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Abstract. Grey-box pharmacokinetic/pharmacodynamic (PK/PD) modelling is presented
as a promising way of modelling the pharmacokinetics and pharmacodynamics of the
in vivo system of insulin and glucose and to estimate model and derived PK/PD parameters.
The concept behind grey-box modelling consists in using a priori physiological knowledge
along with information from data in the estimation of model parameters. The PK/PD prop-
erties of two types of insulin are investigated in a euglycaemic clamp study where a single
bolus of insulin is injected subcutaneously. The effect of insulin on the glucose disappear-
ance is investigated by artificially maintaining a blood glucose concentration close to the
normal fasting level. The infused glucose needed to maintain the clamped blood glucose
concentration can therefore be used as a measure for the glucose utilization. The PK and
PD parameters are successfully estimated simultaneously thereby describing the uptake,
distribution, and effect of the two different types of insulin.

1. Introduction

The aim of the present paper is to model the in vivo dynamical system of insulin and
glucose from a euglycaemic clamp study using grey-box pharmacokinetic/pharma-
codynamic (PK/PD) modelling. This consists in using a plausible PK/PD model
structure combined with a stochastic term representing unmodelled dynamics of
the system, inputs to the system which are not measured, and disturbances. The
grey-box modelling concept is a very attractive approach as the insulin/glucose
dynamics is not fully understood or cannot be explicitly modelled. First of all,
the approach enables a possibility for combining the physiological knowledge with
information from data. Secondly, the parameters in the models have physical mean-
ing and therefore more readily may be interpreted. Furthermore, it is possible to
treat missing data and to model non-linear (NL) and time-varying systems.

The euglycaemic clamp study is used to determine the characteristics of differ-
ent types of insulin, their absorption, distribution, and elimination kinetics along
with its pharmacodynamic characteristics. The information obtained from clamp
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studies is usually used in phase I clinical trials where the insulin is tested in healthy
volunteers to verify that it has the intended properties without unwanted side effects
and to determine the insulin dose needed to keep the individual in metabolic control.

2. Experimental procedures

The euglycaemic clamp study is performed on twenty healthy non-smoking Cau-
casian males between 18 and 40 years of age with a body mass index less than
27 kg/m2.

The experimental design is a single center two-period randomized double blind
crossover experiment. Each patient receives a bolus dose of either a human insulin
analogue (Insulin Aspart, NovoRapid�) or a faster acting insulin (Actrapid�) on
the first day of the study and the other type of insulin at the next visit which is one
to two weeks later to prevent carry-over effects from the first treatment to the next.
From here on, NovoRapid� is referred to by insulin A and Actrapid� by insulin
B.

The insulin and C-peptide levels are measured by inserting a catheter into an
antecubital vein in the patient’s arm. The glucose concentration is measured through
a glucose sensor in the hand of the same arm. To suppress the secretion of insu-
lin from the pancreas, the patient continuously receives an IV infusion of regular
human insulin (0.15 mU/kg BW/min) during the whole experiment in the opposite
arm along with an IV infusion of glucose (GIR) to maintain a constant blood glucose
(BG) concentration. The experiment can be thought of as a kind of titration where
the amount of infused glucose needed to maintain euglycemia (constant glucose
concentration) can be assumed to be equal to the amount of glucose utilized in the
body.

After 90 min. of monitoring the insulin and the BG, the patient receives a single
bolus dose of either insulin A or B (0.2 U/kg BW) which is injected subcutaneously
(SC) and the insulin, GIR, BG, and C-peptide concentration are observed during
the next 10 hours.

The plasma insulin concentration is sampled at non-equidistant time instants.
Each patient is monitored 90 min. before the injection with samples every 30 min.
until the time of injection. The patients are thereafter monitored for 10 hours with
samples every 10 min. during the first hour, every 15 min. the next hour, and every
20 min. the last 8 hours. The GIR, BG, and C-peptide concentration are sampled
every minute throughout the entire study.

The plasma insulin concentration, GIR, and BG concentration are shown in
Fig. 1 for a representative subject from the study.

3. Statistical methods

The statistical framework behind grey-box modelling is briefly introduced in this
section. The equations used in grey-box models for describing the dynamics are
stochastic differential equations defined as

dxt = f (xt , ut , θ, t) dt + G(xt , ut , θ, t) dwt (1)
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Fig. 1. Plasma insulin, GIR, and BG concentration for a representative subject for treatment
with insulin A (solid line) and insulin B (dotted line).

where xt is the state vector, ut is the input vector, θ is the parameter vector, f is
a deterministic function called the drift term, G is the diffusion term, and wt is a
standard Wiener process. The Wiener process is a non-stationary stochastic process
that starts at 0 and has mutually independent (orthogonal) increments which are
normally distributed with mean and covariance [6]

E[wt − ws] = 0 (2)

V [wt − ws] = σ2|t − s| (3)

The derivative of the Wiener process has a constant spectral density for all
frequencies and thus has infinite variance. This makes it the closest to the con-
cept ‘continuous white noise’ [6]. A more detailed description of the theory behind
stochastic differential equations can be found in [8].

The relationship between input and output signals in a dynamical system is
conveniently described by a state space model. A state space model is an internal
parametric representation between input and output which in a continuous time for-
mulation enables a direct physical meaning of the parameters. Since the structural
information of the physical system is formulated in continuous time and the data
is observed at discrete time, the following continuous-discrete time stochastic state
space model, consisting of a continuous time system equation and a discrete time
observation equation, is used.

dxt = f (xt , ut , θ, t) dt + G(xt , ut , θ, t) dwt (4)

yk = h(xk, uk, θ, tk) + ek (5)

where yk is a vector of the measurements at time tk .
The observation equation (5) describes what is actually measured at discrete

time instants tk , and yk is a function of the state xt contaminated with Gaussian dis-
tributed white noise ek . The system noise wt and observation noise ek are assumed
mutually independent.

The two most widely used methods for parameter estimation in continuous
time state space models are: Maximum likelihood (ML) and maximum a posteriori
(MAP) estimation. The major difference between these two approaches is that MAP
estimation uses not only the experimental data, but also a priori available informa-
tion on the parameter vector (Baysian approach), e.g. prior mean and covariance
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matrix in the Gaussian case, while for the ML approach, only experimental mea-
surements are used. In the following, only ML estimation is considered since no
a priori information is available for the modelled system.

Maximum likelihood estimation is based on maximizing the likelihood function
of the observations YN = [yN, yN−1, . . . , y0] given the parameter vector θ [5].

The likelihood function is [6]

L(θ; YN) = p(YN |θ) = p(yN ∩ YN−1|θ)

= p(yN |YN−1, θ)p(YN−1|θ)

=
( N∏

k=1

p(yk|Yk−1, θ)

)
p(y0|θ) (6)

where the Markov property P(A∩B) = P(A|B)P (B) has been applied to express
the likelihood function as a product of marginal conditional probability densities.
Under the assumption that the conditional density function is Gaussian, which is
true for linear models, the following equations characterizes entirely the one-step
conditional density p(yk|Yk−1, θ) in (6).

ŷk|k−1 = E{yk|Yk−1, θ} (7)

Rk|k−1 = V {yk|Yk−1, θ} (8)

By introducing the one-step prediction error or innovation

εk = yk − ŷk|k−1 (9)

the likelihood function can then be written as

L(θ; YN) =
( N∏

k=1

exp
( − 1

2εT
k R−1

k|k−1εk

)
√

det(Rk|k−1)
(√

2π
)l

)
p(y0|θ) (10)

where l is the dimension of yk .
If the likelihood function is further conditioned on y0 and by taking the loga-

rithm of (10), the following equation is obtained.

− ln
(
L(θ; YN |y0)

)
= 1

2
Nl ln

(
2π

) + 1

2

N∑
k=1

(
ln

(
det(Rk|k−1)

)

+εT
k R−1

k|k−1εk

)
(11)

The innovation εk and the conditional covariance Rk|k−1 can be calculated for
given parameters θ and initial conditions x0 by the use of the Kalman Filter (KF) or
the Extended Kalman Filter (EKF) for linear and non-linear systems, respectively.
The ML estimate of the parameters θ are now found as

θ̂ = arg min
θ∈�

{− ln
(
L(θ; YN |y0)

)} (12)



Grey-box PK/PD modelling 595

The maximum likelihood estimates are asymptotically normally distributed
with mean θ and a covariance matrix D found from the Fisher information matrix
[6]. An approximation of D can be found by

D(θ̂) � H−1 (13)

where H is the Hessian calculated as the second derivative of the negative log-like-
lihood function (11) at the obtained parameter estimate.

State filtering is introduced as a tool for estimating the underlying states at time
t based on the measurements until time tk (t ≥ tk).

The KF is a set of mathematical equations that provides an efficient and exact
recursive approach to calculate the conditional mean (7) and covariance (8) for
linear systems. In the following, the KF will be given for the following linear
time-invariant (LTI) state space model [6].

dxt =
(

A(θ)xt + B(θ)ut

)
dt + σ(θ) dwt (14)

yk = C(θ)xk + D(θ)uk + ek (15)

where A, B, C, and D are constant coefficient matrices, wt is a standard Wiener
process assumed to be mutually independent of ek , which is a Gaussian white noise
process with zero mean and covariance S(θ, tk).

The update equations of the KF are

x̂k|k = x̂k|k−1 + Kk

(
yk − ŷk|k−1

)
(16)

Pk|k = Pk|k−1 − KkRk|k−1KT
k (17)

The initial conditions are x̂1|0 = µ0 and P1|0 = V0. x̂k|k is the estimate of the
state, Pk|k is the associated covariance, and Kk is the Kalman gain given by

Kk = Pk|k−1CT R−1
k|k−1 (18)

Next, the state prediction equations, which are the optimal (minimum variance)
linear prediction of the mean and covariance, can be calculated by solving

d x̂t |k/dt = Ax̂t |k + But (19)

dPt |k/dt = APt |k + Pt |kAT + σσT (20)

Using the solution to the stochastic differential equation (14), i.e.

xtk+1 = eA(tk+1−tk)xtk +
∫ tk+1

tk

eA(tk+1−s)Bus ds +
∫ tk+1

tk

eA(tk+1−s)σdws (21)

and assuming u to be constant during the sample interval [tk, tk+1[ the one-step
prediction of the state mean and covariance are

x̂k+1|k = E[xtk+1 |xtk ] = eAτs x̂k|k +
∫ τs

0
eAs ds Buk (22)

Pk+1|k = E[xtk+1xT
tk+1

|xtk ]

= eAτs Pk|k
(
eAτs

)T +
∫ τs

0
eAsσσT

(
eAs

)T
ds (23)
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where τs = tk+1 − tk is the sampling time. If uk is not constant during the sampling
interval other solutions exists – see [5].

Finally, the output prediction equations of the observation ŷk+1|k along with
the covariance Rk+1|k are calculated by

ŷk+1|k = Cx̂k+1|k + Duk+1 (24)

Rk+1|k = CPk+1|kCT + S (25)

where S is the covariance matrix of the measurement error.
The setup described above is implemented in the estimation program CTSM

(Continuous Time Stochastic Modelling) for both linear and non-linear system. A
detailed description about the ML and MAP estimation methods as well as the
KF and EKF filtering techniques for linear and non-linear models, respectively, is
given in the CTSM manual [5]. The application of stochastic differential equations
in PK/PD modelling has previously been discussed in [2,10,11].

4. Compartmental model

Several different PK models have been considered to account for the different
SC absorption mechanism for the two types of insulin along with issues like NL
elimination kinetics and tissue equilibration. But for the available plasma insulin
measurements, it is found that the plasma insulin kinetics is adequately described
by a single compartment representation. The different PK models which have been
tested can be found in [13].

The insulin is assumed to be mixed instantaneously in the plasma. The actual
time taken for mixing is approximately a few minutes and is therefore considered
insignificant compared with the sampling time. The insulin absorption and elim-
ination is assumed to follow first-order kinetics meaning that the rate of change
of insulin concentration is directly proportional to the remaining concentration of
insulin. This assumption leads to a linear model. The amount of insulin removed
from the SC tissue is equal to the amount absorbed in the central compartment.
This assumption is made because the break-down of SC insulin is not modelled.
No insulin is assumed secreted from the pancreas because the IV infusion of regular
human insulin suppresses the production. The small amount of insulin that actu-
ally is secreted in the pancreas is corrected by using C-peptide measurements. It is
therefore reasonable not to include any feedback mechanisms in the model since
they have been disrupted.

To determine which type of PK/PD model is needed to model the dynamics
between insulin and glucose, a phase-plot of GIR vs. the plasma insulin concen-
tration, where data points are connected in chronological order, is plotted in Fig. 2
for a representative subject from the study.

A counter-clockwise hysteresis loop is observed in the phase-plot since there
exists two different values of GIR for any plasma insulin concentration depend-
ing on the time after the insulin administration. The delay for insulin A is smaller
than that for insulin B since the hysteresis loop is smaller for insulin A. Had there
been no hysteresis loop, a basic PK/PD model such as the single-compartment
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Fig. 2. Phase-plot of GIR vs. plasma insulin concentration for treatment with insulin A
(solid line) and insulin B (dotted line). The numbers indicate the time after the insulin bolus
injection.

model expanded with a direct link model could have been used. Instead, the effect-
compartment model initially proposed by Sheiner et al. in [12] concerning its appli-
cation to d-tubocurarine is used. The effect-compartment model has also previously
been successfully applied to a similar euglycaemic clamp study in [14,15].

The single-compartment PK model is expanded with a hypothetical effect com-
partment since the time course of insulin effect does not parallel the time course
of insulin computed to reside in the central compartment. The effect site can be
thought of as the extracellular space where the interaction with the biological recep-
tor system takes place [9]. Modelling the kinetics of the effect site by adding an
effect compartment is a simple way to correct non steady-state data to the equiv-
alent of steady-state data so that a concentration-response curve can be discerned,
unobscured by a hysteresis loop [7].

The effect-compartment model is illustrated in Fig. 3.
At steady-state, the concentration in the effect compartment ce,ss is equal to the

concentration in the central compartment cc,ss . The rate of input will therefore equal
that of output, i.e. kce · qc = ke0 · qe [4]. This assumption allows for a calculation
of the volume Ve for the effect compartment by the following equation.

Vd · kce · cc,ss = Ve · ke0 · ce,ss (26)

Effect

PK

PD

Compartment
Central

Compartment

qc

ke0

VeVd

qe

ka

qsc

Rin

D

GIR

kce

ke

Fig. 3. Illustration of the effect-compartment model.
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The concentration in the effect compartment can then be calculated by dividing
qe with Ve. When doing so, the rate constant for the irreversible elimination from
the central compartment to the effect compartment kce cancels out. The following
system of equations thereby describes the PK part of the effect-compartment model.

dqsc

dt
= D · δ(t) − kaqsc (27)

dqc

dt
= kaqsc + Rin − keqc (28)

dce

dt
= Ke0

( qc

Vd

− ce

)
(29)

where the effect compartment is assumed to receive a negligible mass from the cen-
tral compartment, thereby not affecting the equations for the insulin in the central
compartment.

The three states in the model are qsc which describes the amount of insulin
remaining to be absorbed from the SC tissue (qsc = 0 for t < 0), qc which repre-
sents the amount of insulin in the central compartment, and ce = qe/Ve which is
the insulin concentration in the effect compartment.

The parameters ka and ke are the rate constants for the irreversible absorption to
and elimination from the central compartment, respectively. The parameters Vd and
Ve are the central and effect compartment volumes. Vd should not be mistaken with
the plasma volume but can be thought of as the apparent volume of distribution in
the body.

The time-dependent aspects of the equilibrium between the central and effect
concentrations are only controlled by Ke0 which is the equilibrium constant for the
passive diffusion between the central and effect compartment.

The two inputs to the system are D and Rin. D describes the SC injected insulin
bolus dose of either type A or B given at time t = 0 (as described by Dirac delta
function δ(t)) and Rin is the IV infusion of regular human insulin given throughout
the study to suppress the secretion of insulin from the pancreas.

Because of the nature of the experimental procedure in the clamp study and
since the endogenous production of insulin is ignored, the amount of infused glu-
cose (GIR) needed to maintain euglycemia can be assumed to be equal to the amount
of glucose utilized in the body. The GIR can thereby be used as the response to
the injected insulin. The PD are therefore modelled by combining the GIR with the
insulin concentration in the effect compartment using the Hill response equation
(sigmoidal Emax model), i.e.

GIR = Emax

EC
γ

50 + c
γ
e

· c
γ
e (30)

where EC50 is the insulin concentration producing 50 % of the maximum effect
Emax while γ is the sigmoidicity/response factor.

The equations governing the effect-compartment model can be written as the
following continuous-discrete time state-space model where the three continuous
time system equations are
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dqsc

dqc

dce


 =


−ka 0 0

ka −ke 0
0 Ke0/Vd −Ke0





qsc

qc

ce


 dt +


1 0

0 1
0 0




[
D · δ(t)

Rin

]
dt + σ dwt

(31)

where σ is a diagonal matrix with σsc, σc, and σe in the diagonal and wt is a three-
dimensional Wiener process with independent components. The two discrete time
observation equations can be written as

cI = qc

Vd

+ e1,k (32)

GIR = Emax

EC
γ

50 + c
γ
e

· c
γ
e + e2,k (33)

where e1,k and e2,k are the measurement errors with variance S2
I and S2

GIR for the
insulin concentration and glucose infusion rate, respectively.

The two different types of insulin are injected as a subcutaneous bolus at t = 0,

i.e.
∫ 0+

0− D dt = 0.2U/kgBW , while the other input variable in the model Rin is
equal to 0.15 mU/kg BW/min throughout the experiment.

5. Results and discussion

The euglycaemic clamp data is modelled using the standard two-stage (STS) ap-
proach [3] where the individual parameters are assumed to be independent and iden-
tically distributed. A mixed-effect PK/PD modelling framework as implemented in
NONMEM [1] is not considered since the theory for hierarchical PK/PD model-
ling using stochastic differential equations has not been developed. The following
results are shown for a representative subject from the study along with the STS
population parameters.

The PK/PD parameters in the effect-compartment model are estimated using
only the observations at time instants where both insulin and GIR are observed. The
parameters are first estimated for insulin B. Next, the estimated value of Emax for
insulin B is used as a fixed variable and the rest of the parameters are estimated for
insulin A. This procedure is necessary for the estimation to converge for insulin A.
Since the effect of the injected insulin does not come close to the maximum effect
Emax in this study, it is reasonable to assume that Emax is the same for insulin A
and B for the same subject.

The ML parameter estimates and their standard deviations for a representative
subject from the study is shown in Table 1 for treatment with insulin A and B,
respectively.

The limiting rate constant in the model is ka for insulin B since it is known that
ka < ke while the two rate constants are more equal for insulin A. When comparing
the rate constants for absorption and elimination for the two types of insulin, ka

seems to be the same while ke is about 5 times as large for insulin B than A. The
change in the primary structure of insulin B compared to insulin A seems to alter
the kinetics for elimination rather than that of absorption. This observation does not
fit very well to the fact that it is ka which is attempted enlarged in insulin B to speed



600 C.W. Tornøe et al.

Table 1. PK/PD model parameter estimates for a representative subject from the study for
treatment with insulin A and B.

Insulin A Insulin B

Parameter Unit θ̂ SD θ̂ SD

qc,0 [nmol] 1.5886E+01 5.1881E+00 2.6384E+00 1.2955E+00
ce,0 [nM] 7.3478E−02 2.3532E−02 1.0780E−01 3.1777E−02
ka [min−1] 1.0776E−02 3.7624E−03 7.3497E−03 7.2944E−04
ke [min−1] 7.8138E−03 2.5118E−03 3.9059E−02 6.6901E−03
Ke0 [min−1] 1.8323E−02 2.7653E−03 2.6053E−02 4.3714E−03
Vd [L] 1.7744E+02 5.5831E+01 3.4359E+01 6.3678E+00
σsc [-] 4.7650E−11 9.5767E−06 1.7460E−07 3.0731E−02
σc [-] 1.5850E−08 2.4576E−03 7.2017E−09 1.4657E−03
σe [-] 9.1515E−10 1.9153E−04 2.4896E−12 6.7938E−07
Emax [mmol/min] 9.2000E+00 9.1570E+00 2.3370E+00
EC50 [nM] 3.0972E−01 1.6210E−02 2.6840E−01 7.7334E−02
γ [-] 1.7554E+00 1.7843E−01 2.0325E+00 4.3342E−01
S2

I [nmol/L] 6.0129E−04 1.4430E−04 1.2529E−03 3.5428E−04
S2

GIR [mmol/min] 1.6574E−03 3.8409E−04 3.7529E−03 9.2274E−04

tmax [min] 1.0700E+02 5.3000E+01
cmax [pM] 3.2829E+02 4.6584E+01
AUCT

0 [nM min] 1.2070E+02 1.2230E+02
TRmax [min] 1.7100E+02 1.0100E+02
Rmax [mmol/min] 4.4300E+00 6.3100E+00
GIRT

0 [mol] 1.6600E+00 1.8200E+00

up the absorption while no attempt is made to alter ke. This phenomena is referred
to as the ‘flip-flop’ effect. This effect is due to the fact that it is not always possible
to separate ka and ke in the estimation. The ‘flip-flop’ effect can be circumvented
by assuming that ka > ke, but since it is not possible to enter such assumptions in
CTSM, the main difference between insulin A and B appears wrongly to be in the
elimination kinetics. This is an example where the physiological knowledge, built
into the grey-box modelling concept, is helpful.

The significantly different Vd for the two types of insulin can partially be
explained as the two types of insulin occupying a different volume in the body. The
large and physiological unrealistic value of Vd for insulin A is probably due to some
of the insulin is bound in the tissue resulting in less insulin in the plasma. The volume
is thereby overestimated since the model does not include a compartment for bound
insulin or a bioavailability factor F that compensates for non-available insulin.

The PD parameter for the maximal effect Emax is the maximum glucose infu-
sion rate (GIR). Emax is assumed to be the same for insulin A and B for the same
subject since it is not possible to estimate Emax for insulin A. This is due to the
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fact that the data for insulin A only is distributed along the linear area of the sig-
moidal curve in the range between 20 % and 80 % of Emax . The estimated value
of Emax = 9.157 mmol/min for treatment with insulin B is therefore used as a
fixed variable in the estimation for insulin A which is why no standard deviation
is provided for that parameter. The estimated value of Emax is much higher than
the value of the derived parameter Rmax = 6.3 (maximum GIR) since the maximal
effect is far from being reached.

The physical meaning of EC50 is the insulin concentration producing 50 % of
the maximum effect. The parameter estimates of EC50 for the two types of insulin
are both around 0.3 nM suggesting that the same insulin concentration of insulin
A and B is needed to produce 50 % of Emax .

The sigmoidicity parameter γ is estimated close to 2 for both types of insulin.
The theoretical meaning of the parameter γ in the sigmoidal Emax model is that γ

insulin molecules and one receptor elicit the effect. The value of γ ≈ 2 is normally
also found in a static environment using in vitro cells exposed to insulin indicating
that the simultaneous estimation of PK and PD parameters is reasonable.

The parameters describing the system noise σSC , σc, and σe are all estimated
to zero while the variance for the observation noise S2

I and S2
GIR are not, which

indicates that the measured data does not deviate from the model except for the
measurement error. The system noise parameters are the only parameters in the
model which are not significantly different from zero on a 95 % confidence level.

Persistently excited data is needed to be able to estimate all the parameters
in a dynamical model. If the data are not excited enough, i.e. if the disturbance
of the normal state of the system is not large enough in some sense to introduce
(an) adequate dynamic state(s), it becomes difficult or impossible to estimate the
parameters.

The time to maximum insulin concentration tmax for insulin B is almost half
of that of insulin A while the maximum insulin concentration cmax is about 40 %
larger for insulin B than insulin A. The AUC is not very different for the two types
of insulin and can therefore not be used to assess the difference in the treatment
with insulin A and B. By comparing the three derived PK parameters it can be
concluded that insulin B is a faster and shorter acting insulin compared to that of
insulin A, while the amount of insulin absorbed throughout the study is almost the
same for both types of insulin.

T Rmax for both types of insulin occurs at a later time than tmax which is con-
firmed by the apparent delay between time to maximum insulin concentration and
maximum response which results in a hysteresis loop. The glucose needed to main-
tain euglycemia throughout the study is not so different for the two types of insulin.

With the simultaneous estimation of PK and PD parameters, it is furthermore
possible to access the correlation between the parameters shown in Table 1. The PK
and PD parameters are not very correlated while the correlation between the PD
parameters are quite high, especially between Emax and EC50 where the correlation
coefficient is estimated to 0.9853.

The estimated insulin concentrations and GIR are shown in Fig. 4 along with a
phase-plot of the observed GIR vs. the predicted effect compartment concentration.
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(c) Phase-plot A
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(d) PK B
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(e) GIR B
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(f) Phase-plot B

Fig. 4. Plot of results for treatment with insulin A (Top) and insulin B (Bottom). (Left)
Concentration–time profiles of measured (circle) and simulated (solid) plasma insulin con-
centration, effect compartment concentration (dashed), and AUC (dotted). (Middle) Mea-
sured (circle) and simulated (solid) GIR and AUC (dotted). (Right) Measured (circle) and
simulated (solid) response.

The effect compartment concentration is slightly shifted towards the right com-
pared with the plasma insulin concentration. The reason is that the insulin residing
in the central compartment is not at steady-state resulting in the hysteresis loop
shown in Fig. 2 while the effect compartment concentration is assumed to be at
steady-state and thereby shifted to the right compared to the insulin in the central
compartment.

The effect compartment concentration closes the hysteresis loop for both types
of insulin. The relationship between the predicted effect compartment concentra-
tions and GIR is very different because of the different estimated values of EC50
and γ which are influenced by the distribution time from the central to the effect
compartment and the rate of insulin absorption.

The STS population parameters are calculated as the sample mean and standard
deviation of the parameters of all twenty subjects in the study and shown in Table 2
for treatment with insulin A and B. Most of the STS population parameters are non-
significant on a 5% confidence level and the obvious next step in modelling the
euglycaemic clamp would be to use a mixed-effects PK/PD modelling approach.
Unfortunately, the theory for hierarchical grey-box PK/PD modelling has not yet
been developed and it has therefore not been possible to explore this approach any
further.

6. Conclusion

The proposed grey-box PK/PD modelling approach provides an effective method
to estimate PK/PD parameters simultaneously, as well as the derived parameters
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Table 2. Standard two-stage population parameters for treatment with insulin A and B.

Insulin A Insulin B

Parameter Unit θ̄ s̄ θ̄ s̄

qc,0 [nmol] 13.1847 8.0525 4.3559 2.6807
ce,0 [nM] 0.0683 0.0432 0.0558 0.0522
ka [min−1] 0.0090 0.0041 0.0135 0.0061
ke [min−1] 0.0114 0.0074 0.0248 0.0128
Ke0 [min−1] 0.0303 0.0215 0.0217 0.0086
Vd [L] 139.5820 53.9870 66.3533 28.6696
σsc [-] 0.0000 0.0000 0.0649 0.1685
σc [-] 0.0690 0.1538 0.0728 0.1289
σe [-] 0.0006 0.0014 0.0013 0.0037
Emax [mmol/min] 10.3 4.4 10.3000 4.3630
EC50 [nM] 0.4383 0.3181 0.4267 0.3008
γ [-] 1.9790 0.7807 1.7633 0.5974
S2

I [nmol/L] 0.0008 0.0006 0.0012 0.0005
S2

GIR [mmol/min] 0.0028 0.0016 0.0027 0.0016

using all available information from the euglycaemic clamp study. It is furthermore
possible to treat missing observations.

The effect-compartment model where the apparent delay between the plasma
insulin concentration and the observed response is assumed to be distributional, is
suitable for predicting the PD response with the Hill response equation as the effect
model. The estimated PD parameters of the effect-compartment model are similar
to those estimated from in vitro studies which is why the simultaneous estimation
of PK and PD parameters is concluded to be successful.

The estimates of the diffusion term in the stochastic differential equations rep-
resenting disturbances and unmodelled dynamics of the insulin/glucose system are
insignificant from a statistical point of view in the three continuous time system
equations. The proposed models therefore seem to capture the dynamics of the
in vivo insulin/glucose system but it is difficult to make further conclusions since
the experimental data from the considered clamp study is not persistently excited.
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