
Spatial Analysis of BioAmbients ?

Hanne Riis Nielson, Flemming Nielson, and Henrik Pilegaard

Technical University of Denmark
{riis,nielson,hepi}@imm.dtu.dk

Abstract. Programming language technology can contribute to the de-
velopment and understanding of Systems Biology by providing formal
calculi for specifying and analysing the dynamic behaviour of biological
systems. Our focus is on BioAmbients, a variation of the ambient cal-
culi developed for modelling mobility in computer systems. We present
a static analysis for capturing the spatial structure of biological systems
and we illustrate it on a few examples.

1 Introduction and Motivation

Systems biology is an approach to studying biological phenomena that is based
on a high level view of biological systems. The main focus is not the structure of
biological components but rather the dynamics of these components. This poses
a challenge for computer science: can programming language technology be used
to model and analyse not only the structure of biological processes but also their
evolution?

Pioneering work by Shapiro et al [15] demonstrated how biological processes
could be specified in the π-calculus [7]; the formalism showed its strength at
the molecular and biochemical level but it was less successful at the higher
abstraction levels where compartments play a central role. Here, on the other
hand, a version of the Ambient Calculus [3], called BioAmbients [13, 14], shows
promise as the hierarchical structure of the ambients is very similar to that of
compartments; the main difference between the two calculi is in the choice of
the primitives for modelling the interaction between ambients or compartments.
Surely biological systems are very complex and the scope for developing calculi
of computation that capture various aspects of these systems is endless; recent
work includes [2, 5, 8, 12].

The main goal, of course, is to capture the behaviour of biological systems in
a faithful manner. Over the years biologists have collected observations about
biological systems in large databases and it is important to investigate to what
? This research has been supported by the LoST project (number 21-02-0507) funded

the Danish Natural Science Research Council.

extent our models can explain these data in a satisfactory way. It turns out that
many of the observations collected by the biologists concern spatial properties
(as opposed to temporal properties) and this is where static analysis — and the
present paper — gets into the picture.

Overview of the paper. In Section 2 we present the syntax and semantics of
BioAmbients. The spatial analysis is developed in two stages: First a compati-
bility analysis is developed in Section 3; it computes an over-approximation of
the possible interactions within the system of interest. This information is then
used in the spatial analysis presented in Section 4; this analysis contains a novel
treatment of recursion and a new technique for reducing the space complexity of
the analysis. Finally, Section 5 illustrates our approach on a few examples and
contains our concluding remarks.

2 BioAmbients

BioAmbients [13, 14] differ from Mobile Ambients [3] and its siblings Safe Am-
bients [6], Boxed Ambients [1] and Discretionary Ambients [11] in a number of
ways. The most important difference is that the names (or identities) of the
ambients do not control the interaction between ambients, but rather names
(of channels) serve that purpose. BioAmbients follow the approach of safe and
discretionary ambients and specify interactions by matching capabilities and
co-capabilities; the communication primitives have some reminiscents of boxed
ambients in that communication can occur across ambient boundaries but it is
based on channels as in the π-calculus.

BioAmbients deviate from the other ambient calculi in having a non-deterministic
choice operation in addition to the construct for parallelism (just as the π-
calculus [7]). The pioneering development presented in [13, 14] observes the need
to use a general recursion construct in order to faithfully model biological systems
but the theoretical development is only performed for the classical replication
construct. To be able to analyse such examples we shall therefore study a ver-
sion of BioAmbients with a general recursion operator and, as we shall see in
later sections, this poses some interesting technical challenges for the theoretical
properties of the analysis.

The syntax of BioAmbients is given in Table 1; here we write P for processes
and M for capabilities. Each ambient has an identity µ ∈ Ambient and each
capability has a label ` ∈ Lab; these annotations have no semantic significance
but are useful as “pointers” into the process and also serve a rôle in the analysis.
(We shall not require that identities or labels are unique.) Furthermore, each
name has a canonical name bnc ∈ Name and we shall demand that alpha-
renaming preserves the canonical name; consequently it will be the canonical
name rather than the name that will be recorded in the analysis. For the sake of
simplicity, we shall assume that a subset C ⊆ Name of the canonical names is

P ::= 0 inactive process
| (n)P binding box for the name n
| [P]µ ambient P with the identity µ

| M `.P prefixing with the capability M labelled `
| P | P ′ parallel processes
| P + P ′ non-deterministic (external) choice
| rec X. P recursive process (X = P)
| X process identifier

M ::= enter n | accept n enter movement
| exit n | expel n exit movement
| merge– n | merge+ n merge movement
| n!{m} | n?{p} local communication
| n !{m} | n ?̂{p} communication to child
| n !̂{m} | n ?{p} communication to parent
| n#!{m} | n#?{p} communication between siblings

Table 1. Syntax of processes P and capabilities M .

reserved for constants and below we shall require that names introduced by (n)P
satisfy bnc ∈ C. The capabilities M are based on names and hence we shall write
bMc ∈ Cap for the corresponding canonical capability obtained by replacing the
names with the corresponding canonical names. The input capabilities (n?{p},
etc.) introduce new names p acting as placeholders (or variables); below we
shall require that bpc ∈ V where V = Name \ C. Finally, processes may be
recursively defined using the construct rec X. P and to simplify the development
we shall require that X indeed occurs inside P ; obviously the usual replication
operation !P can be obtained as rec X. (P | X) (assuming X does not occur free
in P). Analogously to the treatment of names we shall require that each process
identifier X has a canonical identity bXc that is preserved by alpha-renaming.

Programs will be processes P? satisfying the predicate PRGC(P?) defined as the
conjunction of the following conditions (explained below):

– P? has no free process identifiers; formally fpi(P?) = ∅.
– P? only has free names from C; formally bfn(P?)c ⊆ C.
– P? is well-formed wrt. C; formally C ` P?.

Here we write fpi(P) for the set of free process identifiers of P and fn(P) for the
free names of P ; the canonicity operation b·c is extended in a pointwise manner
to sets of names. The well-formedness predicate C ` P serves two purposes: first,
it enforces the implicit typing requirements imposed by the division of Name
into the two disjoint subsets C and V; secondly, it imposes the condition that
process identifiers are actually used recursively in the processes they define. The
predicate is formally defined in Table 2 and uses bn(M) to denote the bound
names of the capability M . Note that the condition will reject processes like

C ` 0

C ` P

C ` (n)P
if bnc ∈ C

C ` P

C ` [P]µ

C ` P

C ` M `.P
if bbn(M)c ∩C = ∅

C ` P C ` P ′

C ` P | P ′

C ` P C ` P ′

C ` P + P ′

C ` P

C ` rec X. P
if X ∈ fpi(P)

C ` X

Table 2. Well-formedness of processes with respect to C: C ` P .

(n) [enter n`1 |m?{n}`2 . enter n`3]µ where the same name n is introduced as a
constant and also introduced in an input capability; a simple alpha-renaming
will, of course, solve the problem.

We shall write P [m/n] for the process that is as P except that all free occurrences
of the name n are replaced by the name m. Similarly, we shall write P [Q/X] for
the process that is as P except that all free occurrences of the process identifier
X are replaced by the process Q. In both cases we take care to perform the
necessary alpha-renamings (preserving canonicity) to avoid capturing free names
or process identifiers.

Example 1. To illustrate the development we consider the following program
Pvirus; as we shall see shortly it models how the gene of a virus may infect a cell:

[rec X. enter n`1
1 . X + exit n`2

2 . X + ĉ ?{x}`3 . expel x`4 . X

| [exit n`5
3 . 0]gene]virus

| [rec Y. accept n`6
1 . Y + expel n`7

2 . Y + c !{n3}`8 . Y]cell

It is trivial to check that the well-formedness condition is fulfilled for C =
{bcc, bn1c, bn2c, bn3c}. ut

Semantics. The semantics follows the standard approach and is specified by
the structural congruence relation P ≡ Q in Table 3 and the transition relation
P → Q in Table 4. The congruence relation uses a disciplined notion of alpha-
renaming that preserves canonicity. The movement interactions merely give rise
to a rearrangement of the ambient structure where some potential continuations
are excluded (due to the presence of the non-deterministic choice operation). The
communication interactions also exclude some potential continuations but they
do not modify the overall ambient structure; however, some of the processes are
modified in order to reflect the new binding of names. The semantics of recursion
amounts to a straightforward unfolding in the congruence relation; this is more
general than the overly restrictive semantics used in [9].

Alpha-renaming of bound names and bound process identifiers:

P ≡ Q if P may be alpha-renamed to Q (preserving canonicity)

Reordering of parallel processes: Reordering of choice processes:
P | P ′ ≡ P ′ | P

(P | P ′) | P ′′ ≡ P | (P ′ | P ′′)
P | 0 ≡ P

P + P ′ ≡ P ′ + P
(P + P ′) + P ′′ ≡ P + (P ′ + P ′′)

P + 0 ≡ P

Scope rules for name bindings:
(n)0 ≡ 0

(n)(m)P ≡ (m)(n)P
(n)([P]µ) ≡ [(n)P]µ

(n)(P | P ′) ≡ ((n)P) | P ′ if n /∈ fn(P ′)
(n)(P + P ′) ≡ ((n)P) + P ′ if n /∈ fn(P ′)

Recursion:
rec X. P ≡ P [rec X. P/X]

Table 3. Structural congruence: P ≡ Q is the least congruence defined by the above.

Movement of ambients:

[(enter n`1 . P + P ′) | P ′′]µ1 | [(accept n`2 . Q + Q′) | Q′′]µ2 → [[P | P ′′]µ1 | Q | Q′′]µ2

[[(exit n`1 . P + P ′) | P ′′]µ1 | (expel n`2 . Q + Q′) | Q′′]µ2 → [P | P ′′]µ1 | [Q | Q′′]µ2

[(merge– n`1 . P + P ′) | P ′′]µ1 | [(merge+ n`2 . Q + Q′) | Q′′]µ2 → [P | P ′′ | Q | Q′′]µ2

Communication between ambients:

(n!{m}`1 . P + P ′) | (n?{p}`2 . Q + Q′)→P | Q[m/p]

(n !{m}`1 . P + P ′) | [(n ?̂{p}`2 . Q + Q′) | Q′′]µ →P | [Q[m/p] | Q′′]µ

[(n !̂{m}`1 . P + P ′) | P ′′]µ | (n ?{p}`2 . Q + Q′)→ [P | P ′′]µ | Q[m/p]

[(n#!{m}`1 . P + P ′) | P ′′]µ1 | [(n#?{p}`2 . Q + Q′) | Q′′]µ2 → [P | P ′′]µ1 | [Q[m/p] | Q′′]µ2

Execution in context:

P → Q

(n)P → (n)Q

P → Q

[P]µ → [Q]µ
P → Q

P | R → Q | R

P ≡ P ′ P ′ → Q′ Q′ ≡ Q

P → Q

Table 4. Transition relation: P → Q.

Example 2. The semantics of the program Pvirus of Example 1 is illustrated on
Figure 1. The initial configuration is shown in the upper leftmost frame where
the tree structure reflects that cell and virus are siblings (with a common father
denoted >) and gene is a subambient of virus. The first step of the semantics will
be for virus to move into cell using the pair (enter n`1

1 , accept n`6
1) of capabilities

and we obtain the configuration depicted in the bottom leftmost frame of the

>

�@
virus cell

gene

?

(enter n
`1
1 ,

accept n
`6
1)

6(exit n
`2
2 ,

expel n
`7
2)

>

cell

virus

gene

-
(c !{n3}

`8 ,

ĉ ?{x}`3)

>

cell

virus

gene

x = n3

-
(exit n

`5
3 ,

expel n
`4
3)

>

cell

@�
genevirus

?

(enter n
`1
1 ,

accept n
`6
1)

6(exit n
`2
2 ,

expel n
`7
2)

>

�@
virus cell

gene

-
(c !{n3}

`8 ,

ĉ ?{x}`3)

>

�@
virus cell

gene

x = n3

Fig. 1. Illustration of the semantics of the running example.

figure. Now there are two possibilities: either virus moves out of cell using the pair
(exit n`2

2 , expel n`7
2) of capabilities and we are back in the initial configuration

at the top or, alternatively, there is a communication from cell to virus over
the name c using the pair (c !{n3}`8 , ĉ ?{x}`3) of capabilities during which x
is bound to n3 as indicated in the corresponding frame of the figure. The pair
(exit n`5

3 , expel n`4
3) of capabilities will now move gene out of virus and we reach

a configuration where virus can exit and enter cell any number of times or the
communication over c may happen again after which the system ends in a stuck
configuration (shown in the top rightmost frame of the figure). ut

3 Compatibility Analysis

The aim of the spatial analysis is to extract an over-approximation of the pos-
sible hierarchial structures of the ambients. For this we need to approximate
the potential interactions between the ambients and motivated by [4] we shall
develop a compatibility analysis. Given a process P , the aim of the compatibility
analysis is to identify pairs of labelled capabilities that, from a syntactic point of
view, may engage in a transition. Intuitively, this means that the two capabilities
must match and that it must be possible for them to occur in parallel processes.
As an example, in [enter n`1]µ1 | [accept m`2]µ2 the capabilities labelled `1 and `2
may interact because from a syntactic point of view we cannot preclude that n
and m may turn out to be equal; however, if we replace the parallel composition
with a non-deterministic choice then they will never be able to interact.

The matching condition will ignore the actual names occurring in the capabilities
(because even the canonical names are not preserved under reduction) and to

capsΓ (0) = ∅ capsΓ ((n)P) = capsΓ (P)

capsΓ ([P]µ) = capsΓ (P) capsΓ (M `.P) = {dMe`} ∪ capsΓ (P)
capsΓ (P | P ′) = capsΓ (P) ∪ capsΓ (P ′) capsΓ (P + P ′) = capsΓ (P) ∪ capsΓ (P ′)

capsΓ (rec X. P) = capsΓ [X 7→∅](P) capsΓ (X) = Γ (X)

compΓ∆(0) = ∅ compΓ∆((n)P) = compΓ∆(P)

compΓ∆([P]µ) = compΓ∆(P) compΓ∆(M `.P) = compΓ∆(P)
compΓ∆(P | P ′) = compΓ∆(P)

∪ compΓ∆(P ′)
∪ crossΓ (P, P ′)

compΓ∆(P + P ′) = compΓ∆(P)
∪ compΓ∆(P ′)

compΓ∆(rec X. P) = compΓ ′∆[X 7→∅](P) compΓ∆(X) = ∆(X)

where Γ ′ = Γ [X 7→ capsΓ [X 7→∅](P)]

crossΓ (P, P ′) = {(dM1e`1 , dM2e`2) ∈ (capsΓ (P)×capsΓ (P ′)) ∪ (capsΓ (P ′)×capsΓ (P))
| match(dM1e, dM2e)}

Table 5. Capabilities, capsΓ (P), and compatible pairs of capabilities, compΓ∆(P).

formalise this we shall introduce the notion of a skeleton capability : dMe is simply
obtained from M by replacing all names in M with the token “ ·”. The matching
condition on skeleton capabilities can now be expressed by the predicate

match(dM1e, dM2e)

that holds if and only if

(dM1e, dM2e) ∈ { (enter ·, accept ·), (exit ·, expel ·), (merge– ·,merge+ ·),
(·?{·}, ·!{·}), (·̂ ?{·}, · !{·}), (· ?{·}, ·̂ !{·}), (·#?{·}, ·#!{·}) }

In order to define the compatibility information we shall first need to extract the
set of labelled skeleton capabilities occurring within a process. This is done using
the function capsΓ (P) of Table 5; here Γ is a mapping that to each process
identifier associates a set of labelled skeleton capabilities. The mapping Γ is
useful later (in the definition of comp) when we encounter subprocesses with
free process identifiers.

The compatibility information is then obtained using the function compΓ∆(P)
of Table 5. Here Γ is as above whereas ∆ is a mapping that to each process
identifier associates a set of pairs of labelled skeleton capabilities; again we are
parametric on Γ and ∆ so that we can handle processes with free process identi-
fiers. In the case of parallel composition the definition of comp uses the auxiliary
operation cross to record that capabilities in the two branches may interact with
one another and the caps function is used in order to specify this. This is in con-
trast to the definition provided for non-deterministic choice where it is known
that capabilities from the two branches never will interact.

Example 3. For the running example Pvirus of Examples 1 and 2 we get:

CPvirus = { (enter ·`1 , accept ·`6),
(exit ·`2 , expel ·`7), (exit ·`5 , expel ·`4), (exit ·`5 , expel ·`7),
(· !{·}`8 , ·̂ ?{·}`3) }

Comparing with Figure 1 we see that this is indeed an over-approximation of
the actual interactions that can take place: the pair (exit ·`5 , expel ·`7) ∈ CPvirus

has no analogue in Figure 1. ut

Example 4. Consider the artificial variant P ′
virus of the process of Example 1

where the virus exists in two variants, one with a gene much as before and one
with a harmless gene:

[rec X. enter n`1
1 . X + exit n`2

2 . X + ĉ ?{x}`3 . expel x`4 . X

| ([exit n`5
3 . 0 + accept n`6

4 . 0]gene1 + [enter n`7
4 . 0]gene2)]virus

| [rec Y. accept n`8
1 . Y + expel n`9

2 . Y + c !{n3}`10 . Y]cell

The compatibility analysis will compute the following information:

CP′
virus = { (enter ·`1 , accept ·`6), (enter ·`1 , accept ·`8), (enter ·`7 , accept ·`8),

(exit ·`2 , expel ·`9), (exit ·`5 , expel ·`4), (exit ·`5 , expel ·`9),
(· !{·}`10 , ·̂ ?{·}`3) }

Note that despite the over-approximation this correctly captures that for ex-
ample the capabilities labelled `7 and `6 of the two genes never will be able to
interact. ut

The correctness of the compatibility analysis follows from:

Lemma 1. If P ≡ Q and C ` P then compΓ∆(P) = compΓ∆(Q). If P → Q
and C ` P then compΓ∆(Q) ⊆ compΓ∆(P).

In the subsequent analyses we shall make use of the compatibility relation for
the overall program P? of interest. Writing [] for the empty mapping we shall
use the abbreviation CP? for comp[][](P?) thereby exploiting that P? has no free
process identifiers. Thus it follows from Lemma 1 that if PRGC(P?) and P? →∗ Q
then comp[][](Q) ⊆ CP? so CP? remains a correct over-approximation.

4 Spatial Analysis

We are now ready to embark on the spatial analysis: for a program P? we want
to approximate what ambients may turn up inside what other ambients. To
extract this information we shall develop an analysis extracting the following
information:

(I,R) |=µ 0 iff true

(I,R) |=µ (n)P iff (I,R) |=µ P

(I,R) |=µ [P]µ
′

iff µ′ ∈ I(µ) ∧ (I,R) |=µ′ P

(I,R) |=µ M `.P iff bMc` ∈ I(µ) ∧ (I,R) |=µ P ∧ closuredMe

(I,R) |=µ P | P ′ iff (I,R) |=µ P ∧ (I,R) |=µ P ′

(I,R) |=µ P + P ′ iff (I,R) |=µ P ∧ (I,R) |=µ P ′

(I,R) |=µ rec X. P iff ∀µ′ : µ′ ∈ LbXc(G
µ(rec X. P)) ⇒ (I,R) |=µ′ P

(I,R) |=µ X iff true

Table 6. Analysis specification: (I,R) |=µ P .

– An approximation of the contents of ambients:

I ⊆ Ambient× (Ambient ∪ (Cap× Lab))

Here µ′ ∈ I(µ) means that µ′ may be a subambient of the ambient µ and
bMc` ∈ I(µ) means that the labelled canonical capability bMc` may be
within the ambient µ.

– An approximation of the relevant name bindings:

R ⊆ V ×C (⊆ Name×Name)

Here ν′ ∈ R(ν) means that the constant (canonical) name ν′ may be bound
to the variable (canonical) name ν.

The judgements of the analysis take the form

(I,R) |=µ P

and express that when the subprocess P (of P?) is enclosed within an ambient
with the identity µ ∈ Ambient then I and R correctly capture the behaviour of
P — meaning that I will reflect the contents of the ambients as P evolves inside
P? and R will contain all the bindings of names that take place. The analysis
is specified in Table 6 and refers to Table 7 for auxiliary information about the
recursion construct and to Table 8 for a specification of the closure conditions
closuredMe. Below we comment on the clauses.

Table 6 specifies a simple syntax directed traversal of the process with the clauses
for ambients and capabilities being two of the more interesting ones as they
check that I contains the correct initial information. The clause for (n)P is very
simple since n is a constant (in contrast to a variable); in particular there is
no need to impose any requirements on R. The clauses for the parallel and the
choice constructs look exactly the same; however, the use of the compatibility
information in the closure conditions of Table 8 ensures that they are indeed
handled differently.

Gδ(0) = ∅ Gδ((n)P) = Gδ(P)

Gδ([P]µ) = Gµ(P) Gδ(M `.P) = Gδ(P)

Gδ(P | P ′) = Gδ(P) ∪ Gδ(P ′) Gδ(P + P ′) = Gδ(P) ∪ Gδ(P ′)

Gδ(rec X. P) = GbXc(P) ∪ {bXc → δ} Gδ(X) = {bXc → δ}

Table 7. Auxiliary analysis information for recursion: Gδ(P).

The clause for recursion ensures that the analysis result is valid in all the contexts
in which the recursion construct rec X. P may be encountered including those
arising from its unfolding. These contexts are provided by the auxiliary operation
Gδ(P) (see Table 7) that constructs a simple regular grammar for the potential
contexts of the process identifiers. The non-terminals of the grammar are the
canonical process identifiers, the terminal symbols are the ambient identities and
the right hand side of the productions will contain exactly one (non-terminal or
terminal) symbol. The language generated by the grammar Gµ(rec X. P) when
bXc is the start symbol is written LbXc(Gµ(rec X. P)) and it approximates
the contexts in which the recursion construct may be encountered. This lan-
guage is clearly finite. As an example, for the process [rec X. rec Y. (X | [Y]µ2)]µ1

we obtain a grammar with the productions {bXc → µ1, bY c → bXc, bXc →
bY c, bY c → µ2}. The language generated by this grammar by the non-terminal
bXc is {µ1, µ2} reflecting that the outermost recursion may occur in both con-
texts as can be seen by unfolding both X and Y once.

Turning to the closure conditions of Table 8 we first observe that there are two
clauses for each matching pair of skeleton capabilities and one of these is triv-
ial. In each case the pre-condition of the non-trivial clause checks whether an
abstract version of the firing conditions of the corresponding transition rule is
fulfilled and the conclusion then records an abstract version of the resulting con-
figuration. The I relation is used to check the spatial conditions, the R relation
is used to check the potential agreement of names, and the compatibility infor-
mation of CP? is used to check whether the current pairs of canonical capabilities
may interact at all. Since the relation R is only concerned with the names that
act as variables we shall use a slightly modified version of R namely

〈R〉 ⊆ (V ∪C)×C

that takes care of variables as well as constants; it is defined by:

(∀n : n ∈ C ⇒ 〈R〉(n, n)) ∧ (∀n, m : R(n, m) ⇒ 〈R〉(n, m))

The analysis result for the program P? is then the minimal I and R such that
(I,R) |=> P? where > is the identity of an artificial top-level ambient.

Example 5. The analysis of the running example Pvirus gives rise to the following
minimal I and R:

closureenter · = ∀µ, µ1, µ2, ν1, ν2, `1, `2 :

enter ν`1
1 ∈ I(µ1) ∧ µ1 ∈ I(µ) ∧ accept ν`2

2 ∈ I(µ2) ∧ µ2 ∈ I(µ)∧
〈R〉(ν1) ∩ 〈R〉(ν2) 6= ∅ ∧ CP?(enter ·`1 , accept ·`2)
⇒ µ1 ∈ I(µ2)

closureaccept · = true

closureexit · = ∀µ, µ1, µ2, ν1, ν2, `1, `2 :

exit ν`1
1 ∈ I(µ1) ∧ µ1 ∈ I(µ2) ∧ expel ν`2

2 ∈ I(µ2) ∧ µ2 ∈ I(µ)∧
〈R〉(ν1) ∩ 〈R〉(ν2) 6= ∅ ∧ CP?(exit ·`1 , expel ·`2)
⇒ µ1 ∈ I(µ)

closureexpel · = true

closuremerge– · = ∀µ, µ1, µ2, ν1, ν2, `1, `2 :

merge– ν`1
1 ∈ I(µ1) ∧ µ1 ∈ I(µ) ∧merge+ ν`2

2 ∈ I(µ2) ∧ µ2 ∈ I(µ)∧
〈R〉(ν1) ∩ 〈R〉(ν2) 6= ∅ ∧ CP?(merge– ·`1 , merge+ ·`2)
⇒ I(µ1) ⊆ I(µ2)

closuremerge+ · = true

closure·!{·} = ∀µ, νm, νp, ν1, ν2, `1, `2 :

ν1!{νm}`1 ∈ I(µ) ∧ ν2?{νp}`2 ∈ I(µ)∧
〈R〉(ν1) ∩ 〈R〉(ν2) 6= ∅ ∧ CP?(·!{·}`1 , ·?{·}`2)
⇒ 〈R〉(νm) ⊆ R(νp)

closure·?{·} = true

closure··· !{···} = ∀µ, µc, νm, νp, ν1, ν2, `1, `2 :

ν1 !{νm}`1 ∈ I(µ) ∧ ν2 ?̂{νp}`2 ∈ I(µc) ∧ µc ∈ I(µ)∧
〈R〉(ν1) ∩ 〈R〉(ν2) 6= ∅ ∧ CP?(· !{·}`1 , ·̂ ?{·}`2)
⇒ 〈R〉(νm) ⊆ R(νp)

closure·ˆ?{·} = true

closure·ˆ!{·} = ∀µ, µc, νm, νp, ν1, ν2, `1, `2 :

ν1 !̂{νm}`1 ∈ I(µc) ∧ µc ∈ I(µ) ∧ ν2 ?{νp}`2 ∈ I(µ)∧
〈R〉(ν1) ∩ 〈R〉(ν2) 6= ∅ ∧ CP?(·̂ !{·}`1 , · ?{·}`2)
⇒ 〈R〉(νm) ⊆ R(νp)

closure· ?{·} = true

closure·#!{·} = ∀µ, µ1, µ2, νm, νp, ν1, ν2, `1, `2 :

ν1#!{νm}`1 ∈ I(µ1) ∧ µ1 ∈ I(µ) ∧ ν2#?{νp}`2 ∈ I(µ2) ∧ µ2 ∈ I(µ)∧
〈R〉(ν1) ∩ 〈R〉(ν2) 6= ∅ ∧ CP?(·#!{·}`1 , ·#?{·}`2)
⇒ 〈R〉(m) ⊆ R(νp)

closure·#?{·} = true

Table 8. Closure condition on I and R.

µ I(µ)
cell gene, virus, c !{n3}`8 , expel n`7

2 , accept n`6
1

gene exit n`5
3

virus gene, expel x`4 , ĉ ?{x}`3 , exit n`2
2 , enter n`1

1

> gene, cell, virus

n R(n)
x n3

T

gene

virus

cell

T

gene_1

virus

cell

gene_2

T

gene_1

virus

cell

gene_2

(a) (b) (c)

Fig. 2. Spatial analysis of the running examples Pvirus (a) and P ′
virus ((b) and (c)).

Figure 2 (a) gives a graphical representation of the ambient part of the relation
I. There is one node for each of the ambient identities and an edge from the node
representing µ1 to the one representing µ2 if and only if (µ1, µ2) ∈ I. The edge is
solid if (µ1, µ2) is introduced into I by the initialisation rules of Table 6 and it is
dotted if it is introduced by the closure conditions of Table 8. Note that the trees
of the individual frames of Figure 1 are all subgraphs of this figure (as should
be expected from the semantic correctness result to be presented below). The
example also shows that the analysis is indeed an over-approximation: although
it is reported that the gene may occur at the top-level, it will never happen. ut

Example 6. To illustrate the importance of the comp relation consider the arti-
ficial variant of the virus process of Example 4. Figure 2 (b) gives a graphical
representation of the I component of the analysis result and as expected we
observe that the harmless gene does not change its position within the ambient
hierarchy.

If we were to remove the tests on the compatibility relation in the closure con-
dition of Table 8 then we would obtain a more imprecise result as illustrated on
Figure 2 (c): it now seems that one of the genes may move into the other. The
reason for this is, of course, that without the compatibility test the analysis does
not observe that the two genes will never be present at the same time. ut

Turning to the correctness of the analysis we shall state that the analysis result
is invariant under the structural congruence:

Lemma 2. If P ≡ Q and C ` P then (I,R) |=µ P if and only if (I,R) |=µ Q.

To express the correctness of the analysis result under reduction we shall first
introduce a new operation that expands the I component of the analysis to
take the bindings of the variables into account as specified by the R component.
Thus if enter ν` ∈ I(µ) then ν may be the canonical name of a variable and we
shall construct the relation I@R such that enter ν′` ∈ I@R(µ) for all possible
constants ν′ that can be bound to ν, that is, for all ν′ ∈ 〈R〉(ν). More generally,
we define I@R as follows:

If bMc` ∈ I(µ), ν ∈ fn(bMc) and ν′ ∈ 〈R〉(ν) then bMc`[ν′/ν] ∈ I@R(µ).

We can now express that the analysis result is preserved under reduction in the
following sense:

Lemma 3. Assume PRGC(P) and comp[][](P) ⊆ CP?; if furthermore P → Q

and (I,R) |=> P then (I@R,R) |=> Q.

It is immediate to show that I@R = (I@R)@R and hence we can state the
overall correctness result as follows:

Theorem 1. If PRGC(P?), (I,R) |=> P? and P? →∗ Q then (I@R,R) |=> Q.

5 Concluding Remarks

We have presented a spatial analysis for a version of BioAmbients with a general
recursion construct that allows us to express mutual recursion as seems to be
required in order to model biological systems. The analysis has been implemented
using the Succinct Solver [10] and has subsequently been applied to a number
of examples including three small examples from [13, 14] presented below. We
conclude with a comparison with related work — indicating those techniques
that are new to this paper.

Three examples. The first example of Table 9 is a membranal pore allowing
molecules to pass through a membrane. The example is specialised to the case
of a single cell and two molecules and when executed the two membranes may
enter and leave the cell any number of times and independently of one another.
This is clearly captured by the analysis result of Figure 3. Also the analysis tells
us that the cell will never enter one of the molecules and that the molecules will
never enter one another; while this may be easy to see for a small example it
may not be so obvious for a larger system.

The second example of Table 9 models a single-substrate enzymatic process and
compared with the previous example its control structure is more complex in

Membranal pore :

[rec X1. enter cell`11 . X1 + exit cell`22 . X1]mol1

| [rec X2. enter cell`31 . X2 + exit cell`42 . X2]mol2

| [rec X3. accept cell`51 . X3 + expel cell`62 . X3]cell

Single substrate enzymatic reaction :

[rec X. accept esbind`1 . (expel unbind`2 . X + expel react`3 . X)

+accept epbind`4 . (expel unbind`5 . X + expel react`6 . X)]enzyme

| [rec X1. enter esbind`7 . rec X2. (exit unbind`8 . X1

+exit react`9 . enter epbind`10 . X2)]mol

Two-protein complex :

[rec X1. merge– cplx`1 . brk?{u}`2 . expel brk`3 . X1]mol1

| [(bb) rec X2. merge+ cplx`4 . brk!{d}`5 . bb!{d}`6 . [merge+ bb`7 . exit brk`8 . X2]mol1

| rec X3. bb?{v}`9 . [merge– bb`10 . X3]mol2]mol2

Table 9. Three BioAmbient example processes from [14].

that it uses a double recursion and a number of names to control the interaction
between the ambients. The analysis result depicted in Figure 3 exhibits the
underlying spatial structure.

The final example of Table 9 models the formation and breakage of a two-protein
complex. Initially the system consists of two molecules and the complex is formed
by the merge operation. The breakage is initiated by a communication followed
by a communication over a private name and finally the complex is separated
into two molecules with the same structure as in the initial configuration. The
rather complex control structure is reflected in the analysis result presented in
Figure 3 showing that both molecules can be inside one another and that they
both have the ability to reconstruct themselves.

Comparison with related work. The work presented in this paper is one of the
first static analyses of calculi for modelling biological systems; to the best of
our knowledge, the only preceeding work is that of [9] and the present work
comprises a number of improvements and novelties.

One important difference is the way names are handled. In [9] we follow the
traditional approach of control flow analysis and use an environment R that
corresponds more closely to the auxiliary environment 〈R〉 used here. Hence,
in [9] we make an entry into R whenever a name is introduced (and in the
case of a constant it is mapped to itself) and when we make an entry with a
free name into I we make sure to make entries corresponding to all bindings
of the free name as recorded in the environment (i.e. R). While this leads to

T

mol_1 mol_2

cell

T

enzyme

mol

T

mol_1

mol_2

Membranal pore Enzyme-substrate complex Two-protein complex

Fig. 3. Spatial analysis of examples in Table 9

a rather natural formulation of the clauses and straighforward formulations of
the semantic correctness result, the relations become overly large. Hence in the
interest of obtaining more manageable implementations we have chosen not to
add constants into environments and only to make representative entries into I
that are then expanded “on the fly” during look-up. Essentially we are trading
space for time which generally is a good strategy when using the Succinct Solver.
To formulate the semantic correctness of the analysis we therefore need to make
a similar expansion and this is achieved using I@R.

Another important difference is our treatment of recursion which is technically
much more complex than the traditional treatment of replication (as in !P).
The treatment of recursion in [9] was unsatisfactory in that the unfolding of the
recursion construct was part of the transition relation rather than the congruence
as in the present paper, and hence [9] misses some of the interactions correctly
captured here. (To the best of our knowledge the analysis in [9] is correct with
respect to the semantics.) For a correct treatment of this general way of unfolding
recursion we have had to ensure that the body of the recursion is analysed in
all contexts that may arise dynamically. While this may sound like just another
component that could be added to the analysis (e.g. tracking occurrences of
process identifiers in I) it actually turns out to be important not to include
this information into the analysis in order for the analysis to be semantically
correct. Hence we have defined an operation Gδ for constructing a simple regular
grammar deriving the possible contexts; it is essential for semantic correctness
of the analysis that this information is not stored in components like I and R
but rather computed “on the fly”. This technique is likely to be useful for other
calculi also outside the realm of biological systems.

Acknowledgements. The authors would like to thank Corrado Priami and Debora
Schuch da Rosa for fruitful discussions.

References

1. M. Bugliesi, G. Castagna, and S. Crafa. Boxed Ambients. In Theoretical Aspects
in Computer Science (TACS 2001), volume 2215 of Lecture Notes in Computer
Science, pages 37–63. Springer, 2001.

2. L. Cardelli. Brane calculi. 2003. Available from http://www.luca.demon.co.uk.
3. L. Cardelli and A. D. Gordon. Mobile Ambients. In Foundations of Software Sci-

ence and Computation Structures (FoSSaCS 1998), volume 1378 of Lecture Notes
in Computer Science, pages 140–155. Springer, 1998.

4. C.Bodei, P.Degano, C. Priami, and N. Zannone. An enhanced cfa for security
policies. In Proceedings of the Workshop on Issues on the Theory of Security
(WITS’03) (co-located with ETAPS’03), 2003.

5. V. Danos and C. Laneve. Core formal molecular biology. In European Symposium
on Programming (ESOP03), volume 2618. Springer Lecture Notes in Computer
Science, 2004.

6. F. Levi and D. Sangiorgi. Controlling interference in ambients. In Proceedings
of the 27th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL 2000), pages 352–364. ACM Press, 2000.

7. R. Milner. Communicating and Mobile Systems: The pi-Calculus. Cambridge
University Press, 1999.

8. M. Nagasaki, S. Onami, S. Miyano, and Kitano H. Bio-calculus: Its concept and
molecular interaction. Genome Informatics, 10:133–143, 1999.

9. F. Nielson, H. Riis Nielson, C.Priami, and D. Schuch da Rosa. Control Flow
Analysis for BioAmbients. Proceedings of BioConcur, to appear in ENTCS, 2004.

10. F. Nielson, H. Riis Nielson, and H. Seidl. A succinct solver for ALFP. Nordic
Journal of Computing, 9:335–372, 2002.

11. Hanne Riis Nielson, Flemming Nielson, and Mikael Buchholtz. Security for Mo-
bility. In Foundations of Security Analysis and Design II, volume 2946. Springer
Lecture Notes in Computer Science, 2004.

12. C. Priami, A. Regev, W. Silverman, and E. Shapiro. Application of a stochastic
passing-name calculus to representation and simulation of molecular processes.
Information Processing Letters, 80:25–31, 2001.

13. A. Regev. Computational system biology: A calculus for biomolecular knowledge.
PhD thesis, Tel Aviv University, 2003.

14. A. Regev, E. M. Panina, W. Silverman, L. Cardelli, and E. Shapiro. BioAmbients:
An abstraction for biological compartments. Theoretical Computer Science, to
appear, 2004.

15. A. Regev, W. Silverman, and E. Shapiro. Representation and simulation of bio-
chemical processes using the π-calculus process algebra. In Pacific Symposium of
Biocomputing (PSB2001), pages 459–470, 2001.

