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Abstract

Based on the findings that certain types of Long Term Potentiation (LTP) and
Long Term Depression (LTD) are found to be dependent on the inflow of Ca’
following a postsynaptic depolarization, a model of synaptic plasticity is pro-
posed. This is done by the suggestion of an ‘imaginary’ function, the conversion
function, intended to mimic the underlying behavior of the Ca " level.

The model incorporates the dynamic effects, depression and facilitation, found
to occur at +speciﬁc synapses, caused by presynaptic depletion and presynaptic
residual Ca phenomena. The proposed model combines the short term dynam-
ics with the longer lasting plastic effects.

The computational implications are investigated and it is found that like the
model proposed by Song et al. (2000) this synapse produces stable competitive
learning.

The model involves some level of biological realism as it demonstrated the ability
to comply with the features seen in connection with long term potentiation:
Cooperativity, associativity, and specificity.






Preface

This thesis constitutes part of the requirements for obtaining the Master of
Science degree at the Technical University of Denmark. The work has been
carried out in the period September 1st 2001 to March 1st 2002 in the Signal
Processing Group, Department of Informatics and Mathematical Modelling.

» We are interested in learning!«

Probably any potential supervisor approached with an utterance like that by two
potential project students are withholding a smile. Nevertheless, the supervisor
took the bait and here we are, introducing a report on ‘Synaptic Activity’ and
‘Learning in Neural Systems’.

The choice of institute and supervisor was, however, not obvious. People from
different fields could all contribute to what we found interesting — learning. How,
it comes about and how it can be modeled. Long discussions went into the choice,
and there is no telling in which direction a different choice would have taken us.
However, as it turned out we could not have asked for a better setting.

The last six months have been hard work and lots of fun. Unraveling the mys-
teries of the brain has led to many philosophical discussions, not all concerning
learning — but certainly many to learn from.
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Introduction

Tomorrow computers will be faster than today. If not tomorrow then at least
in the near future. The computational power of an ordinary PC just keeps on
increasing. Ask a person for the square root of five and compare the computation
time with a computer. Probably, most people will not even come up with an

answer, whereas the time used by the computer is practically zerol!

But, if you show a caricature of a person to a face recognizing computer, it
does not — yet — laugh. And, even the face recognition task itself is not an easy
task to implement in a machine. Apparently, the human ‘thinks faster’ in such
a situation where different associations are to be put together to produce the
amusement.

From a computational point of view, some of the reasons for the brain being
superior is already known. Its inherent ‘processors’ benefit from extensive par-
allelism, distributed representations, generalization abilities, and robustness to
degrees that are incomprehendable to most people.

One cannot be but fascinated by how it is possible for the ‘three pounds of
oatmeal on top’ to acquire new knowledge, adapt to new situations, recall old
memories, compare the present with past and from there, infer what to do next.

Consulting the literature reveals that fascination of the human brain is widespread
and has finally borne fruit: Titles like ‘How the Brain Works’ and ‘Consciousness

Explained’ suggest that all secrets are revealed. The work with this report has

uncovered that maybe one or two stones remain unturned. ..

The work of the present report has been a journey back and forth between
different fields. From physiological models, to computational, to purely abstract,
to hybrid models, modeling a model of reality and back and forth again. Despite
the iterative nature of the — learning — process, the report has been divided into
chapters separating yet gathering related subjects.

At first in chapter 2, the physiology of the human brain will be outlined. This
mainly to illuminate concepts on which the latter chapters rely.

1In case you wondered: ﬁ = 2.236067977 ...



2 Introduction

From the basic physiology, chapter 3 engages the question of what learning is.
Starting with a general introduction, it moves into a study of the biochemical
mechanisms involved in conformational changes on a microscopic level.

Having examined the physiological basis for learning, it is interesting to view
how these concepts have been treated in terms of artificial models. Chapter 4
deals briefly with the ‘classical artificial neural networks’ and motivates the use
of temporal signals. In the last part of chapter 4, the tie between physiology and
artificial learning represented by Hebbian learning rules is discussed for ‘classical
neural networks’ and extended to ‘networks of spiking neurons’.

To examine existing models and create new ones, a modeling tool is necessary.
In chapter 5 the development of a new tool is described. In chapter 6, the
tool is used to test and examine existing models of in particular synapses.

The knowledge gathered and the tool created in the previous chapters come to
full use in chapter 7, in which the development and testing of a new synapse
model incorporating an activity-based local learning rule is described.

Finally, chapters 8 and 9 discuss possible extensions to the model and conclude
this thesis.

When reading this report, it is important to remember that the biological terms
are not always used in the strictly biological sense. For example, ‘synapse’ is
sometimes used more in the sense weight than synapse. And even more often the
same word ‘synapse’ is used of models proposing to be representing synapses,
but are not. Therefore it might be appropriate to rephrase a famous sentence
to: »Ceci n’est pas une synapse«? And by that urge the reader to have an eye
on the glossary, where hopefully guidance to some of the words can be found.

Enjoy!

20r as René Magritte puts it » Ceci n’est pas une pipe«



The Brain

» To say that a man is made up of certain chemical elements is a
satisfactory description only for those who intend to use him as a
fertilizer.«

Hermann Joseph Muller (1890-1967)

2.1 Where and what?

Although containing the same genetic material, it is remarkable how different the
cells of a human being are. Skin, hair, feet, heart, pancreas, ear — although they
all basically consist of copies of copies of copies of the very first fertilized egg-cell
they, somehow, through differentiation end up being very different entities.

Throughout history, the body has gone from being seen as a collection of such
entities (organs, fluids and tissue) shrouded in mystery, into something more
tangible with well defined connections and understood functionalities; even to
such an extent that some organs can now be successfully replaced by new ones.

Yet, at least one organ is, probably due to its complexity, still considered some-
what mysterious — the human brain.

It is not the intention to give a complete description of the human neurophysi-
ology, but rather to outline the foundation on which the field of computational
neuroscience is inspired.

2.1.1 Overview of the human brain

The central nervous system consists of the spinal cord and a specialized extension
thereof, the brain. The latter is composed of the brain stem!, taking part in
controlling respiration and circulation; the cerebellum, playing an important

1Comprising the medulla oblongata, pons and mesencephalon.



4 The Brain

Figure 2.1 A schematic illustra-
tion® of the brain seen from the

Primary Central left, showing the four main lobes of
motor”  sulcus primary the brain: The frontal, parietal, oc-

cortex somatosensory o
Frontal cipital, and temporal lobe. The oc-
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' . ote cated in the back of the head. Be-

low the frontal lobe is the olfactory
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are the motor- and sensory cortices,
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“From the web page:

\. ~— Spinal cord http://eduweb.brandonu.ca/~science
/diagrams/cerebrum_1.gif

role in motor control, and the cerebrum: The site of origin of all conscious and
various subconscious actions.

The cerebrum is the biggest part of the brain. It is divided lengthwise from
nose to neck in two symmetric halves — hemispheres — communicating through
the corpus callosum? The cerebral surface is the latest extension of the nervous
system in evolutionary terms, and is termed the cerebral cortex (the gray mat-
ter). Being about 2 — 3 mm thick?® and having a total area of about 2200 cm?
makes it difficult for the cortex to fit inside the skull. This is why the surface is
folded, creating ‘hills and valleys’ also known as gyri and sulci. As seen in most
pictures, this wrapping gives the cortex its convoluted appearance.

The crumbled nature is also evident in figure 2.1, giving an overview of the brain.
Using prominent gyri and sulci as guidance, the cerebrum has been divided into
four main lobes. Each of these are related to different features or activity

The frontal lobe Concerned with thought, problem solving, planning, parts
of speech, emotional behavior, and movement (motor cortex).

The parietal lobe Involved in perception of stimuli related to touch, pressure,
temperature and pain.

The occipital lobe Participating in all aspects of vision.

2Large bundle of fibers, see glossary.
3Jain et al. (1996).



2.2 The basic unit: The neuron 5

The temporal lobe Engaged in perception and recognition of auditory stim-
uli. Also involved in memory processes.

Often the lobes themselves are divided into smaller segments with boundaries
determined in accordance with different observed functionalities. As an example,
the frontal lobe can be divided into: The prefrontal cortex, the motor association
cortex, and the primary motor cortex? A division also separating the features
mentioned above for the frontal lobe; the prefrontal cortex is involved in problem
solving, complex thought, and emotion. The motor association cortex takes care
of coordination of movement, whereas the primary motor cortex acts as the
initiator of such (voluntary) movement.

Continuous division of the different areas into smaller parts can be carried out
and involves the principle that as the region of interest gets smaller, the more
its functionality is specialized.

However, instead of exploring the brain from top to bottom, it is also of interest
to take the different view and investigate what the building blocks are that allow
for these functionalities to come about.

2.2 The basic unit: The neuron

A neuron is a highly specialized cell capable of receiving and eliciting signals by
means of electrochemical processes. Intense studies have been carried out both
at the molecular level and at the functional level. This approach will focus on
the general aspects and some of the prototypical properties seen in connection
with neurons.

2.2.1 Dendrite, soma, and axon

Although different, depending on which specific region of the brain they belong
to, neurons do have some things in common. Almost every introductory descrip-
tion separates the neuron in three parts, the same here: Dendrite, soma, and
axon.

The dendrites are the input fibers, along which signals from other neurons enter
the cell. Via the dendrites, the signal reaches the cell body also known as
the soma. In the soma, as shall be described later, processes are taking place
to determine whether signals are to be sent further on. If signals leave the

40f which the latter is seen in figure 2.1.



6 The Brain

Figure 2.2 A crude caricature of a
nerve cell. The dendrites function as
receivers of signals, which they send on
to the cell body, the soma. From the
soma, signals are sent out along the ax-
ons to reach the dendrites of other neu-
rons. The ‘synapses’ in the picture will
be discussed in section 2.3.

f dendrites

synapses

Figure 2.3 Different neuron types
from the central nervous system. The
small arrows indicate the axons. (a)
Motor neuron. (b) Dorsal root (unipo-
lar) neuron. (c) Granule cell, cerebel-
lum. (d) Bipolar cell, retina. (e) Purk-
inje cell, cerebellum (figure from Car-
penter (1996)).

neuron, they do so along the output fiber, the axon. See figure 2.2 for a fictitious
representation.

To prevent misunderstandings, it must be emphasized that figure 2.2 deliberately
has been chosen because of its naive qualities; hopefully it is obvious that it is
not a correct representation of a real neuron. With this in mind, figure 2.3 brings
examples of how unlike neurons can actually be; although these pictures are also
idealizations — better than the naive illustration though. One notices that all®
neurons in figure 2.3 share the same features as the naive neuron: They have
a widely branched dendritic tree® and a single axon. In both the naive figure
and in figure 2.3(c) the axon divides shortly after the soma, to produce axon
collaterals. These also display widespread branching at their extremities.

Another shared feature is indistinguishable from the figures. In all cases the
membrane forming the neurons is a phospholipid bilayer with trans-membrane
proteins acting as channels.

5Except one, figure 2.3(b), to illustrate that in biology there is an exception to every rule.
SThe considerable ramification is sometimes referred to as dendritic arborization.



2.2 The basic unit: The neuron 7

Resting in imbalance (active pump)

The neuronal membrane acts as an impenetrable barrier between the interior
and the exterior of the nerve cell. Exchange of substances across the membrane
can only happen through gated channels. As shall be seen, the guards at the
gates come in (at least) two varieties. Some are susceptible to influence from
voltage differences and some to neurotransmitter.

In the steady state, the neural membrane is actually in imbalance. A resting
potential exists across the membrane due to differences in the ionic concentra-
tions on both sides. Although the membrane is leaky’ and ions seep out, the
instability is maintained by the Na+—K+pump.8 By use of energy in the form of
ATP, this pump moves three Na' ions out of the cell and two K ions into the cell
by each turn of the crank. This mechanism defeats the leakage and the mem-
brane resting potential is maintained. A typical value of the resting potential is
Vrest ® —70 mV, which by definition is negative intracellularly.

The steady state potential can be segregated into several parts each stemming
from a specific type of ion. If the ionic concentration of a species, e.g. sodium
[Na+], is known extra- and intracellularly, its contribution to the resting potential
can be equated by using Nernst’s equation

ksT . [ [Na' leat
E = 1 2.1
Nat q n < [Na+]int ) ( )

where kg is the Boltzmann constant, T is the temperature, and ¢ is the ionic
charge.” Equation (2.1) is also known as the Nernst potential or the rever-
sal potential. This latter name is used to describe the potential reached when
ionic currents through channels balance or cancel out. Of course, with Na+being
positive, it urges to get inside the negatively charged cell; also, as the sodium
concentration [Na' | is higher outside (due to the aforementioned pump), a con-
centration gradient tries to push Na'ions inside the cell. If the Na' ions were
allowed to move freely, the intracellular potential would reach about +50 mV,
before the direction of the net flow of ions reverses; therefore sodium has the
reversal potential Fy + ~ 50 mV.

So, at rest the cell is in a polarized state. Then, if the internal potential moves
towards the zero-level, one speaks of a depolarization, whereas if it gets even
more negative a hyperpolarization has occurred.

7Some of the guards might be sleeping on their shift.

8Whose discovery lead to that the Danish professor Jens C. Skou received the 1997 Nobel
Prize in chemistry.

9Here, with sodium being singly positively charged this amounts to e.
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2.2.2 Activity - action potential

Incoming electrochemical signals from the dendrites to the soma affect its steady
level. The somatic integration slowly depolarizes the cell body. This is where
the ion-channel guards re-enter the business: Their opening of the gates is di-
rectly dependent on the voltage across the membrane. The channels can be
considered as having voltage dependent opening probabilities!® Especially the
Na' channel is very sensitive to changes in the membrane potential; at a certain
level of depolarization}! the opening probabilities of the Na' channels increase
abruptly, and the channels open — for a short while &~ 1 ms. A bit later than
the Na~ channels, also the K channels open. This is a combined action involving
very fast dynamics in terms of exchange of ionic species across the membrane,
leading to drastic fluctuations in the membrane potential — an action potential.
Due to the need for the membrane potential to be increased to a certain level
before the Na channels open, the process has often been viewed as happening in
an all-or-none manner 2

Figure 2.4 shows the processes involved in the creation of an action potential
(AP). In the figure, conductances g, and g, are used as representatives of the
opening probabilities. These are interchangeable: If the probability of a channel
to be open is high, it conducts well. A few comments to figure 2.4: A1) The cell
is in its resting state!® and the little wheel in the middle symbolizes the Na' -
K pump upholding the imbalance. Abbreviations are used for extracellular- and
intracellular fluid (ECF and ICF). A2) The membrane potential is increased
and Na' ions enter the cell, indicated by the large arrow. A3) Shortly after the
channels close, and a repolarization is initiated.

It is important to note the shape of the action potential in figure 2.4.B as it
captures the essence of all action potentials. A remarkable feature of action
potentials (APs) are that they all look alike without much divergence. It is
this stereotype appearance that sometimes leads to simplified representations.
Namely, when viewed on a large time scale the action potential looks like a nar-
row pulse. The present report reflects that people name the process of an AP
with great variability, and words like spike, pulse, action potential, depolariza-
tion, activation, event, firing will be used indifferently.

The ultimate integration of dendritic inputs'* is made at the initial segment

10This will return in section 6.1.

11 As also seen in section 6.1, this is often modeled with a simple threshold.

12 Again a rule with an exception. If depolarization is done by stimulating in a sequence of
small steps the neuron may not elicit an action potential at all. An effect known as accommo-
dation (see e.g. Carpenter (1996)).

13With a resting potential of —90 mV. These depend on the type of neuron.

4Formerly dendrites have been viewed as cables passively conducting signals, this is indeed
not the case. However, it will not be discussed here any further, see e.g. Scott (1995).
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2. Depolarization
(gna briefly elevated)

Overshoot {

3. Repolarization
(gk elevated)

A. Depolarization
and repolarization

Potential
Conductance (g)

Resting
membrane
potential

Hyperpolarization

Time
B. Conductances of Na' and K* during the action potential (schematic)

Figure 2.4 A: The ion transfer involved in an action potential. B: The shape of
the action potential. See text for further explanation (figure from De-
spopoulos and Silbernagel (1991)).
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of the axon, the axon hillock. Here, the cell contains the highest density of
Na' channels and depolarization needs only be 10 mV to reach the threshold!®

When initiated at the axon hillock, the action potential moves out along the
axon towards other neurons; as the AP moves on, its shape is preserved!® This
comes about by continuous regeneration of action potentials along the line; the
AP in progress depolarizes the membrane, which causes a new AP to move along,
and so on and so forth. The velocity of the AP is highly dependent on myelin
sheet ‘wrappings’ around the axon. Small gaps in the sheets, nodes of Ranvier,
enables the AP to ‘jump’ from node to node, increasing its speed. The myelin
sheets are insulators made of lipid (fatty) layers, forming what is known as the
white matter of the brain.

That signals are not sent ‘back-wards’ in the axons is due to conformational
changes of the membrane, hindering the initiation of a another action potential
in some time after the first one. This time is known as the absolute refractory
period and lasts for about 2 ms. Also a relative refractory period exists, in which
the neuron can be brought above its firing threshold but only by a larger amount
of depolarization.

Considering the neuron as a signal generator, the all-or-none action potential
moving without attenuation makes sense as it prevents the ‘spreads with decay’
or dispersion often seen in signals sent over some distance. The missing atten-
uation is also part of the explanation for the above mentioned synonyms: It is
only a matter of whether a ‘spike’ is there or not — if there, the shape is known.

2.2.3 Neurons and numbers

There are about 100°000°000°000 neurons in the cerebral cortex, that is 10!
or one hundred billion. To cope with such a large number, analogies are often
made!” Tt is almost the same as the number of stars in the Milky Way; or, as
Brunak and Lautrup mention »...comparable to the number of grains of sand
in 1 m? of fine beach sand.«'® A microliter of cortex (1 mm?) contains about

4 km of axons!?

15Compared to about 30 mV at the soma (Kandel et al., 1991).

16The AP could be regarded as a traveling wave or a soliton since it does not lose power
when moving along (see e.g. Scott (1999)).

170bviously, a billion in itself is a large number. As of February 27th, the popular Internet
search engine Google™ had 2,073,418,204 webpages in its database. That is roughly two
billion. If Google™ visits a web-page every second, it will take more than 63 years to visit
them all! (thereby suggesting that the visiting period were wrongly estimated).

18 Although they mention the number as being 1000 billion, probably because they count
supportive glial cells as well (Brunak and Lautrup, 1988, p. 30).

19Chklovskii and Stevens (2000).
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As seen in figure 2.3, the neurons look differently depending on their location.
Functionally, they can be divided in at least three distinct classes with regards
to their interaction range. Principal neurons or projecting neurons; intrinsic,
local or interneurons;?? or, input fibers. Long range, projecting neurons are
for example the pyramidal neurons acting as the main excitatory neuron in the
brain.

A central neuron is typically receiving about 10000 afferent (incoming) fibers
from other neurons. This is known as convergence and in e.g. the rabbit, around
50 million receptors converge onto 175000 primary cells in its olfactory center!
The opposite effect, divergence, is also seen in connection with branching of the
axon collaterals.

The cortex is divided vertically into six layers counted from the outer to the inner.
The division is made on the basis of neuronal types, density, and distribution.
Signals are sent back and forth between the layers and also transversally inside
the layers. Projecting nerve fibers can therefore come from several places and
arrive in the cortex where they diverge out like branches on a tree and establish
contact with several other cells. How the signals are conveyed from one neuron
to the next is the topic of the next section.

2.3 Synapses

»...the purpose of a neurone is not to generate action potentials — or any other
kind of potential — but to release transmitter ... «22

Signalling from one neuron to another happens across a small gap separating
the sending neuron from the receiving neuron. Altogether, the conglomerate
consisting of the terminal membrane regions on both sides of the gap, and the
gap itself, is called a synapse; the gap is termed the synaptic cleft.

Formerly, synapses have been viewed as rather simple contact sites capable of
imposing either excitation or inhibition on the contacted neuron. Substantial
experimental evidence has changed this view into an appreciation of the intricate
functional complexity these synaptic connections between neurons can present.

Boutons?® specialized membrane enlargements or swellings, are typically the
sites where synaptic contact occurs. The boutons form as terminal bulbs at
the end of an axon, and/or along the length of individual axons as boutons en

20 About 20% of the neurons in the brain are inhibitory interneurons (O’Reilly, 1998).
21Gluck and Granger (1993).

22Carpenter (1996, p. 45).

23 Also known as synaptic knobs.
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passant.

The synaptic cleft acts as the borderline determining which prefix to use when
describing activity or region of interest: Pre- or post-synaptic. As this indi-
cates, synapses have an orientation in the sense that they convey signals from
the presynaptic to the postsynaptic neuron. In general, an electrical signal is
converted into a chemical signal by the presynaptic membrane, and back into an
electrical signal at the postsynaptic membrane from where it moves on.2*

2.3.1 Presynaptic activity

The key feature of the presynaptic bouton is its activity dependent release of
neurotransmitter into the synaptic cleft. When a synapse is active, a variety of
mechanisms come into play; in fact, there is an ongoing debate concerning the
exact processes involved in transmitter release. The following, highly general
description, touches on some main features on which a common agreement has
evolved — features that are remarkably similar in all neurons.

Initiator of activity is an incoming action potential depolarizing the presynaptic
. 2+

membrane and thereby causing voltage-gated Ca~ channels to open (see fig-
ure 2.5). Influx of Ca ' activates a calcium-binding protein which itself binds to
transmitter-containing vesicles — a process termed priming. The primed vesicles
join the readily releasable pool (RRP) by docking at membrane release sites from
where the vesicle fuses with the membrane (exocytosis) and liberates a quan-
tum of neurotransmitter into the synaptic cleft. In the cleft, transmitter diffuses
towards the postsynaptic membrane (see below) and is also re-absorbed into
the presynaptic terminal by endocytosis. The latter process recycles membrane
when putting neurotransmitter filled vesicles back into the ‘storage’.

It is worth noticing that ‘release’ above is to be considered a ‘probability of re-
lease’. On average, less than one vesicle is released in response to a stimulus2?
although not all synapses are equally unreliable. The reason for the probabilistic
nature is due to blocking mechanisms; once a vesicle has begun to fuse with the
membrane, all other vesicles in the RRP are inhibited from undergoing exocy-

tosis. This is also known as the univesicular hypothesis?2®

When looking isolated at the presynaptic mechanisms described above, which
lead to liberation of transmitter, they are rather general for the various types of
neurons found in the brain. The particular type of transmitter released and its
effect on the synapse is, in contrast, not general at all.

24 As noted in Shepherd (1998), this is a process known as a nonreciprocal two-port.
25As noted by Terrence J. Sejnowski in Maass and Bishop (1999).
26Senn et al. (2001).
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Figure 2.5 An overview of some of the main mechanisms happening in synapses
(upper part is presynaptlc) (@ Arrival of an action potential opens Ca
channels 2. Influx of Ca ' leads to priming of vesicles @+ @) allowing
these to dock in the readily releasable pool (5) from where they undergo
exocytosis (6) releasing neurotransmitter into the cleft. From here the
transmitter can be reabsorbed €9, metabolized (8), or diffuse towards
the postsynaptic side (7). At the postsynaptic side, transmitter binds to
receptors (9 and changes their ion-channel conductances @, i.e. they
open, and ions can flow in, thereby affecting the synaptic potential or
initiating internal cascade processes @+@. Another internal process
could be activation of second messengers. Some abbreviations: PK,
protein kinase; R, receptor; NOS, nitric oxide synthase (figure from
Shepherd (1998)).
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2.3.2 Postsynaptic activity

It is chemical neurotransmitters that by means of diffusion bridge the gap be-
tween the presynaptic and the postsynaptic side in synapsing neurons. A com-
mon type of receptor acts as a transmitter-gated ion-channel. In the open state,
influx and efflux of ions lead to a modification of the postsynaptic membrane po-
tential?”. Depending on the transmitter and, even more important, the effect it
has at postsynaptically resident receptors ready to receive transmitter, synapses
are often divided into either of two groups: Excitatory or inhibitory.

The division reflects the influence that interaction between transmitter and re-
ceptor has on the postsynaptic potential (PSP). When causing a depolarization,
it is termed an ezcitatory postsynaptic potential (EPSP); when leading to hy-
perpolarization, it is called an inhibitory postsynaptic potential (IPSP).

As stated, alteration of the postsynaptic potential occurs through a direct link

between receptor and membrane conductance, i.e. by opening of ion-channels.

Notice the large difference between voltage-gated and transmitter-gated ion

channels: Voltage-gated channels react in an all or none manner while transmitter-
gated channels just add to the current current,?® meaning that the number of

channels opening in the presence of transmitter depends largely on the concen-

tration of transmitter.

Although excitation and inhibition are not determined by the type of presynap-
tic transmitter (but on the postsynaptic response thereto), a rule of thumb is
that the major excitatory transmitter is glutamate (an amino acid), and that the
major inhibitory transmitters are y-aminobutyric acid (GABA) and glycine?®
This is indeed a simplification since various types of chemicals act as neurotrans-
mitter substances: Acetylcholine (ACh), dopamine (DA), serotonine, histamine,
aspartate, noradrenaline, glucagon, -Endorphin, enkephalin, norepinephrine,
and epinephrine (just to name a few). To this comes the large range of different
classes of receptors. Each class exhibits a substantial range of physiological sub-
types depending on the molecular composition of the receptor. In section 6.2,
different synaptic models are presented including varying degrees of physiological
complexity; here, for clarity, an outline has been preferred.

Receptors can be divided into two different classes: Ionotropic and metabotropic.
In ionotropic receptors, the transmitter reception site and the ion-channel are
part of the same protein complex. Metabotropic receptors are independent of
the channel, and gating is mediated by intracellularly produced second messen-
gers; an indirect activation providing the possibility for amplification of a signal

27The resistive membrane and Ohm’s law converts ion current to potential.
28No pun intended.
29Kandel et al. (1991).
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e.g. via cascade effects (10a in figure 2.5)30

If present, diffusible second messengers produced in the postsynaptic process can
modulate transmitter release presynaptically in an activity-dependent manner
(so-called retrograde messengers). However, whereas presynaptic to postsynap-
tic activity works on time scales down to fractions of a millisecond, retrograde
messengers are likely to act more slowly (Shepherd, 1998).

The major types of synapses in the central nervous system are the AMPA,
GABA, and NMDA receptor type synapses, whose abbreviations will be ex-
plained in the following. Also, even though it will not be described any further,
a very common type of receptor is the nicotinic acetylcholine (ACh) receptor
found in the periphery at the neuromuscular junctions where neurons synapse
onto the muscles.

The a-amino-3-hydroxy-5-methyl-4-isoxazole-propionate (AMPA)3! receptor re-
sponds to glutamate and is mentioned as being prototypical®? in mediating fast
excitatory synaptic currents in the brain (Destexhe et al., 1998).

As mentioned, the majority of IPSPs in the brain is invoked by y-aminobutyric
acid (GABA) receptors coming in two varieties, a fast and a slow. Fast inhibition
is related to GABA 4 receptors, a ionotropic receptor having a high affinity for
GABA and requiring minimal stimulation to elicit response when compared to
its ‘cousin’ the GABAp receptor. The latter is metabotropic and needs a high
level of presynaptic stimulation in order to be activated.

A particular interesting type of receptor that has drawn a lot of attention recently
is the NMDA receptor. It is a glutamate receptor, but has obtained its name
because of a high affinity for the artificial substance N-methyl-p-aspartate. The
reason why this receptor is especially interesting is its g:grrelation capturing
abilities. When glutamate is bound at the receptor, Mg ions still block the
Ca ' ion-channels and can only be removed if the postsynaptic membrane is
depolarized at the same time. The fact that this leads to conformational changes
with implications of learning will be treated further in section 3.3.3.

By having various channels, the same ion can be used for different purposes.

A probably well-known example of receptor flexibility is that chilis (Capsicum)
are sensed as being hot when eaten. This is due to the fact that capsaicin®? from
the chili is able to dock on vanillin nociceptors (pain receptors). When capsaicin

30Dayan and Abbott (2000).

31Resembles another receptor, the kainate receptor, and often a combination is seen, the
AMPA /kainate receptor. Here the term AMPA will be used as a common name for the three.

32 A simplification ignoring the fact that AMPA receptors with significantly different prop-
erties can be found in particular types of neurons (Destexhe et al., 1998).

33The active substance phenolic amide C1gH27NO3.
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comes into contact with these receptors, a cascade of intra-cellular reactions are
triggered similar to those produced by damaging heat.

2.3.3 Organization

A common synaptic specialization of dendrites is what the Spanish anatomist
Ramon y Cajal called “espinas” (spines) due to a resemblance with thorns on a
flower stem. Spines are small®* membrane protrusions frequently found on the
dendrites of principal cells in most brain regions, especially on the pyramidal
cells of cerebral cortex and the Purkinje cells of the cerebellar cortex. Among
these two cell types, above 90% of excitatory synapses occur on dendritic spines
(Synapse Web, 2001).

Spines are not the only contact sites though, in fact, the connectivity between
neurons introduces another level of variability as different types of synaptic con-
nections are seen: Axo-somatic, axo-dendritic (shaft or spine) and axo-axonic.
Dendro-dendritic and soma-somatic synapses are also found but rare. Evidently,
this variety of possible connections between neurons allows for — and indeed
imposes — different functionalities. For example, the axo-axonic synapses can
have selective purposes in the sense that they can control behavior at individual
branches of a neuron. Although large variability exists, some general observa-
tions are that: Synapses on the soma are often inhibitory, synapses on dendritic
spines are often excitatory, and synapses on axon terminals are often modulatory.

Two principles come into play when looking at neurons and their connectivity.
Synaptic convergence: Several neurons make synaptic contact with a single neu-
ron. Synaptic divergence: A single presynaptic terminal can transmit signals to
many postsynaptic terminals. The convergence property allows for spatial and
temporal summation: A single EPSP is insufficient to trigger an action poten-
tial, but adding contributions from a large area (spatial) possibly arriving at the
same time (temporal) may bring the somatic potential above its threshold.

2.3.4 Characteristic behavior

The above description of the underlying processes involved in inter-neuron com-
munication provides a physiological foundation for understanding the origin of
various activity dependent behavior seen in connection with synapses and neu-
rons.

Three such activity related mechanisms are synaptic facilitation, synaptic aug-
mentation and synaptic potentiation. All of these processes are similiar in the

340ften less than 1 um in diameter (Synapse Web, 2001).
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sense that they lead to a more potent synapse — an enhancement. The fact that
the processes can be distinguished from one another based on magnitude, time
course, and in some cases pharmacology, indicates that the underlying mecha-
nisms are different. Facilitation, the briefest of them, are sometimes divided into
two separate components with different time scales3® Table 2.1 gives an overview
of different mechanisms, their related time scales and synaptic location.

| Mechanism | Duration | Synaptic Location

Short-term Enhancement
Paired-pulse facilitation (PPF) | 100 ms Pre
Augmentation 10s Pre
Post-tetanic Potentiation 1 min Pre

Long-term Enhancement
Short-term Potentiation (STP) | 15 min Post
Long-term Potentiation (LTP) | > 30 min | Pre and Post

Depression
Paired-pulse depression (PPD) | 100 ms Pre
Depletion 10's Pre

Long-term depression (LTD) > 30 min | Pre and Post

Table 2.1 Activity dependent synaptic mechanisms and a rough estimate of their
decay constants. An indication of whether they depend on presynaptic
or postsynaptic activity or both is also given (adapted from Maass and
Bishop (1999)).

A possible explanation for e.g. the facilitative mechanism is indicated by what is
known as ‘the residual calcium hypothesis’®6. The idea behind this hypothesis is
that, after the first nerve impulse is over, a little portion of the calcium that en-
tered the nerve terminal is not re-absorbed but stays behind. This residual is not
enough to enhance or trigger release on its own but adds to the calcium entering
during the next nerve impulse. Similar models based on this idea of residual
calcium have been developed to explain augmentation and potentiation3”.

Another activity dependent mechanism, adaptation, was discovered by E. D.
Adrian®® as early as 1928. Adaptation means that the response to a constant
stimulus fades, and both the extent to which it falls to zero and the time con-

353ee e.g. Carpenter (1996) or Kandel et al. (1991).

36 A concept introduced by Katz and Miledi (1968).

37In table 2.1, ‘post-tetanic’ refers to a preceding high rate of stimulation.

38T ater he, together with Sir Charles S. Sherrington, received the 1932 Nobel Prize in ‘Phys-
iology or Medicine’ for work on the function of the neuron.
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stant involved are crucial parameters. Adaptation acts as a form of redundancy
reduction and improves the signal to noise ratio by providing a sliding scale.

Habituation is a phenomenon related to adaptation since it also involves a decline
in response to a constant input. The subtle difference is that habituation is
caused by stimuli that are periodically applied rather than continuous. Also,
habituation is a high-level phenomenon not seen in sensory receptors but rather

in later areas of the brain as a learned suppression of the response3’

Along the lines of activity moderation one finds the mechanisms leading to a
depression of signal transduction. As seen in the bottom of table 2.1, three
different time scales are involved. During a long train of stimuli the postsynaptic
potential could first become larger and then become progressively smaller in
amplitude both during and after the train. The location of moderation has
e.g. been demonstrated by measurements showing a reduction of the amount of
transmitter released presynaptically with each stimulus, rather than a loss of
sensitivity in the postsynaptic receptors. The favored candidate when it comes
to the cause of the homosynaptic use-dependent depression is a depletion of the
readily releasable store of synaptic vesicles.

It is worth noticing that these dynamic effects are responsible for »... complex
postsynaptic responses that cannot be reduced to a linear sum of responses to
single presynaptic action potentials. . . «*°. This imposes a simple form of activity
dependent cellular memory — short-term though — later on, longer lasting effects
like long-term potentiation will be described.

Summary

Having dealt with neurons and in particular synapses at some level of detail, it is
time to recapitulate. The lesson to be learned from the brief introduction to the
neuronal physiology is that emission of signals happens in an all-or-none manner
by means of stereotype action potentials, not changing their shape as they move
out along the axon. Having a temporal width of only about a millisecond has
led to the notion of considering the action potential as an electrical spike.

The probabilistic synaptic conversion of incoming electrical activity into a trans-
mitter based internal signal opens for a multifaceted functional complexity. Here,
attention is drawn to the possible activity dependent dynamics associated with
the residual calcium hypothesis and depletion of vesicles, leading to short term
enhancement and, respectively, depression of the synaptic transmission efficiency.

39Investigated by Ivan Pavlov and Charles S. Sherrington among others, in connection with
certain reflex forms of behavior, such as limb withdrawal to a tactile stimulus (Kandel et al.,
1991, p. 1010).

40Tsodyks and Markram (1997, p. 719).
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Obviously, this enables the synapse to perform filter-like processing of the in-
coming signals.

Whereas the presynaptic transmitter release mechanisms are rather general, the
postsynaptically induced response to transmitter is not. Yet, the overall feature
of the postsynaptic receptors is their ‘conversion’ of docking transmitter into
a postsynaptic potential. To this comes the NMDA receptor of the glutamate
type the activity of which is dependent on the cooperativity of presynaptically
released transmitter and postsynaptic feedback signals, allowing the synapse to
capture correlations between signals.

Finally, it should be mentioned that although the large selection of possible types
of synaptic connections complicates things, the operational gain it involves is not
to be underestimated. That, for example, synaptic contact at the initial part of
an axon can ‘veto’ an action potential or that a synapse onto an axon terminal
can have modulatory effects provides convenient building blocks for everyone
who might consider constructing a brain (or models of parts thereof).






Learning

» Learning is the process by which we acquire knowledge and memory
is the process by which we retain that knowledge over time.«

(Kandel and Hawkins 1992)

Is it possible for a human to learn all kinds of things or are there things which
are beyond our capabilities? Is it possible for machines? How do humans learn?
And how can learning be defined?

Is it a child memorizing a book or mastering how to ride a bicycle; is it society
improving from generation to generation; is it a synapse being trained to convey
the correct information?

Many different notions exist of learning as a concept, making it difficult to cap-
ture the essence in a few words. This chapter is intended to sum up some of the
main ideas and relate them to the topics dealt with in the present report.

3.1 Concepts

Using terminology from machine learning, three main learning concepts are de-
fined. Each of these has its counterpart in the theories of human learning.

Supervised learning: A teacher (supervisor) provides a measure of correctness
(an error signal) to the student, and the student reacts by changing his behavior
to minimize the error. In other words, adapting to the knowledge of the teacher.
An example of this is when a mathematic assignment or an essay is handed in
to the teacher; when returned the errors are marked with red lines and the right
answer is written in the margin. Hopefully, the same error will not be made in
the next set of assignments.

Reinforcement learning also involves a teacher but this time no correct answer is
provided, only a pad on the head when a good deed is performed or an angry yell
in case of an unwanted action. To illustrate, consider a game of MasterMind ™,

21
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where the objective is to learn the correct location of small colored pins! Infor-
mation is only available on whether the present guess is correct — but not what
the error is2

The third type of learning is unsupervised learning: Without feedback from
the world, it is still possible to learn. Examine figure 3.1 for a moment; when
presented with such a picture, it is at first impossible to see the hidden object.
However, once the object is found, it poses no problem to find it again3

4 Figure 3.1 At first glance it is not possible
- to find the object in the picture. However, by
" closer inspection the optical illusion gets ex-
posed. Next time the picture is presented the
object is found without problems (the picture
can be found in e.g. Cotterill (1998)).

The task uses the ability to associate new impressions with old ones. Once
the association is formed, it becomes part of the memory and can be retrieved
without problems. The creation of this association, the learning process, can
(usually) be performed without any error signals. This is a general feature of
associative memories: They can be formed unsupervised.

A property of associative memories is also that they are robust in the retrieval
phase. This will be returned to with an example in section 4.1.

3.1.1 Synaptic modifications

Observing how humans can learn in both a supervised and unsupervised manner,
has naturally led to the question of how this learning may come about: “How
may this learning come about?”. Looking for an answer has, on the microscopic
level, led to the study of neurons and synapses. A main paradigm in artificial
learning is the hypothesis Donald O. Hebb proposed in 1949:

! Although, hopefully not too much yelling will take place during such a game ...

2In the mathematic assignment, a red line still marks the error but this time the correct
answer is not given.

31f it is not possible to see an object, here is a little supervision: Look for a dog.
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» When an azon of cell A is near enough to excite a cell B and re-
peatedly or persistently takes part in firing it, some growth process or
metabolic change takes place in one or both cells such that A’s effi-
ciency, as one of the cells firing B, is increased. The most obvious
and I believe much the most probable suggestion concerning the way
in which one cell could become more capable of firing another is that
synaptic knobs develop and increase the area of contact between the
afferent azon and efferent soma.«*

Actually Hebb did not think of this postulate as being original® Perhaps he
were aware of the antecedent ideas of W. James, who in 1890 maintained that:

»...[T]here is no other elementary causal law of association than
the law of natural habit: When two elementary brain processes have
been active together or in immediate succession, one of them, on
reoccurring, tends to propagate its excitement into the other. ..«

A quote revealing that notion of learning as being dependent on the co-occurence
of activities, is more than a hundred years old”

Even though Hebb was not the inventor of the idea that synapses are strength-
ened on use, he incorporates this idea into a theory concerning assemblies of
neurons:

» Any frequently repeated, particular stimulation will lead to the slow
development of a ‘cell-assembly’, a diffuse structure comprising cells
... capable of acting briefly as a closed system, delivering facilitation
to other such systems and usually having a specific motor facilitation.
A series of such events constitutes a ‘phase sequence’ — the thought
process. Each assembly may be aroused by a preceding assembly, by a
sensory event, or — normally — by both. The central facilitation from
one of these activities on the next is the prototype of ‘attention’.«®

4Reprinted in Cotterill (1998).

5See e.g. Scott (1995).

6Reprinted in Brown et al. (1990).

"Brown et al. (1990) reports that contemporary to W. James, E. Tanzi in 1893 identified
the synapse as being the locus of the modifications. And Nielsen (2001) reports that Bain in
1873 in his book “Mind and matter” proposes that: »...[W/hen two impressions concur, or
closely succeed one another, the nerve currents find some bridge or place of continuity, better
or worse according to the abundance of nerve matter available for the transition. In the cells
or corpuscles where the currents meet and join, there is, in consequence of the meeting, a
strengthened conexion or diminished obstruction. .. «.

8 As reproduced in Scott (1995).
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The real contribution from Donald Hebb is thus, not the concept of synaptic
modifications but rather the concept of cell assemblies. However, no matter who
got the idea or when it was first conceived, it was Hebb who — as the name
implies — made Hebbian learning famous.

To conclude this short introduction to synaptic modifications, a few words to
summarize what the Hebbian hypothesis implies: Synapses are locally enabling
an unsupervised form of learning qua their ability to change when action be-
fore the synapse precedes action after the synapse. This does not exclude
reinforcement-like signals to perform a neuromodulatory control over the mod-
ifications. A large population of Hebbian synapses — or cell assemblies — can
in this way be influenced in a ‘global’ manner. Hebbian synapses are also not
excluded from feedback receiving signals directly from other parts of the brain.

3.2 Synaptic plasticity

As Hebb proposed, learning in terms of synapses amounts to changes in their
transmission strengths. Different mechanisms and time scales are involved in
these changes. As described in section 2.3, a synapse is a dynamic unit and will
react differently to temporally different spike trains — even though the rate is the
same. This dynamic, activity dependent behavior can be thought of as learning
with a brief time constant.

Longer lasting synaptic changes often involve plastic changes, affecting the basic
properties of the synapse. Plasticity can be thought of as changing the working
point; the synapse will still be dynamic on a short time scale — not necessarily
with the same dynamics — but the general transmission behavior is different.

An example is redistribution of synaptic efficacy (see figure 3.2). This phe-
nomenon, obtained by pairing the occurrences of presynaptic and postsynaptic
spikes, is reported in Markram and Tsodyks (1996) and involves an increase in
the synaptic response following low frequency input. Redistribution represents a
mechanism altering the existing content instead of the actual gain of the signal
— a plastic change of the dynamics. Markram and Tsodyks ascribe the effect to
either an increase in the probability of transmitter release or an affinity increase
for the postsynaptic glutamate receptors.

Several mechanisms are labelled as being of short term duration® On the shortest
time scale (ms — min), paired pulse facilitation and post-tetanic potentiation
accounts for some of the facilitating effects, whereas depletion is an example
of a depressive mechanism. However, these are not lasting effects and have to

9See eg. table 2.1.
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Figure 3.2 Redistribution of synaptic efficacy. The postsynaptic potential before
and after pairing of presynaptic and postsynaptic activity (spikes). The
average output is the same and only the temporal structure of the signal
is changed (figure from Markram and Tsodyks (1996)).

do more with the particular decoding of information than with learning. These
short term effects are known to involve changes of the postsynaptic potential
with up to several hundred percent.

Generally, only synaptic changes happening on a longer time scale (hours — days)
are regarded as being learning. But, it is worth remembering that the short term
and longer term effects are additive. Even after learning has occurred, paired
pulse facilitation, post-tetanic potentiation, or depletion can be observed.

Temporal pairing

The redistribution of efficacy mentioned above is an example of Hebbian learning
in the sense that pairing of presynaptic and postsynaptic activity is necessary
to induce the effect!?

Other activity driven plasticity types also require this kind of co-existent firing
on both sides of the synaptic cleft. To this comes that the temporal order of
the presynaptic and postsynaptic spikes can be of importance; this is known as
spike—timing dependent (synaptic) plasticity (STDP). Examples of such timing
dependent mechanisms are shown in figure 3.3, where the baseline in each subplot
indicates a steady level. Moving above the baseline implies a potentiation while
going below expresses a depression.

In figure 3.3, abbreviations for Long Term Potentiation (LTP) and Long Term
Depression (LTD) are used to characterize the changes as being either a pro-
longed increase or a prolonged decrease of the synaptic response.

Investigation of these long term effects is an area of research that has been object

10Burst firing only presynaptically or postsynaptically did not produce the effect.
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Figure 3.3 Spike-timing dependent
synaptic plasticity (STDP) as found in
different preparations of neural tissue.
Long term effects are evoked by re-
peated pairing of pre- and postsynaptic
activity. Dark colors represent potenti-
ation and light colors depression. In the
upper three figures (a, b, and c), it is of
importance whether presynaptic activ-
ity precedes postsynaptic activity or if
it is the other way around. In the lower
figures (d and e), only the relative tim-
ing matters. Figure from Abbott and
Nelson (2000).
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to a remarkable intense activity for at least the last twenty years. This is partly
why they will be dealt with at some length in the following section, but the main
reason is their close relations to mechanisms involved with forming and storing
memory — learning.

3.3 Long Term Potentiation

Long term potentiation is a use-dependent, long-lasting enhancement of the
synaptic strength. The first discoveries of LTP were made in 1966 by Terge
Lgmo and were presented in an article!! seven years later. The effect was found
in the rabbit hippocampal formation!? Since then it has been demonstrated
to occur in various excitatory synapses of the central and peripheral nervous
system.3

The discovery of the long term potentiation effect in the hippocampus made it
widely believed to be associated with learning. Indications that this is indeed
the case, include the finding that LTP is present in the hippocampus during
learning!* This latter knowledge has also meant that most of the experiments
on LTP have been performed on excitatory synapses in or from the hippocampus.

Citation counts prove that the LTP field has been given a lot of attentionl® As
Malenka and Nicoll put it, long term potentiation is ».. . the leading experimen-
tal model for the synaptic changes that may underlie learning and memory.«®
Evidently, long term potentiation is a popular model — perhaps too popular.
And, possibly, one of the reasons for its popularity might be that the three let-
ter abbreviation, LTP, has been used indiscriminately to label various incidents
where a protracted enhancement of synaptical transmission efficiency has been
observed — but where the underlying mechanisms might be different.

This is exemplified by e.g. Bliss and Collingridge, who, in the studies of LTP,
have identified at least three different time scales.” each covering mechanistically

11 Bliss and Lgmo (1973), as reported in Shors and Matzel (1997).

2Induced in the dentate gyrus granule cells when the perforant path was stimulated.

133ee e.g. Shors and Matzel (1997) or Brown et al. (1990).

M LTP can e.g. be induced by synchronized patterns of theta bursts (e.g. bursts of 4 shocks
at 100 Hz delivered at an inter-burst interval of 200 ms) which are similar to patterns found
in the hippocampus during learning (Bliss and Collingridge, 1993).

15 A quick incomplete search tells that the original article is cited at least 2500 times. Also,
in Malenka and Nicoll (1999), it is mentioned that a simple MEDLINE search with ‘long-term
potentiation’ as keywords, brings forth more than 3000 papers — alone from within the last
decade.

16 Malenka and Nicoll (1999, p. 1870).

17Bliss and Collingridge (1993). Also in Brown et al. (1990) three models for LTP are
mentioned.
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distinct components:

LTP1 Duration 3-6 hours, blocked by kinase inhibitors but not by protein
inhibitors.

LTP2 Blocked by translation inhibitors independent of gene expression.

LTP3 Duration days, may require gene expression.

Obviously, this blurs the picture a bit and has caused some scepticism; an issue
that will re-occur once the prevailing notions of LTP are laid forward.

3.3.1 Features

Before going into the origins of this longer lasting effect, it might be appropriate
to mention some of the features often associated with it!® Figure 3.4 illustrates
the concepts

Cooperation: Several spikes are required within a short time. One spike (or a
few) does not depolarize the postsynaptic neuron in a manner producing
LTP.

Associativity: Input pathways that are weak and insufficient can, neverthe-
less, be potentiated if active at the same time as strong input pathways.
An interaction often mentioned as a characteristic necessity for explaining
associative learning such as classical conditioning.

Input-specificity: Only input pathways that are active in close proximity to
postsynaptic depolarization are potentiated.

An associativity example is given by Brown et al. (1990). They mention that
the synapses at the Schaffer collateral/commisural inputs in the hippocampus
have been shown to display an associative form of LTP. From figure 3.4, it is
clear that the interplay between pre- and postsynaptic activity is important.

3.3.2 Induction of LTP, pre- or postsynaptic ?

What causes LTP is not fully understood. There is an ongoing debate whether
the mechanism takes place presynaptically, postsynaptically, or both.

183ee e.g. Kandel et al. (1991); Bliss and Collingridge (1993); Malenka and Nicoll (1999).
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Figure 3.4 Features connected to long term potentiation. A single schematic pyra-
midal cell receives weak and strong input, respectively, along two differ-
ent pathways and the resulting EPSP is monitored. A: Weak stimulation
alone does not induce LTP (the EPSP does not change), stronger stim-
ulation — higher cooperativity — is needed. C: Stimulation of the strong
input alone is enough to cause LTP — for this specific pathway, the
‘weak’ pathway is not potentiated. B: When acting together, the strong
stimulation ‘drags along’ the weak, yet active, pathway; potentiation
happens in both pathways (figure from Kandel et al. (1991)).

Originally, LTP was produced by high-frequency presynaptic stimulation, but
it can also be induced by pairing single presynaptic stimuli with postsynaptic
depolarizations (properly timed as indicated in figure 3.3); these pairings do
often not have to occur at high repetition rates!®

A mechanism involving an increase in presynaptic transmitter release probability
is a possible candidate as the underlying process for inducing LTP. Different
suggestions, for how this alteration of the release probability can come about,
have been made. One particular is by addition of new docking sites to the readily
releasable pool. To see why this can account for an increase in the synaptic
response, one can assume that the probability of release is somewhat similar at
every release site. Although only one release site at the time can release a vesicle
(see section 2.3), the overall release probability for this one will be increased as a
consequence of the enlarged readily releasable pool. In an assembly of synapses,
this would also lead to less variation in the total transmitted signal.

Such a presynaptic change in release probability can account for synaptic redis-
tribution (figure 3.2), using the argument that the release happens faster.

If the observed pairing effects are to be incorporated in LTP models favoring

19Gee e.g. Brown et al. (1990).
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changes on the presynaptic side, a requirement is that a signal travels back across
the synaptic cleft from the postsynaptic side. This transfer of information could
be performed by retrograde messengers such as arachidonic acid or nitric oxide
where at least the latter has been proven to be involved in long term changes?®

Other proposed candidates for LTP induction include reduced extra-synaptic
glutamate uptake (which would in effect be similar to increased transmitter
release) and, especially, NMDA receptor mediated changes on the postsynaptic
side.

3.3.3 The role of NMDA receptors

Throughout the material documenting various findings of long term potentiation,
one inevitably comes across descriptions of the NMDA receptor, and how it might
be involved in the induction of LTP.

A key observation is that antagonists of the NMDA receptors block induction but
not expression, thereby suggesting that once the synapse has learned, NMDA
receptors are no longer important — but, also suggesting that during learning, or
at least during a specific kind of learning, the presence of NMDA receptors is of
vital importance?!

As described in section 2.3, glutamate is the main transmitter in excitatory
synapses, and two major receptors for glutamate are the AMPA receptor and
the NMDA receptor. When glutamate is released into the synaptic cleft, it binds
to these receptors on the postsynaptic side. There, the AMPA receptor provides
the majority of the flux of Na and K ions and hence is primarily responsible for
generating the postsynaptic potential.

Activation of the NMDA receptor, on the other hand, requires that glutamate is
bound and that the postsynaptic cell is depolarized. This is due to ‘doubly gated’
ion channels: When glutamate binds to the receptor, the channel opens on the
out2s+ide, but, Mg2+is still blocking the ion channel on the inside. Removal of the
Mg block is voltage dependent and therefore happens when the postsynaptic
neuron fires an action potential.

When open, the NMDA receptor primarily conducts C;f " ions into the post-
synaptic cell. It is well known that an increase in Ca , within the dendritic
terminal, initiates a chain of biochemical reactions ultimately affecting AMPA
receptors. Figure 3.5 shows a simplified model of the processes involved. Rather
than going into the specific reactions following Ca’ increase, this sentence shall
be used to emphasize the possible end-product: The conduction of the AMPA

20 Arancio et al. (1996).
21See e.g. Brown et al. (1990).



3.3 Long Term Potentiation 31

Figure 3.5 Activation of NMDA re-
ceptors (NMDAR) requires presence of
glutamate and a depolarization of the
postsynaptic cell. When active, the
NMDA receptor mediates an influx of
Ca ' ions. Once inside the cell, Ca
binds to calmodulin (CaM) to activate
CaMKII, which in itself can phosphory-
late AMPA receptors (AMPAR) effec-

\ P s V4 tively increasing their conduction. It is
%& 1 even possible that CaMKII can promote
N\ m@%ﬁ“ the activation of ‘sleeping’ AMPA recep-
/= AMPAR| tors® or the creation of new ones (figure

/ from Malenka and Nicoll (1999)).

AMPAR !
i aShi et al. (1999).

receptors is increased, and/or the number of receptors goes up.

An increase in the number of receptors in the membrane could happen as a result
of gene expression. Another possibility is reported by Shi et al. (1999) who, by
labelling AMPA receptors with a fluorescent marker, could locate them as being
inactive in the interior of the cell. However, when LTP was induced, the marked
AMPA receptors rapidly moved to the membrane surface and became activated.

The theory that the postsynaptic Ca’ concentration, building in the terminal
after a depolarization, is an important factor in LTP induction, has been sup-
ported by a study carried out by Artola, Brocher and Singer (1990)22 They
found that at low Ca ' concentrations nothing happens. At an intermediate
Ca’ level, LTD effects set in. And, high Ca " levels resulted in LTP. By defin-
ing thresholds for on- and offset of LTD and LTP, these findings have been
termed the ABS rule.

It is worth noticing how the coincidence detection properties of the NMDA
receptor — contributed by its requirement of simultaneous pre- and postsynaptic
activity — implies spatio-temporal specificity: Only the active pathway, and not
other pathways?® converging on the same cell, is potentiated (spatial) and, only
when receiving the pre- and postsynaptic signal in close (temporal) proximity
alterations occur. As Markram et al. put it ». .. the back-propagating AP [action
potential] could be regarded as a “binding signal” for active synaptic contacts.«.

22 As reported in Nielsen (2001) and Gerstner and Kistler (2000).
23Unless they are also active, of course.
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Actually, where the maximal amount of glutamate binding occurs with only
a short delay after the presynaptic spike, the process of unbinding (dissocia-
tion) takes longer?* Therefore the combined action of the pre- and postsynaptic
side does not have to come at exactly the same time. In fact, as figure 3.3 indi-
cates, the important measure is the temporal difference between the presynaptic
and the postsynaptic spike. When the presynaptic spike arrives to the synapse
slightly before the postsynaptic depolarization, it is likely that the presynaptic
spike has contributed to the firing of the postsynaptic neuron, thus the con-
nection should be strengthened. And, vice versa, if postsynaptic depolarization
occurs before the presynaptic spike there is no causal connection, and the synapse
should be weakened.

3.3.4 Long Term Depression

The potentiation effects mentioned above are adding to the synaptic strength.
However, as already revealed in figure 3.3, the opposite effect is also present in
various forms in synapses. Long term depression (LTD) is a use-dependent pro-
longed depression of the synaptic transmission efficiency. The existence of such
an ‘unlearning’ mechanism seems reasonable from a physiological, and certainly
from a computational point of view, since it makes sense that synapses in this
way can compete for influence and, additionally, avoid saturation.

Long term depression was discovered in the 1980’s by Masao Ito. The early stud-
ies described the LTD phenomenon as a unique, characteristic form of synaptic
plasticity taking place in the cerebellum and regarded the mechanism as being
a cellular substrate of motor learning; a hypothesis that is still maintained?2?

Many of the properties that are true of long term potentiation can be applied
to long term depression as well. In fact — although still debated — it seems as if
a general agreement is emerging on the validity of the suggestion that LTD is
more or less a reversal of the mechanisms underlying LTP. This means if LTP
is a postsynaptic process, as suggested by e.g. Malenka and Nicoll (1999), LTD
could be due to a dephosphorylation or even removal of the AMPA receptors.
This is supported by e.g. Carroll et al. (1999), who discovered that induction of
LTD caused a decrease in the number of AMPA receptors on the surface of the
membrane.

243ee e.g. Brown et al. (1990) or Destexhe et al. (1998).
25Tto (2000), with references to Ekerot and Kano (1985); Tto (1989); Tto et al. (1982).
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3.3.5 Scepticism

The hypotheses and theories regarding LTP and LTD presented above merely
scratches the surface of a topic where lots of scientists, and people claiming to
be, have quite diverging interpretations of what is going on. It is beyond the
scope of this report to judge between right and wrong (if this is possible), but a
few remarks might be appropriate.

Browsing through only a minute fraction of the published literature, it seems as if
the ‘LTP’ name has been used rather uncritical to describe long-lasting increases
of synaptic strength. This is supported by e.g. Shors and Matzel, who note
that »...phenomena fitting the general description of LTP occur ubiquitously
throughout the nervous system.«2%

Given the great variability in time scales, loci of discovery, stimulation patterns,
mechanistic components etc., it is highly unlikely that all cases refer to the same
thing. But then again, who says they have to? If not being too focused on the
importance of whether the findings exactly match the original definition of the
words, one might be tempted to state that it is only a matter of calling a thing
by its right name; when it is reported that a long term potentiation has taken
place, it is just a word-for-word description of the actual findings.

With these considerations in mind, findings of e.g. non-associative forms of LTP
or NMDA receptor independent LTP27 do not rule each other out or disqual-
ify the hypotheses advocating for either, they simply supplement each other in
the quest for a deeper understanding of the underlying processes of synaptic
plasticity.

3.4 Chemicals and climbing fibers

In matters of neuronal circuitry, learning is centered around the cellular changes
occurring within individual neurons and synapses. These changes happen locally,
but might affect or be affected by non-local activity; it could e.g. be another cir-
cuitry influencing the dendritic tree from quite a long way away?® The LTP
mechanisms described in section 3.3 demonstrated the ability to capture asso-
ciations between pathways. A requirement for the effects to appear is that the
pathways converge somewhere along the line; it is also a matter of getting signals
there in the first place.

26Shors and Matzel (1997, p. 599).
27Bliss and Collingridge (1993) and Shors and Matzel (1997) respectively.
285 Number one — the larch.«
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3.4.1 Specialized circuitry

An example of the interplay between local and more global actions is found in the
cerebellum, where each Purkinje cell makes synaptic connections with around
200°000 parallel fibers and receives synapses from only a single climbing fiber.
The work of Ito?° proved the conjectures put forward by Marr and Albus3°
These regarded the possibility that mossy fibers deliver sensory input to the
Purkinje cells, by means of parallel fiber inputs; whose synaptic efficacy are
modified by the presence (or absence) of coincident climbing fiber input. In
this respect, the climbing fiber signal can be thought of as a ‘teacher signal’,
reorganizing associations (e.g. sensory-motor) conveyed along mossy and parallel
fibers3! It is not clear whether other architectures support the existence of error
signals at target neurons in the same manner.

Recently, the hypothesis that reorganization of the neuronal circuit by error-
driven induction of LTD is to be considered the primary memory and learning
mechanism of the cerebellum has been maintained3?

Another situation where one can think of ‘teacher-like’ interference is in acqui-
sition of a new skill in terms of voluntary movements. Here, sensory feedback
projections are necessary, at least in the beginning, to help correct wrong moves.
Inhibitory interneurons can help correction as they can modify spontaneously
active nerve cells in a controlling manner. Unfortunately, finding the exact
wiring patterns and the functionalities thereby implied is not a trivial matter,
as Chklovskii puts it ». . . experimental studies of inter-neuronal connectivity are

difficult and the connectivity data is scarce«3?

Yet, the hippocampal formation has been mapped in quite some detail despite
its intricate architecture. And, much of its functionality is known, although
not in every detail>* A highly schematic version of the hippocampus is seen in
figure 3.6, where its strongly hierarchical arrangement is evident 3?

Signals traverse the structure in an almost sequential manner — in the figure from
top to bottom — allowing for different ‘processing steps’ as they move along. The

29 Mentioned in section 3.3.4 on page 32.

30Proposed in the 1970’s. See e.g. Gluck and Granger (1993).

31See also Gluck and Granger (1993), mentioning how the Purkinje neuron exemplify com-
putational capabilities of dendritic trees; for example ‘AND’ functions for multiple parallel
fibers.

32Tto (2000).

33Chklovskii (2000, p. 108).

345 While the anatomy of the hippocampus is fairly well known, the functional interactions
among pyramidal cells and interneurons has not been fully determined« Booth and Bose
(2001).

35That most areas have onward projections to more than one of the following areas, is not
shown. See e.g. Arbib et al. (1997) or Cotterill (1998).
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Temp. cx, Figure 3.6 A highly stylized representation of
the neural architecture of the hippocampus. In-
coming signals from the cortex® run through the
structure in a sequential manner. The hierar-
chical arrangement allows for the hippocampus
to act as an associative network and to cap-
ture correlations between the signals. Neurons
projecting outwards from the CA3 area folds

T back onto themselves; a property resembling
_ Septum that of Hopfield networks (figure from Carpen-
Subiculum P
{and hence ter (1996)).
thalamus, hypothalamus
and septum) 2Temp.cx: Temporal cortex.

olf.cx: Olfactory cortex.

grid-like structure resembles the one used for associative networks?® and, indeed,
the hippocampus is known to be well adapted to integrate together information
from various cortical areas. That fibers projecting out from the CA3 area ‘folds
back’ onto themselves (recurrent collaterals), provides feedback information to
the system, a setup resembling the one used when depicting artificial Hopfield
networks3?

3.4.2 Global changes

Although the Hebbian learning mechanisms discussed previously use local infor-
mation, the modification processes may also be subject to global control signals.
It is demonstrated that diffusive substances such as e.g. catecholamines, acetyl-
choline, and norepinephrine act neuromodulatory3® Rather than being an exter-
nal teacher instructing changes in specific synapses, these substances exert what
could be considered as non-specific reinforcement signals; especially dopamine

release has been found to act as a reward signal in the mammalian brain3°

Hebbian plasticity involves positive feedback, since active synapses gets even
more active and inactive synapses might be likewise weakened. To prevent
instabilities from arising, early models of learning and memory often incorpo-
rated global signals or mechanisms. Since experimental findings supporting these
global modifications were vague, the adjustments were put into the models ad
hoc0

361f not the other way around.

37Capable of acting as an associative, distributed memory storage. See also section 4.1.

38Brown et al. (1990).

39See Schultz et al. (1997), explaining how dopaminergic activity might be encoding reward
information.

40Hebbian learning rules are discussed in section 4.3.
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It is noted in Bliss and Collingridge (1993) that mechanisms are observed by
which postsynaptic activity enhances all synapses, including those not active.
Also other non-specific changes like this have been seen but only sporadically
explained.

However, as mentioned in Abbott and Nelson (2000), recent findings of biologi-
cal mechanisms altering the synaptic strengths globally — called synaptic scaling
— allows for future models to incorporate ‘true’ global modification of synaptic
efficacies. Although only some of the biophysical mechanisms underlying synap-
tic scaling are fully understood, it seems as if the modelers by use of global
modulatory intervention have been ahead of their time.

Summary

In the context of the present report, the notion of learning amounts to synap-
tic plasticity. Based on experimental findings, it has been substantiated that
Hebb-like pairing of pre- and postsynaptic activity is of great significance for es-
tablishing long-term effects. In addition, the temporal difference between presy-
naptic and postsynaptic spikes is found to be of vital importance for whether
this pairing results in a strengthening or a weakening of the synaptic efficacy.

By regarding the NMDA receptor as being responsible for capturing correla-
tions, the origin of induction is assigned to be the postsynaptic membrane. The
experimental findings suggest a clear connection between the postsynaptic Ca’
level following depolarization and the number of active AMPA at the surface
of the membrane. The ABS rule supports these discoveries bZ suggesting that
regulation of LTP and LTD is done in accordance with the Ca ~ level.



Artificial

»Look to the past for guidance into the future.«

Robert Jacob Goodkin

In the hope that some of the brains extraordinary signal processing abilities
could be mimicked, the attempts to reproduce artificial copies of the neural
organization of the brain has gone a long way.

4.1 Classic artificial neural networks

An Artificial Neural Network (ANN) is a signal processing paradigm highly
inspired by the manner in which biological neural networks, for example the
brain, process signals or information. In general, an ANN is composed of a
number of interconnected elements (neurons) working together to solve the given
problem. Depending on the specific application, both the structure of the ANN
and the type of its constituents are tailored to generate the optimal result.

Traditionally, artificial neural network techniques have found use in e.g. regres-
sion, pattern recognition and data classification. When analytical models are
either unknown or perhaps very complex, ANN’s are often used, as they provide
general mechanisms for building models from data.

Like children, the ANNs learn by example; they are ‘trained’. As described in
section 3.2, learning in neural systems involves adjustments of the synaptic con-
nections linking neurons together. Likewise for artificial networks — the synapses
of which are called weights — learning amounts to adjusting the weights. Fig-
ure 4.1 shows a schematic representation of a neuron in an ANN! Weights, w,
represent the synaptic strengths assigned to each connection made by input neu-
rons, ¢. The larger circle symbolizes the soma, where a summation is performed,
yielding the activation a = ), w;z;.

1To separate the true from the artificial, other words than neuron are often used, e.g. node
or unit.

37
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X Figure 4.1 A schematic representa-
410\ tion of a typical ‘neuron’ in an arti-

W ficial neural network. Inputs, x, ar-
riving to the left, get multiplied with
the weights, w, and are summed to
yield the output, y. Also, a possible
functional transformation is implied, g.
Narrowing the view to the dotted box,
its left side holds the ‘dendrites’ im-

X, W, pinging on the circular ‘soma’, from
C) which a single ‘axon’ departs.

Output, y, is produced by applying an activation function, g(-), to the summed

and weighted input
y=gla)=g (Z wm) (4.1)

Which particular type of activation function to choose depends on the application
but often a non-linear function is used? An artificial neural network is then
designed by putting a lot of these units together in various ways. Extensive
amounts of effort have been, and are being, put into the entire field of artificial
neural network theory. Appendix B contains brief reviews of some of the early
findings?

Typically a feed-forward structure is used, meaning that the network is directed
and without reverberating signals. Recurrent networks containing feedback from
later to earlier neurons are also seen, but these can be unstable, and have very
complex dynamics. The perceptron is an example of a feed-forward network
consisting of a single layer? and having threshold activation functions® Tt is able
to perform classification of data using linear decision boundaries® An interesting
feature is that for linearly separable datasets this is bound to happen in a finite
number of training steps. This is known as the perceptron convergence theorem.

In a very popular type of networks — multi-layer perceptrons — a ‘hidden’ layer
is introduced. The hidden and output layer neurons are each connected to all

2And often a non-linear ‘squashing function’ is chosen; accepting input in any range and
giving output in a limited range (e.g. the logistic function).

3For further reading refer to e.g. Hertz et al. (1991), Bishop (1995), Cybenko (1996) or Jain
et al. (1996).

4Depending on the definition of layers; most often the input side is not counted as a layer
in itself.

SAsy=H (Zl W;T; — 0), with #H being the Heaviside step function and 6 the threshold.

SHyperplanes when going into higher dimensions.
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Figure 4.2 Diagram of a fully-

T T T interconnected feed-forward multi-layer
°°e Output Units perceptron; so called even though sig-

«— weights moidal activation functions are used. It

two layers of adjustable weights. In
general, networks with two layers of
weights are able to approximate any
continuous functional mapping.

O ) . consists of a single hidden layer and
_ O O o O Hidden Units

of the units in the preceding layer” In figure 4.2, such a multi-layered struc-
ture is shown. Both the transformation from inputs to hidden-layer and from
hidden to output-layer takes place by means of activation functions, as given in
equation (4.1); not necessarily the same activation function though.

Training and use of the networks happen by presenting data on the input side
and watching the output. Depending on what information is available to the
network, the three main learning paradigms from section 3.1 can be applied to
these networks as well® Here, supervised learning will be considered.

In supervised learning, the network user gathers a set of training data containing
examples of inputs matched with corresponding outputs. The data set is used to
adjust the network weights so that a minimization of the error in its predictions
on the training set is obtained. Trained properly, the network has learned to
model the (unknown) functional relation between input and output variables;
meaning that, subsequently, the network can be fed input, and from that, be
used to predict output that is not known. It is this ability to learn from ex-
amples, rather than following pre-specified rules that has made the ANN’s very
attractive.

The idea of minimizing error-functions or cost-functions (or surfaces) is a com-
mon tool used when training artificial neural networks. Typically, these surfaces
have analytically indeterminable global minima, which is why network training
can be thought of as corresponding to an ‘exploration’ of the error surfaces?® If
the networks have differentiable activation functions, powerful methods for eval-
uating the gradient vector of the error function exist!® Since the gradient vector
points along the line of steepest descent from the current point, one knows that
following this direction will decrease the error.

"Partially-connected networks do exist but for most applications fully-connected networks
are better. Pruning algorithms (removing unimportant weights) is a way to combine the two.
8The three types being: Supervised, unsupervised, and reinforcement learning.
90ften by setting out from a random initial configuration of the network and then incre-
mentally search for a minimum — local sometimes, unfortunately.
100ne such method that is very efficient and widely used is the back-propagation algorithm.
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Allowing the artificial networks and their components to gradually diverge from
being directly comparable to the ‘real’ networks, other classes of computationally
very efficient models arise.

An example is radial basis function networks (RBF'), whose architecture resem-
bles that of a multi-layer perceptron (MLP), the difference being the choice of
activation function. In general, the MLP’s use of a sigmoidal activation func-
tion leads to a division of the pattern space into hyperplanes!! Instead, RBF
networks make use of bell-shaped activation functions, e.g. gaussians, and the
inputs to these, the activations, are determined on grounds of the distance be-
tween an input vector and some prototype vector; this ultimately leads to a
division of pattern space into hyperspheres.

The use of ANN in estimation of probability density functions (PDF’s) from data
has also been widespread. It is an area strongly connected to Bayesian statistics.
The RBF can be considered an alternative approach to PDF estimation belong-
ing in the class of kernel-based approximation schemes where somewhat simple
functions are located at each available training case, and their combination yields
an estimate of the overall probability density function.

Another big area of ANN research is graphical models. Depending on their con-
nectivity, these can lead to e.g. Markov Random Fields (undirected) or Bayesian
Networks (directed) also known as Belief Networks. In brief, the graphical model
theory provides a general formalism in which many of the classic probabilistic
systems can be considered special cases.

Here, a break back to the 1980’s is appropriate to catch up with a fully-connected
feedback network, learning in an unsupervised manner — the Hopfield network.
An interesting feature of the Hopfield networks is that they can associate mem-
ories (or patterns). An example: Imagine a network containing an area repre-
senting e.g. ‘a house’ and another area holds the notion of ‘a tree’; then, if the
two areas are stimulated simultaneously (‘shown’ a picture of a house with a tree
in front), associations between the areas will build. This means that later pre-
sentations of e.g. the house alone will also bring forth the tree; a feature called
content addressability or pattern completion. That memories can be stored in
a content addressable fashion can be a powerful ability as it makes the network
robust against loss of data. Also, it enables the network to come up with the
right pattern even though erroneous input is given. This is demonstrated by
another (o0ld)!? example: Try to recall ‘a 20th century American actor who was

a politician and very intelligent’. See the following footnote for an answer!®

HTike a cliff by the sea — sigmoidally shaped that is.

12According to an on-line draft by David J. C. MacKay, available at
http://www.inference.phy.cam.ac.uk/mackay /

13Most people come to think of ex-president Ronald Reagan — even though one of the cues
contains an error.
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No ‘teacher’ is needed in the learning process of Hopfield networks, it all amounts
to, unsupervised, local learning rules.

4.2 Networks of spiking neurons

The shapes of the action potentials sent out by a neuron are practically all alike.
This means that the information they are carrying must lie in the number of
pulses transmitted and the interval between them.

A widely used tool for describing the properties of a neuron has been to average
the number of spikes occurring in a given time 7" and get a average firing rate —
the activity al*

number of spikes in time T

a= T (4.2)

The algorithms based on this assumption!® have proven quite powerful. How-
ever, by neglecting the exact timing of emitted spikes, temporal information is
lost. When considering algorithms working on signals with temporal or spatio-
temporal coding this is clearly unfortunate.

In a network of spiking neurons this information is utilized, the timing of spikes
is taken into account.

To get a feeling of the computational power of spiking networks consider the
following line of thought: If a neuron can fire at 100 Hz during 100 ms, a
temporal pattern consisting of ten binary values (firing or non-firing) can be
created. It is then possible for a single neuron to encode a total of 2'° patterns
during the 100 ms!® Of course, in real life the information content of spike trains
is not this high. Dayan and Abbott mention that measurements on a fly has
revealed that the signal stemming from a single neuron contains ~ 200 bits/s!”

From a biophysical point of view, taking the temporal information into account
seems necessary. An example is that a fly can react on visual input within
30 — 40 ms thereby allowing it to land on the edge of a cupl®

14Note that the activity, is not the the same as the activation in section 4.1.

15By which some of the most important has been mentioned in the previous section.

16Liaw and Berger (1997).

17The information content is found by considering the entropy of the signal from a visual
neuron (H1) in a fly responding to randomly moving images.

18Rieke et al. (1997).



42 Artificial

4.2.1 Neural coding

How then, is information encoded in nature? This is still an unsolved question!®
The above examples indicate that at least sometimes information is encoded in
the temporal sequence. If spikes are considered binary i.e. no information is
encoded in the shape of the spike, only the timing and quantity of spikes matter.
A short list of different coding schemes which can be of interest.

Time-to-First-Spike The timing of the first spike after an event holds all the
information. A short time could for example signal a strong stimulation.

Phase The information lies in a comparison between the firing time and the
phase of some intrinsic or background oscillation serving as a reference
signal.

Correlations and Synchrony Spikes from other neurons can be used as the
reference signal.

Sequence Information is coded in the sequence of the spikes, i.e. the interval
between spikes.

Bursts Spikes appear three or more at a time. Information is then encoded in
the patterns of bursts.

As shall be shown later, burst coding is in good agreement with the facilitating
and depressing behavior seen in synapses.

Facilitation can be thought of as noise reduction. The second spike is transmitted
more effectively than the first spike — making lonely spikes less important.

Attempts have been made to read the neural code?’ A useful tool for this is
reverse correlation. The typical time course leading to a postsynaptic spike is
recorded. It is then possible to measure to what stimuli the particular neuron
reacts?!

An example illustrates the capabilities of sequence encoding. When information
is stored in the relative timing of the spikes, a common additive constant will
not influence the decoding. Let the sequence z = {1.5, 2, 5, 5.5} denotes an
external stimuli, e.g. a visual pattern and y = Az denote the same stimuli but
with another intensity. Applying the logarithm makes it possible to recognize

19Rieke et al. (1997).

20Rieke et al. (1997).

21For certain synaptic models Natschliger and Maass (2001b) has calculated the spike train
given optimal transmission strength. The results were similar to experimentally found spike
trains from recordings on neurons.
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T ¥ ¥¥7 Figure 4.3 Encoding information in
sequences makes the response of a neu-
ron independent of the onset of a stim-
ulus. This can e.g. be used to con-
struct an intensity-independent detec-
tion mechanism. If the logarithm of the
signal is considered, multiplicative con-
stants can be eliminated (logz solid,
log y dashed, A = 2).

0 0.5 1 1.5 2
Time

the stimuli as being identical. The only difference is an additive constant § =
logy = log Az = log A + logx (see figure 4.3). As seen the relative timing is
independent of intensity.

Because networks of spiking neurons employing sequential coding can detect
temporal patterns disregarding the onset time, this then provides a method for
eliminating intensity when comparing signals. In real life this could be how it is
possible to distinguish objects in different lighting conditions.

4.2.2 Performance

Theoretical studies of networks of spiking neurons have shown that they are
computationally more efficient than classic artificial neural networks. In the fol-
lowing theoretical results will render this probable, for a thorough investigation
see Maass (1997b).

A necessary condition for the introduction of spiking neural networks is that
they can do every thing that classic neural networks can.

It is well known from artificial network theory (see section 4.1) that feed-forward
nets — e.g. multilayer perceptrons — can approximate any continuous function
arbitrarily well. A requirement is that it consist of neurons employing a suitable
activation function e.g. the sat function (see figure 4.4).  Spiking networks
inherits this property since it is possible to approximate any classical networks
with spiking networks:

Any feed-forward or recurrent analog neural net (for example any
multilayer perceptron), consisting of s sigmoidal neurons (where cis a
small constant) that employs the gain function sat, can be simulated
arbitrarily closely by a network of ¢ spiking neurons with analog
inputs and outputs encoded by temporal delays of spikes. This holds
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' Figure 4.4 The activation function sat.
0.8 With this activation function a multilayer
perceptron can approximate any continuous
0.6 function arbitrarily close. Spiking networks
0.4 can approximate any classical feed-forward
network and thus inherits this approxima-
0.2 tion competence.
0

even if the spiking neurons are subject to noise. (Maass and Bishop,
1999, Theorem 2.3)

In some cases spiking networks are even more efficient than classical networks.
One example is the ability to detect whether two events happen at the same
time — coincidence detection. The coincidence function CD,, : {0,1}?" — {0,1}
is given by

1, z;=y;=1i€1l,....,n
CDn(@1;- -, Tn, Y1 - Yn) = { 0 o;her%)ise

(4.3)
The function returns true (one) if one pair of z; and y; are identical. This
can for example be used in delay lines to determine the delay in arrival times.
An example of this is sound source localization. The distance between the ears
result in a delay in perception of a sound between the ears. This delay can
be used to determine the direction to the sound?? Let a signal arrive at

Figure 4.5 Coincidence detectors (cir-
cles) calculate the difference in arrival times

= of a signal at the right and left ear. In this
example the signal arrived at the right ear
= before the left resulting in activation of the

colored coincidence detector.

slightly different times to the left and right ear respectively. The signal travels
down two different lines and at some point it arrives simultaneously, the location
of this point contains information about the delay. Via coincidence detection
information about the delay can be extracted, see figure 4.5.

22Using more sophisticated methods — such as regarding resonance in the skull — it is also
possible to get the precise location.



4.3 Learning and Hebb rules 45

Coincidence detection can be performed by a single spiking neuron simply by
receiving input from several sources and cross the firing threshold only when the
input signals z; and y; are sufficiently close?® This is, by far less complicated
than in classical neural networks.

e Any threshold circuit that computes C'D,, has at least
gates.

n
log(n+1)

e Any sigmoidal neural net with piecevvise1 polynomial activation
functions that computes CD,, has Q(n2) gates. For the case
of piecewise exponential activation functions the lower bound is
Q(n3).

o A single spiking neuron with variable delays can compute CD,,.
Maass (1997b, pp. 9-10)

In this context gates is the same as non-spiking neurons. () means ‘in the order
of’.
Finally it should be mentioned that Maass and Sontag (2000) has proved that

neural networks with dynamic synapses?* can approximate any nonlinear filter
that can be characterized by Volterra series.

4.3 Learning and Hebb rules

From the above sections it is evident that with the right setting of parameters,
artificial neural networks can perform well. However, the question of how to find
the right parameters has not yet been answered.

A way to modify the parameters — weights — is to use error minimization. If
a suitable error-function can be constructed, it is possible to apply an opti-
mization algorithm and search parameter space for a minimum. For multilayer
perceptrons the error-function can be used in back-propagation. For networks
of spiking neurons a similar approach called ‘spikeprob’ can be applied2®

However, when considering learning without error-functions, unsupervised learn-
ing, other methods are needed. It is necessary that the learning rule incorporates
some kind of competition among the weights, making some of them gain strength
and others lose strength, until the correct balance has been found. What is

23The delays should be tuned so that z;, y; does not influence T;11, yit1-
24The notion of dynamic synapse will be returned to in section 6.2.
25Bohte et al. (2000a).
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needed is a way to adjust the weights by looking at how much they are used —
how successful they are.

A particular approach to obtain this kind of competition is to use weight updates
in accordance with the Hebbian learning rule. As for the networks, the Hebbian
approach comes in two varieties: A rate-based and a spike-based.

4.3.1 Rate based rules

It has been estimated that around 50-100 algebraic equations have been pro-
posed to describe theoretical activity based synaptic modification, in other words
learning rules26 Many of these are not intended as being detailed biophysical
models of synaptic function but rather developed with computational properties
in mind 27

A general mathematical formulation?® can be used to describe most of the vari-
ants of Hebbian learning rules

Aw;; = F(wg;a4,a5) (4.4)

where F' is some function, dependent on the current weight w;; and measures
of presynaptic activity, a;, and postsynaptic activity, a;. The variables are
constrained to be real (w;j,a;,a; € RY).

Expanding F' in the activities around a; = a; = 0 to second order, yields an
expression containing correlational and non-correlational terms
Awig =~ co(wig) + 7 (wij)ai + 47 (wiz)a; + (4.5)
& (wij)a; + B (wij)a} + 57 (wij)aia; + O(a®)

The simplest way to implement Hebb’s rule, is to look at the activities on both
sides of the synapse and adjust the strength according to the firing rates, i.e. ne-
glecting all terms but the correlational term

A’wi]‘ = cg"”(wij)aiaj (46)

This approach, however, suffers from the major disadvantage that the synapse
can only be strengthened, implying that weights must grow perpetually.

Perpetual growth in itself does not pose a problem, since a constraint, soft
or hard, can be imposed on the weights ensuring that they are positive and

26 According to Brown et al. (1990). It is an estimate from 1987, why the number probably
have increased since.

27See e.g. Arbib et al. (1997).

28 Adopted from Gerstner and Kistler (2000).



4.3 Learning and Hebb rules 47

bounded. A hard constraint simply ‘clips’ the weights if they go beyond a speci-
fied boundary?® A soft constraint acts a little more elegantly by multiplying the
weight change Aw;; with a bounding function, leading to a ‘bounded’ weight
change Awj;

sz‘j =n- wij(l - wij) - Aw,-j (47)

where 7 is a constant parameter. This confines the weights to w;; € [0;1], as the
weight change becomes smaller if approaching one of the limits.

However, perpetual growth is not the only problem with the basic Hebb rule
(equation (4.6)). If weights are always increased towards an upper limit, it is,
eventually, not possible to store any information since all weights will end up
at the maximum value. To deal with this problem, it is necessary not only to
have increasing weights, some of the weights must also be decreased. This can
be thought of as an necessity of competition between the weights.

A simple way to do this, is to require that the sum of the weights are constant
> w;; = c¢. This can be done e.g. by normalization of the weight vector after
each change. If one weight is increased, all others must suffer. This solution is
non-local since it requires information about the other weights.

Another simple way to deal with the problem, is to also consider the zeroth order
term of equation (4.5). Keeping this term negative, ¢g < 0, the weights decay
back towards zero when not stimulated

A’U),'j = Co (’Ll),'j) + cg"”(wij)aiaj , c <0 (48)

More complex learning rules can be found by looking at the uncorrelated ac-
tivities. Introduction of linear terms from equation (4.5), implies that the ac-
tivities on either side of the weight are compared to a threshold, to see if the
weight should be strengthened. These variations of Hebb’s rule are sometimes
called hetero- and homo-synaptic depression. Hetero-synaptic depression de-
creases synaptic strength if there is postsynaptic activity but little presynaptic
activity. Homo-synaptic depression occurs if there is activity only on the presy-
naptic side. Considering hetero-synaptic depression

Aw,-j = CIIJOSt (w,-j)aj + cg""(wij)a,-aj (493,)
= k(wij)a;(ai — O(wy)) (4.9b)
it is easily seen that a certain level of presynaptic activity is necessary to

strengthen the weight. If the presynaptic activity is below threshold 6, the
weight is decreased.

29Simply an TF-statement in algorithms.
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Hetero-synaptic modifications have the property that a fixed point occurs when
presynaptic activity equals the threshold. If this fixed point is stable, the weight
will converge towards a steady level. Consider e.g. equation (4.9b) with 8(w;;) =
w;;. In this case, the average presynaptic activity becomes the fixed point and

the weights will store an average of the presynaptic stimulus pattern3°

Homo-synaptic modifications can in a similar manner be used to introduce de-
pression of the synapses

Awy; = & (wij)a; + c5°" (wij)aza; (4.10a)
= k(wij)ai(a; — 6(wij)) (4.10b)

As for hetero-synaptic modifications, it is worth considering a simple example of
a homo-synaptic modification property. With ¥ < 0 and 6(w;;) = 6, the output
activity (a;) in equation (4.10b) will tend towards the threshold € yielding a
normalization of the output?3!

Inserting the average activities {-), as thresholds on both the presynaptic and the
postsynaptic side, a rule based on covariance emerges. This rule was developed
by T.J. Sejnowski in the 70’s32 When pre- and postsynaptic activity are out of
phase, the synapse is depressed

Aw;; = k(ai — (ai)) (aj - (aj)) (4.11)

An unfortunate property of this rule is that when activities are low on both
sides, the synapse is strengthened 33

Including higher order terms from equation (4.5), more complex learning rules
with highly desirable qualities can be obtained. Oja’s rule is an example of
hetero-synaptic depression which employs second-order postsynaptic activity

Awij = kaj(ai — ajwi;) (4.12)

Oja’s rule ensures that the weights are normalized and that the weight vector
converges towards the largest eigenvalue in the input34

Another example of hetero-synaptic depression with higher order terms, is the
Bienenstock, Cooper, Munro model

Aw,’j = c‘l’re(wij)aié?(aj) + cg""(wij)aiaj (4.13)
= k(wij)ai(a; — 0(ay)) (4.14)

30See Gerstner and Kistler (2000).

31 Also mentioned in Gerstner and Kistler (2000).

32See Churchland and Sejnowski (1992).

33 At least from a physiological point of view. In some applications this property might
actually be an advantage.

34See e.g. Hertz et al. (1991).
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The model incorporates a ‘sliding threshold’ dependent of the postsynaptic ac-
tivity, i.e. the higher average activity, the higher the threshold. Competition
between weights occur because strengthening of weights increases postsynaptic
activity, thereby increasing the threshold. This makes it harder for other weights

to be strengthened. A specific example of a sliding threshold function is3®
o
T g =9~ 0 (4.15)

These general Hebbian learning rules are all developed for average activity mea-
sures. In the following, the rules are viewed in a spike-based formalism.

4.3.2 Spike based learning

As mentioned in section 4.2.1, the precise coding of information has not yet
been understood. There is, however, indications that at least in some parts
of the brain, a temporal coding scheme is used. In this section, learning rules
reacting to single spikes are described. Many of the principles from the learning
rules above, acting on average activities, can be reused. Certainly, the important
properties are the same: An effective learning rule should be competitive, stable,
and local.

In the section above, a function — equation (4.4) — capturing the dynamics of
most rate based learning rules was introduced. A generalization of this function
to a functional, allows it to cover spike based learning rules as well

dwi j
dt

In this case F is a functional of S;(¢), S;(t), and w;;(t). The S; ;(t) represent
functions of the pre- and postsynaptic spiketrains, respectively. And, the time
dependency introduced to w;;(t), indicates that it is a function of the weight
itself. As with equation (4.4) this equation can be expanded around activities.
However since equation (4.16) is a functional, the expansion is extensive and
will not be shown here2® Instead, an extract of the expansion will be shown, to
introduce the concept of a learning window.

= F(wg(t); Si(t), S;(t)) (4.16)

If the activity functions S; and S; are chosen properly, the functional (4.16)
reduces to (4.4).

Considering the special case, in which weight changes are taken to be instan-
taneous when a spike occurs, the expansion to second-order has the following

35See Dayan and Abbott (2000).
36See Gerstner and Kistler (2000) for a detailed description.
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form
Awy = 6(t—t;) Z W (wij, ti —tj) + (4.17)
t;<t;
S(t—1t;) Y W(wij, ti —t;) + (4.18)
t; >t

8(t — t5)a"* (wij) + 8(t — t;)al"® (wij) + ao(wi;)

The function W is dependent on the spike arrival times ¢; (presynaptic) and ¢;
(postsynaptic). The two terms in 4.17 and 4.18 has to do with correlations be-
tween spikes. Together, the two W terms have been called the learning window.

What distinguishes spike based learning from rate based learning, is the relative
timing of the spikes. For neuron a to participate in the firing of neuron b, it
must not only be active, it must be active at the right time. Therefore the shape
of the learning window is quite important in spike based learning.

A
= p
=0
<
Sy
-50 -30 -10 0 10 30 50 -50 -30 -10 0 10 30 50
t -t [ms] t -t [ms]
pre post pre post
(a) The area A, in the right half plane is (b) The curve is continuous and the
slightly larger than in the left A, which maximum is shifted to the left. This
makes the synapse depress input that is done to capture the fact that in real
are not correlated with output. This synapses, the signal from the pre- to the
window is used in section 6.3.1. postsynaptic side is delayed.

Figure 4.6 Two examples of learning windows, where t,,.. = t; and t,0st = t;. The
one in figure 4.6(a) is proposed by Song et al. (2000). Figure 4.6(b)
shows a learning window proposed by Gerstner and Kistler (2000).

It is the relative timing of pre- and postsynaptic spikes that are decisive for
changes in the weights. The learning window can e.g. be chosen so that post-
synaptic spikes preceding presynaptic spikes are depressed; the shape of the
learning window then determines how the weights are modified. In figure 4.6
examples of learning windows are shown.
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The construction of learning windows are often biologically inspired; as described
in section 3.2 (see e.g. figure 3.3), the learning windows found experimentally
have widths of approximately 50 ms and are roughly exponentially decaying.
This has inspired e.g. Song et al. (2000) to the learning window (figure 4.6(a))
used in their model®”

The actual structure of the learning window can be chosen in different ways. It
is important though, that it promotes competition between synapses. A way
to do this, is by having an asymmetric learning window. If the area of the
depressing part of the learning window (tpre — tpost > 0) is slightly larger than
under the potentiating part, random behavior will be depressed. Consider a
case where there are no correlations between pre- and postsynaptic activity.
Postsynaptic spikes are then just as likely to appear shortly before as shortly after
the presynaptic spike. With a larger area in the depressing part of the learning
window, these uncorrelated inputs will then be depressed (see figure 4.6(a)). On
the other hand, if input and output are correlated, in the sense that postsynaptic
spikes almost always occur shortly after the presynaptic spike, the synapse will
be potentiated.

Unlike the rate based rules, it is not necessary to include weight decay, homo- or
hetero-synaptic modifications or higher order terms to induce depression. A spike
based learning rule, depending only on the correlational or the ‘pure Hebbian
term’, is able to depress some synapses and enhance others, by introducing
competitive learning.

As for the rate models above, the stability of a ‘correlation only’ rule must be
imposed either by hard or soft boundaries, ensuring that weights are always
positive and bounded. It is likely that the introduction of non-correlational
terms®® could ensure stability and cause the weights to converge, e.g. to the
maximal eigenvector as in Oja’s rule. However, it has not been possible to find
examples of — or theories describing — the use of such mechanisms in the available
literature.

Summary

Spiking neural networks differ from classical neural networks by utilizing the
temporal structure of signals. Besides performing the same tasks as e.g. multi-
layer perceptrons, a spiking neural network can — with correctly adjusted weights
— perform signal processing tasks on temporal signals in a very simple manner.

37Their model of ‘Competitive Hebbian learning through spike-timing dependent synaptic
plasticity’ will be described in section 6.3.1.

38Equal to using zero’th or first order terms from equation (4.17) or using higher order terms
similar to e.g. Oja’s rule.
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The much studied Hebbian rules for rate-based activity provide a basis for unsu-
pervised learning in spiking networks as well. The basic concepts are the same,
a learning rule must obey the principles of stability and competition.

Hebbian rules for update of weights in a spiking network are constructed in a
way similar to the rate-based case. However, a major difference is that in the
case of spike based learning it is not necessary to incorporate other terms in
the learning rule than the purely correlational to induce competition. The main
requirement for this competitive nature is the learning window. Different shapes
can be used, but of particular interest is the result that a synapse should be
decreased on average when the firing of the pre- and postsynaptic neuron is
uncorrelated.



Tools

»Is simplicity best. Or simply the easiest?«
Depeche Mode

Although tools are available to simulate biological models e.g. Neuron and Gen-
esis, a new tool was developed during this project. This, for two main reasons:
The first is that when a tool is developed from the bottom, total control of the
functionality is ensured. ‘Bug hunting’ is also considerably easier when using
self-written code rather than preprogrammed packages. The second but not less
important reason was the desire to gain insight of how larger functional object
oriented programs are designed. This would not have been possible without
the help from Carsten Knudsen and especially Martin Egholm Nielsen who has
assisted many times during the project.

5.1 Janet — JAva Nonlinear Explorations Tools

JAva Nonlinear Exploration Tools has been developed at the Department of
Physics at DTU! and is designed to investigate nonlinear systems of either dif-
ferential equations or time discrete maps. The package provides different tools
in the form of Java classes and can be used either as a stand alone application
or incorporated in new software. The motivation for using Janet in this project
was the possibility to use symbolic calculations via the Janet.symbolic package
and the advantage of the many numerical integrators readily available.

In Janet it is possible to build symbolic expressions of e.g. the right hand side of
a differential equation. This gives the opportunity to evaluate and manipulate
expressions, and to return them as Java, C++ or XML code, directly usable in
auto-generation of code.

1See http://www.fysik.dtu.dk/"janet
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When implementing the Map interface from Janet and defining whether the sys-
tem is TimeContinuous or TimeDiscrete and Autonomous or NonAutonomous,
different analyses can be performed.

5.2 Creation of the modeling tool

Classically most neuronal models are described by differential equations and so
are the models of synapses. However, the link between the two often uses the
fact that an action potential fired by a neuron is well approximated only by the
time of threshold crossing i.e. by firing of a discrete event. It is essential that
the simulation tool can handle both integration of differential equations and the
firing of events.

When experimenting with different implementations of neurons and synapses,
flexibility is a key issue. Easy replacement of one part of the network with
another is of great importance. In this way changes to the network can be made
swift and with little extra programming effort. Furthermore, object oriented
programming provides a higher level of abstraction when connecting models.
Instead of considering which differential equations to couple, it is possible to
concentrate on coupling building blocks?

Much consideration has gone into the design of the program and discussions with
Martin Egholm Nielsen and Carsten Knudsen at the Department of Physics has
been essential for the development. With the construction of Janet in mind
object oriented Java code seemed the way to go.

5.2.1 Netparts

The most important components in this network are somas and synapses. The
basic concept is that a soma receives a continuous signal, which is either an
external stimuli or input from synapses. All components are in this framework
denoted Netparts. The soma changes its membrane potential according to the
input and at some point it depolarizes and sends out a spike. An example of
a soma is the integrate-and-fire neuron, it integrates the input and produces
a spike when a threshold level is reached. In section 6.1 various somas are
described. Since somas share many common features the abstract Soma class
was implemented.

A synapse releases transmitter into the synaptic cleft when it receives a firing

2The differential equation must of course be coupled correctly, but it is only necessary to
write the equations once.
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SpikeOutput

DoubleEvent
RefractorySoma

SignalGenerator

FeedbackSynapse

Figure 5.1 Class hierarchy for the netparts. Ovals denote interfaces, squares with
round corners are abstract classes. The squares denote classes that have
some kind of functionality. In table 5.1 an overview of these classes are

shown.
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event (spike) either from an external source or from a soma. This transmitter
is turned into a continuous output, in the form of either a current, a voltage or
a conductance which can be fed into a soma. In section 6.2 different types of
synapses are described. The Synapse interface captures the two essential things
about a synapse, it should receive spikes and deliver a continuous signal.

In order for synapses to learn, it is important that they have information about
the postsynaptic activity, in order to change their conductance characteristics.
Because synapses that learn need information about postsynaptic firing, the
FeedBackSynapse interface was implemented.

A third component — wires — can be introduced if delays or dissipation is neces-
sary. Wires should be able to receive either a spike or a continuous signal and
deliver the same signal, possibly with modifications after a delay, this netpart
has not yet been implemented. In figure 5.1 a schematic representation of the
hierarchy can be seen.

Soma, Song integrate-and-fire
Song refractory IAF
SLS refractory IAF
Poisson spike generator
Periodic spike generator
Spike from file
Continuous signal Constant signal

Refractory soma

Spike signal
generator

generator Sine signal
Liaw-Berger
Synapse Destexhe-Mainen-Sejnowski

Markram-Tsodyks
Song Excitatory synapse
SLS synapse

Feedback synapse

Table 5.1 Overview of implemented classes corresponding to the empty squares
in figure 5.1. The text to the left corresponds to the abstract class
or interface just above in the hierarchy. The names denotes authors,
e.g. Song denote that the models are proposed by Song et al.

To connect the netparts to each other a mediator is necessary, something to keep
track of the different parts. Netparts can be connected to each other, if they
are of compatible types, e.g. an instance of SpikeOQutput can be connected to an
instance of SpikeInput.

To keep track of all the different parts of a network, the Model object was
introduced; all netparts must be added to a model. So that when the network
is build and it is time to create a runnable code or a Map (see below), it is only
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Factbox 5.1 Creation of a model containing a synapse of the
Song type and a neuron of the Song type, the synapse receives
inputs from a Poisson generator with =~ 5 spikes per second and a
periodic spike generator creating one spike every second.

Model model = new Model( "TestModel 2002" );
SongExKernelSynapse synapse =

new SongExKernelSynapse( "synapsel" );
double lambda = 5;
long seed = 5;
PoissonSpikeEvent poisson =

new PoissonSpikeEvent ("poissonl",

1.0/lambda, seed );

double period = 1;
double phase = 0.2;
PeriodicSpikeEvent periodic =

new PeriodicSpikeEvent ("periodicl",period, phase);
SongIAFsoma soma = new SongIAFsoma("somal");

soma.addInput( synapse );
synapse.addInput( periodic );
synapse.addInput( poisson );
synapse.addFeedbackInput ( soma );

model .addNetPart( periodic );
model .addNetPart( poisson );
model .addNetPart( synapse );
model.addNetPart( soma ) ;
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necessary to have a handle in the model, this is schematised in figure 5.2. An
example of the creation of a simple model can be seen in factbox 5.1

Model

\ 4
\ 4

4\6 /AV/O

— Wire
4 D Synapse

Q Neuron

Figure 5.2 Structure of a network. Netparts (synapses and neurons) are connected,
then added to the model. The model keeps track of the differential
equations and events from each netpart.

5.2.2 First program

The construction of a tool which can both integrate differential equations and
handle events in a satisfying fashion began with the creation of an object to
gather the differential equations and events from the model, and from this in-
formation automatically generate a compilable program. Even though each of
the netparts are written in Java, the auto-generation of the code could almost
as easily deliver C++ compilation ready sources or XML coded programs.

The output from the tool, whether it is code in Java or XML, is divided into
two parts. One containing the system of coupled differential equations and one
wrapping the differential equations. The latter should provide a way to integrate
the differential equations and a way to take action when an event occurs.

In the first implementation, a class called GenerateCode collects the equations
from the model and delivers compilable Java code. In this way it was possible
to take advantage of the numerical integrators already existing in Janet.

The tool proved to be very easy to use, as a desired change to the structure of
a network architecture was easy. Speed and accuracy of the numerics was high.

However, when the number of differential equations became too large ( Z 100 )
and the number of events to take care of was of the same magnitude, a problem
occurred concerning the Java compiler. When the size (in bytes) of a single
method exceeds 64 kb the compiler cannot handle it and gives up. This limit is
in general never a problem for user written code.
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To deal with this problem a slightly different approach was chosen.

5.2.3 Next generation

The next generation of the program is true object oriented, meaning that no
runnable code is auto-generated. The netparts has a symbolic representation of
their equations and events, and can, when asked, return lists with their state
equations along with lists of parameters and events.

The model wrapping the netparts, collects symbolic equations from them, still
acting as a mediator. In this way the model has access to all states, parameters
and events — so far nothing is different from the first generation.

The main difference between the two generations of the program is that in the
first generation, the differential equations was collected by GenerateCode and
written in a file which was then a stand alone Java program. In the new version
no source is generated, instead a Janet Map is created from the model. This
map does not need to be written in a file, but exist only in the Java virtual
machine. In this way, instead of being limited to 64 kb, the limiting factor is the
working memory of the computer. On a fairly large machine (1 Gb ram) 2000
coupled differential equations could be simulated without problems.

Factbox 5.2 Creation of a TimeContinuous Janet Map from a
model, once the map is created it can be integrated using the inte-
grators from Janet.

TimeContinuous tMap =
MapGenerator.
generateTimeContinuous( model );
ExtendedButcherTable table =
ExtendedButcherTable.
getExtendedButcherTable( "RKV(5,6)" );
double tStart = 0;
double initTimeStep = 0.0021;
Integrator integrator =
new RungeKuttaPairIntegrator( table, tMap,
tStart, initTimeStep );
SCSIntegrator scsIntegrator =
new SCSIntegrator( integrator );
EventIntegrator eventIntegrator =
new EventIntegrator( scsIntegrator );
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5.2.4 Data collection

To gather output from the model the DataCollector class was created. A DataFi-
leGenerator object can be instantiated and then various different DataCollector
classes can be added to it. The DataFileGenerator handles generation of files
and collects the relevant information from the DataCollectors.

The output can be stored in two different ways, either as a conventional datafile
with information about the temporal evolution of the states, or in ‘feature’ files.
Feature files are MATLAB scripts which produce structs with relevant informa-
tions about the simulation, initial conditions, what integrator was used etc.

It is possible to split a simulation up in different succeeding data files. In this
way it is not necessary to wait until the end of long simulations to view data. It
is also possible to test the effect of changing a parameter by resetting the model
to the initial conditions and change the parameter, during the same simulation.

Some of the different DataCollectors that can be added to the DataFileGenerator
are:

DataToFile Generates header information in data files and writes to the data
file with the specified precision. Typically the states in the datafile, but
also parameters or auxiliaries can be written.

EventsToFile Similar to DataToFile but instead of states it puts the boolean
value of spike occurrence in the interval. Spikes are written in the data file
at the end of the interval and not at the exact time of their occurrence.

BasicFeatureExtractor Extracts the basic informations about the simulation,
when was the simulation performed, what are the initial conditions, how
often is data written to the datafile etc.

EventsToFeature Adds a list to the feature file containing the exact timings
of the desired events.

AreaExtractor Integrates the area under a state using the information avail-
able on integrator.

ResetModelRunLevel Resets the model between each run. This is useful
when the same model is tested for changes in a single parameter.

If other characteristics of a simulation are of interest, new DataCollectors can
easily be implemented and added to the DataFileGenerator.
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5.2.5 Other tools

Since modeling synapses is not confined to this project a wide variety of tools
have been developed around the world. Browsing the web for inspiration on how
to create the model it seems that everyone is writing their own software probably
thinking, ‘then I will have complete control and at the same time learn how to
program’ and that every one are trying to create general tools which can be used
by many others. Unfortunately these two things do not coincide very well since
everyone writes their own general code hoping that someone else will use it.

It seems, however, that people are beginning to realize that no one will use their
software if it is not easily modifiable, and standards have begun to emerge.

In the field of neuroscience the packages which have had success in setting a
standard for how modeling should be done includes Neuron and Genesis. Both
specialized in making accurate physiological models of neurons and keeping large
databases with information of experimentally found topologies.

More promising for this kind of work are the XML based standard Neuro-ML
(Goddard, Hucka, Howell, Cornelis, Shankar and Beeman, 2001). It provides
a basis for modeling networks of spiking neurons and a collection of classical
neuron and synapse models (www.neuroml.org).
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»Shall I refuse my dinner because I do not fully understand the pro-
cess of digestion?«

Oliver Heaviside (1850-1925)

6.1 Neuron models

Even though the biophysics of a neuron has been studied intensively, and is by
now well understood, no such thing as a prototype neuron can be defined. As is
seen in section 2.2 a wide variety of neurons can be found in the human brain.
Neurons are characterized by emitting action potentials due to rapid changes in
their membrane potential (depolarization). Ionic currents plays an important
role in this change. It is now possible to model these different kinds of neurons
in substantial detail. The ionic currents in and out of the cells but also molecules
diffusing such as ATP, ADP or CaMKII, can be modeled by dividing the nerve
cells into compartments. In this way almost any level of detail can be captured.

When modeling the functional effects of neurons transmitting signals, it is often
not necessary to use as high a level of detail, and certain generalizations can be
applied. Often it suffices to know whether the neuron has fired or not.

As also mentioned in section 2.2, a neuron is composed of several parts. A gross
division separates it to the axons, the dendrites, and the soma. The neuronal
models in this sections are mainly models of somas. How the currents propagate
to and from the somas are not accounted for, an exception is the Spike Response
Model.

6.1.1 Hodgkin-Huxley

The first single compartment model based on ionic currents was proposed by
Hodgkin and Huxley (1952). This model is still one of the most widely used
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descriptions of neuronal dynamics and it is the mother of all neuronal models
based on ionic currents. A wide range of physiological models either extend or
simplify the Hodgkin-Huxley model. Extensions include the Kopell-Ermentrout-
Whittington-Truab- and the Huber-Braun- model; simplifications the FitzHugh-
Nagumo-, the Morris-Lecar- and the Integrate-And-Fire model (IAF model).
The latter will be presented later in this section.

After studies of the giant axon in squids, Hodgkin and Huxley came to the
conclusion that especially the currents given by the fluxes of Na and K ions
where of importance, other ions e.g. C1” where also found to have an effect.

The object of their model was the membrane potential V. The potential in the
soma is changed by the flux of ions through the membrane, where each ion has
its own reversal potential and conductance. This led to the following equation
for the membrane potential

dv

CE = gl(V - El) - gNam3h(V - ENa) (61)

_gkn4(V_EK)+Iewt )

. . + +
where c is the membrane capacitance, g’s represent conductances® for Na —, K —,

and leakage-ions, I, respectively. The E’s are the reversal potentials. The vari-
ables m,n, and h are gating variables comparable to opening probabilities.? The
gating of the current depends on the membrane potential and as it is expected
the dynamics are very fast. As described in section 2.2 a depolarization last in
the order of one millisecond, this is also the time scale for changes in the gating
variables

dm
= an()A=m) = Bu(V)m (6:22)
dn
T = @ -n) =g,V (6:20)
T = wma-n-mOh (6:20)

where V' is the membrane potential from before, and the o’s and the 8’s are
rate constants. The gating variables also ensure that the neuron after it fires
is less likely to fire again (relative refractory period). In fact, just after firing
it requires a very high® input to make the neuron fire, the period of absolute
refractoriness.

1Values of the conductances and reversal potentials can be found in e.g. Gerstner and Kistler
(2000) or Scott (1995).

2The ‘guards’ from section 2.2.

3Certainly, unphysiologically high.
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The Hodgkin-Huxley neuron has been widely used to simulate neuronal activity
and it has proved its worth in thousands of experiments throughout the past
50 years? Because of its impact in reproducing experimental results it has also
been the focus of extensive theoretical studies. The dynamic properties have
been shown to be very complex, and reports have been written studying only a
few coupled neurons of this type

6.1.2 Integrate-and-fire

The fast dynamics of the neuron are dependent on the opening and closing of
ion channels as described above. However the triggering of the fast dynamics
are well described by the voltage-gating of the channels. The fast ion channel
dynamics are triggered when the potential crosses a threshold. This gives rise
to the simplified model of neuronal dynamics known as the integrate-and-fire
model. Instead of focusing on the exact shape of the fast changes, only the slow
dynamics leading to a threshold crossing is modeled.

In this model the currents flowing into the neuron from different sources are
multiplied by the membrane resistance

dv ,
n—— = Viest =V + Ry I™vt 6.3
T dt t + ; 7 ( )

with R being the membrane resistance, 7, the membrane time constant, and
I7™P** represents input currents from ‘source’ i. If the neuron does not receive
inputs, the potential will decay towards the resting potential V4. If the neu-
ron do receive input, the input is integrated in a leaky fashion, and when the
neuronal potential reaches a threshold the neuron fires. The integrate-and-fire
neuron makes use of the fact that the action potentials produced by neurons are
always similar in shape. Instead of producing a physiological plausible temporal
behavior it simply gives out a spike (or fires); at the same time the potential is
reset.

Substituting the input current in equation (6.3) with a sum of currents each
stemming from its own conductance gated ionic flux, the integrate-and-fire neu-
ron can be used in settings where inputs are described in terms of conductances,

4That Hodgkin and Huxley in 1952 simulated the behavior of their model only using a
mechanical calculator, just adds to their esteem.

5Small masterpieces, really. See e.g. ‘Analysis of a Minimal Network of Cortical Neurons’
by Anders Fausbgll.
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g, and reversal potentials, £

et = N gl (B - V) (6.4)
J
dv -
TmE = Viest _V+R;;gzj(Ej _V) (65)

This transformation will prove to be useful when modeling receptor dynamics
(see section 6.2.1).

Integrate-and-fire neurons do not per se incorporate any refractory period. How-
ever, in the implementation it is easy to create an absolute refractory period by
keeping the action potential on the reset value until the refractory period is over.
A relative refractory period can be implemented by raising the threshold when
the neuron fires and then let it relax back towards the steady value.

6.1.3 The spike-response-model

When studying networks of spiking neurons, it is not enough to consider only
the neuron, also weights or synapses must be studied. Most models keep these
things as separate units, but some models incorporate the soma and the synapse
into a single model. An example of the latter is the spike-response-model.

As with the integrate-and-fire model, the spike response model uses the fact that
the temporal behavior of a neuron is quite standardized. However, unlike the
integrate-and-fire model, the spike-response-models starts a kernel function in
response to threshold crossing.

The input to this neuron is spikes from previous neurons; similar to the de-
polarization, the arrival of spikes can be described by a kernel function. The
excitatory - or inhibitory postsynaptic potential created by the synapses on ar-
rival of an incoming spike are modeled by kernels. Typical shapes of the kernels
are a-functions in accordance with experimental findings. It is the use of kernels
to describe the voltage response to spike emission and spike reception that has
given the model its name.

The spike-response-model produces temporal output quite similar to the Hodgkin-
Huxley neuron, but is computationally only slightly more complicated than an
integrate-and-fire neuron. However, the fact that it incorporates the synapse,
makes it unsuited for investigations of synaptic models.
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6.2 Synapse modeling

Modeling of synapses can be approached bottom up or top down, either one
can focus on the exact mechanism causing the effects or the focus can be the
effects, neglecting (or at least down-toning) exactly how the effects arise. Both
approaches can produce interesting results and complement each other.

Sometimes bottom up modeling cannot produce the desired effects because the
model is too simple, and sometimes this can provide new insight® Of course,
the top down models cannot directly provide information of how the underlying
mechanisms work, but they can shed light on which experiments are interesting
to perform.

In the following, models of both types will be described with the intention to
gain insight of which processes are essential and which can be simplified away.
Somehow, the models are all based on the physiology described in section 2.3.
The reason for investigating non static synapses is that they can be used for
temporal coding of information as described in section 4.2.1.

In 1996, Liaw and Berger proposed a concept for modeling short term dynam-
ics in synapses, dynamic synapses. The synapse performs a temporal pattern
transformation from a sequence of incoming action potentials to a sequence of
postsynaptic potentials. The strength of a dynamic synapse is determined by
the temporal structure of the incoming spike train.

This was in accordance with experiments, but no bottom up model had captured
the effects. In this section, different models of synaptic behavior are presented.
Although they are all of interest, reading through too many models can become
tiresome. Thus, the description of the models which will not be used later in
this report is degraded to appendix A.

Liaw & Berger

Dynamic synapses as proposed by Liaw and Berger do not model a particular
part of the brain. Inspired by experimental work by Berger et al. (1994) on
populations of synapses, Liaw and Berger try to capture some of the essential
features by using sums of exponential kernels with different time constants. The
assumption is that a sum of exponentially decaying functions can describe the
probability of transmitter release, and that another sum of decaying exponen-
tials can account for the receptor dynamics. Parameters in the kernels cannot be
estimated directly from experiments, but they can be fitted to reproduce experi-
mental results. The model provides a general formulation of a phenomenological

6Perhaps the effect does not exist and was only a measurement artifact.
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model, and a way to modify the potency of different presynaptic mechanisms.

Liaw and Berger have also proposed a way to modify the synapses — a learning
rule — based on correlations between presynaptic and postsynaptic activation.
The coefficients on the presynaptic side of the synapse are modified when a
postsynaptic action potential occurs. Results from using such learning, dynamic
synapses in »learning in robust speech recognition« are reported in Liaw and
Berger (1997, 1999).

The model has been implemented and preliminary simulations conducted. These
show that in effect the model is similar to that of Markram and Tsodyks pre-
sented in section 6.2.2. The Liaw-Berger model is described in appendix A.1.

Maass & Zador

As Liaw and Berger, Maass and Zador (1999) present a phenomenological model
using exponentially decaying function to capture release dynamics. On the basis
of experiments revealing the dynamics of single release sites, a discrete stochastic
model is presented and analyzed. As described in section 4.2.2 Maass (1996,
1997b); Maass and Sontag (2000) have provided theoretical results regarding
the computational power of dynamic synapses.

By varying the parameters in the model it is possible to obtain any desired
release probability for two consecutive spikes. This yields great possibilities for
using this kind of synapse as a filter. The model is presented in appendix A.2.

6.2.1 Destexhe, Mainen and Sejnowski

The above mentioned models are phenomenological accounting for the effects
of a synapse (or at least the presynaptic side), but they do not account for the
mechanisms causing the effects. In contrast, a different category of models which
are far more extensively studied celebrates physiological accuracy. Important
work in this field has been performed by Katz and Miledi (1968); Magleby (1987);
Zucker (1989) and many others”. A fairly simple model which captures much
of the physiology is proposed by Destexhe, Mainen and Sejnowski (1998). In
this model the Ca ' flow is of great significance for the synaptic dynamics, both
triggering transmitter release and catalyzing receptor response.

As in most synapse models this model is split into two parts the pre- and the

7 As mentioned in Markram, Gupta, Uziel, Wang and Tsodyks (1998).
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postsynaptic. The processes essential for transmitter release are described by

2+

ks

4Ca +X = X* (6.6a)
ku
k1

X4V, = Vv (6.6b)
k2

v 5 onr (6.6¢)

T 5 (6.6d)

Calcium binds to the calcium-binding protein X, leading to an activated calcium-
binding protein X*, X* then binds to the vesicles V. activating them. The
vesicles release transmitter into the synaptic cleft, from which it is cleared with
a very fast time constant?®

It is seen from equations (6.6) that in this model transmitter release is a direct
function of the Ca level, unfortunately no way of calculating the Ca ' level as
a function of presynaptic potential is provided, making the presynaptic side of
the model difficult to implement directly. Consequently, it has not been tested
whether this model provides the desired facilitating and depressing effects.

A simplified version of transmitter release is also proposed, given as the concen-
tration of transmitter [T'], dependent on presynaptic potential Vi,

Tmaz

[T](Vzvre) = s (67)

Vp =V,
(egiere)

1+e

where T4, V), and K, are constants. It is, however, evident that this equation
cannot provide the desired facilitating and depressing effects. Therefore, the
presynaptic side of the model is not considered further.

Instead the dynamics on the postsynaptic side are studied and kinetic models for
AMPA, GABA and NMDA receptors are proposed. The AMPA receptor can be
described by three closed states Cy,C1, C2 two de-sensitized states D1, D> and
one open state O. The transition rates from Cy to C; and from C; to C depend
on the level of transmitter

R,T RyT R,
Co & 1 = Cy = 0
Rul Ru2 Rc 6.8
R4t R, Ri R, (68)
Dy Do

From the amount of open receptors the current due to AMPA receptors can be
calculated using the maximal conductance g,,,,, the reversal potential £, ,, .,

8Parameters can be seen in appendix A.3, table A.2.
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and the postsynaptic voltage V

IAMPA = gAMPA [0](V - EAMPA) (6'9)

With parameter values shown in table A.3, the model closely fits experimental
result. However, even with extensive simplifications it is possible to get be-
havior very similar to experimental data. The simplest possible model involves
only a closed and an open state and the transition between them mediated by
transmitter 5
C+T=0 (6.10)
[e%
This can be written as a single first order differential equation describing the
fraction of open receptors r

dr _ a[T)(1—r) —pBr (6.11)
dt

Substituting [O] with r in equation (6.9) the postsynaptic current as a function

of transmitter is described by a single differential equation and Ohm’s law with

variable conductance? As it shall be seen later, these simple equations can, com-

bined with a mechanism for transmitter release, serve as a good approximation

to physiology.

A similar model is provided for the NMDA receptor. The fraction of open recep-
tors are calculated in the same way as for the AMPA receptor, equation (6.11),
however, the parameters are different (see table A.5) keeping the receptors open
for a longer period. The current through the receptor is a little different. Since
NMDA receptors are ‘doubly gated’ the membrane potential of the neuron are
also considered. B(V') describes the voltage dependence of the Mgﬂblock10

INMDA = gNMDAB(V)[O](V - ENMDA) (612)

Destexhe et al. (1998) provides a physiologically founded model of the synapse.
The transmitter release dynamics in the model are constructed for handling sin-
gle occurring presynaptic action potentials, and thus do not provide facilitating
and depressing mechanisms. The receptor dynamics are only depending on the
amount of transmitter in the synaptic cleft and are therefore not subject to re-
straints about the presynaptic action potentials. Physiologically plausible and
simple to implement, the receptor dynamics of this model are worth keeping
in mind. In this section only the model of AMPA and NMDA receptors are
described, but similar models are made for other receptors including GABA.

9Parameters in table A.4.
10Also shown in appendix A.3.
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Figure 6.1 In the Markram-Tsodyks synapse
model, the assumed finite pool of neurotrans-
mitter is subdivided into three different pools.
R| E The fraction of active transmitter in the cleft is
I called the effective transmitter, E. Deactivated
transmitter (metabolized, reabsorbed etc.) is
represented by the inactive transmitter pool, I.
Finally, the transmitter ready for release is con-
tained in the recovered pool, R.

6.2.2 Markram & Tsodyks

Markram and Tsodyks has defined a phenomenological synaptic model based on
synapses in neocortex (Tsodyks and Markram (1997)). Given a spike train, a
single synapse in this model reproduces the response generated by an assembly
of synapses in the neocortex; the stochastic element of each synapse is thus
removed by modeling synapses in parallel.

Despite the phenomenological approach, the different states in the model have
a physiological counterpart, along the lines of the introduction to synaptic con-
struction given in section 2.3 and depicted in figure 2.5. An underlying assump-
tion in their model is that the total amount of neurotransmitter in the synaptic
region is limited, constant, and divided into either of three different pools as
illustrated in figure 6.1.

The model emphasizes the presynaptic side. When a spike (an action potential)
arrives at the synapse at time ¢, a certain fraction, Uy, , of the transmitter in
the recovered!! state, R, is instantaneously released into the synaptic cleft where
it joins the pool of effective transmitter, E. From the cleft, the transmitter is
inactivated with a relatively fast time-constant, 7;,4c¢, into the inactive state,
I, from where it slowly recovers into R with the time-constant, 7.... This three
state process is governed by the equations

dE E
Effective transmitter : — = - + Uy, -R-6(t —tsp) (6.13a)
dt Tinact
: dR I
Recovered transmitter : — = —U,,-R-0(t—tsp) (6.13b)
dt Trec
Inactive transmitter : I = 1-R-E (6.13c)

where the 0(t—t5,) function represents the instantaneous transfer of transmitter
from the recovered to the effective state; only a fraction though, controlled by
the utilization of synaptic efficacy parameter Uy, .

1 Can be thought of as representing the readily releasable pool.
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Conversion of synaptic activity to a postsynaptic current, I,,,5¢, happens contin-
uously by multiplying the present fraction of effective transmitter, E, with an ab-
solute synaptic efficacy, A,,. Then, using a passive leaky membrane mechanism
to model a simple form of dendritic conduction, they arrive at a postsynaptic
membrane potential, V, as

Lyost = ALE (6.14a)
d
Tmemd—‘tf = V4 Rinlpost (6.14b)

Most of the parameters have been measured experimentally and together, the
expressions in equations (6.13) and (6.14), define a system accounting for synap-
tic depression; given a steady input, depletion like effects might — if spikes arrive
faster than R is replenished — gradually diminish the postsynaptic membrane
potential. This fits well with the behavior of neocortical layer V pyramidal neu-
rons between which facilitation is not evident — the synapses in this area are
mainly depressing.

However, in synapses between pyramidal neurons and inhibitory interneurons
facilitation is commonly observed. A facilitative mechanism is incorporated in
later versions of the synapse model!? This is done to capture the presynaptic
aggregation effects involved with the residual calcium hypothesis. The idea is to
let the utilization parameter U, be time varying as well

dUSE USE T
—SE — _ _ZsB 1- St —tsp) 1
35 =+ U (1 Uny) 0l — ty) (6.15)

where the arrival of the first spike initializes the utilization to the value used in
the purely depressing case, U, .

Behavior

The default parameter values used in the depressing and facilitative models are
given in table 6.1. An example of how the different states for a facilitative
synapse evolve in response to a regular spiketrain is shown in figure 6.2. All
initial state values have been set to zero!'® resulting in that the only effect of the
first spike, at t = 0, is to initialize Uy, (0) = Ug,,.

12Various representations in Markram, Gupta, Uziel, Wang and Tsodyks (1998); Markram,
Pikus, Gupta and Tsodyks (1998); Markram, Wang and Tsodyks (1998); Tsodyks et al. (1998,
2000).

130bviously apart from 7(0) = 1 due to its definition.
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Parameter | Depressing | Facilitating | Unit
R;, 0.1 1 GQ
Tmem 40 60 ms
Tinact 3 1.5 ms
Trec 800 130 ms
Tfacil - 530 ms
U, 0.5 0.03 -
Agp 250 1540 pA
Table 6.1 Default parameter values used in the Markram-Tsodyks synapses
0.1 N Jo.08
LN
1 SN O
e, 1.2 1.205
11 , //
@
0.8 /‘/‘/‘/\/\/\/\/\/‘ - 0.9
D ‘ 135
— \’\l\!\I\NI\I\I\ f\ )
e, 12 122
0.1 — ‘ ‘
G ’\J\,\’\I\I\I\’\’\’\‘ ,\,\,0.075
0.03 I
oM\- OO ‘ ‘
‘ e 1.2 135
S 3 o 2K
E 27 —
> 1] NNNN
oL, | N | N ‘
12 122
9 1 Time [s]
>
2 05
O 0z 04 06 08 T 1214 1618 2
Time [s]
Figure 6.2 Internal states in a facilitating synapse, when fed with a regular 5 Hz

input spiketrain. The rows show how the states evolve; besides each
state, to the right, is an enlargement of the response to the spike arriving
att = 1.2's. The spike at t = 0 s, initializes the U, value to U, =
0.03. Notice that the U, R, and E states are changed immediately
by the influence of the §-function, whereas the I and V states exhibit
a more integrative behavior.
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To the right in figure 6.2 the response of the different states to a single spike is
plotted, thereby giving a better idea of the time-constants involved and, also,
the shape of the curve around the arrival time of a spike.

If using spike bursts as input, the facilitating effect is noticeable. The difference
between feeding the synapse with, e.g. four spikes in succession versus two times
two spikes temporally separated, is indicated by figure 6.3. By comparing the
measure of the area under the curves'* one notices that the area ‘created’ by
four spikes is more than two times the area stemming from two spikes; this is
due to the facilitative mechanism.

Figure 6.3 Feeding

al | the synapse with

g 10 Hz spike bursts
- 3t { of wvarying lengths
% reveals the facilitating
= 2r 1 effect. Beneath each
] ! | burst is a measure of
% the area .ur.1d.er the
’g of | curves. Dividing the
2 Spikest AA AAA ANAA AAAAA { areas for four and two
"Area” t 19.14  35.76 55.35 77.37 1 spikes respectively

gives A4 /A> 2.9

Time

Returning to figure 6.2 one might notice how steady input relatively quickly
brings the synapse into an equilibrium where the decay (rise) of a state, matches
the d-term increment (decrement) caused by an incoming spike. For e.g. equa-
tion (6.15), this equilibrium can be calculated as a function of the input frequency
v by requiring that U, must be incremented exactly as much as it decays during
the time At = 1/v between spikes. This results in the steady level U’

Usp = Ugpexp (— Tfml) +Usp (1 = Ugp exp (— Tmm)) (6.16a)
U;E = U;E (]‘ - USE) €xp <_ VTfa,cz'l) + USE (616b)
Ue Use (6.16¢)

1-(1-0U,,)exp (—Wflacu)

It is not given whether this steady value should be calculated before or after it
itself has been incremented. Observing that U,, < U;, it is evident that the

MEqually scaled by the same factor.
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incrementation time is not of great importance (see equation (6.15)). Simulations
confirm this.

Under the assumption that the simplification I &~ 1 — R is justified, due to the
brief time constant involved with the E decay, an equilibrium level can likewise
be calculated for R

P (-5) (6.7

1—(1-U* )exp (—wiec)

In order to investigate the frequency dependence of the membrane potential, V', a
series of simulations similar to the one behind figure 6.2 was performed — leading
to figure 6.4, where the frequency of the regular input spike train is gradually
increased. When increasing the frequency the oscillation amplitude goes down
and the membrane potential steady level goes up; rightmost in figure 6.4 an
average of the endlevel is plotted, showing the frequency dependent increase.

= N
[&)] o

Membrane potential [mV]
[
o

25

15

1
10 0.5 Time [s]

Figure 6.4 Membrane potential V' for the Markram-Tsodyks synapse at different
frequencies for a regular spike train input. To the right, an average of
the steady level, where the values at 20 Hz and 70 Hz have been marked
by boxes to ease comparison with the original data from Tsodyks et al.
(1998) and reprinted in figure 6.5.
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A comment

In Tsodyks et al. (1998) simulations are carried out like the ones performed
in connection with figure 6.4. A reprint of the results are shown in figure 6.5,
where the subplots B, C, and D are of special interest, as these concern the
facilitating version of the synapse. Horizontal lines have been added to the figure
to emphazise the steady levels for the simulated membrane potential; comparing
the curves and steady levels with the ones obtained in figure 6.4 (marked with

boxes) indicates fine agreement between the two implementations!5.

However, which interpretation the latter subplot, D, in figure 6.5 is to be given,
involves some level of ambiguity. The figure caption (repeated in this figure)
is not quite in agreement with the accompanying explanation in the main text
part of the article: »Figure 1C illustrates the buildup of depression in facili-
tating synapses when they are stimulated at high frequencies. As a result, the
stationary level of response exhibits a tuning curve dependence on the frequency,
in agreement with experimental results (see Figure 1D).«'® thereby indicating
that the ways of measuring steady levels in C and D are alike.

The inserted lines point out that the potentials reached in B and C are not the
same as depicted in D; in fact, figure 6.4 of the present report shows that it is
not just a matter of wrongful scaling: The membrane potential tuning curve is
not bell shaped at all.

Having spent quite some time figuring out how this discrepancy comes about}”
figure 4 in Markram, Wang and Tsodyks (1998, p. 5326) gave a hint to how
the experimental match was obtained. If still feeding the facilitating synapse
with regular spiketrains, and then plotting the peak amplitude of the effective
transmitter E (after a steady level has been reached) as a function of input
frequency, one gets the curve shown in figure 6.6; now the peak values of F
follow a frequency dependent bell shaped curve.

In figure 6.6 there is no units on the left axis, as the FE state represents a fraction
of efficacy. Since the experimental results are reported in units of mV, the
fraction E must be multiplied with the absolute synaptic efficacy A, and, in
turn, with the membrane input resistance R;,, in order to obtain an EPSP value.
Using the reported parameter values for facilitating synapses (see table 6.1) this
total multiplicative factor is around forty times too big when compared!® with
the one needed to create the ‘best fit’ seen in figure 6.6 — the reason for this
discrepancy is unknown.

15 Although the Tsodyks et al. (1998) model uses three differential equations to describe the
transmitter states (labelled z, y, and z) transformation of variables proves that the models are
exactly equal.

16Tsodyks et al. (1998, p. 824).

17 And actually having discarded the Markram-Tsodyks model for a while.

18Table values: Agy - Rin = 1540 pA - 1 GQ = 1.54 V. The one used is ~ 0.038 V.
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Reprint of figure 1 from Tsodyks et al. (1998). (A) Simulated postsy-

naptic potential for a regular spike train of 20 Hz through a depressing
synapse. (B) Same as A for a facilitating synapse (line inserted to in-
dicate steady level). (C) Same as B with an input frequency of 70 Hz
(line inserted). (D) Original caption: »Stationary level of excitatory
presynaptic [sic!] potentials versus presynaptic frequency for facilitating
synapses. Open circles: Experimental results for one of the recorded
synaptic connections between pyramidal neuron and inhibitory interneu-
ron. . . Solid line: Model results.« As indicated by the lines figure D can

Figure 6.6 Steady level peak ampli-
tude of effective transmitter F in a faci-
litating synapse, to a regular spiketrain
Circles represent experimental
data from figure 6.5(D). The dissimi-
larity between the units (or partial lack

Figure 6.5
not be generated from the levels in figures B and C.
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determined analytically.
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A sceptical person might wonder how the experimental measurements of only
the EPSP’s were made, since the ‘methods’ parts in the articles speak of somatic
whole-cell recordings, thereby suggesting that the monitored entity is rather the
somatic membrane potential.

Not being experimentalists — and judging from the widespread popularity of the
Markram-Tsodyks synaptic model — these questions are probable to be due to
misinterpretations. And, anyhow, since the model are able to express the wanted
facilitative and depressing behavior, the above mentioned issues are given the
benefit of the doubt, and the model will be used onward.

Parameters

In the bell shaped curve in figure 6.6, the peak frequency v, can be derived from
the model equations analytically!® It is done by finding the input frequency
where the d-increment to E is maximal, i.e. when the product of the steady
values U}, and R* is maximal. The peak frequency is

1
vp = ) (6.18)

USE *Tfacil * Trec

determined by the actual parameter values?® In general, as discussed in e.g.
Markram, Pikus, Gupta and Tsodyks (1998), the parameters of the model have
references to different biophysical properties of the synapse and individual influ-
ence on the behavior:

A,,. A measure of the absolute synaptic strength. Comprises the number of
release sites, quantal size, number and efficacy of postsynaptic receptors,
and electrotonic attenuation, i.e. all processes involved with going from E
to excitatory postsynaptic potential.

U sz Related to probability of release and to the properties of frequency depen-
dence. The higher U, the faster depression. Range for U, in facilitat-
ing?! synapses is [0.01 — 0.05].

Tinact Inactivation of transmitter in the synaptic cleft; represents effects like
reabsorbation, and enzymatic metabolization.

19 As mentioned in Markram, Wang and Tsodyks (1998).

20Using the default parameter values from table 6.1 gives v, = 22 Hz.

21From Tsodyks et al. (1998). For depressing synapses, 17'5 5 € [0.1 —0.95] (Tsodyks and
Markram, 1997).
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Treec 1nvolved with recovery from the inactive pool, thereby linked to e.g. vesicle
depletion.

Tfacit Governing the extent of the residual calcium mechanism. Could repre-
sents an average over the first two (fast) types of facilitation and part of
augmentation. For 74,054 — 0 facilitation is not exhibited and the synapse
resembles the depressing version.

As seen from equation (6.14a), the absolute synaptic efficacy, A4, ., is a mul-
tiplicative factor only affecting the postsynaptic current. Changing it causes
overall effects, independent of input frequency. This is not the case for the other
parameters in the model. In figure 6.7 examples are given of how the influence
of parameter changes are dependent on the frequency of the input.

An increase in either ﬁSE or Tfqcy mainly affects low frequencies, thereby shift-
ing the turn-over frequency between facilitation and depression to the left —
in agreement with equation (6.18). The lowering of the peak frequency vp, is
also an evident consequence of an increase in 7., the recovery time constant,
whose change otherwise is generally influential on the higher frequency part of
the tuning curve.

The parameter variation also revealed that the facilitation parameter 744 is,
in general, involved with the intermediate frequency part of the tuning curve —
a trend that is somewhat indicated by figure 6.7(c).

6.3 Synapses that learn

Incorporation of activity based learning in synaptic models have, as seen in
section 4.3, been done in various ways. Before looking at a particular model, it
should be mentioned that also Markram and Tsodyks from above, have made
contributions in this direction.

Presented in Senn, Markram and Tsodyks (2001) is a plastic synaptic model,
whose modification depends on the precise timing between pre- and postsynaptic
action potentials. The way it is done, is by adjusting the probability of vesicle
discharge from the presynaptic membrane. If a presynaptic spike comes before
a postsynaptic spike, the probability is upregulated and vice versa2? The reg-
ulation is limited to happen within a temporal window of 50 ms in agreement
with the findings presented along with figure 3.3 in section 3.2. Specifically, the
events associated with presynaptic regulation is determined by a postsynaptic

22 A presynaptic spike after a postsynaptic spike leads to a downregulation of the probability.
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Figure 6.7 Parameter variation and the effects involved. In all figures the solid line
represents the default values also used in figure 6.6. Apart from the
parameter in question, the rest are kept at their default value.
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activity measure, mediated by an NMDA receptor model2?

6.3.1 Song, Miller & Abbott

Another model of activity induced Hebbian learning has recently been formu-
lated by Song, Miller and Abbott (2000). The model involves excitatory and in-
hibitory synaptic input coupled to a leaky integrate-and-fire neuron determined
by

dv

Tma =Viest =V + Jex (t) (Eem - V) + gzn(t) (Ezn - V) (619)
Whenever the membrane potential V' reaches a threshold of Vy = —54 mV,
it is reset to Vi,iw = —60 mV. To avoid unphysiological inter-spike intervals

and to ensure an upper limited firing rate, the Song, Miller and Abbott model
(Song—Synapse from now on) has in the present implementation been extended
to include an absolute refractory period §g. The synaptic conductances g, and
gin are dimensionless and both decay exponentially like

dgin
dt

d
Tex g;m = —Yez and T,

On the arrival of a presynaptic spike, the conductances are incremented by
amounts g, and g;, respectively

Jex (t) — Gex (t) + ga and gzn(t) — gzn(t) + gzn ) (621)

where the g’s are both acting as peak values, i.e. immediately after an isolated
presynaptic spike. The subscript in g, refers to excitatory synapse a.

Synaptic modification is incorporated by two other exponentially decaying func-
tions M and P,. The M-function is used to decrease synaptic strength and is
negative, meaning that it ‘decays towards zero’; the other, P,, is used to increase
synaptic strength for synapse a

dMm dp,

wa =—M and T+E = —Pa s (622)

These functions are governing the correlation capturing part of the synapse.
A postsynaptic spike decrements M by an amount A_, whereas a presynaptic
spike in synapse a increments P, by an amount A,. Together, the M and
P, functions constitute the exponential pieces in a ‘learning window’ limited
in time through their time constants (see figure 4.6(a)). In order for stable

23See also Gerstner and Kistler (2000) for a close examination of the model.



82 Modeling

Parameter Value Unit
Tm 20 ms
Tex 5 ms
Tin 5 ms
T_ 20 ms
T+ 20 ms
Or 2 ms
Vrest -70 mV
Vi -54 mV
‘/init -60 mV
E,, 0 mV
TJin 0.05

Jmaz 0.015 - 0.035

Ay 0.005 - 0.02

A_ 1.05-A4

Table 6.2 Parameters used in the Song, Miller and Abbott model. The present
implementation introduces an absolute refractory period 8 and synaptic
gains to the model.

competitive synaptic modification to occur, the integral of the learning window
function must be negative, thereby ensuring that uncorrelated presynaptic and
postsynaptic activity results in an overall weakening of the synapse. This is why
the ratio A_/A; > 1, as can be seen in table 6.2.

The peak conductance g, is modified in step with incoming action potentials:

e A presynaptic spike results in g, = gq + M (t)Gmq and, if negative, g, = 0.

e A postsynaptic spike leads to g, — Ga + Pa(t)Jmee and, if §o > Gmaz,

9o = Imaz-

In the model, g, is modified before?* g,. The other peak conductance g;, is
held fixed.

Song et al. concentrates on the statistical properties of large populations of
synapses and examines how input from a = 1,2,...,1000 excitatory and 200
inhibitory synapses affects a single integrate-and-fire neuron.

To fit into the object oriented model architecture, the synapses have been parted
from the neuron. Also, aiming at building networks with several neurons, gain

24Changing the order does, however, not change the results.
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constants, k., and k;,, have been introduced to make a single synapse have a
larger impact at the neuron and thereby, in practice, to represent a number of
equally acting synapses in parallel. This modifies equation (6.19) to

dv Nez Nin
Tm E — Vrest _V+‘/;:wt+rgl kew,ngew,n(t) (Eew _V)+ngl kin,ngin,n(t) (Ezn _V) )

(6.23)

where n represents the possibility of having N different groups of equally acting
synapses. Additionally, for testing purposes, an injection of an artificial, external
current has been made optional (leading to Veyt).

A snapshot of a run with the Song-Synapse is shown in figure 6.8, illustrating
the dependencies between the internal states in the excitatory part. Whenever
a presynaptic spike arrives, the P, modification function is incremented and
likewise the conductance g., (equation (6.21)). Postsynaptic spikes offsets the
M function. In either case, the peak conductance, g,, is altered in accordance
with the values of the modification functions.

Figure 6.9 illustrates how up- and downregulation of g, depends on the actual
timing between the incoming spikes. Two groups, of three presynaptic spikes
each, are shown. In the first group (left), the postsynaptic feedback input are
given 20 ms after the firing of the presynaptic stimuli — an increment of g,
is seen due to the temporally ‘correct’ pairing. To the right in figure 6.9, the
firing pattern is reversed; now the postsynaptic stimuli comes 20 ms before
the presynaptic — leading to a decrease. Looking closely, one will notice that
the endlevel for g, is slightly below its initial value, even though the activity
patterns are ‘mirrored’ and should cancel each other out. That they do not, is
due to the skewness of the learning window; as mentioned, a feature deliberately
chosen so, to ensure a general weakening of the synapse when presented with
uncorrelated input.

In figure 6.10, an enlargement is shown of the light-gray area in the upper left
corner of figure 6.8. It only holds the conductance curve g., and the presynaptic
spike times. When comparing the figures, one can see that the M modification
function is zero when the spikes arrive. This means that the value of g, remains
the same during all three spikes — the g, parameter is flat in the beginning of
figure 6.8. Now, as seen from figure 6.10, in g, this results in an equally valued
increase for each of the three incoming spikes.

In the article in which the model is presented, Song et al. (2000), a description
of the properties of this model are presented. Among those are the fact that
synapses started at random values and given different uncorrelated inputs, com-
petition will cause some synapses to be weakened and other to be strengthened.
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An excerpt of a run using the Song-Synapse, showing some of the inter-

nal states. The scale on the ordinate is arbitrary, except for the zerolevel,
and g, is translated downwards to make it easier to see. Presynaptic
spikes affect P, and g., but not M, which is only altered when post-
synaptic spikes are present (then having no effect on P, or g..). The
peak conductance g, is modified by both pre- and postsynaptic spikes
— except for the first three, as M is zero here. The accentuated area in
the upper left corner will reappear in figure 6.10.

A Presyne'iptic spike
O Postsynaptic spike

1
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25 3
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Figure 6.9 The dependence of timing
between pre- and postsynaptic spikes
in regulation of g,. When the postsy-
naptic neuron fires after (20 ms) the
presynaptic, the peak conductance is
increased (left); if the firing pattern is
reversed in time, the peak conductance
is lowered (right).
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Figure 6.10 An extract of g,
from the upper left corner of fig-
2b ure 6.8, with which it can be com-
pared. The rise of g., due to
3a  1b the three incoming spikes looks al-

2a ex most facilitating. Closer inspec-
tion, however, reveals that the
AA A he_ight <_)f the increase, with each
: : spike, is the same: Aaby =
Aab2 = Aab3.

3b

la

12,955 1296 12.965 12.97
Time [s]

Thus some synapses gain control of the neuronal firing times.

Another key factor

»>...1is that the mean input to the neuron should only be sufficient
to raise the membrane potential to a point below, or slightly above,
the threshold for action potentials generation, so that spike times
are determined primarily by positive fluctuations in the total level of
mnput.«

As argued in the next section, this is a desirable property.

Summary

The synaptic models presented in this chapter concentrate on different aspects
of the synapse.

The dynamic behavior which includes short term changes in synaptic efficacy are
treated in the model by Markram et al., the physiology of receptors are modeled
by Destexhe et al. and the plastic behavior — the long term effects of stimulation
— are considered by Song et al..

The model of the fast dynamics — facilitation and depression — is mainly con-
cerned with transmitter release. All effects are captured by the presynaptic side
of the model and the postsynaptic side comprises a multiplicative constant. This
model has been studied in some detail and the change in dynamic properties by
varying the parameters have been examined.

The model of receptor dynamics provides a more physiological approach to re-
ceptor modeling. Although a physiological presynaptic model is also provided,
synaptic dynamics in the form of facilitative and depressing mechanisms is not
captured.
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The third model does not engage in physiological explanations of the variables.
Instead it concentrates on capturing the long term effects of stimulation. By
introduction of a learning window it becomes possible to change synaptic efficacy
according to correlations between spikes on the pre- and postsynaptic side.
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» Never make a calculation until you know the answer: Make an esti-
mate before every calculation, try a simple physical argument (sym-
metry! invariance! conservation!) before every derivation, guess the
answer to every paradoxr and puzzle. Courage: No one else needs to
know what the guess is. Therefore make it quickly, by instinct. A
right guess reinforces this instinct. A wrong guess brings the refresh-
ment of surprise.«!

Edwin F. Taylor and John A. Wheeler.

Based on the knowledge acquired by working through the material presented in
the previous chapters, it was decided to propose a synapse model containing a
number of appropriate mechanisms enabling it to exhibit the desired behavior.
This naturally led to the questions: “What are the appropriate mechanisms?”,
and “What is the desired behavior?”. Obviously, various answers fit these ques-
tions depending on whose answering. What the main objectives behind the
answers suitable for the present report were, is discussed in the following.

The synapse should incorporate the use dependent properties seen in dynamic
synapses: Facilitation and depression. And these should be connected to the
presynaptic side.

The synapse should have the ability to learn in terms of being capable of ex-
pressing spike-timing dependent plasticity; effects connected to the postsynaptic
side and under influence of the Ca ' level. Also, its learning ability should not
be at the expense of the short term dynamic properties.

The synapse should be designed so that uncorrelated activity leads to an overall
weakening of its efficacy.

The considerations made to incorporate the desired properties are presented in
the following.

ITaylor, Edwin F. and Wheeler, John Archibald. Spacetime Physics: Introduction to
Special Relativity. New York: W.H. Freeman, 1966.

87
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7.1 Building the model

7.1.1 The presynaptic side

The model developed by Markram and Tsodyks fits the above requirements to
the dynamic behavior of a synapse. The dynamic qualities of this model are
described in section 6.2.2, where it is seen that facilitating and depressing effects
are expressed in terms of changes to the postsynaptic current.

The postsynaptic part of the model consists of a multiplicative constant, the
dynamic effects is situated in the presynaptic side of the synapse. This part of
the model is concerned with the release of neurotransmitter. In other words, the
model by Markram and Tsodyks translates incoming spikes into a concentration
of neurotransmitter, the interesting part — the facilitating and depressing effects
— are fully described by presynaptic action.

Since the model captures the desired effects and are easily extendable, it was
chosen as a building block. The equations and a description thereof are given in
section 6.2.2. The most important variable, the relative amount of neurotrans-
mitter in the synaptic cleft, is denoted FE.

7.1.2 Postsynaptic AMPA receptors

The postsynaptic mechanism used in the model by Markram and Tsodyks con-
sist of multiplying the transmitter with a constant value, to get the excitatory
postsynaptic current.

By extending the synapse to include a model of the postsynaptically resident
AMPA receptors? instead, a more physiologically plausible shape of the post-
synaptic activity curve is obtained; this not just for cosmetic reasons, the rise
time incorporated in the latter introduces a natural delay between pre- and post-
synaptic activity. In figure 7.1, the course of E from Markram and Tsodyks is
compared to the fraction of open AMPA receptors, r(t), after transmitter release
due to a single incoming presynaptic spike. Later it comes in handy to know
that the area under r(t) following this single spike is 7 & 0.6 ms.

The receptor conductance g,,,,, is directly proportional to the fraction of open
receptors, with the proportionality constant being the maximal conductance

Gampa-

2Described in section 6.2.1 by equation (6.11), similar to equation (7.1a) of this section.
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0.2 Figure 7.1 The variable E (solid
line) from the model of Markram and
Tsodyks. Multiplication of A;, and E
constitutes the postsynaptic current. In
the model of Destexhe et al., the frac-
tion of open postsynaptic AMPA recep-
tors following transmitter release, is in-

~ dicated by the dot-dashed line. The
2_0_ 30 latter exhibits a rise time in contrast
Time [ms] to the abrupt change seen in E.
dr
T = @l -r@) - () (7.1a)
Gampa — gAMPAT(t) (71b)

In equation (7.1a), the [T] represents concentration of transmitter in the synaptic
cleft and it is found by multiplying the relative amount of transmitter E by a
maximum value [T},4;]. Since E is confined® to [0;0.2], the value of [Thaz]
should be around five times the maximal physiological value. Clements (1996)
reports that under normal conditions, the maximal transmitter concentration is
around 1 — 5mM; therefore [Tyq.] = 25 mM is chosen

[T] = E[Tmam] (72)

The above equations combined yield the following expression for the current
through AMPA receptors

ILiipa = gAMPAT(t) (V - EAMPA) (73)

7.1.3 The conversion function

Along the lines of chapter 3, the learning processes involving synaptic plasticity
are here expressed through postsynaptic effects; in particular by using NMDA
receptor like mechanisms.

The NMDA receptor model provided by Destexhe involves a slowly varying «
function* multiplied with a voltage dependent function, B(V'), representing the
fast dynamics involved with the Mg2+ion block removal following a postsynaptic

3As seen from simulations in section 6.2.2, using default values.
4Modeled like the AMPA receptor but with other time constants.
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Figure 7.2 The shape of the conver-
sion function when the synapse, from
its resting level, receives a single in-
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spike. This product yields an NMDA current mainly caused by influx of Ca’
. . . .. 2+ .
ions, leading to a spike-timing dependent Ca ~ concentration.

Induction of LTP/LTD is strongly correlated with the Ca” concentration as
shown in section 3.3.3. Therefore the model incorporates an AMPA conduc-
tance gappa, the alteration of which is performed continuously depending on
S 2+ L . :
measures mimicking the actual Ca = concentration in the postsynaptic terminal.

Quite similar to the function used for modeling the N}V[DA receptor by Destexhe
et al., is the function used here to represent the Ca " level; it is a transmitter
dependent, slowly decaying function: The conversion function, C'

%zac[T](l—C)—ﬂcC , (7.4)
with [T] given as in equation (7.2). This conversion function is a purely phe-
nomenological description of the integrated Ca ' flux through NMDA receptors,
combined with a slow use or leakage of Ca " ions. Furthermore, C' is ‘imaginary’
in the sense that its value, at a given time, represents the integrated Ca ' level as
it would have been if a postsynaptic spike arrived. Thus, the conversion function
is a fabricated composite measure, and, as a consequence hereof, its parameters
o, and 8, cannot be found directly in the literature but have to be chosen more
or less arbitrarily.

First, the rise constant, o, is chosen to be 7.2-10* M ~'s~!, the same as a, for
the NMDA receptor. The rationale for this choice is that Ca’ cannot flow in
faster than the receptors can open. Second, 3, is chosen to be 501m3 since this
decay leads to a shape approximating the experimentally found maximal learning
window for changing the synaptic efficacy®. Also, the value of this latter time
constant makes sense, if one has an eye to the membrane time constant of the

postsynaptic neuron — they are alike. Figuratively speaking, this means that as

5As described in e.g. Song et al. (2000). See also chapter 3.
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long as the neuron ‘remembers’ having received a signal, the synapse remember
having sent it.

As described in section 3.3.3, the physiology behind spike-timing dependent

alterations of synaptic efficacy involves a cascade of processes ultimately leading

to a change in either the number or efficiency of active AMPA receptors — whether
. . . . . . 2+

this change is an up- or down-regulation is heavily influenced by the Ca —level

at the time of postsynaptic firing.

Here, this amounts to evaluating the conversion function when a postsynaptic
(back-propagated) spike arrives and comparing the value to a threshold ©,.
Figure 7.2 shows the conversion function after a single presynaptic spike and
how the threshold ©, confines a coherent temporal window (CTW) in which the
conversion function is above threshold.

Of course, presynaptic activity will not always consist of single, well separated
spikes — especially not if one wants to bring the dynamic mechanisms residing
presynaptically into business — which is why input spikes as bursts are treated
in the following.

The behavior of the conversion function, when fed with input bursts of three
spikes, is shown in figure 7.3, where two different sets of bursts have been used,
the difference between them being their inter-spike intervals.

To the left in figure 7.3, the spikes in the burst are separated by 200 ms, allowing
for the conversion function to return to zero between the inputs; that the peak
values are increasing in step with spike number two and three are due to the
facilitating effects of the synapse, reckoned by observing that the facilitation
variable Uy, does not reach its resting level.

In the right side of figure 7.3, the spikes are separated by 25ms, not leaving time
for the conversion function to return to zero before the next spike arrives, re-
sulting in a ‘facilitative’ appearance. Arbitrary conversion thresholds have been
inserted to point to the fact that shortening the inter-spike interval (increas-
ing the burst frequency) widens the CTW at a given threshold ©.. Looking
at e.g. the dashed line, the 40 Hz burst train results in a continuous learning
window, whereas for 5 Hz it is broken in three.

By slowly increasing the inter-spike burst frequency, one can imagine how the
initially parted peaks of the conversion function gradually approach each other
and finally merges, thereby ‘lifting’ the curve off from the zero level. The con-
version function surface evolving, when performing this gradual increase of the
inter-spike frequency of bursts of three spikes, is shown in figure 7.4.

One of the reasons for producing the surface in figure 7.4 was to be able to,
easily, get a feeling of how wide the coherent temporal window (CTW) was at a
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Figure 7.3 The conversion level after two different bursts of three spikes, showing
that a decreased inter-spike interval (raise in frequency) leads to accu-
mulation. Two arbitrary conversion thresholds ©_ are indicated by a
dashed and a dotted line respectively. Despite the unequal scaling of
the time axis, one notices that the times spent above the thresholds are
larger for the fast spike train: The coherent temporal window is wider.
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Figure 7.4 When slowly increasing the inter-spike frequency for three-spike bursts,

the conversion function can be viewed as a surface. The curve related

to a 40 Hz burst train has been isolated and can be compared to the
right hand side of figure 7.3.
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given spike separation and at a given conversion threshold, ©,. The latter was
specified by ‘cutting’ the surface at the desired height, producing contour curves
as the ones shown in figure 7.5.
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(a) A slight magnification of the con- (b) As for (a) but know with ©, = 2.
tours arising, when cutting the conver- Again, guide lines (dotted) have been
sion surface in figure 7.4 at ©, = 0.5. added to help rediscovering the level de-
The dashed lines are inserted to aid picted in figure 7.3.
comparison with the lower cut in fig-

ure 7.3.

Figure 7.5 Cutting the conversion function surface in order to obtain contour curves
helping to determine the width of the coherent temporal window (CTW)
at given values of the conversion threshold.

The first spike in the train always affects the conversion function in the same way,
regardless of how many spikes is succeeding it — this effect is indicated by the two
vertical lines to the left in figure 7.5(a). These lines are missing in figure 7.5(b)
since the threshold ®, = 2 is above the maximal possible conversion value after
a single spike (see figure 7.2).

In fact, the effects arising from putting more spikes into the input burst train,
are just added ‘to the back of the contour curves’, i.e. the rightmost side. This
is seen from figure 7.6, where the burst train consists of seven spikes. The
conversion threshold ©, = 0.5 produces a contour plot whose first part (left)
exactly matches the same cut for three spikes (figure 7.5(a)), the extra spikes
are only evident in the later part.

After having gotten acquainted with the conversion function, it is time to look
at what its activity measure is ‘converted’ into.
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45 Figure 7.6 Con-
40 tour lines of the
>35} conversion  function
8 3ol for seven spikes in
525- an input burst train
% (6, =0.5).

3201 The wiggles are un-
% 151 fortunately artifacts
7 10f from the automated
g2 5l contour determination

0 performed by Matlab.

0 01 02 03 04 05 06 07 08 The dotted line indi-

Time [s] cates the conserved
structure of the three-
spike contour from
figure 7.5(a).

7.1.4 Capturing correlations — the learning function

As mentioned above the dependence of Ca ' in learning is found to be of great
importance. Findings by e.g. Artola, Brocher and Singer shows that change of
synaptic strength is highly correlated with the amount of Ca’ flowing into the
postsynazptlc terminal when the postsynaptic neuron is depolarized. Afterwards,
if the Ca ' level in the terminal is very low, the strength of the synapse will not
change at all. How2e+ver, as the amount is increased depression will set in, and
for high levels of Ca = the synapse is strengthened. In section 3.3.3 the processes
behind these effects are explained.

On basis of the physiological findings a learning rule based on the Ca ' level is
introduced. Each time the postsynaptic neuron depolarizes, the strength of the
synapse is adjusted. This adjustment is done according to the Ca’ level, here
represented by the conversion function introduced in equation (7.4).

The strength of the synapse is modeled by the multiplicative constant L. L
is confined to the interval [0;1] by imposing a hard bound as described in sec-
tion 4.3. By introducing L, the current stemming from ions flowing through
AMPA receptors (equation (7.3)) is modified to

IAMPA = gAMPAT(t)(V - EAMPA)L (7'5)

From equation (7.5) it is clear that the newly introduced parameter L controls

6See section 3.3.3.
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the efficacy of the synapse. If one were to assign a physiological meaning to L
it could represent the number — or effect — of AMPA receptors located on the
postsynaptic bouton.

A simple affine transformation is chosen to represent the connection between
the conversion function C' (representing the Ca’ level) and the changes to the
synaptic strength:

AL=aC+b (7.6)

This learning rule implies that when the conversion function is above a threshold
0. = ’Tb the synapse is strengthened and when below threshold, the synapse is
weakened.

Looking back at the figures in the previous section describing the behavior of
the conversion function (figures 7.2 — 7.6), it is worth noting that the coherent
temporal window (CTW) is in fact exactly the time interval in which a postsy-
naptic spike must occur to induce potentiation. If the threshold is subtracted
the figures can be thought of as representing the learning window for the model
(see section 4.3).

Equation (7.6) is not completely in accordance with the ABS rule. At very low
Ca " concentrations the synapse strength is weakened when using equation (7.6)
where it, according to the ABS rule, should remain constant.

7.1.5 Comparison with other spike—based rules

Summing up all the above steps in the creation of the learning rule, it is possible
to describe it using the terminology from equation (4.16)7

To see this, it is useful to unravel the learning rule, starting from the back
with equation (7.6). Substituting the more commonly used w for the learning
parameter (or weight) L, and denoting the history of all spikes S

AL = fi(L,C, Spost) (7.7a)

Aw = fi(w,C, Spost) (7.7b)

C = f(T) = f2(B,[Tmas)) (7.7¢)

E = f3(Spre) (7.7d)
Y

Aw = F(w,Spre; Spost) (7.7¢)

The learning rule thereby fits into the general description of learning rules ac-
counted for in section 4.3. However, as shall be seen below, it differs from both

"Gerstner and Kistler (2000).
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the model proposed by Song et al. and Gerstner and Kistler.

Comparing the present learning rule to the ones proposed by Song et al. and
Gerstner and Kistler® two major differences are found. The first has to do
with when the synapse is modified. In the model of Song et al., the strength is
modified on arrival of both pre- and postsynaptic spikes. The rule proposed by
Gerstner and Kistler modifies the synapse by — from the outside — looking at the
time difference between the spikes, summing the contributions, and modify the
synapse at the end of a run. The present model only modifies the synapse when
the postsynaptic neuron fires. As a result, the learning window has no direct
contribution when postsynaptic firing occurs before presynaptic firing. If this
happens, the C' contribution from the last presynaptic spike is considered and L
is down regulated if below threshold?

The other main difference is that in the models by Song et al. and Gerstner
and Kistler, the learning window is a static property. Each time spikes occur,
the same learning window is consulted. As accounted for in section 7.1.3 the
learning rule proposed here employs a window that is varying from spike to
spike, accounting for presynaptic facilitating and depressing effects. A result of
this modification is e.g. that the synapse is more likely to be potentiated when
presented with bursts rather than with single spikes.

7.1.6 Soma

To test the synapse a postsynaptic neuron was required. In section 6.1 the most
commonly used neuronal models are described. Since the primary goal was to
test the synapse, a simple yet well performing neuronal model was chosen, the
integrate-and-fire neuron.

Introducing the postsynaptic current from equation (7.5) into the soma modified
from equation (6.23), the following equation for postsynaptic potential comes out

av X
gy = Vrest =V = VR > kngnLnra(t) (7.8)
n=1
The gain constant k introduced in section 6.3.1 is also used here to allow for
single synapses to act as a representation of many.

The desired operational level for the neuron is to be, on average, slightly below
threshold. Denoting this level V;, it is possible to calculate the condition for
this to happen.

8See figure 4.6.
9Compare e.g. figure 4.6 with figure 7.2.
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Parameter | Value | Unit
[Tmaz) 25 mM

ag 7T2E4 | sT1M~1
Bc 20 st

R 1 GQ

k % see text
g 150 | pS

O¢ 4

a, 1.1E6 | sTM1T
o 190 | st
Eainmpa 0 mV
Viest -70 mV

7 -54 mV
Tinact 1.5 ms

Trec 130 ms
Tfacil 530 ms

U, 0.03 | -

Table 7.1 Parameter values used for simulations.

The ‘equilibrium’ state is reached when % = (0. However since inputs are
fluctuating this is not a steady level, but rather an average level around which

fluctuations occur.

Assume that a large number of synapses'® participate in firing of the postsy-
naptic neuron (N large). The contribution from each synapse must then be
small if the neuron is not to be overstimulated. Furthermore, assume that each
synapse receives spikes at random times drawn from a Poisson distribution with
low parameter A\. The low value of A ensures that on average the spikes are
well separated. This does that the output from each synapse has the shape of a
‘single’ conversion function as shown in figure 7.2.

If the parameters k, g and L are similar for all synapses the sum in equation (7.8)
is only over 7, (t) and its equilibrium can be written as

V. N
0 = V—t —1—RkgL» ra(t) (7.9)
€q n=1

A further simplification uses that for small A\ two successive spikes does not

100r groups of synapses.
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influence each other

N

Jim D ralt) = NXF
n=1

Where 7 denotes the area under r(t) after a single spike. The product of the

parameters kgL needed to keep the neuron slightly below threshold, can now be

estimated

V;“est 1
L= -1 7.10
k ( Veq ) RgNX\r ( )

The value k was originally introduced to allow bundling of synapses. Therefore,
to obtain a reasonable equlibrium for the membrane potential (V.,) the k to be
chosen depend on the number of synapses.

For values 7 = 0.6 ms, g = 150 pS, L= 0.5, p=5 s~ ', V,; = —55 mV and the
values from table 7.1, the gain is estimated to

Vrest 1
E o= -1

( Veq ) RgNATL

_ (=70 ) 1

-\ =55 N -1GQ-150pS-0.5- 5s~1 - 0.6ms
1200
_— 11
N (7.11)

As the approximations involved in this calculation are somewhat crude, sim-
ulations was performed to decide a reasonable value for the gain, and to see
how many synapses were necessary to get a reasonable steady level. In equa-
tion (7.11), A = 5 s~1 was realized by using Poisson spike trains with, in average,
five spikes per second as input. The threshold for the postsynaptic neuron to
fire is Vp = —54 mV. In figure 7.7 the mean value of the neuronal potential
is subtracted from the threshold, indicating how far the neuron on average is
from firing. The gray scale represents the standard deviation. A low standard
deviation along with a low distance from threshold is optimal. With this setting,
the neuron will seldomly fire, but are ready to act on external stimuli. From
figure 7.7 it is seen that the higher the ‘gain’ kN, the lower the distance to firing.
And, the more synapses that are used, the lower the standard deviation. With
a high number of synapses it is possible to keep the neuron at a steady level
just below threshold. However, as each synapse is composed of 5 differential
equations, the computations are non-trival. If e.g. 400 synapses are used 2000
differential equations are integrated?

1A simulation of 25 s were performed on a 800 M Hz machine in 5-6 hours.
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B
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Mean distance from threshold [mV]

Figure 7.7 The margin between the average neuron potential and its threshold is de-
picted on the z-axis. Standard deviation is represented by the grayscale.
A large number of synapses keeps the fluctuations around the mean
value small.
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When demanding a low postsynaptic firing rate in responce to random input,
the gain must be chosen so that the margin between the meanvalue and the
threshold is larger than the standard deviation.

7.2 Testing the model

To test the computational capabilities of the synapse, settings were chosen in
accordance with the preliminary investigations. The gain was set to k = 1200/N
and the number of synapses was chosen to be N = 40, to balance simulation
time with low variance of the postsynaptic potential. As above, the synapses
were coupled to a single postsynaptic neuron.

7.2.1 Uncorrelated input

A desired property for synapses is to be able to suppress uncorrelated inputs,
in this context regarded as noise. Therefore, each synapse was given a low level
noise input. The noise input was imitated by uncorrelated Poisson processes
with X\ = 5, i.e. approximately five spikes per second.

The learning parameter L was initialized at random in the interval [0.1;1].

Using the above configuration, the model was tested with no external inputs,
i.e. the only stimulations were the Poisson trains.

In figure 7.8 the temporal development of the learning parameters L are shown.
As desired, uncorrelated input weakens all synapses. With weaker synapses
the average postsynaptic potential is also weakened and the neuron fires less
frequently. As the learning parameter is changed only at postsynaptic firing, its
adjustment becomes less frequent, leading to a stabilization of the neuron. In the
stable state the neuron’s membrane potential remains slightly below threshold,
making it ready to react if correlations should occur in the input.

In figure 7.9 the firing pattern of the neuron is shown for the beginning and the
end of the simulation. Towards the end, the neuron is almost inactive.

From this behavior it is seen that without cooperation, synapses are weakened
and the neuron will cease to fire. The configuration blocks the incoming noisy
signal.
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0 50 100 150 200
Time [s]

Figure 7.8 40 synapses are connected to a single postsynaptic neuron. Each synapse
receives Poisson spike trains with A = 5. Since the input is not corre-
lated, the learning parameters L decrease. After a while, the learning
parameters are to low to influence the postsynaptic neuron and firing
almost stops. This can be seen by noticing that only small changes in L
occur towards the end of the simulation. In other words, the postsynap-
tic neuron is kept slightly below threshold allowing only for occasional
spikes (see figure 7.9).

neuron Figure 7.9 The postsynaptic neuron
firing pattern before and after learn-
ing. The random stimuli decreases the
weights until they can only elicit sparse
firing.

0 10 20 ... 180 190 200
Time [s]
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7.2.2 Dynamic effects

The presynaptic side of the synapse was included to capture the dynamics of the
temporal structure of an incoming signal. The effects of this were tested in two
analogous simulations.

Once every two seconds an extra input signal consisting of 20 spikes was added.
The extra spikes were applied in two different ways, figure 7.10 explains the
difference. In the first simulation, five synapses received an extra spike at the
time indicated by ‘spikel’ in the figure, ten milliseconds later five other synapses
received a ‘spike2’ signal, etc. So, in groups of five, twenty synapses in total
received twenty extra spikes. In the second simulation, burst input was used.
Here five synapses received an extra spike at time = 10 ms, ten milliseconds later
the same five synapses received another spike, etc. In figure 7.10 this is indicated
by ‘burst’}? So, in one group, the five synapses in total received twenty extra,
spikes.

Figure 7.10 |Illustration of input pat-
burst 0 0 0 0 terns applied to test facilitating effects
of the synapse. In two separate simula-
spikel o tlon.s the synapses were .expo.sed to.ex—
spike2 o tra input spikes. In the first simulation,
spike3 + the extra input was distributed over dif-
spike4 * ferent synapses. In the second simula-

tion, a single synapse received bursts.

0 10 20 30 40 50
Time [ms]

The number and the timings of the extra spikes are identical. The only difference
is that in one case a burst is applied to a single synapse, whereas in the other
case only single spikes are applied at each synapse. With no dynamic effects the
two simulations would be identical.

Distributed signal

First, consider the case where the extra inputs are distributed. Like the situation
where the synapses received only noise input, postsynaptic firing in response to
the noise is suppressed. This does, however, not imply that firing stops. On
the contrary, after learning the postsynaptic firing is aligned exactly with the
incoming signal (see figure 7.11). This is important, since it shows that the

12This stimulus pattern is also known as a theta burst. As described in section 3.3 this is
similar to the signal used in in vitro induction of LTP.
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noise reduction encountered above is not just a reduction of all inputs, but in
fact allows signals to pass.

Figure 7.11 The firing pattern of the
stimulionsetf « =+ ==+ e e eeeeaaena postsynaptic neuron before and after
neuron PPPPPPPPPP1  learning. The dots indicate the onset
of the stimuli. In this case the stimuli
was distributed over 20 synapses (com-
pare to figure 7.10 and figure 7.12).

0 10 20 ... 180 190 200
Time [s]

It is worth noticing that the addition of five groups of four spikes every two
seconds is less than the noise spikes in the same interval. Since 40 synapses in
total receive & 5 noise spikes per second

Extra input signal in two seconds  5-4 1

= =— 7.12
Poisson noise spikes in two seconds 40-5-2 20 ( )
it means that on average there is twenty times more noise spikes than signal
spikes.

As shown in figure 7.12 the learning parameter L decays in the beginning as in the
case with only random input. After the average firing level of the postsynaptic
neuron is brought down, it is only possible for correlated input to induce firing
of the neuron. It is noted that cooperativity is needed for the neuron to fire, and
thus uncorrelated inputs are depressed. As the figure also shows, only synapses
receiving extra input are not depressed, competition among the synapses has
been achieved!®

Burst signal

Instead of distributing the extra input to 20 synapses, a burst of four spikes
were now given to five synapses. The number and timing of the extra spikes
are not changed (see figure 7.10). However, due to facilitating effects described
in connection with the conversion function, the effective strength of the signal
is increased. As can be seen in figure 7.13, the effect this has on the learning
parameters is tremendous. Within a short time!* all synapses are depressed
except the ones that receive extra input. The synapses compete for control of

131n appendix C the simulation has been continued for 1000 seconds (figure C.1), which
makes the competitive effects even more clear.
M Note that the figure only shows 80 seconds compared to 160 seconds in figure 7.12.
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0 20 40 60 80 100 120 140 160
Time [s]

Figure 7.12 All forty synapses receive the same noise signal as in figure 7.8. Further-
more 20 synapses receive extra input as illustrated in figure 7.10. Every
other second, four groups of five synapses are stimulated with a sin-
gle spike. The extra incoming spikes are distributed over 20 synapses.
Synapses receiving extra input are tagged with a marker, the shape of
the marker indicates the temporal order of the input, see figure 7.10
(see also appendix C figure C.1 where the simulation has been contin-
ued for 1000 seconds).
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the neuronal firing and the ones receiving extra input wins. After learning, the
neuron is highly sensitive to inputs from the winning synapses but not to inputs
from the losing synapses.

0 10 20 30 40 50 60 70 80
Time [s]

Figure 7.13 The number and timing of the incoming spikes are equal to what is
used in figure 7.12, the difference being that the signal here is coded
in bursts. The circles represent synapses receiving extra input.

The winning synapses are in fact so successful that after learning their need
to cooperate is reduced. This is seen from figure 7.14. After learning, the
postsynaptic neuron is active each time a stimulus is applied. However, the
individual winning synapses are strong enough to sometimes make the neuron
fire without highly correlated input. This indicates that after learning it is only
necessary to stimulate some of the synapses to activate the neuron.

Figure 7.14 The firing pattern of the
postsynaptic neuron before and after
learning. the dots indicate the onset
of the burst stimuli.

stimulionsetp s s cceeee  ceceeceoee
neurong

0 10 20 ... 180 190 200
Time [s]
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Two important things can be deducted from this simulation. First, regard the
input as being divided into two groups: One containing four synapses, a strong
group, and one containing a single synapse, a weak group. When the strong and
the weak groups are stimulated together, both groups are strengthened. If the
weak group was stimulated by itself, no effect would have been seen. In other
words, the model has the ability to associate weak inputs with strong.

Second, once the synapses have adapted to a pattern, it is possible to achieve
activation of the neuron by only stimulating part of the pattern. This is a
consequence of the reduced need to cooperate mentioned above.

It is worth mentioning that when presented with both kinds of input — burst
stimulation on 5 synapses and distributed stimulation on 20 synapses — the
bursting behavior wins (see figure C.2 in appendix C). Like the ‘Poisson only’
synapses, the synapses with distributed stimulation were depressed.

Summary

The presynaptic dynamics inherited by using the Markram and Tsodyks model
for transmitter release have been coupled to a simplified model of an AMPA
receptor. Also, the effective transmitter variable F, has been used as input f29+r
the ‘imaginary’ conversion function C', invented to imitate the postsynaptic Ca
level. Due to the facilitative and depressive effects, the shape of the coherent
temporal window (CTW) is strongly influenced by the input activity pattern
fed to the synapse. By chosing a threshold, ¢, the coherent temporal window
is comparable to the notion of learning windows presented in section 4.3. The
main difference between those reviewed there and the present is, that the CTW
is dynamic rather than static.

To get aquainted with the dynamic properties of the learning window, the activ-
ity dependence of the conversion function was investigated at some length. The
synaptic gain constants needed to set up models of computionally reasonable
sizes were likewise examined.

By setting up a model of 40 synapses coupled to a single postsynaptic neuron
and testing its reaction to different stimulus patterns, the synapse model here
proposed revealed that it is able to express the properties for which is was de-
signed.

When comparing the results of the previous section with figure 3.4, it is seen
that the synapse model can reproduce the effects characteristic for long term
potentiation.
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Cooperativity It is not possible for single inputs as in figure 7.8, to elicit firing
of the neuron. An assembly of cooperating synapses is needed, like depicted
in figure 7.12 or figure C.1.

Association When presented with a strong stimulus on some synapses and a
correlated weak stimulus on others, the weak stimulus will be potentiated
as well. This is illustrated by figure 7.13 if one considers the input as
coming along two different pathways.

Specificity That only the synapses participating in firing of the neuron are
enhanced, can be deducted from all figures.

Furthermore, the model incorporates facilitating and depressing effects as re-
ported and modeled by Markram and Tsodyks (1996). This is seen by the clear
difference between the behavior when fed with bursting input rather than dis-
tributed input; although the number of spikes was the same, the effects were
different. This points out the non-linear fashion of the synapse: The sum is
more than the sum of its parts.

Along the lines of the Hebbian learning rules presented in section 4.3, the per-
formance of the synapse model demonstrates some beneficial properties

Stability The synapse is stable per design, since it employs clipping of the
weights.

Competition Synapses compete for control over the firing times of the post-
synaptic neuron. When some synapses receive correlated input, these
synapses will be strengthened at the expense of synapses not receiving
input. In particular illustrated by the longer simulation in figure C.1.

Locality The learning rule is local, using only the pre- and postsynaptic firing
times to update the efficacy.

Finally, as seen in figure 7.11, the coorporative nature of the synapse enables it

to suppress low intensity uncorrelated inputs — noise.!?

15 Although, one mans noise might be another mans signal.



Discussion

» The moment one gives close attention to anything, even a blade of
grass, it becomes a mysterious, awesome, indescribably magnificent
world in itself.«

Henry Miller (1891-1980)

With March 1st approaching, the six months spent working on this report is
about to come to an end. Before finishing of, a few things that have come up
along the way, deserves a comment.

8.1 Discussion

Although the learning function L introduced is constructed to indirectly model
the Ca +—1eve1, as proposed by Artola, Brocher and Singer, it does not corre-
spond to the ABS rule. The reason being that the learning function L is not
incorporating an LTD threshold. A possible extension to the model is to im-
p1e2ment a changed weight update. Instead of using a linear connection between
Ca  and learning, a more physiological link could be chosen. This would bring
the model more along the lines of the ABS rule, creating a lower bound on the
Ca ' concentration below which no modifications occur. The inclusion of this
threshold might improve the computational properties as well, by changing the
competition from a win/lose situation to instead converging properties similar
to Oja’s rule.

Noting that the presynaptic side of the proposed model is exactly the model of
Markram and Tsodyks, one could ask if it not as well could have been another
presynaptic model. The model of Markram and Tsodyks was chosen because
of its physiological properties. The presynaptic dynamics act as a filter on the
input, and it could be interesting to see the effect of changing this filter. The
parameter investigation performed in section 6.2.2 has, so to speak, facilitated
this investigation.

109
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For further improvement of the filtering properties, an idea is to make an adap-
tive filter. To do this, it is necessary to change the presynaptic side. Physio-
logically this could be possible by including second messengers. Markram and
Tsodyks has proposed a model of second messengers effecting the presynaptic
side of the synapse. This model modifies the release probability of vesicles,
and thus leads to synaptic redistribution but not to changes in the conductance
properties postsynaptically.

A step in another direction would be to try an simplify the model, by cutting
away all the physiologically inspired states and aim at pure computational prop-
erties along the lines of Maass and Zador. In this way a computationally more
efficient unit might be produced — unless none of the equations are expendable.

The analysis performed on the gain constants provides insight into how to adjust
the internal parameters of the synapse in accordance with the size of the model
they are situated in. With this information available, an interesting step would
be to incorporate the synapses in larger networks, to investigate the overall
behavior.

In this respect, the type of coupling chosen — the network architecture — is of
significant importance for the possible outcome.

The associative element inherent in the synapse points to that a natural setting
would be in associative networks. Within this class, the ‘original’ fully-connected
version referred to in section 4.1 is a reasonable starting point. Another choice
could be copies of real network structures or abstractions thereof! One could also
change the connectivity to be purely random. However, still another presumably
very promising candidate is the ‘small-world’ architecture proposed recently.?
Instead of having completely regular or completely random connections, the
‘small-world’ networks can be adjusted to lie somewhere in between.

In the construction of networks of spiking neurons both excitatory synapses —
like the one presented in the present report — and inhibitory synapses could be
necessary. By inclusion of other types of neurotransmitter and receptors it might
be possible to catch the inhibitory effects by the present model.

The use of associative networks in cooperation with temporal encoding of in-
formation could be a way to ‘get in clinch’ with the binding problem. If the
encoding of e.g. visual and auditory stimuli is similar, correlated activity of two
stimuli could possible lead to a coupling of the two.

When continuing the development of the object oriented modeling tool, it might
be well worth the investment to spend some time getting insight into the specific

11ike Scarpetta et al. (2001) uses a structure inspired by the hippocampus and olfactory
cortex.
2See e.g. Watts and Strogatz (1998) or Bohland and Minai (2001).
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standards defined by the NeuroML language (Goddard et al., 2001). Although
still at the prototype stage, the intentions of the NeuroML project are com-
mendable. Functioning as an interchange format allowing various programs to
cooperate, it gives modelers the opportunity to easily simulate, test, and compare
their models with others. Fully developed, the outlined databases will function
as a publishing forum, saving future researchers some of the steps in re-invention
of the wheel.

Another natural extension of the here presented modeling tool is to add a graph-
ical interface on top of the object oriented environment. Although already fully
functional, this would ease manipulation of the different objects. Of course, one
would have to assess whether the operational gain bear comparison with the
perhaps tiresome programming,.

As the scepticism in connection with the discussion of LTP revealed, scientist
do still not agree on the origins or importance. Perhaps a lesson can be learned
from the hippocampus. Memory is consolidated from short term to long term by
the hippocampus. Memories are, however not not stored there. And since LTP
has been found in the hippocampus, it might be involved, if not as the memory
mechanism, perhaps rather then as an attention directing mechanism.






Conclusion

9.1 Conclusion

The work in the present report concentrates on activity dependent learning in
biological synapses and models thereof.

A brief review of the multifaceted neuronal and synaptic physiology realized the
need to direct the attention to some prototypical properties. For neurons, em-
phasis was placed on their stereotype behavior when emitting signals. Synaptic
activity showed to possess filter-like properties involving use dependent dynamics
mediated by neurotransmitter redistribution.

Narrowing the view to the physiological origins of long term synaptic plasticity
denoted the importance of temporal pairing of activity in a Hebbian fashion.
An influential factor hereto was the correlation ca2ptur1ng nature of the NMDA
receptor, governing the postsynaptic influx of Ca  ions. Neuroscientists have
established that these ions are directly involved in up- and down-regulation of
AMPA receptors in a manner allowing for LTP and LTD to be reverse pro-
cesses. LTP displaying characteristic features like cooperativity, associativity
and specificity.

An outline of artificial network models soon led to a focus on local Hebbian learn-
ing rules in both a rate- and spike-based setting. The spike-timing dependencies
encountered by experiments found their equivalent in the notion of the learning
window, the shape of which controls the synaptic modifications. In particular,
an asymmetric learning window produces competition among synapses.

To aid the implementation of models, an object oriented simulation tool was con-
structed. The object oriented structure provided a convenient platform, helping
to easily modify a given model setup and facilitated the addition of new, never
dreamt of components.

With this tool, various existing models of synapses exhibiting use dependent
dynamics were implemented. Especially the model by Markram and Tsodyks
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was investigated in some detail, as it, based on biologically founded variables,
demonstrated to have both depressive and facilitative properties.

The simplified version of an AMPA receptor suggested by Destexhe et al. was
laid forward. Also, the spike timing-dependent plasticity model by Song et al.
was looked into. The latter leads to competition among synapses but does not
include short term, e.g. facilitative dynamics.

Taught by experience, it was decided to let some of the gained knowledge man-
ifest itself in a self-developed plastic, synaptic model. The requirements were
that it should incorporate spike-timing dependent plasticity alongside short term
dynamics as depression and facilitation. It was desired that the plastic effects
were to be expressed under influence of the postsynaptic Ca level.

Inspired by the role of the NMDA receptor, an ‘imaginary’ function — the con-
version function — was fabricated to mimic the Ca ' level. Directly affected by
presynaptic short term dynamics, the shape of the conversion function is also a
dynamic entity, providing the synapse with a dynamic learning window. An ex-
amination of this learning window together with computations and simulations
of the effect of synaptic gain constants laid the foundation for building models
of several synapses.

A model setup comprising forty synapses confirmed that the requirements of the
here proposed synapse are met. The short term dynamics were affirmed by a
clear difference between the outcome of two stimulation protocols — favoring the
one assisting facilitative effects. Indeed these simulations illustrated the non-
linear fashion of the synapse by implying that the sum is more than the sum of
its parts.

By stimulating half of the model setup with correlated input, competition among
synapses evolved. Synapses receiving correlated inputs were strengthened at the
expense of the remaining part.

The model involves some level of biological realism as it demonstrated the ability
to comply with the features seen in connection with long term potentiation:
Cooperativity, associativity, and specificity.

Cooperativity was verified by the fact that single or weak inputs are insufficient
in getting the model neuron to fire whereas coordinated input signals succeed.
Indeed, the cooperative nature of the synapse enables it to actually suppress low
intensity uncorrelated inputs.

Considering the stimulated pattern as being presented along a strong and a weak
pathway respectively, suggested an associative potentiation of the weak stimulus
with the strong stimulus. Specificity was a prevalent feature in the performed
simulations as only synapses participating actively in engagement of the model
neuron were enhanced.
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»Science is facts; just as houses are made of stone, so is science
made of facts; but a pile of stones is not a house, and a collection of

facts is not necessarily science.«

Absolute refractory period A short time
interval (2 ms) after the neuron de-
polarizes in which it cannot be depo-
larized again.

Accommodation Slow depolarization in-
creases the threshold and, if suffi-
ciently slow, might result in no action
potential at all.

Acetylcholine A neurotransmitter. The
general one involved in excitation of
muscles.

Adaptation A decline (fast or slow) in
receptor sensitivity to a maintained,
continuous stimulus. A mechanism
reacting to changes in the degree of
stimulation rather than to a steady
level.

Afferent Inward conduction, e.g. nerve
fibers carrying signals toward the
brain or dendrites conducting signals
toward the soma.

Agonist Chemically used of a substance
that, when binding to a receptor,
leads to a reaction or activity. In mus-
cles the word is used of the active
muscle (paired with a limiting antag-
onist).

Jules Henri Poincaré (1854-1912).

a-function A function comprised by two
exponential functions, one rising and
one decaying.

AMPA receptor The major glutamate re-
ceptor in the brain, also affected
by the agonist, a-amino-3-hydroxy-5-
methyl-4-isoxazole-propionate .

Antagonist One acting against action,
e.g. when blocking a receptor. Also
used about muscles limiting the ac-
tion of the agonist.

ATP Adenosine triphosphate. A molecule
acting as a storage of and a trans-
portation mechanism for energy.

Augmentation Involves an increase in
transmitter release. Believably due to
calcium residuals at the presynaptic
terminal after a recent stimulation, as
with facilitation but on a longer time-
scale.

Axon Nervefiber projecting outwards from
the soma. The word axon has roots

in the Greek word for axle.

Axon hillock Region of axonal departure
from the soma. Origin of action
potentials due to high density of
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+ N
Na channels resulting in a low depo-
larization threshold.

Bouton Swelling at the terminal end of a
neurite. Most often involved in synap-
tic contact.

Brainstem The upper part of the spinal
cord; also known as hindbrain. Com-
prising the medulla, midbrain, and
pons.

Cerebellum Lies above and behind the
pons. Integrates sensory, motor, and
position information in order to influ-
ence outgoing motor pathways in co-
ordination of movement. May be in-
volved in language and similar cogni-
tive functions.

Cerebrum The largest part of the brain
containing the white and grey mat-
ter. Consists of two almost symmet-
rical hemispheres, whose outer layer is
the cerebral cortex.

Classical conditioning Introduced by lvan
Pavlov to describe the underlying pro-
cess, enabling an individual to re-
spond (conditioned response) to a
stimulus that initially was insuffi-
cient (conditioned stimulus), when
this ineffective stimulus is paired with
a stimulus (unconditioned stimulus)
that in itself is able to provoke a re-
sponse (unconditioned response).

Climbing fiber Afferent to the cerebellum
(there are two such types, the others
being mossy fibers). A Purkinje cell
makes synaptic contact with a single
climbing fiber.

Corpus callosum A large bundle of nerve
fibers connecting the two hemispheres
of the cerebral cortex. Consists of
about 200 million fibers.

Dendrite  Nervefiber projecting towards
the soma. The name comes form the
Latin word for tree.

Depression Continued stimulation, at a
relatively high rate, leads to a reduc-
tion in synaptic efficiency because of
a depletion of presynaptic transmitter
available for release.

Efferent Outward conduction, e.g. nerve
fibers carrying signals away from the
brain or axons conducting signals
away from the soma.

Endocytosis Invagination of the cell mem-
brane around substances exterior to
the cell thereby enclosing the sub-
stances in intracellular vesicles.

Enhancement Another word for facilita-
tion.

EPSP Excitatory postsynaptic potential.

Exocytosis Release of cellular substances
(as secretory products) contained in
cell vesicles by fusion of the vesicu-
lar membrane with the plasma mem-
brane and subsequent release of the
contents to the exterior of the cell
(Merriam-Webster, 2001).

Facilitation An increase in transmitter re-
lease. Believably due to calcium resid-
uals at the presynaptic terminal after
a recent stimulation, as with augmen-
tation but on a shorter time-scale.

GABA The amino acid «y-aminobutyric
acid considered acting as the ma-
jor inhibitory neurotransmitter in the
brain.  Operates at e.g. the fast
ionotropic GABA 4 receptor and the
slower metabotropic GABARB recep-
tor.

Glutamate The main excitatory neuro-
transmitter in the cortex.
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Granule cell The most common neuron
type in the brain. Also, the only exci-
tatory cell type of the cerebellum (see
parallel fibers).

Plural: Gyri. The ‘bumps’ on the
cortex bulging outwards.

Gyrus

Habituation Reduction of the magnitude
of a response to a constant, repeated
stimulus. A high-level phenomenon
not seen in sensory receptors but
rather in behavioral responses to stim-
uli. A form of non-associative learn-
ing. Appears in a short-term (min-
utes) and a long-term (hours) version.

Hippocampus Brain structure below the
cortex involved in forming memories;
particularly in consolidating short-
term memories into long-term. Be-
lieved to take part in capturing cor-
relations between activity in different
brain areas, e.g. motor planning in the
frontal lobe and sensory cortex activ-
ity.

Hypothalamus Hypo-, under, the thala-
mus. Contains nuclei controlling hor-
monal secretion from the pituitary
gland. Also involved in behavior with
connection to the daily light/dark cy-
cle (circadian rhythm).

In situ In the natural place or original po-
sition.

In vitro Latin for ‘in a glass’. Used to de-
scribe things as happening outside the
living body, i.e. in an artificial environ-
ment.

In vivo Latin for ‘in the living'.

lonotropic receptor  Class name used
when the neurotransmitter receptor
and the controlled ion-channel are
part of the same protein complex (as

opposed to metabotropic receptors),
e.g. AMPA, NMDA, and GABA,4 .

IPSP Inhibitory postsynaptic potential.

Kinase An enzyme involved in phosphory-
lation, the transferring of phosphate
groups to a substrate.

Lalapalooza Something superior, unusual
or outstanding (perhaps the word it-
self is lalapalooza).

Medulla oblongata Part of the brainstem
prolonging the spinal cord. Contains
nuclei for regulatory purposes such as
blood pressure and breathing.

Metabotropic receptor Class name used
when the ion-channel is indepen-
dent of the neurotransmitter recep-
tor and the gating occurs by means
of intracellular second messengers
(as opposed to ionotropic receptors),
e.g. GABAp .

Midbrain Containing nuclei linking various
parts of the brain involved in motor
functions. Holds the substantia nigra
possibly involved in voluntary move-
ment.

Mossy fiber Two different meanings. a)
Axon running internally in the hip-
pocampus (from dentate gyrus to
CA3). b) Afferent to the cerebellum
(there are two such types, the others
being climbing fibers).

Neurite Axon or dendrite.

NMDA receptor A glutamate receptor es-
pecially sensitive to the artificial sub-
stance N-methyl-D-aspartate . The
requirements for the ion channels of
this receptor to open are that gluta-
mate are docked and that the mem-
brane is depolarized. This correlation
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capturing functionality is believed to
be of importance in learning.

Parallel fibers Highly regular axons of
granule cells in the cerebellum. Dis-
tributes excitation to all other cere-
bellar neurons.

Pons Connecting the medulla oblongata
and the midbrain in the brainstem.
Relay information about movement
and position from the cerebellum to

the cortex.

Potentiation Getting stronger. Often as-
sociated with transmitter release as in
e.g. post tetanic potentiation where
the presence of an action potential
is believed to promote mobilization
of presynaptically stored transmitter,
making it more readily available.

Priming Establishing short-term memory
at the sub-conscious level e.g. by
quickly flashing a picture. Also used
of vesicles to which calcium-binding
proteins catalyzing release are bound.

Purkinje cell The predominant neuron
type (inhibitory) in the cerebellum,
whose output only goes through this
type of cells.

Pyramidal cell In cerebral cortex the main
excitatory cell, whose axons form the
white matter.

Readily Releasable Pool (RRP) Specific
membrane sites at the presynaptic
terminal from where docked vesicles
can undergo exocytosis.

Regression Statistical analysis with the ob-
jective to predict the value of a (usu-
ally) continuous variable.

Reinforcement learning A variant of su-
pervised learning in which the critique

given, only regards the correctness of
an answer, not what the correct an-
swer is.

Retrograde messenger  Postsynaptically
produced diffusible second messen-
gers acting presynaptically.

Reversal potential The potential reached,
when the ionic currents through mem-
brane channels for a given ion type
balance or cancel out. Can be calcu-
lated by Nernst's equation, given in
equation (2.1) at page 7.

Second messenger Intracellular molecule,
whose concentration or activity is af-
fected by binding of transmitter.

Sensitization A high-level phenomenon en-
hancing the efficiency of synapses.
Like habituation, a form of non-
associative learning operating on
shorter or longer time-scales from
minutes to hours.

Soma The cell body of a nerve cell.

Spine Small membrane protrusion on es-
pecially dendrites. Common sites for
synaptic contact.

STDP Spike timing dependent plasticity.
Long-term synaptic (plastic) changes
depending on the relative timing be-
tween paired presynaptic and postsy-
naptic action potentials.

Substantia Nigra Malfunction often leads
to tremor as in Parkinson's disease.

Sulcus Plural: Sulci. The furrows or ‘val-
leys’ in the cortex.

Supervised learning Often referred to as
‘learning with a teacher’, telling the
correct answer if being wrong.
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Synapse The contact site between neu-
rons. It comes from Greek, with
‘syn’ meaning ‘together’ and ‘hap-
tein’ meaning ‘to clasp’. Probably
the word was first used by Charles S.
Sherrington around 1897.

Synaptic redistribution A modification of
the short-term dynamics of synapses.
Primarily enhances the amplitude of
synaptic transmission for the initial
spikes in a train, while having little
or no effect on the ultimate, steady-
state behavior.

Synaptic scaling A global modification of
synaptic strength possibly due to a
postsynaptic change in the number of
functional glutamate receptors (Ab-
bott and Nelson, 2000).

Tabula rasa The notion of the mind in
its hypothetical blank or empty state
before receiving outside impressions.
Often used to describe something as

existing in its original (or even pris-
tine) state.

Tetanic stimulation High-frequency stim-
ulation of the presynaptic neuron (in
some cases 500-1000Hz).

Thalamus Relays incoming sensory path-
ways to the cortex and also the feed-
back fibers. An internal structure (the
intralaminar nuclei) is believed to be
implicated in consciousness.

Vesicle In synapses, a lipid bilayer mem-
brane sack containing neurotransmit-
ter.

Universal computation The ability to
carry out any computation that an or-
dinary digital computer can.

Unsupervised learning ‘Learning without
a teacher’. Does not require to be
guided by correct answers but learns
the underlying structure or pattern
from the input data themselves.






Synapse modeling

In this appendix some of the models which have been investigated in some detail
during the project are presented. Even though they are not used directly in
the creation of the final synapse, they have contributed to the development and
provide background knowledge on how synapses are modeled.

A.1 Liaw and Berger

At the presynaptic side a number of different terminals (i) are involved in the
release of transmitter. At each of these release sites, different mechanisms (m)
are involved in the release. At a particular terminal only one type of transmit-
ter can be released. The probability of release, Pr;, is simply the sum of the
mechanisms F; ,,; the size and sign of the ‘weight’ K; ,,,, determines whether the
mechanism is depressing or facilitating and to which degree

 dFim
Tem T gy
Pri(t) = Y Kim()Fim(t) (A.1b)

= —Fim+0(t—ty) (A.la)

As described in section 2.3, transmitter release is a stochastic mechanism, which
can only occur if the readily releasable pool of this particular transmitter is not
empty (Nit”t“l > 0). When an action potential arrives at the synapse, a vesicle
is released with probability Pr;. However, in this model Pr; is compared to a
threshold ©; and release occurs deterministically when Pr; > ©; at the time of
arrival of a presynaptic action potential.

Release of a vesicle adds a quantum neurotransmitter of Q); to the pool of trans-
mitter of type ¢ in the synaptic cleft, N;. This pool decays exponentially

aN; _ =N,

dt = W + Ql ) 6(t - tsp)H(P'ri - ®z) (A2a)
dNtotal Nmaz _ pNtotal
Cllt = 1,1_71 - Qz . 6(t - tsp),H(P"'z' - 91) s (A2b)

k3
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where 7/V! is the time constant for clearing neurotransmitter from the cleft, 7;”
the time constant for replenishing neurotransmitter, N;"** the maximal amount
of available neurotransmitter, and #() denotes the Heaviside function. At the
postsynaptic side, the potential is a function, G ,, of transmitter in the synaptic
cleft! As on the presynaptic side different mechanisms, n, at different sites, j,
are involved in creation of the signal

PSPi(t) =Y W;n(t)Gjn(Ni)(t) (A.3)

where W; () denotes the efficacy of the postsynaptic mechanism n, at site j.
This is the general formulation of the dynamic synapse found in Liaw and Berger
(1999); the time constants 77, the weights for the presynaptic activities K; p,,
the weights for the postsynaptic activities Wj ,, and the function G, are not
defined in this article.

In earlier articles by Liaw and Berger (1997, 1998), the constants and functions
are defined for a less general model? The simple model by Liaw and Berger
(1997) has only one presynaptic terminal with four different mechanisms. One
very fast representing the action potential R, two facilitating Fy, F> and one
feedback mechanism Mod. Mod represents a negative feedback from the post-
synaptic neuron.

The presynaptic side of this synapse is

dR —R+8(t — tgp)
_— = —= A4
dt TR ( a)
dfy B 4 0( — tep) (A.4b)
dt TF1
B, B+t —tsy) (A.4c)
dt TF2
dMod _ —Mod + 6(t — tsppost) (A.4d)
dit TMod
dNtotal N™mar _ Ntotal
= — Qi H(Pr—0)d(t—ts)  (Ade)
dt Trp
PT(t) = KRR+KF1F1 +KF2F2+KMOdMOd (A4f)

!In Liaw and Berger (1999) it is mentioned that G;, typically has the form of equa-
tion (A.la).

2In these articles, however, an inconsistency appears, one of the equations is formulated
as a difference equation rather than a differential equation, leading to some trouble with the
integration.
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The activity in the cleft and on the postsynaptic side is

dN -N
— = — +Q;-H(Pr—0)§(t —tsp) (A.52)
dt TNt
dEPSP  —EPSP + Keps,N (A5D)
dt B Ty ’ -

where 7, is the membrane time constant. Parameter values can be seen in
table A.1.

Liaw and Berger have also proposed a way to modify the synapses, a learning
rule based on correlations between presynaptic and postsynaptic activation. The
coefficients on the presynaptic side of the synapse K; ., (equation (A.lb)) are
modified when a postsynaptic action potential (Ap) occurs

AKz',m = amLm,iAp 3 (AG)

where a,,, is the learning rate for the particular mechanism and L, ; is the
activation level for mechanism m in synapse 3. It is a little vague what exactly
is meant by »the activation level of m in synapse i« since no further description
is given and, to our knowledge, no more recent articles comment on the matter.
A guess is that it is Fy, ; in equation (A.la) since this represents how much the
m** mechanism is active at the time of the postsynaptic action potential.

Results from using learning dynamic synapses in »learning in robust speech recog-
nition« are reported in Liaw and Berger (1997, 1999).

To sum up, the model of Liaw and Berger uses sums of exponential functions
to model both the pre- and postsynaptic side of the synapse. By introducing
the Dynamic Synapse, a very general model is presented which seems capable of
approximating any physiological effect. With little biological argumentation a
learning rule modifying the presynaptic coefficients is introduced. Judging from
the sparse data published, the learning rule is efficient. The model is used in a
commercial application for speech recognition, perhaps explaining the scarcity
of published results.

A.2 Maass & Zador

As Liaw and Berger, Maass and Zador (1999) present a phenomenological model
using exponentially decaying function to capture release dynamics. On the basis
of experiments revealing the dynamics of single release sites, a discrete stochastic
model is presented and analyzed. As described in section 4.2.2, Maass (1996,
1997b); Maass and Sontag (2000) have provided theoretical results regarding the
computational power of dynamic synapses.
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Parameter | Value | Unit
TR 0.5 ms
TF1 66.7 ms
TF2 300 ms
TMod 10 ms
TNt 1.0 ms
Trp 3.33 ms
Tepsp 5.0 ms
Kg 10 -
K 0.16 -
Kpo 80 -
Koa -20 -
Kepsp 0.5 -
N™az 3.2 -
] 1.0 -
Q 1.0 -

Table A.1 Parameters used in the Liaw and Berger Synapse.

The model concentrates on capturing the release dynamics, and thus has no
postsynaptic side. In fact, it provides a mapping S(t) from a time series of
presynaptic spikes (t|t; € Rt1 < ta < ...) to a pattern of release events (q|g; €
{R, F'}). Meaning that the synapse maps every input spike into a release event
which is characterized by either Release (R) or Failure of release (F'). One release
event, ¢;, is associated with every input spike, ¢;. The probability of release at
time ¢ is

p(t) = 1—exp OV (A.7a)

Clt) = Co+ ) clt—t;) (A.7D)
t; <t

V() = max(0,Vo— Y v(t—t)) (A.7¢)

ti|t;<t A ¢i=R

C(t) is the facilitating term, whenever a spike arrives the probability of release
is increased. The V'(t) is a depressing term, whenever a vesicle is released the
probability of release is decreased. The functions ¢(t) and v(t) are exponentially
decaying with different scaling and time constants. In figure A.1, the effects of
the facilitating and depressing synapses can be seen. The reaction of this model
is similar to the presynaptic part of the model by Liaw and Berger?3

3 Although Maass and Zador present a less general model, they account more thoroughly
for the parameters and extensive theoretical results that are provided.
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presynaptic } | | l . ‘ |
spike train
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function V(t} —I/—I/I/_—V

(depression)
1
function 2 x Xx =
(release pyt; ) X x *
- X
probabilities) 0
F FR R FRF F R
release pattern
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t fht; Ly b5 tst7 ls to time

Figure A.1 figure from (Maass and Zador, 1999, p.906)
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Parameter | Value | Unit

ky 10° s ImM—*
kuw 100 st

k1 106 sTimM !
ko 100 571

k3 4000 | st

k. 10% st

Xmawz 0.001 | mM

n 100000 | —

Table A.2 Parameters used in the presynaptic part of the Destexhe, Mainen and
Sejnowski Synapse.

Parameter | Value | Unit

Ry 13E6 | M—1s~ !
R 5.9 s71

Ry 8.6FE4 | s7!

R, 900 571

R, 64 s 1

R, 2.7E3 | s71

R, 200 571
gAMPA 0.35-1 1| nS
Eainmpa 0 mV

Table A.3 Parameters used in the full model of AMPA receptors.

By varying the parameters Cy and Vj, it is possible to obtain any desired release
probability for two consecutive spikes, yielding great possibilities for using this
kind of synapse as a filter?

A.3 Destexhe, Mainen and Sejnowski

The parameter values of the different parts of the Destexhe et al. (1998) model,
treated in section 6.2.1 on page 68.

1

BV) =17 exp(—0.062V)[Mg"]/3.57

(A.8)

4Which is exactly what Maass and Zador wish, see section 4.2.2.



Parameter | Value | Unit

a 1.1E6 | s~ TM~!T
B 190 st
JAMPA 0.35-1| nS
EAMPA 0 mV

Table A.4 Parameters used in the reduced model of AMPA receptors.

Parameter | Value | Unit

«a 72FE4 | s 1M1
B 6.6 | st
[Mg“J 1-2 | mM
ENMDA 0 mV

Table A.5 Parameters used in the model of NMDA receptors.






ANN Timeline

A brief run-through of some of the early findings in the field of Artificial Neural
Network theory. For further reading refer to e.g. Hertz et al. (1991), Bishop
(1995), Cybenko (1996) or Jain et al. (1996).

1943 McCulloch and Pitts. Binary output from a threshold model of a single
neuron, linearly combining real scalar inputs. The Heaviside step function
H were used as the particular choice of activation function together with a
threshold: H (3, w;xz; — 6). They proved that an assembly of these units
are able to perform universal computation.

1960’s Rosenblatt. Introduced the perceptron, a network of threshold units.
As long as a monotonic activation function is used, separation can only
happen for linearly separable patterns. However, such patterns justify the
perceptron convergence theorem: A perceptron learning procedure con-
verges after a finite number of iterations.

1960’s Widrow and Hoff. Developed the ADAptive LInear Element (ADA-
LINE) an analogue electronic device. Resembling the perceptron although
the learning method was different.

1960’s Minsky and Papert. Establishment of the limitations of a simple per-
ceptron; dampened the enthusiasm for almost 20 years.

1965 Zadeh. Fuzzy sets. Modeling systems where descriptions of the involved
processes are vague and encumbered with uncertainty. By the means of
proper sets of rules and membership functions, fuzzy inference deals with
obtaining knowledge or data based on these vague descriptions. It is only
the human interpretation of the problem that is fuzzy; the mathematics
used to solve the fuzzy problem are precise and ‘non-fuzzy’.

1968 Kohonen. Self-organizing feature map (SOM). A grid imposes an initial
topological structure defining neighborhoods. Cycling through the data,
the grid value ‘closest’ to the data point is perturbed in direction of the
data. Finally the neighborhood structure of the grid imposes a clustered
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structure with particular grid points emerging as representatives for the
various clusters.

1974 Werbos. Developed the back-propagation learning method, but it was not
widely used until several years later (see 1986).

1980’s Grossberg and Carpenter. Adaptive resonance theory (ART). Another
approach to self-organization and clustering. Data are cycled through re-
peatedly and assigned to the closest representative. Too large a distance
leads to the creation of a new representative. Balancing the tradeoff be-
tween assigning to existing representatives or generation of new ones can
be controlled be a so-called vigilance parameter (effectively a threshold).

1982 Hopfield. Introduced an associative network able to store memories or
patterns in a manner allowing for the full pattern to be recovered, even
though only partial information is given as input.

1986 Rummelhart, Hinton, and Williams. Popularization of the back-propagation
learning algorithm first proposed by Werbos. Back-propagation networks
are so called because they distribute pattern recognition errors ‘back’
through the network. A very widely used type of networks.



Extra figures

Figure C.1

100 200 300 400 500 600 700 800 900 1000
Time [s]

Supporting the presentation given in section 7.2.2, comparable with fig-
ure 7.12. All forty synapses receive the same noise signal as in figure 7.8.
Furthermore 20 synapses receive extra input as illustrated in figure 7.10.
Every other second, four groups of five synapses are stimulated with a
single spike. The extra incoming spikes are distributed over 20 synapses.
Synapses receiving extra input are tagged with a marker, the shape of
the marker indicates the temporal order of the input.
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Figure C.2 Supporting the presentation given in section 7.2.2. Comparable with
figure 7.12 and figure 7.13, as the stimulation pattern used in this figure
was a combination of the ones used in those figures. Here, the synapse
model received both distributed and burst signals. The two types of
stimulation were separated by one second. All five 'burst-receiving’
synapses win.
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