through.

The project aims to combine the powerful capabilities of functional
programming and the conciseness and reusability of abstract
navigational design patterns to create robust Web-Application
navigational designs. It is our thesis that this combination is
standard, compact and provides a basis for a plethora of algorithms
for diagnosis of the resulting designs.

The work carried out consists of the following tasks:
• Definition of the design patterns definition language, to allow

definition of basic patterns and combinations of basic patterns to
produce complex ones

• Definition of the ability to use library-defined patterns within the
language to create designs of navigation within a web
applications

• Create a client-server tool to demonstrate the intention
• Create an SML library of patterns and a design using the defined

language
• Demonstrate a set of algorithms that diagnose the design

 12

• A case study based on CampusNet, the DTU portal

Background

Navigational design patterns are high-level architectural
abstractions that support some function in a context to answer
some motivation (or problem) and provides a best-practice solution
for building navigation structures that conform to this abstractions.
Patterns mainly address problems that occur very often by
designers. Use of patterns enhances reusability and basic parts of
the design and makes it easy to switch between different
implementation of the same pattern, if required [NNK1]. In other
words, the idea behind the patterns is that there is no reason to “re-
invent the wheel”, i.e. a solution scheme (or pattern) probably
exists for common problems, since the problem has been faced
consistently [BCM1]. Therefore, the SW engineer needs only to
adapt a well-chosen pattern to the context of the specific
application's design, rather than trying to come up with a well-
known and tested solution to this problem, or in a worse case, with
a solution that is known to be bad or partial. For example, the
“shopping basket” navigational pattern deals with a case, where
users accumulate numerous objects of the same type (e.g. e-
documents or books) before performing a single operation on the
selected set. Such operations may be printing or purchasing. This
pattern is sometimes referred to as a “Collector” [GC1]. Some
other patterns are listed below:
• Sieve: how to sort users through one or more layers of choices.

Used for direction through a section of the application.
• User Role: how to classify users by groups, based on behaviors,

roles or permissions.
• Session: how to structure collaboration
• Virtual Product: how to display a product in a web-based catalog

 13

As a Web-Application (WA) software engineer, ones task would
be to translate a part of the user requirements into an application,
based on Web technologies. The first step would be to identify the
problems that the application needs to solve, based on the
requirements. The next step would be to search, locate, adapt and
use existing navigational design patterns that match these
problems [GSV1]. Thus, the complete Web Information System's
(WIS) navigational design shall consist of a set of navigational
patterns that must address all the requirements. There are also
connections between the patterns that match the various
navigational paths; the users can follow, when using the WIS.

Another concept that needs to be added to the navigational Design
pattern language is the concept of exceptions. As in any design,
the designers’ responsibility is to convey to the implementers what
should happen upon a possible failure of some action performed by
the user within the context of the pattern. For example, in the
context of a shopping basket pattern, the operation that has been
performed on the items may fail. Consequently, are there
implications on what the user will experience? If so, there are
implications on the design. Pattern Languages must be able to
express these exceptions within the pattern description.

Another element in the overall design is the authorization groups.
Each element, screen and path is associated with one or more
authorization groups. Each user belonging to one of those groups
can use the element (e.g. Button or drop-down menu), view the
screen and/or navigate through the associated path.

Once basic patterns have been defined there is a need to create
more complex patterns as a combination of basic patterns. This

 14

construction method ensures the robustness and standards of the
basic patterns are retained and inherited by the more complex
pattern. An example would be a searchable catalog which is a
combination of a search navigational pattern and a basic catalog
navigational pattern. Later we discuss how this is achieved in the
purposed language. Besides defining complex patterns which are
also robust, their definition using basic patterns means that they
inherit the current and future properties of those basic patterns
automatically without the need to redefine them or update them
(respectively).

A crucial part of good navigational design, apart from using
patterns based on best practice solutions, is the ability to analyze
the design as a whole and identify general problems as well as
match it to the original requirements. The ability to do this
efficiently can only be achieved if the design can be described in a
standard way and can be interpreted and analyzed mechanically.
The proposed language provides this capability and analysis of
properties such as reachability, non reachability and navigational
paths can be easily checked using predefined algorithms, which are
based on the language. For example, in a complex design the
designer may check that all screens that were authorized to staff
members are actually reachable via the proposed design or
alternatively identify screens that are on “cross roads” between
several paths and should therefore be efficient. The power of
standardizing the design lies in the fact that the algorithms for
analysis can be written independently from the pattern and WA
designers. This is because the way in which the design will be
described is already known.

As a whole this set of capabilities are required by designers and
researchers within the field but have not been introduced as a

 15

whole in any one comprehensive solution, which achieves all these
properties.

CampusNet Example

The use case I have chosen to follow throughout the research and
development of the thesis has been CampusNet, the DTU
university portal. The application itself is divided into modules,
which include: login, course registration module, course
participants, personal calendar and course calendar. The
application is used by teachers, students and administration staff
for related information retrieval and activities management.

We provide a very partial list of possible functional requirements
to this application:

1. Enable all users to choose between Danish and English interface

at any time and at any screen. The change should be in the
current screen the user is viewing and any consequent screen.

2. Enables students to select courses by search criteria and register
at once to all selected courses or print relevant information
about them.

We use the system regularly and have identified several
navigational problems in the existing design that might not match
such requirements as we have presented. The problems we wish to
mention are:

1. CampusNet is a bilingual application supporting both Danish

and English user interfaces. The user selects the preferred
language prior to logging into the system. After logging in the
user could not change the language. This is a usability problem

 16

that interferes with the user's interaction with CampusNet.

2. CampusNet enables students to register to selected courses. The
courses are located in the course catalog, which is a Web
application, but completely separated from CampusNet.
Therefore the course selection into a shopping basket is not
visible within the system. The registration process is a module in
CampusNet but the selected courses need to be re-selected and
also the registration is done individually to each course and
cannot be done at once to a group of courses.

 17

Course Catalog (external) and Course Registration module in CampusNet

Our aim is to identify design patterns and test a design using them
against the actual web application. The patterns, that provide best
practice solution, may have been used or we thought should have
been used. Some of these patterns are:
1. The Basket pattern for the registration module
2. The Calendar pattern for “my Calendar” and “Course

Calendar” module
3. The Virtual Product pattern for the course participant screen
4. The Catalog with Search for the Course Participants module

We want to show how to use these patterns in the design, but also
how to create the patterns that are needed. On example would be
the Catalog with Search pattern that uses the combination
hierarchal operator h on the basic patterns: Catalog and Search.

 18

The resulting complex pattern is then used for the design of the
Course Participants module.

Course Participants module in CampusNet with the Search function

We furthermore wish to make an analysis of the design to identify
whether the problems in the original application could have been
identified using the proposed method. This analysis is designated
for generic analysis algorithms which are not specific to this
problem, but to an abstraction of problems. For example, “Where
can functions be activated from?” or “Which pattern is used for a
specific module?” are questions that can defined as NPDL

 19

diagnostics and applied to any NPDL design. If the CampusNet
design were to be made in NPDL, it could be found that the screen
that contains the ‘language selection’ function is only accessible
before login. This means the function cannot be used after login
and does not meet a requirement to enable language change at any
time. In practice this was not discovered at the design and partially
fixed after implementation of the application.

We use this example to show that the goals stem from actual
problems and to demonstrate the applicability of the solution
described in the thesis on a real-life application.

Contribution

The goal of this thesis is to define and implement a standard way
for defining and presenting navigational design patterns for Web
applications and show how the patterns can be used by designer of
specific applications. The work is mainly based on research of the
properties that patterns need to have once defined and the way that
patterns need to be extended and used in designs. These issues
have been discussed in articles, such as [WV1] and [GC1].

The starting point has been research on which parts of user
requirements are used by the designer of the user-interface and
navigation. Once the set of requirements have been identified, a
research of methods for standard designs of navigation was carried
out. This is where Navigational Design Patterns have been
identified and also the problems that need to be addressed in order
to reach the goal of the thesis. A lack of both standardization and
compactness of patterns definitions and navigational design
descriptions are addressed in the thesis.

 20

Furthermore, patterns themselves need to provide a reusable and
extensible framework when defined using this language. We
provide a contribution to the way in which patterns are both
combined in order to create more complex patterns (e.g. Catalog
with search) and reused in designs within different modules (e.g.
Student calendar and course calendar). We furthermore allow
additional properties to be defined for each pattern, such as
authorization and exceptions, meaning what happens on the
navigational level when an undesired event happens. An example
of authorization would be that only users in staff can access the
course management module and an example of an exception would
be that a wrong password was entered by the user in the login
screen.

Another issue this projects aims to contribute is in efficient
diagnosis of design properties. Currently, designs are not
standardized or computerized to enable such properties analysis –
only by hand which is lengthy and error-prone. A result of the
definition of a standard language for describing the design is that
algorithms can be written to interpret and analyze it. It is our aim
to show that by writing these algorithms designs can become more
robust and contribute to a better Web Application products and
more efficient and cost-effective development cycle.

Thesis Organization

This thesis consists of several chapters. Following is a summary of
the chapters in the order in which they appear in the thesis:

Introduction
We introduced the state-of-the-art and problems that were
identified. We state the objectives and theoretical background. We

 21

introduce Navigational Design Patterns and the intended
contribution.

In Setting the Scene we position this process within the Complete
Designing Process. We describe Functional Requirements and
following sub-processes, such as: how to express design, re-
usability and maintenance and properties diagnosis.

In Navigational Design Patterns we explain what Are
Navigational Design Patterns. We provide a set of examples and
existing problems (e.g. defining, searching).

In the chapter on the Navigation Design Pattern Language
(NPDL) we introduce the concept of the language. This is
followed by a description of the elements and construction; basic
building blocks, combination (exceptions) instantiation of Design
Patterns and analysis. We formalize the addition of the following
extensions: authorization and exceptions.

In the chapter Case Study: CampusNet we define the patterns for
a university Web application and design a part of the real
CampusNet system using NPDL. We diagnose the design and
compare the results to the actual system. We introduce the ability
to connect the design to a code generator to come up with a mock-
up system that can actually be used.

In A Visual Tool for Designers we describe an option of an
implementation using the Client/server approach to create a visual
tool for NPDL designers.

In the conclusion we summarize the thesis, discuss the results and
provide a list of future work that can be carried out as a

 22

continuation to this project.

Bibliography

Appendix A: code samples

 23

Chapter 2 - Setting the
Scene

The subject of this thesis is high Level Web Applications
Navigational design and diagnosis – a compact and standard
language for definition. While this statement is concise, there is
still a need to define some terms and concepts before the specific
thesis can be introduced. Justification of the problems that the
thesis solves is served by clarifying our views on the underlying
processes.

There are some well-established notions that need to be presented
because they are pivotal within the domain of navigational design.
As always, formalization presents the need to make some
assumptions about the domain, so those assumptions need to be
presented, as well.

In order to clarify our view of the domain, we informally describe
the main concepts and assumptions on the domain:
• Web Applications are software products (we focus on

Information Systems, such as CRM, Portals or Project
Management) based on Web architecture, mainly having a
browser as a mean of presenting the user interface for the users

• Navigational Design is the mapping of some of the Functional
Requirements to a concrete set of screens and

• Web Applications Navigational design is a definition of the
separate categorized modules (such as course administration and
activity management) the navigational connection inside and
between these modules.

 24

• Navigational Design Patterns are abstractions. We elaborate and
show how they are currently defined in text or graphically.

• Our work is inspired by theoretical efforts to define and
categorize navigational design patterns by people such as:
Germán, Schwabe, Rossi and van Weile. Their work is presented
in publications such as [GC1], [RSL3] and [WV1].

Position within the Software Design Process

The software development process in general and specifically Web
Applications (WA) design is a complex process. Mainly one can
divide it into three parallel layers: the persistence layer design (e.g.
Files or database), the business logic layer (e.g. Objects,
procedures/functions) and the User Interface layer (e.g. Screens,
navigational schemes). The systems designers have the skills of
mapping the single set of functional requirements into these
segments and then design the solutions for each separate set of
requirements. Our thesis relates to the design of the navigational
scheme within the user interface layer. The knowledge and skills
of the navigational designers differ from those of business-logic
and persistence designers.

It is assumed that the information for the designers of the
navigation has been provided by the designers of the business logic
and persistence layers, as a correct process dictates. This is because
the User Interface design is affected by decisions made by the
business-logic and Persistence layer designers, rather than the
other way around.

 25

Development Process Layers

The positioning is important since it demonstrates that the skills
required by designer of this layer differ greatly from those that are
needed for being a business-logic or persistence designer. The
designers of the navigational layer have an understanding of the
way human users interact with an application of the specific sort
they are designing, but also general rules that apply to HCI. In
accordance with the ability to transform abstract requirements into
solutions and experience, they initially create a high level design of
the application at hand. It is therefore in this realm that we aim to
postulate the thesis and the benefits of its applicability.

Functional Requirements

Functional requirements (FR) are the means by which the intended
users of the application describe their expectations as to how the
system must operate and how they should use it to achieve the
process that the system automates or supports. Functional

 26

requirements come in many different shapes and forms. A standard
that is widely adhered to has not been established yet. However it
is visibly a textual document that is separated from the following
stages of design and implementation.

Interface Requirements
This section will enumerate Interface requirements, those are requirements that
affect/interact with systems external to this system, for example "For each new employee
in the ABC system a new record will be created in the XYZ system".

Example of Interface Requirements table:

Req.# Requirement Description External
System

20

The system shall record
an acknowledgment when
a new employee is
created into the XYZ table

The XYZ system uses
these records to update
the time stamp of an
employee record.

XYZ - security
system

2

The system will mail the
month-end report
message to the "Director"
at each month-end.

This E-mail is used to
manually load data into
the Director system.

Director
system

Example of functional Interface Requirements

(http://strategis.ic.gc.ca/epic/internet/ininfodev.nsf/en/dv00196e.html)

One of the tasks of the navigational designer is to extract the
portion of the abstract functional requirements, which are destined
to be implemented in the user interface layer – i.e. as screens and
components that the human users interact with. This process is not
in the scope if this thesis, but the output from it provides the
starting point for the designer with the tools we intend to provide.
Moreover, these subsets of requirements that have been identified
become a part of the design definition and diagnosis of the design,
as suggested by our thesis results.

We have not seen so far a convincing and formal way of
connecting the FR to the design in such a way that there is also a

http://strategis.ic.gc.ca/epic/internet/ininfodev.nsf/en/dv00196e.html

 27

reverse process of conveying why a specific navigational design
has been chosen with respect to the given FR. Notably, little work
has been done regarding the derivation of architectural descriptions
from functional requirements specification [AVL1].

Elements of Navigational Design

The elements that are the “alphabet” of the navigational designer
are constantly explored and refined. The main reason for this is the
introduction of new technologies for application development, web
applications being one of the more recent and the focus of this
thesis. Within this scope elements that the designer uses include:
• Screen elements – a set of visual elements that enable users to

interact with them. Examples include: buttons, links and text
boxes.

• Screens – sets of elements that provide a set of functionality
within a given context. Examples include: updating course
information or entering a daily appointment in a calendar.
Screens are viewed by Web browsers.

• Connections – paths betweens screens that can be achieved by
hypertext links or by buttons for example. The set of connections
indicate all the possible paths a user can make while using the
application.

• Authorizations – a set of users or users groups (e.g.
Administrators) that are allowed or are not allowed using a
screen element or entering a screen. Authorization differentiate
between different type of persons within the organization that
uses an application with respect to what modules (set of screens)
or functions they may use or what information they may view.

 28

 Example of a screen in a Web Application (CampusNet at DTU)

Expressing the Design

There are obviously many different ways in which the navigational
designer can express the design. These means vary from being
descriptive (text based) to graphical, as seen in the image below, or
some combination of the two. The importance of a concise and
clear design is that is the basis for the successful continuation of
the development process – i.e. Development and maintenance of
the application. Evidently both of these methods are not successful
in terms of being compact or even readable when the application
exceeds even a small size, as most often happens. Some modeling
approaches have been discussed in [KRS1].

 29

The thesis states that such a method is to be found where the
description is both standard and compact so it is clearly
understandable and manageable by other as well as the designer,
who produced it.

 30

Examples of various representations of navigational design

 31

Reusability and Maintenance

Reusability is a very important aspect in software design. It states
that existing solutions that have been produced may be easily
applied to new problems in such a way that the solution need not
change its basic structure. Design patterns have been identified as
means of expressing solutions to problems faced by designers in a
way that is reusable. Researchers such as Schwabe and Rossi
“...introduced navigation patterns as a way to record, convey and
reuse design experiences. Navigation patterns [...] show how to go
beyond the basic Web navigation paradigm to solve recurrent
problems.” [SREL1]. A need for reuse is further discussed in
[NNK1]. Another aspect of reuse is that of the patterns themselves,
i.e. that more basic pattern can be reused when defining more
complex patterns that share similar features. For example, a
catalog pattern and a search pattern should be easily reused (after
being designed), when creating a pattern for a catalog with a search
function. Our findings show that although patterns have been
defined, they are not easily searchable or matched to problems that
designers face due to the way in which they are presented. An
additional set of reasons for this problem is mention in [GC1], e.g.
Bad Naming of patterns, no catalog for patterns, several patterns
that solve similar problems and lack of classification of patterns.

Another important, and somewhat related, issue is that of
maintenance. In software development, including Web
Applications, the design is constantly tested, changed and updated
due to requirements changes, technological advances and
competitive constraints. The process of keeping the actual design
up-to-date with those changes that will be incorporated into the
software is called maintenance. The lack of standardization when
describing the navigational design of WA makes it extremely hard

 32

to maintain with respect to the aspects mentioned above. The
reasons for this are the size of a final design in terms of text and/or
graphics and the inability to process it mechanically.

Diagnosis

An important aspect, which relates to design as much as it relates
to the other phases of software development, is the ability to
perform diagnosis of the design in order to verify or investigate
properties, such as reachability, authorization breaches and
“bottlenecks”. For a concrete example, the designer who has
completed the design would like to know which screen is
accessible to most user groups (and thus to most actual users) and
relates to most of the functional requirements. Such a screen is
likely to be used very frequently as it is relevant to most users in
most of their interactions with the system. This makes the need to
either indicate to the developers to provide an efficient
implementation of the screen or lead the designer to consider
splitting the functionality of the screen to two or more smaller
screens. In practice, we found it very complicated to diagnose
designs in their current format or to test or verify how maintenance
operations affect the existing design in terms of the original or new
requirements.

Manual diagnosis is not longer practical due to the complexity of
recent and emerging applications. The complexities of designs
required to meet present needs are simply too great. There is a
clear need for automation of this diagnosis and for an ability to
create this automation based on standardizations of designs rather
than tailoring algorithms for each design after it is created.

We aim to show how our theory and solution partially or fully

 33

address all these issues.

 34

 35

Chapter 3 - Navigational
Design Patterns

This chapter introduces navigational design patterns – the concept
and examples. The idea of patterns has originated in the work of
Alexander [AIS1] and comes from architecture. The adaptation of
the patterns concept to SW design has been initiated by E. Gamma
in [GHJV]. Patterns are means of conveying abstractions of best-
practice design solution to reoccurring problems. The abstraction
ensures that the solution is general enough to fit many cases
(instantiations) of the problem. The best-practice part ensures that
the solution behind the pattern is well-tested and has been found
suitable so it does not impair the robustness of the entire design in
which it is used.

The main power behind the patterns is not in the innovation of the
solution that they represent, but in the way that this solution and its
associated attributes are conveyed to designers and developers
alike. Beyond unambiguously clarifying the designer’s intent,
patterns are meant to be a reusable representation of the solution so
that they may be reused within the same overall design for several
of the problems. An experienced designer may already encounter
the solution, but beginners will find it very useful both for concrete
design and as learning tools for future designs. An important part
of this ability to represent solutions is in the fact that patterns can
represent solutions to small part of the application (such as search
functionality), entire modules (such as course registration) and
even to complete applications (e.g. E-commerce or University
Portal, which may even have several patterns). This property is
what makes patterns modular in themselves, but because of their

 36

standard format enables combining the patterns of small solution
into those of larger ones, thus inheriting their properties and
qualities.

Navigational Design Patterns are Patterns that are used to design
the user-interface layer of Web Applications, i.e. the screens, their
structure and the navigation between them. The field of patterns
for this purpose is relatively new. Navigational Design Patterns,
including ones for Web Applications, have been discussed in
research, such as [MB1] and [RSL1], and have provided
inspiration for the foundation of his project.

This chapter discusses Navigational Design Patterns in an attempt
to inspire a standard way of describing all existing and future
navigation patterns. The patterns are shown to be a sound basis for
navigational design as was introduced and elements that require a
formal language for concise and unambiguous description, one that
will be introduced in the next chapter.

Pattern Types

In order to enable an effective mechanism for cataloging and
searching design patterns it is vital to classify the known patterns
using a small set of types. At this stage, the following types of
patterns were identified:

• Architectural Patterns

Design patterns that solve problems related to the design of the
overall application structure. (e.g. Cycle, wizard)

• Process Patterns
Design patterns that solve problems related to the way user
execute business processes via the Web application. (e.g.

 37

Shopping cart, login, calendar)

• Presentation Patterns
Design patterns that solve problems related to the way visual
components, content and data are presented to the application
user. (e.g. Virtual product, News)

• Usability Patterns
Design patterns that solve problems related to the way users
interact with the Web application's visual components. (e.g.
Group location awareness, landmarks)

One example of a navigational design pattern is a collector. This
pattern is a process type pattern, which provides a design solution
to a process in which users need to collect a set of items (usually of
the same type), in order to perform some operation on the set at a
later stage. A widely used implementation of this pattern are
shopping carts in e-commerce sites, where users collects items
(books, flowers) and later want to pay for all of them once.
Another example, in a university application, would be students
that collect courses for a given semester and wish to register to
them as a set after the courses have been selected.

This thesis focuses on the first three types. The reason is that they
represent the types of solutions that are of interest to us in robust
navigational design and the properties that we wish to diagnose in
this designs. Usability patterns are more the focus of web
Designers and are considered a refinement, which is discussed as
future work. We indicate however that the extension to use these
patterns in the overall scheme is clearly possible and integrated.

 38

Elements of Navigational Design Patterns

The definition of what are essential attributes for patterns has been
discussed in details in [KUH1]. NPDL incorporates a set of
common attributes that all patterns share. These attributes create a
common 'interface' for all the patterns, so that they may be
analyzed as patterns and as instantiations (specific designs). The
pattern architect provides values for the following set of attributes
in a pattern:

Attribute Meaning

Pattern name Conveys the essence of the pattern
Intent What is the intent behind this pattern? What

problem does it solve?
Also known
as

Other known names for this pattern (e.g.
Literature, common references)

Motivation A scenario illustrating a typical problem and the
solution using the pattern

Applicability In what situations does the pattern apply
consequences How are the objectives supported? Trade-offs of

using this pattern. What are the results?
Known uses Examples of applications, sites that use the pattern

Links
Related
patterns

Patterns that are closely related to this pattern

Screens The screens that make up the navigational pattern.
Can also be inherited from more basic patterns.

The designer of the application, who instantiates the pattern,
provides the second set of values for the following common

 39

attributes:

Attribute Meaning

Module name Name of the module that will be implemented
using the pattern

Fulfilled
Requirements

The set of functional requirements that are fulfilled
by the module

Reachable
screens

Screens in other modules that are reachable from
this module

Once all attributes have been given values, the pattern is
instantiated to represent a specific module in the application. The
instantiation encapsulates both the functional requirements and a
best-practice solution (set of screens and navigations) to the
requirements.

Screens

The screens are part of the attributes of a pattern. A definition of a
screen in NPDL consists of the following attributes:

Attribute Meaning

Identifier Unique identifier of the screen. Screens that
belong to the shared library of patterns have a
unique identifier in the entire library.

Name Name of the screen
Elements A list of screen elements that make up the screen.

See the attributes of screen-elements.

 40

Attribute Meaning

Module name The module name (supplied by designer). A screen
identifier in a module with the module name is
unique in the application design.

Screen Elements

Following is the set of symbols in NPDL and their meaning:

Symbol Meaning Required Information for

Design
↔ Horizontal bar (menu) • ID

• name
→ link • Type (link)

• Name (descriptive for
dynamic links and fixed for
constant links)

• target (screen ID)
• Does open in a new

window?
▄ button • Type (button)

• Name
• Related function
• Is clickable on entry?

% manual input
– any text
– case sensitive
– only numeric
– only text
– date
– URL/path (hyperlink)

• Type (inputbox)
• Name
• Input type (cf. meaning)
• Is input masked?

 41

Symbol Meaning Required Information for
Design

╧ single selection from
multiple choices

• Type (select single option)
• name
• data source

╩ multiple selection from
multiple choices

• Type (select multiple
option)

• name
• data source

▒ Dynamic Content • Type (dynamic content)
• data source

≈ Check box (2 states) • Type (checkbox)
• Name
• Related function
• Is checked on entry?

█ Data table • Type (data table)
• Name
• Data source

%RO Display text • Type (display text)
• Name
• Data source

The other part of the design is how to connect the separate patterns
to reflect the whole design. For this a set of connector type is
required:

 42

Connectors (navigational paths)

Meaning Required Information for

Design

One exit possibility
(e.g. Exactly one button/link leads
from page A to the destination page B)

• ID
• source
• destination
• parameters list

One or more exit possibilities
(e.g. More than one button/link leads
from page A to the destination page B)

• ID
• source
• destination
• parameters list

Exceptions

Navigational design patterns convey the human interaction with
the Web application. Normally, the patterns refer to successful
interactions. However, in practice there could be failures within the
interaction process that relate both to the Web infrastructure (e.g.
HTTP) or the logic of the application (e.g. by trying to register to a
non-existing course or adding an activity in an invalid date). The
reasons they are required to be expressed in the design stage are:
• The designer is the responsible person for addressing these

exceptions
• The skilled designer knows how best to address them in a

consistent manner with the entire design
• Well-tested treatment of exceptions should become part of

patterns on the abstract level
• Treatment of exceptions can themselves be patterns and thus can

be expressed using NPDL. Common exception solution to
several patterns can then be reused.

 43

In addressing exception it is vital that the designer is able to
express the following points regarding the exception:
• What is the trigger for the exception? For example, failure in the

operation or invalid data-entry format.
• Description of the output produced when the exception is

encountered. This ideally will be in NPDL, or reference a known
pattern for treating such an exception, if such a pattern exists.

These exceptions in the normal operational mode can be expressed
using NPDL. The proposed language has given this option for the
designer for the above mentioned reason and also for being able to
later explore properties of specific designs. The explored
properties section presents them in details. Allowing the pattern
designer and their users to express and address exceptions at the
design level makes the design more robust and less error-prone,
because the designer is forced to address issues which inevitably
will arise, but should be defined by the designer and not during
implementation.

Authorizations

Role-based grouping of users is a popular authorization scheme by
which access rights are enforced in Web applications. Access
rights are defined in order to achieve the following goals:
• determining which data can be viewed by a user
• determining which functions can be activated by a user
• determining which screens can be viewed by a user
• determining the navigational paths that a user can follow when

using the application

Access rights can be related to the application on several levels:
• Components in screen. Parts that display data or that activates a

 44

function (e.g. link, button, data view)
• Complete screen or set of screens. Entire screens that a user is

allowed or not allowed to access completely (e.g. Financial
module, project management module)

• Navigational paths. Transitions between modules/sub-modules
in the application that the user may or may not explore (e.g.
Access financial records of a customer, but can view contact
details).

One way of defining authorization schemes is by creating roles
(logical groups), based on the types of users of the application (e.g.
Employee, manager, super user, student). Thereafter, actual users
are assigned to one or more of these roles and are associated with
them from the moment they log in to the system. NPDL utilizes
this approach and enables the assignment of groups of users to
each component, screen and navigational path, so that some
properties of authorization may be explored at the high-level
design stage. This association enables automatic generation of
code and enables simulation of various user types’ usage scenarios.

A pragmatic approach has been taken in the design of NPDL in
order to enable both flexibility and compactness of the access
rights association. User groups (representing various authorization
schemes) can be individually included or excluded from the right
to use a components, screen or navigational path. In addition the
entire set of groups may be included or excluded in the access
rights. Having this option enables the designer to specify which
groups are allowed and which are not, without having to make
global assumptions, such as: “if no access rights are specified for a
given function, then all groups are allowed to use that function”.

Such global assumptions, where access rights are not specified,

 45

cause undesirable symptoms in the design process. The following
two use cases demonstrate some of these symptoms:

• errors
In this use case a function F is accessible for all user groups except
group A. If the designer neglects to reject group A from using the
function F, due to the global assumption, the implementer allows
group A to access the function F. This access causes a security
breach. If, on the other hand, the designer must specify all the
authorizations, the margin of error decreases.

• Maintenance
In this use case a function is allowed for all users in group A but
not for the other 10 groups. The designer is forced to specify 10
groups as rejects. Using NPDL it is simple to reject all groups or
allow group A.

Once the authorization scheme has been specified by the designer,
it is possible to investigate properties related to it. These properties
are important for the correct function of the system and can save
implementation and maintenance resources, if detected at the early
high-level design stage.

Symbol Meaning Required Information for

Design
+* All groups allowed • 10000
-* No group allowed • 10001
+a1 Users from authorization group

a1 allowed
• ID

 46

Symbol Meaning Required Information for
Design

-a1 Users from authorization group
a1 not allowed

• ID

∩ And
U Or

Basic Navigational Design Patterns

Basic navigational design patterns are patterns that cannot be
broken down into smaller parts. Since the patterns existence is
based on it being a best-practice solution to a problem, each pattern
that solves a basic problem (single requirements, like searching,
displaying or collecting) cannot be reduced, since it will lack the
elements for a solution.

The best way to illustrate Navigational Design Patterns as they are
today is by giving some examples. These examples are inspired by
descriptions in [RSL1] and [WV1] as well as original suggestions
by us. We have tried to illustrate patterns of all types, but keeping
focus on the types of main interest to the thesis.

1. Basket

Description: a collection of items and operations on the collection
of items.

Context: A need to enable users to keep track of items selections
during navigation, making them persistent for future processing
when user decides to.

 47

Goal: Decouple product selection and processing.

Type: Process

Example: DTU course catalog (university)

Number of Required screens: 3

Screen Description
Items overview
select action

What items are in the basket?
What operations can be performed on the
items?

Action
parameters

Parameters for the operation, such as printer
name (for PRINT)

Feedback Result of applying the operation on each item

2. Calendar

Description: a collection of activities separated by periods, e.g.
Days, weeks and months.

Context: A need to enable users to follow and manage basic
calendar activities.

Goal: Efficient management of activities based on a periodic
scheme.

Type: Process

Example: My Calendar Module in CamusNet

 48

Number of Required screens: 5

Screen Description
Monthly View Monthly calendar view
Weekly View Weekly Calendar view
Daily View Daily calendar view
View appointment Information on a specific appointment

without ability to update
Enter Appointment Enter information on a specific appointment

3. login

Description: a personal and secure method for reaching the
application functionality.

Context: A need to enable users to securely reach the application
functionality. Personal entry allows customization, authentication
and role-based authorization.

Goal: Secure and Role-based entry to system functionality

Type: Process

Example: Campusnet login

Number of Required screens: 2

Screen Description

 49

Screen Description
Login
Main Screen

4. Address Book

Description: a collection of contacts that are relevant to the
application. Includes contact name and details.

Context: A need to enable users to manage contacts for personal
and business purposes.

Goal: Efficient follow-up and management of contacts

Type: Process

Example: Address Book in Campusnet

Number of Required screens: 3

Screen Description
Contact list
View contact details
Insert/Edit contact
details

 50

5. Catalog

Description: a collection of items that can be viewed in categories
or individually.

Context: A need to enable users to view items and insert and edit a
those items.

Goal: Display items to intended audiences for information or
marketing purposes, for example.

Type: Presentation

Example: Participants in Course

Number of Required screens: 2

Screen Description
Items Catalog
View Item Details
Edit Item Details

6. University Portal

Description: an application that allows staff and students to
manage information regarding the academic life at the university,
such as courses, grades, messages and activities.

Context: A need to manage information regarding academic
activities within a higher-education institute such as universities

 51

and colleges.

Goal: Provide a robust and comprehensive design of an
application of this type.

Type: Architectural

Example: CampusNet

Number of Required screens: 50. This is an example; actually
there could be several patterns for this type of application with a
different number of screens.

7. Group Location Awareness

Description: a hierarchal set of links representing the navigation
path from the current screen to the main screen.

Context: A need to enable users to associate their current location
(screen) to the structure of the application.

Goal: Provide a permanent reference about the user’s location in
the hypermedia space.

Example: breadcrumbs

Type: Usability

Number of Required screens: 0

 52

Combining Navigational Design Patterns

The additional benefit of navigational design patterns and a
concise language that describes them is the ability to combine
patterns, as discussed also in [WV1] and [MB1]. A patterns that is
designed as a combination of more basic patterns is of course a
pattern as well, but the fact that it is a combination of navigational
design patterns gives some important and useful attributes to a
language that easily enables this combinations to be defined. First,
the language has inheritances properties, meaning that the complex
pattern acquires, by the way that it is defined, the properties and
attributes of the basic patterns, such as the screens and navigational
paths. When they are updated, the result propagates through the
inheritance chain to all the complex patterns. Second, the need and
ability to combine patterns enhances the reasoning behind the
standardization of a pattern definition (language). Only by
adhering to a standard does the combination become possible,
since the complex pattern designer can integrate the basic patterns
in the same way. Furthermore, the resulting pattern can be
combined as a part of another pattern using the same standard.
Another advantage is that the complex pattern is more robust if
built using patterns that are themselves well-designed solutions to
the sub-problems. This ensures that patterns scale well, but still
maintain robustness. This relationship between patterns creates and
hierarchal connection between patterns.

An example of a complex pattern is a catalog with search. The
pattern described below enables users to use the catalog pattern
combined with the search pattern capabilities.

1. Catalog with search

Description: a collection of items that can be viewed in categories

 53

or individually and be searched by some criteria.

Context: A need to enable users to view, insert and edit them as
well as search for subsets of the catalog.

Goal: Display items to intended audiences for information or
marketing purposes, for example. Allow potential users to search
for items that match their current needs.

Type: Presentation

Example: Students searching for courses to register to

Number of Required screens: 5

Screen Description
Items Catalog A list of the items in the catalog
View Item Details The details of a specific item in the catalog
Edit Item Details Change and update details for one item
Search criteria A criteria for searching items, like color or

price
Search results The result of the search

Another example of a combined navigational design pattern is a
basket with login:

2. Basket with login

Description: a collection of items and operations on the set of
items that is specific to each user of the application.

 54

Context: A need to enable users to keep track of personal items
selections during navigation, making them persistent for future
processing when user decides to.

Goal: Decouple product selection and processing for each
individual user

Type: Process

Example: Amazon.com (e-commerce)

Number of Required screens: 4

Screen Description
Login Log into the application using a personal user

Identifier and password
Items overview
select action

View the items
Set the action to be performed

Action
parameters

What parameters are needed, for example a
printer name

Feedback What is the result of the action

The hierarchical operator h returns a new pattern based on the
definition of the basic patterns that are provided as input. The
connectivity of the screen within the pattern is the provided by the
pattern’s designer. For example, from which catalog screen can the
search criteria screen be reached and to which screens does the
search results screen lead.

 55

Summary and Discussion

At this stage we have attempted to layout the incentive behind the
thesis – the navigational design patterns and why a standard
language for defining and designing Web applications using them
is necessary. We aimed at pointing out why a design based on
navigational design patterns is a more robust yet flexible design
that is more easily implemented and maintained rather than a
design “from scratch” where the solution are based on no or poor
experience and on “re-inventing the wheel” approach (although
maybe unintentionally due to lack of experience). It's our claim
that a language that enables the definition and use of patterns in a
compact, standard and maintainable way will accelerate the
acceptance and use of the patterns, leading to better navigational
designs. We have given an example of CampusNet, the DTU portal
as an example of a Web application and identified the patterns it
has.

The way we suggest to combine patterns is summarized and
expanded. It is clear from our choices that we have a vision of a
hierarchical structure of navigational design patterns. We find this
structure both meaningful enough to display the connections
between patterns and flexible enough to display the types of
connections. In our presentation we have shown a simple
connection by combining patterns, as a type of inclusion
connection. There are however more possibilities, such as
conditional combinations. In this case, the transition between
patterns is based on some action the user performs and can
therefore results in different navigational paths. One example
would be an instantiation of a persistent catalog in an e-commerce
application. The designer wants to keep users who wish to exit a
product category interested, so they will be diverted to a collector
of a related item. Thus the complex persistent catalog (solves this

 56

need) is a conditional combination of a catalog, such that if the
user want to purchase the items the combination is with a
collector, otherwise the combination is with another catalog,
depending on the user's action. Another example are while
combinations. In this case, the transition between patterns exists
as long as some condition is satisfied. As an example, we define
the complex pattern Collector with view as a while combination
of a collector and a non-empty collector state. The combined
pattern is a virtual product display pattern. The resulting pattern
solves the problem of the user's need to view the items in the
collector successively before performing an operation, such as
purchase or register.

The next chapter deals with the language we propose and that
demonstrate the above-mentioned points in practice.

 57

Chapter 4 - Navigational
Patterns Definition
Language

This chapter introduces the proposed Navigational Patterns
Definition Language in details. The Navigational Patterns
Definition Language (NPDL) is the result of the research in this
thesis project. It provides a tool for navigational designers to
express their design in a compact, understandable, standard and
maintainable way. The need for such a language and its properties
has been discussed, e.g. in [WV1] and [MHG1]. The purpose of
the language is to provide a unified solution to all the participants
in the process of Web applications user interface (UI) design. The
contribution described herein is with the definition of the language
with a perspective of all the issues that have been identified and
discussed in previous chapters. In the next chapter we will describe
a concrete example of design using NPDL.

Motivation

We start by explaining the motivation behind the definition of a
language for defining navigational design patterns and for
describing specific navigational designs using patterns. The
motivations stems from the problems we have identified in the
current way that navigational design patterns are defined and used
within designs. The first problems we describe are that there is a
no standard for the attributes of an abstract design pattern.
Several researches (e.g. [NNK1], [RSL3] and [SSBZ1]) have

 58

attempted to provide a set of attributes, but they differ and have not
converged to a single agreed standard. It is our belief that this is
due to the fact that these attempts have only taken into account a
subset of the requirements that these attributes need to serve.
Another problem we have identified is the way in which patterns
that have been defined are presented to designers. The
presentation scheme always consists of textual explanation and
graphics of the navigational scheme suggested by the pattern or an
image portraying the use of the pattern in an application. Research
and sites regarding this topic reflect this problem which worsens as
the application's navigational designs get more complex. Another
problem we found is the inability to effectively search a
repository of navigational patterns due the lack of standardization,
language barriers and presentation schemes which are not
effectively searchable (e.g. graphical representations). Some
suggestions for a patterns catalog have been suggested (e.g.
[GC1]), but without the standardization we claim they would be
ineffective. A major problem resulting from the above is that there
is no standard means of describing the navigational design of
web applications with patterns, even if they are found and chosen.
This is because the professional languages of the pattern designers
and navigational pattern designers are completely separated,
although in practice they are persons with identical background
and a part of the same process, i.e. The pattern designers output is
an input for the Web application designer.

All these problems have prompted the research behind this project.
The result is described in this chapter – the navigational design
patterns definition language.

 59

Concepts

The concept behind NPDL is to use the standardization of
navigational design patterns we propose and the power of
Functional Programming as a common tool for the roles involved
in this stage of the software development.

The language enables Navigational Design Patterns architects to
do the following:
• Define Patterns in a standardized way. The patterns have a set of

common attributes and unique attributes
• Create shared libraries of these patterns
• Compose complex patterns from more basic patterns

It also enables a Web Application User-Interface designer to
achieve the following goals:
• Convey the design of the presentation layer: screens, their

components and the navigational scheme in a standard and
compact manner

• Relate the design to the software requirements specification
• Use a library to search and instantiate navigational patterns for

specific modules. Furthermore, relate the solution, which is
purposed by the pattern, to problems that the requirements pose
for each module

• Produce coherent and updated documentation of the proposed
design

Finally, it provides a solution for Quality Assurance (QA) and
Integrators who have the following tasks to perform:
• Diagnose the design properties (e.g. recurring screens during

navigation, authorization conflicts)
• Validate the cover of functional requirements for the UI by the

proposed design

 60

• Create search-mechanism on the patterns catalog
• Transform the output of the design to various formats (e.g.

XML, HTML, graphical representation)

Functional Layers in NPDL design and use

NPDL provides an abstraction of the required components, screens
and navigational paths regardless of the underlying technology.

Functional Programming - SML

We would like to first explain why we have chosen an existing
programming language as a basis for NPDL. This choice has been
made after we have decided on the properties of the language. It is

 61

natural to create a unique syntax, but it has been a choice to
explore whether an existing language has most of all the basic
requirements and can therefore be adapted to the specific needs.
The basis for NPDL is the functional Programming Language
called SML (Standard ML). The language specification and
concepts is described in [HAN]. SML is a part of the functional
programming languages (FPL) family, which also includes:
Erlang, Haskell and Scheme.

One main reason for selecting SML is that it is widely used and
therefore can be considered a standard in it's domain and has a
predicted short learning curve (since we use only a part of it).
Although naturally navigational designers do not currently use
SML for their design (this is one of the innovations and
contributions), we predict that the syntax we use can easily be
learned, even by novice designers or programmers. Another main
reason for selecting an FPL as a platform for NPDL is that it
enables the designer to compactly define what the goal behind a
statement is rather than having to use an elaborate syntax to
describe how to do it. The latter is a signature of OO and
procedural languages, like Java or C. the syntax of SML is
successful at this and is a main part of the requirements we have
stated for NPDL. Another powerful feature that we have harnessed
for NPDL is that the interpreter of an SML code analyzed and
displays the results in an understandable format, so that the any
statement in NPDL can be further analyzed for properties, such as
type checking (e.g. Of parameter types) and hierarchy expansion
(e.g. Of hierarchical structures). These properties belong to the
navigational design and though the design itself is compact, these
properties can easily be accessed by other designers or by the
developers. Furthermore, the use of SML ensures that code that is
used for diagnosis of the designs can be written in SML as well,

 62

and therefore be clear and written by the same persons as the
patterns designers and the Web applications designers (same SML
skills). The results of the diagnosis are provided by the SML
interpreter and therefore can be comprehended by all parties
involved. Some of the properties that can be analyzed on an
existing NPDL design will be discussed later in this chapter.

We have however defined syntax for NPDL using SML features.
The features that have been used are described below:
• Structure – a sequence of declarations, such as types, constants,

variables and functions
• Signature – a sequence of specifications. Includes all

information that needs to be known about a module, but nothing
else

• Functor – a function from a structure to a structure. Used as an
abstraction mechanism

Functional Requirements

The first elements of NPDL we introduce are the functional
requirements (FR). The signature of functional requirements in
NPDL reflects the set of attributes we defined for them in previous
chapters. This signature is introduced below:

signature FunctionalRequirementSig =
sig
 eqtype Id
 type Description
 type Requirement
 val reqDesc: Requirement -> Description
end

Functional Requirements Signature

The NPDL library contains a default implementation of the FR

 63

signature as shown below:

structure defaultRequirement : FunctionalRequirementSig =
struct
 type Id = int
 type Description = string
 type Requirement = (Id * Description)
 fun reqDesc (id, desc) = desc
end

Default Functional Requirements Implementation (NPDL library)

The difference between this default implementation and other is in
the type of the attributes (and not in the attributes themselves). In
the default implementation the FR are identified by a unique
integer Identifier, the Description is a String. A navigational
designer can use the signature to define another implementation
and use it instead in the NPDL design that follows. We have
introduced the default implementation as we believe it complies
with almost any FR description (i.e. a numerical identifier for a
requirement and a textual description).

The set of functional requirements is provided in the NPDL library
and the code is:

structure FunctionalRequirements = SetFct(type element = defaultRequirement.Requirement)

A set of default Functional Requirements (NPDL Library)

The navigational designer will enter the FR of the specific
application (e.g. CampusNet) using this signature for each of the
requirements, when designing in NPDL. An excerpt of code for
entering requirements is shown below. Here 2 requirements are
being inserted into fr, a set of default type functional requirements:

val fr = FunctionalRequirements.insert((1,"register to courses"),
 FunctionalRequirements.insert((2,"view student grades")

 64

Example of defining specific Functional Requirements

attern Types

We will later demonstrate how this FR are integrated into the
designed modules, so that there can be a diagnosis of which
modules implements which Functional requirements.
Alternatively, a reverse diagnosis can reveal which FR are used
and which are not used by analyzing the designed modules. Both
of these properties are pivotal in the software engineering process
and will be discussed in the diagnostic properties section.

P

We have mentioned four types of navigational design patterns. In
NPDL we handle three of them: architectural, process and
presentation patterns. Usability patterns are not handled by our
proposed language because they are different in the way that they
are described and relate to lower-level navigational design, which
is outside the scope of the thesis.

We have however made a distinction between the way that
different patterns type is defined and instantiated. Patterns of type
process and presentation have the attributes we have described
and are defined and used identically. All patterns of these types are
defined using SML functors. The reason is that we have identified
these types of patterns as being parameterized modules of an
abstract pattern. Therefore in NPDL patterns of these types are
extensions of an abstract pattern and the use of the pattern in the
design is a parameterized instantiation of the pattern's definition.
The abstract basic pattern of this type has two parts that define
some of its attributes. The first part is a set of the “screens”
attribute (including their screen elements, authorizations and

 65

connectors inside the module) and the “number of screens”
attribute. Following is the signature of this part:

signature genericDesignSig =
sig
 val screens: scrset.set
 val numOfScreens: int
end

Signature of part 1

The second part is a set of the “module name” attribute (which
module's design the pattern represents), the “set of requirements”
attribute (i.e. which functional requirements are fulfilled by
implementing this module) and the “reachable screens” attribute
(i.e. which screens from outside modules can be reached from this
module). Following is the signature of this part in NPDL:

signature propertiesDesignSig =
sig
 val moduleName: string
 val fulfillsRequirements : reqIDset.set
 val reachableScreens: scrIDset.set
end

Signature of part 2

As we will see later, each pattern of the types process and
presentation implement these signature as well as add properties
that are unique to them. They will all however be parameterized
ML modules.

The third patterns type is architectural patterns. These patterns
have a hierarchical type of connection between the modules that
make up the pattern. For example, a university Web application is
a pattern including modules such as: grades, courses information,
course registration, personal calendar and so on. We chose to
present the present this hierarchical structure as a tree structure in
SML. The nodes of the tree are modules (the screens attribute of
the pattern used for this module) and sub-trees are modules that are

 66

embedded within a certain modules. For example, in a “course
group” module, we would expect to find a course calendar of
activities and to find a list of participants in the course. The syntax
for constructing the pattern is as follows:

val <pattern name> = insertSon(<module screens>,<module screens>);
val <pattern name> = insertNode(<sub application>,<pattern name>);

datatype Application =
 Empty
 | Leaf of scrset.set
 | Node of scrset.set * Application list;

fun insertSon (x, Empty) = Leaf(x)
 | insertSon (x, Leaf(y)) = Node (y,[Leaf(x)])
 | insertSon (x, Node(y, app)) = Node(y,app@[Leaf(x)]);

fun insertNode (x, Empty) = x
 | insertNode (x, Leaf(y)) = Node(y, [x])
 | insertNode (x, Node(y, app)) = Node(y,app@[x]);

Definition of an Architectural Pattern elements and functions in NPDL

A concrete example will be presented in the next chapter,
regarding the CampusNet use case design.

Elements of Navigational Design Patterns in NPDL

In this section we demonstrate how to define the various elements
of navigational design Patterns. These elements have been
discussed previous chapters.

Screen Elements and Connectors

The screen elements are the visual elements that make up a web
application screen, such as a link, button or input box. We have
selected a subset of the most popular elements to define in NPDL,
but of course any other element can be defined in the same manner

 67

as demonstrated. The screen elements themselves are all structures
with their unique attributes. Each element has an element-type
(denoted by val myType) and a Name, which will be given by the
pattern designer when instantiated in a screen. Each screen element
also has unique attributes, e.g. a link has a target, which is the
identifier of the screen in the application to which it leads, when
clicked. This is an implementation of the connectors in NPDL
within a module. A button screen-element has the attribute of the
function it will activate when pressed. We present a portion of the
NPDL library that implements the screen elements:

structure Link =
struct
 val myType = "link"
 type Name = string
 type Target = int (*genericscreen*)
 type NewWin = bool
end

structure Button =
struct
 val myType = "button"
 type Name = string
 type Function = defaultFunction.Function
 type clickableOnEntry = bool
end

datatype screenElement =
 link of (Link.Name * Link.Target * Link.NewWin) |
 button of (Button.Name * Button.Function * Button.clickableOnEntry) |
 checkbox of (CheckBox.Name * CheckBox.Function * CheckBox.checkedOnEntry) |
 singleOption of (SelectSingleOption.Name * SelectSingleOption.DataSource) |
 multipleOptions of (SelectMultipleOptions.Name * SelectMultipleOptions.DataSource) |
 dataTable of (DataTable.Name * DataTable.DataSource) |
 displayText of (DisplayText.Name * DisplayText.DataSource) |
 inputbox of (InputBox.Name * InputBox.InputType * InputBox.isMasked);

Some Element Definitions and Screen Elements as defined in NPDL

Screen elements will be integrated into groups to form the
individual components of a navigational design, i.e. Screens.
Before that we introduce the NPDL implementation of
authorizations, which are extensions to the patterns we have

 68

introduced before.

Authorizations

Authorizations are implemented in NPDL to allow the designer to
indicate which user groups can access which screens. The language
provides a signature of the Authorization Group and a default
implementation (defaultAuthGroup) where each Authorization
Group is identified by a unique integer. Each group has the set of
attributes as discussed in the previous chapter. Moreover, a set of
default Authorization Groups is implemented, so that each screen
can be associated easily with such as set.

signature ApplicationAuthorizationGroupSig =
sig
 type Id
 type Name
 type AllowedScreens
 type ForbiddenScreens
 type AuthGroup
 val GetAllowed: AuthGroup -> AllowedScreens
 val IsAllowed: (defaultScreen.Id * string) -> AuthGroup -> bool
end

structure defaultAuthGroup : ApplicationAuthorizationGroupSig =
struct
 type Id = int
 type Name = string
 type AllowedScreens = scrIDset.set
 type ForbiddenScreens = scrIDset.set
 type AuthGroup = (Id * Name * AllowedScreens * ForbiddenScreens)
 fun GetAllowed (id , n, asc, fsc) = asc
 fun IsAllowed sc ag = if scrIDset.member(sc, GetAllowed(ag)) then true else false
end

structure AuthGroupIDset = SetFct(type element = defaultAuthGroup.Id)

Authorization Signature and default Implementation and sets in NPDL library

Each actual authorization group (e.g. administrators), is
instantiated by the navigational designer and associated with the
set of screens it is allowed and not allowed to access. The codes 0
and 10000 are reserved for no screens (allowed or not allowed)

 69

and all screens (allowed or not allowed). This issue has been
discussed in the previous chapter and hence the implementation.

Screens

Screens are the basic building blocks of patterns. A screen in
NPDL has an identifier, a name and elements that make-up the
visualization of the screen. Note that when a screen is created
(newScreen method) it takes a module name (denoted as the string
parameter). The reason for this is that the Id may appear several
times in an application (for example, the main screen of a catalog
pattern, which has the ID 300), but always in different modules.
The Screen Identifier is set by the pattern designer, but the module
parameter is set only when the pattern is instantiated by the
Navigational designer. The latter setting is discussed in a following
section about instantiation in more details.

Below is the NPDL signature and default implementation
(defaultScreen) of screens. A set of default screens and screen
identifiers has been provided as well.

signature ScreenSig =
sig
 type Id
 type Name
 type Elements
 type Screen
 val newScreen: Id -> Name -> Elements -> string -> Screen
 val ScreenName: Screen -> Name
end

structure defaultScreen : ScreenSig =
struct
 type Id = int
 type Name = string
 type Elements = (screenElement * real) list
 type Screen = (Id * Name * Elements * string)
 fun newScreen id n elem module = (id , n , elem , module)
 fun ScreenName (id , n, elem, module) = n

 70

end

structure scrset = SetFct(type element = defaultScreen.Screen)
structure scrIDset = SetFct(type element = (defaultScreen.Id * string))

Screen Signature and default Implementation as sets in NPDL library

Defining Basic Patterns

We now present the set of tools required to define the patterns
themselves. In this section we demonstrate the way to define basic
navigational patterns of type process and presentation, in NPDL.
This part is relevant mainly for persons that define patterns, in
order to publish in the patterns catalog. This catalog will then be
accessed by designers who wish to use the patterns within their
NPDL designs of Web applications.

functor loginFct(structure Usr: ApplicationUserSig structure GD: propertiesDesignSig): loginDesignSig =
struct
 structure Generic : genericDesignSig =
 struct
 val screens = scrset.linsert([defaultScreen.newScreen 1 "login"
 [(inputbox("user ID",String,false),1.0),
 (inputbox("password",Numeric,false),2.0),
 (button("logon",(defaultFunction.newFunction "login" [("user
name","int"),("password","string")] [(1,"success"),(2,"fail")]),true),3.0),
 (checkbox("rememeber me",(defaultFunction.newFunction
"rememeberMe" [("user name","int")] []),false),4.0)] GD.moduleName,
 defaultScreen.newScreen 2 "main"
 [(button("logout",(defaultFunction.newFunction "logout" []
 [(1,"success"),(2,"fail")]),true),1.0)] GD.moduleNam
defaultScreen.newScreen 3 "logout" [(link("back to login",1,false),1.0)] GD.moduleName],
 scrset.empty)
 val numOfScreens = scrset.setsize(screens)
 end
 structure Properties = GD;
 structure User = Usr
 type login = (User.Id * User.Password)
 fun loginNewUser (u, p) = 1
 fun loginReturningUser p = 1
 fun failedLogin (u, p) = [(1,"incorrect password"),(2,"server not responding"),(3,"user inactive")]
 fun rememberMe u = User.getLogin(u)
end

Example of Defining the LOGIN Navigational Design Pattern (from NPDL Library)

 71

Defining Complex Patterns using Combination

One of the important issues that NPDL addresses is the ability to
define complex navigational patterns using the basic patterns. The
construction method involves the combination of the basic
patterns. For example, a searchable catalog pattern is a pattern
that is, in fact, a combination of the independent patterns: search
and catalog. A basic e-commerce pattern is a combination of a
searchable catalog and shopping basket patterns.

Using NPDL the pattern designer can specify the screens of the
patterns as inherited from more basic patterns, by specifying those
patterns' names. This combination creates a link between the
complex pattern and the inherited ones, so that the screen set is
implicit, but can still be referred to using the same interface. The
issue that the designer has to address is the internal navigation
within the complex pattern. This is because the basic patterns
handle the navigation exclusively within themselves. NPDL
enables the designer to extend the screens with new components
(such as links) or update existing components so that all the
screens within the module are connected.

functor searchCatalogFct(structure Itm: ItemSig structure GD: propertiesDesignSig):
searchCatalogDesignSig =
struct
 structure CAT = catalogFct(structure Itm=Itm; structure GD=GD)
 structure SEAR = searchFct(structure Itm=Itm; structure GD=GD)
 structure Generic: genericDesignSig =
 struct
 val screens = scrset.sinsert(SEAR.Generic.screens,CAT.Generic.screens)
 val numOfScreens = scrset.setsize(screens)
 end
 structure Properties = GD
end

 Defining a Searchable Catalog by combining Patterns - Example

 72

In the example we see how a searchable catalog is defined by
combining a basic catalog pattern (CAT) and a search pattern
(SEAR). Note that the functor still adheres to the same structure as
a basic pattern and can be further combined within even more
complex pattern. Moreover, the basic patterns are simply
referenced, so if they are updated, their properties and
constructions are automatically propagated to this pattern, as well.

There are several important benefits to combining patters, rather
than redefining existing patterns in more complex ones. These
benefits (common to all software engineering best practices) are
listed below:
• Standardization: when complex patterns inherit the structure

of more basic ones, it is easier to learn and understand the more
advanced patterns, by learning the basic building blocks.

• Modularity: the patterns definition process becomes more
flexible and adaptable to changes and new 'best-practice'
solutions

• Reusability: patterns that have been defined before and are
useful in a more complex case are re-used speeding the
definition process. This 'inheritance' is a contribution both to
FPL and Navigational Design Patterns

• Library Maintenance: since complex patterns often are simply
built from more basic patterns, any update to basic patterns
automatically “escalates” through all the patterns that inherit its
attributes.

Instantiation of Patterns

Once the patterns have been defined (in shared libraries or by the
designer) they can be used by the designer of the Web application.
This section is mainly aimed at navigational designers that use

 73

(predefined) patterns within their NPDL design. NPDL provides
the mechanism for a simple instantiation of the patterns to create
entire modules in the application. The module navigational design
then conforms to that of the pattern by this instantiation.

structure CourseItem = defaultItem;

structure CourseCatalogProperties : propertiesDesignSig =
struct
 val moduleName = courseCatalogModuleName;
 val fulfillsRequirements = (reqIDset.linsert([8],reqIDset.empty));
 val reachableScreens = (scrIDset.linsert([(2,loginModuleName),
 (100,courseModuleName)],scrIDset.empty)
);
end

structure courseCatalogModuleDesign = searchCatalogFct(structure Itm=CourseItem;structure
GD=CourseCatalogProperties);

Instantiating A Searchable Catalog Pattern as a Course Catalog Module

In the above example, the Course Catalog Module has been
designed using the Searchable catalog complex pattern
(searchCatalogFct). The navigational designer provides the
properties: module name, which requirements are fulfilled (here
requirement number 8) and the external screens that are reachable
from this module (here screen 2 in the login module and screen
100 in the Course Module). This parameter (called GD) and the
CourseItm Structure (representing a catalog of courses and defined
as a default item1) are sent to the pattern functor to create the entire
navigational design of the module. The pattern itself contains all
the information about the screens, their structure and their internal
connectivity scheme (through the use of links screen elements).
The result produced by the SML interpreter mosml is shown:

1DefaultItem is an implementation of an abstract item that is common to several patterns in the

NPDL Library, like catalog and basket

 74

Result of expanding the NPDL design by mosml

The expansion clearly shows how much information the design
really has, although the NPDL syntax is very compact and clear.
The developer can have access to this information, such as the
screens of the sub-modules, the number of screens and variable
types.

Diagnosis of Designs

Standardizing the design patterns and thus the designs themselves

 75

presents the new possibility to perform diagnostics on the design.
This is due to the reason that the format (or syntax) of any input (a
design in NPDL) is known and therefore an algorithm to analyze
required properties of the design can be written independently.
Examples of diagnostics that may be performed are:
• screens that are reachable from many modules
This is important to check because it means that screens will be
encountered often and their functionality should be efficient
• Is a screen reachable within a module?
• What is the shortest number of screens between 2 given screens?
• Are there screens that are not reachable for a certain user group?

More than defining all the possible diagnostics, NPDL focuses on
providing a solid framework, so that the developers of such
algorithms have all the required information encapsulated within
the NPDL design.

(* screens that are reachable (= linked to) directly from multiple sources *)
fun screenReachability sc mdname [] = 0
 | screenReachability sc mdname (Rscr::RScrList) =
if scrIDset.member((sc,mdname),Rscr) then 1 + screenReachability sc mdname RScrList
else screenReachability sc mdname RScrList

fun multipleReachability sc mdname RScrList = (screenReachability sc mdname RScrList > 3);
 Example of Diagnostic Code (From the NPDL Library)

The code example shows how to write code in order to check
whether a screen is reachable from more than 3 modules. This
indicates multiple entry points, which implies a need to make an
efficient implementation of the screen. Using NPDL this property
can be diagnosed after a design to improve instructions to the
development team. Furthermore, the diagnostic code can be written
independently from the design since the design is know to be in
NPDL and the code can be reused.

 76

Summary and Discussion

This chapter introduced NPDL, the language that can be used by
navigational pattern designer, navigational designers of web
applications and by persons who need to perform diagnostics of the
design. We have shown how the properties that we required from
the language in the previous chapter have been incorporated into
the design of NPDL, so it has a broad basis to build upon and
therefore increase the level of usefulness and thus of acceptance.
The language in based on the research of Navigational Design
Patterns and on the capabilities of SML, a functional programming
language.

There are numerous benefits that we identified by designing NPDL
in the way that we have. We list those advantages followed by a
brief explanation:
• Standardizing Designs – the fact that we have chosen SML as a

basis with a syntax and rules in place makes NPDL have these
properties as well

• Flexibility – NPDL can still evolve within the existing
framework. Also, SML has other properties that can further be
incorporated into NPDL

• Decouple Design Process – each of the roles within the process
has a part of NPDL that can be used separately, but in relation to
the others. This means that the language supports the entire
process, on one hand, but allows a parallel and independent
work, on the other. This makes the process more efficient, which
is very important when the application's design scales to
complex levels.

• Compactness – the language is designed for all the parties
involved in a way that the focus is on what needs to be
conveyed. The syntax is designed so that how it is achieved can
be described compactly and clearly, since it is intended for

 77

complex application's design.
• Type checking and validation – the power of SML in type-

checking and validating statements across the code (here, NPDL
designs) is harnessed to validate the design as it progresses and
provide type information to developers and other designers that
are exposed to the NPDL final result.

• Compatibility and Adaptability – the use of a standard output
from the mosml interpreter allows NPDL to fit well into other
SML implementations. Furthermore, since the syntax is defined,
an NPDL-based design can be adapted and converted into other
formats, so it is an input to other systems. The formats can be,
for example, XML or graph-based. Other systems can be HTML
code-generators or visual tools.

The next chapter is a concrete example of designing a Web
application using NPDL. The goal is to demonstrate the way in
which the navigational designer is going to work when using
NPDL – what is required and how it is done.

 78

 79

Chapter 5 - CampusNet Use
Case

Campusnet, the DTU portal for staff and students, provides a test
case for the thesis as a Web based application platform for
examples and diagnostic purposes. In this chapter, we analyze the
use case, list a set of navigational design patterns as they are used
in CampusNet and propose an NPDL design of a portion of the
application. This chapter demonstrates the thesis as it has been
described in previous chapters and will be the basis for the
practical part of the conclusions.

Use Case Analysis

The aim of the use case analysis is to explore the following issues:
1. What requirements have guided Campusnet designers?
2. What documentation exists for Campusnet design?
3. How do the design decisions relate to the requirements?
4. What problems do actual users face when using the Campusnet?
5. Do the problems occur due to lacking requirements or due to

problems in the design?
6. How does the use of NPDL aid detecting or solving these

problems?

Processes in the System

Some of the processes that have been identified and correspond to
functional requirements are:

 80

1. Secure login to the system
2. Entering a new event in the calendar
3. Ability to register and to delete registration to courses
4. Viewing and editing course participants list

Design Problems Identified

Some of the usability problems that have been identified were:
1. Inability to enter multiple meeting schedules
2. Slow login process
3. Slow course participant search
4. Entering messages forces a preview in a separate screen

CampusNet serves as a case study application. We describe the
following processes in the system and the corresponding screens
and functions. The first process is entering an activity to a
calendar. The process is made up of activities (or steps) the user
must follow in order to achieve the result. The navigational
designer needs to map these activities into a set of screens,
functions and navigational paths between the screens. An example
of this mapping is shown at the table below:

P1: Enter Calendar Activity Process
Activity Screen Function
Select language LOGIN selectLang(lang)
Enter user and password LOGIN GetUser(user, pwd)
Select group (links on left) MAIN SCREEN link
Select “calendar” (link) GROUP SCREEN link
Select “add new activity”
(link)

CALENDAR
SCREEN

AddActivity(groupID)

Enter activity details ACTIVITY
SCREEN

Manual data entry

 81

P1: Enter Calendar Activity Process
Click save ACTIVITY

SCREEN
SaveActivity(GroupID,
details)

Click Logoff Logout()

The second process is viewing an activity in the calendar. An
example of this navigational designer’s mapping is shown in the
following table:

P2: View Calendar Activity Process
Activity Screen Function
Select language LOGIN selectLang(lang)
Enter user and password LOGIN GetUser(user, pwd)
Select group (links on left) MAIN SCREEN link
Select date in monthly
calendar

CALENDAR
SCREEN

getDisplayDate(date)

Click on activity in weekly
display

CALENDAR
SCREEN

displayActivity(ID)

view activity details ACTIVITY
SCREEN

Click close ACTIVITY
SCREEN

CloseWindow()

Click Logoff Logout()

Another process is sending a message to participants in a course.
An example of the activities mapping is shown below:

P3: Message to Group Participants Process
Activity Screen Function
Select language LOGIN selectLang(lang)
Enter user and password LOGIN GetUser(user, pwd)
Select group (links on left) MAIN SCREEN openGroupScreen(groupID)

 82

Click messages GROUP SCREEN Link
Click compose message MESSAGES

SCREEN
Link

Enter message data MESSAGE SCREEN Manual
Press “see message” MESSAGE SCREEN PreviewMessage(data)
Click “send” MESSAGE

PREVIEW SCREEN
SendMessage(contacts,
data)

Click Logoff Logout()

User Groups in CampusNet:
• Superuser
• Administrator
• Author
• User

This identification of requirements, the mapping to actual screens,
functions and navigations is the primary task of the navigational
designer of CampusNet. This is the link between the functional
requirements of the CampusNet fuure users and the solution
provided by the navigational designer to the way they will interact
with the application. This abstract mapping will now be presented
using NPDL, so it is clear how the proposed solution is applied to a
real-life Web application.

Functional Requirements in CampusNet

The first step CampusNet the navigational designer follows is
defining the functional requirements of the application using
NPDL. We present some of the requirements for CampusNet,
some of which are used further in the example.

 83

(* Campusnet Functional Requirements Definition *)
val fr = FunctionalRequirements.insert((1,"register to courses"),
 FunctionalRequirements.insert((2,"view student grades"),
 FunctionalRequirements.insert((3,"view course participants list"),
 FunctionalRequirements.insert((5,"secure login to the system"),
 FunctionalRequirements.insert((6,"allow viewing course-participant details"),
 FunctionalRequirements.insert((4,"send messages to course participants"),
 FunctionalRequirements.insert((7,"track course related activities in course and personal
calendar"),
 FunctionalRequirements.insert((8,"the system must enable adding, viewing and
searching for courses"),
 FunctionalRequirements.insert((10,"allows users to access main modules, such as
messages and email from all screens"),FunctionalRequirements.empty)))))))));

Defining Functional Requirements of CampusNet in NPDL

Navigational Design Patterns in CampusNet

After showing how the functional requirements are defined in
NPDL, we show the navigational design patterns we have
identified in CampusNet. In practice, it is the navigational
designer’s task to relate between the problems that the functional
requirement demand solving and the corresponding navigational
design patterns that offer a best-practice solution. The format for
the patterns presentation is similar. We present each of the screens,
including the data and operations (screen elements), screenshots of
the actual module in CampusNet and an NPDL design of the
module, which is an instantiation of the presented pattern.

• Login pattern

The login pattern handles the problem of a secure login to a system
using usually a user name and password. The instantiation in this
case is to the login module in CampusNet.

screenID: 1000
Name: “login screen (English)”

 84

Data:
Name Data type Navigation
User name string %
Password String %
Language DANSK ┴

Operations:
Name Parameters Navigation
Log on User name, password n → 1100
Help n → 2001

About n→ 2002

 85

val loginModuleName = "campusnet login";

(* campusnet login *)
(* campusnet user - example of overriding a defaultUser structure if required *)
structure CampusnetUser : ApplicationUserSig =
struct
 type Id = int
 type Password = string
 type authorizationGroups = AuthGroupIDset.set
 type user = (Id * Password * authorizationGroups)
 fun newUser id = (id, "****",AuthGroupIDset.empty)
 fun hasAuthorization (id,p,ag) a = if AuthGroupIDset.member(a,ag) then true else false
 fun addAuthorization (id,p,ag) a = (id,p,AuthGroupIDset.insert(a,ag))
 fun deleteAuthorization (id,p,ag) a = (id, p, AuthGroupIDset.delete(a,ag))
 fun printUser (id,p,ag) = id::AuthGroupIDset.toList(ag)
 fun getLogin (id,p,ag) = (id, p)
end

structure loginProperties : propertiesDesignSig =
struct
 val moduleName = loginModuleName;
 val fulfillsRequirements = (reqIDset.linsert([5],reqIDset.empty));
 val reachableScreens = (scrIDset.insert((200,calendarModuleName),
 scrIDset.insert((200,myCalendarModuleName),
 scrIDset.insert((100,courseModuleName),scrIDset.empty))));
end
structure loginModuleDesign = loginFct(structure Usr=CampusnetUser; structure GD=loginProperties);

Login Module Design in NPDL

 86

• Calendar pattern

The Calendar pattern handles the problem of entering and
managing activities of the user on a schedule basis. The
instantiation in this case is to the personal Calendar and course
Calendar modules in CampusNet.

screenID: 1001
Name: “calendar overview”
Data:

Name Data type Navigation
selector
CalendarDisplay SelectedDate: Date

Operations:

Name Parameters Navigation
InsertNewActivity Current date n → 1002
ViewActivityDetails ActivityID: numeric

 ->
Activity

n → 1005

GoTo month*year

AppointmentsInThisW
eek

 inactive

UpcomingAppointment
s

date → 1003

AllAppointments → 1004

 87

screenID: 1002
Name: “Insert new activity”
Data:

Name Data type Navigation
startDate {1-31}/{1-12}/{2000-2006} ╧
StartTime {0-23}/{00,05,10,15,…,55} ╧
Duration {0-23}/{00,05,10,15,…,55} ╧
Place %
Participants %
Subject %
Description %
All day ≈

Operations:

Name Parameters Navigation

 88

Save StartDate:Date
StartTime: time
Duration: numeric
Place: String
Participants: String
Subject: String
Description: String
 -> Activity

■

screenID: 1003
Name: “upcoming appointments”
Data:
Name Data type Navigation
Date and time StartDate:Date

StartTime: time
Endtime: time (calculated)

details Place: String
Participants: String
Subject: String
Description: String

 89

Operations:
Name Parameters Navigation
InsertNewActivity n → 1002
AppointmentsInThisWe
ek

 → 1001

UpcomingAppointments date inactive
AllAppointments → 1004

ScreenID: 1004
Name: “all appointments”
Data:
Name Data type Navigation
Date and time StartDate:Date

StartTime: time
Endtime: time (calculated)

details Place: String
Participants: String
Subject: String
Description: String

 90

Operations:

Name Parameters Navigation
InsertNewActivity n→ 1002
AppointmentsInThisW
eek

date → 1001

UpcomingAppointment
s

date → 1003

AllAppointments inactive

ScreenID: 1005
Name: “view activity”
Data:
Name Data type Navigation
Date and time StartDate:Date

StartTime: time
Endtime: time (calculated)

 91

details Place: String
Participants: String
Subject: String
Description: String

Operations:
Name Parameters Navigation
EditActivity

ActivityID: numeric n→ 1002

Delete activity ActivityID: numeric → 1001

val myCalendarModuleName = "MY Calendar";
val calendarModuleName = "course activities calendar";

(* campusnet course activities in calendar *)
structure CampusnetActivity = defaultActivity;
structure ActivityCalendarProperties : propertiesDesignSig =
struct
 val moduleName = calendarModuleName;
 val fulfillsRequirements = (reqIDset.linsert([7],reqIDset.empty));
 val reachableScreens = (scrIDset.empty);
end

structure calendarModuleDesign = calendarFct(structure Act=CampusnetActivity; structure
GD=ActivityCalendarProperties);

(* campusnet personal activities in calendar *)
structure PersonalActivityCalendarProperties : propertiesDesignSig =
struct
 val moduleName = myCalendarModuleName;
 val fulfillsRequirements = (reqIDset.linsert([7],reqIDset.empty));
 val reachableScreens = (scrIDset.insert((2,loginModuleName),

 92

scrIDset.insert((100,courseModuleName),scrIDset.empty)));
end

structure myCalendarModuleDesign = calendarFct(structure Act=CampusnetActivity; structure
GD=PersonalActivityCalendarProperties);
 Course Calendar and Personal Calendar Modules Design in NPDL

• Basket Pattern

The basket pattern handles the problem of collecting items of a
certain type and performing some operation on the entire set of
items. The instantiation in this case is to the course registration
module in CampusNet. In this case the pattern was not used in the
actual system, but is used in the design we are making in order to
present a possible improvement that solves one of the identified
problems. In this pattern the items are courses and the operation is
registration.

screenID: 1011
Name: “registration overview”
Data:
Name Data type Navigation
period
Course code: numeric

name: string
module: list
admin: list
status: string
message: string

Operations:

Name Parameters Navigation
Remove PeriodID: numeric

CourseID: numeric
n→ 1012

FindCoursesByID * n→ 1013

FindCoursesByName * → 1014
Register CourseID or CourseName → 1012

 93

screenID: 1012
Name: “acknowledgment”
Data:
Name Data type Navigation
Message String ▓

Operations:
Name Parameters Navigation
Back to list → 1011

screenID: 1013
Name: “Find Course By ID”
Data:
Name Data type Navigation
period

 94

course code: numeric
name: string
module: list

Operations:
Name Parameters Navigation
Enroll PeriodID, CourseID n→ 1012
FindCoursesByID CourseID: string

*

FindCoursesByName CourseName: string
*

 → 1014

screenID: 1014
Name: “Find Course By Name”
Data:

Name Data type Navigation
period
course code: numeric

name: string
module: list

Operations:
Name Parameters Navigation
Enroll PeriodID, CourseID n→ 1012

 95

FindCoursesByID CourseID: string
*

→ 1013

FindCoursesByName CourseName: string
*

val courseModuleName = "course registration module";

(* campusnet course Registration Module *)
structure CourseItem = defaultItem;
structure CourseProperties : propertiesDesignSig =
struct
 val moduleName = courseModuleName;
 val fulfillsRequirements = (reqIDset.linsert([1],reqIDset.empty));
 val reachableScreens = (scrIDset.insert((2,loginModuleName),
 scrIDset.insert((300,courseCatalogModuleName),
 scrIDset.insert((200,calendarModuleName),scrIDset.empty)
)));
end

structure courseModuleDesign = basketFct(structure Itm=CourseItem; structure GD=CourseProperties);
val courseModulefl = courseModuleDesign.FuncList [
 defaultFunction.newFunction "register" [("int","semester season"),("int","semester
year"),("int","student id")] [(1,"approved"),(2,"full"),(3,"not given this semester")],
 defaultFunction.newFunction "print" [("int","printer ID"),("int","number of copies")]
[(1,"course info printed"),(2,"course info unavailable"),(3,"printer not responding")],
 defaultFunction.newFunction "unregister" [("int","student ID")] [(1,"unregister
successful"),(2,"unregister failed")]];

Course Registration Design in NPDL as Basket Pattern

 96

• Personal Address Book pattern

The address book pattern handles the problem of managing
personal contacts and being able to search them effectively when
needed. The instantiation in this case is to the Address Book
module in CampusNet.

screenID: 1021
Name: “addresses overview”
Data:
Name Data type Navigation
Details Name

Phone
Mobile
Email
Address
website

%

Comment String %

Operations:

Name Parameters Navigation
Edit ContatctID: numeric n → 1022
InsertNewContanct ■ (1022)

SortBy Given Name
Last name
Phone
Mobile
Email
Address

screenID: 1022
Name: “contact details”
Data:
Name Data type Navigation
Given name String %
Family name String %
Address String %

 97

Phone numeric %
Mobile numeric %
Email String %
Homepage URL %
Comment String %

Operations:

Name Parameters Navigation
Save contactDetails ■ (1021)

This section has demonstrated the mapping of the navigational
designer, the similar process that would follow if using NPDL and
the result in the actual application after implementation. The goal
is to emphasize the compact and clear way that NPDL captures
both the requirements and the solution the designer wishes to
convey to the developers.

Other Modules

Some modules of CampusNet were designed using NPDL in order
to demonstrate a practical example of using the language.
Following the NPDL code that is the design without a graphical

 98

representation of these modules. The modules are: Course
participants, Course Catalog and Groups.

val courseCatalogModuleName = "course catalog";
val groupModuleName = "CN Groups (courses, DTU, user)";
val courseParticipantModuleName = "course participants";

(* campusnet course participants *)
structure CourseParticipant = defaultItem;
structure CourseParticipantProperties : propertiesDesignSig =
struct
 val moduleName = courseParticipantModuleName;
 val fulfillsRequirements = (reqIDset.linsert([3,6],reqIDset.empty));
 val reachableScreens = (scrIDset.empty);
end

structure courseParticipantModuleDesign = catalogFct(structure Itm=CourseParticipant;structure
GD=CourseParticipantProperties);

(* campusnet course catalog *)
structure CourseCatalogProperties : propertiesDesignSig =
struct
 val moduleName = courseCatalogModuleName;
 val fulfillsRequirements = (reqIDset.linsert([8],reqIDset.empty));
 val reachableScreens =
(scrIDset.linsert([(2,loginModuleName),(100,courseModuleName)],scrIDset.empty)
);
end
structure courseCatalogModuleDesign = searchCatalogFct(structure Itm=CourseItem;structure
GD=CourseCatalogProperties);

(* Campusnet Group Module Design *)
structure groupModuleDesign =
struct
 structure Generic: genericDesignSig =
 struct
 val screens = scrset.linsert([defaultScreen.newScreen 10000 "Group Welcome"
[(displayText("welcome...",""),1.0),(link("search again",400,false),2.0)] groupModuleName],scrset.empty);
 val numOfScreens = scrset.setsize(screens);
 end
 structure Properties =
 struct
 val moduleName = groupModuleName;
 val fulfillsRequirements = reqIDset.empty;
 val reachableScreens =
(scrIDset.linsert([(2,loginModuleName),(100,courseModuleName)],scrIDset.empty));
 end
end

NPDL Design of modules: participants, Course Catalog and Groups

 99

The entire application portion we have designed was implemented
as an architectural design pattern, which is a Univesity Protal
pattern. The code and the result of printing this design are
presented below:

(* designing the entire application as an architectural design pattern *)
val campusnetDesign = insertSon(myCalendarModuleDesign.Generic.screens,
Leaf(loginModuleDesign.Generic.screens));
val campusnetDesign =
insertNode(Node(courseModuleDesign.Generic.screens,[Leaf(courseCatalogModuleDesign.Generic.screen
s)]),campusnetDesign);
val campusnetDesign = insertNode(Node(groupModuleDesign.Generic.screens,
[Leaf(calendarModuleDesign.Generic.screens),Leaf(courseParticipantModuleDesign.Generic.screens),Leaf
(courseParticipantModuleDesign.Generic.screens)]), campusnetDesign);

CampusNet architectural Design in NPDL

CampusNet design print-out of the NPDL code

The printing reveals the hierarchy of the modules, shown with the
screens identifiers, module name and screen names, within the

 100

CampusNet application. This is a visualizations of the levels in the
application and is clearly visible to the designer when using
NPDL.

Authorizations

Authorizations have been handled in NPDL. We have identified 3
groups: administrators, students and lecturers. Each group has been
assigned the screens it may and may not view. For example,
Administrators can view all screens, so they have been assigned
the code 10000 (reserved for this purpose) in the “allowed
Screens” group (adminasc) and students were denied the screen
identified as 200 in the course calendar module (their forbidden
screens group is called: studfsc). The 3 groups were then created
using the newAuthGroup command. The full code is presented
below:

(********************** AUTHORIZATION DEFINITIONS ***************************)
val adminasc = scrIDset.insert((10000,"all"), scrIDset.empty);
val adminfsc = scrIDset.empty;
defaultAuthGroup.newAuthGroup 1 "admin" adminasc adminfsc;

val studasc = scrIDset.linsert([(1,loginModuleName),(2,loginModuleName),(3,loginModuleName),
 (100,courseModuleName),(101,courseModuleName),(102,courseModuleName)], scrIDset.empty);
val studfsc = scrIDset.insert((200,calendarModuleName), scrIDset.empty);
defaultAuthGroup.newAuthGroup 2 "students" studasc studfsc;

val lecasc =
scrIDset.linsert([(1,loginModuleName),(200,calendarModuleName),(200,myCalendarModuleName)],
scrIDset.empty);
val lecfsc = scrIDset.empty;
defaultAuthGroup.newAuthGroup 3 "lecturers" lecasc lecfsc;

Authorization Definition in CampusNet Using NPDL

Summary and Discussion

This chapter introduced an example of designing a Web University

 101

Portal using NPDL. The main idea was to present the applicability
of the NPDL design concepts. An architectural pattern, such as this
one, can actually be defined by several pattern architects in
different ways, so it is not confined, as other patterns are not, to a
single definition. The definitions vary in the screen structure,
number of screens or the navigational design between the screens.
Each of the patterns has of course many instantiations within
specific designs that use them. For example, CampusNet design
may be an instantiation of an entire University Portal Pattern or
made from instantiations of smaller patterns for the different
modules.

We have chosen to present both the design of existing patterns that
we have identified in CampusNet as they are, for example
calendars and course participants. However, we also present
designs of some modules based on other patterns we found more
fitting. For example, the registration process is not based on the
basket pattern in the actual system, but our NPDL design shows
how this can be used. We believe this solution provides a more
robust and standard design, since it is based on known patterns.

The problems we have identified in the existing design are
described in the introduction to this thesis. As a reminder they
were: that after logging in the user could not change the chosen
interface language. The other one was that the course search and
selection are in a completely separated application that the
registration process. Moreover the registration can be done to each
selected course individually and not collectively. By using NPDL
and patterns, we have can discover the language identification
problem by explaining the design diagnosis process. For solving
the registration design problem we followed these steps:

• Defined a Catalog with Search Pattern in NPDL

 102

• Used the Catalog with Search and Basket patterns in
CampusNet’s NPDL design of the Course Registration
module

We achieved an improved navigational design for the module. The
following user interactions are now possible:

• Presents the courses to the user in a searchable catalog in the
application

• Allows a selection of one or more courses into a dedicated
list (basket)

• Enables registration within the system to one or more of the
courses in the list at the same time, by selecting the register
operation

• The user (student) receives feedback on the registration
result of each course. The feedback is similar to the one
given in the actual CampusNet, so there is no loss of
information

We see this as a viable and robust solution to the problems
identified and attribute the solutions of both problems to the use of
NPDL in our use case design.

 103

Chapter 6 - Visual Tool for
Designers

This chapter presents NPDL, the language described in the
previous chapter, as it may be used with a visual tool for
navigational Designers. This approach presents an alternative to
the use of NPDL with command lines, as presented, but still
retaining the language's design principles. A visualization of the
language's functionality can make it more accessible to designers
without programming skills. The ideas presented in this chapter
will add to the discussion and conclusions that will be introduced
in the next chapter.

The application follows the navigational design process: defining
patterns, designing Web applications using patterns and diagnosing
the design. All three parts use NPDL as the underlying basis. The
application is hence called “The 3D Application” (Define, Design
and diagnose). We have designed the application based on client-
server architecture, using Microsoft™ Access 2000.

Main Functionalities

The main functionalities behind the 3D application are introduced
in the main screen (shown below).

 104

Main Screen of the 3D application

The first part of the application handles the functionalities required
by the pattern designers. The application enables them to view
and edit the screen elements (those defined in NPDL) and define
navigational design patterns using these elements within screens.
Referring to our description of the LOGIN pattern, the pattern's
attributes, screens and screen-elements within each screen are
defined. The corresponding result of defining this pattern in the 3D
application will be seen as follows:

 105

Login Pattern as defined in the 3D application

The second part of the application handles the functionalities
required by the Web Application Navigational designers. They
are able to view categories of applications, such as Customer
Relationship Management (CRM) or University Portals. Mainly,
however, they can create Navigational Designs using the patterns
that have been defined, either by them or by others. The design
follows the same guidelines dictated by NPDL design, i.e. Entering
the Functional Requirements of the application, relating them to
modules (given names) and patterns that represent the design of the
modules (names of pattern), as chosen by the designer. The 3D
application provides an easy access to the patterns catalog, so the

 106

selection process is simple and based on the information provided
by the patterns designers. The main idea and contribution is that
the navigational designer can relate between the concrete
requirements to a pattern that solves a problem, which is an
abstraction of this requirement. For example, in CampusNet as
concrete requirement to enables students to select courses (items)
and register to them as a group (operation on items), can be related
to the basket pattern. When a relation has been made, the
designer can use the “Import Screens” button to instantiate the
pattern within the specific design. This pattern provides a solution
to the abstract problem provided here in parenthesis for clarity.
The screen that encapsulates these functions is shown below:

Functional Requirements and Patterns for CampusNet (Partial View)

The designer can then go on to name the default screen elements,

add or delete some of them to fit the design. The application

 107

maintains the flexibility of the language, i.e. the degree in which
the navigational designer adheres to the selected pattern. The third
part is dedicated to the diagnosis of design, mainly used by quality
assurance (QA) engineers. The contribution is in the ability to
identify problems during the design phase, rather than after
implementation, thus leading to more robust systems and efficient
development process. The modules enable to define properties
which are going to be investigated and view some that have been
defined already. The QA engineer can execute an automatic
diagnosis process that generates results as shown below:

Example of diagnosis results for screens that have more than 2 entry points

In this example the diagnosis process reveals screens that are
directly accessible from more than 2 screens. This is an indication
to the designer to reduce the functionality if those screens have a
long loading time or alternatively, tell the developers to make it

 108

efficient since it is expected to be requested often. Both these
decisions are better handled if identified by the designer before
implementation as this process suggests. This capability can also
follow the design process, providing immediate feedback on
design changes and their implications. The feedback also clarifies
why the check has occurred and how to handle the results. A full
report can also be generated into a file for later inspection. The
main part of the report is given in the appendix A.

Discussion

The 3D application presents a different approach to exposing
NPDL to the different persons involved in the navigational design
of Web Applications. The design that has been chosen is
completely visual, therefore aimed at users without or with little
coding experience, but a good grasp of navigational design
concepts. The main point behind the development of the 3D
application is to show that although the principles of NPDL are
based on syntax, it is possible to make it usable and attractive to
designers with different levels of skills, regarding programming or
grasp of syntactic principles. The underlying database has been
normalized in the sense that every type of information is defined
once, but used in all relevant tables. We choose not to discuss in
depth the principles of the 3D application's architecture, but rather
show the functionality with respect to the design of NPDL.

In the next chapter we conclude the project and will present the
application within the context of the entire thesis.

 109

Tables and Relationships in the 3D application database

 110

 111

Chapter 7 – Conclusion

In this project we have investigated a method that both
standardizes and eases the navigational design process of Web
applications for all involved persons. The main approach was to
explore navigational design patterns and a language to express
both the patterns themselves and the design that use them. In
addition, the unification enables the writing of algorithms that
analyze the designs before they are implemented.

We began by investigating the domain of navigational design. We
started from the functional requirements which are the common
ground to the entire Web application design. We continued with
the analysis of navigational design patterns, the abstract best-
practice solution to recurring problems within the domain. These
patterns are often the suggestions of experienced designers who are
able to make an abstraction from a solution to a specific problem,
into a pattern that matches problems of similar nature. We
suggested the unification and connection between the
requirements, as problems that need to be addressed by the
designer, and the patterns as well-tested solutions. This unification
and its need to be conveyed to others (e.g. Designers and
developers) have resulted in the exploration of a navigational
design language that will enable this unification and
standardization.

We went on to define the properties of the language using previous
research and original extensions to patterns, such as authorizations
and exceptions. Using this definition we have introduced the
concepts of our proposed navigational design patterns language

 112

(NPDL). We formalized it and showed examples of known and
new patterns as defined by the language. The progression we have
taken from there was the introduction if a practical way to
implement the language using Standard ML (SML), a functional
programming language. We have shown how the concepts of
NPDL use the power of SML, such as libraries, simple syntax,
standardization and type checking, for the benefit of NPDL
requirements. We have demonstrated how to define patterns, use
patterns in designs (from libraries) and diagnose the design by
writing algorithms in SML.

We went on to construct a top-to-bottom use case based on
CampusNet, the DTU university portal. We started by analyzing
the requirements, constructing relevant patterns and designing a
portion of the application using NPDL. We have shown the
capabilities of the language by applying it to the actual application
and by creating alternative designs. We analyzed the results using
algorithms in order to identify properties of the design and to show
the benefits when designing very large systems.

We concluded with the introduction of a visual tool for designers,
based on the concepts of NPDL. The tool was constructed using
client/server architecture. Beyond providing an alternative way to
convey the NPDL design, i.e. Graphical rather than as code, the 3D
application demonstrates the important property of the technology-
independence of NPDL.

Contributions

The aim of this thesis was to contribute to the research and the
applicability of navigational design of web applications. We view
the main contribution as the standardization of the means by which

 113

navigational designs are conveyed to others by the designer. By
using standard ML and unifying the requirements for such a
language from previous research, we have achieved this
contribution. We further aimed at defining an applicable and
concrete method for defining patterns and libraries that can be used
by designers. Again NPDL has been constructed to include these
capabilities and we have shown through examples the benefits of
the resulting designs.

The problems we have identified in the existing design of
CampusNet are described in the discussion in chapter 5. As a
reminder they were: that after logging in the user could not change
the chosen interface language. The other one was that the course
search and selection are in a completely separated application that
the registration process. Moreover the registration can be done to
each selected course individually and as a complete set of selected
courses. By using NPDL and patterns, we have achieved an ability
to expose the language identification problem by diagnosis and
analysis of the design. For solving the registration design problem
we followed these steps:

• Defined a Catalog with Search Pattern in NPDL
• Used the Catalog with Search and Basket patterns in

CampusNet’s NPDL design of the Course Registration
module

We contributed to an improved navigational design for the module.
The following user interactions are now possible:

• Presents the courses to the user in a searchable catalog in the
application

• Allows a selection of one or more courses into a dedicated
list (basket)

• Enables registration within the system to one or more of the

 114

courses in the list at the same time, by selecting the register
operation

• The user (student) receives feedback on the registration
result of each course. The feedback is similar to the one
given in the actual CampusNet, so there is no loss of
information

The final contribution we identify is the separation of defining
patterns, designing navigational schemes using the patterns and the
creation of diagnosis algorithms. This separation is possible due to
the introduction of NPDL as a unifying framework. At the same
time, NPDL unifies the processes, by connecting functional
requirements to concrete designs of the solutions and the ability to
analyze corresponding properties. For example, the need to change
languages in CampusNet after logging in can be designed and
investigated by checking the location and authorizations of the
relevant function within the navigational paths. This design
property was not investigated in the actual systems. The result is a
very partial solution to this problem that was developed at the
maintenance stage. An early discovery would have very likely
resulted in a correct implementation at the development stage.

Discussion

At this stage we wish to discuss several issues that have been
encountered during the writing of this thesis. First, we want to
raise other options for a basis for NPDL. During the thesis we
have introduced symbols for the various parts of the language.
However, we have chosen to do this for clarity rather than as a
formalization of the syntax. We chose to follow the path of using
SML as a basis for defining and extending the language, but we
could have created a self-defined syntax. The reason for not doing

 115

this is that we did not find it useful to make a new syntax, but use
the well-defined and tested framework of SML. This choice
enhances, in our opinion, the robustness of NPDL and shortens the
learning curve associated with introduction of new languages. We
have related the functional Requirements to the design. The
navigational design process naturally continues to the
implementation phase. We have used SML also for the reason that
the output of the interpreter is well defined. This fact makes it
possible to convert the output of an NPDL to numerous other
formats, such as XML or HTML and generate input to other
applications. These applications may further process the design
(e.g. Validations, type checking or simulations) or alternatively
generate the HTML code for the entire application, based on the
design. This enables integration between the design phase and the
implementation phase, a link which can make the entire
development process more efficient, cost-effective and at the same
time less error-prone and time consuming.

In considering other approaches to the same goals we may have
chosen an object-oriented approach, i.e. creating navigational
design patterns as Java classes. Although the main considerations
for not doing this were the significantly increased syntactic
complexity, that would have been imposed on the designer and on
the other hand, the need to handle instantiations of patterns using
abstract structure, a process that is more cumbersome in Java.
Other object-oriented languages were dismissed for the same
reasons. Taking a graphical approach as a platform could have
been successful, but would have meant a more technical and
practical thesis. We would have had to develop a graphical
interface that can show the navigational design of the Web
application in various levels of granularity. One can imagine the
ability to zoom into a graphical representation of a module in order

 116

to view the sub-modules and screens that it is comprised of and so
on. This approach, though visually appealing, deprives the solution
from being compact and clear for large applications, such as
enterprise resource planning (ERP) systems.

Conclusions

During the research and the writing of this thesis, I have learned a
great deal about the need for patterns within the domain of
navigational design. There has been considerable work done in
attempting to define the attributes of patterns and specific patterns.
The need for a language that supports this process has been
discussed as well. However, I have found a lack of concrete
solutions to both of these issues in a way that takes into account all
the aspects of the process as well as those that connect it to its
predecessor (Functional Requirements) and the successor, i.e. the
implementation of the Web applications. I have also noticed the
lack of reference to a key issue, i.e. the handling of exceptions and
an important issue of authorizations.

The set of goals that have been defined in the beginning of the
project have been successfully accomplished, although initially the
way in which they would be achieved was completely unknown.
The compact method of describing designs and using navigational
patterns has been achieved by defining the language NPDL. The
use of SML as basis provides standardizations and ability to define
and publish patterns libraries. We have further shown that this
method enables the creation and execution of diagnostic algorithm
hat can check various design properties. The resulting designs, due
to the clarity and testing, are expected to be more robust. Their
standard defined format can be used by other systems as well.
Therefore we think that the project has been a success and provides

 117

a basis that complies with the broad set of objectives, as well as
being an extensible and scalable platform for further
developments. Some of those possible enhancements are discussed
in the next section.

Further Work

In this final section of the thesis we will shortly consider possible
directions for further work. One important extension would be the
introduction of more types of relationships between patterns. We
discussed in depth the hierarchical connection, but there are others
like IF...THEN and WHILE connections, implying that the
construction of complex patterns can be based on conditions that
are satisfied within some screens.

In the short-term, the following topics would need to be addressed:
• Addition of screen-elements
• Implementation of exceptions in the SML construction, based on

the concept that has been introduced
• Formalization of the NPDL syntax, based on a symbolic

representation or on SML syntax. Both have been informally
introduced throughout the project

In more long-term perspective, the following topics would be
interesting to consider:
• A full-blown library of patterns in NPDL
• A search mechanism based on the NPDL to identify patterns

based on search criteria
• Writing a (semi-) automatic algorithm for matching the

application's functional requirements and available patterns for
enhanced and more accurate pattern selection process.

 118

As presented in chapter 6, we have shown the development of a
visual tool for NPDL pattern and Web application designers. We
see the user-interface, the underlying framework (NPDL
implementation and concepts) and the database as being close to a
commercial product within the market of Web Applications
navigational design. The required additions would be improvement
of the screens and handling of exceptions. Otherwise the product
handles all the other properties of the language and provides a
viable tool for designer, as presented.

 119

Bibliography

1. [AG1] M.A.K. Akanda and D.M. Germán. A Component-

Oriented Framework for the Implementation of Navigational
Design Patterns. Proceedings of the International Conference
on Web engineering, 445-448, 2003

2. [AIS1] C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson,
I. Fiksdahl-King and S. Angel. A Pattern Language. Oxford
University Press, NY 1977

3. [AVL1] A. van Lamsweerde, Requirements Engineering in
the Year 00: A Research Perspective. Proceedings of the 22nd
International Conference on software engineering, 5-19, 2000

4. [BCM1] D. Bonura, R. Culmone and E. Merelli. Patterns of
Web Applications. Proceedings of the 14th international
conference on Software engineering and knowledge engineering,
739-746, 2002

5. [DDMP1] E. Di Sciascio, F.M. Donini, M. Mongiello and G.
Piscetelli. AnWeb: a System for Automation Support to Web
Application Verification. Proceedings of the 14th International
Conference on Software engineering and knowledge
engineering, 609-616, 2002. ISBN 1-58113-556-4

6. [DFAM1] A.. Dearden, J. Finlay, E. Allger and B. McManus.
Using Pattern Languages in Participatory Design. In Binder,
T., Gregory, J. & Wagner, I (Eds.) PDC 2002,
Proceedings of the Participatory Design Conference. CPSR,
Palo Alto, CA.,2002. ISBN 0 9667818-2-1. pp. 104 - 113

7. [GC1] D.M. Germán and D.D. Cowan. Towards a Unified
Catalog of Hypermedia Design Patterns. Proceedings of the
33rd Hawaii International Conference on System Sciences, 2000

8. [GHJV] E. Gamma, R. Helm, R. Johnson and J. Vlissides.
Design Patterns. Elements of reusable object-oriented

 120

software. Addison Wesley, 1995
9. [GSV1] N. Güell and D. Schwabe and P. Vilain. Modeling

Interactions and Navigation in Web Applications. Second
International Workshop on the World Wide Web and Conceptual
Modeling, (WCM 2000), EE 115-127

10. [HAN] M. R. Hansen and H. Richel. Introduction to
Programming Using SML. ISBN 0-201-39820-6, Addison-
Wesley, 1999.

11. [HK1] J. Hannemann and G. Kiczales. Design Pattern
Implementation in Java and aspectJ. Proceedings of the 17th
ACM SIGPLAN Conference on Object-Oriented Programming,
systems, languages and applications,p. 161-173, 2002

12. [KR1] G. Kappel, W. Retschitzgger et al. Ubiquitous Web
Application Development – A Framework for
Understanding. The sixth Multiconference on Systematics,
Cybernetics and Informatics SCI2002, 2002

13. [KRS1] G. Kappel, W. Retschitzgger and W. Schwinger.
Modeling Customizable Web Applications – A
Requirement's Perspective. Kyoto International Conference on
Digital Libraries, 2000

14. [KUH1] T. Kühne. A Functional Pattern System for
Object Oriented Design. Ph.D. Thesis ISBN 3-86064-770-9,
1999

15. [MB1] M. Bernstein, Patterns of Hypertext. Proceedings of
the ninth ACM conference on Hypertext and hypermedia : links,
objects, time and space---structure in hypermedia systems, 21-
29, 1998

16. [MHG1] D. Maplesden, J. Hosking and J. Grundy, Design
Pattern Modelling and Instantiation using DPML .
Proceedings of the fortieth International Conference on Toll
specific: objects of Internet, mobile and embedded applications
,Volume 10 p. 3-11, 2002

 121

17. [NNK1] M. Nanard, J. Nanard and P. Kahn. Pushing Reuse
in Hypermedia Design: Golden Rules, Design Patterns and
Constructive Templates. Proceedings of the Ninth ACM
Conference on Hypertext and hypermedia: links, objects, time
and space – structures in Hypermedia Systems, 11-20, 1998

18. [RSL1] G. Rossi, D. Schwabe and F. Lyardet. Improving
Web Information System with Navigational Patterns.
Computer Networks 31 (1999), 1667-1678

19. [RSL2] D. Schwabe, G. Rossi and F. Lyardet. Web
Application Models are More Than Conceptual Models. ER
Workshops 239-253, 1999

20. [RSL3] D. Schwabe, G. Rossi and F. Lyardet. Abstraction
and Reuse Mechanisms in Web Application Models. ER
Workshops 76-88, 2000

21. [SJFS1] D. Sinnig, H. Javahery, P. Forbrig and A. Seffah. A
Complicity of Model-Based Approaches and Patterns for UI
Engineering . In Proceedings of BIR, p. 120-131, SHAKER,
2003

22. [SREL1] D. Schwabe, G. Rossi, L. Esmeraldo, and F.
Lyardet. Engineering Web Applications for Reuse. IEEE
Multimedia, 8(1):20-31, 2001

23. [SSBZ1] J. Schümmer, C. Schuckmann, L.M. Bibbó and J.J.
Zapico. Collaborative Hypermedia Design Patterns in
OOHDM. Second Workshop in Hypermedia Development:
Design Patterns in Hypermedia, 1999

24. [WV1] M. van Welie, G.C. van der Veer. Pattern
Languages in Interaction Design: Structure and
Organization. Proceedings of Interact '03, Zürich, Eds:
Rauterberg, Menozzi, Wesson, p527-534, ISBN 1-58603-363-8,
IOS Press, Amsterdam, The Netherlands, 2003

 122

 123

Appendix A - Code
Samples

In this appendix we include code samples that did not fit in the
main thesis text. The first code is for printing the hierarchical type
patterns defined as a tree.

datatype Application =
 Empty
 | Leaf of scrset.set
 | Node of scrset.set * Application list;

fun insertSon (x, Empty) = Leaf(x)
 | insertSon (x, Leaf(y)) = Node (y,[Leaf(x)])
 | insertSon (x, Node(y, app)) = Node(y,app@[Leaf(x)]);

fun insertNode (x, Empty) = x
 | insertNode (x, Leaf(y)) = Node(y, [x])
 | insertNode (x, Node(y, app)) = Node(y,app@[x]);

fun scrsetToString [] prefix = ""
 | scrsetToString (sc::scset) prefix = prefix^ "(" ^ Int.toString (#1 sc) ^ "," ^ (#4 sc) ^ "," ^ (#2 sc) ^
")" ^ "\n" ^ prefix ^ (scrsetToString scset prefix)

fun treeToString (Empty, prefix) = prefix ^ "[]"
 | treeToString (Leaf(x), prefix) = prefix ^ (scrsetToString (scrset.toList(x)) prefix)
 | treeToString (Node(x, []), prefix) = treeToString (Leaf(x), prefix)
 | treeToString (Node(x, app), prefix) = treeToString (Leaf(x), prefix)^ "\n" ^ treeToString (List.hd(app),
prefix ^ " ") ^ treeToString (Node(scrset.empty, List.tl(app)),prefix) ;

Code for printing hierarchical type patterns

Screen Components Code

We present the code for the screen elements in NPDL:

datatype inptypes = String | Numeric | Alphanumeric | Date ;

structure Link =
struct

 124

 val myType = "link"
 type Name = string
 type Target = int (*genericscreen*)
 type NewWin = bool
end

structure Button =
struct
 val myType = "button"
 type Name = string
 type Function = defaultFunction.Function
 type clickableOnEntry = bool
end

structure InputBox =
struct
 val myType = "inputbox"
 type Name = string
 type InputType = inptypes
 type isMasked = bool
 fun newInputBox Name InputType isMasked = (Name,InputType,isMasked)
end

structure CheckBox =
struct
 val myType = "checkbox"
 type Name = string
 type Function = defaultFunction.Function
 type checkedOnEntry = bool
end

structure SelectSingleOption =
struct
 val myType = "selectsingleoption"
 type Name = string
 type DataSource = string
end

structure SelectMultipleOptions =
struct
 val myType = "selectmultipleoption"
 type Name = string
 type DataSource = string
end

structure DataTable =
struct
 val myType = "datatable"
 type Name = string
 type DataSource = string
end

 125

structure DisplayText =
struct
 val myType = "displaytext"
 type Name = string
 type DataSource = string
end

datatype screenElement = link of (Link.Name * Link.Target * Link.NewWin) |
 button of (Button.Name * Button.Function * Button.clickableOnEntry) |
 checkbox of (CheckBox.Name * CheckBox.Function * CheckBox.checkedOnEntry) |
 singleOption of (SelectSingleOption.Name * SelectSingleOption.DataSource) |
 multipleOptions of (SelectMultipleOptions.Name * SelectMultipleOptions.DataSource) |
 dataTable of (DataTable.Name * DataTable.DataSource) |
 displayText of (DisplayText.Name * DisplayText.DataSource) |
 inputbox of (InputBox.Name * InputBox.InputType * InputBox.isMasked);

Complete Element Definitions and Screen Elements as defined in NPDL

CampusNet Design in NPDL

We have designed a certain portion of CampusNet using NPDL in
order to demonstrate a practical example of using the language.
Following the NPDL code that is the design of the portion in
Campusnet:

load "IntSet";
load "Int";
load "Real";
load "Date";
use "setLib.sml";
use "htmlLib.sml";
use "tree.sml";
use "patternsLib.sml";
use "diagnosisLib.sml";

(* Campusnet Functional Requirements Definition *)
val fr = FunctionalRequirements.insert((1,"register to courses"),
 FunctionalRequirements.insert((2,"view student grades"),
 FunctionalRequirements.insert((3,"view course participants list"),
 FunctionalRequirements.insert((5,"secure login to the system"),
 FunctionalRequirements.insert((6,"allow viewing course-participant details"),
 FunctionalRequirements.insert((4,"send messages to course participants"),
 FunctionalRequirements.insert((7,"track course related activities in course and personal
calendar"),
 FunctionalRequirements.insert((8,"the system must enable adding, viewing and
searching for courses"),
 FunctionalRequirements.insert((10,"allows users to access main modules, such as
messages and email from all screens"),FunctionalRequirements.empty)

 126

))))))));

(**************************' Campusnet Modules Design ******************************)
val loginModuleName = "campusnet login";
 val myCalendarModuleName = "MY Calendar";
 val courseModuleName = "course registration module";
 val courseCatalogModuleName = "course catalog";
 val groupModuleName = "CN Groups (courses, DTU, user)";
 val calendarModuleName = "course activities calendar";
 val courseParticipantModuleName = "course participants";

(* campusnet login *)
(* campusnet user - example of overriding a defaultUser structure if required *)
structure CampusnetUser : ApplicationUserSig =
struct
 type Id = int
 type Password = string
 type authorizationGroups = AuthGroupIDset.set
 type user = (Id * Password * authorizationGroups)
 fun newUser id = (id, "****",AuthGroupIDset.empty)
 fun hasAuthorization (id,p,ag) a = if AuthGroupIDset.member(a,ag) then true else false
 fun addAuthorization (id,p,ag) a = (id,p,AuthGroupIDset.insert(a,ag))
 fun deleteAuthorization (id,p,ag) a = (id, p, AuthGroupIDset.delete(a,ag))
 fun printUser (id,p,ag) = id::AuthGroupIDset.toList(ag)
 fun getLogin (id,p,ag) = (id, p)
end

structure loginProperties : propertiesDesignSig =
struct
 val moduleName = loginModuleName;
 val fulfillsRequirements = (reqIDset.linsert([5],reqIDset.empty));
 val reachableScreens = (scrIDset.insert((200,calendarModuleName),

scrIDset.insert((200,myCalendarModuleName),

scrIDset.insert((100,courseModuleName),scrIDset.empty)
)));
end

structure loginModuleDesign = loginFct(structure Usr=CampusnetUser; structure GD=loginProperties);

(* campusnet course activities in calendar *)
structure CampusnetActivity = defaultActivity;
structure ActivityCalendarProperties : propertiesDesignSig =
struct
 val moduleName = calendarModuleName;
 val fulfillsRequirements = (reqIDset.linsert([7],reqIDset.empty));
 val reachableScreens = (scrIDset.empty);
end

structure calendarModuleDesign = calendarFct(structure Act=CampusnetActivity; structure
GD=ActivityCalendarProperties);

 127

(* campusnet personal activities in calendar *)
structure PersonalActivityCalendarProperties : propertiesDesignSig =
struct
 val moduleName = myCalendarModuleName;
 val fulfillsRequirements = (reqIDset.linsert([7],reqIDset.empty));
 val reachableScreens = (scrIDset.insert((2,loginModuleName),

scrIDset.insert((100,courseModuleName),scrIDset.empty)
));
end

structure myCalendarModuleDesign = calendarFct(structure Act=CampusnetActivity; structure
GD=PersonalActivityCalendarProperties);

(* campusnet course Registration Module *)
structure CourseItem = defaultItem;
structure CourseProperties : propertiesDesignSig =
struct
 val moduleName = courseModuleName;
 val fulfillsRequirements = (reqIDset.linsert([1],reqIDset.empty));
 val reachableScreens = (scrIDset.insert((2,loginModuleName),

scrIDset.insert((300,courseCatalogModuleName),

scrIDset.insert((200,calendarModuleName),scrIDset.empty)
)));
end

structure courseModuleDesign = basketFct(structure Itm=CourseItem; structure GD=CourseProperties);

val courseModulefl = courseModuleDesign.FuncList [
 defaultFunction.newFunction "register" [("int","semester
season"),("int","semester year"),("int","student id")] [(1,"approved"),(2,"full"),(3,"not given this
semester")],
 defaultFunction.newFunction "print" [("int","printer
ID"),("int","number of copies")] [(1,"course info printed"),(2,"course info unavailable"),(3,"printer not
responding")],
 defaultFunction.newFunction "unregister" [("int","student
ID")] [(1,"unregister successful"),(2,"unregister failed")]
];

(* campusnet course participants *)
structure CourseParticipant = defaultItem;
structure CourseParticipantProperties : propertiesDesignSig =
struct
 val moduleName = courseParticipantModuleName;
 val fulfillsRequirements = (reqIDset.linsert([3,6],reqIDset.empty));
 val reachableScreens = (scrIDset.empty);
end

 128

structure courseParticipantModuleDesign = catalogFct(structure Itm=CourseParticipant;structure
GD=CourseParticipantProperties);

(* campusnet course catalog *)
structure CourseCatalogProperties : propertiesDesignSig =
struct
 val moduleName = courseCatalogModuleName;
 val fulfillsRequirements = (reqIDset.linsert([8],reqIDset.empty));
 val reachableScreens =
(scrIDset.linsert([(2,loginModuleName),(100,courseModuleName)],scrIDset.empty)
);
end

structure courseCatalogModuleDesign = searchCatalogFct(structure Itm=CourseItem;structure
GD=CourseCatalogProperties);

(************************** AUTHORIZATION DEFINITIONS
*****************************)

val title = "%%%%%%%%%%%%%%%%%%%%%%%%% authorization definitions
%%%%%%%%%%%%%%%";
val adminasc = scrIDset.insert((10000,"all"), scrIDset.empty);
val adminfsc = scrIDset.empty;
defaultAuthGroup.newAuthGroup 1 "admin" adminasc adminfsc;
val studasc =
scrIDset.linsert([(1,loginModuleName),(2,loginModuleName),(3,loginModuleName),(100,courseModuleN
ame),(101,courseModuleName),(102,courseModuleName)], scrIDset.empty);
val studfsc = scrIDset.insert((200,calendarModuleName), scrIDset.empty);
defaultAuthGroup.newAuthGroup 2 "students" studasc studfsc;
val lecasc =
scrIDset.linsert([(1,loginModuleName),(200,calendarModuleName),(200,myCalendarModuleName)],
scrIDset.empty);
val lecfsc = scrIDset.empty;
defaultAuthGroup.newAuthGroup 3 "lecturers" lecasc lecfsc;

(***************************** Campusnet Application Design
******************************)
structure groupModuleDesign =
struct
 structure Generic: genericDesignSig =
 struct
 val screens = scrset.linsert([defaultScreen.newScreen 10000 "Group Welcome"
[(displayText("welcome...",""),1.0),(link("search again",400,false),2.0)] groupModuleName],scrset.empty);
 val numOfScreens = scrset.setsize(screens);
 end
 structure Properties =
 struct
 val moduleName = groupModuleName;
 val fulfillsRequirements = reqIDset.empty;
 val reachableScreens =

 129

(scrIDset.linsert([(2,loginModuleName),(100,courseModuleName)],scrIDset.empty));
 end
end

structure campusnetDesign1 =
struct
 structure LOG = loginModuleDesign
 structure CAT = courseCatalogModuleDesign
 structure CAL = myCalendarModuleDesign
 structure REG = courseModuleDesign
 structure GRP = groupModuleDesign
 structure Generic: genericDesignSig =
 struct
 val screens =
scrset.sinsert(LOG.Generic.screens,scrset.sinsert(GRP.Generic.screens,scrset.sinsert(REG.Generic.screens,
(scrset.sinsert(CAT.Generic.screens,CAL.Generic.screens)))));
 val numOfScreens = scrset.setsize(screens);
 end
end

(* designing the entire application as an architectural design pattern *)
val campusnetDesign = insertSon(myCalendarModuleDesign.Generic.screens,
Leaf(loginModuleDesign.Generic.screens));
val campusnetDesign =
insertNode(Node(courseModuleDesign.Generic.screens,[Leaf(courseCatalogModuleDesign.Generic.screen
s)]),campusnetDesign);
val campusnetDesign = insertNode(Node(groupModuleDesign.Generic.screens,
[Leaf(calendarModuleDesign.Generic.screens),Leaf(courseParticipantModuleDesign.Generic.screens),Leaf
(courseParticipantModuleDesign.Generic.screens)]), campusnetDesign);

campusnet design in NPDL

CampusNet Design Diagnosis Report

We have chosen to display a part of the diagnosis report generated
by the 3D application. This report is based on the design of
CampusNet within the Application.

THIS IS A DESCRIPTION OF THE DESIGN STRUCTURE
GENERATED AUTOMATICALLY BY 3D APPLICATION ON 6/15/2004 10:53:34

Project Name: campusnet Type: 2
Desciption: A system for teachers and students at DTU

--

 130

Screen name: compose message To participants

Module name: course management

Screen Order In Module: 1

The following elements are defined for this screen:
 1. Group Identifier (inputField)
 2. Priority (select1FromMany)
 4. Expires (inputField)
 5. Heading (inputField)
 6. Text (inputField)
 7. Link (inputField)
 8. Send (button)

Leads to the following screens: View Course messages,

The following screens lead to this screen:
 1. View Course messages

--
Screen name: View Course messages

Module name: course management

Screen Order In Module: 2

The following elements are defined for this screen:
 1. Course Messages (DataTable)
 2. Compose Message (button)

Leads to the following screens: compose message To participants,

The following screens lead to this screen:
 1. compose message To participants
 2. bar

-
Screen name: Register to Selected Courses

Module name: course registration

Screen Order In Module: 1

The following elements are defined for this screen:
 1. selected courses (link)
 3.1. REGISTER (button)
 3.2. PRINT INFORMATION (button)

 131

Leads to the following screens: Enter Semester Details,

The following screens lead to this screen:
 1. campusnet main screen
 2. Registration Confirmations
 3. list of grades
 4. bar

--
Screen name: Enter Semester Details

Module name: course registration

Screen Order In Module: 2

NO ELEMENTS ARE DEFINED FOR THIS SCREEN

Leads to the following screens: Registration Confirmations,

The following screens lead to this screen:
 1. Register to Selected Courses

Screen name: Registration Confirmations

Module name: course registration

Screen Order In Module: 3

The following elements are defined for this screen:
 1. registration feedback (displayText)

Leads to the following screens: Register to Selected Courses,

The following screens lead to this screen:
 1. Enter Semester Details

Screen name: list of grades

Module name: Grades

Screen Order In Module: 1

NO ELEMENTS ARE DEFINED FOR THIS SCREEN

Leads to the following screens: enter grades, main screen, Register to
Selected Courses, view grades,

 132

The following screens lead to this screen:
 1. campusnet main screen
 2. view grades
 3. enter grades
--
Screen name: view grades

Module name: Grades

Screen Order In Module: 2.1

NO ELEMENTS ARE DEFINED FOR THIS SCREEN

Leads to the following screens: list of grades,

The following screens lead to this screen:
 1. list of grades
 2. enter grades
 3. bar

Screen name: enter grades

Module name: Grades

Screen Order In Module: 2.2

NO ELEMENTS ARE DEFINED FOR THIS SCREEN

Leads to the following screens: list of grades, view grades,

The following screens lead to this screen:
 1. list of grades

--
Screen name: login

Module name: logging in

Screen Order In Module: 1

The following elements are defined for this screen:
 1. student id (inputField)
 2. password (inputField)
 3. logon (button)
 4. remember me? (2StateIndicator)

 133

Leads to the following screens: main screen,

NO SCREENS LEAD TO THIS SCREEN

--
Screen name: campusnet main screen

Module name: logging in

Screen Order In Module: 2

The following elements are defined for this screen:
 1. messages (DynamicContent)
 2. news (DynamicContent)

Leads to the following screens: list of grades, Register to Selected
Courses,

NO SCREENS LEAD TO THIS SCREEN

--
Screen name: bar

Module name: main menu bar

Screen Order In Module: 1

The following elements are defined for this screen:
 1. my messages (link)
 2. my calendar (link)
 3. Grades (link)
 4. history (link)
 5. Address Book (link)
 6. Course Registration (link)
 7. email (linkToNewWindow)

Leads to the following screens: Register to Selected Courses, View
Course messages, view grades,

NO SCREENS LEAD TO THIS SCREEN

Project Name: salesforce.com Type: 5
Desciption: online CRM system

Screen name: Event Details

 134

Module name: sf calendar

Screen Order In Module: 1

The following elements are defined for this screen:
 1. start time (displayText)
 2. meeting topic (displayText)
 3. save (button)

Leads to the following screens: calendar Overview,

The following screens lead to this screen:
 1. calendar Overview

Screen name: calendar Overview

Module name: sf calendar

Screen Order In Module: 1

The following elements are defined for this screen:
 1. all activities by date (DynamicContent)
 2. event details (button)

Leads to the following screens: Event Details,

The following screens lead to this screen:
 1. Event Details

CampusNet Diagnosis Report generated automatically by 3D Application

	Preface
	Abstract
	Keywords
	Chapter 1 – Introduction
	Objectives
	Background
	CampusNet Example
	Contribution
	Thesis Organization

	Chapter 2 - Setting the Scene
	Position within the Software Design Process
	Functional Requirements
	Elements of Navigational Design
	Expressing the Design
	Reusability and Maintenance
	Diagnosis

	Chapter 3 - Navigational Design Patterns
	Pattern Types
	Elements of Navigational Design Patterns
	Basic Navigational Design Patterns
	Combining Navigational Design Patterns
	Summary and Discussion

	Chapter 4 - Navigational Patterns Definition Language
	Motivation
	Concepts
	Functional Programming - SML
	Functional Requirements
	Pattern Types
	Elements of Navigational Design Patterns in NPDL
	Defining Basic Patterns
	Defining Complex Patterns using Combination
	Instantiation of Patterns
	Diagnosis of Designs
	Summary and Discussion

	Chapter 5 - CampusNet Use Case
	Use Case Analysis
	Processes in the System
	Design Problems Identified
	Functional Requirements in CampusNet
	Navigational Design Patterns in CampusNet
	Other Modules
	Authorizations
	Summary and Discussion

	Chapter 6 - Visual Tool for Designers
	Main Functionalities
	Discussion

	Chapter 7 – Conclusion
	Contributions
	Discussion
	Conclusions
	Further Work

	Bibliography
	Appendix A - Code Samples
	Screen Components Code
	CampusNet Design in NPDL
	CampusNet Design Diagnosis Report

