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Abstract

This thesis is about the statistical shape analysis of the human ear canal with
application to the mechanical design of in-the-ear hearing aids.

Initially, it is described how a statistical shape model of the human ear canal is
built based on a training set of laser-scanned ear impressions. A thin plate spline
based approach creates a dense correspondence between the shapes in training
set. In addition, a new flexible, non-rigid registration framework is proposed
and used to optimise the correspondence field. The framework is based on
Markov Random Field regularisation and is motivated by prior work on image
restoration. It is shown how the method significantly improves the shape model.

In the second part of the thesis, the shape model is used in software tools that
mimic the skills of the expert hearing aid makers. The first result is that it is
possible to learn an algorithm to cut an ear canal in order to produce an optimal
in-the-ear hearing aid. Secondly, a framework for component placement using
a coupling of stochastic optimisation and the results from the shape model is
proposed. It is successfully, used to place the so-called faceplate with associated
component on in-the-ear hearing aids. In addition, the idea of one-size-fits-most
shells is explored.
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Resumeé

Denne afhandling beskriver brugen af statistisk formanalyse af den menneskelige
grekanal i det mekaniske design af i-gret hgreapparater.

Forst beskrives det hvordan en statistisk formmodel af den menneskelige gre-
kanal er lavet pa baggrund af et traeningsseet af laser-skannede gre aftryk. En
Thin Plate Spline baseret metode genererer en kompakt korrespondance mellem
formerne i treeningsseettet. Endvidere er en fleksibel, ikke-rigid registrerings-
metode foreslaet og brugt til at optimere korrespondancefeltet. Metoden er
baseret pa Markov Random Field regularisering og er motiveret af tidligere
arbejde vedrgrende billedeopretning. Det er vist hvordan metoden signifikant
forbedrer formmodellen.

I den anden del af afthandlingen, bruges formmodellen i programmer, der efter-
ligner evnerne hos de bedste af dem der laver hgreapparater. Det fgrste resultat
er, at det er muligt at leere en algoritme at laegge et snit i en scannet grekanal
for at producere et optimalt i-gret horeapparat. Dernaest, foreslas en metode til
placering af komponenter. Metoden bruger en kombination af stokastisk opti-
mering og resultater fra formmodellen. Den er succesfuldt brugt til at placere
den sakaldte faceplate med komponenter pa i-gret hgreapparater. Derudover er
ideen om en skal af en stgrrelse og form, som passer de fleste forfulgt.
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CHAPTER 1

Introduction

It is well known that the physical presence of hearing aids can affect observers’
attitudes toward the hearing aid wearer. At least that is the experience of
certain hearing aid users [153].

Today, the miniaturisation of hearing aid components provides hearing aid users
with a variety of choices that can satisfy both their cosmetic and acoustic per-
formance needs. The hearing aid industry has realised, that for the hearing aid
user the cosmetics are just as important as acoustic performance [153].

The smallest available hearing aid is a completely-in-the-canal (CIC) hearing aid
and it has a number of attractive properties compared to traditional hearing
aids. A well-produced CIC is as good as invisible when worn and it has the
potential of providing superior acoustic performance [104, 191, 229].

Until very recently, the production of a CIC for a given ear was solely a manual
and difficult task and the quality of the finished instrument was dependent on
the skill of the operator. Hence, there is a high return rate of CIC instruments
that do not meet the expectations of the user.

The production of CIC hearing aids is changing from the traditional manual
handcrafting methods to being digital. While the introduction of laser scanning,
rapid prototyping, and advanced CAD software has had a tremendous impact on
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the way CIC instruments are produced, the underlying need of general empirical
knowledge and human operator skills has remained relatively unchanged. Con-
sequently, the quality of the finished hearing aid is still dependent on operator
skills.

The introduction of digital production methods means that large amounts of
digital data are becoming available. The data consists of scanned ear impressions
and the associated digitally designed CICs. This type of data was very difficult
to obtain before, due to the nature of the processes and the products, and the
lack of inexpensive scanning equipment.

Obviously, this opens up for a wealth of new possibilities. Foremost is the idea of
learning from experience and using this knowledge in the future CIC production.
Hence, one aim of this thesis is to analyse, formalise, and mimic the routines
used by the expert operator. Doubtless, the operators have knowledge of the
anatomical variation of the human ear canal. Consequently, the initial goal is
to develop methods that can analyse and use the anatomical variation of the
human ear canal. Luckily, the scanned ear impressions provide an excellent
basis for that.

Furthermore, it is becoming increasingly clear, that the mechanical properties of
hearing aids can be improved considerably. It is obvious that the space available
inside a CIC hearing aid is severely limited. Hence, both the mechanical design
of the faceplate and the internal components of the CIC and the placement and
orientation of the internal components are critical as to whether it is actually
possible to build a CIC for a given ear. Today the aforementioned designs are
based on the experience and skills of the mechanical engineers and a general
informal knowledge about the anatomy and geometry of the ear.

In the hearing aid industry, it is acknowledged that systematic and accessible
knowledge of the geometry of ear canals and the variation thereof potentially
could be extremely helpful in the design of CIC faceplates and components. In
this respect, accessible means that the geometrical data should be accessible
from the CAD software used by the mechanical engineers in the design process.

Finally, it has been known for more than two decades that the ear canal deforms
when a person is speaking, chewing, or yawning [195, 196]. This deformation
may cause acoustical feedback or physical discomfort to a hearing aid user since
the shell is rigid. Again, systematic knowledge of the dynamics of ear canal
geometry and tools to apply that knowledge in the mechanical design of hearing
aids are greatly in demand.

It is obvious that the systematic description of the shape of the ear canal must
be done using statistical methods. In recent years, shape analysis has been
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used in the description, identification, and segmentation of biological shapes.
In shape analysis, the idea is to describe the shape information as being data.
The basic idea that changes in biological shape can be described and modelled
as a mathematical diffecomorphism was fostered as early as 1917 [246]. The
theoretical breakthrough was achieved in 1984 [29, 30, 31], but the relation-
ship between all elements of the shape analysis was not fully understood before
the late nineties [61, 83]. The two-dimensional case has been studied in many
applications while the three-dimensional (3D) shape analysis is an area under
rapid development. It is also obvious that the knowledge and routines used by
expert hearing aid designers must be formulated as algorithms, which implies
that design rules and criteria should be formulated mathematically.

1.1 Objectives

It is the objective of this thesis to study the feasibility of a statistical shape
analysis based approach to improved mechanical design of CIC hearing aids.

Thus, it is not the objective of this project to collect and record data for a true
population study. The focus of the project is on the development of prototype
tools and the mathematical methods that form the basis of these tools.

In conclusion, this thesis has two goals. The first is to build and test a prototype
statistical shape model of the human ear canal. The second is to use this model
to develop software tools that imitate the skills of the most accomplished CIC
operators.

Finally, we hope that the results obtained in the project can help to improve the
general quality of CIC hearing aids and increase the percentage of the population
that can be fitted with this attractive hearing aid style.

1.2 Thesis Overview

This thesis consists of two main parts; a part about statistical shape modelling
and a part about CIC hearing aid design. Furthermore, four research papers are
found in the appendix. The papers present a major part of the work done in this
thesis. Consequently, the first part of this thesis is mainly a survey that serves
to motivate the choices made in the papers. The papers are self-contained,
inevitable resulting in overlaps.
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Chapter 2 introduces the background and motivation for this thesis.
Chapter 3 describes the data used in this thesis.

Chapter 4 consists of a commented survey of various shape modelling frame-
works.

Chapter 5 discusses the problems in generating correspondence over a set of
shapes.

Chapter 6 introduces various algorithms from computer graphics that are used
in the component placement framework.

Chapter 7 describes a generic component placement framework. Furthermore,
the results of applying this framework to the placement of components in
CIC hearing aids are reported.

Chapter 8 contains a description of how to generate a one-size-fits-most shell,
an introduction to CIC insertion calculation, and a some ideas regarding
automatic quality estimation of CIC hearing aids.

Chapter 9 finalises this thesis with a discussion and a conclusion.

Appendix A describes how the statistical shape model of the human ear canal
is built and tested.

Appendix B introduces a Markov Random Field regularisation framework and
use it to optimise the shape correspondence.

Appendix C describes how the Markov Random Field framework can be used
as a standalone, non-rigid registration algorithm.

Appendix D shows that the shape model can be used to guide the mechanical
design of CIC hearing aids by placing a so-called pure faceplate-plane in
an ear canal.

Appendix E contains descriptions of the software developed as part of this
thesis.

1.3 Nomenclature

To ease the reading of this thesis a list of often-used abbreviations and acronyms
is given below:
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AIC Akaike’s “An information criterion”
AAM Active Appearance Model

ASM  Active Shape Model

BIC Bayesian Information Criterion
BTE  Behind-the-ear hearing aid

CAD  Computer Aided Design

CBJ  Cartilage-Bone Junction

CIC Completely In the Canal hearing aid
GCD  Geometry Constrained Diffusion
ICM  Tterative Conditional Modes

ICP Iterative Closest Point

ITE In-The-Ear hearing aid

MAP Maximum A Posteriori

MDL  Minimum Description Length

ML Maximum Likelihood

MRF Markov Random Field

PCA  Principal Component Analysis
PDM  Point Distribution Model

SLA  Stereo Lithography Apparatus
TPS  Thin Plate Spline

Hearing aid specific words:

Expert 1 Claus Nielsen, Oticon Research Center Eriksholm.

Expert 2 Zenia Lausten, Oticon A/S.

Operator The person that makes the hearing aids.

Microphone The device that records the sound.

Telephone or Receiver The loudspeaker that sends the sound into the ear.

Amplifier Receives the signal from the microphone, transforms it, and sends
it to the receiver.

Faceplate A plastic disc where the battery compartment, the microphone, and
an eventual switch are mounted.

Ventilation Canal Also called the vent. A hearing aid is usually equipped
with a vent to ventilate the cavity between the eardrum and the hearing
aid or earmold.
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CHAPTER 2

Background

This chapter presents a brief introduction to the anatomical and technological
background of the project.

2.1 The Human Ear Canal

The outer ear consists of the pinna formed primarily of cartilage without useful
muscles, see Figures 2.1 and 2.2. The deep centre portion of pinna is called the
bowl or concha. Cymba concha is the upper part of concha formed by the two
folds crus and anti-helix. The rim of the bowl is formed by the anti-helix, crus,
tragus, and anti-tragus. About two thirds of the ear canal is cartilaginous and
soft, while the inner third is surrounded by the mastoid bone. The soft part
contains ear wax glands and is lined with hairs, whereas the bony part of the
ear canal is covered by thin skin and is very sore to the touch. An ear canal has
two more or less pronounced bends. The first bend is found in the lateral part
of the canal near the meatus (opening), while the second bend is placed near the
cartilage-bone junction (CBJ). The transition between the first and the second
bend occasionally narrows down and this narrow passage is referred to as the
isthmus. Finally, the tympanic membrane or eardrum separates the ear canal
from the middle ear cavity.
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Pinna

Cartilage Bone

; Tympanic
membrane
s — Bone
Figure 2.1: Left: Anatomy of the external ear shown on the author’s left ear.

Right: Medial section of the outer ear and ear canal seen from the top of the
head.

Anti-helix
Coqcha First bend
Anti-tragus

Second bend
Cartilage

The size and shape of the ear and the ear canal has been the subject of some
research. An example is the quantification of ear-canal geometry using CT
scanning [88]. In another approach, the anatomy is measured using an operating
microscope [261]. Stinson uses the geometry of the human ear canal for the
prediction of sound-pressure level distribution [234]. The shape variation of ear
impressions taken on cadavers is reported in [217]. In addition, ear geometry
has an influence on impression taking [227]. Furthermore, Davison generated
a realistic looking computer graphics model of the outer ear [78]. Additional
descriptions of the anatomy of the human ear canal can be found in [1, 2, 17,
18, 81, 152, 259].

The shape of the ear canal changes when a person is speaking, chewing, or
yawning. This has been studied by Oliveira [195, 196] using impressions taken
with the jawbone in closed and opened positions. A similar approach is used to
map the ear canal movement using data acquired with a reflex-microscope [116].

2.2 Hearing Aids

Hearing aids are characterised as either BTE (behind the ear) or ITE (in the
ear). A complete BTE hearing aid consists of a pre-manufactured unit, which
contains both transducers and electronics, which are connected by an acoustic
tubing system to a custom-made ear mould that delivers the sound output into
the ear. For an ITE hearing aid, all components reside in a custom-made shell
that sits in the ear of the user; see Figure 2.3 for an example.

ITE hearing aids come in a number of different styles. The smallest of these
styles is called CIC (completely in the canal) and it has a number of attrac-
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Figure 2.2: The anatomy of the ear shown on the scanned ear impression cor-
responding to the ear seen in Figure 2.1. The direction out of the ear is shown
with a yellow arrow, the forward direction with a green arrow, and downwards
with a red arrow. The first (green) and the second (yellow) bend are shown
with tubes. The locations of anti-tragus (black), concha (orange), crus (pur-
ple), cymba (grey), and tragus (red) are indicated with dots.
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(a) Side view (b) Frontal view

Figure 2.3: A CIC hearing aid seen outside and in the author’s left ear. The
scale is in centimetre.

tive properties. First of all the small size is cosmetically appealing because
a well-produced CIC is as good as invisible in-situ [153]. Secondly, the CIC
has some acoustic advantages [104, 229]. With the microphone positioned at
or even beyond the opening of the ear canal, more of the pinna properties are
preserved [54, 117]. Also, the deep insertion of the hearing aid in the ear canal
results in a very small residual volume between the hearing aid and the eardrum,
which means that a relatively high output level may be produced with a phys-
ically small receiver and little electrical power. Finally, the CIC may be able
to alleviate the so-called occlusion effect! if the CIC shell can be made with a
complete seal in the innermost bony portion of the ear canal [105, 161, 191, 205].

1A hearing aid is a physical object that occludes the ear canal when in-situ. When the
hearing aid user speaks, sound propagates through the body and sets the soft part of the ear
canal into vibrations. These vibrations generate a sound pressure in the ear canal, which in
the open ear condition dissipates out of the ear. However, when the ear is occluded by the
hearing aid, a substantial sound pressure is built up in the small cavity between the hearing
aid and the tympanic membrane. This increase in own voice sound pressure is termed the
occlusion effect. The occlusion effect is often very annoying to the user of the hearing aid.
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2.3 The Traditional CIC Hearing Aid Produc-
tion

The traditional CIC hearing aid production is a manual process. Designs and
materials vary, but most CIC instruments are constructed with a faceplate in
which the battery compartment and eventually the microphone(s) and switch
are mounted from the factory [204]. The principal steps in the production of a
CIC instrument are:

1. An ear impression of the hearing-aid user’s ear is made by injecting sili-
cone rubber into the ear canal. According to Pirzanski, a well-made ear
impression is a true anatomical imprint of the ear canal [206]. A raw im-
pression is seen in Figure 2.4a. Many consider the impression taking as
the crucial step in the hearing production [204]. Typically, the operator
only sees the impression, not the ear. Hence, it is not possible to pro-
duce a well-fitting CIC from a bad impression. Inexperience and sloppy
workmanship are the typical causes of bad impressions.

2. The impression is cut and ground to have the correct size and shape for
a CIC hearing aid, see Figures 2.4b and 2.4c. Furthermore, voids and
artefacts are removed.

(b) (c)

Figure 2.4: The impression is cut and ground.

3. A gel-form is produced from the cut impression as seen in Figure 2.5a. It
is crucial that the gel-form is well-made. An overheated gel-form tends to
shrink, causing the final CIC to be to big.

4. The shell is cast by pouring liquid acrylic into the gel-form and hardening
it using ultra-violet light, see Figures 2.5b, 2.5¢, and 2.5d.
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Figure 2.5: The shell is cast in a hard acrylic material.
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5. The shell is ground down to the desired size, see Figure 2.6a. During the
processing, the shell is checked against the faceplate as seen in Figure 2.6b.
Furthermore, the fit and appearance of the shell is tested in a cast replica
of the ear produced from the uncut impression, see Figure 2.6c.

Figure 2.6: The shell is ground.

6. The internal components of the hearing aid: the receiver, the amplifier,
and the ventilation canal are positioned inside the shell. The receiver is
installed loosely in the shell by means of a rubber sound tube. All compo-
nents require adjustment to isolate them acoustically as much as possible.
The installation of the ventilation canal can be seen in Figure 2.7a.

7. The shell is glued together with the faceplate and the excess material is
trimmed away as seen in Figure 2.7b.

8. Finally, the surface of the hearing aid is polished, see Figure 2.7c.

|

.

R YO

(b) (©)

Figure 2.7: Components are installed and the shell is polished.

As seen, all these processes are done by hand. Obviously, it requires training
and skills to produce a CIC hearing aid of high quality. Furthermore, a CIC
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hearing aid is expensive due to the amount of manual labour involved in the
production.

2.4 The Future of CIC Hearing Aid Production

A huge leap in the production technology has occurred during the last two years.
This is mainly due to the appearance of sophisticated laser scanners and several
commercial packages for the modelling of hearing aids. The steps in the new
hearing aid production are explained in the following.

Scanning

Obviously, the geometry of the hearing aid user’s ear is still needed. Currently,
the geometry is captured by using the traditional impression taking. A high
precision 3D replica of the impression is made by a laser scanner. Using one
laser and two cameras, the scanner seen in Figure 2.8 generates a 3D model of
the impression consisting of approximately 200.000 surface points. In addition,
the scanner software generates a triangulated surface from the scanned point
cloud.

Modelling

When the scanner has produced a 3D representation of the ear canal, the mod-
elling of the hearing aid can commence.

It is obvious that the modelling process used in the CAD software is adopted
from the traditional procedure reviewed in the previous section. The first step
is the removal of artefacts and smoothing of the scanned ear impression. This
is the digital equivalent of the impression grounding. Furthermore, a shell is
created by adding a thickness to the scanning. When the shell is cleaned, the
end of the shell is rounded and an appropriate tip is created. The ventilation
channel is then created and placed in the shell by the operator. The next step is
the placement of electronics. Here the components, represented as 3D models,
are placed in the shell. Afterwards, the operator places the faceplate. The shell
is then finished and can be visualised in the original ear impression. Finally, the
deviations between the finished CIC and the ear canal can be visually examined.
More details can be found at the manufacturer’s website [254].
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Figure 2.8: To the left a 3Shape S-200 3D Scanner and to the right a 3D Systems
Viper Si2 stereo-lithography printer.

Rapid Prototyping

A physical equivalent of a 3D computer model can be build using a rapid proto-
typing machine. Rapid prototyping machines can produce models in a number
of different ways. One example is stereo-lithography (SLA), where a laser beam
hardens a liquid monomer (Epoxy), one coating at a time [255]. An SLA ma-
chine is seen in Figure 2.8.

A rapid prototyping machine accepts data in the form of 3D volumes defined by
triangulated surfaces. For each new coating, the machine calculates a slice of the
volume based on the surface, which must therefore be without holes, gaps, and
overlaps. A mathematical 2D surface embedded in a 3D space does not have a
thickness and can therefore not be printed on a rapid prototyping machine. The
process of adding a thickness to a 3D surface is in this context called shelling.

Currently, the modelled shells are printed on the SLA machine, while the face-
plates are mounted and processed the traditional way. The printer accepts
between 80 and 100 shells at a time, with a total production time between five
and ten hours.
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2.5 Discussion

Switching production methods requires careful consideration and re-education of
entire groups of employees. However, many people believe that the advantages
of digital production techniques outweigh the inherent organisational changes.
Some advantages of the current approach to digital hearing aid production
are [254]:

e Improved and consistent quality. The shells produced by the digital system
replicate the geometry of the ear more closely than manually produced
shells. Furthermore, some of the steps that traditionally required operator-
skills have been removed.

e Reduced manual production time.

e Less dependent on human interaction.

e Automated storage and handling of hearing aid user profiles.
e It is easy to remake damaged or lost hearing aids.

e Less remakes. A remake is when the hearing aid user is not satisfied and
a new hearing aid is produced for free.

However, hearing aids produced with the new technique suffer from some of
the same problems as the traditional shells, for example acoustic feedback and
lack of secure fit. We believe this is caused by the considerable variation in
the quality of ear impressions and the continued dependence on skilled opera-
tors. Currently, the digital design systems are just clever replica of the manual
production methodology. Finally, knowledge of the static and dynamic shape
variation of the ear canal is not incorporated in the systems.
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CHAPTER 3

Data

The data initially available for this project consisted of laser scans of 260 ear
impressions. The used laser scanner was a prototype laser scanner developed
as a part of a master thesis project at DTU [19]. An ear impression and the
corresponding laser scan can be seen in Figure 3.1.

Laser scanning produces points that are a sampling of the surface with an arbi-
trary sampling density. These points can therefore not be regarded as landmarks
that can be used in a shape analysis.

Shape analysis is usually based on a set of defined landmarks that are either
anatomically defined or based on mathematical properties of the surface. To fa-
cilitate the definition of mathematical landmarks or the annotation of anatom-
ical landmarks it is important to reconstruct the surface that the points from
the laser scanner represent. When the surface is reconstructed, it is possible
to resample it allowing interpolation of points at arbitrary surface co-ordinates.
Furthermore, the surface representation is normally needed in order to calculate
the differential properties of the sampled surface. Further details on landmark
placement and selection can be found in Chapter 5.
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Figure 3.1: An ear impression and the corresponding point cloud. For clarity,
only the points on the visible part of the surface are shown. The line on the ear
impression corresponds to the lowest samples of the point cloud.

3.1 Surface Reconstruction

The point data from the scanner contains some noise and some outliers. We have
developed a simple routine that removes the worst outliers based on neighbour
statistics and thereby makes the point cloud better suited for surface recon-
struction.

Surface reconstruction from unorganised points has been an active research area
for the last decade. Hugues Hoppe developed one of the earliest techniques in
1994 [131]. It is based on a signed 3D-distance transformation of the point
cloud. Initially, the point cloud is locally approximated by planes. Hence, the
result of the distance transformation is a voxel volume where the value in each
voxel is the distance to the nearest plane. Finally, the surface is reconstructed
by extracting the zero-value contour of the voxel set. A standard method to
perform this contouring is the marching cubes algorithm [183].

In marching cubes, the basic notion is that a cube is defined by the values of
the voxels at the eight corners of the cube. If one or more voxels of a cube
have values less than the specified value, and one or more have values greater
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than this value, the cube must contribute some component of the iso-surface. By
determining which edges of the cube are intersected by the iso-surface, triangular
patches that divide the cube between regions within the iso-surface and regions
outside can be created. Connecting the patches from all cubes on the iso-surface
boundary makes the surface.

The method has been tested on a number of scanned ear impressions and the
results have been evaluated. The reconstructed surface has a very high number
of polygons since the number of polygons produced by the marching cubes algo-
rithm is directly related to the sampling resolution of the voxel set used in the
distance transformation. The marching cubes algorithm uses no prior knowledge
of the surface and therefore no guaranteed geometrical properties of the recon-
structed surface are offered. It is observed that the method is sensitive to noise
and outliers, which can cause unnatural artefacts in the reconstructed surface.
Standard mesh decimation algorithms can be used to reduce the polygon count
of the mesh [220], but we experienced that this often resulted in meshes with
highly irregular polygons. For rendering purposes, this is not a problem, but for
shape analysis and especially collision detection, a more even polygonisation is
preferable.

An alternative way of reconstructing surfaces is based on the 3D Delaunay
triangulation of the input points. Amenta et al. have developed a novel and
sophisticated method called the Power Crust [3, 4]. It is based on the medial axis
approximation given by a pruned Voronoi diagram called the power diagram.
The Voronoi diagram is computed using the Delaunay triangulation. Given a
set of sample points from the boundary of a three-dimensional object, the Power
Crust produces a mesh representing the original surface and an approximation
to the medial axis of the solid bounded by the points. When the sampling is
sufficiently dense, the Power Crust is guaranteed to produce a geometrically and
topologically correct approximation to the surface.

The Power Crust has been applied to a number of scanned ear impressions
and the reconstructed surfaces have been evaluated. Compared to Hoppe’s
method the Power Crust surfaces appear better formed and have no artefacts
as seen in Figure 3.2. The surface is flat shaded in the Figure to visualise the
triangulation. Calculating the normals and using Gouraud shading will give the
surface a smooth appearance [99].

Other groups are also working on surface reconstruction from unorganised points.
A very high profile project is The Digital Michelangelo Project at Stanford Uni-
versity, where several methods have been developed and used. These methods
are mostly aimed at merging data from several views and at being able to ma-
nipulate datasets with billions of polygons [181]. A new and promising technique
is based on Radial Basis Functions [49, 50]. This method is reported to be able
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Figure 3.2: To the left a surface reconstructed with Hoppe’s method is seen.
The surface seen the right side is reconstructed with the Power Crust. It is seen
that the surface on the left has some artefacts at the top.

to handle noise data very well. In addition, the level set method [222] has been
used as the basis for surface reconstruction [263].

As described in Section 2.4, new and much better scanning equipment has be-
come available during the project, thus reducing the need for advanced surface
reconstruction techniques. However, the medial sheet calculated by the Power
Crust algorithm plays an important role in the collision detection and path find-
ing algorithms used in the second part of this project. In summary, the surfaces
produced by the Power Crust algorithm have been used in this thesis.

A comparison between a scan taken with the original scanner and a modern
scanner can be seen in Figures 3.3 and 3.4. The two meshes are first rigidly
aligned using the Iterative Closest Point algorithm [25, 262]. Secondly, the
difference is calculated by for each vertex in one shape finding the distance
to the closest point on the surface on the other shape. It is seen that only a
small part of the ear was captured with the first scanner. This area is the most
important though. Some deviations exist where the shapes have high curvature.
This is probably due to the noise and the surface reconstruction. Nevertheless,
we believe that the data captured with the original scanner has sufficient quality
for the proof-of-concept that is the goal of this project. Obviously, the modern
scanner will be used for future population studies.
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Figure 3.3: From left to right: Original scan, scan with a modern scanner, the
two surfaces rigidly aligned.

0.000 0.375 0.750 113 1.50 0.000 0.375 0.750 113 1.50

Figure 3.4: The difference between an original scan and a new scan. The distance
to the surface of the original scan is calculated for each point in the new scan
[mm]. The large red area of the new scan is where the original scanner did not
scan the surface.
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CHAPTER 4

Shape Modelling

One goal of this project is to develop data driven methods that can analyse and
visualise the anatomical variation of the human ear canal over a population and
to be able to use this knowledge in the future design of hearing aids.

We are searching for a method that
e can be applied to 3D surfaces with non-spherical geometry. In this case
surface patches that are topologically equivalent to open cylinders,
e can be trained from a set of training shapes,

e has a statistical basis and where the parameters of the model can be used
as input to multivariate statistical analysis,

e is suited for the analysis of biological shapes,
e has proven to be implementable.
In the following, various shape model frameworks are discussed and compared to

the requirement specification above. The shape model implemented and applied
in this thesis is selected on a basis of this survey.
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4.1 Shape Models

A popular and commonly used class of models is the deformable template models,
of which the most well known is the Active Contour Model called Snakes. It was
introduced by Kass et al. in 1988 [157]. A template model normally consists of
an outline defined by landmarks, on which a set of physically related constraints
are enforced together with some image related forces. For an overview of de-
formable models, the reader is referred to the surveys in [27, 96, 150, 151, 187].
However, it does not seem optimal to use deformable models to describe and
analyse the shape variation of surfaces in 3D, since they are primarily used for
tracking and image searching purposes. Furthermore, this class of models is
known to be parameter sensitive, weak on robustness, and often requires oper-
ator intervention.

In recent years other methods of representing shapes have appeared, one being
the M-Rep model originating from the University of South Carolina, Chapel
Hill [155, 207, 235, 236, 260]. The shapes are represented using their medial
sheets. For each vertex in the medial sheet, a primitive called an atom is defined.
The atoms specify, among others, the distance to the surface of the object.
Since the medial parameters are not elements of an Euclidean space, standard
Gaussian based statistics cannot be directly applied to the analyses of the shape
variability. However, recent work on Gaussian distributions on Lie Groups with
application to the parameters of the M-Reps [97] seems promising. M-reps have,
among others, been used to analyse the morphology of brain structures [109].
Building a complete M-Rep model of a set of training shapes seems to be a
very difficult task. Furthermore, we believe that the shape variation found in
for example ear canals would induce topology changes in the medial sheet. An
example of this is the part of the canal between the first and the second bend,
which has an elliptical cross-sectional shape. The axis of this ellipse can be
aligned both horizontally and vertically. This causes a flipping of the medial
sheet. Examples of medial sheets of ear canals can be seen in Figure 4.1. They
have been calculated using the Power Crust algorithm [3, 4]. Further details
can be found in Chapter 6. It is not clear how to model these topology changes
in a statistical setting. Furthermore, it is not obvious how objects that are not
topologically equivalent to spheres should be modelled.

Another parametric surface model that can be used to represent objects of spher-
ical topology is the spherical harmonics (SPHARMS) [37, 38, 39, 209]. They
have been demonstrated to be able to express shape deformation [159]. It is
a smooth and accurate representation based on a basis of spherical harmonics.
SPHARMS has been used in the study of the shape of neuro-anatomical struc-
tures [108], but it is not suited for modelling the shape of objects that are not
topologically equivalent to spheres.
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(a) Ear canal A

(b) Ear canal B

Figure 4.1: The medial sheet calculated for two different ear canals. The topolo-
gies of the two sheets are clearly different. In the middle part of the canal, the
sheet is split in three in ear canal A while being a single sheet in ear canal B.
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A similar method that supports non-closed surfaces is the Fourier surfaces ex-
plored by Staib et al. [230]. For each shape in a training set, the Fourier co-
efficients are calculated. These coefficients are then modelled over the training
set. New shape examples can be synthesised by sampling from the distributions.
However, it is not clear how this method can be applied to surface patches where
the positions of the borders have no anatomical meaning.

An alternative approach for shape modelling is to generate a physical model
of the object, where the variation of the object is calculated based on the
physical properties of the tissue. This method has for example been used to
model the biomechanical properties of the heart using a volumetric finite ele-
ment method [221]. The model can be used for segmentation and tracking of
time series of for example MRI and SPECT images. It seems that the method
is not well suited for analysing the statistical variance of the shape over a pop-
ulation.

Finally, the most appropriate approach to model and analyse the data was found
to be the Active Shape Model (ASM) approach by Cootes et al. [61]. Initially,
this method was derived from the Active Contour model with some additional
constraints [62, 66, 69]. Later it was formulated as a complete framework for
statistical shape description, synthesis, and recognition [61]. The method has
been extended to include multi-resolution searches [70, 71] and a combination
with finite element models has been demonstrated [67]. The ASM model deals
with contours in 2D and surfaces in 3D, while pixel and voxel values are ig-
nored. The Active Appearance Model (AAM) is an extension of the ASM model
that includes texture or volumetric grey level information [60, 63, 64, 65, 86].
Modelling 3D voxel intensities requires a very advanced framework and it is first
recently that is has proven possible [232]. The AAM framework is not suitable
for the ear canal data, since they are pure surfaces with no underlying voxel
representation.

The ASM approach has been used in a wide variety of medical applications. A
method to build a 3D model of the knee is presented in [98], where a model
mesh is warped to each shape in the training set by an octree spline approach.
A description of the building of a 3D shape model of the left ventricle of the
heart is given in [185] and a 3D model of the spleen and the kidney is described
in [168]. The ASM method has also been used in commercial FDA approved
applications. An example is found in [245], where a 2D ASM model is used
to locate the metacarpal bones in X-rays of the hand. An overview of medical
applications can be found in [179].
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4.2 Building a Shape Model

An ASM can be built based on a training set of shapes with point correspon-
dences. This means that the points describing the contour or the surface of
the training shapes need to be placed on the same locations on all the shapes.
Achieving this is a major task in itself and is the topic of Chapter 5.

Due to the excellent online cook book by Cootes [58], the implementation, and
testing of an ASM framework is relatively straightforward. The method con-
sists of a series of sub-tasks. For each sub-task, there is a choice of methodology
bound to the application and the data. These sub-tasks are discussed in the
following and the choices made for the analysis of the ear canal data are mo-
tivated. The building and testing of the ear canal shape model is described in
detail in Appendix A.

For a gentle introduction to the ASM and the associated notation, the reader is
referred to these introductory texts [58, 61, 231].

4.2.1 Shape Alignment and Decomposition

The standard method for aligning a training set of shapes represented by ho-
mologous points! is the Procrustes method [111]. For 2D shapes, an analytical
solution exists [83] while for 3D shapes it is usually done in an iterative fashion.
The method involves aligning a pair of shapes, for which several methods exist.
It has been shown that for normal shapes the different alignment algorithms
perform equally [87]. If a rigid-body alignment is used, the result is a size-and-
shape model and if a similarity-transform is used in the alignment, the model
will be a pure shape model [83].

The alignment of the shapes is followed by decomposition of shape variability.
An aligned shape is represented as a vector of concatenated coordinates and
can therefore be regarded as a point in a 3n-Dimensional space (where n is the
number of points on each shape) and a set of shapes as a cloud of points in
that space. To be able to synthesise and manipulate shapes it is necessary to
parameterise this point cloud in the 3n-D space. A parameterisation should
provide a method of moving around the cloud by using only a few parameters.
If it is reasonable to assume that the point cloud constitute a hyper-ellipse, the
Principal Component Analysis (PCA) known from multivariate statistics can
be used to calculate the centre, the axes, and the dimensions of this hyper-
ellipse [154]. If the positions of the landmarks can be assumed to follow a

IHomologous points are points that correspond to the same feature on different shapes.
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Gaussian distribution this normally gives a good approximation of the shape
point cloud. The region of the space that the point cloud occupies is sometimes
called the Allowable Shape Domain [61].

In some cases, the hypothesis of the ellipsoid model breaks down. An example
with artificial worm shapes can be found in [61]. In that case, alternative ap-
proaches to model the point cloud in shape space must be sought. Examples
from the literature are the non-linear polynomial point distribution model [228],
the non-linear kernel PCA [212], maximal autocorrelation, and maximal noise
fractions decomposition [90, 174, 175, 176, 178, 180, 238]. In addition, non-linear
Point Distribution Models are treated extensively in [36].

The ellipsoid approximation was found to be efficient in the current project.
The evaluation was done by examining the distribution of the PCA parameters.
Further details can be found in Appendix A.

4.2.2 Selecting the Number of Parameters

When the shape space has been parameterised, using for example the ellipsoid
model from the PCA, the number of important parameters necessary to navigate
the shape space needs to be determined.

Obviously, the more parameters, the better fit of the model; the less parame-
ters, the more simple the model will be. Somewhere in between is the optimal
number of parameters. To determine this number, there must be a criterion for
optimality. A large number of criteria exist, ranging from significance tests to
graphical procedures. A thorough discussion and testing of the different criteria
can be found in [149].

A popular criteria used very often in shape analysis is the proportion of the
trace of the covariance matrix that is explained by the principal components
in the model. In many applications, the number of components to retain is
chosen so they explain 95% of the trace of the covariance matrix. Hence, the
corresponding eigenvectors explain 95% of the variation seen in the training
data. Jackson strongly advices not to use this method, except for initial explo-
rative data analysis [149]. Suppose that for a model with 20 parameters, the
last 15 parameters each explain nearly the same percentage of the trace, and
further suppose that the five most important principal components only explain
50% of the trace. Should one keep adding components until the magic number is
reached? If so, why should for example component number 17 be excluded while
component number 7 is retained, when they explain nearly the same amount of
the trace?
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An alternative test is the graphical test called the scree test, where the eigen-
values of the covariance matrix is plotted against the number of components. A
typical scree plot is show in Figure 4.2. The name scree-plot is due to Cattel [51].
The scree is the rubble at the bottom of a cliff. The idea is that the point where
the scree starts is located and the number of components is chosen to be at that
point. This point is sometimes called an elbow [149]. On Figure 4.2 it is not
obvious where that point is, probably around mode (component) number 10.
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Figure 4.2: A typical scree plot. The scree plot for the same, but randomised
data is also shown. The plot is taken from Appendix A.

To avoid the graphical inspection and the inherent operator influence of this
approach a group of procedures called Parallel Analysis (PA) emerged. In the
method of Horn, the eigenvalues are calculated from the same, but randomly
scrambled data set and the two scree plots are compared [135]. The number
of components is chosen to be where the two lines cross as seen in Figure 4.2.
This method has successfully been applied to the ear canal data as explained
in Appendix A. Parallel analysis has also been used to truncate the model
parameters of an AAM, where the number of components selected where far
less than with the proportion of the trace method [233]. If the first few roots
are so widely separated that plotting can be difficult without losing information
about the scree point, the log of the eigenvalues can be plotted instead. This is
called a LEV (log-eigenvalue) plot [149] and has been used in parallel analysis.

A simpler method is to retain only the components whose eigenvalues exceed the
average of all the eigenvalues. When the PCA is made on correlation matrices,
the average root is equal to one, which makes this test very simple.
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Moreover, Larsen and Hilger have demonstrated the use of the Bayesian infor-
mation criterion (BIC) and Akaike’s “An information criterion” (AIC) in the
selection of model complexity [177, 178].

For a given model the log-likelihood of the data is estimated and penalised using
either BIC and AIC. BIC arises from a Bayesian approach to model selection,
whereas AIC provides an estimate of a test error curve with a minima at the
optimal trade-off between model complexity and performance.

The log-likelihood increases with increasing model complexity, i.e. larger models
reconstruct the training data better. In general BIC punishes the log-likelihood
harder with increasing model complexity, thus giving preference to simpler mod-
els in selection. The optimal balancing of the model complexity and performance
depends on whether or not the family of models applied includes the true un-
derlying model.

Furthermore, BIC is regarded as an approximation to the Minimum Description
Length despite being derived in an independent manner [123].

As demonstrated in [149] the results of the different methods vary enormously.
The choice of method should be based on the application and followed by some
kind of sanity check.

4.2.3 Multivariate Statistical Analysis

Morphometrics, the multivariate statistics of object shape has advanced greatly
over the last decade as described by Bookstein in [34]. Bookstein demonstrates
how it is possible to examine group differences of shapes by their outlines [33]
and an overview of, and a complete framework for, testing landmark based shape
group differences can be found in [34]. In addition, the use of thin plate splines
to decompose shape variation is described in [32].

The methods from morphometry can be used to analyse the information con-
tained in the statistical shape models. An example is that it has proven possible
to discriminate gender using logistic regression on 2D shape models of human
face silhouettes [244] and by regression analysis of the shape space parameters
from a full 3D face model [143].

Another example is the analysis of growth. Growth analysis has been performed
on human mandibles using a shape model built from the 3D surfaces extracted
from CT scans [6, 126] and on human faces captured with a 3D surface scan-
ner [144, 146].
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Discriminating between normal or abnormal subjects using shape models is an
area that has received much attention in the later years. Examples are the
analysis and discrimination of 3D face models of individuals with Noonans [121]
and Smith-Magenis syndrome [122]. The characterisation of the shape of neu-
rological structures has also proven to be significant in the analysis of some
illnesses [108, 109, 236]. An example is the analysis of the shape of the Corpus
Callosum [84].

In this project, it proved possible to perform gender discrimination based on
the shape and the size of the ear canals. See Appendix A for details.

4.2.4 Shape Fitting and Recognition

One of the primary abilities of the ASM is the possibility of using it to find
and recognise previously unseen shape examples. Using a shape model in the
search of 2D structures in images has been widely used. See for example [43,
44, 61]. For 2D image search, ASM is often substituted with the more powerful
AAM [58, 60, 63, 64, 65, 68, 86, 231].

Many improvements to the search scheme has been suggested, including multi-
scale approaches [70, 71] and ASM with optimal features [110], where in each
ASM iteration the optimal landmark displacements are found by locating the
optimal features using a nonlinear kKNN-classifier. Furthermore, the ASM search
can be made more robust against outliers using M-estimators [211].

Fitting a 3D surface shape model to a new example has been done using a
combination of the Iterative Closest Point (ICP) algorithm and active shape
model searching in [143, 145].

When an ASM has been fitted to a new example shape, it can be used to map fea-
tures from an atlas to the new example. In this project, a combined ICP/ASM
approach resembling the method by Hutton [143, 145] has been used to place
faceplates on ear canals as seen in Appendix D. Furthermore, the ASM is used
to propagate landmarks to the new ear. These landmarks are, among others,
used to calculate paths through the ear canal as demonstrated in Section 6.3.

The shape parameters that describe the new shape can be calculated from the
fitted ASM. These parameters can then be used in multivariate classification as
explained in Section 4.2.3.
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4.3 Evaluating the Quality of a Shape Model

When a shape model of a group of anatomical objects has been built, there
is a need for evaluating the quality of the result. An intuitive first approach
is the visual validation of the shapes that can be synthesised by the model.
In Figure A.2 on page 105 and Figure B.5 on page 120, the major modes of
variation of the ear canal shape model are shown. An expert in the anatomy
of the ear canal has examined these 3D models and validated that from an
anatomical point of view they look plausible. Furthermore, there is no apparent
deformation of the structure and no inversions and intersections of the surface.
Examples of invalid shape models can be found in for example [73]. In addition
to this sanity check, measures that are more objective should be computed.
Davies [73] and others suggest the following list of optimality criteria for shape
models:

Generalisation Ability The capability of the model to represent unseen in-
stances of the class of the object modelled. A model build based on too
few examples tends to overfit the data and will not have good generali-
sation abilities. This ability can be measured by a leave-one-out analysis
of the training set, where it is examined how well the model built by the
included training shapes approximates the left out object.

Specificity When synthesising artificial shapes by sampling in the learned dis-
tribution the results should be similar to the shapes found in the training
set. This can be validated by synthesising a range of instances and com-
paring them to the training set.

Compactness A good model should only need a few parameters to describe
the instances in the training set. Furthermore, the variance of the model
should be as little as possible. This can be measured by the sum of the
eigenvalues of the shape covariance matrix.

These criteria have for example been used by Davies to evaluate the results from
the Minimum Description Length (MDL) framework [73]. The MDL method is
covered in more in detail in Section 5.2.1.

The above-mentioned criteria do not include one that ensures that each shape
in the training set is well represented. The landmarks of the shape model consti-
tute a point cloud. In certain cases, there is additional topological information,
linking the points in a mesh. To represent an instance of the training data the
point cloud should cover the important part of the shape. This is especially
relevant when modelling surface patches of larger objects. It seems that a shape
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model could score very well in the above criteria while at the same time com-
pletely ignore an anatomical relevant feature on the shapes in the training set.
An example could be a 3D human face model, where the nose would be ignored.
To avoid that, we are suggesting an additional performance criterion:

Representation Ability Measures how well the shape model represents each
shape in the training set. It can be computed by for each shape in the
training set calculating how well the landmark cloud and the associated
mesh approximates the target shape. The approximation error is calcu-
lated as the average distance from the vertices in the target mesh to the
closest points on the approximation surface.

A bad and a more optimal representation of a part of a training shape can be
seen in Figure 4.3. This criterion has been used in the evaluation of the MRF
method as described in detail in Appendices B and C.

(a) (b) (c)

Figure 4.3: a) The landmark point cloud and the associated mesh do not rep-
resent the training shape very well. b) The representation error. c) A better
representation of the training shape.

A second quality measure that is used in Appendices B and C is an analysis of
the triangular structure of the mesh representing the target shapes. In this case,
the mesh structure from a model mesh is applied to all shapes in the training
set, and the goal is to keep a good structure of the mesh after the projection
to the target shapes. This measure does not measure the quality of the shape
model, but tells more about the data used to build the shape model, and in that
way provides an indirect quality measure.

The topic of the next chapter is the problem of generating correspondence over
the training set. Manual, semi-automatic, and fully automated methods ex-
ist. In all cases, the above-mentioned criteria are well suited for validating
the quality of the chosen shape correspondence. The generalisation, specificity,
and compactness criteria measure the quality of the shape model that results
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from the set of shapes in correspondence and thus need shape alignment and
decomposition to be performed before they can be computed. The representa-
tion ability does not need this and is therefore well suited to evaluate pairwise
correspondences.

4.4 Discussion

In this chapter, various frameworks and approaches for shape modelling are
presented. It is obvious, that no optimal method currently exists. The approach
must be chosen based on the application and the available data. In addition, it
is advised to adopt an iterative strategy, where the simplest approach is initially
tried and later extended if problems arise. An example is the decomposition of
shape variance, where the basic Principal Component Analysis should be tried
first. However, if the data proves to be insufficiently described by the PCA,
more advanced methods should be applied.

This iterative approach was used when the statistical shape model of the ear
canal was built. As seen in Appendix A, the simplest approach was often suffi-
cient.



CHAPTER 5

Surface Correspondence

As stated in Chapter 4 the prerequisite for building shape models is shape
correspondence. Since manual landmarking is difficult and especially in 3D
tedious and error prone, there is a great demand for semi- or full-automatic
landmarking and correspondence algorithms. This task is far from easy and is
the focus of much research.

This chapter presents a survey of methods used to generate point correspon-
dence. Moreover, some comments on the application of the methods on the ear
canal data set are made.

The methods can generally be classified into functional groups. First, there
are the manual methods, where each corresponding landmark is placed by an
experienced operator. The second group is the semi-automatic methods, where
a set of sparse landmarks are placed and from these a dense correspondence
is computed. Finally, the most advanced are the fully automated methods,
where no prior knowledge is given, and where all landmarks are placed by the
algorithm.

The focus is on the semi- and full-automatic methods. These methods can
broadly be divided into two groups. The pairwise methods where the shapes
in the training set are matched two-by-two by optimising a pairwise objec-
tive function, and groupwise methods, where all the shapes in the training set
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are matched simultaneous, thus optimising a groupwise objective function [59)].
There is not a clear distinction between the two types of methods, since a pair-
wise method often indirectly optimises a groupwise objective function.

5.1 Pairwise Methods

In a typical pairwise method, a model shape is selected from the training set and
then matched to the remaining shapes in the set. Alternatively, the model shape
is generated independently or iteratively from the first set of shape matches.

The matching of a model shape to a target shape can be seen as a registration
task, where an objective function is optimised. Many registration algorithms are
designed to work with voxel data, for example matching MR and CT volumes.
An overview of volume registration algorithms can be found in [130, 186]. Less,
but still a considerable amount of research has been done on the registration
of surfaces. Published methods are ranging from an approach using a combi-
nation of superquadrics and spherical harmonics for elastic warping of brain
images [247], an algorithm based on matching 3D distance maps [141, 256], a
method using surface signatures [257] to a mesh metamorphosis-approach us-
ing harmonic mapping [156]. An overview can be found in [14], where it is
suggested how to choose the transformation type, the surface features, and the
optimisation strategy.

One of the earliest general-purpose surface registration algorithms is the Itera-
tive Closest Point (ICP) algorithm [25, 262]. The ICP algorithm or a variant
is a typical choice as a step in a procedure that generates pairwise correspon-
dence. It aligns two shapes by matching points from one shape to the surface of
the other, thus generating correspondence between the shapes. This crude and
often incorrect correspondence is sometimes used as an initial guess that are
later optimised. Furthermore, the ICP algorithm has been extended and used
as a basis for more advanced local registration techniques. An example is the
extension by Feldmar and Ayache [94, 95], where it is not closest points, but
closest feature vectors that are sought. Fuzzy extensions to ICP are described
in [170] and efficient ICP variants in [214]. In addition, a multi-scale expectation
maximisation ICP is described in [114].

Brett and Taylor use a pairwise method to build a 3D model of the cortical sul-
cal [52]. Initially, a symmetric ICP where the distance measure is weighted by
the local geometry of the shapes generates correspondence between the shapes.
Secondly, a tree of pairwise matched shapes is built. From this, an average
shape is computed and applied to all the shapes in the training set. Finally,
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a shape model is built from the resulting meshes with dense correspondence.
This method has later been extended to use harmonic maps to define a diffeo-
morphic correspondence between pairs of shapes [42] . In another application,
the ICP algorithm is used to register and propagate landmarks on lung surfaces
extracted from CT scans [26]. Furthermore, a non-rigid surface registration
method, resembling ICP, named Geometry Constrained Diffusion (GCD) has
been used to register mandibles in order to analyse the bone growth [5, 6, 7, 8.

An alternative approach is the automated construction of deformation models
by Rueckert et al. [213]. Here dense volumetric correspondence is established
using a non-rigid registration technique. Thus, the correspondence is found
by the maximisation of normalised mutual information. The unusual thing is
that the PCA is applied to the dense volumetric deformation field instead of
the displacements of the vertices of a surface. However, this method is only
applicable to voxel-based data.

Another volumetric approach where landmarks are automatically found on a
model shape and propagated to the shapes in the training set is used to build
multi-object 3D shape models [101]. In a similar approach, a model shape is
automatically fitted to a series of volumetric training images using a deformable
model [158]. The set of fitted model shapes is then used to build a shape model
of the femur and vertebra.

Face synthesis using a model shape built by creating a one-to-one correspondence
to an internal face model has been done [28]. Furthermore, a model shape is
used in a pairwise method, where a model of the hip is built and used as a guide
for hip operations [89].

A semi-automatic method using a thin plate spline (TPS) warping based on a
set of sparse annotated landmarks is found in [184]. A model shape is applied
to each shape in the training set. This is followed by a regularisation step where
each vertex of the model shape is adapted to the current shape without causing
folds. A similar approach is found in [143] with the addition that the method
is able to handle surfaces with ill-defined areas. This is done by pruning the
model shape so it only includes the vertices that are well defined for all training
shapes.

In certain applications, it is desired that the correspondence vector field possess
some special properties. It could for example be that the field should constitute
a diffeomorphism. This is far from trivial and is the subject of much recent
research, for example warping based on Brownian motion [194].

The basic problem with pairwise correspondence methods is that good global
properties of the shape model are not guaranteed. However, pairwise methods
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tend to optimise the global properties indirectly. An example of this can be
found in Appendix B, where the compactness of the shape model is increased
after a pairwise optimisation and in Appendix C, where the determinant of the
covariance matrix indicates a more optimal shape model after optimisation. The
properties of the shape model can be evaluated using the criteria described in
Section 4.3.

5.1.1 A Landmark and Model Shape Based Approach

In the current project, the data consists of 3D surfaces with non-spherical geom-
etry. In an earlier study, the extremal mesh [242] was calculated for the surfaces
of the ear canals and it was realised that it was very difficult to locate stable
local features based on differential geometry. Since the goal is to build a shape
model and not to invent a new automatic method, we chose a semi-automatic
method, where an operator selects a sparse set of pseudo-anatomical landmarks
on each ear canal. The method is derived from the methods that use a model
shape and thus resembles the methods of Lorenz [184] and Hutton [143]. The
landmarks were placed with a custom-made toolkit described in Appendix E.1.
A mesh with good properties in terms of triangular regularity and smoothness
is selected as a model shape. The set of sparse correspondences are used to
warp the model shape to all the shapes in the training set with a TPS warp.
Since the TPS transform is only exact for the anatomical landmark locations,
the vertices of the warped model shape do not lie on the surface of the target
shape. Finally, moving each vertex in the warped model shape to the closest
point on the target surface completes the dense correspondence. The method is
described in detail in Appendix A.

It was later realised that the initial method suffered from the fact that the repre-
sentation of the shapes in the training set was flawed. In regions of high curva-
ture, the adapted model shape would not cover the target shape in a satisfactory
way. This resulted in a representation error where parts of the target shape was
not represented very well as seen in for example Figures C.4 on page 140 and C.5
on page 141. The cause of this problem is the non-homogeneous correspondence
field generated by the point-to-surface projection technique used in Appendix A.
The observation of the ill-represented shapes was the inspiration for the Repre-
sentation Ability criterion presented in Section 4.3.
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5.1.2 Markov Random Field Regularisation

A simple way to avoid the non-homogeneousness of the correspondence vector
field is to smooth the vector field after the closest point projection. This ap-
proach regularise the vector field, but on the other hand completely ignores the
surface properties of the model and the target shapes. It turned out that what
was started as a simple smoothing method could be formulated in a Markov
Random Field (MRF) framework, where surface properties can be incorporated
in the model. The details and the results from this method can be found in
Appendices B and C. Moreover, a visual interface to the algorithm is described
in Appendix E.6.

Using a MRF suffers from a number of difficulties similar to the ones in de-
formable template models [96]. According to Jain et al. these are [150]: model
parameter selection, initialisation, and optimisation. As described in detail in
Appendix C these three topics have been treated as following;:

Parameter selection The most important parameter weights the smoothness
of the vector field contra the correspondence of surface features. This
parameter has been found by selecting a value that optimises a global
shape model criterion.

Initialisation The vector field is initialised by using a closest point projection.
This has proven to be a good starting guess for the optimisation of the
correspondence.

Optimisation The correspondence vector field is optimised using either Iter-
ative Conditional Modes, which is a deterministic approach or Simulated
Annealing, which is stochastic. The choice of optimisation scheme is based
on the complexity of the energy functions governing the vector field.

In conclusion, a framework that both solves the present problem with the cor-
respondence vector field and can be used a stand-alone surface registration al-
gorithm has been developed.

5.1.3 A Hybrid ICP/ASM Approach

In an attempt to avoid the expert landmarking of the training data, a fully
automated method was tried. The work was carried out by Peter Graversen for
his master thesis and details can be found in [115]. It is based on a combination
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of the ICP and the ASM algorithm and is inspired by the method of Hutton [145].
The fitting of the shape is similar to the method described in Appendix D.

The steps in the algorithm are:

1. Given a set of unregistered examples and a model shape.

2. Align the model shape with two of the unregistered examples using ICP
and insert these two aligned shapes into the training set.

3. Build a shape model from the training set using Procrustes and PCA.
4. Use the average shape from the shape model as the new model shape.
5. Select a new unregistered shape, T.

6. Align the model shape with T using ICP.

7. Deform the model shape using the modes of variation from the ASM to
fit T.

8. Repeat from step 6 until convergence

9. Project the points from the aligned and deformed model shape to T thus
creating a new instance, S, of a shape with point correspondence.

10. Insert S into the training set.

11. Repeat from step 3 until all shapes in the training set are included in the
model.

Since the ICP fitting is often falling into local minima, a pre-registration of all
shapes is done using a moment-based method.

It proved possible to build a shape model of the ear canal automatically. A visual
comparison of the results from the automatic method with the results from
the semi-automatic method presented in Appendix A, shows that the resulting
modes of variation from the automatic method are less pleasing. The two models
where also compared using the optimality criteria defined in Section 4.3. The
compactness as measured by the total variance of the models was 11% less for
the automatic method than for the semi-automatic method, which is a marked
improvement. This could be caused by the fact that in the semi-automatic
method some landmarks force the model to stretch and cover the whole area
between the first and the second bend of the ear canal, while it is suspected
that the automatic method ignores the area around the second bend. It was



5.2 Groupwise Methods 43

also demonstrated that the model built with automatic method has a better
generalisation ability than the model built with the semi-automatic method.

The method suffers from some regularisation problems and the pre-alignment is
very application specific. Furthermore, the choice of model shape is critical con-
cerning the quality of the final model. The regularisation issue could probably
be alleviated by combining the method with the MRF framework presented in
Appendices B and C. Secondly, the model shape could be constructed iteratively
using the results of the intermediate models as for example done by Brett and
Taylor in [40, 41].

In conclusion, it has been shown that it is possible to automatically build shape
models of the ear canal and that the resulting model possesses qualities that
are comparable or better than the model from the semi-automatic framework.
This method will probably be the basis of further statistical analysis of the ear
canal shape.

5.2 Groupwise Methods

Prior work on pure groupwise methods is sparse. Probably because the com-
plexity increases drastically when compared to the pairwise methods. Thus,
groupwise methods inherently need much more computational power.

Duta et al. present a fully automated method for 2D shape outlines in [85].
It is based on a combined Procrustes and clustering algorithm and has been
demonstrated on a set of brain structures. However, it appears that it would be
difficult to extend the method to 3D data.

A groupwise method is presented by Hill et al. [128, 129]. Outlines of 2D objects
are polygonised and an optimisation scheme is used to optimise correspondence
using a measure of representation error. Furthermore, it is hinted that the
method may be extended to 3D using a combination of the iterative closest
point algorithm [25, 262] and a decimation algorithm [220]. It seems that the
work later evolved into the MDL method described in the next section.

5.2.1 The MDL Approach

The Minimum Description Length (MDL) solution to the correspondence prob-
lem was proposed by Davies et al. in 2001 [74, 75]. Originally, the method was
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demonstrated on 2D shape outlines, but has later been extended to 3D sur-
faces [73, 76, 77]. Furthermore, a modification of the MDL framework, where
the curvature of 2D silhouettes is used in the optimisation can be found in [244].

Since the MDL method has received so much attention and very good results
have been published it was natural to try to apply the method on the ear
canal data set. This work was carried out by Allan Reinhold for his Master
Thesis [160].

The MDL method consists of three nearly independent parts [73]:

e A method of manipulating correspondence. For the 3D case, this consists
of mapping the object to a sphere and then using a re-parameterisation
with Cauchy kernels to move the landmarks around.

e An objective function based on the MDL measure.

e A method of optimisation that minimises the objective function by ma-
nipulating the correspondence.

In summary, the first step in the implementation of the MDL framework is to
find a good way to map a shape to a sphere or another suitable primitive. In
previous published work, the 3D objects had spherical topology, which obviously
had a great influence on the choice of mapping.

The mapping has to be area preserving to keep a correspondence between the
movement of a landmark on the sphere and on the original shape. Davies et
al. [73] uses a mapping method proposed by Brechbiihler et al. [39]. In this
method, the object is initially transformed into a voxel representation and then
mapped to a sphere by solving a Laplace equation with Dirichlet boundary con-
ditions. This initial mapping is then optimised to make it approximately area
preserving. Moreover, Quicken describes a more efficient, hierarchical optimi-
sation of the method in [209]. The method requires that a north-pole and a
south-pole vertex are selected. However, as explained later, the quality of the
mapping is very dependent on the selection of these vertices.

We found this method unsuitable for the ear canal data for two reasons. The
data is born as 2D surfaces embedded in a 3D space. A voxel representation of
the data would cause a significant loss of precision due to the quantification of
the polygonal data. Secondly, the ear canals do not have a spherical topology
since they are open in two ends. The placement of the openings is arbitrary and
therefore they cannot just be closed to form a sphere. Put it in another way, we
do not want to model the position of the opening of the ear canals. Therefore,
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we needed to find an alternative mapping method. This turned out to be more
difficult than we had hoped.

Mapping is an active research field with different approaches. Examples are the
already mentioned approach by Brechbiihler [39], a Laplace-Beltrami operator
based method [10, 120], and a circle packing method [142]. Most methods
produce a conformal mapping, meaning that angles between oriented curves
are preserved [82], but area is not preserved. Some current research on area
preserving mapping is presented in [9], where the focus is on mapping of spherical
geometry. One suggested solution in [9] is an initial Laplace-Beltrami mapping
followed by an optimisation step. Mapping of non-spherical geometries are also
the focus of current research. A method for conformal mapping of the colon
exists [119, 193]. This method is equivalent to the Laplace-Beltrami method
and therefore generates a conformal map of the colon to a plane.

In the chosen approach, a conformal map to the sphere is initially built using the
Laplace-Beltrami based method described in [10]. Formulated in physical terms
this corresponds to solving the steady state heat equation over the surface, with a
heat source placed at the defined north-pole and a heat sink placed at the south-
pole. Since this is essentially the same as the method Brechbiihler uses [39], we
believe that their initial mapping is also conformal. The surface heat equation
is approximated by using a finite element method [140] giving a linear system
of equations that can be solved by standard sparse matrix operations.

The second step is an optimisation step, where the vertices on the unit sphere
is moved to minimise the area distortion of the mapping. A local PCA based
method is used to move a vertex so the local area distortion is minimised. This
local optimisation is used in a global deterministic relaxation scheme, called
Iterated Conditional Modes (ICM), proposed by Besag as part of his Bayesian
image restoration framework [23]. Further details can be found in [160]. Op-
posed to the method by Brechbiihler [39] the connectivity of the surface mesh
is not changed during optimisation.

With this method, it proved possible to generate an approximate area-preserving
mapping of objects with spherical geometry and a modest number of triangles.
An example can be seen in Figure 5.1, where the optimisation has been used
to map the surface of a human brain to a sphere. However, the quality of the
result is dependent of the choice of the north-pole vertex and the quality of the
initial conformal map.

The ear canal data comes from a laser scanner and each scanned ear canal
contains a large number of triangles. The polygonisation is furthermore very
uneven, with large variations in the triangle side length and connection number
as seen in Figure 5.2. It proved very difficult to generate a stable mapping of
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(a) Initial (b) 1 iteration (c) 5 iterations

(d) 10 iterations (e) 50 iterations (f) 100 iterations

Figure 5.1: Area distortion minimisation per iteration. Red triangles display
a high degree of area distortion as opposed to green triangles. Illustration
from [160].



5.2 Groupwise Methods 47

the ear canals, partly because of numerical problems.
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Figure 5.2: Wireframe representation of the surface of an ear canal. It is seen
that the triangulation is non-uniform, with triangles of varying sizes and aspect
ratios.

In the MDL framework the objective function is obviously the minimum descrip-
tion length or rather an approximation of it. As pointed out by Thodberg [243]
the MDL objective function in the later versions of the framework resembles the
much simpler objective function used by Kotcheff and Taylor [169], namely the
determinant of the covariance matrix. This criterion has successfully been used
to evaluate the results of the pairwise MRF framework as seen in Appendix C.

In the initial MDL method, the optimisation was done using genetic algorithms
because of the many local minima. Recently it has proved possible to use
gradient-based optimisation with the MDL objective function [92, 93].

The choice of MDL as an objective measure is based on the assumption that
it indirectly optimises the three optimality criteria described in Section 4.3.
This leads to the question of why not construct an objective function, which
is based on these measures directly? The answer is probably that it would
require horrible computation power and that an alternative method to validate
the optimised model would be required. It would also be difficult to weight the
three or four optimality criteria in the final objective function.

In conclusion, the use of the MDL framework on the ear canal data requires
a good and stable method of area preserving mapping of non-spherical objects
and this was not possible to implement. Finally, it was deemed that this task



48 Surface Correspondence

was outside the scope of this thesis.

5.3 Discussion

The task of generating shape correspondence is difficult. First, it is not certain
that a diffeomorphic shape correspondence exists.

It is obvious, that the correspondence problem can be formulated as an optimi-
sation task. However, it is also obvious that the objective function and the way
of optimising the correspondence must be chosen based on the application and
the data.

The idea of optimising the groupwise correspondence seems to be the future.
However, the current state-of-the-art approach, the full MDL framework proved
very difficult to adapt to our data.

An important aspect is that the objective function and the optimisation scheme
are independent. Hence, the MDL measure can be used with alternative point-
correspondence generating functions.
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CHAPTER 6

Collision Detection, Path
Planning, and Offset Surfaces

This chapter introduces a set of algorithms that are used in Chapter 7. The
methods come from computational geometry, computer graphics, and dynamic
programming.

6.1 Union of Balls and the Medial Axis Trans-
form

Used initially for surface reconstruction, the Power Crust [3, 4] later proved to
be even more valuable, since it provided us with a medial sheet of the ear canals.

The definition of the medial axis of an object is commonly given as the locus of
centres of maximal balls inscribed into the object. An inscribed ball is maximal
if it is not strictly contained in another inscribed ball. Formally, the medial
axis transform (MAT) is a representation of an object as the infinite union of
its maximal balls. In this thesis, the MAT of a three-dimensional object is
approximated with a finite union of balls. The MAT is also called the medial
sheet.
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The exact calculation of the MAT for complicated shapes is currently not possi-
ble, but several techniques for calculating an approximation exist. The Voronoi
diagram and its complement, the Delaunay triangulation is typically used in
these algorithms. In [224] the MAT is approximated using the Voronoi dia-
gram. However, Amenta et al. claim that this approach is not correct and
that a weighted Voronoi diagram called a power diagram should be used in-
stead [3, 4]. The Power Crust approximates the object with a set of spheres,
called polar balls. Both the inside volume and the outside volume of the object
are approximated. As will be shown later this is very handy. The inner polar
balls and the medial sheet calculated for an ear canal can be seen in Figure 6.1.
The outer polar balls can be seen in Figure 6.2.

6.2 Collision Detection

Collision detection is a field of much research, but also with a huge number of
practical applications. Typical examples of applications are flight simulators,
surgery simulation, virtual reality and probably the most significant, computer
games. In these applications, real-time performance of the collision detection
algorithms is needed. Space partition methods are often used to achieve this
kind of performance. Hence, a large number of different ways to present 3D data
in performance enhancing hierarchies exist. Examples are octrees [188], kD-
trees [20], and binary space partitioning trees (BSP-trees) [102]. These spatial
partitioning algorithms are often used to represent fixed environments, in which
other objects navigate. In our case, parts of a hearing aid move inside an ear
canal. It would therefore be obvious to use some kind of space partitioning of
the ear canal.

When the collision occurs between two or more objects a number of ways to
represent the object exists. One way is to represent an object using a hierarchy
of axis-aligned bounding boxes (AABB-trees) [21] or the slightly more advanced
oriented bounding boxes (OBB-Trees) [112]. However, biological objects are
sometimes not well approximated by rectangular boxes. Hubbard proposes an
alternative method that represents an object as a hierarchy of spheres [137, 138].
The set of spheres approximating an object is calculated using a stable Voronoi
diagram method [139]. Another alternative is the discrete orientation polytopes
(DOPs) approach [124, 165, 166, 167]. A k-DOP approximates the convex hull
of an object, where k indicates the number of planes that are used. Hence, a
6-DOP is equal to rectangular box, while higher order k-DOPs provide a tighter
approximation of the convex hull.

Collision detection algorithms are often specially crafted to each application
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(a) Point Cloud (b) Polar Balls

0674 201 3.34 a.67 6.00

(c) Medial Sheet (d) Medial Sheet and Surface

Figure 6.1: The approximation of the medial axis transformation of an ear canal.
It is seen that the collection of polar balls approximates the volume spanned by
the point cloud. The medial sheet is colour coded according to the radii of the
medial balls. The large ball is placed at the opening of the ear canal. Scale is
in millimetres.
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Figure 6.2: The centres of the outer balls colour coded according to their radii.
It is seen that the balls are enclosed in a bounding volume much larger than the
actual ear canal.

since the nature of the scene determines the optimal approach. Our case is
somewhat special since we need to check if a component is completely inside the
ear canal. In addition, it is necessary to calculate the amount of penetration so
a measure of severity of the collision can be given.

To determine the volume of the intersection a technique known as constructive
solid geometry (CSG) can be used [91, 136, 171]. One problem using CSG is
that it is required that the objects are closed and that is not the case with
the ear canal. Tricks can be made to make it a closed object, but that is not
optimal. Finally, a combination of methods, were chosen. These are described
in the next section.

6.2.1 Collision Detection in the Ear Canal

The chosen approach is customised to the problem at hand. It is based on the
spherical decomposition technique [137, 138] and OBB-trees [112].

A component is represented as an OBB-tree as seen in Figure 6.3. To build
the OBB, a recursive, top-down process is used. Initially, the root bounding-
box is found by calculating the eigenvectors of the covariance matrix of the
points from the object. These three orthogonal vectors define the tightest fitting
bounding box. The two children of this bounding box are found by a plane that
approximately divides the object in half. These two point clouds are then used
to compute the two child OBBs. This process continues until the desired tree-
depth is reached or no splitting is possible.

As described in Section 6.1, the Power Crust computes a medial sheet consisting
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wHpe

Figure 6.3: OBB-Tree representation of a collection of components. From right
to left the OBB-tree level 0, 1, 2, and 4.

of a collection of connected vertices. Each vertex in this sheet also represents a
medial ball (also called a polar ball) that touches the sides of the reconstructed
surface. The collection of medial balls is thus a very good approximation to the
object enclosed by the surface as seen in Figure 6.1. In addition, a medial sheet
representing the space outside the object is produced. This sheet is bounded by
a box much larger than the object as seen in Figure 6.2. Since it is very easy
to determine if a point lies inside or outside a sphere, the collection of medial
balls can be used to determine if given points lie inside or outside the object
approximated by the balls. This method resembles the method by Hubbard [137,
138]. To check if a point from the component is placed inside or outside the
shell, there are two possibilities. The first is to examine if the point is contained
in any inner medial ball, if not it must be outside. The second is to examine if an
outer medial ball contains the point, which would also mean that it is outside.
As motivated later, we use the outer medial balls to determine if there is a
collision. Moreover, a temporal caching technique is used to speed up collision
detection involving objects that only moves a little from frame to frame. A
list of medial balls containing colliding points is kept and used to check if the
point is still colliding with these balls in the next frame. Furthermore, collisions
between balls and points are checked in the order of the size of the balls, with
the largest balls being checked first. The level of OBB-tree used to represent
the components is chosen dynamically. In the final iterations all the points from
the polygonal representation of the component is used. A collision between a
CIC and an ear canal detected by this method is seen in Figure 6.4.

The penetration depth is formally defined as the minimum translation distance
needed to separate two objects. However, the calculation of the true penetration
depth is very difficult [162] and outside the scope of this thesis. Instead, an
ad hoc method for the estimation of the penetration depth is adopted. The
penetration depth is defined for a point as being the distance to the nearest point
on the surface. This distance can be calculated using the technique described
in Section 6.4, but this method is very slow. Hence, an alternative method that
provides a quick approximation to the distance is used. The penetration depth
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Figure 6.4: Collision between a CIC and an ear canal detected using the medial
balls. The red areas of the CIC are where the CIC is colliding with the ear
canal.

of a given point is computed using the outer, medial balls. When an outer
medial ball contains a point, P, a collision vector can be calculated as

(P-0)
IP=cl

where r is the radius and C is the centre of the ball. This is illustrated in
Figure 6.5. All collision vectors can be calculated by finding all the balls that
contain the point. Averaging these vectors yields an estimate of the direction
of the true penetration vector. The penetration depth is calculated as d =
max ||Veol,; - Veol|| and an approximated penetration vector as v = d¥,, where
Veol 18 the normalised, average collision vector. The collision and penetration
vectors from a set of vertices can be seen in Figure 6.6. Finally, the severity of
a collision between a component and the ear canal is calculated as the sum of
penetration depths of all vertices in the component, Feolision = ZZ d;.

(6.1)

Veol =

The method contains several weaknesses. First, it ignores the origin of the
points. When a point is part of a larger object, the positions of the remain-
ing parts of the object should be taken into account. Secondly, there is no
proof that the method actually estimates the minimum distance to the surface.
Nevertheless, the method has proven to work well with our data.

6.3 Path Planning

As will be demonstrated in Chapter 7, it is highly beneficial if a path through
the ear canal can be computed. It is intuitive that the path is close to the medial
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/

Figure 6.5: Point P is found in two outer medial balls with centres C; and Cs.
The true penetration vector v is estimated based on the two shown collision
vectors.

Figure 6.6: Collision between a component and the ear canal. All the collision
vectors are shown in the middle and the approximated penetration vectors are
shown to the right.
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sheet of the ear canal. Furthermore, it is believed that the path should be based
on the diameter of the ear canal. Based on this assumption the path through
the ear canal is computed as a weighted shortest path on the medial sheet. This
approach resembles the technique used to calculate fly-through paths in virtual
endoscopy [192, 193].

The medial sheet described in Section 6.1 is represented as a mesh, consisting
of connected vertices. A mesh can be seen as either a directed graph or an
undirected graph. For use in the shortest path algorithm, the mesh is treated as
a directed graph, where all vertices connected in the mesh are connected by two
directed edges in the graph. In addition, a weight is assigned each edge in the
graph. If the lengths of the edges are used as weights, the result is a geodesic
shortest path.

Several techniques to compute shortest paths on graphs exist. A well-known
single-source shortest path method is Dijkstra’s algorithm [80]. According to
Kimmel and Sethian, Dijkstra’s algorithm can be inconsistent. If Dijkstra’s al-
gorithm is used on a square grid, several shortest-paths exist, since the algorithm
uses the Manhattan distance [163]. In contrast, the Fast Marching Method is
a consistent approximation to the continuous partial differential gradient oper-
ator. Since it can use sub-grid resolution, it finds a better approximation of
the true shortest path [163, 222, 223]. Moreover, Antiga has demonstrated the
use of the Fast Marching Method on medial sheets to calculate centrelines in
vascular structures [11, 12]. Nevertheless, we believe that Dijkstra’s algorithm
provides sufficiently precise results in our case, since the meshes of the medial
sheets are densely triangulated. The implemented Dijkstra’s algorithm has been
made public available and is described in detail in Appendix E.7.

The algorithm finds the shortest path between a start vertex and an end vertex
that must be identified beforehand. In this project, the start and end vertices
are found by atlas mapping. The shape model is fitted to the new ear canal
as described in Section 4.2.4. After the fitting, two landmarks are propagated
from the fitted model shape to the new ear. These two landmarks are placed at
the entrance to the ear canal and at the tympanic membrane. Finally, the start
and end vertices are chosen as the two vertices closest to these two landmarks.

The geodesic shortest path tends to cut corners by design. Hence, it would be
convenient if the sizes of the medial balls could be used to guide the path. In
summary, we are searching for a path that favours the middle part of the ear,
but is still in some sense optimal. The solution was found by treating the graph
as a connection of electrical wires. Hence, the path is calculated as the single
line of wires connecting the start and the end vertex with the least resistance.
We call it the path of least resistance. The wire from vertex v; to vertex v; has
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the resistance:
pL

77
where p is the resistivity of the material, L is the length and A is the cross

sectional area of the wire. This can be simplified so that the edge from vertex
v; to v; has the edge cost:

Rij = (6.2)

Wij = ; (63)

Sl

where L is the length from v; to v; and r; is the radius of the medial ball
placed at v;. A path through the ear canal found with this method can be seen
together with a geodesic shortest path in Figure 6.7. It is seen that the path of
least resistance has the desired properties, since it follows a path going through
the widest areas of the ear canal while still finding a direct path.

Figure 6.7: The path of least resistance (green) compared to the geodesic short-
est path (red).
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6.3.1 Medial Distances

Often the question “How deep or how long is the ear canal?” is posed. Since the
ear canal is a bending tube, this question is not simple to answer in a consistent
manner.

We propose a new distance measure, the medial distance, to measure distances in
the ear canal. This distance is measured by following the path of least resistance.
Initially, the closest point on the path of least resistance is found for both points.
Secondly, the medial distance is calculated as the path length between these two
points.

6.4 Offset Surfaces and Shelling

An offset surface is a surface that is similar to the initial surface but offset with a
positive or negative value [100, 216]. A more formal definition is that an e-offset
surface from F' is a surface F’, formed by the points z such that the distance
from x to the nearest point on F' is exactly ¢ [3]. A simple way of producing an
offset surface is to move the vertices of the original surface in the direction of
the normals. This works for convex surface with positive offsets, but folds will
be generated if the surface is more complex.

According to Amenta, an offset surface can be computed by using the results
from the Power Crust algorithm [3, 4]. Manipulating the radii of the inner and
outer polar balls and extracting the resulting intersection surface, should give
an approximate offset surface. However, we have chosen an approach based on
a 3D distance transformation. It is explained in the following.

A distance transformation is a grid where each element contains the shortest
distance to the surface [35]. A distance field is signed if the sign of the distance
is dependent on the element being placed inside or outside the surface. In
the following a 3D distance transformation is used, meaning that an element
is a voxel in a voxel-volume. Several algorithms for computing distance fields
exist. A method that uses a tree of bounding boxes to store the triangles of
the mesh and use this to speed up distance calculations is proposed by Payne
and Toga [203]. A case analysis is performed when the distance from a point
to a triangle is computed, since it is necessary to know if the closest point on
the triangle is a vertex, lies on an edge, or lies on the face itself. A similar
approach is presented in [118], where the mesh is represented in hierarchy of
simplifications. The distance field is initially computed on a coarse level and
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then gradually refined. In a recent method for calculating signed distance fields,
Beerentzen and Aanges [16] propose to use an angle weighted normal in addition
to the case analysis to correctly calculate the sign of the distance.

Since the ear canal is not closed, it is problematic to define what is inside and
what is outside. Evidently, there is an inside of the cylinder, but the ambiguity
appears near the openings of the canal. In practice, the unsigned distance
transform proved to be sufficient for our needs.

The implemented method is similar to the approach presented in [203] and the
method used by Hoppe in his work on surface reconstruction [131]. Initially a
voxel volume surrounding the surface is created. For each voxel, the distance
to the closest point on the surface is calculated using a spatial search tree. The
triangles of the mesh are stored in a uniform-level octree [188], where each octant
carries an indication of whether it is empty or not, and each leaf octant carries
a list of the triangles inside it [219]. However, the method can be optimised
significantly by using the bounding box approach proposed in [203] and [16].
In addition, the method can be extended to a signed distance by using the
approach suggested in [16].

When a distance transform has been computed, offset surfaces can be extracted
as iso-surfaces. The standard method for iso-surface extraction is the marching
cubes algorithm [183]. An extracted iso-surface can be seen in Figure 6.8. The
unsigned distance transform is used meaning that the iso-surface is wrapped all
around the original surface. If the signed distance transform is used a choice
must be made for handling the volume surrounding the openings of the ear
canal. However, this was not necessary for our purpose.

Figure 6.8: Original surface and the 0.6 mm iso-surface. The unsigned distance
transform is used.

Shelling is the process of adding a thickness to a surface. Extraction of an
iso-surface from an unsigned distance field essentially solves this as seen in Fig-
ure 6.8.
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Precision is lost when converting a surface to a voxel grid since the precision is
dependent on the voxel size. The number of voxels in the volume is cubically
dependent on the voxel size, so there is a trade-off between memory usage and
precision. However, when using the distance transform some of the lost precision
is regained due to the extra information contained in the distance measure. The
iso-surface extraction has sub-voxel precision and is able to use the information
stored in the distance transform. Still care has to be taken to select the optimal
voxel size.

6.5 Discussion

This chapter presented various techniques that are used in the component place-
ment framework. While the methods are well known from computer graphics,
some innovation was still needed to adapt them to the problem at hand.



CHAPTER 7

Component Placement

This chapter presents a framework for automatically placing 3D components in
a container. The framework is applied to the problem of placing a faceplate and
the associated components in an ear canal.

The problem of component placement is found in many disciplines, and with
many names including 3D bin packing, container loading, pallet loading, 3D
palletisation!, and printed circuit board layout [15, 45, 46, 47, 132, 147, 189,
197, 215, 225, 237, 239]. Generally, the problem can be formulated like this [46]:

Given a set of three-dimensional objects of arbitrary geometry and
an available space, find a placement for the objects within the space
that achieves the design objectives, such that none of the objects
interferes, while satisfying optional spatial and performance con-
straints on the objects.

Previous approaches are usually tailored to a specific application, thus limiting
the problems that can be solved. Printed circuit board layout is an example of
a specialised problem, where the components are limited to rectangles aligned

IThe packing of goods on to small wooden platforms, or pallets, for ease of handling in
shipment.
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in 2D along orthogonal axes [45, 46]. Similar constraints exist for other ap-
plications. As a curiosity, it is claimed that the physical placement of neural
components in the brain appears consistent with a single, simple goal: minimise
the cost of connections among the components [56].

Our problem can be formulated like this

Given an ear canal and a set of components, place the components
in the ear canal, as would an expert operator.

Fulfilling this requires both insight in the routines, behaviour, and thoughts of
the operator and a flexible framework for component placement. We therefore
start by introducing a generic framework and later apply it to the problem
stated above.

7.1 A Component Placement Framework

Instead of limiting the framework to a specific application, we formulate it as a
set of steps, where each step can be tailored to the problem at hand.

Problem Analysis

The task is often to reproduce or improve results previously made by human
operators. This could be the placement of engine parts in a car motor or the
packing of a truck. Therefore, it is very beneficial to learn which methods the
trained operators are using to solve the task.

Formulation of an Objective Function

Based on the expert operators’ experience and practical considerations an ob-
jective function can be formulated. Evidently, the objective function should be
computable and since it will be evaluated often in the optimisation phase, it is
preferable that it is not very complex to compute. An objective function can
for example be a combination of mazimisation of packing density, minimisation
of routing costs?, minimisation of component heating [48], and minimisation

2Routing means to connect components using for example wires or tubes.
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of electromagnetic field interference [46, 147, 215]. Furthermore, an objective
function often involves distances and the amount of collision between the com-
ponents.

A complication is to determine the weights used in the final objective function.
That is to select how much each term should influence the final solution. In
addition, it can be beneficial to change the weights during the optimisation.
For example allowing collisions in the start and penalising them heavily in the
end. In certain circumstances, it is possible to determine the weights using a
leave-one-out study.

Determination of Hard Constraints

Some states are not acceptable and therefore hard constraints can be specified.
One hard constraint is for example that components must not overlap and must
not be outside the container. Another example is that a container for liquid
should have the opening upwards. It can be useful to formulate the hard con-
straints so they are solely enforced in the end of the optimisation phase, since
finding the global optimum often requires crossing illegal states.

Definition of the State Space and a Move Set

To be able to optimise the placement, it is necessary to define a set of movements
for the components and thereby defining the state space that the optimisation
algorithm navigates. In previous work, nearly all problems are constrained to
finite state spaces meaning that each component is only allowed a finite set of
movements [15, 46, 147, 215, 239]. These can for example be a translation of a
given length or a fixed angular rotation around one of the coordinate axis, giving
the component a limited number of degrees of freedom. Another possibility is
to allow the components to move freely. Hence, the position of a component is
controlled by six continuous parameters. In summary, there is a drastic increase
in the dimension of the state space for each free component.

Initialisation

Normally there is the need for an initialisation step where the components are
placed in a start state. This start-state should provide the optimisation algo-
rithm with a starting guess, but does not need to fulfil any constraints.
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Optimisation Strategy

Cagan et al. claim that the solution space of 3D layout problems is of fractal
nature [47]. Deterministic algorithms are therefore not suitable for locating the
global minimum, and stochastic algorithms are usually required for good quality
solutions.

In the literature, several different optimisation strategies have been used to
solve the problem. If the state space is limited and can be considered as a
finite string of states a genetic algorithm approach can be chosen [132, 147].
Another option is the similar A-teams algorithm [215]. A popular optimisation
strategy is simulated annealing [46, 57, 164, 172, 248]. A similar problem with a
finite state space, where simulated annealing has been used to find approximate
solutions is the travelling salesman problem [208].

When the state space is not finite, genetic algorithms and other algorithms
that require that the state space can be formulated as a string cannot be used.
Instead, simulated annealing seems to be the best solution.

Validation

When the placement of the components has been optimised, there is a need for
a validation of the result. In some cases, the final value of the objective function
is enough. In other cases, a total sanity check of the final state is needed.

7.2 Hearing Aid Component Placement

In this section, the framework presented in the previous section is applied to
the task of placing components in a CIC hearing aid.

It is well known that the single most important factor in the shape of a CIC
is the position of the faceplate. This is clearly seen in Figure D.2 on page 149.
The faceplate consists of a disk with an attached component package, including
a battery. An actual faceplate and the corresponding CAD model can be seen
in Figure 7.1.

The placement of the remaining components of the hearing aid is therefore
guided by the placement of the faceplate. Naturally, there are situations where
the faceplate cannot be placed optimally because there is insufficient space for



7.2 Hearing Aid Component Placement 67

Figure 7.1: The faceplate used in a recent Oticon hearing aid.

the other components in the shell. In addition, the placement of the vent is
important. A brief introduction to CIC production can be found in Section 2.3.

Currently, we limit the task to locate the optimal position of the faceplate and
the attached components in the ear canal. However, the framework can be
extended to include the remaining components. In addition, the vent can be
simulated by adding a tube approximated by a thin plate spline to the shell.

The following sections explain each step of the adapted framework in detail.

7.2.1 Problem Analysis

Given a scanned ear canal, the aim is to place the faceplate where it would sit
on a CIC hearing aid made for that ear canal. The difference between the ear
canal and the CIC shell is that the shell has a thickness. This can be simulated
by calculating an inward offset surface of the ear canal and using this when the
faceplate is placed. Offset surfaces are treated in depth in Section 6.4.

Since hearing aids are currently made by human operators, the starting point
is to gain as much knowledge from them as possible. According to expert 1, a
well-made CIC is characterised by

e The components fit in the shell.
e The battery-compartment door points downwards.

e The faceplate is placed approximately where the part of the first bend
that is on the concha side has its highest curvature. The bends of the ear
canal can be seen in Figure 7.2.

e The faceplate is approximately parallel to the flat part of the concha.
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e The faceplate area is as small as possible.

ash

Figure 7.2: The first (green) and the second (yellow) bend on an ear canal.
Further description of the ear canal anatomy can be found in Section 2.1.

7.2.2 Objective Function

Inspired by the expert opinion, elements of the objective function are con-
structed. First, it is necessary to separate the elements of the faceplate that
must be inside the shell from the rest. This collection of components can be
seen in Figure 7.3. The components are treated as one complex part to facilitate
the optimisation.

Figure 7.3: The collection of components that must not collide with the shell.

The first term of the objective function, Fce, is the amount of collision between
the components and the shell. During the optimisation, the cost of this term is
increased, thus it ends as a hard constraint. Collision is not treated as a hard
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constraint initially, since it has proven necessary to go through illegal states to
reach the optimal state. The collision detection algorithm is explained in detail
in Section 6.2.

The second term of the objective function, F,iea, is the surface area of the
part of the faceplate that is inside the shell. It is computed as the area of the
closed polygon resulting from intersection the shell with the faceplate plane. A
faceplate has a thickness. Hence, the area is calculated based on the visible part
of the faceplate. This is seen as the green tube in Figure 7.4.

The third term of the objective function, Fyjs, is the distance from the face-
plate to the tympanic membrane. Since the data is based on laser-scans of ear
impressions, the location of the tympanic membrane is not known, so a qualified
guess is used instead. In Section 4.2.4, it is explained how the shape model is
used to propagate landmarks from an atlas to a new ear. This way a tympanic
membrane landmark is applied from the atlas to the new ear canal. Since the
ear canal is bended, the Euclidean distance from the centre of mass of the face-
plate to the end of the canal is not optimal. In the optimisation phase, this will
result in the faceplate being pulled towards the side of the ear canal. The medial
distance introduced in Section 6.3.1 is a better choice of distance measure and
is therefore used. The path of least resistance can be seen as the red tube in
Figure 7.4. In summary, two points on the path of least resistance are located.
The first point is close to the tympanic membrane and the second is close to the
centre of mass of the faceplate. Finally, Fqis; is calculated as the path length
between the two points.

The fourth term of the objective function, Faiign, is the alignment of the face-
plate with the path of least resistance. It is computed as the dot product of the
normal vector of the faceplate plane and the tangent vector of the closest point
on the path of least resistance. Experiments indicate that a better measure of
the alignment of the faceplate is the area of the faceplate, even though it is
indirect.

Combining these terms gives the total objective function:

ftotal = a(l - ﬁ)(l - '7)]:001 + (1 - a)<1 - ﬁ)(l - V)fdist +
(1 - Ck)ﬂ(]. - 'V)falign + (]- - a)(]- - ﬁ)’yfarem (71)

where «, (3, and v weights the individual terms. These weights are currently
chosen by trial and error. In addition, they are changed during optimisation.
Further details are found in Section 7.2.6.
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Figure 7.4: Optimisation of placement. The green tube is the intersection be-
tween the outer faceplate plane and the shell. The cyan tube is the intersection
between the inner faceplate plane and the shell. The red tube is the path of
least resistance of the shell.
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7.2.3 Hard Constraints

In certain cases, concha is only partly included in the scan, due to the limitation
of the used laser scanner. Occasionally, the faceplate is tilted during optimisa-
tion, resulting in holes in the intersection between the faceplate plane and the
shell. The solution to this problem is to apply a hard constraint. Hence, states
that result in holes in the intersection are not accepted during optimisation.

7.2.4 State Space

During the optimisation, the shell is kept in the same position and the collection
of components is moved. A movement scheme for the components is therefore
needed. Several approaches were considered including limiting the moves to
a finite state space, where the components are only allowed to be in certain
discrete positions and orientations.

Finally, it was decided that no restrictions should be imposed on the movement
of the components. Thus, the state of the component is kept as a six dimensional
vector, 8 = (¢, @y, 02, ta, ty, t.), where ¢z, ¢y, ¢, are the rotations around the
three coordinate axes® and (t,,t,,t) is the translation vector from the origin. A
new state is made by adding a vector with random displacements to the current
state Spew = s + As, where As = (A¢y, Agy, Ag,, Aty, Aty At,).

7.2.5 Initialisation

The initialisation should serve as a good start-state for the following optimisa-
tion. We use the method described in Appendix D to give an initial estimate
of the placement of the faceplate. This approach places an ideal, component-
free faceplate in the ear canal. When the real faceplate is initially placed in
the position of an ideal faceplate plane, there is a very high probability that
some components of the faceplate will collide with shell. This can be seen in
Figure 7.5.

To improve the initial placement some additional steps are taken. The cen-
tre of mass of the components is moved to the centre of mass of the intersec-
tion between the faceplate and the shell. This intersection can be seen as the
green tube in Figure 7.4. Secondly, the components are rotated around the
plane normal to locate the rotation that minimises collision. In addition, the

3Rotations are applied in Y, X, Z order.
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Figure 7.5: The initial placement of a faceplate with components in an ear canal.
It is seen that components collide with the shell.

battery-compartment door shall point downwards. To determine if the battery-
compartment points downward, the direction of the components are compared
to two landmarks. The landmarks are placed at the first bend and indicate the
up-down direction of the ear canal. They are located by the shape model using
atlas mapping, as explained in Section 4.2.4. The initialisation steps can be seen
in Figure 7.6.

Figure 7.6: The initialisation step. The components are rotated until there is
minimum collision and the battery-compartment door points downwards.
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7.2.6 Optimisation

The optimisation is performed using simulated annealing [164, 248]. For each
iteration, a new component state is generated following the method described
in Section 7.2.4 and the objective function is calculated for the new state. The
change in the objective function is given by AFiotal = Ftotal(S) — Frotal (Snew)-
AFiotal is also called the energy of the state. The new state is accepted with a
probability given by:

—AFtotal

Paccept = min(e™ 7 1), (7.2)

where T is a parameter referred to as the temperature. The temperature governs
the probability of accepting inferior steps. The temperature starts out high and
decreases with time following a cooling schedule [57, 172]. Here a simple schedule
is chosen where the temperature is dropped by a percentage each N iterations.

In the start where the temperature is high, nearly all states are accepted, also
states that are later considered illegal. This allows the algorithm to explore
the state space before converging on a minimum. Furthermore, modifications
to the basic simulated annealing schedule are made. When a large number of
iterations have been performed without the current energy dropping below the
all-time-lowest energy, the state is reset to the all-time-best state. The energy
is plotted for two optimisations in Figure 7.7. Note, that states with higher
energies than the old state are accepted, but the probability of this is lessened
as a function of the iteration number. The optimisation terminates after a fixed
number of iterations or if the all-time lowest energy has not been changed for a
large number of iterations.

The weights, a, 3, and -y, mentioned in Section 7.2.2 have been found by trial
and error. Moreover, the optimisation step is repeated, each time with a different
parameter configuration. A parameter configuration is called an optimisation
mode. Initially, the optimisation is run until convergence with o = 0.8, 3 =0
and v = 0.1, giving Fiotal = 0.72F o1 + 0.18Fgist + 0.02F 4pea- This mode allows
minor collision, while focusing on minimising the faceplate area and pulling the
faceplate towards the tympanic membrane. The energy plots in Figure 7.7 are
generated using this mode. Finally, the state is optimised with a mode that
penalises collisions hard : a =1, 6 =0 and v = 0, giving Fiotal = Feol-

In addition, simulated annealing is used in another context in Appendix C.
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Figure 7.7: The total energy of a state plotted against the iteration number for
two different optimisations. The energy for the current state, the energy for the
accepted state, and the energy for the all-time-best state are shown.

7.2.7 Validation

Two experienced CIC operators (expert 1 and 2) have placed faceplates on
a training set using a custom-made CAD tool. The toolkit is described in
Appendix E.2. As an initial validation, the results produced by the algorithm
are visually compared to the expert placements. Two examples are seen in
Figures 7.8, 7.9, 7.10, 7.11, 7.12, and 7.13. Generally, the algorithm produces
results that from a visual standpoint are comparable to a human operator.
In example 1, seen in Figures 7.8, 7.9, and 7.10 the algorithm has placed the
faceplate nearly in the same position as the two operators. A CIC produced with
a faceplate in the computed position would have a high cosmetic quality. First,
the shape of the faceplate is nearly oval. Secondly, the battery compartment
point downwards. Finally, the faceplate is placed deep in the ear canal. Thus,
it would be nearly invisible in-situ.

The algorithm has not performed equally well in example 2 seen in Figures 7.11,
7.12, and 7.13. Compared to the placement of the two operators, the algorithm
has tilted the faceplate. The explanation can be found in Table 7.1, where
the individual terms of the objective function have been calculated for the ex-
pert and computer placements. For example 2, the result of the algorithm is a
placement with a smaller faceplate area and a shorter distance to the tympanic
membrane than the placements of the two operators. If we assume that the
operator placements are the ground-truth, it unfortunately indicates that the
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(a) Expert 1 (b) Expert 2

(c) Auto

Figure 7.8: Example 1 component view. The two expert operators and the
algorithm have placed the components similarly. As seen in Table 7.1, there
are minor hidden collisions between the shell and the components. However,
the components are well inside the shell and there is not much excess space.
Furthermore, the faceplate is placed nearly perpendicular to the shell. Thus,
connecting the faceplate components to the remaining component would not be
difficult.
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(a) Expert 1 (b) Expert 2

(c) Auto

Figure 7.9: Example 1 side view. Both the algorithm and the two operators have
placed the faceplate near the first bend of the ear canal. Thus, the resulting
CIC would sit deep in the ear canal.
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(a) Expert 1 (b) Expert 2

(c) Auto

Figure 7.10: Example 1 entrance view. The three placements are very similar.
The resulting instrument would be a very small CIC. Furthermore, the battery-
compartment door points downwards and the faceplate outline is oval, giving a
cosmetically appealing finish of the hearing aid.
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(a) Expert 1 (b) Expert 2

(c) Auto

Figure 7.11: Example 2 component view. It is easy to see the difference between
the placements. While expert 1 has placed the component in a satisfactory
position, expert 2 has placed them in a tilted position with too much excess
space. The algorithm-placement is in between the two operators.
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Figure 7.12: Example 2 side view. From this angle, it is seen that the algorithm
has placed the faceplate in a tilted position compared to the operators.



80 Component Placement

(a) Expert 1 (b) Expert 2

\

(c¢) Auto

Figure 7.13: Example 2 entrance view. It can be seen that both the expert
operators and the algorithm have problems in placing the faceplate in a position
that would result in a CIC with a high cosmetical value. First, the battery
compartment points sideways. Secondly, the faceplate outline is not oval and
tends to look like a duck-foot.
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objective function lacks terms that describe more of the operator skills. How-
ever, neither the algorithm placement nor the expert placements would result
in a CIC with a high cosmetic quality. First, the battery compartment does
not point downwards. Secondly, the faceplate outline is not oval, but duck-foot
shaped. In conclusion, it is not possible to build a good quality CIC for that
given ear with this component configuration. The measurement of the cosmeti-
cal quality of a CIC is discussed in Section 8.3.

Experiments have shown considerable variation between operator placements.
In addition, this is indicated in Table 7.1. However, the data currently available
is insufficient to compare the intra-operator variance with the operator-machine
variance.

fcol farea fdist ftotal
Expert 1 | 1.47 | 82.15 | 13.59 | 5.14
Example 1 Expert 2 | 5.20 | 85.14 13.23 | 7.83
Auto 0 88.14 | 12.46 | 4.01
Expert 1 0 109.03 | 20.23 | 5.82
Example 2 Expert 2 0 134.18 | 21.64 | 6.58
Auto 0 108.42 | 20.21 | 5.81
Expert 1 | 0.04 | 109.15 | 16.64 | 5.21
Example 3 Expert 2 0 113.43 | 17.20 | 5.37
Auto 0 104.22 | 16.41 | 5.04
Expert 1 | 0.03 | 138.80 | 14.05 | 5.33
Example 4 Expert 2 0 105.23 | 15.07 | 4.82
Auto 0 96.96 | 14.84 | 4.61
Expert 1 | 1.72 | 115.50 | 18.74 | 6.92
Example 5 Expert 2 0 142.82 | 20.14 | 6.48
Auto 0 99.51 | 18.75 | 5.37
Expert 1 | 2.56 | 87.45 | 15.14 | 6.31
Example 6 Expert 2 0 90.70 15.39 | 4.58
Auto 0 100.12 | 15.69 | 4.83
Expert 1 | 0.51 | 89.94 14.68 | 4.80
Example 7 Expert 2 | 1.00 | 87.75 14.53 | 5.09
Auto 0 92.01 | 12.72 | 4.13
Expert 1 0 78.40 15.73 4.40
Example 8 Expert 2 | 1.82 | 78.12 7.84 4.28
Auto 0 79.95 11.96 | 3.75

Table 7.1: Placement scores. The best score in each category is marked with
bold. Collision detection was not enabled during the operator placement. There-
fore, minor collisions between the shell and the components occur in certain ex-
pert placements. For all examples except one, the algorithm finds the placement
with the lowest total score.
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In conclusion, the objective function is a limited approximation of the thoughts
and skills of the operators. Adding terms to the objective function could prob-
ably alleviate the problems encountered.

Finally, a visual interface to the placement algorithm has been made. We have
used it to validate and tune the optimisation. It is described in Appendix E.3.

7.3 Discussion

In this section, a complete framework for component placement has been pre-
sented and applied to the task of placing a faceplate in an ear canal.

The aim was to produce a system that can mimic the craftsmanship of the best
human operator. As demonstrated, the algorithm is able to produce results
that are comparable to the human results, even though it was realised that the
objective function needs additional terms.

Simulated annealing was chosen for the optimisation. Better performance could
probably be achieved by merging simulated annealing with a gradient-descent
based method.

In-vivo validation of the results would be optimal. However, this is currently not
possible, since the method is not yet mature enough to produce the data needed
for a rapid-prototyping machine. Furthermore, the remaining components have
been ignored in this implementation.

The method is completely automatic. Given a newly scanned ear canal, the
algorithm recognises it, places anatomical relevant landmarks, and finally locates
an optimal faceplate placement.

In conclusion, we regard the results as a proof-of-concept of automated compo-
nent placement in the production of CIC hearing aids.



CHAPTER 8

Other Applications

This chapter presents various applications where the results from the other parts
of the thesis have been used.

8.1 A One-Size-Fits-Most Shell

Attempts have been made to produce CIC hearing aids with a fixed design that
fits a large percentage of the population [190, 249]. One type of these hearing
aids is equipped with a soft disposable outer sleeve [148].

During the thesis, a research project in Oticon required in-vivo testing of a com-
ponent configuration using several test subjects. Producing a custom CIC for
each test-subject would be very cumbersome. Instead, we attempted to pro-
duce a one-size-fits most shell using the methods and results from the statistical
shape model. The shell should be able to fit into as many ear canals as possible
while still providing adequate comfort. The approach is based on the concept
of a minimum shell. It is not produced with a specific set of components in
mind. Hence, in addition to being used in the above-mentioned experiment, it
can serve as inspiration for future component design.

The minimum shell is computed based on a training set of scanned ear impres-
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sions. The shape model described in Appendix A can synthesise ear canals that
exhibit the shape variation found in the population from which the training
data come. Thus, the training set used to compute the minimum shell could
be composed either of the entire training set or a set of synthetic ear canals. A
minimum canal computed using the synthesised ear canals should theoretically
fit the percentage of the standard population specified when synthesising the
ear canals. The selection of the training set has no influence on the following
steps. In the following, the total training set of 29 shapes is used, thus creating
a minimum canal that fits into all ear canals in the training set. Hence, the ear
canals are represented as dense meshes with point correspondence. The dense
correspondence is created using the method described in Appendix A.

Initially, the ear canals are Procrustes aligned [111] as seen in Figure 8.1. We
need to calculate the shell that can be placed inside the aligned canals without
interference.

The Procrustes average mesh is used as the initial guess of the minimum shell.
Obviously, it contains the same number of vertices as the aligned ear canals. The
normals are calculated for the mesh by determining normals for each polygon
and then averaging them at shared vertices [219]. The mesh is then deformed
by pushing the vertices in the direction of their normal vectors. The algorithm
can be seen in algorithm 1. Since the normals are pointing outwards, t;, will
be negative or equal to zero.

Algorithm 1 Calculating a minimum canal

The minimum shape is initially set equal to the Procrustes average shape
The normals for the minimum shape are calculated
for all vertices p on the minimum shape do
for all shapes S in the training set do
calculate the vector v from p to the corresponding vertex on S
calculate the projection ¢ of v on the corresponding normal n on the
minimum shape, t =v-n
store the minimal projection value iy
end for
move p to p + tpinh
end for

The resulting minimum shell can be seen in Figure 8.2. The approach is similar
to offsetting the initial surface with a non-uniform offset. Using the surface
normals to generate offset surfaces tend to create artefacts as further explained
in Section 6.4. However, no artefacts were detected on the minimum shell and
the result is of a sufficient quality for our use.

Finally, the minimum shell is cut with two planes. The first cut-plane is placed
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Figure 8.1: Procrustes aligned ear canals.
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Figure 8.2: The minimum shell represented as a surface and as a solid block.
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at the second bend of the ear canal. This position is found by landmark-
propagation from the annotated model mesh. This is described further in Sec-
tion 4.2.4. The second cut-plane is manually placed at the entrance to the ear.
The position is chosen so the interior volume of the shell is maximised and there
are no gaps in the intersection between the shell and the cut-plane.

The physical minimum-shell has been produced by an SLA machine. Thickness
is added to the uncut minimum shell by the shelling algorithm described in
Section 6.4 and the result can be seen in Figure 6.8 on page 61. Finally, the
shell was cut and printed as seen in Figure 8.3. The shell has been used in
experiments with various component configurations. It turned out that a large
group of people can use the minimum shell, if it is used in combination with a
soft earplug.

In order to produce a CIC from the minimum shell, a custom faceplate is used.
In addition, a tipplate is mounted. While it is possible to generate a rounded
tip on the shell before printing, the tipplate is used to facilitate the testing of
different component configurations.

Figure 8.3: SLA print of the minimum shell with the faceplate, tipplate, and
components added.

8.2 Checking Insertability

When a CIC hearing aid is produced using the traditional method, it is contin-
uously checked against a rubber replica of the ear canal. This is illustrated in
Section 2.3. Similarly, when a CIC hearing aid is produced using the new digital
approach, there is an equal need for testing the insertability of the hearing aid.
Thus, a measure of how difficult it is to insert the CIC in the ear canal is needed.
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Insertability is related to path planning. Hence, the path of least resistance
described in Section 6.3 can be used to simulate the insertion of a CIC as seen
in Figure 8.4. The CIC follows the path by aligning its principal axis to the
tangent vector of the closest point on the path. This alignment allows a rotation
about the axis. The rotation that minimises the collision can be found by using
the collision detection routine described in Section 6.2. The insertability is
evaluated as the amount of collision between the CIC and the ear canal during
the insertion.

Due to lack of data, we have not been able to study this problem in depth. How-
ever, preliminary results indicate that the method is sound. Achieving a true
simulation of the insertion performed by the hearing aid user, would probably
require a coupling with the simulation framework presented in Chapter 7.

Figure 8.4: Insertion of a CIC in an ear canal. The CIC follows the path of
least resistance shown as a green tube. Collisions between the CIC and the ear
canal are indicated with red.
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8.3 Classification of Hearing Aid Usability

When designing components for a new line of CIC hearing aids, the following
question is always posed:

Given a faceplate and a set of components, what percentage of a pop-
ulation can be successfully fitted with CIC hearing aids, assuming
that a custom shell is made for each ear?

Today this would be answered by manually fitting a prototype of the components
into a large set of shells. Hence, it is a time consuming and cumbersome task.
While the introduction of the digital production technology means that this can
be done using software, an operator is still needed to place the components and
validate the results.

It is obvious, that the component placement framework demonstrated in Chap-
ter 7 can be useful in this respect. Hence, a prototype faceplate can be auto-
matically placed in an ear canal approximately as an expert operator would.
However, an objective measure of successful fitting is needed to evaluate if the
resulting CIC instrument is acceptable. An example of a succesful fit can be
found in Figure 7.10 on page 77 and an example of a non-optimal fit can be seen
in Figure 7.13 on page 80.

In summary, we would like to be able to compute a usability score (US) for a
given component configuration. The US should measure how well the component
configuration fits into a single ear. Furthermore, a US should be given for how
well the component configuration fits into a selection of ear canals. It can be
formulated like this:

Given an ear and a CIC produced for that ear canal, calculate the
usability score for that particular CIC in that ear.

It is obvious, that the US should be based on geometrical measurements of the
finished hearing aid. However, it is also obvious that these measurements should
be coupled with the anatomy of the actual ear canal. Intuitively, the area of the
faceplate is an important factor in the cosmetics of the hearing aid. However,
it is not possible to use the raw area as an objective quality measure, since a
hearing aid made for a large ear canal, can be very good even though it has a
large faceplate.



90 Other Applications

The general idea in this thesis is that the expert operators posses the needed
knowledge. Hence, the goal is again to mimic the decisions made by the best
human operators. We are applying learning-based methods to search for the
solution. Thus, a training set is needed. Finding a training set consisting of
well-placed and not-so-well placed component configurations was not possible.
Instead, another approach was used. As described in Chapter 7 a training set
with expert placed faceplates exists. This training set is extended to include
not-so-well placed faceplates. For each ear canal, two non-optimal faceplate
placements that are often seen in the production were made by expert 1. The
first is the so-called duck-foot position that induces an irregular duck-foot shaped
faceplate. The second is a tilted position, where the faceplate is tilted when com-
pared to the optimal placement. An example of the three different placements
can be seen in Figure 8.5. In summary, the goal is to find a score function that
can classify the training set.

090

a) Example 1

00y

b) Example 2

Figure 8.5: Faceplate placements for two examples. From left to right: optimal,
duck-foot, and tilt.

Initially, the shape and size of the faceplate cut is examined. There is a clear dif-
ference in the shape of the faceplate outlines as seen in Figure 8.6. Furthermore,
a plot of the faceplate areas for the training set can be seen in Figure 8.7a. While
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there is a clear difference between the average optimal-faceplate area and the
average duck-foot-faceplate area, there is still an overlap. Hence, it is possible
to determine if one faceplate position is more duck-foot than another. However,
the faceplate area is not enough to determine the level of duck-footedness of a
single faceplate.
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Figure 8.6: Faceplate outlines for the two examples shown in figure 8.5.

An obvious idea is to compare the faceplate area with the cross-sectional areas
of the ear canal. In Figure 8.7b the cross areas for the training set can be seen.
They are measured at the first bend, the second bend, and at the position of
the pure faceplate. The concept of the pure faceplate is explained in detail in
Appendix D. Furthermore, the anatomy of the ear canal and the positions of
the first and second bend are described in Section 2.1.

However, it has not been possible to find a combined measure with the desired
properties. This is mainly due to insufficient time. Nevertheless, we believe
that the approach is feasible and that it is possible to find a combination of
anatomical and geometric features that provides the solution.

8.4 Discussion

While the methods described in this chapter do not constitute a closed frame-
work, we believe that the underlying ideas are interesting and can serve as a
basis for future research.
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Figure 8.7: a) Faceplate areas for the training set. b) Cross-areas for the training
set. They are measured at the first bend, the second bend, and at the position
of the pure faceplate.

The in-vivo testing of the minimal shell gave very positive results. Hence, it is
proved that the work done has not solely been an intellectual exercise, but that
the results can actually be used in the industry. This is very encouraging.
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CHAPTER 9

Discussion and Conclusion

This thesis has described the statistical shape modelling of the human ear canal
and how this model can be used in the mechanical design of hearing aids. This
final chapter summarises the contributions and ends with the conclusion.

9.1 Contributions

The first result of this thesis is the building and testing of a statistical shape
model of the human ear canal. It is mainly a proof-of-concept and a specification
of a framework, since the model is built and tested with a small dataset. Hence,
it is not a population study, but the model can easily be extended with more
data.

We realised that the initial shape model contained flaws due to the method
used to generate correspondence. Smoothing of the vector field alleviated this
problem. Furthermore, it turned out that the approach could be formulated
in a Markov Random Field framework. Hence, a new flexible framework for
non-rigid registration of 3D surfaces was developed.

The primary focus in this thesis has been to develop software tools that can
mimic the craftsmanship of the best completely-in-the-canal hearing aid opera-
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tors. The first result in that direction is the shape model guided pure faceplate
placement. Hence, an initial proof of the usability of the shape model in the
hearing aid production was achieved.

Furthermore, a generic component placement framework has also been presented
and applied to the placement of the faceplate and the associated components.
The results from the shape model were used extensively in this framework. In
short, the method was demonstrated to able to reproduce the results of expert
operators. Thus, the coupling of shape modelling and stochastic optimisation
has proven successful.

We have produced prototype software tools to demonstrate the algorithms. Ev-
idently, the algorithms should be incorporated in an existing commercial frame-
work to maximise the usability.

Finally, a physical proof of the validity of the ideas presented in the thesis was
produced in the form of a one-size-fits-most shell.

9.2 Discussion

During the course of this study, several inexpensive scanners, dedicated to the
scanning of hearing aids have appeared. In addition, the commercial software
tools to design hearing aids digitally have become increasingly more advanced
and user-friendly. Hence, the focus of this thesis needed constant adjustment.
We have aimed at using results from the commercial packages maximally, and
have in this way taken care not to reproduce the methods already implemented
in the industry.

While the project progressed and the proof-of-concept of shape modelling of the
ear canal was achieved, we got inspiration and motivation for additional studies.
An obvious idea is to study the dynamic shape change of the ear canal when
a person is speaking, chewing, or yawning. However, this type of data is not
yet available, but we are certain that the shape-modelling framework can be
applied to this analysis. In addition, the study of the growth of the ear canal is
extremely important.
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9.3 Conclusion

Oticon celebrates its 100 years anniversary this year. Thus, hearing aid produc-
tion is a highly refined process that has been gradually improved over nearly a
century. Furthermore, many operators have worked with hearing aids for more
than 25 years and posses a wealth of accumulated knowledge.

In this light, it would be foolhardy to assume that a single thesis will be able
to change and revolutionise this established system. When that is said, we still
believe that the outcome of this thesis is a new and original approach to the
mechanical hearing aid design and production.

To our knowledge, it is the first example of a system that uses statistically based
knowledge about the shape variation of biological objects in product design and
manufacturing.

We believe that the introduction of digital production methods will result in
a more optimised production and more uniform quality of products. However,
operators will still be needed for validation, but the algorithms presented may
aid the inexperienced operators to achieve better results.
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APPENDIX A

Building and Testing a
Statistical Shape Model of
the Human Ear Canal

Rasmus R. Paulsen, Rasmus Larsen, Soren Laugesen,

Claus Nielsen, and Bjarne K. Ersbgll

Abstract

Today the design of custom in-the-ear hearing aids is based on personal ex-
perience and skills and not on a systematic description of the variation of
the shape of the ear canal. In this paper it is described how a dense surface
point distribution model of the human ear canal is built based on a training
set of laser scanned ear impressions and a sparse set of anatomical landmarks
placed by an expert. The landmarks are used to warp a template mesh onto
all shapes in the training set. Using the vertices from the warped meshes, a
3D point distribution model is made. The model is used for testing for gender
related differences in size and shape of the ear canal.
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A.1 Introduction

Hearing aids come in a number of different styles. The smallest of these styles
is called CIC (Completely In the Canal). A CIC hearing aid consists of an
acrylic shell containing microphone, amplifier, loudspeaker, and battery. It is
placed completely in the ear canal rendering it invisible to an observer viewing
the bearer from the front. This is cosmetically appealing, and a number of
acoustical advantages are also given. A CIC is produced for the individual
patient based on a silicon mold of the ear canal.

It is obvious that the space available inside a CIC hearing aid is severely limited.
Hence, both the design of the internal components of the CIC and the placement
and orientation of these are very critical as to whether it is actually possible to
build a CIC for a given ear. Today the aforementioned designs are based on
the experience and skills of the mechanical engineers in the hearing aid industry
and a general knowledge about the anatomy and geometry of the ear. It is
acknowledged that systematic knowledge of the geometry of ear canals and the
variation thereof potentially could be extremely helpful in the mechanical design
of new components for hearing aids.

To our knowledge no systematic description of the variation of the human ear
canal across a population exists. Measurements of the anatomy of a single ear
canal have been made for the purpose of prediction of sound-pressure level dis-
tribution [234]. Manufacturers of hearing aids have made initial testing of rapid
prototyping of hearing aid shells using laser scans of ear impressions but have
not performed statistical analysis of these. It is obvious that the systematic
description of the variation of the shape of the ear canal must be done using
statistical methods. In recent years shape analysis has been used in the descrip-
tion, identification and segmentation of biological shapes.

A popular method for building shape models is the Active Shape Model method
by Cootes et al. [61]. It is dependent of corresponding landmarks placed on
the shapes in the training set. Most previous approaches to automated and
semiautomated landmark generation and registration of 3D-surfaces use the
local surface geometry. Examples of this are the non-rigid registration technique
by Feldmar and Ayache [94], the local geometry and surface geodesic approach
by Wang et al. [251] and the surface signature technique by Yamany et al. [257].
A method for automatic landmark generation based on a symmetric version of
the iterative closest point algorithm is presented in [40]. However, this method
is dependent on the global variation of the shape and apparently does not handle
boundary areas or areas that are not well defined for all shapes.

In this project the ear canals are represented as 3D-surfaces constructed by a
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laser scanner. The local surface geometry of the ear canals varies much from one
individual to another and therefore only very few ridges and extremal points are
stable when comparing groups of ear canals. The surfaces of the ear canals are
not closed due to the opening of the ear canal and because the ear impressions
are terminated in front of the eardrum. Automatic landmark generation and
correspondence is therefore difficult to establish with methods based on surface
geometry.

We have chosen to base our method on the assumption that it is possible to
place anatomical landmarks on the ear canal. The anatomical landmarks do
not constitute an exhaustive description of the surface of the ear canal and it
is therefore necessary to generate a more dense set of landmarks describing the
shape. Interpolating landmarks is straightforward in 2D, but in 3D no spatial
ordering of landmarks is usually defined and therefore the interpolation is much
more difficult.

A landmark based approach is found in [184] where a template mesh is deformed
to each shape in the training set using a thin plate spline transformation based
on the annotated landmarks. This is followed by a regularisation step where each
vertex of the template mesh is adapted to the current shape without causing
folds. This method is well suited for closed surfaces since it does not incorporate
the possibility that patches of the surface are not well defined on all shapes in
the training set.

A similar approach is found in [143] with the addition that the method is able
to handle surfaces with ill-defined areas. This is done by pruning the template
mesh to only include the vertices that are well defined for all training shapes.
In this method, the training shapes are warped to a template shape, and the
correspondence is then made by projecting the vertices from the template shape
to the warped training shapes. This is followed by an inverse warping of the
adapted template shape, which gives the dense correspondence between the
training shapes.

Our approach is similar to [143] but instead of warping each shape in the training
set to the template mesh, the template mesh is warped to each shape in the
training set eliminating the need for an inverse warp.

Other methods that could be well suited for the tubular-like ear canals are
the spherical harmonics approach by Gerig [108] or the M-Rep approach by
Pizer [207]. However, it is not clear how these methods will work on non-closed
surfaces. A similar method that supports non-closed surfaces is the Fourier
surfaces explored by Staib et al. [230].
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A.2 Method

The data were collected by laser scanning of a set of 29 ear impressions taken
from 20 male and 9 female subjects. The surfaces are reconstructed using the
Power Crust [3]. Each reconstructed surface contains approximately 20,000
vertices and 35,000 triangles. An example of a scanned ear impression is seen
in Fig. A.1. An anatomical description of the external ear and a formal naming
convention used for ear impressions can be found in [2, 1.

A.2.1 Annotation of Anatomical Landmarks

Using a custom-made surface annotation tool the third author, who is an expert
of the anatomy of the ear canal has annotated the 29 ear canals. 18 anatomical
landmarks are placed on each ear canal. The landmarks constitute a sparse
correspondence between the surfaces of the ear canals in the training set.

The surface of the ear canal is not closed and therefore it is necessary to identify
the invalid areas. Planes that separate the valid parts of the surface from the
invalid parts are defined for that purpose. In Fig. A.1 an ear canal with the
anatomical landmarks and separating planes is seen.

A.2.2 Surface Correspondence Using Thin Plate Spline
Warping

The anatomical landmarks do not constitute an exhaustive description of the
surface of the ear canal and it is therefore necessary to generate a more dense
set of landmarks describing the shape. For that purpose a template mesh is
constructed and applied to all shapes in the training set.

The mesh constructed by the surface reconstruction contains far more vertices
than needed to give a satisfactory shape description. To construct a template
mesh that can be used as a basis for the further shape analysis a well defined
ear canal surface is chosen and decimated by a standard algorithm [220].

The anatomical landmarks and the template mesh are used to establish a dense
surface correspondence between the shapes in the training set. Since the tem-
plate mesh is made from one of the actual ear canals in the training set anatom-
ical landmarks of this mesh exist.
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The template mesh is applied to each of the shapes in the training set using
a Thin Plate Spline (TPS) warp based on the corresponding anatomical land-
marks. TPS is a warp function that minimises the bending energy [34].

Since the TPS transform is only exact for the anatomical landmark locations,
the vertices of the template mesh will not lie on the surface of the target shape.
Finally, moving each vertex in the warped template mesh to the closest point
on the target surface completes the dense correspondence. This introduces the
risk of so called inversions, where the vertices of the template mesh shift place
and cause folds in the mesh. Techniques to avoid this exist [7, 184] but it has
not been necessary here.

When the template mesh is warped to another shape, it can happen that some
points are placed outside the valid area on the target shape. When warped to
each shape in the training set, the template mesh must only cover valid areas.
This is accomplished by investigating whether any points from the template
mesh are warped into the areas marked as invalid by the separation planes. The
template mesh is then pruned to contain only the points that are warped to
valid areas for all shapes in the training set. The template mesh contains 3,000
vertices after decimation and pruning.

When the dense correspondence has been established the connectivity of the
pruned template mesh can be applied to the points of correspondence on each
shape to yield a set of new meshes. It is now possible to dispose of the anatomical
landmarks as well as the original meshes of the training set. The set of meshes
with dense correspondence is used in the following statistical shape analysis.

A.2.3 Building the Point Distribution Model

The set of corresponding meshes are aligned by a generalised Procrustes analy-
sis [113]. The pure shape model is built by using a similarity transformation in
the Procrustes alignment while a rigid-body transformation is used to build the
size-and-shape model [83].

Following the approach found in the Active Shape Model [61] a principal com-
ponent analysis (PCA) is performed on the Procrustes aligned shapes. Each
shape is represented as a vector of concatenated x, y and z coordinates x; =

(%41, Yi1, Zits - - > Tin, Yin, Zin) 5 @ = 1,...,s, where n is the number of vertices
and s is the number of shapes. The PCA is performed on the shape matrix
D =[(x; —X)|...|(xs —X)], where X is the average shape. The eigenvectors can

be regarded as translation vectors that when added to the mean shape will de-
form the shape according to the modes of variation found in the training shapes.
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A new shape exhibiting the variance seen in the training set is made by adding
a combination of eigenvectors to the average shape X, = X+ @b, where b is a
vector of weights controlling the modes of shape variation and ® = [¢1|¢2] . .. |d4]
is the matrix of the first ¢ eigenvectors. An arbitrary shape x’ aligned to the
Procrustes average can be approximated by the shape model by projecting the
residuals from the average shape onto the eigenvectors b = ®7(x’ — X). The
resulting parameter vector b is used in the statistical analysis below.

A.3 Results

A.3.1 General Observations

The three first modes of variation of the pure shape model are seen in Fig. A.2
and the average shape is seen in Fig. A.1. All the generated shapes look like
real ear canals with no deformations or folds in the mesh. It is seen that the
mode 1 deformation consists of a bending of the canal and a flattening of the
concha part. Mode 2 explains some of shape variation seen in the inner part of
the ear canal. Mode 3 is a combination of a flattening and twisting of the inner
part of the ear canal and a general shape change of the concha.

The distribution of the modes against each other has been examined using pair-
wise plots, and no obvious abnormalities were found.

A.3.2 Classification of Surfaces

Testing the validity and usability of the shape model is done by examining its
ability to reflect gender related differences in the size and shape of the ear canals.

It is first examined if there is a systematic gender-related difference in the cen-
troid sizes of the ear canals. This test is performed using the centroid sizes of
the dense surface meshes of the training set calculated prior to the Procrustes
alignment. The centroid size is the square root of the sum of squared Euclid-
ean distances from each landmark to the center of mass (the centroid) [83]. A
standard t-test shows a highly significant difference in size between males and
females (p = 0,0003). The gender related difference in size corresponds to 9%
of the average centroid size.

Testing for a shape difference between genders is done using the vertices from the
Procrustes aligned dense surface meshes from the pure shape model, meaning



A.3 Results 105

&l

Figure A.1: To the left an example of a surface representation of an ear canal
with the anatomical landmarks and the planes that separate the valid areas
from the invalid areas. The thin structure in the top is the actual canal. The
larger lower part is the concha. Only part of the concha is used and therefore
a plane through concha is defined. To the right is the average shape from the
pure shape model
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Figure A.2: Pure shape model. Each shape has been generated by varying
the first three modes of variation between —3 (top) and +3 (bottom) standard
deviations
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that they are scaled to unit size. In this context, shape is thus unrelated to
size. In order to avoid the problem of multiple testing (as would be the case
for stepwise selection, for example) the following procedure is adopted. First
the dimensionality is reduced by a principal component analysis as described
earlier, secondly the number of components to retain is chosen, and finally a
multivariate analysis of variance [154] is performed on these components. A
typical method for determining the number of principal components to retain is
to include just enough components to explain some arbitrary amount (typically
98%) of the variance. This criteria often results in far to many components
being included in the further analysis and therefore Horn’s parallel analysis [135]
is chosen as a more objective way of deciding on how many components to
include. The eigenvalues of the shapes are compared to those obtained for
equivalent uncorrelated data, obtained by randomly scrambling each row in the
shape matrix D. In this way, the number of modes to retain is 7 as seen on
the scree-plot in Fig. A.3. A multivariate analysis of variance (which in this
case is equivalent to Hotelling’s T2) of these 7 principal component scores per
shape although not strictly significant (p=0,083) does indicate a shape difference
between genders. Univariate analyses on the single principal components show
that this is mainly due to the first mode of variation (p = 0,0052). This is also
seen in Fig. A.3 where centroid size is plotted against mode 1 from the pure
shape model. The exaggerated male-female mode shape variation is seen as the
shape variation of mode 1 in Fig. A.2.

A.4 Summary and Conclusions

In this paper a method to generate dense surface distribution models of the
human ear canal has been described. The generated models show consistency,
and a large part of the variation found in the training data is explained by a
small number of modes of variation. The method is general, and can be applied
to all types of surfaces as long as it is possible to mark the valid areas of the
surfaces and to place landmarks.

From an anatomical point of view it is interesting that the model is able to
differentiate ear canals from males from ear canal from females based on both
their size and their shape. The anatomical results based on this small data set
are only strong enough to support general conclusions. For more detailed results
a larger and more balanced data set is required.

The most important results of this paper are the proof-of-concept regarding the
ability to build a meaningful statistical shape model of the human ear canal and
that it is possible to describe a complex gender-related shape variation using a
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Figure A.3: To the left is a plot of the eigenvalues of the shapes from the pure
shape model, compared to those for a randomised version of the data (each row
of the shape matrix D was scrambled). The lines are crossing approximately
where mode = 7. To the right is a plot of centroid size versus mode 1 from the
pure shape model. The full dots are females while the plus signs are male. It is
seen that both size and mode 1 separates males from females
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single parameter.
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Shape Modelling Using
Markov Random Field
Restoration of Point
Correspondences

Rasmus R. Paulsen and Klaus B. Hilger

Abstract

A method for building statistical point distribution models is proposed. The
novelty in this paper is the adaption of Markov random field regularization of
the correspondence field over the set of shapes. The new approach leads to a
generative model that produces highly homogeneous polygonized shapes and
improves the capability of reconstruction of the training data. Furthermore,
the method leads to an overall reduction in the total variance of the point dis-
tribution model. Thus, it finds correspondence between semi-landmarks that
are highly correlated in the shape tangent space. The method is demonstrated
on a set of human ear canals extracted from 3D-laser scans.
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B.1 Introduction

Point distribution models (PDMs) are widely used in modeling biological shape
variability over a set of annotated training data [69, 61]. The generative models
are highly dependent on the initial labeling of corresponding point sets which is
typically a tedious task. Moreover, the labeling is often erroneous and sparse.
A good representation of the training data is particularly hard to obtain in
three dimensions. Finding a basis of homologous points is thus a fundamental
issue that comes before generalized Procrustes alignment [113] and decomposi-
tion [178] in the shape tangent space.

A method for building a statistical shape model of the human ear canal is pre-
sented in [201]. An extension to this method is proposed in this paper using
Markov Random Field (MRF) regularization for improving the initial set of
point correspondences. The new approach leads to a more compact represen-
tation and improves the generative model by better reconstruction capabilities
of the 3D training data. Related work include the application of Geometry
Constrained Diffusion (GCD) [7, 6] and Brownian Warps [194] for non-rigid
registration. A more compact model is obtained, since the shape tangent space
residuals of the new representation have increased correlation. It thus indicates
that a better correspondence field is obtained between the 3D semi-landmarks.
Related work on obtaining a minimum description length of PDMs is proposed
in [75, 76] based on information theoretic criteria.

The data consists of 29 3D ear canal surfaces extracted from laser scans of ear
impressions. The local surface geometry of the ear canals varies much from one
individual to another. Therefore, only very few ridges and extremal points are
stable when comparing groups of ear canals. A set of 18 anatomical landmarks
of varying confidence are placed on each ear canal, and constitute a sparse cor-
respondence between the surfaces of the ear canals in the training set. The
surfaces of the ear canals are not closed due to the opening of the ear canal
and because the ear impressions are terminated in front of the ear drum. It is
therefore necessary to identify the region of interest of each ear canal. Hence,
planes are defined, which separates the valid parts of the surface from the in-
valid parts. In Fig. B.1, left, an ear canal with the anatomical landmarks and
separating planes is shown.

The remaining paper is organized in three additional sections. Section 2 de-
scribes the proposed statistical method for improving the point correspondences.
Section 3 presents the results of applying the extended algorithm. In Section 4
we summarize and give some concluding remarks.
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Figure B.1: Left: An example of a surface representation of an ear canal with
the anatomical landmarks and the separating planes that defines the region of
interest. The thin tubular structure in the top is the actual canal. The larger
lower section is the concha, of which only the upper part is of interest. A cutoff
plane through the concha is therefore defined. Right: The model mesh, shown
by a wireframe, fitted to a target shape using Thin Plate Spline warping.

B.2 Methods

B.2.1 Surface Correspondence Using Thin Plate Spline
Warping

The anatomical landmarks do not constitute an exhaustive description of the
surface of the ear canal. It is therefore necessary to generate a more dense set of
landmarks describing the shape. For that purpose a model mesh is constructed
and fitted to all shapes in the training set. The model mesh is chosen as a dec-
imated version of a natural well-formed ear canal labeled with the anatomical
landmarks. The model mesh is fitted to each of the shapes in the training set
using a Thin Plate Spline (TPS) warp based on the corresponding anatomical
landmarks. TPS is a warp function that minimizes the bending energy [34].
Since the TPS transform is exact only for the anatomical landmark locations,
the vertices of the model mesh will not lie on the surface of the target shape, see
Fig. B.1, right. Projecting each vertex in the warped model mesh to the closest
point on the target surface produces a non-rigid deformation field and generates
a dense correspondence. However, using the Point to Surface Projection (PSP)
introduces a critical risk of inversions, where the vertices of the model mesh
shift place and cause folds in the mesh. Another secondary artifact is the non-
uniformity of the correspondence vector field shown in Fig. B.2a,b giving rise to
poor reconstruction of the target shape. In order to improve the correspondence
vector field and avoid the problems inherent in applying point to surface projec-
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tion a regularization must be included. Lorenz and Krahnstover [184] propose a
method for relaxing a polygonization into a more homogeneous representation,
however, such methods are not suited when the polygonization is constrained to
an underlying correspondence field. We propose to relax the problem by using
a stochastic approach described in the following.

B.2.2 Markov Random Field Regularization

To obtain better reconstruction and correspondences we cast the problem of
finding the deformation vector field into a Bayesian framework of MRF restora-
tion. We thus follow the four successive stages of the Bayesian paradigm.

1: Construction of a prior probability distribution p(d) for the deformation
field D matching the source shape S onto the target shape S;.

2: Formulation of an observation model p(y|d) that describes the distribution
of the observed shapes Y given any particular realization of the prior
distribution.

3: Combination of the prior and the observation model into the posterior
distribution by Bayes theorem

p(dly) = p(yld)p(d)/p(y). (B.1)

4: Drawing inference based on the posterior distribution.

We start by some useful definitions from graph theory in order to describe a
probability distribution on a spatial arrangement of points.

Given a graph of n connected sites S = {s;}?_,. A neighborhood system N =
{Ns,s € S} is any collection of subsets of S for which i) s ¢ N, and ii)
r € Ny & s € N,., then N, are the neighbors of s. A clique C is a subset of sites
S for which every pair of sites are neighbors. We use ¢ ~ j to denote that ¢ and
j are neighbors. Given a neighborhood system A on the set of sites S we now
consider the probability distribution of any family of random variables indexed
by S, i.e. D = {D,|s € S}. For simplicity we first consider a finite state space
A =1,--- L of D but later generalize to continuous distributions. Let €2 denote
the set of all possible configurations 2 = {d = {d;}?_, | d; € A}. A random field
D is a Markov Random Field (MRF) with respect to M iif i) p(d) >0V d € Q,
and ii) p(ds|d,,r # s) = p(ds|d,,r € Ns) V s € S,d € Q. The first constraint
is the positivety condition and can be satisfied by specifying a neighborhood
large enough to encompass the Markovianity condition in the second constraint.
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Figure B.2: a) The correspondence vector field derived using point to surface
projection for moving the vertices of the source to the target shape. b) The
resulting dense mesh representation of the target shape. ¢) The correspondence
vector field derived using using the Markov random field restoration of the
deformation field for moving the vertices of the source to the target shape. d)
The improved dense mesh representation of the target shape.
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Although the second condition is on the state of neighboring sites only, it does
not exclude long range correlations in the probability distribution over the entire
graph. Given a neighborhood system A = {N,} let all cliques be denoted by
C. For all C € C we assume that we have a family of potential functions V.
We may now define an energy function of any given configuration of d i.e.
U(d) = Y ccc Ve. This leads to the definition of the Gibbs measure. The Gibbs
measure induced by the energy function U(d) is p(d) = % exp(—U(d)/T), where
Z is the partition function and T is a parameter referred to as temperature.
The Gibbs measure maximizes entropy (uncertainty) among all distributions
with the same expected energy. The temperature controls the “peaking” of the
density function. The normalizing constant may be impossible to obtain due to
the curse of dimensionality but often we need only ratios of probabilities and
the constant cancels out. The Hammersley-Clifford theorem gives the relation
between MRF and Gibbs random fields and states that D is a Markov random
field with respect to N iif p(d) is a Gibbs distribution with respect to A" [22, 106].
Thus the task is to specify potentials that induce the Gibbs measure in order
encompass MRF properties of D on the graph.

So far the description only encompasses a one-dimensional finite state space.
However, it generalizes to multivariate distributions since any high dimensional
process may be recast into a single state space with [[, L; states, where L; is the
cardinality of the ith variable. Furthermore, the description generalizes to the
case of continuous distributions in which case exp(—U(d)/T") must be integrable.
Since we wish to model correspondence between S and S; the displacements
are bound to the surfaces, in effect only posing constraints on the length of
the three dimensional displacements at the individual sites. In practice the
constraint may be enforced by projection of the displacements onto the closest
point of the target surface in every site update of the MRF relaxation.

B.2.3 Prior Distributions

Similar to pixel priors [24] we construct energy functions based on differences
between neighboring sites. Extending to the multivariate case we get the general
expression of the energy governing the site-priors

Usite(d) = Y _ [1d; — I} (B.2)
inj
where || - ||, is the p-norm, 1 < p < 2, and d; represents the multivariate

displacement in the ith site.

With p = 2 the energy function induces a Gaussian prior on the deformation
field. Neglecting regions with strong surface dynamics the local optimization
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becomes convex and the maximum likelihood (ML) estimate of the displacement
at the ith site is taken as the mean of the neighboring displacements. By
applying a weighted average

Eli = Z widj/ Z wy (B?))

JEN; JEN;

and using Gaussian weights, derived from a fixed kernel size, the maximum a-
posteriori (MAP) state-estimate of the MRF is similar to the steady state of the
algorithm for geometry constrained diffusion (GCD). GCD of D : RR* — RR?
mapping the surface S onto the surface Sy is given in [7] by

nI AD .
8D = { AD —ns, e iz e S, (B.4)
AD ifxd¢ S,

where ng, is the unit surface normal of S;(D(x)+ ). Thus, GCD is numerical
scheme for solving a space and time discretized version of the heat equation on
the deformation field with certain boundary conditions. Notice that in the MRF
formulation we explicitly constrain the correspondence problem on the source
and target surfaces, whereas the GCD implementation works on volume-voxel
diffusion.

Abandoning homogenity and isotropy of the MRF non-global kernels may be
introduced. Thus, adaptive Gaussian smoothing may be applied, e.g. by setting
the standard deviation of the kernel to the square-root of the edge length of the
closest neighbor of site ¢ on the graph. Moreover, using the p = 1 norm induces
a median prior, with the ML estimate being the median of the displacements
at the weighted neighboring sites. This property makes the MRF attractive for
correspondence fields with discontinuities, thus avoiding the smearing of edges
attained by the Gaussian prior.

B.2.4 Observation Models

Given a realization of the prior distribution, the observation model p(y|d) de-
scribes the conditional distribution of the observed data Y. By specifying an
observation model we may favor a mapping that establish correspondences be-
tween regions of similar surface properties. The similarity measures may include
derived features of the observed data such as curvature, orientation of the sur-
face normals, or even texture.

The simple dot product between the normals may form the basis for specifying a
governing energy function that favors correspondence between regions of similar
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orientation by

Unorm(y|d) = Z ||n£s,in5t,7? - 1an (B5)

where ng_; is the surface normal at location x; on the source S, and ng, ; is
the normal of the target surface S; at the coordinate x; + d;. The parameter
q > 0 controls the sensitivity of the energy function.

B.2.5 Maximum a Posteriori Estimates

Normalization of the energy terms from the different prior and observation mod-
els is typically chosen such that they operate on the same domain. However, the
data analyst may choose to favor some terms over others, e.g. by relaxing the
smoothness conditions in favor of correspondences between regions of similar
curvature orientation of the surface normals.

The posteriori conditional probability distribution is given by

p(d|y) o8 eXP(*Utotal/T% (BG)

where we use Uiota] = (1 — &)Unorm + @Usite, in which a € [0 : 1] weighs the
influence of the model terms. In searching for the MAP estimate

d = argmax g p(d|y) (B.7)

The Iterative Conditional Modes (ICM) method is a typical choice of optimiza-
tion if the objective functional is convex. However, this is often only the case
for simple MRFs and ML estimates are not always available. More advanced
optimization can be done e.g. by simulated annealing using Gibbs sampling or
the Metropolis-Hastings (MH) algorithm, followed by averaging or application
of ICM in search of the most optimal state of the random field.

When applying simulated annealing the a-posteriori probability distribution is
linked to the prior and the observation model by

p(dly) < (p(yld)p(d)*/", (B.8)

where T' is the temperature governing the process. At high temperatures all
states are equally likely, however, decreasing the temperature increases the in-
fluence of the model terms. If the temperature is decreased slowly enough the
algorithm will converge to the MAP estimate [107]. See [248, 57] for decreasing
temperature schemes.
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B.3 Results

Markov random field restoration using the Gaussian site-prior is applied to the
training data after the TPS deformation of the model mesh using the PSP for
initialization. In Fig. B.2¢,d we show a correspondence field after the MRF
relaxation and the resulting reconstruction of the target shape. The figure is to
be compared to Fig. B.2a,b using the point to surface projection.

Problems in the registration field using PSP are removed by applying the MRF
restoration. This is the case in respect to both the regularity of the polygoniza-
tion, and the reconstruction error in representing the target shape by the de-
formed model surface. To obtain a measure of the uniformity of the polygoniza-
tion of the target shape we examine the regularity of its triangular structure.
By measuring the coefficient of variance of the edge lengths we obtain a stan-
dardized measure of the width of the underlying distribution. Results are shown
in Fig. B.3 for all subjects. The left plot shows the coefficients before and af-
ter MRF restoration of the correspondence field, and the right figure shows a
histogram of the reductions in the coefficients of variance. A rank test shows
the significance of the MRF regularization since a reduction in the coefficient is
obtained for all subjects. The improvement in shape reconstruction is show in
Table B.1. Applying the observation model is performed with o = 0.5. This pa-
rameter should be chosen using cross-validation in a more exhaustive search for
an optimal deformation field. However, since the shapes are relatively smooth
and regular the results shows no significant improvement in the reconstruction
error by introducing the observational term. In Fig. B.4 the reconstruction error
of the target shape of subject 1 is shown using PSP and MRF restoration based
on the Gaussian site-prior. Notice the improved reconstruction using MRF.

When the model mesh is warped to another shape, it occurs that some corre-
spondences are placed outside the region of interest on the target shape. There-
fore, the model mesh is pruned to contain only the points that are warped to
valid areas for all shapes in the training set. The model mesh contains approxi-
mately 3000 vertices after pruning. Having established a dense correspondence
field it is now possible to dispose of the anatomical landmarks as well as the
original meshes of the training set. The set of meshes with dense correspondence
is applied in the following statistical shape analysis. The shapes are aligned by
a generalized Procrustes analysis [125]. The pure shape model is built using a
similarity transformation in the Procrustes alignment while a rigid-body trans-
formation is used to build the size-and-shape model [83]. An Active Shape Model
(ASM) [61] is constructed based on a Principal Component Analysis (PCA) of
the Procrustes aligned shapes. Let each aligned shape be represented as a vec-
tor of concatenated x, y and z coordinates x; = [Zi1, Yi1, Zils - - - s Tin, Yin,s zm]T,
i=1,...,8, where n is the number of vertices and s is the number of shapes.
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Figure B.3: Left: Comparison between the point to surface projection (upper
curve) and the MRF regularization (lower curve) by evaluating the coefficient of
variance of the edge lengths of the polygonization of the target surface. Right:
A histogram of the reduction in coefficient of variance over the training data.
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Figure B.4: The reconstruction error [mm] for subject one using the point to
surface projection (left) and the MRF correspondence restoration (right).
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Registration Method
Subject PSP MRFp=2 MRFp=1 MRFp=2,4=1
1 0.048 + 0.013 | 0.044 + 0.013 | 0.049 + 0.014 | 0.043 £+ 0.013
2 0.046 £ 0.013 | 0.042 £ 0.013 | 0.043 £ 0.012 | 0.040 £ 0.012
3 0.048 £+ 0.014 | 0.042 £+ 0.013 | 0.043 £+ 0.013 | 0.040 £+ 0.012
4 0.044 + 0.012 | 0.038 £ 0.011 | 0.040 4+ 0.011 | 0.038 £ 0.012
5 0.045 £ 0.013 | 0.042 £ 0.012 | 0.043 £ 0.012 | 0.040 £ 0.012
6 0.045 £+ 0.014 | 0.046 £+ 0.015 | 0.045 £ 0.015 | 0.043 £+ 0.014
7 0.047 £ 0.014 | 0.046 £+ 0.014 | 0.046 £+ 0.014 | 0.046 £ 0.015
8 0.040 + 0.011 | 0.038 £ 0.011 | 0.039 + 0.011 | 0.050 + 0.013
9 0.041 £ 0.011 | 0.039 £ 0.011 | 0.039 £ 0.011 | 0.038 £ 0.011
10 0.049 + 0.015 | 0.044 + 0.013 | 0.045 4+ 0.013 | 0.043 + 0.013
11 0.046 £ 0.013 | 0.046 £ 0.014 | 0.045 £ 0.013 | 0.055 £ 0.014
12 0.050 £ 0.014 | 0.043 £ 0.013 | 0.044 £+ 0.013 | 0.041 £ 0.012
13 0.042 4+ 0.010 | 0.037 + 0.009 | 0.039 + 0.009 | 0.041 £ 0.009
14 0.048 £ 0.013 | 0.040 £ 0.011 | 0.042 £ 0.012 | 0.040 £ 0.011
15 0.043 £ 0.012 | 0.041 £ 0.012 | 0.040 £ 0.012 | 0.038 £ 0.011
16 0.049 £+ 0.013 | 0.043 £ 0.012 | 0.044 £+ 0.012 | 0.052 £ 0.013
17 0.064 + 0.019 | 0.049 + 0.014 | 0.059 + 0.018 | 0.064 + 0.016
18 0.051 £ 0.015 | 0.042 £ 0.012 | 0.048 £+ 0.013 | 0.053 £ 0.013
19 0.064 + 0.020 | 0.052 £ 0.015 | 0.058 &+ 0.017 | 0.049 + 0.015
20 0.053 + 0.015 | 0.049 + 0.015 | 0.050 £ 0.015 | 0.050 £+ 0.013
21 0.049 £+ 0.013 | 0.041 £ 0.011 | 0.045 £ 0.012 | 0.039 £ 0.010
22 0.048 £+ 0.014 | 0.042 £+ 0.012 | 0.044 £+ 0.013 | 0.048 £ 0.014
23 0.040 £ 0.011 | 0.037 £ 0.011 | 0.038 £ 0.011 | 0.042 £ 0.011
24 0.043 £ 0.013 | 0.041 £ 0.013 | 0.042 £ 0.013 | 0.048 £+ 0.014
25 0.044 + 0.013 | 0.037 £ 0.011 | 0.039 4+ 0.011 | 0.046 + 0.012
26 0.056 + 0.014 | 0.046 + 0.011 | 0.052 + 0.012 | 0.058 + 0.013
27 0.042 £ 0.011 | 0.039 £ 0.011 | 0.040 £ 0.011 | 0.039 £ 0.012
28 0.049 £+ 0.013 | 0.041 £ 0.011 | 0.045 £ 0.013 | 0.047 £ 0.013
29 0.048 + 0.014 | 0.045 £ 0.014 | 0.045 + 0.013 | 0.047 + 0.013
Average | 0.048 + 0.013 | 0.042 + 0.012 | 0.045 4 0.013 | 0.045 + 0.013

Table B.1: Reconstruction errors [mm]| using PSP and MRF regularization. The
mean =+ one std. is shown for each method. The site-prior is governed by the p-
norm and ¢ controls the sensitivity of the observational energy term dependent
on the surface normals.



120 Appendix B

The PCA is performed on the shape matrix D = [(x1 — X)|. .. |(xs — X)], where
X is the average shape. A new shape exhibiting the variance observed in the
training set is constructed by adding a linear combination of eigenvectors to
the average shape Xyow = X + ®b, where b is a vector of weights controlling
the modes of shape variation and ® = [¢1]¢p2] . .. |¢:¢] is the matrix of the first ¢
eigenvectors of DDT. The three first modes of variation of the size-and-shape
shape model derived using Gaussian MRF regularization are shown in Fig. B.5.
All the generated shapes look like natural ear canals with no deformations or
folds in the mesh. Mode 1 consists of a bending of the canal and a flattening of
the concha part. Mode 2 explains some of the shape variation observed in the
inner part of the ear canal. Mode 3 is a combination of a flattening and twisting
of the inner part of the ear canal and a general shape change of the concha. The
distribution of the modes against each other is examined using pairwise plots
and no obvious abnormalities were found (results not shown). In comparing
the effect of the MRF regularization over the PSP method in the shape tangent
space we find a reduction of more than 4% of the total variance of the resulting
point distribution model. In Fig. B.6 the variance contained in each principal
component is shown together with the pct. reduction of the variance in each
subspace. The average reduction of variance in each subspace is approximately
8% and the pct. reduction generally increases for higher dimensions.

(a) Mode 1 (b) Mode 2 (¢) Mode 3

Figure B.5: Size-and-shape shape model. The first three modes of variation
shown at +3 (top) and —3 (bottom) standard deviations from the mean shape.
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Figure B.6: Left: the variance contained in each principal component, the dot-
ted line using point to surface projection and the solid line applying the MRF
regularization step. Right: the reduction in the variance as a function of dimen-
sionally of the model. The average reduction in each subspace is approximately
7% and the reduction of the total variance in the shape tangent space more than

4%.
B.4 Summary and Conclusions

A method is proposed for building statistical shape models based on a train-
ing set with an initial sparse annotation of corresponding landmarks of varying
confidence. A model mesh is aligned to all shapes in the training data us-
ing the Thin Plate Spline transformation based on the anatomical landmarks.
From the deformed model mesh and a target shape we derive a dense regis-
tration field of point correspondences. Applying the Markov Random Field
restoration we obtain a dense, continuous, invertible registration field (i.e. a
homeomorphism). The stochastic restoration acts as a relaxation on the TPS
constrained model mesh with respect to the biological landmarks. The land-
marks are identified with varying confidence and the MRF relaxation allows for
a data driven enhancement of the object correspondences. Using the site-prior,
the algorithm converges to the most simple deformation field which creates a
tendency to match points of similar geometry since the field otherwise must be
more complex. Moreover, inclusion of observational models could compensate
further where the prior fails in more complex regions. In the present case study
of smooth and regular shapes no significant benefit of applying more complex
MRF were obtained. In comparison to applying point to surface projection
the MRF regularization provides i) improved homogeneity of the target shape
polygonization free of surface folds, ii) better reconstruction capabilities, and
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iii) a more compact Active Shape Model description of all the training data.
The point to surface projection performs reasonably well in representing the
target shape over most regions of the ear canals. However, it fails in regions
with strong surface dynamics and when the source and target surfaces are too
far apart. The fact that the MRF regularization produces a reduction of more
than 4% of the total variance contained in shape tangent space is noteworthy.
The reduction is explained by increased collinearity between semi-landmarks
distributed over the entire shape. It indicates an improvement in the shape
representation in terms of homologous point correlation and thus constitutes a
better basis for generative modeling.
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Non-Rigid Registration of 3D
Surfaces using Markov
Random Field Regularisation

Rasmus R. Paulsen, Klaus B. Hilger,

Rasmus Larsen, and Hervé Delingette

Abstract

A general framework for the registration of 3D surfaces using Markov Ran-
dom Field Regularisation of the correspondence field is presented. An initial
correspondence field is created by a simple projection technique. This cor-
respondence field is regarded as a collection of random variables. Each site
assigned an energy function that is based on a prior term and a model term,
where the prior consists of scene specific knowledge and the model term is gov-
erned by more standard physical considerations concerned with the nature of
the shapes. This means that there is a high degree of freedom in designing the
local energy functions. Finally, the energy functions are shown to constitute a
Markov Random Field using the Hammersley-Clifford theorem. This enables
the use of a set of well-known stochastic optimisation techniques including
Iterative Conditional Modes and Simulated Annealing.

The framework is used to align synthetic shapes in a way similar to a regu-
larised iterative closest point algorithm. Furthermore, it is used to generate a
dense correspondence over a set of laser-scanned ear canals. The set of dense
correspondences are then used to build a statistical shape model of the ear
canal. This approach leads to a more compact shape model and improves
the mesh quality, when compared to a projection-based technique. It is also
demonstrated how the parameters of the model can be chosen with regard to
an objective function. An efficient method for calculating the mean curvature
of triangulated surfaces is also presented.



124 Appendix C

C.1 Introduction

In a registration, the goal is to establish correspondence between homologous
regions in images. In medical imaging, most registration algorithms deal with
3D voxel volumes, as surveyed by Maintz and Viergever [186]. Recently, other
modalities such as laser scanners that produce 3D surface data are being used in
medical imaging. Voxel based registration techniques are not suited for surfaces
and therefore other types of registration algorithms are needed. An overview of
surface registration algorithms can be found in [14].

When two or more surfaces come from the same class of objects, it is desirable
to establish point-to-point correspondences, where the points correspond across
all the surfaces in the data set. In shape-analysis [69, 61], finding a basis of
homologous points is thus a fundamental issue that comes before Procrustes
analysis [113] and shape space decomposition [178]. It can be desirable to match
surface features such as curvature or surface texture, but since the amount of
information available varies from data set and data type, it is not possible to find
an algorithm that works with all data. It is better to specify a framework that
can be adapted to the data and the application. Such a framework is proposed
in this paper.

Placing manual landmarks in 3D is difficult and error-prone. Therefore, it is
highly desirable to develop automated methods that can find the optimal dense
correspondence between the objects. In this work, an initial correspondence vec-
tor field is regularised by casting the problem into the framework of Bayesian
Markov Random Field (MRF) restoration. The Bayesian paradigm is a frame-
work for incorporating stochastic models of visual phenomena into a very general
set of tasks. In this adaptation of the framework, each vertex in the mesh is
assigned an energy function that is based on a prior term and a model term.
The prior consists of scene specific knowledge about the mesh. For example,
some degree of spatial smoothness in the random field. The model term is gov-
erned by more standard physical considerations concerned with the nature of
the shapes, such that homologous points are lying on surface patches with the
same differential characteristics. This means that there is a high degree of free-
dom in designing the local energy functions. Finally, the energy functions are
shown to constitute a Markov Random Field, which enables the use of a set of
well-known stochastic optimisation techniques.

The framework presented in this work is thus general enough to allow the use
of different surface features and may be adapted to different types of applica-
tions. The framework is used to align synthetic shapes in a way similar to a
regularised iterative closest point algorithm. Furthermore, it is used to gener-
ate a dense correspondence over a set of laser-scanned ear canals. The set of
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dense correspondences are then used to build a statistical shape model of the
ear canal. This approach leads to a more compact shape model and improves
the mesh quality, when compared to a projection-based technique. It is also
demonstrated how the parameters of the model can be chosen with regards to
an objective function.

The remainder of this text is as follows. Section C.2 reviews related work.
Section C.3 describes the theory of Markov Random Fields. In Section C.4, the
implementation is described. Examples of the framework used on synthetic and
real data can be found in Section C.5. In section C.6, we give some concluding
remarks.

C.2 Related Work

One of the first general purpose surface alignment algorithms, the Iterative
Closest Point (ICP) algorithm [25, 262], generates a point wise correspondence
between shapes and can therefore be thought of as a registration algorithm. The
ICP framework has later been extended to include surface characteristics, when
searching for the optimal correspondence. Feldmar and Ayache [94] do not find
the closest points, but searches for closest feature vectors, which contains both
the coordinates of the point, but also the normal and the principal curvatures of
the surface at that point. From the set of matches, a global affine transformation
and a set of local affine transformations are calculated. The parameters of the
local affine transformations are later spatially smoothed. This method is similar
to the one proposed in this article but is difficult to adapt to data with other
types of surface features.

Caunce and Taylor [52] also use a variant of the ICP algorithm to generate
point correspondences over a set of shapes. In this work, the distance between
a point on the source shape and the corresponding point on the target shape
is weighted by a factor that depends on a set of properties of the surfaces in
the neighbourhood of the points. The final correspondences are used to build a
statistical shape model of the cortical sulcal.

Lorenz and Krahnstover [184] find the correspondence between two shapes by
an initial Thin Plate Spline based warp followed by a closest point projection.
The correspondence are later regularised using a relaxation technique giving a
more homogeneous representation of the target shapes. No structural or shape
specific information is used in the regularisation step. A similar method is used
by Hutton to generate dense shape models of the human face [143, 145]. In
this method, ICP is used when the shape model is fitted to unseen faces. No
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regularisation of the correspondence field is performed. Another similar method
used for atlas-based recognition of the hip prior to surgery is presented in [89].

In geometry constrained diffusion algorithm proposed by Andresen and Nielsen [8]
the simplest correspondence field between two shapes is found by an iterative
diffusion process where the vector field is projected back on the target surface
between each iteration. The method is a simple smoothing of the correspondence
field and holds no stochastic elements.

The modern mathematical analysis of shape changes has been influenced by
the early work of Bookstein [31, 34] and Dryden and Mardia [83]. A popu-
lar method for building shape models is the Active Shape Model method by
Cootes et al. [61]. Other methods includes the spherical harmonics approach
by Gerig [108], the M-Rep approach by Pizer, Styner, and Gerig [207, 236], and
the Fourier surfaces explored by Staib et al. [230].

Since the paper by Geman and Geman [107] on stochastic relaxation, Gibbs
distributions, and Bayesian restoration, the literature has exploded with appli-
cations of the Bayesian paradigm in image analysis and image processing [173].
A thorough discussion of Markov Random Fields can be found in [106, 182, 253].

C.3 Markov Random Field Regularisation of Cor-
respondences

It is assumed that an initial correspondence field D, that matches the source
shape S onto the target shape S; exists, where x; is a point on the source shape
and therefore x; + d; is the corresponding point on the target surface. This can
be created for each vertex in the source mesh by finding the closest point on
the target shape. In section C.4.1, it is explained in details how an initial cor-
respondence field is found. The problem of finding the optimal correspondence
vector field is then cast into a Bayesian framework of Markov Random Field
restoration.

C.3.1 Bayesian Paradigm

The Bayesian paradigm proposed by Besag and others consists of four successive
stages [24]. Adapted to the current application they become:
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1: Construction of a prior probability distribution p(d) for the correspon-
dence field D.

2: Formulation of an observation model p(y|d) that describes the distribution
of the observed shapes Y given any particular realization of the prior
distribution. Y is the combined source and target shape.

3: Combination of the prior and the observation model into the posterior
distribution by Bayes theorem

p(dly) = W (1)

4: Drawing inference based on the posterior distribution.

The goal is to find the correspondence field that maximises the posterior prob-
ability

d = arg mgx p(d|y). (C.2)

In the following, it is explained how the above-mentioned probability distribu-
tions are defined using the theory of Markov Random Fields.

C.3.2 Graphs and Neighbourhoods

To describe a probability distribution on a spatial arrangement of points some
useful definitions from graph theory are necessary.

Given a graph of n connected sites S = {s;}? ;. A neighbourhood system
N = {N,, s € S} is any collection of subsets of S for which i) s ¢ Ny, and ii)
r € Ny & s € N,., then Ny are the neighbours of s. A clique C is a subset of
sites S for which every pair of sites are neighbours. The surface mesh is treated
as an undirected graph and ¢ ~ j is used to denote that site ¢ and site j are
neighbours.

C.3.3 Gibbs Distributions and Markov Random Fields

Given a neighbourhood system A on the set of sites S, the probability distrib-
ution of any family of random variables indexed by S, i.e. D = {D|s € S} can
now be considered. In this paper D is the correspondence field and Dy is a 3D
vector placed at the vertex with index s.
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The Markov property of MRF's is expressed as [107]

which means that the probability distribution of each site only depends on
the state of neighbouring sites. This does not exclude long-range correlations
in the probability distribution over the entire graph though. To be able to
specify the conditional probabilities in practice the equivalence between the
Gibbs distributions and Markov Random Fields is used.

Given a neighbourhood system AN = {N;} let all cliques be denoted by C. For
all C € C it is assumed that a family of potential functions V¢ exist. An energy
function of any given configuration of D can now be defined

U(d)=> V. (C.4)

ceC

This leads to the definition of the Gibbs distribution induced by the energy
function U(d)

pld) = - exp(~U(d)/T), (C5)
where Z is the partition function and T is a parameter referred to as tem-
perature. The Gibbs distribution maximises entropy (uncertainty) among all
distributions with the same expected energy. The temperature controls the
“peaking” of the density function. The normalising constant, Z, may be im-
possible to obtain due to the curse of dimensionality but often only ratios of
probabilities are needed and the constant cancels out. The relation between
the Gibbs distribution and Markov Random Fields are specified in the following
theorem

Theorem C.1 (Hammersley-Clifford). Let N be a neighbourhood system. Then
D is a Markov random field with respect to N if and only if p(d) is a Gibbs
distribution with respect to N .

A proof can be found in [106]. Thus the task is to specify potentials that induce
the Gibbs distribution in order to encompass MRF properties of D.

Since the goal is to model the correspondence between S and S; the corre-
spondence vectors are bound to the surfaces, in effect only posing constraints
on the length of the vectors at the individual sites. In practice, the constraint
may be enforced by projection of the end of the correspondence vectors onto the
closest point of the target surface in every site update of the relaxation. This is
explained in detail in section C.4.2.
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C.3.4 Prior Distributions

Similar to pixel priors [24] energy functions based on differences between neigh-
bouring sites are constructed. Extending to the multivariate case the general
expression of the energy governing the site-priors becomes

Usite(d) = Y _ ||di — ], (C.6)
g
where || - ||, is the p-norm, 1 < p < 2, and d; represents the correspondence

vector at the ith site.

With p = 2 the energy function induces a Gaussian prior on the correspondence
field as used by for example Besag [24] in image restoration. Neglecting regions
with strong surface dynamics the local optimisation becomes convex and the
maximum likelihood (ML) estimate of the correspondence vector at the ith site
is taken as the mean of the neighbouring correspondence vectors. Since the
edges of the meshes have not unit lengths, it is necessary to use a weighted

average

JEN; JEN;

Here w;; are Gaussian weights derived from a fixed kernel size and calculated on
the basis of the Euclidean distance between vertex ¢ and j in the source mesh. A
pure prior MRF restoration of correspondences hence solves the aperture prob-
lem and the three-dimensional interpolation problem simultaneously by finding
the simplest correspondence field.

Using this prior the maximum a posteriori (MAP) estimate of the MRF opti-
mised purely by Iterative Conditional Modes is similar to the steady state of the
algorithm for geometry constrained diffusion (GCD) proposed by Andresen and
Nielsen [8]. GCD is a numerical scheme for solving a space and time discretised
version of the heat equation on the correspondence field with certain boundary
conditions. The GCD implementation works on volume-voxel diffusion, while
the MRF method described in this paper works with 2D surfaces embedded in
a 3D space. Moreover, the GCD approach in essence applies gradient descend
optimisation and is directly dependable on a good initialisation of the corre-
spondence field. The MRF formulation provides a natural framework allowing
for more advanced optimisation.

Abandoning homogeneity and isotropy of the MRF non-global kernels may be
introduced. Thus, adaptive Gaussian smoothing may be applied, e.g. by setting
the standard deviation of the kernel to the square-root of the edge length of
the closest neighbour of site ¢ on the graph. Moreover, using the p = 1 norm
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induces a median prior, with the ML estimate being the median of the corre-
spondence vectors at the weighted neighbouring sites. This property makes the
MRF attractive for correspondence fields with discontinuities, thus avoiding the
smearing of edges attained by the Gaussian prior.

C.3.5 Observation Models

The observation model p(y|d) describes the conditional distribution of the ob-
served shapes Y. A mapping that makes correspondences between regions of
similar surface properties may be favoured by specifying an observation model.
The similarity measures may include derived features of the observed surfaces
such as the curvature, orientation of the surface normals, or even surface texture.

The energy function Upeqel must be specified and depends on the application
but typically involves a linear combination of multiple derived measures. In the
following a selection of surface features is proposed.

C.3.5.1 Local Surface Orientation

The simple dot product between the surface normals may form the basis in
specifying a governing energy function that favours correspondence between
regions of similar orientation by

Unorm(y|d) = Z |‘n£int,i - 1||q’ (08)

where n ; is the surface normal at vertex ¢ with position x; on the source surface
S,, and n;; the normal of the target surface S at the coordinate x; + d;. The
parameter ¢ > 0 controls the sensitivity of the energy function. The normal at
x; + d; is found by weighting the normals from the triangle in which x; + d;
is located. This is done by using the points barycentric coordinates as done in
for example Phong shading [258, 99]. This energy function is expected to be
useful when the source and target shape are roughly pre-aligned since it is not
rotation invariant. Results for this energy function can be found in [199].

C.3.5.2 Surface Curvature

The use of second order geometric invariants such as curvature allows matching
of homologous surface points despite a slight rotation of the surface. There are



C.3 Markov Random Field Regularisation of Correspondences 131

at least three types of surface curvatures that can be computed at each vertex:
mean, Gaussian and total curvatures [82]. A general setting for the curvature
energy is :

Ucurv(y|d) = Z Hcs,i - ct,i”£7 (Cg)

where ¢, ; is a vector containing the differential properties of the source surface
at location x; and ¢;; contains the differential properties of the target surface
at the coordinate x; + d;. The differential properties at x; + d; is found by
interpolating as in section C.3.5.1.

C.3.5.3 Surface Texture

When surface texture is available multivariate locally derived features on the
source and target shapes, t; and t;, may be applied in an energy function
operating in the p-norm

Usext (yld) =Y [t — teill2, (C.10)

where t,; is a vector containing the texture of the source surface at location x;
and t;; contains the texture of the target surface at the coordinate x; + d;.

C.3.6 Posterior Probability Distribution

Normalisation of the energy terms from the different prior and observation mod-
els is typically chosen such that they operate on the same domain. However,
the data analyst may choose to favour some terms over others, e.g. by relaxing
the smoothness conditions in favour of correspondences between regions with
similar surface characteristics. The total energy is:

Uiotal = (1 - a)Umodel + aUsite, (C'll)

in which « € [0 : 1] weights the influence of the model terms and Upodel is
a linear combination of measures as explained in section C.3.5. By combining
equation (C.1), (C.5) and (C.11) the posteriori conditional probability distrib-
ution is given by

p(dly) x exp(—Uiotal/T). (C.12)

The method used to find the MAP estimate

d=arg m;x p(dly), (C.13)
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is dependent on the complexity of the energy function. In section C.4.2 it is
explained how The MAP estimate of the correspondence field can be found
using stochastic optimisation.

C.4 Implementation

The implementation of the regularisation algorithm resembles the Iterative Clos-
est Point (ICP) algorithm for rigid registrations [25, 262]. The algorithm thus
calculates both a global transformation and a local correspondence. The algo-
rithm is

1. Initial Alignment: The source and the target surface are roughly pre-
aligned, using for example a set of sparse landmarks or multiple ICPs.

2. Initial Correspondence: Construct an initial correspondence field, D.

3. Optimisation: Approximation of the MAP estimate of D using stochastic
optimisation.

4. Global Transformation: Computation and application of the global rigid
transformation

5. Convergence: Is the change in global transformation sufficiently small? If
not go to 2.

Steps 2 to 5 are explained in detail in the following.

C.4.1 Initial Correspondence

The initial correspondence field is made by a closest point projection of the
vertices from the source shape to the target shape. The closest point on the
target surface is found by the vtkCellLocator class found in the Visualization
Toolkit [219]. It uses a uniform-level octree subdivision [188], where each octant
carries an indication of whether it is empty or not, and each leaf octant carries
a list of the polygons inside of it. Therefore, the closest point is found as a point
lying on a triangle and not just as a vertex. The barycentric coordinates of the
points are also computed and used in the interpolation of surface features.
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C.4.2 Optimisation

The maximum a posteriori estimates can be found using e.g. the Iterative
Conditional Modes (ICM) [24] method, in which the random variables at each
site are set to the value that maximises the conditional probability given the
observations, and the current reconstruction elsewhere. The sites are typically
visited in random order to avoid propagation of trends. Each correspondence
vector is set to the ML estimate based on the prior and the model and then
extended to the target surface to complete the surface correspondence. For the
pure prior model, experiments have shown that ICM can be used successfully
and it is a typical choice of optimisation if the objective functional is convex
and a good initialisation is obtained. However, this is often only the case for
simple MRF's and ML estimates are not always available.

More advanced optimisation can be done e.g. by simulated annealing [164, 248|
using Gibbs sampling or the Metropolis-Hastings algorithm, followed by aver-
aging or application of ICM in search of the most optimal state of the random
field. This is needed when the energy term includes curvature or other derived
surface characteristics.

When applying simulated annealing the a posteriori probability distribution is
linked to the prior and the observation model by

p(dly) o (p(yld)p(d) " = exp(~Usorar/T), (C.14)

where T is a parameter referred to as the temperature. The temperature governs
the probability of accepting configurations of higher energy. The temperature
starts out high and decreases with time following a cooling schedule [57]. At high
temperatures, all states are equally likely. If the temperature is decreased slowly
enough the algorithm will converge to the MAP estimate [107]. See [172, 57] for
temperature schemes. When a site is visited a new random vector is generated
and the change in local energy, AU, is calculated based on this vector using
equation (C.11). The new vector is then accepted with the probability

Pcoept = min(1, e#). (C.15)

In the start where the temperature is high, nearly all configurations are accepted.
This allows the algorithm to explore the state space before converging on a
minimum.

The optimisation continues until the RMS criterion:

N
1
NZHdzn —din-1]]? <e1, (C.16)
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is satisfied. Here d; ,, is the correspondence vector at site 7 in the nth iteration
and €7 is a user-chosen parameter. A fixed number of iterations can also be
chosen or the criterion can be dependent on the temperature.

For each vertex in the mesh, a lookup table with IDs of the neighbouring vertices
is computed prior to the optimisation. This is done to speed up the evaluation of
the states of the neighbour sites. This is especially useful when more advanced
neighbourhood criterions are used. A neighbourhood can for example be defined
with respect to the geodesic distance from the vertex. In that case, the fast
marching method can be used to calculate the involved distances [222, 163, 223].

C.4.3 Global Transformation

Since the shapes are only roughly pre-aligned prior to the regularisation the cor-
respondence vector field may consists of a translation and a rotation component
that can be removed.

When the optimal correspondence field is found each point, x;, on the source
shape matches a point , x; + d;, on the target shape.

A rigid body transformation (rotation and translation), T, that in a least-
squares sense matches the source shape to the target shape can now be computed
using this set of corresponding points. Several methods to calculate this trans-
formation exist, including singular value decomposition [13], orthonormal matri-
ces [134], a unit quaternion method [133], and a dual quaternion method [250].
For real world data, the methods have been shown to perform equally [87]. In
this work, the unit quaternion method is used [133]. When the transformation
is found, it is applied to the source shape.

C.4.4 Convergence

The algorithm is stopped when the root-mean-square (RMS) of the changes
in the positions of the vertices in the source shape is less than a user-chosen
parameter:

N

1

N D o l@in — @i < e, (C.17)
%

where x; ,, are the points on the source surface in the nth iteration. Experiments
show that 5-10 iterations are normally sufficient.



C.5 Results 135

C.5 Results

The algorithm has been tried on both real and synthetic data.

C.5.1 Cube Registration

To test the robustness with regard to global alignment and random initialisation
a synthetic data set consisting of two cubes has been constructed. The cubes are
made by extracting two iso-surfaces from a voxel volume containing a Gaussian
smoothed cube, using the marching cubes algorithm [183]. The biggest of the
cubes is selected as being the source shape and the smallest as being the target
shape. The initial correspondence field is created by for each point in the source
shape finding the closest point on the target shape. The energy function con-
sists of the pure prior model with the p = 2. Therefore, the local a posteriori
conditional probability distribution is given by

p(dly) o exp(= ) |ldi — d|I3/T). (C.18)

i~

The maximum a posteriori estimate of the correspondence field is found by ICM
as described in section C.4.2. Each vector is set to its ML estimate, which is
the average of the neighbouring vectors weighted with their Euclidean distance
equation (C.7).

After convergence of the ICM algorithm, the global transformation is calculated
and applied to the source shape as described in section C.4.3. This is repeated
until convergence as explained in section C.4.4. The polygonal structure of the
source shape is then applied to the target shape via the correspondence field.

A number of experiments have been performed.

1. Recovering rotation. The source shape is rotated around the centre of
mass to test the algorithms capabilities to remove global transformations.
After convergence the rotational part of the global transformation, T is
calculated and compared to the pre-rotating. A series of 216 tests where
the x,y,z angle has varied from 0 to 25 degrees in step of 5 degrees has been
run. The error is calculated as |0, , — 0g ¢| + |0y.p — Oy, 7| +1602p — 0= £l
where the #’s are the rotations around the x,y and z axes. Index p is
the pre-rotation and f the found rotation. The average error of 2.2° is
probably caused by the round corners of the cubes that introduces an
ambiguity in the registration. A result can be seen in figure C.1.
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2. Random Initialisation. All the endpoints of the correspondence vector
field is placed randomly on the surface of the target shape. This is done
by calculating random positions in the space around the target cube and
the projecting the point to the nearest point on the target surface. The
correspondence field and the resulting dense mesh approximation of the
target shape before and after optimisation can be seen in figure C.2. It is
seen that the field converges on a good solution.

No experiments regarding translation have been performed since the shapes can
be pre-aligned using the center of mass.

The large cube contains 3300 vertices, which is also the number of vectors in
the vector field. The running time for the optimisation of the correspondence
field is approximately 1 minute on a 2 GHz Intel Pentium 4 processor.

Figure C.1: Recovering rotation. Top row: Large source cube and small target
cube, initial correspondence vector field and the initial dense mesh approxima-
tion of the target cube. Bottom row: Cubes after MRF alignment, optimised
correspondence vector field and the optimised dense mesh approximation of the
target cube.
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Figure C.2: Vector field unwinding. Top row: Initial random correspondence
vector field and the resulting dense mesh approximation of the target cube.
Bottom row: Correspondence vector field and dense mesh approximation after

MRF optimisation.
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C.5.2 Ear Canal Registration

A method for building a statistical shape model of the human ear canal is
presented in [201]. The data consists of 29 3D ear canal surfaces extracted from
laser scans of ear impressions. The local surface geometry of the ear canals
varies much from one individual to another. Therefore, only very few ridges
and extremal points are stable when comparing groups of ear canals. A set of
18 anatomical landmarks of varying confidence are placed on each ear canal, and
constitute a sparse correspondence between the surfaces of the ear canals in the
training set. The surfaces of the ear canals are not closed due to the opening of
the ear canal and because the ear impressions are terminated in front of the ear
drum. It is therefore necessary to identify the region of interest of each ear canal.
Hence, planes are defined, which separate the valid parts of the surface from the
invalid parts. In Fig. C.3, left, an ear canal with the anatomical landmarks and
separating planes is shown.

—T
===

N

]
K

Figure C.3: Left: An example of a surface representation of an ear canal with
the anatomical landmarks and the separating planes that defines the region of
interest. The thin tubular structure in the top is the actual canal. The larger
lower section is the concha, of which only the upper part is of interest. A cutoff
plane through the concha is therefore defined. Right: The model mesh, shown
by a wireframe, fitted to a target shape using Thin Plate Spline warping.

The anatomical landmarks do not constitute an exhaustive description of the
surface of the ear canal. It is therefore necessary to generate a more dense set of
landmarks describing the shape. For that purpose, a model mesh is constructed
and fitted to all shapes in the training set. The model mesh is chosen as a dec-
imated version of a natural well-formed ear canal labelled with the anatomical
landmarks. The model mesh is fitted to each of the shapes in the training set
using a Thin Plate Spline (TPS) warp based on the corresponding anatomical
landmarks. TPS is a warp function that minimises the bending energy [34].
Since the TPS transform is exact only for the anatomical landmark locations,
the vertices of the model mesh will not lie on the surface of the target shape,
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see Fig. C.3, right. Projecting each vertex in the warped model mesh to the
closest point on the target surface produces a non-rigid correspondence field.
However, using the Point to Surface Projection (PSP) introduces a critical risk
of inversions, where the vertices of the model mesh shift place and cause folds
in the mesh. Another secondary artifact is the non-uniformity of the correspon-
dence vector field shown in Fig. C.4 giving rise to poor approximation of the
target shape. In order to improve the correspondence vector field and avoid
the problems inherent in applying point to surface projection a regularisation
must be included. In the following, it is explained how the MRF method is
applied to this problem. The aim is to generate a dense correspondence over
a set of shapes and use this correspondence in the following shape modelling.
It is therefore meaningful to include surface characteristics in the search for an
optimal correspondence field. Since the shapes are pre-aligned, using the TPS
warping it is assumed that there is no underlying rigid transformation, so the
regularisation step only consists of the optimisation of the correspondence vec-
tor field. The energy function is therefore composed of a prior model with p = 2
and a model term with surface curvature. Combining equation (C.11), (C.12),
(C.6) and (C.9) gives the local posteriori conditional probability distribution

5+ad wylldi—d;|[3)/T), (C.19)

g

p(dly) o exp(—((1 — @) Z lles,i — ct,il

where ¢, ; is the mean curvature of the source surface at location x; and ¢,
is the mean curvature at the coordinate x; + d; and w;; is a Gaussian weight.
The kernel size of the Gaussian is determined by the distance to the closest
neighbour.

C.5.2.1 Surface Curvature

In this application, we chose to base our curvature energy U,y On mean cur-
vature since it is of extrinsic nature (its value depends on the nature of the
embedding space) unlike the Gaussian curvature which solely depends on the
first order invariants [82].

There exist several methods to compute the mean curvature at a vertex of a tri-
angulated mesh. One way consists in fitting a quadric patch to the neighbouring
points, and computing the differential properties directly from this quadric [218].
A recent similar method using polynomial fitting of osculating jets can be found
in [53]. Other methods include tensor voting [241, 240].

We propose an alternative approach, which is both efficient and robust. The
principle on which is based the algorithm is the following : among all spheres
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Figure C.4: a) The correspondence vector field derived using point to surface
projection for moving the vertices of the source to the target shape. b) The
resulting dense mesh approximation of the target shape. ¢) The optimised cor-
respondence vector field (o« = 0.2) d) The improved dense mesh approximation
of the target shape.
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Figure C.5: Approximation errors for the point to surface projection method
are seen to the left. To the right the errors after MRF regularisation (o =
0.2). The approximation error is calculated by for each vertex in the target
mesh finding the distance to the closest point on the approximation surface.
The approximation error is only calculated for the part of the target surface
approximated by the model mesh.

passing through a point P lying on a smooth surface, the one that minimises
its distance to the surface has curvature Cp, the mean curvature at P [79].

For each vertex P, our algorithm consists in finding the curvature of the sphere
that passes through P and that best approximates the set of neighbours Py of
P. The neighbour points are found by a region-growing algorithm that stops
when the Euclidean distance to the seed point is too high. Alternatively, the
geodesic distance could be used as instead of Euclidean distance.

Thanks to an inversion of centre P, we transform the estimation of the closest
sphere into the least-square estimation of a plane. Indeed, inversion transforms
any sphere passing through P into a plane whose distance from P is easily
related to its curvature. More precisely, inversion with respect to the point P
associates a neighbour point Py to its inverse Inv(Py)

(Py — P) - (Inv(Py) — P)=1. (C.20)
The inverse point can be found as

Py —P
Inww(Py) = ———=5 + P. C.21
) = B =P c2y
The estimation of the plane approximating {Inv(Py)} is based on the eigenvec-
tor analysis of the inertia matrix. The mean curvature Cp at P is then given
by 2D where D is the distance of P to the estimated plane. Further details and
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proofs can be found in [79]. The colour coded mean curvature of two ear canals
can be seen in figure C.6.

0.000 0.175 0.350 0.525 0.700 0.000 0.175 0.350 0.525 0.700

Figure C.6: Mean curvature of two different ear canal surfaces. It is seen that
corresponding anatomical regions have mostly the same mean curvature.

C.5.2.2 Optimisation of the Correspondence Field

The MAP estimate of the correspondence vector field is found by the Metropolis-
Hastings algorithm. See section C.4.2 for details.

The correspondence vector field consists of 3001 vectors. The running time for
the optimisation of the correspondence field is approximately 2 minutes on a 2
GHz Intel Pentium 4 processor.

After the optimisation has converged, the polygonal structure of the model
shape is applied to the target shape via the correspondence field.

C.5.2.3 Mesh Quality

Problems found in the initial correspondence field found by closest point pro-
jection are removed by applying the MRF relaxation. This is the case in both
the regularity of the polygonisation, and in the approximation error in repre-
senting the target shape by the deformed model surface. To obtain a measure
of the uniformity of the polygonisation of the target shape the regularity of its
triangular structure is examined. An optimal mesh should consist of equilateral
triangles. The quality of a triangle can therefore be measured by its minimum
angle. As a measure of mesh quality the average of the minimum angle of all
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triangles in the mesh is used Fiy; = % ZZ Omin, where i, is the minimum angle
in triangle 7. An optimal mesh will have a quality measure of Fi;; = 60°. The
quality of the mesh cannot be better than the quality of the model mesh, but
it is still useful to compare the quality of the resulting approximating meshes.
A rank test shows the significance of the MRF regularisation since an improve-
ment of Fi,; is obtained for all subjects. The improvement in mesh quality of
the approximating mesh and the regularity of the correspondence field can be
seen in Fig. C.4. The improvement in shape approximation is shown in Fig. C.5.
The approximation error F,,, is the average distance from the vertices in the
target to the closest points on the approximation surface. The approximation
error is only calculated for the part of the target surface approximated by the
model mesh.

C.5.2.4 Shape Modelling

The set of meshes with dense MRF correspondences is used in a statistical
shape analysis as explained in detail in [199, 201]. The model mesh is pruned
to contain only vertices that are mapped to the legal region on all shapes in the
training set. Details can be found in [201]. After the pruning, the model mesh
contains 3001 vertices. The shapes are first aligned by a generalised Procrustes
analysis [113]. The rigid-body transformation is used to build a size-and-shape
model [83]. An Active Shape Model (ASM) [61] is constructed based on a
Principal Component Analysis (PCA) of the Procrustes aligned shapes. Let each
aligned shape be represented as a vector of concatenated x, y and z coordinates

Xi = [®i1,Yil, Zils - - > Tins Yin, Zin) L, © = 1,...,s, where n is the number of
vertices and s is the number of shapes. The PCA is performed on the shape
matrix D = [(x; — X)|...|(xs — X)], where X is the average shape. A new

shape exhibiting the variance observed in the training set is constructed by
adding a linear combination of eigenvectors to the average shape X,ew = X+ ®b,
where b is a vector of weights controlling the modes of shape variation and
® = [p1|p2]. .. |p] is the matrix of the first ¢ eigenvectors of DD

There exist several methods to estimate the optimality of a shape model in-
cluding the minimum description length approach discussed in [73, 76, 75]. In
the work of Davies et al. a simple objective function is used in the initial
optimisation steps [73]. This objective function, also used by Kotcheff and
Taylor [169] is the determinant of the covariance matrix, which is equal to
Fehape = 2 log(A; + €), where \; are the eigenvalues of DDT. Fehape measures
the volume that the training set occupies in shape space [73]. The log is taken to
avoid dominating roundoff errors and a small value ¢ = 1078 is added to avoid
degenerate minima with small eigenvalues. In an earlier study it was found
that 7 modes of variation, is sufficient to describe the training data [201] and
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therefore Fynape is calculated based on the first 7 eigenvalues.

C.5.2.5 Parameter Estimation

Finding the optimal relation between the prior and the observation model de-
pends on the data and the application. A sort of objective function is needed to
determine the parameters of the model. In this application,x the data is used
to build a shape model and therefore an obvious choice of objective function is
linked to the optimality of the shape model. In figure C.7 it is seen that the
shape model is optimal with respect to Fshape at @ = 0.2.

The parameters could also be chosen with respect to the mesh quality measure
or the approximation error defined in section C.5.2.3. In figure C.7 box plots of
the mesh quality and approximation error as function of « are shown. It is seen
that o = 1.0 would be optimal with respect to the mesh quality, thus reducing
the Markov model to a pure prior model. On the other hand the improvement
in mesh quality from a = 0.2 to @ = 1.0 is so small that choosing o = 0.2 could
be argued to optimise both the shape model and the mesh properties.

C.6 Conclusion

A general framework for non-rigid registration of 3D surfaces is proposed. The
method uses the framework of Bayesian Markov Random Field restoration to
regularise the correspondence vector field between two shapes of the same class.
The method can be adapted to specific data by including appropriate surface
features in the model.

Using only the site-prior, the algorithm converges to the simplest correspondence
field, which creates a tendency to match points of similar geometry since the field
otherwise must be more complex. Moreover, inclusion of observational models
compensates further, where the prior fails in regions that are more complex.

The framework is demonstrated on synthetic data, where the algorithm demon-
strates the same abilities as a regularised iterative closest point algorithm. The
algorithm is also used on real data to create correspondences over a set of shapes.
These correspondences are then used to build a statistical shape model. The
parameters of the regularisation are chosen so the shape model maximises a
defined optimality criterion. This criterion could possible be included directly
in the model term of the Markov model, but that is outside the scope of this ar-
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ticle. The regularisation also improves the approximation of the training shapes
by making the resulting dense meshes more homogeneous.

In the proposed method, the parameters of the model are chosen globally, mean-
ing that the weighting of the prior and the observation model is the same over the
entire surface. It is possible that a model with site-specific weighting «; would
provide even better results. The site-specific weighting could be learned from
a training set based on multiple expectation-maximisation parameter analysis.
This is, however, out of the scope of this article.

Acknowledgements

The work was supported by the Academy of Technical Sciences by grant num-
ber EF915. The authors also thank Sgren Laugesen and Claus Nielsen from
Research Centre Eriksholm, Oticon A/S for guidance and data. The Visual-
ization Toolkit (http://www.vtk.org/) was used as software platform and for
visualisations.


http://www.vtk.org/

APPENDIX D

Using a Shape Model in the
Design of Hearing Aids

Rasmus R. Paulsen, Claus Nielsen,

Soren Laugesen, and Rasmus Larsen

Abstract

Today the design of custom completely-in-the-canal hearing aids is a manual
process and therefore there is a variation in the quality of the finished hearing
aids. Especially the placement of the so-called faceplate on the hearing aid
strongly influences the size and shape of the hearing aid. Since the future
hearing aid production will be less manual there is a need for algorithms that
mimic the craftsmanship of skilled operators. In this paper it is described
how a statistical shape model of the ear canal can be used to predict the
placement of the faceplate on a hearing aid made for a given ear canal. The
shape model is a point distribution model built using a training set of shapes
with manually placed landmarks. An interpolation method is used to generate
dense landmark correspondence over the training set prior to building the
shape model. Faceplates have also been placed on the training shapes by
a skilled operator. These faceplate planes are aligned to the average shape
from the shape model and an average faceplate plane is calculated. Given
a surface representation of a new ear canal, the shape model is fitted using
a combination of the iterative closest point algorithm and the active shape
model approach. The average faceplate from the training set can now be
placed on the new ear canal using the position of the fitted shape model.
A leave-one-out study shows that the algorithm is able to produce results
comparable to a human operator.
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D.1 Introduction

Today the production of custom completely-in-the-canal (CIC) hearing aids is
a manual process. For a CIC hearing aid, all components reside in a custom-
made shell that sits in the ear of the user. The shell is cast in a hard acrylic
material based on an ear impression and then ground down to the desired size.
The shell is then glued together with the so-called faceplate in which the battery
compartment and the microphone are mounted from the factory. The remaining
internal components of the hearing aid: the loudspeaker, the amplifier and the
ventilation tube are positioned inside the shell. All these processes are done by
hand and this induces a variation in the quality of the final products. See [55]
for a more thorough introduction to CIC hearing aids. An actual faceplate and
the corresponding CAD model can be seen in figure D.1.

Figure D.1: The faceplate used in the Oticon Adapto CIC hearing aid.

In Fig. D.2 two CIC hearing aids made for the same ear canal are seen. It is
seen that the left CIC is smaller than the one to the right. The size difference
is mainly due to the placement of the faceplate. The placement of the faceplate
also influences the visual appearance of the finished CIC in the ear. These
two hearing aids come from the Eriksholm clinic and are made following the
standard procedure. Since they are not made for any special purposes, they
reflect the standard variance seen in the shapes of final CIC hearing aids. Even
though a large part of the elderly population suffers from hearing loss there
is a social stigma associated with having a hearing aid. One way to alleviate
that problem is to convince people that it is acceptable to wear a hearing aid.
Another way is to design hearing aids to be as discreet as possible.

Manufacturers of hearing aids have made initial testing of rapid prototyping of
hearing aid shells using laser scans of ear impressions [254, 210]. In this process
the hearing aid is designed using a custom computer aided design program. This
means that the quality of the final product is still dependent of the intuition and
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skills of the human operator. Thus, an automatic method capable of mimicking
the craftsmanship of the best skilled operators would be useful in the design
process.

In this paper it is described how a statistical shape model of the human ear
canal is used to predict the placement of the faceplate on a custom CIC hearing
aid. The input data consists of expert placements of faceplates and the goal is
to generate a system that is able to mimic the expert placements based on the
assumption that the expert placements are related to the anatomy of the ear
canals.

Figure D.2: Two CIC hearing aids made for the same ear canal. It is seen that
the left CIC is smaller than the one to the right. The size difference is mainly
due to the placement of the faceplate. It is seen that the visual appearance of
the hearing aid in the ear is strongly influenced by the size.

The statistical modelling of shapes has in recent years been heavily influenced by
the development of learning based models. A fairly sophisticated learning based
deformable template model is the Active Shape Model developed by Cootes et
al. in 1995, which uses principal component analysis of the shape space [61].

This method has previously been used to build a full 3D statistical shape model
of the human ear canal [201]. The model is based on a set of 29 laser scanned ear
impressions. Anatomical landmarks were placed on the surfaces of this training
set and an interpolation method was used to generate a dense surface descrip-
tion. The method is similar to the methods described in [184] and [143]. The
method has later been extended to include a Markov Random Field restoration
step to remove artifacts arising due to a closest point correspondence step used
in the original method [127, 199]. A thorough description of the anatomy of the
human ear canal can be found in [17].
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D.2 Method

D.2.1 Expert Faceplate Placement

Using a custom-made surface annotation tool the second author, who is an
expert in the anatomy of the ear canal has placed faceplates on the 29 ear
canals used in the previous study [201]. The surface of the ear canal is here
thought of as being equal to the acrylic shell used in the production of CIC
hearing aids. This means that the faceplate is placed on the ear canal where
the acrylic shell would have been cut off if a faceplate should be mounted. In
this study the faceplate is treated as an infinite plane and it is placed where it
is optimal from a cosmetical point of view without taking the components on
the faceplate into account. In this respect optimal means that if the faceplate
is placed at the entrance of the ear canal around the first bend, the CIC will be
practically invisible. A deeper placement will not make it less visible but will
only make the CIC more difficult to manipulate for the user. Two ear canals
with faceplate planes are seen in Fig. D.3a.

(a) (b)

Figure D.3: a) The faceplate plane placed in two ear canals. b) Planes from
all canals in the training set aligned to the average ear canal. The estimated
average plane is shown with red.

D.2.2 Statistical Shape Model

An ear canal is approximated using a surface mesh containing 3001 vertices.
In the shape analysis the ear canal is represented as a vector of concatenated
x, y and z coordinates X; = [Ti1, Y1, Zi1, - - - » Tins Yin, Zin) L, @ = 1,...,s, where
n is the number of vertices and s is the number of shapes. The statistical
shape model of the ear canal basically consists of an average ear canal X and a
set of orthogonal translation vectors arranged in a matrix ® = [¢1|da]. .. [Pt
The average ear canal is calculated on the basis of the Procrustes [113] aligned
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training ear canals and ® is found by a principal component analysis of the
Procrustes aligned shapes. It was found that ¢ = 7 modes of variation was
enough to sufficiently explain the variation seen in the training data [201]. A
new shape exhibiting the variance seen in the training set is synthesised by
adding a combination of eigenvectors to the average shape X,ow = X + @b,
where b is a vector of weights controlling the modes of shape variation. In this
article a size-and-shape model of the ear canal is used meaning that the size
variation of ear canal is included in ® [83].

D.2.3 Alignment of Faceplates

The rigid body transformation, T;, that in a least squares sense aligns ear canal
X; to the average ear canal is also applied to the faceplate plane of that shape,
thus transforming the faceplate plane to the average ear canal. All the faceplate
planes from the training set transformed to the average canal and the average
ear canal can be seen in Fig. D.3b.

A plane can be defined as the set of points satisfying:
P ={x € R®}|F(x) = Mz + ABy + \Cz + A\D = 0, A # 0}, (D.1)

where the normal vector of the plane is n = (A, B,C) and x = (z,y,2) is
a point. This means that a plane can be represented as a parameter vector,
p = (A, B,C, D), which is defined up to a normalising factor A # 0, and that
can be normalised to have unit length, ||p|| = 1. After normalising, all planes
in the training set are now lying on the 3 Dimensional hypersphere.

Using this representation, planes can be looked upon as points of P3R, the
real projective space of dimension 3 [103]. A metric can now be established
in this differential manifold and thus it is possible specify a distance between
two infinite planes, p; and p;; namely the arc-length on the hypersphere, d, =
min(arccos(p;, p;), arccos(—p;, P;)). Note that it is necessary to handle that a
plane p is equal to the plane —p. An approximate distance measure is d, =
min(||p; — pjll, [[pi + pjl|). An average plane p can be determined from:

p= argmpinZd(ppi), Ipll =1, (D.2)

and is found by gradient descent optimisation with d. as the distance function.
Planevectors not pointing into the same hemisphere as the current estimate of p
are negated prior to each iteration of the optimisation algorithm. The average
ear canal and the estimated average faceplate plane can be seen in D.3b. For
visualisation purposes the planes are represented as finite planes limited to the
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proximity of the ear canal. From an anatomical viewpoint the placement of the
average plane in the average ear canal looks sensible.

D.2.4 Shape Fitting and Recognition

The statistical shape model built previously can be fitted to new ear canals
not included in the training set following the approach used in the active shape
models (ASM) [61]. The following method is similar to the method described
in [143]. Given a sampled surface of an ear canal not included in the training set,
Xtarget, the goal is to fit a model mesh, Xmodel t0 Xtarget- The fitting procedure
consists of a combination of the iterative closest point transformation (ICP) [25,
262] and a shape deformation using, Xdeform = X + ®by. In each stage the
model mesh is therefore represented by a global transform, Ty, and a set of
deformation parameters, by: Xmodel = Ty (Xx+ b f). The size-and-shape model
is used and therefore T is a rigid-body transform [83]. Initially the average
ear canal (by = 0) is placed in the scene and then iteratively transformed and
deformed to fit the target ear canal. In each iteration T is found by ICP. The
ICP algorithm initially aligns the centre of mass of the model mesh to the centre
of mass of the target mesh and then the closest point on the target surface is
found for all points in the model mesh. The surface of the target ear canal is
typically acquired using a laser scanner and therefore consists of a large number
of points and triangles. The closest point on the target surface is found by the
vtkCellLocator class found in the Visualization Toolkit [219]. It uses a uniform-
level octree subdivision [188], where each octant carries an indication of whether
it is empty or not, and each leaf octant carries a list of the polygons inside of
it. Therefore the closest point is found as a point lying on a triangle and not
just as a vertex. T is found as the transformation that minimises the distances
between the model mesh and the closest points on the target mesh in a least
squares sense [133].

After the model mesh has been rigidly aligned to the target mesh the clos-
est point on the target shape is found for all points in the model mesh. The
collection of closest points yields a new shape, x’. This new shape is trans-
formed back to alignment with the shape model using the inverse transforma-
tion: x” = T;l(x’). The model shape is now deformed to look as much like
x'" as possible, but still being in the allowed shape space. This is done by
finding the parameter vector, by back-projecting x” on the eigenvector space:
b; = ®7(x” — x). The parameters found are then clamped to three standard
deviations and the new model mesh is synthesised using Xgeform = X+ ®b; and
used in the next iteration.

The quality of the fit is defined to be the square root of the summed squared
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distances from all the points in the model mesh to the closest point on the target
mesh

N
F= (Z dz(pr’p&osest))l/27 (DS)

where d?(p",pt) is the squared Euclidean distance from point i in the model
shape to the closest point on the surface of the target shape. The iteration stops
when the change in F is sufficiently small. The parameter vector describing the
approximated target shape, by, can be used to test if the found shape belongs
to the same class of shapes as the training set [61].

The algorithm described previously does not handle local minima very well and
tends to get stuck if the initial orientation of the model is very different from
the orientation of the target shape. To overcome this problem a guess of the
starting placement is made by starting ICP with the model pre-transformed in
24 different configurations and then selecting the ICP with the best initial fit,
F. The 24 configurations are made by an initial rotation around the x-axis
followed by a rotation around either the y- or the z-axis. The allowed rotations
are 90,180 and 270 degrees. So it is equal to the object first being rotated around
itself and then rotated to lie on one of the 6 axis of symmetry of a cube. This
is a primitive and brute-force approach, but it works very well. Examples of
ICP fits with different pre-rotations can be seen in Fig. D.4. It is seen that the
pre-rotation used in the top row is ideal.

D.2.5 Prediction of Faceplate Placement

The fitting procedure described above can also be used to place a faceplate
plane on a new ear canal. The average faceplate plane, p, associated with the
average ear canal X can be fitted to the new ear canal using the transform used
to fit the model shape to the new ear canal. The fitting consists of a rigid
body transform T and a deformation expressed with b;. It would be ideal to
use both the rigid transformation and the shape deformation in the prediction
of the faceplate placement. In this work the prediction is limited to the rigid
transformation meaning that the predicted plane is calculated by applying T
to p. A faceplate plane placed by the algorithm in a new ear canal can be seen
together with the fitted model mesh in Fig. D.5.

The fitting and faceplate plane prediction algorithm is outlined in algorithm 2.
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Figure D.4: ICP fitting. Here the green model ear is fitted to the blue target
ear canal. The initial placement of the model ear is seen to the left and after
ICP to the right. The fit quality after the converged ICP shown in the top row
is F = 0.722 and F = 2.50 for the one in the bottom row.
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Algorithm 2 Fitting the Shape Model to a Target Surface, X¢arget, and Predict
Faceplate Placement

bf =0,T; = I — Xmodel = X
Determine pre-transformation Ty by multiple ICP
while Not convergence do
Xmodel = Tf()_( + (I)bf)
Determine T; using ICP 50 Xpodel fits Xparget-
Update T with T; and update Xmodel
For each point in Xmodel find the closest point on the surface of X¢arget
Generate a new shape x’ of these closest points
Apply T;l to x’ generating x”
Set by = T (x" — %)
Convergence if AF is small
end while
Final fitted model: xg, = T (X + ®by)
Apply T to p to get the predicted faceplate plane for X¢arget

Figure D.5: The shape model fitted to a new ear canal and the predicted face-
plate plane. The target shape is blue and the fitted model is green.
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D.3 Results

D.3.1 General Observations

In Fig. D.6 there is a visual comparison between the expert placed faceplate
and the predicted faceplate placement. The three cases shown are the worst,
the best and a an average case. From a visual point of view all three results are
satisfying.

Figure D.6: Predicted faceplate planes (red) and expert placed faceplate planes
(green). From left to right the worst, an average and the best predictions are
shown. Quantitatively, the prediction errors evaluated from Eq. (D.4) are 11.8°,
5.2°and 2.1°, respectively.

D.3.2 Leave-One-Out Analysis

To supplement the visual validation of the results a leave-one-out study has
been performed. In this study the faceplate placement is predicted for the 4
th ear canal using Alg. 2, where the statistical shape model has been built
using the 28 other ear canals. In order to compare the predicted faceplate
placement p, with the expert placement p. a candidate distance measure is
d(Pa,Pe) = ||Pa — Pel|- This distance measure is not practical because it is
difficult to compare the distance to a known reference. An alternative approach
is to calculate the angle, a;, between the predicted and the expert placed plane
using the plane normals:

AgAe + BB + C,C,

D.4
(A2 + B2+ C2)12(A2 + B2 + C2)1/2 (D-4)

arccos & =

The angle differences between the expert placements and the predicted place-
ments are shown in Fig. D.7. The average angle difference is 6.3°and the prac-
tical consequences of these prediction errors can be judged from Fig. D.6.



D.4 Summary and Conclusions 157

Using the angle in the cross validation is not optimal. A better difference mea-
sure would be the volume of the part of the ear canal delimited by the expert
and the predicted faceplate plane. This is, however, not used due to its compu-
tational complexity.

Frequency
4
|

alpha

Figure D.7: Histogram of a values for the training set.

D.4 Summary and Conclusions

The present study has two main outcomes. First, a proof-of-concept has been
presented regarding automated, cosmetically motivated CIC faceplate place-
ment based on a statistical shape model of the ear canal shape. Secondly, the
expert faceplate placements and the resulting model consider the placement of
a faceplate without components (microphone, battery drawer, etc.). Hence, the
resulting faceplate placements may serve as inspiration for the component layout
of future faceplates.

The presented method places the plane using a rigid transformation based on the
translation and orientation of the transformed and deformed model ear canal.
It does not take into account the anatomy of the target ear canal contained in
the shape model. It should be examined if a multivariate correlation can be
found between the shape vector and the faceplate plane parameters.
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APPENDIX E

Software

The Visualisation Toolkit (VTK) [219] has been used as the basis for the soft-
ware developed in this thesis. VTK is an open source, freely available software
system for 3D computer graphics, image processing, and visualisation. It con-
sists of a C++ class library, and several interpreted interface layers including
Tcl/Tk, Java, and Python. The applications are developed using VTK, C++,
and TCL/TK [252, 198].

E.1 IMM Surface Annotation Toolkit

A simple tool for placing landmarks on the surface of 3D objects. Landmarks
can be placed, moved, and deleted. Finally, the landmark coordinates can be
saved in VTK format. A screen-shot can be seen in figure E.1.

E.2 Faceplate Placement Toolkit

This application is an extension to the annotation toolkit. A CAD model of
a faceplate can be placed in the ear canal. It is possible to clip the ear canal
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Figure E.1: Landmarks are placed on an ear canal using the annotation toolkit.

with the faceplate, to give an idea of the size of the shell. Furthermore, it is
possible to make the different objects more or less transparent. Finally, the
faceplate position can be stored in VTK format. The application can be seen
in figure E.2.

IMM Surface Annotation for VTK 4.x v.0.3.2 - [C:/rip/data/Thesis/rasmus.cip:vtk] o (=] 3|
Fle Edt View

™ Nambers 7 Org(@) ¥ Foceploe ¥ Plane ) o Clpped ) 7 Oulne I Awes | Cipl(0) | Storet | Fecive | Store [ Fecores

v

I s

Figure E.2: The CAD tool used by the operators to place faceplates.

E.3 Faceplate Placer

Given an ear canal, this application places a faceplate. The application mimics
the routines used by expert operators. As seen in figure E.3, the visual interface
makes it possible to see the evolution of the objective function over time. In
addition, the outline of the shell can be seen on the faceplate.
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r v,

Figure E.3: The visual interface to the faceplate placement algorithm.

E.4 3D Model Viewer

A viewer for 3D surface models has been co-developed with Per R. Andresen [8].
It is possible to load several 3D models into the same scene and customise
their appearance. The application contains several features including movie
creation and the ability to export the scene to a RenderMan file! . Furthermore,
advanced scripting is available via the inbuilt TCL/TK interface. A scene with
several 3D objects can be seen in figure E.4.

E.5 Shape Model Viewer

An application that can visualise the modes of variation of a 3D surface shape
model has been co-developed with Karl Skoglund [226]. The modes of variation
are controlled by sliders as seen in figure E.5.

LA number of illustrations in this thesis are produced with the Blue Moon Rendering
Tools, which are a collection of programs that render 3D scene models. The file format used
is specified by Pixar and called the RenderMan Interface Specification.
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Figure E.4: Various 3D models shown in the viewer.
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Figure E.5: The modes of variation of a 3D shape model are visualised.
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E.6 Markov Random Field Visual Interface

A visual interface to the Markov Random Field algorithm described in appen-
dix C has been created. As seen in figure E.6 it is possible to view the change
in representation ability and polygonisation of the target shape.

Figure E.6: Markov Random Field Regularisation Visual Interface.

E.7 VTK classes

A number of VTK classes have been developed during the thesis. They are
available from the author’s website.

vtkPolyDataSingleSourceShortestPath

vtkPolyDataSingleSourceShortestPath is a filter that takes as input a polygonal
mesh and performs a single source shortest path calculation. Dijkstra’s algo-
rithm is used. The implementation is similar to the one described in [72]. Some
minor enhancements are added though. Not all vertices are pushed on the heap
at start; instead, a front set is maintained. The heap is implemented as a binary
heap. The output of the filter is a set of lines describing the shortest path from
the start vertex to the end vertex.
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vtkPrincipal AxisTransform

vtkPrincipal AxisTransform generates a transform that scales, translates, and
rotates a given object to the principal axis of the input data. If the input data
is a Gaussian distributed point cloud and the transformation is applied to a
unit sphere, the transformed sphere will show the covariance structure of the
point cloud. It is possible to specify if the transform shall include rotation,
translation, scaling, or all of them.

vtkProcrustesAlignmentFilter

vtkProcrustesAlignmentFilter is a filter that takes a set of pointsets and aligns
them in a least-squares sense to their mutual mean. The algorithm is iter-
ated until convergence, as the mean must be recomputed after each alignment.
vtkProcrustesAlignmentFilter is an implementation of [113]. This class was
co-developed with Tim Hutton [143] and has been added to the official VTK
distribution.

vtkPCA AnalysisFilter

vtkPCA AnalysisFilter is a filter that takes as input a set of aligned pointsets
and performs a principal component analysis of the coordinates. This can be
used to visualise the major or minor modes of variation seen in a set of simi-
lar biological objects with corresponding landmarks. vtkPCA AnalysisFilter is
designed to work with the output from the vtkProcrustesAnalysisFilter. vtkP-
CAAnalysisFilter is an implementation of (for example) [61]. This class was
co-developed with Tim Hutton [143] and has been added to the official VTK
distribution.



List of Figures

2.1

2.2

2.3

24

2.5

2.6

2.7

2.8

Left: Anatomy of the external ear shown on the author’s left ear.
Right: Medial section of the outer ear and ear canal seen from
the top of the head. . . . . . . ... ... .. ... .. ...... 8

The anatomy of the ear shown on the scanned ear impression
corresponding to the ear seen in Figure 2.1. The direction out
of the ear is shown with a yellow arrow, the forward direction
with a green arrow, and downwards with a red arrow. The first
(green) and the second (yellow) bend are shown with tubes. The
locations of anti-tragus (black), concha (orange), crus (purple),
cymba (grey), and tragus (red) are indicated with dots. . . . . . 9

A CIC hearing aid seen outside and in the author’s left ear. The

scale is in centimetre. . . . . .. ... L Lo 10
The impression is cut and ground. . . . ... ... ... .. ... 11
The shell is cast in a hard acrylic material. . . . ... ... ... 12
The shell is ground. . . . . . ... .. . .. oL 13
Components are installed and the shell is polished. . . . . . . .. 13

To the left a 3Shape S-200 3D Scanner and to the right a 3D
Systems Viper Si2 stereo-lithography printer. . . . . . . ... .. 15



166

LIST OF FIGURES

3.1

3.2

3.3

3.4

4.1

4.2

4.3

5.1

5.2

An ear impression and the corresponding point cloud. For clarity,
only the points on the visible part of the surface are shown. The
line on the ear impression corresponds to the lowest samples of
the point cloud. . . . . . . . . ... oo 20

To the left a surface reconstructed with Hoppe’s method is seen.
The surface seen the right side is reconstructed with the Power
Crust. It is seen that the surface on the left has some artefacts
atthetop. . . . . . . . 22

From left to right: Original scan, scan with a modern scanner,
the two surfaces rigidly aligned. . . . . . . .. ... ... ... .. 23

The difference between an original scan and a new scan. The
distance to the surface of the original scan is calculated for each
point in the new scan [mm]. The large red area of the new scan
is where the original scanner did not scan the surface. . . . . .. 23

The medial sheet calculated for two different ear canals. The
topologies of the two sheets are clearly different. In the middle
part of the canal, the sheet is split in three in ear canal A while
being a single sheet in ear canal B. . . . . .. ... .. ... ... 27

A typical scree plot. The scree plot for the same, but randomised
data is also shown. The plot is taken from Appendix A. . . . . . 31

a) The landmark point cloud and the associated mesh do not
represent the training shape very well. b) The representation
error. ¢) A better representation of the training shape. . . . . . . 35

Area distortion minimisation per iteration. Red triangles display
a high degree of area distortion as opposed to green triangles.
Mlustration from [160]. . . . . . . . . . . ... . . 46

Wireframe representation of the surface of an ear canal. It is seen
that the triangulation is non-uniform, with triangles of varying
sizes and aspect ratios. . . . . . ... ... 47



LIST OF FIGURES 167

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

7.1

7.2

7.3

7.4

The approximation of the medial axis transformation of an ear
canal. It is seen that the collection of polar balls approximates the
volume spanned by the point cloud. The medial sheet is colour
coded according to the radii of the medial balls. The large ball
is placed at the opening of the ear canal. Scale is in millimetres. 53

The centres of the outer balls colour coded according to their
radii. It is seen that the balls are enclosed in a bounding volume
much larger than the actual ear canal. . . . . . .. ... ... .. 54

OBB-Tree representation of a collection of components. From
right to left the OBB-tree level 0, 1, 2, and 4. . . . . . . . .. .. 55

Collision between a CIC and an ear canal detected using the
medial balls. The red areas of the CIC are where the CIC is
colliding with the ear canal. . . . . . . ... ... .. ... .... 56

Point P is found in two outer medial balls with centres C; and
C5. The true penetration vector v is estimated based on the two
shown collision vectors. . . . . . . . . . . . . . ... 57

Collision between a component and the ear canal. All the collision
vectors are shown in the middle and the approximated penetra-
tion vectors are shown to the right. . . . . .. .. ... . ... .. 57

The path of least resistance (green) compared to the geodesic
shortest path (red). . . . . . . . ... . .. oL 59

Original surface and the 0.6 mm iso-surface. The unsigned dis-
tance transform isused. . . . . . . ... ... ... L. 61

The faceplate used in a recent Oticon hearing aid. . . . . . . .. 67

The first (green) and the second (yellow) bend on an ear canal.
Further description of the ear canal anatomy can be found in
Section 2.1. . . . . . L. 68

The collection of components that must not collide with the shell. 68

Optimisation of placement. The green tube is the intersection
between the outer faceplate plane and the shell. The cyan tube
is the intersection between the inner faceplate plane and the shell.
The red tube is the path of least resistance of the shell. . . . . . 70



168

LIST OF FIGURES

7.5

7.6

7.7

7.8

7.9

7.10

7.11

7.12

The initial placement of a faceplate with components in an ear
canal. It is seen that components collide with the shell. . . . . .

The initialisation step. The components are rotated until there
is minimum collision and the battery-compartment door points
downwards. . . . . . . ..

The total energy of a state plotted against the iteration number
for two different optimisations. The energy for the current state,
the energy for the accepted state, and the energy for the all-time-
best state are shown. . . . . . .. ..o

Example 1 component view. The two expert operators and the
algorithm have placed the components similarly. As seen in Ta-
ble 7.1, there are minor hidden collisions between the shell and the
components. However, the components are well inside the shell
and there is not much excess space. Furthermore, the faceplate
is placed nearly perpendicular to the shell. Thus, connecting the
faceplate components to the remaining component would not be
difficult. . . . . . ..

Example 1 side view. Both the algorithm and the two operators
have placed the faceplate near the first bend of the ear canal.
Thus, the resulting CIC would sit deep in the ear canal. . . . . .

Example 1 entrance view. The three placements are very similar.
The resulting instrument would be a very small CIC. Further-
more, the battery-compartment door points downwards and the
faceplate outline is oval, giving a cosmetically appealing finish of
the hearing aid. . . . . . . . . . .. ... o

Example 2 component view. It is easy to see the difference be-
tween the placements. While expert 1 has placed the component
in a satisfactory position, expert 2 has placed them in a tilted
position with too much excess space. The algorithm-placement
is in between the two operators. . . . . . . . . ... .. ... ...

Example 2 side view. From this angle, it is seen that the algo-
rithm has placed the faceplate in a tilted position compared to
the operators. . . . . . . . ...



LIST OF FIGURES

169

7.13 Example 2 entrance view. It can be seen that both the expert op-

8.1

8.2

8.3

8.4

8.5

8.6

8.7

Al

A2

erators and the algorithm have problems in placing the faceplate
in a position that would result in a CIC with a high cosmetical
value. First, the battery compartment points sideways. Secondly,

the faceplate outline is not oval and tends to look like a duck-foot. 80

Procrustes aligned ear canals. . . . . . ... .. ... .......

The minimum shell represented as a surface and as a solid block.

SLA print of the minimum shell with the faceplate, tipplate, and
components added. . . . . ... ... L

Insertion of a CIC in an ear canal. The CIC follows the path of
least resistance shown as a green tube. Collisions between the
CIC and the ear canal are indicated with red. . . . . . . . .. ..

Faceplate placements for two examples. From left to right: opti-
mal, duck-foot, and tilt. . . . . .. ... ... ... L.

Faceplate outlines for the two examples shown in figure 8.5. . . .

a) Faceplate areas for the training set. b) Cross-areas for the
training set. They are measured at the first bend, the second
bend, and at the position of the pure faceplate. . . . . . . .. ..

To the left an example of a surface representation of an ear canal
with the anatomical landmarks and the planes that separate the
valid areas from the invalid areas. The thin structure in the top
is the actual canal. The larger lower part is the concha. Only
part of the concha is used and therefore a plane through concha
is defined. To the right is the average shape from the pure shape
model . . . ...

Pure shape model. Each shape has been generated by varying the
first three modes of variation between —3 (top) and +3 (bottom)
standard deviations . . . . . . ... oL

91

92



170

LIST OF FIGURES

A3

B.1

B.2

B.3

B.4

B.5

To the left is a plot of the eigenvalues of the shapes from the pure
shape model, compared to those for a randomised version of the
data (each row of the shape matrix D was scrambled). The lines
are crossing approximately where mode = 7. To the right is a
plot of centroid size versus mode 1 from the pure shape model.
The full dots are females while the plus signs are male. It is seen
that both size and mode 1 separates males from females . . . . .

Left: An example of a surface representation of an ear canal with
the anatomical landmarks and the separating planes that defines
the region of interest. The thin tubular structure in the top is
the actual canal. The larger lower section is the concha, of which
only the upper part is of interest. A cutoff plane through the
concha is therefore defined. Right: The model mesh, shown by a

wireframe, fitted to a target shape using Thin Plate Spline warping.111

a) The correspondence vector field derived using point to surface
projection for moving the vertices of the source to the target
shape. b) The resulting dense mesh representation of the target
shape. ¢) The correspondence vector field derived using using
the Markov random field restoration of the deformation field for
moving the vertices of the source to the target shape. d) The
improved dense mesh representation of the target shape. . . . . .

Left: Comparison between the point to surface projection (upper
curve) and the MRF regularization (lower curve) by evaluating
the coefficient of variance of the edge lengths of the polygonization
of the target surface. Right: A histogram of the reduction in
coefficient of variance over the training data. . . . .. ... ...

The reconstruction error [mm] for subject one using the point to
surface projection (left) and the MRF correspondence restoration

Size-and-shape shape model. The first three modes of variation
shown at +3 (top) and —3 (bottom) standard deviations from
the mean shape. . . . . . . ... ... oL



LIST OF FIGURES

171

B.6

C.1

C.2

C.3

C4

C.5

Left: the variance contained in each principal component, the
dotted line using point to surface projection and the solid line
applying the MRF regularization step. Right: the reduction in
the variance as a function of dimensionally of the model. The
average reduction in each subspace is approximately 7% and the
reduction of the total variance in the shape tangent space more
than 4%. . . . .

Recovering rotation. Top row: Large source cube and small
target cube, initial correspondence vector field and the initial
dense mesh approximation of the target cube. Bottom row:
Cubes after MRF alignment, optimised correspondence vector
field and the optimised dense mesh approximation of the target

Vector field unwinding. Top row: Initial random correspondence
vector field and the resulting dense mesh approximation of the
target cube. Bottom row: Correspondence vector field and
dense mesh approximation after MRF optimisation. . . .. ...

Left: An example of a surface representation of an ear canal with
the anatomical landmarks and the separating planes that defines
the region of interest. The thin tubular structure in the top is
the actual canal. The larger lower section is the concha, of which
only the upper part is of interest. A cutoff plane through the
concha is therefore defined. Right: The model mesh, shown by a

wireframe, fitted to a target shape using Thin Plate Spline warping.138

a) The correspondence vector field derived using point to surface
projection for moving the vertices of the source to the target
shape. b) The resulting dense mesh approximation of the target
shape. ¢) The optimised correspondence vector field (o = 0.2)
d) The improved dense mesh approximation of the target shape.

Approximation errors for the point to surface projection method
are seen to the left. To the right the errors after MRF regular-
isation (o = 0.2). The approximation error is calculated by for
each vertex in the target mesh finding the distance to the closest
point on the approximation surface. The approximation error is
only calculated for the part of the target surface approximated
by the model mesh. . . . . ... ... ... oL

140



172

LIST OF FIGURES

C.6

Cr

D.1

D.2

D.3

D.4

D.5

D.6

D.7

E.1

E.2

Mean curvature of two different ear canal surfaces. It is seen that
corresponding anatomical regions have mostly the same mean
curvature. . . . . . . .. e 142

a) The average surface approximation error Fap, over all training
shape. b) Shape model optimality with respect to Fghape. ¢) Box-
plot of the surface approximation errors F,p,. d) Box-plot of the
mesh quality Fipi. - - - - o oo o 145

The faceplate used in the Oticon Adapto CIC hearing aid. . . . . 148

Two CIC hearing aids made for the same ear canal. It is seen
that the left CIC is smaller than the one to the right. The size
difference is mainly due to the placement of the faceplate. It is
seen that the visual appearance of the hearing aid in the ear is
strongly influenced by the size. . . . . .. ... ... ... ..., 149

a) The faceplate plane placed in two ear canals. b) Planes from
all canals in the training set aligned to the average ear canal. The
estimated average plane is shown withred. . . . . . ... .. .. 150

ICP fitting. Here the green model ear is fitted to the blue target
ear canal. The initial placement of the model ear is seen to the
left and after ICP to the right. The fit quality after the converged
ICP shown in the top row is F = 0.722 and F = 2.50 for the one
in the bottom row. . . . . . ... Lo Lo 154

The shape model fitted to a new ear canal and the predicted
faceplate plane. The target shape is blue and the fitted model is
GUEEIL. . v v v v e e e e e e e e e e e 155

Predicted faceplate planes (red) and expert placed faceplate planes
(green). From left to right the worst, an average and the best
predictions are shown. Quantitatively, the prediction errors eval-
uated from Eq. (D.4) are 11.8°, 5.2°and 2.1°, respectively. . . . . 156

Histogram of « values for the training set. . . . . . .. ... ... 157

Landmarks are placed on an ear canal using the annotation toolkit.160

The CAD tool used by the operators to place faceplates. . . . . . 160



LIST OF FIGURES 173

E.3 The visual interface to the faceplate placement algorithm. . . . . 161
E.4 Various 3D models shown in the viewer. . . . . . ... ... ... 162
E.5 The modes of variation of a 3D shape model are visualised. . . . 162

E.6 Markov Random Field Regularisation Visual Interface. . . . . . . 163



174 List of Tables




List of Tables

7.1 Placement scores. The best score in each category is marked with
bold. Collision detection was not enabled during the operator
placement. Therefore, minor collisions between the shell and the
components occur in certain expert placements. For all examples
except one, the algorithm finds the placement with the lowest
total score. . . ... 81

B.1 Reconstruction errors [mm]| using PSP and MRF regularization.
The mean + one std. is shown for each method. The site-prior
is governed by the p-norm and ¢ controls the sensitivity of the
observational energy term dependent on the surface normals. . . 119



176 Bibliography




Bibliography

[1]

L. S. Alvord and B. L. Farmer. Anatomy and orientation of the human
external ear. J. Am. Acad. Audiol., 8:383-390, 1997.

L. S. Alvord, R. Morgan, and K. Cartwright. Anatomy of an earmold: A
formal terminology. J. Am. Acad. Audiol., 8:100-103, 1997.

N. Amenta, S. Choi, and R. Kolluri. The power crust. In Proc. ACM
Symposium on Solid Modeling, pages 249-260, 2001.

N. Amenta, S. Choi, and R. Kolluri. The power crust, unions of balls,
and the medial axis transform. Computational Geometry: Theory and
Applications, 19(2-3):127-153, 2001.

P. R. Andresen. Surface-bounded growth modeling applied to human
mandibles. PhD thesis, Informatics and Mathematical Modelling, Techni-
cal University of Denmark, DTU, 1999.

P. R. Andresen, F. L. Bookstein, K. Conradsen, B. K. Ersbgll, J. Marsh,
and S. Kreiborg. Surface-bounded growth modeling applied to human
mandibles. IEEE Transactions on Medical Imaging, 19(11):1053-1063,
November 2000.

P. R. Andresen and M. Nielsen. Non-rigid registration by geometry con-
strained diffusion. In Proceedings of Medical Image Computing and Com-
puter Assisted Intervention, volume 1679, pages 533-543. Springer-Verlag,
1999.

P. R. Andresen and M. Nielsen. Non-rigid registration by geometry-
constrained diffusion. Medical Image Analysis, 5(2):81-88, 2001.



178

BIBLIOGRAPHY

[9]

[15]

[16]

S. Angenent, S. Haker, A. Tannenbaum, and R. Kikinis. On area preserv-
ing mappings of minimal distortion. In T. Djaferis and I. Schick, editors,
System Theory: Modeling, Analysis, and Control, pages 275-287. Kluwer,
Holland, 1999.

S. Angenent, S. Haker, A. Tannenbaum, and R. Kikinis. On the Laplace-
Beltrami operator and brain surface flattening. IEEE Trans. Medical
Imaging, 18:700-711, 1999.

L. Antiga. Patient-Specific Modeling of Geometry and Blood Flow in Large
Arteries. PhD thesis, Politecnico di Milano. Dipartimento di Bioingegne-
ria, 2002.

L. Antiga, B. Ene-lordache, and A. Remuzzi. Centerline computation
and geometric analysis of branching tubular surfaces with application to
blood vessel modeling. In Proc. Int. Conf. in Central Europe on Computer
Graphics, Visualization and Computer Vision, 2003.

K. S. Arun, T. S. Huang, and S. D. Blostein. Least-squares fitting of
two 3-D point sets. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 9(5):698-700, 1987.

M. A. Audette, F. P. Ferrie, and T. M. Peters. An algorithmic overview
of surface registration techniques for medical imaging. Medical Image
Analysis, 4(3):201-217, 2000.

V. Ayyadevara, D. A. Bourne, K. Shimada, and R. H. Sturges.
Interference-free polyhedral configuration for stacking (submitted). IEEFE
Transactions on Robotics and Automation, 2000.

J. A. Beerentzen and H. Aanaes. Computing discrete signed distance fields
from triangle meshes. Technical report, Informatics and Mathematical
Modelling, Technical University of Denmark, DTU, Richard Petersens
Plads, Building 321, DK-2800 Kgs. Lyngby, 2002.

B. B. Ballachanda. The Human Ear Canal. Singular Publishing Group,
Inc., San Diego, California, 1995.

B. B. Ballachanda. Theoretical and applied external ear accoustics. J.
Am. Acad. Audiol., 8:411-420, 1997.

J. A. Batting and C. Griinewaldt. Udvikling af system til scanning af 3D-
geometri og generering af cad-model. Master’s thesis, Institut for anvendt
konstruktion og produktion, DTU, 1997.

J. L. Bentley. Multidimensional binary search trees used for associative
searching. Communications of the ACM, 18(9):509-517, 1975.



BIBLIOGRAPHY 179

[21]

22]

[23]

[24]

[25]

[26]

[27]
(28]

[35]

G. van den Bergen. Efficient collision detection of complex deformable
models using AABB trees. Journal of Graphics Tools, 2(4):1-14, 1997.

J. Besag. Spatial interaction and the statistical analysis of lattice systems.
Journal of the Royal Statistical Society, Series B, 36:192-236, 1974.

J. Besag. On the statistical analysis of dirty pictures. Journal of the Royal
Statistical Society, Series B, 48(3):259-302, 1986.

J. Besag. Towards Bayesian image analysis. Journal of Applied Statistics,
16(3):395-407, 1989.

P. J. Besl and N.D. McKay. A method of registration of 3D shapes. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 14(2):239-
256, 1992.

M. Betke, H. Hong, D. Thomas, C. Prince, and J. P. Ko. Landmark
detection in the chest and registration of lung surfaces with an application
to nodule registration. Medical Image Analysis, 7(3):265-281, 2003.

A. Blake and M. Isard. Active Contours. Springer, 1998.

V. Blanz and T. Vetter. A morphable model for the synthesis of 3D faces.
In Proc. SIGGRAPH, pages 187-194. ACM, 1999.

F. L. Bookstein. The study of shape transformation after d’arcy thompson.
Math. Biosciences, pages 177-219, 1977.

F. L. Bookstein. The measurement of biomedical shape and shape change.
Lectures Notes in Biomathematics, 24, 1978.

F. L. Bookstein. A statistical method for biological shape comparisons.
J. Theoret. Biol., 107:475-520, 1984.

F. L. Bookstein. Principal warps: thin-plate splines and the decomposition
of deformations. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 11(6):567-585, 1989.

F. L. Bookstein. Landmark methods for forms without landmarks: local-
izing group differences in outline shape. Medical Image Analysis, 1(3):225—
244, 1997.

F. L. Bookstein. Shape and the information in medical images: A decade of
the morphometric synthesis. Computer Vision and Image Understanding,
66(2):97-118, 1997.

G. Borgefors. Distance transformations in arbitrary dimensions. Computer
Vision, Graphics, and Image Processing, 27(3):321-345, 1984.



180

BIBLIOGRAPHY

[36]

[37]

[38]

[39]

[40]

[41]

[42]

R. Bowden. Learning non-linear Models of Shape and Motion. PhD thesis,
Dept Systems Engineering, Brunel University, Uxbridge, Middlesex, UB8
3PH, UK., 1999.

C. Brechbiihler, G. Gerig, and O. Kiibler. Towards representation of 3D
shape: Global surface parametrization. In Proc. Internatinal Workshop
on Visual Form, 1991.

C. Brechbiihler, G. Gerig, and O. Kiibler. Surface parametrization
and shape description. In Proc. Visualization in Biomedical Computing,

Chapel Hill, North-Carolina, October 1992.

C. Brechbiihler, G. Gerig, and O. Kiibler. Parametrization of closed sur-
faces for 3-D shape description. Computer Vision and Image Understand-
ing, 61:154-170, 1995.

A.D. Brett and C. J. Taylor. A method of automated landmark generation
for automated 3D PDM construction. In Proc. British Machine Vision
Conference, pages 914-923, 1998.

A. D. Brett and C. J. Taylor. A framework for automated landmark
generation for automated 3D statistical model construction. In Proc. In-
formation Processing in Medical Imaging, pages 376-381, 1999.

A. D. Brett and C. J. Taylor. Construction of 3D shape models of femoral
articular cartilage using harmonic maps. In Proc. MICCAI, pages 1205—
1214, 2000.

M. de Bruijne, B. van Ginneken, W. J. Niessen, J. B. A. Maintz, and
M. A. Viergever. Active shape model based segmentation of abdominal
aortic aneurysms in CTA images. In SPIE, volume 4684, pages 463-474,
2002.

M. de Bruijne, B. van Ginneken, W. J. Niessen, and M. A. Viergever.
Adapting active shape models for 3D segmentation of tubular structures
in medical images. In Proc. Information Processing in Medical Imaging,
volume 2732, pages 136-147. Springer, 2003.

E. K. Burke, P. I. Cowling, and R. Keuthen. New models and heuris-
tics for component placement in printed circuit board assembly. In Proc.
Information Intelligence and Systems, pages 133-140, 1999.

J. Cagan, D. Degentesh, and S. Yin. A simulated annealing-based algo-
rithm using hierarchical models for general three-dimensional component
layout. Computer Aided Design, 30(10):781-790, September 1998.

J. Cagan, K. Shimada, and S. Yin. A survey of computational approaches
to three-dimensional layout problems (submitted). Computer-Aided De-
stgn, 2001.



BIBLIOGRAPHY 181

[48]

M. I. Campbell, C. H. Amon, and J. Cagan. Optimal Three-Dimensional
placement of heat generating electronic component. Journal of Electronic
Packaging, 119(2):106-113, 1997.

J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright,
B. C. McCallum, and T. R. Evans. Reconstruction and representation of
3D objects with radial basis functions. In Proc. SIGGRAPH, pages 6776,
2001.

J. C. Carr, R. K. Beatson, B. C. McCallum, W. R. Fright, T. J. McLennan,
and T. J. Mitchell. Smooth surface reconstruction from noisy range data.
In Proc. ACM GRAPHITE, pages 119-126, 2003.

R. B. Cattel. The scree test for the number of factors. Mult. Behav. Res,
1:245-276, 1966.

A. Caunce and C. J. Taylor. Building 3D sulcal models using local geom-
etry. Medical Image Analysis, 5(1):69-80, 2001.

F. Cazals and M. Pouget. Estimating differential quantities using poly-
nomial fitting of osculating jets. Technical report, Institut National de
Recherche en Informatique et en Automatique, 2003.

M. Chasin. The acoustics of CIC hearing aids. In M. Chasin, editor, CIC
Handbook, pages 69-81. Singular Publishing Group, Inc., 1997.

M. Chasin. CIC Handbook. Singular Publishing Group, Inc., San Diego,
California, 1997.

C. Cherniak. Component placement optimization in the brain. Journal of
Neuroscience, 14:2418-2427, 1994.

H. Cohn and M. Fielding. Simulated annealing: searching for an opti-
mal temperature schedule. STAM Journal on Optimization, 9(3):779-802,
1999.

T. F. Cootes. Statistical models of appearance for computer vision. Tech-
nical report, Division of Imaging Science and Biomedical Engineering,
University of Manchester, March 2004.

T. F. Cootes. Timeline of developments in algorithms for finding corre-
spondences across sets of shapes and images. Technical report, Division of
Imaging Science and Biomedical Engineering, University of Manchester,
March 2004.

T. F. Cootes, C. Beeston, G. J. Edwards, and C. J. Taylor. A unified
framework for atlas matching using active appearance models. In Proc. In-
formation Processing in Medical Imaging, pages 322—-333. Springer-Verlag,
1999.



182

BIBLIOGRAPHY

[61]

[62]

T. F. Cootes, D. Cooper, C. J. Taylor, and J. Graham. Active shape
models - their training and application. Computer Vision and Image Un-
derstanding, 61(1):38-59, 1995.

T. F. Cootes, D. H. Cooper, C. J. Taylor, and J. Graham. A trainable
method of parametric shape description. Image and Vision Computing,
10:289-294, June 1992.

T. F. Cootes, G. Edwards, and C. J. Taylor. A comparative evaluation
of active appearance model algorithms. In Proc. British Machine Vision
Conf., volume 2, pages 680-689, 1998.

T. F. Cootes, G. J. Edwards, and C. J. Taylor. Active appearance models.
In Proc. European Conf. on Computer Vision, volume 2, pages 484—498.
Springer, 1998.

T. F. Cootes, G. J. Edwards, and C. J. Taylor. Comparing active shape
models with active appearance models. In Proc. British Machine Vision
Conf., pages 173-182, 1999.

T. F. Cootes and C. J. Taylor. Active shape models — ’smart snakes’. In
Proc. British Machine Vision Conf., pages 266275, 1992.

T. F. Cootes and C. J. Taylor. Combining point distribution models
with shape models based on finite element analysis. Image and Vision
Computing, 13(5):403-409, 1995.

T. F. Cootes and C. J. Taylor. Statistical models of appearance for medical
image analysis and computer vision. In Proc. SPIE Medical Imaging,
volume 1, pages 236-248. SPIE, 2001.

T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham. Training models
of shape from sets of examples. In British Machine Vision Conference:
Selected Papers 1992, pages 9-18, Berlin, 1992. Springer-Verlag.

T. F. Cootes, C. J. Taylor, and A. Lanitis. Active shape models: Eval-
uation of a multi-resolution method for improved image search. In Proc.
British Machine Vision Conf., pages 327-336, 1994.

T. F. Cootes, C. J. Taylor, and A. Lanitis. Multi-resolution search using
active shape models. In Proc. 12th Int. Conf. on Pattern Recognition,
volume 1, pages 610-612, Los Alamitos, USA, 1994.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms. MIT Press/McGraw-Hill, 1990.

R. H. Davies. Learning Shape: Optimal Models for Analysing Shape Vari-
ability. PhD thesis, University of Manchester, 2002.



BIBLIOGRAPHY 183

[74]

[75]

[85]

[86]

R. H. Davies, T. F. Cootes, and C. J. Taylor. A minimum description
length approach to statistical shape modelling. In Proc. Information
Processing in Medical Imaging, volume 2082, pages 50-63, 2001.

R. H. Davies, T. F. Cootes, C. J. Twining, and C. J. Taylor. An infor-
mation theoretic approach to statistical shape modelling. In Proc. British
Machine Vision Conference, pages 3—11, 2001.

R. H. Davies, C. J. Twining, T. F. Cootes, J. C. Waterton, and C. J.
Taylor. 3D statistical shape models using direct optimisation of description
length. In Proc. ECCYV, volume 2352, pages 3-20. Springer, 2002.

R. H. Davies, C. J. Twining, T. F. Cootes, J. C. Waterton, and C. J. Tay-
lor. A minimum description length approach to statistical shape modeling.
IEEE Transactions on Medical Imaging, 21(5):525-537, 2002.

J. Davison. Modelling the human ear. Master’s thesis, Department of
Computer Science, University of Sheffield, 2003.

H. Delingette. Modélisation, Déformation et Reconnaissance d’ijets
Tridimensionnels d I’Aide de Maillages Simplexes. PhD thesis, L’Ecole
Centrale de Paris, 1994.

E. W. Dijkstra. A note on two problems in connection with graphs. Nu-
merische Math., 1:269-271, 1959.

G. Djupesland and J. J. Zwislocki. Sound pressure distribution in the
outer ear. Scan. Audiol., 1(4):197-203, 1972.

M. P. do Carmo. Differential Geometry of Curves and Surfaces. Prentice-
Hall, Inc, Englewood Cliffs, New Jersey, 1976.

I. L. Dryden and K. V. Mardia. Statistical Shape Analysis. Wiley, Chich-
ester, 1997.

A. Dubb, B. Avants, R. Gur, and J. Gee. Shape characterization of the
corpus callosum in schizophrenia using template deformation. In Proc.
Medical Image Computing and Computer-Assisted Intervention, volume 2,
pages 381-388, 2002.

N. Duta, M. Sonka, and A. K. Jain. Learning shape models from exam-
ples using automatic shape clustering and procrustes analysis. In Proc.
Information Processing in Medical Imaging, pages 370-375, 1999.

G. J. Edwards, T. F. Cootes, and C. J. Taylor. Advances in active ap-
pearance models. In Proc. Int. Conf. on Computer Vision, pages 137142,
1999.



184

BIBLIOGRAPHY

[87]

[88]

[89]

D. W. Eggert, A. Lorusso, and R. B. Fisher. Estimating 3D rigid body
transformations: a comparison of four major algorithms. Mach. Vis. and
Applic., 9:272-290, 1997.

D. P. Egolf, D. K. Nelson, H. C. Howell III, and V. D. Larson. Quantifying
ear-canal geometry with multi computer-assisted tomographic scans. J.
Acoust. Soc. Am., 93(5):2809-2819, 1993.

J. Ehrhardt, H. Handels, B. Strathmann, T. Malina, W. Plétz, and S. J.
Poppl. Atlas-based recognition of anatomical structures and landmarks
to support the virtual three-dimensional planning of hip operations. In
Proc. of Medical Image Computing and Computer Assisted Intervention,
volume 2878, pages 17—24. Springer-Verlag, 2003.

H. Eiriksson. Shape represenation, alignment and decomposition. Master’s
thesis, Informatics and Mathematical Modelling, Technical University of
Denmark, Lyngby, 2001.

D. Eppstein. Asymptotic speed-ups in constructive solid geometry. Tech-
nical Report 92-87, Univ. of California, Irvine, Dept. of Information and
Computer Science, Irvine, CA, 92697-3425, USA, 1992.

A. Ericsson. Automatic shape modelling and applications in medical imag-
ing. Licentiate thesis, Centre for Mathematical Sciences, Lund University,
2004.

A. Ericsson and K. Astrom. Minimizing the description length using steep-
est descent. In Proc. British Machine Vision Conference, pages 93—-102,
2003.

J. Feldmar and N. Ayache. Rigid, affine and locally affine registration of
free-form surfaces. International Journal of Computer Vision, 18(2):99-
119, 1996.

J. Feldmar, J. Declerck, G. Malandain, and N. Ayache. FExtension of
the ICP algorithm to nonrigid intensity-based registration of 3D volumes.
Computer Vision and Image Understanding, 66(2):193-206, 1997.

R. Fisker. Making Deformable Template Models Operational. PhD thesis,
Department of Mathematical Modelling, Technical University of Denmark,
Lyngby, 2000.

P. T. Fletcher, S. Joshi, C. Lu, and S. Pizer. Gaussian distributions on
Lie groups and their application to statistical shape analysis. In Proc.
Information Processing in Medical Imaging, volume 2732 of LNCS, pages
450-462, 2003.



BIBLIOGRAPHY 185

[98]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

M. Fleute and S. Lavallee. Building a complete surface model from sparse
data using statistical shape models: application to computer assisted knee
surgery. In Proc. Medical Image Computing and Computer-Assisted In-
tervention, pages 879-887. Springer-Verlag, 1998.

J. Foley, A. van Dam, S. Feiner, and J. Hughes. Computer Graphics
Principles and Practice. Addison-Wesley, Reading, Massachusetts, 1990.

M. Forsyth. Shelling and offsetting bodies. In Proc. ACM Symposium on
Solid Modeling, page 373, 1995.

A. F. Frangi, D. Rueckert, J. A. Schnabel, and W. J. Niessen. Automatic
construction of multiple-object three-dimensional statistical shape models:
Application to cardiac modeling. IEEE Transactions on Medical Imaging,
21(9):1151-1166, 2002.

H. Fuchs, Z. M. Kedem, and B. F. Naylor. On visible surface generation by
a priori tree structures. In Proc. SIGGRAPH, volume 14, pages 124-133,
1980.

S. Gallot, D. Hulin, and J. Lafontaine. Riemannian Geometry. Springer-
Verlag, 2 edition, 1993.

H. Garcia. Peritympanic versus deep or "CIC” positioning. The Science
of Hearing. Philips Hearing Instruments, 1994.

H. Garcia and W. Staab. Solving challenges in deep canal fittings, part I.
The Hearing Review, 2(1):34-49, 1995.

D. Geman. Random fields and inverse problems in imaging. In Saint-Flour
lectures 1988, Lecture Notes in Mathematics, pages 113-193. Springer-
Verlag, 1990.

S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and
the Bayesian restoration of images. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 6(6):721-741, November 1984.

G. Gerig, M. Styner, D. Jones, D. Weinberger, and J. Lieberman. Shape
analysis of brain ventricles using SPHARM. In Proc. Workshop on Math-
ematical Methods in Biomedical Image Analysis, pages 171-178, 2001.

G. Gerig, M. Styner, M. E. Shenton, and J. A. Lieberman. Shape verus
size: Improved understanding of the morphology of brain structures. In
Proc. MICCAI volume 2208 of LNCS, pages 24-32, 2001.

B. van Ginneken, A. F. Frangi, J. J. Staal, B. M. Ter Haar Romeny, and
M. A. Viergever. Active shape model segmentation with optimal features.
IEEE Transactions on Medical Imaging, 21(8):924-933, 2002.



186

BIBLIOGRAPHY

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

C. Goodall. Procrustes methods in the statistical analysis of shape. Jour.
Royal Statistical Society, Series B, 53:285-339, 1991.

S. Gottschalk, M. C. Lin, and D. Manocha. OBBTree: A hierarchical
structure for rapid interference detection. Computer Graphics, 30(Annual
Conference Series):171-180, 1996.

J. C. Gower. Generalized Procrustes analysis. Psychometrika, 40:33-51,
1975.

S. Granger and X. Pennec. Multi-scale EM-ICP: a fast and robust ap-
proach for surface registration. In Proc. European Conference on Com-
puter Vision. Part IV, volume 2353, pages 418-432. Springer-Verlag, 2002.

P. Graversen. 3-Dimensional shape modelling. With application to hu-
man ear canals. Master’s thesis, Informatics and Mathematical Modelling,
Technical University of Denmark, DTU, Kgs. Lyngby, 2004.

M. J. Grenness, J. Osborn, and W. L. Weller. Mapping ear canal
movement using area-based surface matching. J. Accoust. Soc. Am.,
111(2):960-971, 2002.

G. I. Gudmundsen. Physical options for custom hearing aids. Seminars
in Hearing, 24(4):313-321, 2003.

A. Gueziec. ”Meshsweeper”: Dynamic point-to-polygonal mesh distance
and applications. IEFE Transactions on Visualization and Computer
Graphics, 7(1):47-60, 2001.

S. Haker, S. Angenent, A. Tannenbaum, and R. Kikinis. Nondistorting
flattening maps and the 3D visualization of colon CT images. IEEE Trans.
on Medical Imaging, 19(7):665-670, July 2000.

S. Haker, S. Angenent, A. Tannenbaum, R. Kikinis, G. Sapiro, and
M. Halle. Conformal surface parameterization for texture mapping. IFEFE
Trans. on Visualization and Computer Graphics, 6(2):1-9, April-June
2000.

P. Hammond, T. J. Hutton, J. A. Allanson, A. Shaw, and M. A. Patton.
3D digital stereophotogrammetric analysis of Noonan syndrome. In Proc.
British Human Genetics Conference, 2002.

P. Hammond, T. J. Hutton, J. A. Allanson, and A. C. M. Smith. The
3D face of Smith-Magenis syndrome (SMS): a study using dense surface
models. In Proc. European Human Genetics Conference, 2003.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical
Learning. Springer-Verlag, 2001.



BIBLIOGRAPHY 187

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

M. Held, J. T. Klosowski, and J. S. B. Mitchell. Collision detection for fly-
throughs in virtual environments. In Proc. symposium on Computational
geometry, pages 513-514, 1996.

K. B. Hilger. Ezploratory Analysis of Multivariate Data. PhD thesis, In-
formatics and Mathematical Modelling, Technical University of Denmark,
DTU, Richard Petersens Plads, Building 321, DK-2800 Kgs. Lyngby, 2001.

K. B. Hilger, R. Larsen, and M. Wrobel. Growth modeling of human
mandibles using non-Euclidean metrics. Medical Image Analysis, 7:425—
433, 2003.

K. B. Hilger, R. R. Paulsen, and R. Larsen. Markov random field restora-
tion of point correspondences for active shape modelling. In Proc. SPIE -
Medical Imaging, 2004.

A. Hill, A. D. Brett, and C. J. Taylor. Automatic landmark identification
using a new method of non-rigid correspondence. In Proc. Information
Processing in Medical Imaging, pages 483-488, 1997.

A. Hill, C. J. Taylor, and A. D. Brett. A framework for automatic land-
mark identification using a new method of nonrigid correspondence. IEFEE
Transactions on Pattern Analysis and Machine Intelligence, 22(3):241-
251, 2000.

D. L. G. Hill, P. G. Batchelor, M. Holden, and D. J. Hawkes. Medical
image registration. Physics in Medicine and Biology, 46(3):1-45, 2001.

H. Hoppe. Surface reconstruction from unorganized points. PhD thesis,
University of Washington, Department of Computer Science and Engi-
neering, June 1994.

E. Hopper and B. Turton. Application of genetic algorithms to packing
problems — a review. In P. K. Chawdry and R. K. Kant, editors, Proc.
On-line World Conference on Soft Computing in Engineering Design and
Manufacturing, pages 279-288. Springer Verlag, 1997.

B. K. P. Horn. Closed form solution of absolute orientation using unit
quaternions. Journal of the Optical Society A, 4(4):629-642, 1987.

B. K. P. Horn, H. M. Hilden, and S. Negahdaripour. Closed-form solution
of absolute orientation using orthonormal matrices. Journal of the Optical
Society of America A (Optics and Image Science), 5(7):1127-1135, 1988.

J. L. Horn. A rationale and test for the number of factors in factor analysis.
Psychometrika, 30:179-186, 1965.



188

BIBLIOGRAPHY

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

P. M. Hubbard. Constructive solid geometry for triangulated polyhedra.
Technical Report CS-90-07, Brown University, Dept. of Computer Science,
Providence, Rhode Island 02912, September 1 1990.

P. M. Hubbard. Collision detection for interactive graphics applications.
IEEE Trans. Visualization and Computer Graphics, 1(3):218-230, Sep-
tember 1995.

P. M. Hubbard. Approximating polyhedra with spheres for time-critical
collision detection. ACM Transactions on Graphics, 15(3):179-210, July
1996.

P. M. Hubbard. Improving accuracy in a robust algorithm for three-
Dimensional Voronoi diagrams. Journal of Graphics Tools, 1(1):33-45,
1996.

T. J. R. Hughes. The Finite Element Method. Dover Publications, Inc.,
New York, USA, 2000.

E. G. Huot, H. M. Yahia, I. Cohen, and I. Herlin. Surface matching with
large deformations and arbitrary topology: A geodesic distance evolution
scheme on a 3-manifold. In Proc. ECCV (1), pages 769-783, 2000.

M. K. Hurdal, P. L. Bowers, K. Stephenson, D. W. L. Sumners, K. Rehm,
K. Schaper, and D. A. Rottenberg. Quasi-conformally flat mapping the
human cerebellum. In Proc. Medical Image Computing and Computer-
Assisted Intervention, LNCS, pages 279-286. Springer, 1999.

T. J. Hutton, B. F. Buxton, and P. Hammond. Dense surface point dis-
tribution models of the human face. In Proc. Workshop on Mathematical
Methods in Biomedical Image Analysis, pages 153—160, 2001.

T. J. Hutton, B. F. Buxton, and P. Hammond. Estimating average growth
trajectories in shape-space using kernel smoothing. In Proc. Int. Workshop
on Growth and Motion in 8D Medical Images, European Conference on
Computer Vision, pages 1-7, 2002.

T. J. Hutton, B. F. Buxton, and P. Hammond. Automated registration
of 3D faces using dense surface models. In Proc. British Machine Vision
Conference, pages 439-448, 2003.

T. J. Hutton, B. F. Buxton, P. Hammond, and H. W. W. Potts. Estimating
average growth trajectories in shape-space using kernel smoothing. IEFE
Transactions on Medical Imaging, 22(6):747-753, 2003.

I. Tkonen, W. E. Biles, A. K., J. C. Wissel, and R. K. Ragade. Genetic
Algorithm for Packing Three-Dimensional Non-Convex Objects Having
Cavities and Holes. In Proc. Int. Conf. on Genetic Algortithms, pages
591-598, East Lansing, Michigan, 1997. Morgan Kaufmann Publishers.



BIBLIOGRAPHY 189

[148]

[149]
[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

Sonic Innovations. Conforma 2 se. redefining what a hearing aid is and
who wears them, 2001.

J. E. Jackson. A User’s guide to Principal Components. Wiley, 1991.

A. K. Jain, Y. Zhong, and M.-P. Dubuisson-Jolly. Deformable template
models: A review. Signal Processing, 71(2):109-129, 1998.

A. K. Jain., Y. Zhong, and S. Lakshmanan. Object matching using de-
formable templates. IEEE Trans. on Pattern Analysis and Machine In-
telligence, 18(3):267-278, 1996.

P. A. Johansen. Measurement of the human ear canal. Acustica, 33:349—
351, 1975.

C. E. Johnson and J. L. Danhauer. CIC instruments: Cosmetic issues.
In M. Chasin, editor, CIC' Handbook, pages 151-168. Singular Publishing
Group, Inc., 1997.

R. A. Johnson and D. W. Wichern. Applied Multivariate Statistical Analy-
sis. Prentice-Hall, 1982.

S. Joshi, S. M. Pizer, P. T. Fletcher, A. Thall, and G. Tracton. Multi-scale
3-D deformable model segmentation based on medial description. In Proc.
Information Processing in Medical Imaging, volume 2082 of LNCS, pages
64-77, 2001.

T. Kanai, H. Suzuki, and F. Kimura. Metamorphosis of arbitrary trian-
gular meshes. IEEE Computer Graphics and Applications, 20(2):62-75,
2000.

M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contour models.
Int. Jour. of Computer Vision, 8(2):321-331, 1988.

M. R. Kaus, V. Pekar, C. Lorenz, R. Truyen, S. Lobregt, and J. Weese. Au-
tomated 3-D PDM construction from segmented images using deformable
models. IEEE Transactions on Medical Imaging, 22(8):1005-1013, 2003.

A. Kelemen, G. Székely, and G. Gerig. Elastic model-based segmentation
of 3D neuroradiological sets. IEEE Trans. Med. Imaging, 18:828-839,
1999.

A. R. Kildeby. Building optimal 3D shape models. Master’s thesis, In-
formatics and Mathematical Modelling, Technical University of Denmark,
DTU, 2002.

M. C. Killion, L. A. Wilber, and G. I. Gudmundsen. Zwislocki was right...a
potential solution for the 'hollow voice’ problem (the amplified occlusion
effect) with deeply sealed earmolds. Hearing Instruments, 39(1):14-18,
1988.



190

BIBLIOGRAPHY

[162]

[163]

[164]

[165]

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

Y. J. Kim, M. A. Otaduy, M. C. Lin, and D. Manocha. Fast penetra-
tion depth computation for physically-based animation. In Proc. ACM
Symposium on Computer Animation, 2002.

R. Kimmel and J. A. Sethian. Computing geodesic paths on manifolds.
Proc. of the National Academy of Sciences of the USA - Paper Edition,
95(15):8431-8435, 1998.

S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi. Optimization by
simulated annealing. Science, 220(4598):671-680, May 1983.

J. T. Klosowski. Efficient Collision Detection for Interactive 3D Graphics
and Virtual Environments. PhD thesis, State University of New York at
Stony Brook, May 1998.

J. T. Klosowski, M. Held, J. S. B. Mitchell, H. Sowizral, and K. Zikan.
Real-time collision detection for motion simulation within complex envi-
ronments. In Proc. SIGGRAPH, 1996.

J. T. Klosowski, M. Held, J. S. B. Mitchell, H. Sowizral, and K. Zikan.
Efficient collision detection using bounding volume hierarchies of k-DOPs.
IEEE Transactions on Visualization and Computer Graphics, 4(1), 1998.

M. Kohnen, A. H. Mahnken, J. Kesten, E. Koeppel, R. W. Gunther,
and B. B. Wein. A three dimensional knowledge based surface model for
segmentation of organic structures. In Proc. SPIE. Part I, volume 4684,
pages 485-494, 2002.

A. C. W. Kotcheff and C. J. Taylor. Automatic construction of eigenshape
models by direct optimization. Medical Image Analysis, 2(4):303-314,
1998.

B. Krebs, P. Sieverding, and B. Korn. A fuzzy ICP algorithm for 3D
free-form object recognition. Proc. International Conference on Pattern
Recognition. Part 1, pages 539-543, 1996.

D. H. Laidlaw, W. B. Trumbore, and J. F. Hughes. Constructive solid
geometry for polyhedral objects. In Proc. Siggraph, pages 161-170, 1986.

J. Lam and J-M. Delosme. Performance of a new annealing schedule. In
Proc. ACM/IEEFE Design Automation Conference, pages 306-311, 1988.

R. Larsen. Estimation of visual motion in image sequences. PhD thesis,
Department of Mathematical Modelling, Technical University of Denmark,
1994.

R. Larsen. Shape modelling using maximum autocorrelation factors. In
Proc. of the Scandinavian Image Analysis Conference, pages 98-103, 2001.



BIBLIOGRAPHY 191

[175]

[176]

[177]

[178]

[179)]

[180]

[181]

[182]

[183]

[184]

[185]

[186]

R. Larsen. Decomposition using maximum autocorrelation factors. Jour-
nal of Chemometrics, 16(8-10):427-435, 2002.

R. Larsen, H. Eiriksson, and M. B. Stegmann. Q-MAF shape decompo-
sition. In Proc. Medical Image Computing and Computer-Assisted Inter-
vention, volume 2208 of LNCS, pages 837-844. Springer, 2001.

R. Larsen and K. B. Hilger. Probabilistic generative modelling. In Proc.
Scandinavian Conference on Image Analysis, volume 2749 of Lecture Notes
in Computer Science, pages 861-868. Springer, 2003.

R. Larsen and K. B. Hilger. Statistical 2D and 3D shape analysis using
non-Euclidean metrics. Medical Image Analysis, 7(4):417-423, 2003.

R. Larsen, K. B. Hilger, K. Skoglund, S. Darkner, R. R. Paulsen, M. B.
Stegmann, B. Lading, H. Thodberg, and H. Eiriksson. Some issues of bio-
logical shape modelling with applications. In Proc. Scandinavian Confer-
ence on Image Analysis, volume 2759 of LNCS, pages 509-519. Springer,
2003.

R. Larsen, K. B. Hilger, and M. C. Wrobel. Statistical 2D and 3D shape
analysis using non-Euclidean metrics. In Proceedings of Medical Image
Computing and Computer-Assisted Intervention, volume 2489, pages 428—
435. Springer-Verlag, 2002.

M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira,
M. Ginzton, S. Anderson, J. Davis, J. Ginsberg, J. Shade, and D. Fulk.
The digital michelangelo project: 3D scanning of large statues. In Proc.
SIGGRAPH, pages 131-144, 2000.

S. .Z. Li. Markov Random Field Modeling in Image Analysis. Springer-
Verlag, 2001.

W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution
3D surface construction algorithm. Computer Graphics (SIGGRAPH ’87
Proceedings), 21(4):163-169, July 1987.

C. Lorenz and N. Krahnstover. Generation of point-based 3D statisti-
cal shape models for anatomical objects. Computer Vision and Image
Understanding, 77(2):175-191, 2000.

H. Luo and T. O’Donnell. A 3D statistical shape model for the left ven-
tricle of the heart. In Proc. Medical Image Computing and Computer-
Assisted Intervention, volume 2208 of Lecture Notes in Computer Science.
Springer, 2001.

J. B. A. Maintz and M. A. Viergever. A survey of medical image registra-
tion. Medical Image Analysis, 2(1):1-36, 1998.



192

BIBLIOGRAPHY

[187]

188

[189]

[190]

[191]

[192]

(193]

[194]

[195]

[196]

[197]

[198]
[199]

200]

T. Mclnerney and D. Terzopoulos. Deformable models in medical image
analysis: a survey. Medical Image Analysis, 2(1):91-108, 1996.

D. Meagher. Geometric modeling using octree encoding. Computer Graph-
ics and Image Processing, 19(2):129-147, 1982.

V. Milenkovic. Rotational polygon containment and minimum enclosure
using only robust 2D constructions. Computational Geometry, 13(1):3-19,
1999.

B. Moore, M. Stone, and J. Alcantara. Technical review of the songbird
disposable hearing aid. Technical report, University of Cambridge, 2001.

H. G. Mueller. CIC hearing aids: What is their impact on the occlusion
effect? The Hearing Journal, 47(11):29-35, 1994.

D. Nain. An interactive virtual endoscopy tool with automatic path gen-
eration. Master’s thesis, MIT Al Lab, May 2002.

D. Nain, S. Haker, R. Kikinis, and E. Grimson. An interactive virtual
endoscopy tool. In Proceedings of Interactive Medical Image Visualization
and Analysis at MICCAI, 2001.

M. Nielsen, P. Johansen, A. D. Jackson, and B. Lautrup. Brownian warps:
A least committed prior for non-rigid registration. In Medical Image Com-
puting and Computer-Assisted Intervention, volume 2489, pages 557—-564.
Springer, 2002.

R. J. Oliveira. The active ear canal. J. Am. Acad. Audiol., 8:401-410,
1997.

R. J. Oliveira and G. Hoeker. Ear canal anatomy and activity. Seminars
in Hearing, 24(4):265-275, 2003.

T. Osogami. Approaches to 3D free-form cutting and packing problems
and their applications: A survey.

J. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley, May 1994.

R. R. Paulsen and K. B. Hilger. Shape modelling using Markov random
field restoration of point correspondences. In Proc. Information Processing
in Medical Imaging, volume 2732 of Lecture Notes in Computer Science,
pages 1-12. Springer-Verlag, 2003.

R. R. Paulsen, R. Larsen, B. K. Ersbgll, C. Nielsen, and S. Laugesen. Test-
ing for gender related size and shape differences of the human ear canal
using statistical methods. In Proc. Eleventh International Workshop on
Matrices and Statistics, Informatics and Mathematical Modelling, Tech-
nical University of Denmark, 2002.



BIBLIOGRAPHY 193

[201]

[202]

[203]

[204]

[205]

[206]

[207]

[208]

209

[210]
[211]

[212]

[213]

R. R. Paulsen, R. Larsen, S. Laugesen, C. Nielsen, and B. K. Ersbgll.
Building and testing a statistical shape model of the human ear canal. In
Proc. Medical Image Computing and Computer-Assisted Intervention, vol-
ume 2489 of Lecture Notes in Computer Science, pages 373-380. Springer-
Verlag, 2002.

R. R. Paulsen, C. Nielsen, S. Laugesen, and R. Larsen. Using a shape
model in the design of hearing aids. In Proc. SPIE - Medical Imaging,
2004.

B. A. Payne and A. W. Toga. Distance field manipulation of surface
models. Computer Graphics and Applications, 12(1), 1992.

A. Perrie and H. Arndt. Engineering issues with CIC hearing aids : One
manufacturer’s view. In M. Chasin, editor, CIC Handbook, pages 137-149.
Singular Publishing Group, Inc., 1997.

C. Z. Pirzanski. Diminishing the occlusion effect: Clinician/manufacturer-
related factors. Hearing Journal, 51(4):66-78, 1998.

C. Z. Pirzanski. Ear impressions for the new laser shell technology. Sem-
inars in Hearing, 24(4):323-332, 2003.

S. M. Pizer, A. Thall, and D. Chen. M-Reps: A new object representation
for graphics. Technical report, University of North Carolina at Chapel Hill,
1999.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Nu-
merical Recipes: The Art of Scientific Computing. Cambridge University
Press, Cambridge (UK) and New York, 2nd edition, 1992.

M. Quicken, C. Brechbiihler, J. Hug, H. Blattmann, and G. Székely. Pa-
rameterization of closed surfaces for parametric surface description. In
Proc. Computer Vision and Pattern Recognition, pages 354—360, 2000.

Raindrop Geomagic. eShell, 2002.

M. Rogers and J. Graham. Robust active shape model search. In Proc. Fu-
ropean Conference on Computer Vision. Part IV, volume 2353 of LNCS,
pages 517-530. Springer-Verlag, 2002.

S. Romdhani, S. Gong, and A. Psarrou. A multi-view nonlinear active
shape model using kernel pca. In Proc. British Machine Vision Confer-
ence. Part 2, pages 483-492, 1999.

D. Rueckert, A. F. Frangi, and J. A. Schnabel. Automatic construction of
3-D statistical deformation models of the brain using nonrigid registration.
IEEE Transactions on Medical Imaging, 22(8):1014-1025, 2003.



194

BIBLIOGRAPHY

[214]

[215]

[216]

[217]

[218]

[219]

[220]

[221]

[222]

[223]

[224]

[225]

[226]

S. Rusinkiewicz and M. Levoy. Efficient variants of the ICP algorithm.
Proc. Int. Conf. 3-D Digital Imaging and Modeling, pages 145-152, 2001.

S. Sachdev, C. J. J. Paredis, S. K. Gupta, and S. N. Talukdar. 3D spa-
tial layouts using a-teams. In Proc. ASMFE Design Engineering Technical
Conference. ASME, September 1998.

Y. Sakurai, H. Suzuki, T. Kanai, and F. Kimura. Shelling operation
for triangular mesh by vertex offsetting. Journal of the Japan Society of
Precision Engineering/Seimitsu Kogaku Kaishi, 64(6):835-839, June 1998.

F. Salvinelli, M. Maurizi, S. Calamita, L. D’Alatari, A. Capelli, and
A. Carbone. The external ear and the tympanic membrane. Scan. Adiol.,
20:253-256, 1991.

P. T. Sander and S. W. Zucker. Inferring surface trace and differential
structure from 3-D images. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 12(9):833-854, 1990.

W. J. Schroeder, K. Martin, and W. E. Lorensen. The Visualization
Toolkit: An Object-Oriented Approach to 3D Graphics. Prentice Hall,
December 1997.

W. J. Schroeder, J. A. Zarge, and W. E. Lorensen. Decimation of triangle
meshes. Computer Graphics, 26(2):65-70, 1992.

M. Sermesant, C. Forest, X. Pennec, H. Delingette, and N. Ayache. De-
formable biomechanical models: Application to 4d cardiac image analysis.
Medical Image Analysis, 7(4):475-488, 2003.

J. A. Sethian. Level Set Methods and Fast Marching Methods: FEvolv-
ing Interfaces in Computational Geometry, Fluid Mechanics, Computer
Vision, and Materials Science. Cambridge University Press, 1999.

J. A. Sethian and A. Vladimirsky. Fast methods for the Eikonal and
related Hamilton-Jacobi equations on unstructured meshes. Proc. of the
National Academy of Sciences of the USA, 97(11):5699-5703, 2000.

D. Sheehy, C. Armstrong, and D. Robinson. Shape description by medial
axis construction. IEFEE Transactions on Visualization and Computer
Graphics, 2(1):62-72, 1996.

K. Shimada, J. Cagan, and S. Yin. Geometric representations for intersec-
tion detection in intelligent packaging. Technical report, Carnegie Mellon
University, 1998.

K. Skoglund. Three-Dimensional face modelling and analysis. Master’s
thesis, Informatics and Mathematical Modelling, Technical University of
Denmark, 2003.



BIBLIOGRAPHY 195

[227]

[228]

[229]

[230]

[231]

[232]

[233]

[234]

[235]

[236]

[237]

[238]

[239]

G. Smelt, M. Hawke, and D. Proops. Anatomy of the external ear canal:
a new technique for making impressions. The Journal of Otolaryngology,
17(5):249-253, 1988.

P. D. Sozou, T. F. Cootes, C. J. Taylor, and E. C. Di Mauro. Non-linear
generalization of point distribution models using polynomial regression.
Image and Vision Computing, 13(5):451-457, 1995.

W. J. Staab. Deep canal hearing aids. In M. Chasin, editor, CIC' Handbook,
pages 1-30. Singular Publishing Group, Inc., 1997.

L. H. Staib and J. S. Duncan. Model-based deformable surface finding for
medical images. IEEE Trans. Medical Imaging, 15(4):720-731, 1996.

M. B. Stegmann. Active appearance models. theory, extensions and cases.
Master’s thesis, Informatics and Mathematical Modelling. Technical Uni-
versity of Denmark, 2000.

M. B. Stegmann. Generative Interpretation of Medical Images. PhD the-
sis, Informatics and Mathematical Modelling. Technical University of Den-
mark, 2004.

M. B. Stegmann, B. K. Ersbgll, and R. Larsen. FAME - a flexible
appearance modelling environment. IEEE Trans. on Medical Imaging,
22(10):1319-1331, 2003.

M. R. Stinson and B. W. Lawton. Specification of the geometry of the
human ear canal for the prediction of sound-pressure level distribution. J.
Acoust. Soc. Am., 85(6):2492-2503, June 1989.

M. Styner and G. Gerig. Medial models incorporating object variability for
3D shape analysis. In Proc. Information Processing in Medical Imaging,
volume 2082 of LNCS, pages 502-516, 2001.

M. Styner, G. Gerig, J. Lieberman, D. Jones, and D. Weinberger. Statisti-
cal shape analysis of neuroanatomical structures based on medial models.
Medical Image Analysis, 7(3):207-220, 2003.

V. A. Sujan and S. Dubowsky. A model-free algorithm for the packing
of highly irregular shaped objects: with application to ¢z semiconductor
manufacture.

P. Switzer. Min/max autocorrelation factors for multivariate spatial im-
agery. In L. Billard, editor, Computer Science and Statistics, pages 13—-16.
Elsevier Science Publishers B.V. (North Holland), 1985.

S. Szykman, J. Cagan, and P. Weisser. An integrated approach to opti-
mal three dimensional layout and routing. ASME Journal of Mechanical
Design, 120(3):510-512, January 1999.



196

BIBLIOGRAPHY

[240]

[241]

[242]

[243]

[244]

[245]

[246]

[247]

[248]

[249]

[250]

[251]

[252]

C-K. Tang and G. Medioni. Curvature-augmented tensor voting for shape
inference from noisy 3D data. IFEE Transactions on Pattern Analysis
and Machine Intelligence, 24(6):858-864, 2002.

G. Taubin. Estimating the tensor of curvature of a surface from a polyhe-
dral approximation. In Proc. Int. Conf. Computer Vision, pages 902-907,
1995.

J-P. Thirion. The extremal mesh and the understanding of 3D surfaces.
International Journal of Computer Vision, 19(2):115-128, 1996.

H. H. Thodberg. Minimum description length shape and appearance mod-
els. In Proc. Information Processing in Medical Imaging, volume 2732 of
Lecture Notes In Computer Science. Springer, 2003.

H. H. Thodberg and H. Olafsdottir. Adding curvature to minimum de-
scription length shape models. In Proc. British Machine Vision Confer-
ence, 2003.

H. H. Thodberg and A. Rosholm. Application of the active shape model
in a commercial medical device for bone densitometry. Image and Vision
Computing, 21(13-14):1155-1161, 2003.

D. W. Thompson. On Growth and Form. Cambridge University Press,
Cambridge, 1917.

M. Thompson and A. W. Toga. A surface-based technique for warping
Three-Dimensional images of the brain. IEEE Transactions on Medical
Imaging, 15(4):402-417, August 1996.

R. R. V. Vidal. Applied simulated annealing, volume 396. Springer Verlag,
Berlin, 1993.

T. C. Walden, B. E. Walden, J. A. Cook, and D. A. Preves. Fixed vs. cus-
tom prescriptions for precipitous hearing loss. In Proc. Annual Convention
of the American Academy of Audiology, April 2001.

M. W. Walker, L. Shao, and R. A. Volz. Estimating 3-D location para-
meters using dual number quaternions. CVGIP: Image Understanding,
54(3):358-367, 1991.

Y. Wang, B. S. Peterson, and L. H. Staib. Shape-based 3D surface cor-
respondance using geodesics and local geometry. Computer Vision and
Pattern Recognition, 2:644-651, June 2000.

B. Welch. Practical Programming in Tcl and Tk. 3rd Ed. Prentice Hall,
1999.



BIBLIOGRAPHY 197

[253]

[254]
[255]
[256]

[257]

[258]

[259]

260]

[261]

[262]

[263]

G. Winkler. Image Analysis, Random Fields and Markov Chain Monte
Carlo Methods - A Mathematical Introduction, volume 27 of Applications
of Mathematics. Springer-Verlag, 2 edition, 2003.

www.3Shape.com. Shelldesigner, 2003.
www.damvig.com. Rapid prototyping, 2003.

H. Yahia, E. Huot, I. Herlin, and I. Cohen. Geodesic distance evolution of
surfaces: A new method for matching surfaces. In Proc. CVPR (1), pages
1663-1668, 2000.

S. M. Yamany and A. A. Farag. Free-form surface registration using
surface signatures. In Proc. ICCV (2), pages 1098-1104, 1999.

P. Yiu. The uses of homogeneous barycentric coordinates in plane Euclid-
ean geometry. International Journal of Mathematical Education in Science
and Technology, 31(4):569-578, July 2000.

W. A. Yost and D. W. Nielsen. Fundamentals of hearing - an introduction.
Holt, Rinehart and Winston, 1977.

P. Yushkevich, S. M. Pizer, S. Joshi, and J. S. Marron. Intuitive, localized
analysis of shape variability. In Proc. Information Processing in Medical
Imaging, volume 2082 of LNCS, pages 402-408, 2001.

J. Zemplenyi, S. Gilman, and D. Dirks. Optical method for measurement
of ear canal length. J. Acoust. Soc. Am., 78(4):2146-2148, 1985.

7. Zhang. Iterative point matching for registration of free-form curves and
surfaces. International Journal of Computer Vision, 13(2):119-152, 1994.

H-K. Zhao, S. Osher, and R. Fedkiw. Fast surface reconstruction using
the level set method. In Proc. IEEE Workshop on Variational and Level
Set Methods in Computer Vision, 2003.



	Preface
	Acknowledgements
	Abstract
	Resumé
	Papers included in the thesis
	Introduction
	Objectives
	Thesis Overview
	Nomenclature

	Background
	The Human Ear Canal
	Hearing Aids
	The Traditional CIC Hearing Aid Production
	The Future of CIC Hearing Aid Production
	Discussion

	I Statistical Shape Analysis of the Human Ear Canal
	Data
	Surface Reconstruction

	Shape Modelling
	Shape Models
	Building a Shape Model
	Evaluating the Quality of a Shape Model
	Discussion

	Surface Correspondence
	Pairwise Methods
	Groupwise Methods
	Discussion


	II Automated Design of CIC Hearing Aids
	Collision Detection, Path Planning, and Offset Surfaces
	Union of Balls and the Medial Axis Transform
	Collision Detection
	Path Planning
	Offset Surfaces and Shelling
	Discussion

	Component Placement
	A Component Placement Framework
	Hearing Aid Component Placement
	Discussion

	Other Applications
	A One-Size-Fits-Most Shell
	Checking Insertability
	Classification of Hearing Aid Usability
	Discussion


	III Conclusion
	Discussion and Conclusion
	Contributions
	Discussion
	Conclusion

	Building and Testing a Statistical Shape Model of the Human Ear Canal
	Introduction
	Method
	Results
	Summary and Conclusions

	Shape Modelling Using Markov Random Field Restoration of Point Correspondences
	Introduction
	Methods
	Results
	Summary and Conclusions

	Non-Rigid Registration of 3D Surfaces using Markov Random Field Regularisation
	Introduction
	Related Work
	Markov Random Field Regularisation of Correspondences
	Implementation
	Results
	Conclusion

	Using a Shape Model in the Design of Hearing Aids
	Introduction
	Method
	Results
	Summary and Conclusions

	Software
	IMM Surface Annotation Toolkit
	Faceplate Placement Toolkit
	Faceplate Placer
	3D Model Viewer
	Shape Model Viewer
	Markov Random Field Visual Interface
	VTK classes



