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Background

Test engine 10.000 Hp (similar to 100 cars)
Height as 3 storage house
Makes a lot of noise!

Acoustic emission: 100 kHz to 1 MHz
Ultrasonic stress waves generated by inner cracking 
in material
Decays faster than vibration, thus more localized
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Data acquisition 

Conditioning
– RMS “downsampling” to 20 kHz
– Partitioning into cycles from Top Dead Center Marker
– Crank angle sampling from Angle encoder

Output
– Non-negative signals
– Fixed sample length independent of running speed
– Clearly visible events
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Acoustic Emission signal
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Comparing

Generative models that describe what we hear
– Hidden sources
– Activation of sources
– Noise

Unsupervised learning with the model
– We learn the normal condition from normal data
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Blind Source Separation Model

Instead of simultaneous recordings we have 
successive recordings
We stack cycles to build a training matrix X
From the training matrix X=AS we will learn the 
hidden sources S and the mixer matrix A.
Since S is independent/principal/else A is the part 
that is dependent – thus describing the mode
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Idea

The normal mode has a
– well defined signatures (mixer matrix)
– well defined noise level
– well defined behaviour for sources (activation of signatures)

A fault might manifest itself as
– Higher noise level as the model cannot describe the 

observed
– Higher value of certain components, e.g. a louder impact
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Mean Field ICA

RMS data is non-negative
MF ICA priors allows for positive mixer matrix and 
positive exponential source matrix
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MF examples
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MF examples
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Other models

Gaussian Processes
– Mean over: mean and hyper parameters

Principal component analysis:
– Projection matrix U, noise level and “size” of pc’s

BS ICA
– Mixer matrix, source prior.
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Normal or faulty

For each cycle calculate the negative log-likelihood.
Normal cycles should have low values, faulty: high.
The log-likelihood incorporates sources and noise.
From cumulated density functions over the we obtain 
the empirical probability that a cycle isn’t normal.
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Negative log likelihood
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Non-stationary

Timing and duration of events change as a function 
of the operating parameters, e.g. load and rpm
Conflicting with the hidden sources
– Or should we go convolutive?
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Non-stationary (data)
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Non-stationary (Injection)

180 185 190 195 200

0.2

0.4

0.6

0.8

Crank Angle [degrees]

A
E 

RM
S

25% load
50% load
75% load



Niels Henrik Pontoppidan 18

Informatics and Mathematical Modelling / Intelligent Signal Processing

Current approach

Maintain unsupervised mode
– Learn warp from normal modes to reference mode
– Model for the timing changes

Alignment of landmarks, e.g. begin, peak and end for important 
events
Model for amplitude warp
Cubic spline interpolation between landmarks to obtain warp 
path
x[n]=y[f[n]], f[n] is the warp path

Overfitting possible, alignment = more “normal”
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