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Abstract

In this thesis, Genetic Algorithms are used to solve the Capacitated Vehicle Routing
Problem. The problem involves optimising a fleet of vehicles that are to serve a number
of customers from a central depot. Each vehicle has limited capacity and each customer
has a certain demand. Genetic Algorithms maintain a population of solutions by means
of a crossover and mutation operators.

A program is developed, based on a smaller program made by the author and a fellow stu-
dent in the spring of 2003. Two operators are adopted from that program; Simple Random
Crossover and Simple Random Mutation. Additionally, three new crossover operators are
developed. They are named Biggest Overlap Crossover, Horizontal Line Crossover and
Uniform Crossover. Three Local Search Algorithms are also designed; Simple Random
Algorithm, Non Repeating Algorithm and Steepest Improvement Algorithm. Then two
supporting operators Repairing Operator and Geographical Merge are made.

Steepest Improvement Algorithm is the most effective one of the Local Search Algorithms.
The Simple Random Crossover with Steepest Improvement Algorithm performs best on
small problems. The average difference from optimum or best known values is 4,16 ±1,22
%. The Uniform Crossover with Steepest Improvement Crossover provided the best results
for large problems, where the average difference was 11.20±1,79%. The algorithms are
called SRC-GA and UC-GA.

A comparison is made of SRC-GA, UC-GA, three Tabu Search heuristics and a new hybrid
genetic algorithm, using a number of both small and large problems. SRC-GA and UC-
GA are on average 10,52±5,48% from optimum or best known values and all the other
heuristics are within 1%. Thus, the algorithms are not effective enough. However, they
have some good qualities, such as speed and simplicity. With that taken into account,
they could make a good contribution to further work in the field.
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Chapter 1

Introduction

The agenda of this project is to design an efficient Genetic Algorithm to solve the Vehicle
Routing Problem. Many versions of the Vehicle Routing Problem have been described.
The Capacitated Vehicle Routing Problem is discussed here and can in a simplified way
be described as follows: A fleet of vehicles is to serve a number of customers from a central
depot. Each vehicle has limited capacity and each customer has a certain demand. A cost
is assigned to each route between every two customers and the objective is to minimize
the total cost of travelling to all the customers.

Real life Vehicle Routing Problems are usually so large that exact methods can not be
used to solve them. For the past two decades, the emphasis has been on metaheuristics,
which are methods used to find good solutions quickly. Genetic Algorithms belong to the
group of metaheuristics. Relatively few experiments have been performed using Genetic
Algorithms to solve the Vehicle Routing Problem, which makes this approach interesting.
Genetic Algorithms are inspired by the Theory of Natural Selection by Charles Darwin.
A population of individuals or solutions is maintained by the means of crossover and
mutation operators, where crossover simulates reproduction. The quality of each solution
is indicated by a fitness value. This value is used to select a solution from the population
to reproduce and when solutions are excluded from the population. The average quality
of the population gradually improves as new and better solutions are generated and worse
solutions are removed.

The project is based on a smaller project developed by the author and Hildur Ólafsdóttir
in the course Large-Scale Optimization at DTU in the spring of 2003. In that project
a small program was developed, which simulates Genetic Algorithms using very simple
crossover and mutation operators. This program forms the basis of the current project.

In this project new operators are designed in order to focus on the geography of the
problem, which is relevant to the Capacitated Vehicle Routing Problem. The operators
are developed using a trial and error method and experiments are made in order to
find out which characteristics play a significant role in a good algorithm. A few Local
Search Algorithms are also designed and implemented in order to increase the efficiency.
Additionally, an attention is paid to the fitness value and how it influences the performance
of the algorithm. The aim of the project is described by the following hypothesis:
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It is possible to develop operators for Genetic Algorithms efficient enough to solve large

Vehicle Routing Problems.

Problem instances counting more than 100 customers are considered large. What is
efficient enough? Most heuristics are measured against the criteria accuracy and speed.
Cordeau et al. [4] remark that simplicity and flexibility are also important characteristics
of heuristics. The emphasis here is mostly on accuracy. The operators are considered
efficient enough if they are able to compete with the best results proposed in the literature.
However, an attempt is also made to measure the quality of the operators by the means
of the other criteria.

1.1 Outline of the Report

In chapter 2 the theory of the Vehicle Routing Problem and the Genetic Algorithms is
discussed. Firstly, the Vehicle Routing Problem is described, the model presented and
a review of the literature given among other things. Secondly, the basic concepts of the
Genetic Algorithms are explained and different approaches are discussed, e.g. when it
comes to choosing a fitness value or a selection method. Then the different types of
operators are introduced.

The Local Search Algorithms are presented in chapter 3. Three different algorithms are
explained both in words and by a pseudocode. They are compared and the best one
chosen for further use.

Chapter 4 describes the development process of the fitness value and the operators. Four
crossover operators are explained and in addition; a mutation operator and two supporting
operators. All operators are explained both in words and by the means of a pseudocode.

Implementation issues are discussed in chapter 5. This includes information about the
computer used for testing, programming language and some relevant methods.

The parameter tuning is described in chapter 6. At first the possible parameters are listed
and the procedure of tuning is explained. Then the resulting parameters are illustrated.

Chapter 7 involves the final testing. It starts with a listing of benchmark problems followed
by a test description. Then test results are presented. Firstly, different combinations of
operators are used to solve a few problems in order to choose the best combination.
Secondly, this best combination is applied to a large number of problems. Finally, these
results are compared to results presented in the literature.

The results are discussed in chapter 8 and in chapter 9 the conclusion in presented.
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1.2 List of Abbreviations

VRP The Vehicle Routing Problem
GA Genetic Algorithms
BPP The Bin Packing Problem
TSP The Travelling Salesman Problem
SA Simulated Annealing
DA Deterministic Annealing
TS Tabu Search
AS Ant Systems
NN Neural Networks
HGA-VRP A Hybrid Genetic Algorithm
GENI Generalized Insertion procedure
LSA Local Search Algorithms
SRA Simple Random Algorithm
NRA Non Repeating Algorithm
SIA Steepest Improvement Algorithm
SRC Simple Random Crossover
BOC Biggest Overlap Crossover
GC First Geography, then Capacity
CG First Capacity, then Geography
HLC Horizontal Line Crossover
UC Uniform Crossover
SRM Simple Random Mutation
RO Repairing Operator
GM Geographical Merge
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Chapter 2

Theory

The aim of this chapter is to present the Vehicle Routing Problem (VRP) and Genetic
Algorithms (GA) in general. Firstly, VRP is introduced and its model is put forward.
Then the nature of the problem is discussed and a review of literature is given. Secondly,
GA are introduced and fitness value, selection methods and operators are addressed.

2.1 The Vehicle Routing Problem

2.1.1 The Problem

The Vehicle Routing Problem was first introduced by Dantzig and Ramser in 1959 [12]
and it has been widely studied since. It is a complex combinatorial optimisation problem.
Fisher [7] describes the problem in a word as to find the efficient use of a fleet of vehicles
that must make a number of stops to pick up and/or deliver passengers or products. The
term customer will be used to denote the stops to pick up and/or deliver. Every customer
has to be assigned to exactly one vehicle in a specific order. That is done with respect to
the capacity and in order to minimise the total cost.

The problem can be considered as a combination of the two well-known optimisation
problems; the Bin Packing Problem (BPP) and the Travelling Salesman Problem (TSP).
The BPP is described in the following way: Given a finite set of numbers (the item sizes)
and a constant K, specifying the capacity of the bin, what is the minimum number of bins
needed?[6] Naturally, all items have to be inside exactly one bin and the total capacity
of items in each bin has to be within the capacity limits of the bin. This is known as
the best packing version of BPP. The TSP is about a travelling salesman who wants to
visit a number of cities. He has to visit each city exactly once, starting and ending in his
home town. The problem is to find the shortest tour through all cities. Relating this to
the VRP, customers can be assigned to vehicles by solving BPP and the order in which
they are visited can be found by solving TSP.

Figure 2.1 shows a solution to a VRP as a graph.
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Figure 2.1: A solution to a Vehicle Routing Problem. Node 0 denotes the depot and
nodes 1− 10 are the customers.

2.1.2 The Model

The most general version of VRP is the Capacitated Vehicle Routing Problem, which will
be referred to as just VRP from now on. The model for VRP has the following parameters
[7]:

n is the number of customers,
K denotes the capacity of each vehicle,
di denotes the demand of customer i (in same units as vehicle capacity) and
cij is the cost of travelling from customer i to customer j.

All parameters are considered non-negative integers. A homogeneous fleet of vehicles with
a limited capacity K and a central depot, with index 0, makes deliveries to customers,
with indices 1 to n. The problem is to determine the exact tour of each vehicle starting
and ending at the depot. Each customer must be assigned to exactly one tour, because
each customer can only be served by one vehicle. The sum over the demands of the
customers in every tour has to be within the limits of the vehicle capacity. The objective
is to minimise the total travel cost. That could also be the distance between the nodes
or other quantities on which the quality of the solution depends, based on the problem to
be solved. Hereafter it will be referred to as a cost.

The mathematical model is defined on a graph (N,A). The node set N corresponds to the
set of customers C from 1 to n in addition to the depot number 0. The arc set A consists
of possible connections between the nodes. A connection between every two nodes in the
graph will be included in A here. Each arc (i, j) ∈ A has a travel cost cij associated to it.
It is assumed that the cost is symmetric, i.e. cij = cji, and also that cii = 0. The set of
uniform vehicles is V. The vehicles have a capacity K and all customers have a demand
di. The only decision variable is Xv

ij:

Xv
ij =

{

1 if vehicle v drives from node i to node j
0 otherwise

(2.1)

The objective function of the mathematical model is:
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min
∑

v∈V

∑

(i,j)∈A

cijX
v
ij (2.2)

subject to

∑

v∈V

∑

j∈N

Xv
ij = 1 ∀i ∈ C (2.3)

∑

i∈C

di

∑

j∈N

Xv
ij ≤ K ∀v ∈ V (2.4)

∑

j∈C

Xv
0j = 1 ∀v ∈ V (2.5)

∑

i∈N

Xv
ik −

∑

j∈N

Xv
kj = 0 ∀k ∈ C and ∀v ∈ V (2.6)

Xv
ij ∈ {0, 1}, ∀(i, j) ∈ A and ∀v ∈ V (2.7)

Equation 2.3 is to make sure that each customer is assigned to exactly one vehicle. Pre-
cisely one arc from customer i is chosen, whether or not the arc is to another customer
or to the depot. In equation 2.4 the capacity constraints are stated. The sum over the
demands of the customers within each vehicle v has to be less than or equal to the capac-
ity of the vehicle. The flow constraints are shown in equations 2.5 and 2.6. Firstly, each
vehicle can only leave the depot once. Secondly, the number of vehicles entering every
customer k and the depot must be equal to the number of vehicles leaving.

An even simpler version could have a constant number of vehicles but here the number
of vehicles can be modified in order to obtain smallest possible cost. However, there is a
lower bound on the number of vehicles, which is the smallest number of vehicles that can

carry the total demand of the customers, d
∑

i∈C di

∑

j∈N Xv
ij

K
e.

2.1.3 VRP in Real Life

The VRP is of great practical significance in real life. It appears in a large number of
practical situations, such as transportation of people and products, delivery service and
garbage collection. For instance, such a matter of course as being able to buy milk in a
store, arises the use of vehicle routing twice. First the milk is collected from the farms
and transported to the dairy and when it has been put into cartons it is delivered to the
stores. That is the way with most of the groceries we buy. And the transport is not only
made by vehicles but also by plains, trains and ships. VRP is everywhere around!

One can therefore easily imagine that all the problems, which can be considered as VRP,
are of great economic importance, particularly to the developed nations. The economic
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importance has been a great motivation for both companies and researches to try to find
better methods to solve VRP and improve the efficiency of transportation.

2.1.4 Solution Methods and Literature Review

The model above describes a very simple version of VRP. In real life, VRP can have
many more complications, such as asymmetric travel costs, multiple depots, heterogeneous
vehicles and time windows, associated with each customer. These possible complications
make the problem more difficult to solve. They are not considered in this project because
the emphasis is rather on Genetic Algorithms.

In section 2.1.1 above, it is explained how VRP can be considered a merge of BPP and
TSP. Both BPP and TSP are so-called NP-hard problems [6] and [21], thus VRP is also
NP-hard. NP-hard problems are difficult to solve and in fact it means that to date no
optimal algorithm has been found, which is able to solve the problem in polynomial time
[6]. Finding an optimal solution to a NP-hard problem is usually very time consuming
or even impossible. Because of this nature of the problem, it is not realistic to use exact
methods to solve large instances of the problem. For small instances of only few customers,
the branch and bound method has proved to be the best [15]. Most approaches for large
instances are based on heuristics. Heuristics are approximation algorithms that aim at
finding good feasible solutions quickly. They can be roughly divided into two main classes;
classical heuristics mostly from between 1960 and 1990 and metaheuristics from 1990 [12].

The classical heuristics can be divided into three groups; Construction methods, two-
phase methods and improvement methods [13]. Construction methods gradually build a
feasible solution by selecting arcs based on minimising cost, like the Nearest Neighbour
[11] method does. The two-phase method divides the problem into two parts; clustering
of customers into feasible routes disregarding their order and route construction. An
example of a two-phase method is the Sweep Algorithm [12], which will be discussed
further in section 4.2.3. The Local Search Algorithms [1], explained in chapter 3, belong
to the improvement heuristics. They start with a feasible solution and try to improve it
by exchanging arcs or nodes within or between the routes. The advantage of the classical
heuristics is that they have a polynomial running time, thus using them one is better able
to provide good solutions within a reasonable amount of time [4]. On the other hand, they
only do a limited search in the solution space and do therefore run the risk of resulting
in a local optimum.

Metaheuristics are more effective and specialised than the classical heuristics [5]. They
combine more exclusive neighbourhood search, memory structures and recombination of
solutions and tend to provide better results, e.g. by allowing deterioration and even in-
feasible solutions [10]. However, their running time is unknown and they are usually more
time consuming than the classical heuristics. Furthermore, they involve many parameters
that need to be tuned for each problem before they can be applied.

For the last ten years metaheuristics have been researched considerably, producing some
effective solution methods for VRP [4]. At least six metaheuristics have been applied to
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VRP; Simulated Annealing (SA), Deterministic Annealing (DA), Tabu Search (TS), Ant
Systems (AS), Neural Networks (NN) and Genetic Algorithms (GA) [10]. The algorithms
SA, DA and TS move from one solution to another one in the neighbourhood until a stop-
ping criterion is satisfied. The fourth method, AS, is a constructive mechanism creating
several solutions in each iteration based on information from previous generations. NN is
a learning method, where a set of weights is gradually adjusted until a satisfactory solu-
tion is reached. Finally, GA maintain a population of good solutions that are recombined
to produce new solutions.

Compared to best-known methods, SA, DA and AS have not shown competitive results
and NN are clearly outperformed [10]. TS has got a lot of attention by researches and so
far it has proved to be the most effective approach for solving VRP [4]. Many different
TS heuristics have been proposed with unequal success. The general idea of TS and a
few variants thereof are discussed below. GA have been researched considerably, but
mostly in order to solve TSP and VRP with time windows [2], where each customer
has a time window, which the vehicle has to arrive in. Although they have succeeded
in solving VRP with time windows, they have not been able to show as good results
for the capacitated VRP. In 2003 Berger and Barkaoui presented a new Hybrid Genetic
Algorithm (HGA-VRP) to solve the capacitated VRP [2]. It uses two populations of
solutions that periodically exchange some number of individuals. The algorithm has
shown to be competitive in comparison to the best TS heuristics [2]. In the next two
subsections three TS approaches are discussed followed by a further discussion of HGA-
VRP.

Tabu Search

As written above, to date Tabu Search has been the best metaheuristic for VRP [4]. The
heuristic starts with an initial solution x1 and in step t it moves from solution xt to the
best solution xt+1 in its neighbourhood N(xt), until a stopping criterion is satisfied. If
f(xt) denotes the cost of solution xt, f(xt+1) does not necessarily have to be less than
f(xt). Therefore, a cycling must be prevented, which is done by declaring some recently
examined solutions tabu or forbidden and storing them in a tabulist. Usually, the TS
methods preserve an attribute of a solution in the tabulist instead of the solution itself
to save time and memory. Different TS heuristics have been proposed not all with equal
success. For the last decade, some successful TS heuristics have been proposed [12].

The Taburoute of Gendreau et al. [9] is an involved heuristic with some innovative features.
It defines the neighbourhood of xt as a set of solutions that can be reached from xt by
removing a customer k from its route r and inserting it into another route s containing
one of its nearest neighbours. The method uses Generalised Insertion (GENI) procedure
also developed by Gendreau et al. [8]. Reinsertion of k into r is forbidden for the next θ
iterations, where θ is a random integer in the interval (5,10) [12]. A diversification strategy
is used to penalise frequently moved nodes. The Taburoute produces both feasible and
infeasible solutions.

The Taillard’s Algorithm is one of the most accurate TS heuristics [4]. Like Taburoute
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it uses random tabu duration and diversification. However, the neighbourhood is defined
by the means of λ-interchange generation mechanism and standard insertion methods are
used instead of GENI. The innovative feature of the algorithm is the decomposition of
the main problem into subproblems.

The Adaptive Memory procedure of Rochat and Taillard is the last TS heuristic that will
be discussed here. It is probably one of the most interesting novelties that have emerged
within TS heuristics in recent years [12]. An adaptive memory is a pool of solutions, which
is dynamically updated during the search process by combining some of the solutions in
the pool in order to produce some new good solutions. Therefore, it can be considered a
generalisation of the genetic search.

A Hybrid Genetic Algorithm

The Hybrid Genetic Algorithm proposed by Berger and Barkaoui is able to solve VRP in
almost as effective way as TS [2]. Genetic Algorithms are explained in general in the next
section. The algorithm maintains two populations of solutions that exchange a number
of solutions at the end of each iteration. New solutions are generated by rather complex
operators that have successfully been used to solve the VRP with time windows. When
a new best solution has been found the customers are reordered for further improvement.
In order to have a constant number of solutions in the populations the worst individuals
are removed. For further information about the Hybrid Genetic Algorithm the reader is
referred to [2].

2.2 Genetic Algorithms

2.2.1 The Background

The Theory of Natural Selection was proposed by the British naturalist Charles Dar-
win (1809-1882) in 1859 [3]. The theory states that individuals with certain favourable
characteristics are more likely to survive and reproduce and consequently pass their char-
acteristics on to their offsprings. Individuals with less favourable characteristics will
gradually disappear from the population. In nature, the genetic inheritance is stored in
chromosomes, made of genes. The characteristics of every organism is controlled by the
genes, which are passed on to the offsprings when the organisms mate. Once in a while a
mutation causes a change in the chromosomes. Due to natural selection, the population
will gradually improve on the average as the number of individuals having the favourable
characteristics increases.

The Genetic Algorithms (GA) were invented by John Holland and his colleagues in the
early 1970s [16], inspired by Darwin’s theory. The idea behind GA is to model the
natural evolution by using genetic inheritance together with Darwin’s theory. In GA,
the population consists of a set of solutions or individuals instead of chromosomes. A
crossover operator plays the role of reproduction and a mutation operator is assigned
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to make random changes in the solutions. A selection procedure, simulating the natural
selection, selects a certain number of parent solutions, which the crossover uses to generate
new solutions, also called offsprings. At the end of each iteration the offsprings together
with the solutions from the previous generation form a new generation, after undergoing a
selection process to keep a constant population size. The solutions are evaluated in terms
of their fitness values identical to the fitness of individuals.

The GA are adaptive learning heuristic and they are generally referred to in plural, because
several versions exist that are adjustments to different problems. They are also robust
and effective algorithms that are computationally simple and easy to implement. The
characteristics of GA that distinguishes them from the other heuristics, are the following
[16]:

• GA work with coding of the solutions instead of the solution themselves. Therefore,
a good, efficient representation of the solutions in the form of a chromosome is
required.
• They search from a set of solutions, different from other metaheuristics like Sim-

ulated annealing and Tabu search that start with a single solution and move to
another solution by some transition. Therefore they do a multi directional search
in the solution space, reducing the probability of finishing in a local optimum.
• They only require objective function values, not e.g. continuous searching space

or existence of derivatives. Real life examples generally have discontinuous search
spaces.
• GA are nondeterministic, i.e. they are stochastic in decisions, which makes them

more robust.
• They are blind because they do not know when they have found an optimal solution.

2.2.2 The Algorithm for VRP

As written above, GA easily adapts to different problems so there are many different
versions depending on the problem to solve. There are, among other things, several ways
to maintain a population and many different operators can be applied. But all GA must
have the following basic items that need to be carefully considered for the algorithm to
work as effective as possible [14]:

• A good genetic representation of a solution in a form of a chromosome.
• An initial population constructor.
• An evaluation function to determine the fitness value for each solution.
• Genetic operators, simulating reproduction and mutation.
• Values for parameters; population size, probability of using operators, etc.

A good representation or coding of VRP solution must identify the number of vehicles,
which customers are assigned to each vehicle and in which order they are visited. Some-
times solutions are represented as binary strings, but that kind of representation does not
suit VRP well. It is easy to specify the number of vehicles and which customers are inside
each vehicle but it becomes too complicated when the order of the customers needs to be
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given. Using the numeration of the customers instead, solves that problem. A suitable
presentation of solutions to VRP is i.e. a chromosome consisting of several routes, each
containing a subset of customers that should be visited in the same order as they appear.
Every customer has to be a member of exactly one route. In figure 2.2 an example of the
representation is shown for the solution in figure 2.1.

5 8279631 10 41: 2: 3:

Figure 2.2: A suitable representation of a potential VRP solution.

The construction of the initial population is of great importance to the performance of
GA, since it contains most of the material the final best solution is made of. Generally, the
initial solutions are randomly chosen, but they can also be results of some construction
methods. It is called seeding when solutions of other methods join the randomly chosen
solutions in the population.However, one should be careful to use too good solution at the
beginning because those solutions can early become too predominant in the population.
When the population becomes too homogeneous the GA loses its ability to search the
solution space until the population slowly gains some variation by the mutation.

Recently, researchers have been making good progress with parallel GA, using multiple
populations or subpopulations that evolve independently using different versions of GA.
However, this project uses a sequential version with only one population. The population
size M affects the performance of GA as well as affecting the convergence rate and the
running time [16]. Too small population may cause poor performance, since is does not
provide enough variety in the solutions. A large M usually provides better performance
avoiding premature convergence. The convergence is discussed in section 2.2.4. The
population size is definitely among the parameters that need tuning in order to find
the value suitable for each problem. Although a constant population is used here, it is
also possible to use a dynamic population, reducing the population size as the number
of iterations increases. It has been experimented that the most rapid improvements in
the population occur in the early iterations [16]. Then the changes become smaller and
smaller and at the same time the weaker individuals become decreasingly significant.

In each iteration a number of parent solutions is selected and a crossover and/or other
operators are applied producing offsprings. Maintaining the populations can be done in
two ways. Firstly, by first selecting the new population from the previous one and then
apply the operators. The new population can either include both ”old” solutions from
the previous population and offsprings or only offsprings, depending on the operators.
Secondly, the operators can be applied first and then the new population is selected from
both ”old” solutions and offsprings. In order to keep a constant population size, clearly
some solutions in the previous population will have to drop out. The algorithms can differ
in how large proportion of the population is replaced in each iteration. Algorithms that
replace a large proportion of the population are called generational and those replacing
a single solution or only few are called steady-state [22]. In this project a steady-state
algorithm is used. Below a pseudocode for a typical steady-state algorithm is shown.



2.2 Genetic Algorithms 21

Steady-state()

Population(M)

while the stopping criterion is not satisfied do

P1, P2 ← ParentsSelection(Population)

O1 ← Crossover(P1,P1)

O2 ← Mutation(O1)

R ← SolutionOutSelection(Population)

Replace(O2,R)

end while

The function Population(M) generates M random solutions. The two selection methods
need to be more specified. Many selection methods are available for choosing both in-
dividuals to reproduce and also for surviving at the end of every iteration. The same
parents can be chosen several times to reproduce. The selection methods use fitness val-
ues associated with each solution to compare the solutions. A further discussion of the
selection methods is given in section 2.2.4 below and the evaluation of the fitness value is
discussed in next section. Since this is a steady-state algorithm, a crossover can be applied
in every generation because a large part of the population will always be preserved in the
next generation. Other operators can also be applied after or instead of Mutation. The
Replace function replaces individual R in the population with the offspring O2 in order
to keep the size of the population constant. Of course, it is not wise to replace the best
individual in the population.

2.2.3 The Fitness Value

In order to perform a natural selection every individual i is evaluated in terms of its
fitness value fi, determined by an evaluation function. The fitness value measures the
quality of the solutions and enables them to be compared. In section 2.2.4, different
selection methods are discussed considering selective pressure. Selecting individuals for
both reproduction and surviving has a crucial effect on the efficiency of GA. Too greedy
a selection will lead to a premature convergence, which is a major problem in GA [14].
Since the selection methods are based on the fitness values, it is important to choose the
evaluation function carefully.

Premature convergence can also be avoided by scaling the fitness values [16]. Scaling can
be useful in later runs when the average fitness of the population has become close to
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the fitness of the optimal solution and thus the average and the best individuals of the
population are almost equally likely to be chosen. Naturally, the evaluation function and
scaling of fitness values work together. Several scaling methods have been introduced,
e.g. linear scaling, with and without sigma truncation and power law scaling [14].

The linear scaling method scales the fitness value fi as follows:

f ′

i = a× fi + b (2.8)

where a and b are chosen so that the average initial fitness and the scaled fitness are equal.
The linear scaling method is quite good but it runs into problems in later iterations when
some individuals have very low fitness values close to each other, resulting in negative
fitness values [14]. Also, the parameters a and b depend only on the population but not
on the problem.

The sigma truncation method deals with this problem by mapping the fitness value into
a modified fitness value f ′′

i with the following formula:

f ′′

i = fi − (f −Kmult × σ) (2.9)

Kmult is a multiplying constant, usually between 1 and 5 [14]. The method includes the
average fitness f of the population and the standard deviation σ, which makes the scaling
problem dependent. Possible negative values are set equal to zero. The linear scaling is
now applied with f ′′

i instead of f ′

i .

Finally, there is the power law scaling method, which scales the fitness value by raising it
to the power of k, depending on the problem.

f ′

i = f k
i (2.10)

Often, it is straightforward to find an evaluation function to determine the fitness value.
For many optimisation problems the evaluation function for a feasible solution is given,
i.e. for both TSP and VRP, the most obvious fitness value is simply the total cost or
distance travelled. However, this is not always the case, especially when dealing with
multi objective problems and/or infeasible solutions.

There are two ways to handle infeasible solutions; either rejecting them or penalising
them. Rejecting infeasible solutions simplifies the algorithm and might work out well if
the feasible search space is convex [14]. On the other hand, it can have some significant
limitations, because allowing the algorithm to cross the infeasible region can often enable
it to reach the optimal solution.

Dealing with infeasible solutions can be done in two ways. Firstly, by extending the
searching space over the infeasible region as well. The evaluation function for an infeasible
solution evalu(x) is the sum of the fitness value of the feasible solution evalf(x) and either
the penalty or the cost of repairing an infeasible individual Q(x), i.e.

evalu(x) = evalf (x)±Q(x) (2.11)
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Designing the penalty function is far from trivial. It should be kept as low as possible
without allowing the algorithm to converge towards infeasible solutions. It can be difficult
to find the balance in between. Secondly, another evaluation function can be designed,
independent of the evaluation function for the feasible solution evalf .

Both methods require a relationship between the evaluation functions established, which
is among the most difficult problems when using GA. The relationship can either be
established using an equation or by constructing a global evaluation function:

eval(x) =

{

q1 · evalf (x) if x ∈ F
q2 · evalu(x) if x ∈ U

(2.12)

The weights q1 and q2 scale the relative importance of evalf and evalu and F and U
denote the feasible region and the infeasible region respectively.

The problem with both methods is that they allow an infeasible solution to have a better
fitness value than a feasible one. Thus, the algorithm can in the end converge towards
an infeasible final solution. Comparing solutions can also be risky. Sometimes it is not
quite clear whether a feasible individual is better than an infeasible one, if an infeasible
individual is extremely close to the optimal solution. Furthermore, it can be difficult to
compare two infeasible solutions. Consider two solutions to the 0-1 Knapsack problem,
where the objective is to maximise the number of items in the knapsack without violating
the weight constraint of 99. One infeasible solution has a total weight of 100 consisting
of 5 items of weight 20 and the other one has the total weight 105 divided on 5 items but
with one weighing 6. In this specific situation the second solution is actually ”closer” to
attaining the weight constraint than the first one.

2.2.4 Selection

It seems that the population diversity and the selective pressure are the two most im-
portant factors in the genetic search [14]. They are strongly related, since an increase in
the selective pressure decreases the population diversity and vice versa. If the population
becomes too homogeneous the mutation will almost be the only factor causing variation in
the population. Therefore, it is very important to make the right choice when determining
a selection method for GA.

A selection mechanism is necessary when selecting individuals for both reproducing and
surviving. A few methods are available and they all try to simulate the natural selection,
where stronger individuals are more likely to reproduce than the weaker ones. Before
discussing those methods, it is explained how the selective pressure influences the conver-
gence of the algorithm,

Selective pressure

A common problem when applying GA, is a premature or rapid convergence. A con-
vergence is a measurement of how fast the population improves. Too fast improvement
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indicates that the weaker individuals are dropping out of the population too soon, i.e.
before they are able to pass their characteristics on. The selective pressure is a measure-
ment of how often the top individuals are selected compared to the weaker ones. Strong
selective pressure means that most of the time top individuals will be selected and weaker
individuals will seldom be chosen. On the other hand, when the selective pressure is weak,
the weaker individuals will have a greater chance of being selected.

p1
p2 p3

p4
p5

Prob.
sp1

sp2

Figure 2.3: Selective pressure.

Figure 2.3 illustrates this for a population of five
solutions with fitness values according to the size
of its quadrangle. The y-axis shows the proba-
bility for each solution of being chosen. The line
sp1 shows a strong selective pressure, where the
top solutions are much more likely to be cho-
sen than the weaker ones and line sp2 shows
weaker selective pressure where the difference
between the probabilities of selecting the solu-
tions is smaller.

Strong selective pressure encourages rapid con-
vergence but, on the other hand, too weak se-
lective pressure makes the search ineffective.
Therefore, it is critical to balance the selective
pressure and the population diversity to get as good solution as possible.

Roulette Wheel Method

Firstly, there is a proportional selection process called, the Roulette Wheel, which is a
frequently used method. In section 2.2.3, it is explained how every individual is assigned
a fitness value indicating its quality. In the roulette wheel method, the probability of
choosing an individual is directly proportional to its fitness value.

Figure 2.4 illustrates the method in a simple way for a problem having five individuals in a
population. Individual P1 has a fitness value f1, P2 has f2, etc. Considering a pin at the
top of the wheel, one can imagine when spinning the wheel that it would most frequently
point to individual P3 and that it in the fewest occasions would point to individual P4.
Consequently, the one with the largest fitness value becomes more likely to be selected as
a parent than one with a small fitness value.
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P1

P5

P4

P3

P2

f3 = 0.33
f4 = 0.06
f5 = 0.15

f1 = 0.28
f2 = 0.18

Figure 2.4: Roulette Wheel method.

The drawback of the Roulette Wheel Method is that it uses the fitness values directly.
That can cause some problems e.g. when a solution has a very small fitness value compared
to the others, resulting in very low probability of being chosen. The ranking method in
next chapter has a different approach.

Ranking

The second method is the Ranking method, which has been giving improving results
[16]. It provides a sufficient selective pressure to all individuals by comparing relative
goodness of the individuals instead of their actual fitness values. It has been argued
that in order to obtain a good solution using GA, an adequate selective pressure has to be
maintained on all the individuals by using a relative fitness measure [16]. Otherwise, if the
population contains some very good individuals, they will early on become predominant
in the population and cause a rapid convergence.

In Ranking, the individuals are sorted in ascending order according to their fitness. A
function depending on the rank is used to select an individual. Thus it is actually selected
proportionally to its rank instead of its fitness value as in the roulette wheel method. For
instance, the selection could be based on the probability distribution below.

p(k) =
2k

M(M + 1)
(2.13)

The constant k denotes the kth individual in the rank and M is the size of the population.
The best individual (k = M) has a probability 2

M+1
of being selected and the worst

individual (k = 1) has 2
M(M+1)

of being selected. The probabilities are proportional
depending on the population size instead of fitness value.

The advantage of the Ranking method is that it is better able to control the selective
pressure than the Roulette Wheel method. There are though also some drawbacks. The
method disregards the relative evaluations of different solutions and all cases are treated
uniformly, disregarding the magnitude of the problem.
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Tournament Selection

The Tournament Selection is an efficient combination of selection and ranking methods.
A parent is selected by choosing the best individual from a set of individuals or a subgroup
from the population. The steady-state algorithm on page 21 requires only two individuals
for each parent in every iteration and a third one to be replaced by the offspring at the
end of the iteration. The method is explained considering the steady-state algorithm.

At first, two subgroups of each S individuals are randomly selected, since two parents are
needed. If k individuals of the population were changed in each iteration, the number of
subgroups would be k. Each subgroup must contain at least two individuals, to enable a
comparison between them. The size of the subgroups influences the selective pressure, i.e.
more individuals in the subgroups increase the selection pressure on the better individuals.
Within each subgroup, the individuals compete for selection like in a tournament. When
selecting individuals for reproduction the best individual within each subgroup is selected.
On the other hand, the worst individual is chosen when the method is used to select a
individual to leave the population. Then the worst individual will not be selected for
reproduction and more importantly the best individual will never leave the population.

The Tournament Selection is the selection method that will be used in this project for both
selection of individuals for reproduction and surviving. It combines the characteristics of
the Roulette Wheel and the Ranking Method and is without the drawbacks of these
methods have.

2.2.5 Crossover

The main genetic operator is crossover, which simulates a reproduction between two
organisms, the parents. It works on a pair of solutions and recombines them in a certain
way generating one or more offsprings. The offsprings share some of the characteristics
of the parents and in that way the characteristic are passed on to the future generations.
It is not able to produce new characteristics.

The functionality of the crossover depends on the data representation and the performance
depends on how well it is adjusted to the problem. Many different crossover operators
have been introduced in the literature. In order to help demonstrating how it works, the
Simple Crossover [16] is illustrated in figure 4.1. The illustration is made with binary
data presentation, even though it will not be used further in this project.

The Simple Crossover starts with two parent solutions P1 and P2 and chooses a random
cut, which is used to divide both parents into two parts. The line between customers no.
2 and 3 demonstrates the cut. It generates two offsprings O1 and O2 that are obtained
by putting together customers in P1 in front of the cut and customers in P2 after the cut
and vice versa.
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1 0 11
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P1:

P2:

1 1 11 10 1 0 01 11O2:O1:

Figure 2.5: Illustration of Simple Crossover. The offspring O1 is generated from the right
half of P1 and the left half of P2 and O2 is made from the left half of P1 and the right
half of P2.

2.2.6 Mutation

Another operator is mutation, which is applied to a single solution with a certain prob-
ability. It makes small random changes in the solution. These random changes will
gradually add some new characteristics to the population, which could not be supplied
by the crossover. It is important not to alter the solutions too much or too often because
then the algorithm will serve as a random search. A very simple version of the operator
is shown in figure 2.6.

1 0 11 10P:

1 1 11 10O:

Figure 2.6: Illustration of a simple mutation. A bit number 2 has been changed from 0
to 1 in the offspring.

The binary data string P represents a parent solution. Randomly, the second bit has been
chosen to be mutated. The resulting offspring O illustrates how the selected bit has been
changed from 0 to 1.

2.2.7 Inversion

The third operator is Inversion, which reverses the order of some customers in a solution.
Similar to the mutation operator, it is applied to a single solution at a time. In figure 2.7
this procedure is illustrated with a string of letters, which could represent a single route
in solution.

Two cuts are randomly selected between customers 3 and 4 and 7 and 8, respectively. The
order of the customers between the cuts is reversed.

The inversion operator will not be used specifically in this project. However, the Local
Search Algorithms in the next chapter reverse the order of the customers in a route if it
improves the solution.
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aefjh d c g b i jfeah d c g b i

Figure 2.7: A single route before(left) and after(right) an inversion. The order of the
letters between the lines has been reversed.

2.3 Summary

In this chapter the Vehicle Routing Problem has been described. The basic concepts
of Genetic Algorithms were introduced, such as the fitness value, the crossover and the
mutation operators. In the next chapter the development of the Local Search Algorithms
will be explained.
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Chapter 3

Local Search Algorithms

The experience of the last few years has shown that combining Genetic Algorithms with
Local Search Algorithms (LSA) is necessary to be able to solve VRP effectively [10]. The
LSA can be used to improve VRP solutions in two ways. They can either be improvement
heuristics for TSP that are applied to only one route at a time or multi-route improvement
methods that exploit the route structure of a whole solution [13]. In this project, LSA
will only be used to improve a single route at a time.

Most local search heuristics for TSP can be described in a similar way as Lin’s λ-Opt
algorithm [12]. The algorithm removes λ edges from the tour and the remaining segments
are reconnected in every other possible way. If a profitable reconnection is found, i.e. the
first or the best, it is implemented. The process is repeated until no further improvements
can be made and thus a locally optimal tour has been obtained. The most famous LSA
are the simple 2-Opt and 3-Opt algorithms (λ=2 and λ=3 ). The 2-Opt algorithm, which
was first introduced by Croes in 1958 [1], removes two edges from a tour and reconnects
the resulting two subtours in the other possible way. Figure 3.1 is an illustration of a
single step in the 2-Opt algorithm. The illustration is only schematic (i.e. if the lengths
were as they are shown, this move would not have been implemented). For simplicity
later on, the tour is considered directed.

t4

t1t2

t3 t4

t1t2

t3

Figure 3.1: A tour before (left) and after (right) a 2-Opt move.

The 3-Opt algorithm was first proposed by Bock in 1958 [1]. It deletes three edges from
a tour and reconnects the three remaining paths in some other possible way. The 3-Opt
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algorithm is not implemented here because it is not likely to pay off. This is shown in [1]
where test results propose that for problems of 100 customers the performance of 3-Opt
is only 2% better than 2-Opt. The biggest VRP that will be solved in this project has
262 customers and minimum 25 vehicles (see chapter 7) thus each route will most likely
have considerably fewer customers than 100. Therefore, the difference in performance can
be assumed to be even less. Furthermore, 3-Opt is more time consuming and difficult to
implement.

There are different ways to make both 2-Opt and 3-Opt run faster. For instance by
implementing a neighbour-list, which stores the k nearest neighbours for each customer
[1]. As an example, consider a chosen t1 and t2. The number of possible candidates for
t3 (see figure 3.1) is reduced to k instead of n − 3 where n is the number of customers
in the route. However, since the algorithm will be applied to rather short routes, as
was explained above, it will most likely not pay off. The emphasis will be on producing
rather simple but effective and 2-Opt algorithms. The 2-Opt algorithm is very sensitive
to the sequence in which moves are performed [11]. Considering the sequence of moves
three different 2-Opt algorithms have been put forward. In the following sections they
are explained and compared. The best one will be used along in the process.

3.1 Simple Random Algorithm

The Simple Random Algorithm (SRA) is the most simple 2-Opt algorithm explained in
this chapter. It starts by randomly selecting a customer t1 from a given tour, which is
the starting point of the first edge to be removed. Then it searches through all possible
customers for the second edge to be removed giving the largest possible improvement. It
is not possible to remove two edges that are next to each other, because that will only
result in exactly the same tour again. If an improvement is found, the sequence of the
customers in the tour is rearranged according to figure 3.1. The process is repeated until
no further improvement is possible.
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Simple Random(tour)

savings ← 1

while savings > 0 do
t1ind ← random(0, length[tour]-1)
t1 ← tour[t1ind]
t2ind ← t1ind+1 mod length[tour]
t2 ← tour[t2ind]
savings ← 0

for tf ← 0 to length[tour]-1
if tf 6= t1ind and tf 6= t2ind and tf+1 mod length[tour] 6= t1ind

t4ind ← tf
t4 ← tour[t4ind]
t3ind ← t4ind + 1 mod length[tour]
t3 ← tour[t3ind]
distanceDiff ← dist[t1][t2]+dist[t4][t3]-dist[t2][t3]-dist[t1][t4]
if distanceDiff > savings

savings ← distanceDiff
fint3 ← t3ind
fint4 ← t4ind

end for

if savings > 0
Rearrange(t1ind, t2ind, fint3, fint4)

end while

An obvious drawback of the algorithm is the choice of t1, because it is possible to choose
the same customer as t1, repeatedly. The algorithm terminates when no improvement can
be made using that particular t1, which was selected at the start of the iteration. However,
there is a possibility that some further improvements can be made using other customers
as t1. Thus, the effectivity of the algorithm depends too much on the selection of t1. The
algorithm proposed in next section handles this problem by not allowing already selected
customers to be selected again until in next iteration.

3.2 Non Repeating Algorithm

The Non Repeating Algorithm (NRA) is a bit more complicated version of the Simple
Random algorithm. A predefined selection mechanism is used to control the random se-
lection of t1, instead of choosing it entirely by random. The pseudocode for the algorithm
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is shown below.

Non Repeating(tour)

savings ← 1

while savings > 0 do
selectionTour ← tour
top ← length[selectionTour]-1
savings ← 0

for t ← 0 to length[selectionTour]-1
selind ← random(0, top)
(t1, t1ind) ← findInTour(selectionTour[selind])
exchange selectionTour[top] ↔ selectionTour[selind]
t2ind ← t1ind+1 mod length[tour]
t2 ← tour[t2ind]
savings ← 0

for tf ← 0 to length[tour]
if tf 6= t1ind and tf 6= t2ind and tf+1 mod length[tour] 6= t1ind

t4ind ← tf
t4 ← tour[t4ind]
t3ind ← t4ind + 1 mod length[tour]
t3 ← tour[t3ind]
distanceDiff ← dist[t1][t2]+dist[t4][t3]-dist[t2][t3]-dist[t1][t4]
if distanceDiff > savings

savings ← distanceDiff
fint3 ← t3ind
fint4 ← t4ind

end for

if savings > 0
Rearrange(t1ind, t2ind, fint3, fint4)

end for

end while

The selection mechanism is implemented in the outmost for loop. It allows each customer
in the tour to be selected only once in each iteration (inside the while-loop). The cus-
tomers are randomly selected one by one and when they have been used as t1, they are
eliminated from the selection until in next iteration. Figure 3.2 shows a single step using
the technique.
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Figure 3.2: Selection mechanism for t1. The first customer sel is selected randomly among
the five customers. Afterwards, it switches places with the last customer and the pointer
top is reduced by one. The second customers is selected among the four customers left.

Considering the tour at the left hand side in the figure the process is following: Firstly, a
pointer top is set at the last customer. Secondly, customer no. 5 is randomly chosen from
the customers having indices 1 to top. Then customer no. 5 and the one being pointed
at, which is customer no. 4, switch places. Finally, the pointer is reduced by one, so in
next step customer no. 5 has no possibility of being chosen again in this iteration.

In the beginning of each iteration the algorithm starts by making a copy of the tour
into selectionTour, in order to preserve the original tour. Then t1 is randomly selected
and edge e1 is defined. By going through all the potential customers in the tour, the
customer t4 providing the best improvement is found. As in SRA, it is disallowed to
choose the second edge e2 next to e1 because that will generate the same tour again.
If an improvement to the tour is found, the best one is implemented. Otherwise the
algorithm terminates. The final iteration does not improve the tour but it is necessary
to verify that no further improvements can be made. When termination occurs a local
optimum tour has been found.

3.3 Steepest Improvement Algorithm

The Steepest Improvement Algorithm (SIA) has a bit different structure than the two
previous 2-opt algorithms. SRA and NRA choose a single customer t1, find the customer
t4 among other customers in the tour that will give the largest saving and rearrange the
tour. SIA, on the other hand, compares all possible combinations of t1 and t4 to find
the best one and then the tour is rearranged. This means that it performs more distance
evaluations for each route rearrangement. Each time the largest saving for the tour is
performed. The algorithm is best explained by the following pseudocode.
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Steepest Improvement(tour)

savings ← 1

while savings > 0 do
savings ← 0
for t1ind ← 0 to length[tour]-1

for t4ind ← 0 to length[tour]-1
if t4ind 6= t1ind and t4ind 6= t1ind+1 and t4ind+16= t1ind

t1 ← tour[t1ind]
t2 ← tour[t1ind+1]
t3 ← tour[t4ind+1]
t4 ← tour[t4ind]
distanceDiff ← distance[t1][t2]+distance[t4][t3]-distance[t2][t3]
-distance[t1][t4]

if distanceDiff>savings
savings ← distanceDiff
t1best ← t1ind

end for
end for
if savings > 0

Rearrange(t1best,t1best+1,t4best+1,t4best)

end while

There is no randomness involved in the selection of t1. Every combination of t1 and
t4 is tested for possible improvements and the one giving the largest improvement is
implemented. It is necessary to go through all possibilities in the final iteration to make
sure that no further improvements can be made.

3.4 The Running Time

It is very difficult to estimate the running time of the algorithms theoretically. As was
written on page 30, the algorithms are very sensitive to the sequence in which the moves
are performed. Naturally, the running time depends on the problem but it also depends
on the original solution. It is particularly hard to estimate the running time of SRA and
NRA, where the selection sequence is based on random decisions.

However, the relative running time of the operators can be estimated by the means of
their structure. In both SRA and NRA, a rearrangement of a tour is made after almost n
comparisons. On the other hand, each rearrangement of a tour in SIA requires a little less
than n2 comparisons. It is therefore expected that SRA and NRA have similar running
times and compared to them, SIA has longer running time.
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3.5 Comparison

Before carrying on, one of the Local Search Algorithms is chosen for further use in the
project. The performance of the algorithms is only compared for relatively small problems
with 50 customers at most. The largest problem, which GA is applied to in this project
has 262 customers (see chapter 7) therefore it is fair to assume that the routes will not
have more customers than 50. Ten problems were generated using the 5, 10, 15, 20, 25,
30, 35, 40, 45 and 50 first customers in problem kroD100 from [19]. The problems were
solved to optimality by Thomas Stidsen [18] using a branch and cut algorithm. The values
are shown in appendix A. The algorithms were run 5 times on each of the ten instances
and the difference from optimum, standard deviation and time was recorded. Table 3.1
shows the results.

SRA NRA SIA

Problem Diff. Std. dev. Time Diff. Std. dev. Time Diff Std. dev. Time
sizes (%) σ (ms) (%) σ (ms) (%) σ (ms)

5 1,67 1,45 36 0,00 0,00 20 0,00 0,00 20
10 18,54 14,66 18 0,48 0,49 16 0,48 0,49 14
15 58,80 30,45 16 5,33 4,36 18 6,76 6,00 22
20 77,87 46,63 28 2,99 2,96 32 5,52 1,57 26
25 97,87 75,47 10 9,50 2,31 12 8,15 4,13 12
30 109,08 30,54 14 6,64 4,79 14 4,31 4,14 18
35 138,14 36,95 10 6,25 4,01 10 4,69 2,87 20
40 143,32 79,61 18 7,20 2,75 18 7,45 4,36 42
45 121,23 37,71 16 9,24 5,12 16 5,40 3,51 36
50 118,10 24,37 14 5,08 1,32 16 5,85 2,59 46

Average 88,40 37,78 18 5,27 2,81 17 4,86 2,97 26

Table 3.1: The performance of the Local Search Algorithms. SRA is outperformed by
NRA and SIA. NRA and SIA both perform quite well but the average difference from
optimum is smaller for SIA.

The percentage difference from optimum is plotted in a graph in figure 3.3. Figure 3.4
illustrates how the cost gradually improves with the number of iterations. The data is
collected during a single run of each of the algorithms when solving the problem with 25
customers.
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Figure 3.3: Percentage difference for SRA, NRA and SIA. SRA is clearly outperformed
by NRA and SIA, which perform almost equally well. SIA gives a bit better results.
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Figure 3.4: The development of the cost for SRA, NRA and SIA. SRA is clearly not
effective enough. SIA converges slower towards the optimal value than NRA but it gets
a little bit closer to it.

It is quite clear that SRA is not able to compete with neither NRA nor SIA. The difference
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from optimum is much larger, even though the time it uses is relatively short. The
difference from optimum is a little bit smaller for SIA compared to NRA, but the time
is considerably worse. In the latter figure it is illustrated how the convergence of SIA
is much slower than of SRA and NRA and it requires more iterations to obtain a good
solution.

SIA is chosen to be used in the project. According to the results, it provides a little bit
better results and that is considered more important than the time. When the Local
Search Algorithm of choice is applied with other genetic operators in the final testing it
is believed that they account for most of the time therefore the choice is mainly based on
the difference from optimum.

3.6 Summary

In this chapter, three Local Search Algorithm were developed; Simple Random Algorithm,
Non Repeating Algorithm and Steepest Improvement Algorithm. Steepest Improvement
Algorithm was chosen to use further in the project, based on its accuracy. The next
chapter describes the main part of the project, which involves the development of the
fitness value and the genetic operators.
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Chapter 4

The Fitness Value and the Operators

The genetic operators and the evaluation function are among the basic items in GA (see
page 19). The operators can easily be adjusted to different problems and they need to be
carefully designed in order to obtain an effective algorithm.

The geography of VRP plays an essential role when finding a good solution. By the
geography of a VRP it is referred to the relative position of the customers and the depot.
Most of the operators that are explained in this chapter take this into consideration. The
exceptions are Simple Random Crossover and Simple Random Mutation, which depend
exclusively on random choices. They were both adopted from the original project, see
chapter 1. Some of the operators are able to generate infeasible solutions, with routes
violating the capacity constraint, thus the fitness value is designed to handle infeasible
solutions.

Before the fitness value and the different operators are discussed, an overview of the main
issues of the development process is given.

Overview of the Development Process

1. The process began with designing three Local Search Algorithms that have already
been explained and tested in chapter 3.

2. In the beginning, infeasible solutions were not allowed, even though the operators
were capable of producing such solutions. Instead, the operators were applied re-
peatedly until they produced a feasible solution and first then the offspring was
changed. That turned out to be a rather ineffective way to handle infeasible solu-
tions. Instead the solution space was relaxed and a new fitness value was designed
with an additional penalty term depending on how much the vehicle capacity was
violated. This is explained in the next section.

3. The Biggest Overlap Crossover (see section 4.2.2) was the first crossover operator to
be designed, since Simple Random Crossover was adopted from the previous project,
see chapter 1. Experiments showed that both crossover operators were producing
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offsprings that were far from being feasible, i.e. the total demand of the routes was
far from being within the capacity limits. The Repairing Operator was generated
to carefully make the solutions less infeasible, see section 4.4.1.

4. The Horizontal Line Crossover (see section 4.2.3) gave a new approach that was
supposed to generate offsprings, which got their characteristics more equally from
both parents. However, the offsprings turned out to have rather short routes and
too many of them did not have enough similarity to their parents. Geographical
Merge was therefore designed to improve the offsprings by merging short routes.
The Horizontal Line Crossover is discussed in section 4.2.3 and Geographical Merge
is considered in section 4.4.2.

5. Finally, Uniform Crossover was implemented. It was a further development of Hor-
izontal Line Crossover, in order to try to increase the number of routes that were
transferred directly from the parent solutions. The operator is explained in section
4.2.4.

4.1 The Fitness Value

Every solution has a fitness value assigned to it, which measures its quality. The theory
behind the fitness value is explained in section 2.2.3. In the beginning of the project,
no infeasible solutions were allowed, i.e. solutions violating the capacity constraint, even
though the operators were able to generate such solutions. To avoid infeasible solutions
the operators were applied repeatedly until a feasible solution was obtained, which is
inefficient and extremely time consuming. Thus, at first the fitness value was only able
to evaluate feasible VRP solutions.

It is rather straight forward to select a suitable fitness value for a VRP where the quality
of a solution s is based on the total cost of travelling for all vehicles;

fs =
∑

r

costs,r (4.1)

where costs,r denotes the cost of route r in solution s.

Although it is the intention of GA to generate feasible solutions, it can often be profitable
to allow infeasible solutions during the process. Expanding the search space over the
infeasible region does often enable the search for the optimal solution, particularly when
dealing with non-convex feasible search spaces [16], as the search space of large VRP. The
fitness value was made capable of handling infeasible solutions by adding a penalty term
depending on how much the capacity constraint is violated. The penalty was supposed to
be insignificant at the early iterations, allowing infeasible solutions, and predominant in
the end to force the the final solution to be feasible. Experiments were needed to find the
right fitness value that could balance the search between infeasible and feasible solutions.
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It is reasonable to let the penalty function depend on the number of iterations, since it
is supposed to develop with increasing number of iterations. The exponential function
depending on the number of iteration exp(it) was tried, since it had just the right form.
Unfortunately, in the early iterations the program ran into problems because of the size
of the penalty term. The program is implemented in Java and the biggest number Java
can handle is approx. 92234 × 1018. Already in iteration 44, the penalty function grew
beyond those those limits (ln(92234 × 1018) = 43.6683). It also had the drawback that
is did not depend on the problem at all and it always grew equally fast no matter how
many iterations were supposed to be performed.

A new more sophisticated evaluation function for the fitness value was then developed.
It is illustrated in equations 4.2 to 4.4.

fs =
∑

r∈s

costs,r + α ·
it

IT

∑

r∈s

(max(0, totdems,r − cap))2 (4.2)

α =
best

1
IT

(mnv
2
· cap)2

(4.3)

mnv =

⌈
∑

c∈s demc

cap

⌉

(4.4)

where:

it is the current iteration,
IT denotes the total number of iterations,
totdemr,s is the total demand of route r in solution s,
cap represents the uniform capacity of the vehicles,
best is the total cost of the best solution in the beginning and
demc denotes the demand of customer c ∈ s.

The left part of the evaluation function is just the cost as in equation 4.1. It denotes
the fitness value of a feasible solution because the second part equals zero if the capacity
constraint is attained. The second part is the penalty term. The quantity of the violation
of the capacity constraint is raised to the power of 2 and multiplied with a factor α and the
relative number of iterations. By multiplying with it

IT
the penalty factor is dependent on

where in the process it is calculated, instead of the actual number of the current iteration.
The factor α makes the penalty term problem dependent, because it includes the cost of
the best solution in the initial population. It also converts the penalty term into the same
units as the first part of the evaluation function has.

The size of the α determines the effect of the penalty, i.e. a large α increases the influence
of the penalty term on the performance and a small α decreases the effect. Figures 4.1 to
4.4 show four graphs that illustrate the development of the total cost of the best individual
and the total cost, the cost and the penalty of the offspring for three different values of
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α. Since α is calculated by the means of equation 4.3, the graphs show the effect of
multiplying α with a scalar. The results were obtained by solving the problem instance
A-n80-k10 from [20] with Simple Random Crossover, Simple Random Mutation (pSame
= 30%, rate = 100%), Repairing Operator (rate = 100 %) and Steepest Improvement
Algorithm, which are all explained in the following sections. The population size was 50
and the number of iterations was 10000.
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Figure 4.1: The development of the cost of the best individual for three different values
of α as the number of iterations increases.
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Figure 4.2: The development of the total cost of the offspring for three different values of
α as the number of iterations increases.
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Figure 4.3: The development of the cost of the offspring for three different values of α as
the number of iterations increases.
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Figure 4.4: The development of the penalty of the offspring for three different values of
α as the number of iterations increases.

The main purpose of the graphs in the figures above is to show how the size of the penalty
varies for different values of α and the relative size to the cost. In figures 4.1 and 4.3 it
seems as if the convergence becomes more rapid as the value of α decreases, although
the difference is really small. Even though there is a difference is the convergence the
final results are almost identical. As always it is risky to jump to conclusions based on a
single problem because the convergence also depends on the shape of the solutions space.
Different population sizes or operators will probably affect the convergence more. Figures
4.2 and 4.4 illustrate how both the penalty and the total cost of the offspring gradually
increases with the number of iterations and as the value of α increase the penalty also
increases significantly. The values of the y-axis show the size of the penalty compared to
the cost. The graphs also show that most of the time the offspring represents an infeasible
solution, but once in a while a feasible solution is generated since the total cost of the
best individual gradually reduces.

4.2 The Crossover Operators

In chapter 2.2.5 the general idea behind the crossover operator was discussed and a very
simple crossover was illustrated. In this chapter, four more complex crossover operators
are introduced and their development phase is discussed when it is appropriate. All the
crossover operators need two parent solutions P1 and P2 to generate one offspring. P1 is
always the better solution.
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4.2.1 Simple Random Crossover

The Simple Random Crossover (SRC) is the most simple one of the four crossover opera-
tors and it mostly depends on random decisions. In words, the operator randomly selects
a subroute from P2 and inserts it into P1. The pseudocode is the following:

SRCrossover(P1, P2)

copy individual P1 into offspring

randomly select a subroute from P2

delete the members of the subroute from the offspring

bestInd ← BestInsertion(offspring, subroute)

insertSubRoute(offspring, bestInd, subroute)

return offspring

At first, P1 is copied into the offspring, since both P1 and P2 are to be preserved in the
population, until a decision is made to replace them. The offspring is modified and P1
remains untouched. Firstly, a route in P2 is randomly chosen and a subroute is selected
from that particular route, also by random. The subroute contains at least one customer
and at most the whole route. Before inserting the subroute into P1, all its customers are
deleted from P1 to avoid duplications in the solution. It is more preferable to perform the
deletion before the insertion, so the subroute can be inserted as a whole and left untouched
in the offspring. At last, the subroute is inserted in the best possible place, which is found
by the function BestInsertion. The function finds both the route in which the subroute
is inserted and the two customers it is inserted between. Consider k1 denoting the first
customer in the subroute and kn the last one and cm and cm+1 being customers in a route
in the offspring. The pay off of inserting the subroute between cm and cm+1 is measured
by the formula:

pm = cost(cm, cm+1)− cost(cm, k1)− cost(kn, cm+1) (4.5)

where cost(cm, cm+1) is the cost of travelling from cm to cm+1. The algorithm searches
through the whole offspring and inserts the subroute in the place giving the largest payoff.
A new offspring has been generated!

The operator can be described as unrefined. It does not consider the solutions it is working
with at all, because all decisions are based on randomness. The subroute is inserted into
P1, totally disregarding the capacity constraint of the vehicle. The insertion method
can have some drawbacks, since it only looks at the first and the last customer in the
subroute, which do not necessarily represent subroute as a whole. Also if P1 and P2 are
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good solutions, they probably have almost or totally full vehicles on most of the routes
and consequently the operator generates an infeasible solution. Since infeasible solutions
are penalised, it can make the algorithms ineffective if SRC generates infeasible solutions
most of the time.

Furthermore, the geography of the problem is ignored. If the subroute is chosen from a
good or partially good route the operator does not make any effort to choose the good
part to pass on to the offspring. A totally random selection of a subroute can overlook it
or just take a part of it. As a consequence, too much use of random selection can make
it difficult for good characteristics to spread out in the population. On the other hand,
some randomness can be necessary to increase the diversity of the population.

In next chapter a crossover is introduced that compares the geography of the subroute to
the geography of the offspring when inserting the subroute into the offspring.

4.2.2 Biggest Overlap Crossover

The Biggest Overlap Crossover (BOC) can be looked at as an extended version of SRC. It
uses the geography of the solution, i.e. the relative position of the routes, in addition to the
total demand of its routes, when inserting the subroute. Calculating the actual distance
between every two routes can be complicated due to their different shapes. Therefore,
so-called bounding boxes are used to measure the size of each route and to calculate the
distance between them. Further explanation of bounding boxes is given below.

As in SRC, the subroute is randomly selected from P1. There are two possible approaches
of taking the geography or capacity into consideration. The first one, starts by choosing
three routes from P1 considering the size of the overlapping between the bounding boxes
of the subroute and the routes of P1. The subroute is inserted into one of the three routes
having the smallest total demand. The second approach first selects the three routes
having the smallest total demand of the routes in P1, then the subroute is inserted into
the one of the three routes having the biggest overlap with the subroute. Both approaches
can generate infeasible solutions, if the subroute contains customers with too large total
demand. The two approaches that are called First Geography, then Capacity (GC) and
First Capacity, then Geography (CG) are discussed further below and a comparison is
given.

Bounding boxes

Each route has its own bounding box, which is the smallest quadrangle the entire route
fits in (the depot is also a member of every route). Figure 4.5 illustrates the bounding
boxes for a solution with four routes.
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Figure 4.5: Bounding boxes.

In order to estimate the distance between the routes the shortest distance between the
bounding boxes of the routes is found. Often the bounding boxes will overlap, especially
since all routes share the depot. In the figure, the two routes above the depot have
overlapping bounding boxes. The size of the overlapping measures the closeness of the
routes. Naturally, routes with overlapping bounding boxes are considered closer to each
other than routes with non overlapping bounding boxes. If no bounding boxes overlap
the routes with shortest distance between them are considered closest.

First Geography, then Capacity

At first the First Geography, then Capacity approach is discussed. The pseudocode is as
follows:

BOCrossover(P1, P2)

copy individual P1 into offspring

randomly select a subroute from P2

determine the bounding box of the subroute

delete the members of the subroute from the offspring

biggestOverlap ← the 3 routes in P1 having the biggest overlap with the subroute

minDemInd ← the route in biggestOverlap with the smallest total demand

bestInd ← [minDemInd, BestInsertion(offspring[minDemInd], subroute)]

insertSubRoute(offspring, bestInd, subroute)

return offspring
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At first, individual P1 is copied into the offspring to preserve P1 in the population. Sec-
ondly, a subroute is randomly selected from P2 and its bounding box is calculated. Then
its members are deleted from P1 to prevent duplications. By comparing the bounding
boxes of the subroute to the bounding box of each route in P1 the three closest routes
are determined. Finally, the subroute is inserted into the route with the smallest total
demand, in the cheapest possible way, which is given by the function BestInsertion. The
functionality of BestInsertion is described in the previous section.

First Capacity, then Geography

The second version First Capacity, then Geography (CG) considers first the capacity
and then the distance between the routes. The process is very similar to the previous
approach, except when it comes to choosing the insertion route in P1. Firstly, the three
routes having the smallest total demands are chosen from individual P1. The subroute is
inserted into one of the routes closest to the subroute. Again, the function BestInsertion
determines the best place to insert the subroute into the route.

Comparison of GC and CG

The two methods GC and CG weigh the geography and the capacity differently. A
comparison is made to find out if any considerable difference is between the performance
of the two methods. That can give some indication of whether the emphasis should be
on the geography or the capacity.

Table 4.1 shows the performance of the two approaches. The percentage difference from
optimum, the standard deviation σ and time are stated for four problems of different sizes;
A-n32-k5, A-n44-k6, A-n60-k9 and A-n80-k10 from [20]. The results show the average of
5 runs using Simple Random Crossover, Simple Random Mutation (pSame = 30% and
rate = 100%) and Simple Improvement algorithm. The population size was 50 and 10000
iterations were performed.

GC CG
Problem Diff. from Std. dev. Time Diff. from Std. dev. Time

sizes optimum (%) σ (ms) optimum (%) σ (ms)
32 5,08 2,45 3241 17,70 6,00 5125
44 22,08 4,04 5147 47,51 4,53 7168
60 23,40 4,77 7649 73,80 17,52 10876
80 33,56 5,12 12818 67,01 4,55 18490

Average 21,03 4,10 7214 51,51 8,15 10415

Table 4.1: Results from comparison of First Geography, then Capacity and First Capacity,
then Geography.

In figure 4.6 the results are illustrated in a graph.
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Figure 4.6: Comparison of GC (geocap) and CG (capgeo). CG is definitely outperformed
by GC.

The results are clear. For all four problem instances the deviation from optimum is at
least twice as large as for CG compared to GC. Besides, CG is more time consuming.
Therefore, Biggest Overlap Crossover uses the GC approach in the rest of the project.

4.2.3 Horizontal Line Crossover

The Horizontal Line Crossover (HLC) introduces another method to generate offsprings.
SRC and BOC generate offsprings that mostly come from P1, though it depends on the
relative problem size to the vehicle capacity. The HLC tries to combine the solutions
P1 and P2 more equally in the offspring. A horizontal line is drawn through the depot
and divides both solutions into two parts. Bounding boxes (see section 4.2.2) are used
to identify the routes. Routes in P1 having bounding boxes above the line are inserted
untouched into the offspring along with routes in P2 that have bounding boxes below
the line. This is illustrated in figure 4.7. For simplification, the figure shows the routes
without the bounding boxes but in figure 4.5 solution P2 is illustrated with bounding
boxes.
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P1 P2
Offspring

+

Figure 4.7: An illustration of the Horizontal Line Crossover. Routes in P1 above the line
and route in P2 below the line are inserted untouched into the offspring. Note that the
rightmost customer is not a member.

The line has to be drawn through the depot, since all routes contain the depot. It could
also be possible to draw the line vertically. However, the algorithm would not have been
near as effective if the line was drawn at an angle, since the bounding boxes are used
to identify the routes. That would reduce the number of routes that come directly from
the parent solutions into the offspring. In the ideal case, no routes cross the line and
all customers are transfered directly from the parent solutions to the offspring. This is
however not always the case and in order to include all the customers in the offspring
another method is needed to gather the rest of the customers into the offspring. In figure
4.7 the rightmost customer is not yet a member of any route in the offspring.

All classical heuristics that belong to the construction heuristics or the two-phase methods
can be used to generate new routes from the rest of the customers, see section 2.1.4. The
two-phase method the Sweep Algorithm is chosen here. The idea behind the Sweep
Algorithm first came forward in the early 70ťs but generally it is attributed to Gillet and
Miller that proposed it in 1974 [12]. In the first phase feasible routes are made by rotating
a ray centred at the depot and gradually it gathers the customers into clusters or routes.
In the second phase a TSP is solved for each route. Here the Steepest Improvement
Algorithm from chapter 3 is used to improve the routes where the initial order of the
customers is the order in which they are gathered. It can therefore be expected that HLC
depends on Steepest Improvement Algorithm to provide good solutions.

The pseudocode is:
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HLCrossover(P1, P2)

NRP1 ← number of routes in P1
NRP2 ← number of routes in P2
offjind ← 0

for n ← 0 to NRP1
if P1[n] is above a horizontal line through the depot

put route P1[n] into offspring [offjind]
offjind ← offjind + 1

end for

for m ← 0 to NRP2
if P2[m] is below a horizontal line through the depot

put route P2[m] into offspring [offjind]
offjind ← offjind +1

end for

put all other customers into customersLeft

sweep the customers in customersLeft into feasible routes and put into the offspring

return offspring

In order to generate a good crossover, it is essential that the generated offsprings reflect
on its parents. Therefore, it must be the aim of the crossover to pass as many routes
as possible from the parent solutions to the offspring, thus leaving as few customers as
possible to the Sweep Algorithm. The disadvantage of HLC is that its quality depends on
the relative position of the customers to the depot. If the depot is placed relatively high
or low in the graph, the routes will mainly be obtained from only one parent solution.
Also, if many customers are placed around the line, it is expected that many routes cross
the line. Then too many customers will be put into the routes by the Sweep Algorithm
and the crossover will basically become the Sweep Algorithm.

4.2.4 Uniform Crossover

The last type of crossover operator introduced is the Uniform Crossover (UC), which
is named after the Uniform Crossover known in the literature, e.g. in [16]. Consider
solutions represented as binary strings, then for each bit the crossover chooses between
the bits in the parent solutions. In a similar way, UC chooses between the routes of the
parent solutions based on the quality of the routes and as long as they do not conflict
with each other. The goal is to design a crossover that passes more routes directly from
the parents, compared to the HLC in the previous section, and which performance does
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not depend so much on the position of the depots.

In order to be able to explain the algorithm, a small problem of 13 customers is illustrated
in figure 4.8. It shows two parent solutions of the problem and the cost of their routes.
All routes in both these solutions attain the capacity constraint, so there is no penalty
involved in this case.

L1 = 16

L2 = 18

L3 = 14

L4 = 16

P1 P2

1

C

BA

3

2

D4

LA = 20

LB = 21

LC = 14

LD = 16

Figure 4.8: Two parent solutions and their route costs.

When solving VRP, the objective is to minimise the total cost of visiting all the customers
without violating the vehicle capacity constraint, see chapter 2.1. Thus, it is desirable to
have the average cost of travelling between the customers in each route as low as possible.
Therefore, the quotient Rs,r is calculated for each route r of every solution s and used to
measure the quality of them.

Rs,r = totCosts,r/noCusts,r (4.6)

The term totCosts,r is the sum of the cost and penalty for route r in solution s and
noCusts,r denotes the number of customers in route r in solution s. The quotient for each
route in the two solutions in figure 4.8 is:

P1 P2
R1 = 8,0 RA = 5.0
R2 = 6,0 RB = 7.0
R3 = 4,7 RC = 4.7
R4 = 3,2 RD = 5.3

Table 4.2: The quotient Rs,r for each route in figure 4.8.

The idea is now to transfer as many untouched routes from the parents to the offspring.
However, it is not possible to move two routes from different individuals if they conflict
with each other, i.e. they share some customers. Each route in a solution will at least
conflict with one route in the other individual. In order to choose between those routes,
the quotient Rs,r is used. The procedure is as follows; At first the route with the smallest
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value of Rs,r is chosen from P1 and all routes in P2 that conflict with it, are excluded. Then
a route from P2 is selected among the non excluded routes and routes in P1 conflicting
with it are eliminated. This process continues until either all routes have been selected
or all the routes left have been eliminated. Ideally, all customers will be assigned to the
offspring via the routes of the parent solutions. However, generally there will be some
customers that are left out.

1

3

2

D

C

B

A

4

Figure 4.9: Conflicting routes.

Figure 4.9 shows how the routes in the solutions in
figure 4.8 conflict with each other. Firstly, route
4 is selected from P1 having the smallest quotient
according to table 4.2, which eliminates routes A,
C and D. Secondly, route B is selected, excluding
routes 2 and 3. Thirdly, route 1 is chosen and the
process terminates. The resulting offspring has three
routes with altogether 10 customers. The last three
customers need to be inserted into the offspring by
means of other methods.

The pseudocode for UC is much more detailed than the pseudocode of the other crossover
operators, because it is considered necessary in order to explain it well enough. The pseu-
docode is as follows:

UCrossover(P1, P2)

NRP1 ← number of routes in P1
NRP2 ← number of routes in P2
offjind ← 0

for n ← 0 to NRP1
for m ← 0 to NRP2

if P1[n] conflicts with P2[m]
conflicts[n][m] ← 1

end for
end for

calculate RP1,r for all routes r in P1 and put the indices in valueP1 according to a
descending order of RP1,r

calculate RP2,r for all routes r in P2 and put the indices in valueP2 according to a
descending order of RP2,r

for s ← 0 to NRP1
possCandP1 [s] ← 1

end for

continues on next page
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from previous page

for s ← 0 to NRP1
possCandP1 [s] ← 1

end for

P1ind ← 0
P2ind ← 0

while P1ind < NRP1 and P2ind < NRP2 do
foundP1 ← false
foundP2 ← false

while foundP1 = false and P1ind < NRP1 do
if possCandP1 [valueP1 [P1ind]] = 1

offspring [offjind] ← P1[P1ind]
for u ← 0 to Length(conflicts[0])

if conflicts[valueP1 [P1ind]][u] = 1
possCandp2 [u] ← 0

end for
foundP1 ← true
offjind ← offjind + 1

end if

P1ind ← P1ind + 1
end while

while foundP2 = false and P2ind < NRP2 do
if possCandP2 [valueP2 [P2ind]] = 1

offspring [offjind] ← P2[P2ind]
for v ← 0 to Length(conflicts)

if conflicts[v][valueP2 [P2ind]] = 1
possCandP1 [v] ← 0

end for
foundP2 ← true
offjind ← offjind + 1

end if

P2ind ← P2ind + 1
end while

end while

put all other customers into customersLeft
sweep the customers in customersLeft into feasible routes and put into the offspring

return offspring
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In the HLC the Sweep Algorithm is applied to generate feasible routes from the customers
that are left out, see section 4.2.3. The Sweep Algorithm is also used here.

4.3 The Mutation Operator

The aim of the mutation operator is to make random changes to the offspring, which
can not be done by a crossover operator. In chapter 2.2.6, the general idea behind the
mutation operator is explained. One mutation operator was used in the project that is
the Simple Random Mutation. The operator is discussed in the next subsection.

4.3.1 Simple Random Mutation

The Simple Random Mutation (SRM) performs a very simple mutation, which moves a
single customer at a time within the same solution. It is not desirable to apply only the
mutation so it can be assumed that a crossover operator has been applied before and it
has generated an offspring, which SRM is applied to. There is a possibility to apply the
crossover operators with a certain probability to slow down the convergence but there is
no reason to do that when using a steady-state algorithm where only few solutions are
changed within the population in each iteration. The pseudocode for SRM is:

Mutation(offspring, pSame)

NR ← number of routes in offspring
jMut ← random(0,NR)
RL ← number of customers in route jMut
kMut ← random(0,RL)
cust ← offspring [jMut][kMut]

delete cust from jMut

prob ← random(1,100)

if prob < pSame
bestInd ← [jMut, BestInsertion(cust,jMut)]

else do j ← random(0, NR)
while j = jMut
bestInd ← [j, BestInsertion(cust,j)]

insertCust(cust, bestInd)

return offspring
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The operator starts by randomly selecting a route jMut in the offspring and then a
customer within the route is chosen randomly. The customer is deleted from the offspring
to avoid duplication later on. It can either be inserted into the same route again or into
another randomly chosen route within the same solution, controlled by the parameter
pSame. The probability of being inserted into the same route again is equal to pSame.
When the customer is inserted into the same route again, it is possible that it will be
inserted in the same place as before and resulting in the same offspring again. The
function BestInsertion returns the index indicating the best place for the customer to be
inserted. It measures the pay off in the same way as in SRC, see section 4.2.1, but the
insertion route has already been selected. The pay off of inserting customer k between
customers cm and cm+1 is:

pm = cost(cm, cm+1)− cost(cm, k)− cost(k, cm+1) (4.7)

where cost(cm, cm+1) is the cost of travelling between cm and cm+1.

It is important not to cause too much disruption using mutation, because that will ruin
the characteristics of the population and result in a random search. The steady state
algorithm only generates one offspring in each iteration, which the mutation is applied on
with a certain probability called mutation rate, see chapter 2.2.2. Figure 4.10 illustrates
very clearly how the result can get worse if mutation is applied too often. The results are
obtained from using Simple Random Crossover, Repairing Operator, explained in next
section, and Steepest Improvement Algorithm for four problems of different sizes; A-n32-
k5, A-n44-k6, A-n60-k9 and A-n80-k10 from [20]. The numbers are average of five runs
with a population size 50 and 10000 iterations. The mutation operator was applied 1, 2
and 3 times with pSame = 30%.
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Figure 4.10: The effect on the performance of applying SRM number of times. When the
number of application of SRM is increased the difference from optimum gets larger.

4.4 The Supporting Operators

The supporting operators are applied to a single solution similar to the mutation operators
but they have a different purpose. They were developed in order to support the different
crossover operators by repairing their flaws. Two operators were designed; Repairing
Operator and Geographical Merge. They are explained in the following subsections.

4.4.1 Repairing Operator

In the development process of both SRC and BOC it seemed as if they often generated
offsprings that were far from being infeasible, i.e. the violation of the capacity constraint
was relatively large. That caused the penalty term of the fitness value to be too pre-
dominant. An experiment was made by limiting the size of the subroute to 1, 2 or 3
customers. If that would give better results, it was necessary to find a way to reduce
the violation of the capacity. The graphs in figure 4.11 illustrate the effect of reducing
the subroute length. They show the percentage difference from optimum when the two
crossover operators as well as Simple Random Mutation (pSame = 30% and rate = 100%)
and Steepest Improvement Algorithm were used to solve four problems of different sizes;
A-n32-k5, A-n44-k6, A-n60-k9 and A-n80-k10 from [20]. The results are obtained with 5
runs, a population of 50 individuals and 10000 iterations. The numerical results are given
in appendix B.

There is a clear tendency in both graphs that the performance improves when the number
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Figure 4.11: The performance of the Simple Random Crossover and Biggest Overlap
Crossover using different subroute sizes. Max 3 indicates that the subroute contains
maximum 3 customers, etc.

of customers in the subroute is limited. The difference is larger for Simple Random
Crossover, which most likely can be explained with Biggest Overlap Crossover taking the
capacity into consideration when it inserts the subroute into a route. The Simple Random
Crossover chooses the insertion route by random, so often the subroute will be inserted
into a route with high total demand.

Too predominant penalty term can either be caused by the penalty formula or because the
offsprings are in general relatively far from attaining the capacity constraint. Even though
it is the intention to allow infeasible solutions at the early iterations, the population can
have difficulties in improving if many generated offsprings have too large total demands.
Therefore, it was decided to try to make an operator, which could bring the offspring a
bit closer to feasibility. Repairing Operator (RO) was designed to carefully shorten the
routes, starting with the routes violating the capacity constraint at most. It selects the
route with the largest total demand and if it does not attain the capacity constraint, a
customer is randomly chosen and moved to the route with the smallest total demand.

The pseudocode is as follows:
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Repair(offspring)

jMax ← the index of the route in the offspring with largest total demand
maxDem ← the total demand of route jMax
jMin ← the index of the route in the offspring with smallest total demand

if maxDem > K
randomly choose a customer from route jMax
delete the customer from route jMin
insert the customer at the end of route jMin

return offspring

4.4.2 Geographical Merge

The role of Geographical Merge (GM) is to merge two routes, which are close to each other,
within the same individual. Horizontal Line Crossover and Uniform Crossover, explained
in section 4.2.3 and 4.2.4 respectively, tend to generate offsprings with relatively short
routes. In order to illustrate that, the average difference from the capacity was calculated,
separately for the routes with too much total demand and for those with total demand
within the capacity of the vehicles. Equation 4.8 illustrates the formula, which was used
to calculate the difference dp for routes attaining the capacity constraint, where p stands
for plus. If a route does no contain any routes of either kind the difference is set to
zero. The formula for the routes violating the capacity constraint is corresponding. The
following formula shows the difference for the routes attaining the capacity constraint.

dp =

∑

(K − totdemp)

nrp,r

(4.8)

where:

K is the capacity of the vehicles,
totdemp is the total demand of a route r where it is less than K and
nrp denotes number of routes with total demand less than K.

In the following figures the results, which were obtained by solving problem instance A-
n80-k10 from [20] using the two crossover operators, Simple Random Mutation (pSame
= 30% and rate = 100%) and Steepest Improvement Algorithm. The algorithm was run
once with a population size 50 and 10000 iterations. The capacity of the vehicles is 100.
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Figure 4.12: Average difference from capacity using Horizontal Line Crossover.
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Figure 4.13: Average difference from capacity using Uniform Crossover.

The positive difference in the figures indicates how much more demand could be added
to the routes on average in order to fill the vehicles and the negative difference shows
how much more demand than can be carried by the vehicles is in the routes on average.
Particularly when using HLC, there is a relatively large gap between the total demand
and the capacity of the vehicles for feasible routes. The gap is at least 10 capacity
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units, besides from the first iterations. The gap is smaller for UC or usually more than
5 capacity units. Furthermore, figure 4.13 clearly shows that UC does seldom generate
infeasible routes and those that are generated are usually very close to being feasible.

The UC operator uses both the capacity of the routes in addition to the distance between
them to combine them. The distance between every two routes is measured using their
bounding boxes, see section 4.2.2. The pseudocode is rather detailed in order to explain
the operator well enough.

Merge(offspring)

NR ← number of routes in offspring

for g ← 0 to NR
dem1 ← demand of route offspring [g]
for h ← g to NR

dem2 ← demand of route offspring [h]
if dem1 + dem2 ≤ K

goodPairs[g][h] ← 1
end for

end for

biggestoverlap ← 0
closest ← MAX

for e ← 0 to NR
for f ← e to NR

if e 6= f and goodPairs[e][f] = 1
bol ← findOverlap(e,f)
if bol 6= 0 and bol > biggestoverlap

biggestoverlap ← bol
olroute1 ← e
olroute2 ← f

else if biggestoverlap = 0
cl ← findClosest(e,f)
if cl < closest

closest ← cl
clroute1 ← e
clroute2 ← f

end for
end for
insert route clroute2 at the end of clroute1

return offspring
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The operator is applied on a single individual. It starts by identifying pairs of routes
that together have the total demand within the limits of the capacity, thus it does not
generate infeasible routes. Then the pair of routes closest to each other is selected. If
the bounding boxes of the routes overlap, the pair with the largest overlap is chosen.
Otherwise, it selects the pair with the shortest distance between the bounding boxes.
Finally, the routes are merged together by adding the one route at the end of the other.

4.5 Summary

In this chapter the development process of the fitness value and 7 operators is dis-
cussed. Four crossover operators are explained; Simple Random Crossover, Biggest Over-
lap Crossover, Horizontal Line Crossover and Uniform Crossover. Simple Random Muta-
tion, the only mutation operator, is described and also two supporting operators; Repair-
ing Operator and Geographical Merge. In the next chapter some implementation issues
are discussed.
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Chapter 5

Implementation

In this chapter implementation issues are discussed, such as information about the com-
puter, the experiments that were carried out and computation of Euclidean distances,
among other things.

Computational experiments were carried out on a Zitech PC with a 800 MHz AMD
Athlon(tm) processor. The program was implemented using the Java 1.3.1_01 Standard
Edition and compiled using the java compiler.

The CPU-time was calculated using the function currentTimeMillis() in Java. It returns
the current time in milliseconds since midnight January 1, 1970 GMT. The function is
used right before the algorithm is applied in the code and again afterwards. The execution
time of the algorithm is the difference between two measurements.

The cost of travelling between every two customers was calculated using Euclidean dis-
tances. Some problem instances have been calculated using real numbers in which the
best results are presented. Others are calculated with integers. When integers are used,
the rounding function Nearest Integer function nint was used to convert the Euclidean
distances into integers. The function returns the integer closest to the given number
and half-integers are rounded up to the smallest integer bigger than the number, i.e.
nint(1.4) = 1, nint(3.8) = 4 and nint(5.5) = 6. When Java rounds real numbers, all
numbers are rounded down to the nearest integer. Therefore, a constant 0.5 was added
to all the real numbers in order to simulate nint. For instance, Java rounds 3.8 down to
3 by Java but by adding 0.5 to it, 3.8 + 0.5 = 4.3, it is instead rounded ”up” to 4!

In section 2.2.2 the representation of the VRP solution used in this project is described.
The population is implemented as a 3-dimensional array M × dim × dim, where M is the
population size and dim is the number of customers in each problem. So Pop[2][5][3] = 5
means that customer no. 5 is visited number 4 in route 6 in the third individual in the
population (indices start in 0 in Java).

The advantage of presenting the population in this way is that it is very simple to imple-
ment. Furthermore, it simplifies communication and gives a good overview. The drawback
is that it contains a lot of empty spaces that use memory, where either the number of
customers is less than dim or the number of routes is less than dim. The memory need
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of the population could be reduced by using upper bound on the number of customers
within a route or on the number of routes, based on the problem to be solved. However,
one should be careful about using upper bounds because Java is not able to enlarge an
array dynamically. Thus if the program tries to insert a customer outside the array the
program terminates.

In order to save computational time, the total cost of each individual was kept in separate
arrays for the cost and the penalty. Since the program used a steady-state algorithm (see
section 2.2.2) only few solutions were changed in each iteration. When a solution was
changed, it was noted in the cost and the penalty array and next time it was selected the
cost was recalculated. In a similar way the bounding boxes were also kept in an array.
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Chapter 6

Parameter Tuning

Many parameters are involved in solving VRP with GA. The values of those need to
be tuned. Good parameter tuning is important for all GA to generate good solutions.
Usually, it is complex to tune the parameters because the relationship between them can
be rather complicated and unclear. Most algorithms contain many parameters and the
more they get the more time consuming the tuning becomes. Ideally, all parameters
should be tuned but that is in general too time consuming. However, it is important to
tune as many as possible. In the following section all parameters are listed, it is explained
how they were tuned and the values they were given are shown.

6.1 The Parameters and the Tuning Description

The parameters are divided into two groups of more or less important parameters. In the
group of more important parameters are those that are believed to have more influence on
the effectivity of the algorithm. In the other group are parameters of less significance and
the effect of some of them has been discussed in the previous chapter. The parameters
are listed in the two tables below:

1. The Population size (M).
2. The rate of SRM.
3. The rate of RO.
4. The rate of GM.

Table 6.1: The more important parameters.
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5. A scaling factor for α in the penalty function.
6. The power in the penalty function.
7. The power in the α function.
8. The tournament size when choosing parent solutions.
9. The probability of Tournament Selection when choosing parent.

solutions.
10. The tournament size when choosing an individual leaving the

population.
11. The probability of Tournament Selection when choosing an

individual out of population.
12. The rate of SRC.
13. The subroute length in SRC.
14. The rate of BOC.
15. The subroute length in BOC.
16. Number of routes closest to the subroute in BOC.
17. The rate of HLC.
18. The rate of UC.
19. The scaling factor for evaluating the quality of the routes in UC.
20. The probability of inserting the subroute into the same route again in

SRM (pSame).
21. Number of customers moved in SRM.
22. Number of customers moved in RO.

Table 6.2: The less important parameters.

Although it is desirable to tune all possible parameters, it is hardly never possible for
a program of this size because it takes too much time. Here only the more important
parameters are tuned. The reasons for why the less important parameters are considered
so and why they are not tuned are the following:

Parameter 5: The effect of different values of α was discussed shortly in section 4.1 and
because of limited time it is not tuned here.

Parameters 6 and 7: The power in neither the penalty function nor the α-function are
tuned, because that will have similar effect as tuning of α. For simplification and
to save time they are kept constant.

Parameters 8 and 10: The tournament sizes of neither selection of parent solutions
nor the solution leaving the population are tuned. The convergence depends both
on the selection pressure and the population size and to save time the convergence
will be balanced by tuning the population size with constant tournament size of two.

Parameters 9 and 11: It is not important to tune the probability of tournament selec-
tion when using a steady-state algorithm. On the other hand, it can be necessary
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to reduce the selection pressure by applying the tournament selection with a certain
probability when generational algorithms are used, see page 20.

Parameters 12, 14, 17 and 18: The probability of applying a crossover operator is not
tuned. Skipping a crossover in some iterations can be done to be better able to pre-
serve a part of the population from one iteration to another. That is not important
here because a steady-state algorithm is used.

Parameters 13 and 15: The lengths of the subroutes in SRC and BOC are not tuned
because it is important to keep some randomness in the crossover operators.

Parameters 16, 19 and 20: The number of routes or candidates in BOC, is not tuned
since it will most likely not have much influence compared to the time it takes to
tune it. For the same reasons a possible scaling factor in UC and pSame are not
tuned. The parameter pSame is set to 30%, which has worked out fine during the
development process of the project.

Parameters 21 and 22: Instead of tuning the number of customers moved in SRM and
RO directly they are tuned at some degree by tuning the rate of the operators where
it is possible to apply them twice.

Two algorithms are defined; a fast algorithm with 10000 iterations and a slow algorithm
with 100000 iterations. The algorithms are tuned for different sets of population sizes
but parameters 2, 3 and 4 are tuned for the same values for both algorithms. Since there
is not a linear correlation between the population size and the number of iterations, the
slow algorithm is not necessarily expected to perform better than the fast algorithm.

The problem instances that are used for both tuning and testing are divided into two
groups of small instances with less than 100 customers and large instances with 100 cus-
tomers or more. The size of the large instances limits the possible population size to 100
due to the memory of the computer that is used. Furthermore, running the slow algo-
rithm using a relatively large population for large problems is extremely time consuming.
Thus, the large instances are only tuned for the fast algorithm and smaller populations.
The values of parameters 2, 3 and 4 for the slow algorithm and the large instances are
borrowed from the tuning of the small instances for the slow algorithms. The possible
values of parameters are chosen based on the experience that has been gained during the
development process. The following tables show the possible values for small problems
using fast and slow algorithm and large problems using fast algorithm.
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Parameters Fast Slow
1 Population size (M) 50,100,200 200,400
2 SRM rate (%) 0,50,100,200 0,50,100,200
3 RO rate (%) 0,50,100,200 0,50,100,200
4 GM rate (%) 0,50,100,200 0,50,100,200

Table 6.3: Possible values of parameters for small problems using a fast or a slow algo-
rithm.

Parameters Fast
1 Population size (M) 50,100
2 SRM rate (%) 0,50,100,200
3 RO rate (%) 0,50,100,200
4 GM rate (%) 0,50,100,200

Table 6.4: Possible values of parameters for large problems using fast algorithm.

Ideally, it is preferred to tune all possible combinations of operators. For time reasons,
that will not be done here. Instead 8 combinations of operators are considered. Each
crossover operator is tuned with SRM and a corresponding supporting operator, RO or
GM. Furthermore, they are tuned with and without SIA. The different combinations are:

1. SRC, SRM, RO and SIA
2. SRC, SRM and RO
3. BOC, SRM, RO and SIA
4. BOC, SRM and RO
5. HLC, SRM, GM and SIA
6. HLC, SRM and GM
7. UC, SRM, GM and SIA
8. UC, SRM and GM

It is essential not to use the same problem instances for tuning and testing. Four problem
instances are chosen for the parameter tuning; two small problems and two large prob-
lems. The final testing is performed with 12 small problem instances and 7 large problem
instances, thus the sets of tuning problems are 1

7
and 2

9
of the whole set of problems.

Table 6.5 illustrates the problems. The bold results correspond to optimal values and the
regular results denote the best know values.
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Small Large
Problem Size Optimal/ Problem Size Optimal/

Best known value Best known value
A-n32-k5 32 784 P-n101-k4 101 681
vrpnc1 50 524,61 vrpnc12 100 819,56

Table 6.5: Small and large tuning problems, their sizes and best known or optimal values.

The tuning instances are chosen among the different types of problems that are used in the
final testing. Problems A-n32-k5 and P-n101-k4 belong to sets A and P of the Augerat
et al. problems in [20] and problems vrpnc1 and vrpnc12 belong to the Christofides,
Mingozzi and Toth (CMT) problems in [17]. They are often used in the literature to
compare different metaheuristics when solving VRP.

The optimal values of the Augerat et al. problems are given in integers and the best
known values of the CMT problems are given in real numbers. For simplification all
tuning is performed using integers to compute the cost. The results are presented as
percentage difference from the optimal or best known value. Using integers does not
affect the tuning results because the best suited parameters are chosen using the relative
difference in performance between the different combinations of the parameters. However,
when an algorithm is close to finding the optimal or best known values of the problems it
is possible that the results will so sometimes be negative. That can be explained by the
accumulated error of using integers instead of real numbers.

6.2 The Results of Tuning

The results of the parameter tuning are revealed in tables in appendix C, which show the
percentage difference from optimum and the standard deviation. When the parameters
were chosen, an effort was made to find the best combination for both problem instances.
There was in general a fine consistency in the results of both tuning problems for all com-
binations of operators. Tables 6.6 to 6.9 illustrate the tuning results. The combinations
of operators are illustrated on page 68.

Combination 1 Combination 2
Type M SRM (%) RO (%) M SRM (%) RO (%)

Small and fast 100 50 200 200 0 200
Small and slow 400 50 200 400 100 100
Large and fast 50 0 200 50 0 200
Large and slow 100 50 200 100 100 100

Table 6.6: Tuned parameters for combinations 1 and 2, i.e. SRC with and without SIA.
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Combination 3 Combination 4
Type M SRM (%) RO (%) M SRM (%) RO (%)

Small and fast 50 100 100 50 50 100
Small and slow 200 50 100 400 100 100
Large and fast 50 50 200 50 100 100
Large and slow 100 50 100 100 100 100

Table 6.7: Tuned parameters for combinations 3 and 4, i.e. BOC with and without SIA.

Combination 5 Combination 6
Type M SRM (%) GM (%) M SRM (%) GM (%)

Small and fast 50 50 50 50 100 50
Small and slow 200 50 50 200 50 0
Large and fast 50 100 50 50 100 200
Large and slow 100 50 50 100 50 0

Table 6.8: Tuned parameters for combinations 5 and 6, i.e. HLC with and without SIA.

Combination 7 Combination 8
Type M SRM (%) GM (%) M SRM (%) GM (%)

Small and fast 100 100 100 200 100 50
Small and slow 400 50 50 200 100 200
Large and fast 100 100 50 50 100 100
Large and slow 100 50 50 100 100 200

Table 6.9: Tuned parameters for combinations 7 and 8, i.e. UC with and without SIA.

6.3 Summary

All possible parameters of the program have been listed. The more important parameters
have been tuned for 8 different combinations of operators and their values are given in
tables 6.6 to 6.9. In the next chapter the final testing is described and the results are
illustrated.
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Chapter 7

Testing

In this chapter the testing of the operators is described and the results are illustrated. The
operators are tested by the the means of 8 different combinations that are illustrated on
page 68 and the testing is performed using the parameters found in tables 6.6 to 6.9 in the
previous chapter. The tests are made in two steps. Firstly, all combinations of operators
are tested in order to choose the best combination. Secondly, the best combination is
applied to an additional number of problems and the results are compared to recently
proposed results of other metaheuristics.

7.1 The Benchmark Problems

The testing is performed on 12 small and 7 large problems, which are listed in the tables
below. It would have been desirable to perform the testing using more large problems
but large problems with known optimal or best values were difficult to find. The optimal
values are illustrated bold.
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Problem Size Optimal/
Best known values

E-n33-k4 33 835
B-n41-k6 41 829
F-n45-k4 45 724
P-n50-k7 50 554
A-n60-k9 60 1354
B-n68-k9 68 1272
F-n72-k4 72 237
E-n76-k7 76 682
P-n76-k5 76 627
B-n78-k10 78 1221
A-n80-k10 80 1763

vrpnc2 75 835,26

Table 7.1: The sizes and the optimal or best known values of the small problems.

Problem Size Optimal/
Best known values

F-n135-k7 135 1162
E-101-k8 101 817

G-n262-k25 262 6119
vrpnc3 100 826,14
vrpnc4 150 1028,42
vrpnc5 199 1291,45
vrpnc11 120 1042,11

Table 7.2: The sizes and the optimal or best known values of the large problems.

The problem instances belong to different groups of known problems. Problems E-n33-k4,
E-n76-k7 and E-n101-k8 belong to the Christofides and Eilon problems. B-n41-k6, P-n50-
k7, A-n60-k9, B-n68-k9, P-n76-k5, B-n78-k10 and A-n80-k10 belong to the problem sets
A, B and P of Augerat et al. Problems F-n45-k4, F-n72-k4 and F-n135-k7 belong to the
group of problems proposed by Fisher. G-n262-k25 is a Gillet and Johnson problem. All
these problems are from [20]. The vrpnc-problems of Christofides, Mingozzi and Toth
(CMT) are the problems in which most recently proposed results of metaheuristics for
VRP are presented. They are from [17].

7.2 Test Description

Each crossover operator is tested with and without SIA, i.e. for 8 different combinations
of operators. Each combination is tested four times, i.e. for both small and large problems
and both fast and slow algorithm.
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The first part of the testing is performed in order to choose the best possible combination
for each problem size and each type of algorithm. Three small and three large problem
instances are selected from tables ?? and 7.2: B-n41-k6, B-n68-k9 and vrpnc2 for small
problems and vrpnc3, vrpnc9 and vrpnc11 for large problems. The different combinations
are applied to these problems and the best one is selected, primarily considering the
accuracy. That is measured by the difference from the optimum or the best known value
of each problem. The selection is based on the average performance of 10 runs. Boxplots
help with illustrating the difference in performance between the operators. Consider the
results in a vector vc where c is the index of the considered combination. A boxplot draws
the median of vc, the minimum and the maximum value, the 1st and the 3rd quartile.

In the second part of the testing, the best combination is applied to the rest of the
problems within each size for each type of algorithm. For each size the results of the fast
and the slow algorithm are compared. The more accurate algorithm is chosen. The results
are presented for solving the small CMT problems with the best algorithm for the small
problems and the large CMT problems with the best algorithm for the large problems. The
results are compared to the proposed results of three Tabu Search heuristics; Taburoute,
Taillard’s Algorithm and Adaptive memory [4], and the Hybrid Genetic Algorithm 2.1.4.

7.3 The Results

In the following 7 subsections the results are presented. The first three subsections involve
the testing for the small problems. The next three sections illustrate the results for the
large problems. In the final subsection, the results of the comparison with proposed the
Tabu Search heuristics and the Hybrid Genetic Algorithm are stated.

7.3.1 Small Problems and Fast Algorithm

In order to choose the best combination of operators, the combinations are compared
using the fast algorithm to solve the small problems. The results of solving the three
small problem instances are illustrated in the following four tables. Each table illustrates
the results of using one of the crossover operators with or without SIA. The results are
presented as the average percentage difference from optimum or best know value, standard
deviation and time. The combinations are explained on page 68 and the parameters are
shown in tables 6.6 to 6.9.
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Combination 1 Combination 2

Problem Diff. from Std. dev. Time Diff. from Std. dev. Time
opt./best (%) σ (ms) opt./best (%) σ (ms)

B-n41-k6 5,1 3,44 5120 7,55 4,31 2273
B-n68-k9 14,11 3,8 10297 23,23 5,83 5094
vrpnc2 16,21 2,33 10453 30,96 6,48 6305

Average 11,81 3,19 8623 20,58 5,54 4557

Table 7.3: Results of solving the small problems with the fast algorithm using SRC with
and without SIA.

Combination 3 Combination 4

Problem Diff. from Std. dev. Time Diff. from Std. dev. Time
opt./best (%) σ (ms) opt./best (%) σ (ms)

B-n41-k6 8,6 4,81 4291 14,68 4,44 1999
B-n68-k9 20,74 3,66 9371 39,16 6,46 4666
vrpnc2 14,13 2,67 13220 32,4 3,59 5894

Average 14,49 3,71 8961 28,75 4,83 4186

Table 7.4: Results of solving the small problems with the fast algorithm using BOC with
and without SIA.

Combination 5 Combination 6

Problem Diff. from Std. dev. Time Diff. from Std. dev. Time
opt./best (%) σ (ms) opt./best (%) σ (ms)

B-n41-k6 12,34 4,99 2768 16,61 6,35 2545
B-n68-k9 11,47 2,47 5885 20,47 4,11 5771
vrpnc2 25,41 4,4 9111 49,03 5,8 7206

Average 16,41 3,95 5921 28,70 5,42 5174

Table 7.5: Results of solving the small problems with the fast algorithm using HLC with
and without SIA.

Combination 7 Combination 8

Problem Diff. from Std. dev. Time Diff. from Std. dev. Time
opt./best (%) σ (ms) opt./best (%) σ (ms)

B-n41-k6 8,06 4,23 5008 15,96 4,14 2685
B-n68-k9 12,51 4,25 11027 19,69 3,69 6084
vrpnc2 13,26 1,96 17548 23,49 2,15 7286

Average 11,28 3,48 11194 19,71 3,32 5342

Table 7.6: Results of solving the small problems with the fast algorithm using UC with
and without SIA.

The boxplot below illustrates the results graphically. Note that the performance of each
combination is presented as average in the tables and as the median in the boxplot. Also
note that combinations 1, 3, 5 and 7 are with SIA and 2, 4, 6 and 8 are without SIA.
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Figure 7.1: The performance of the different combinations for the fast algorithm and the
small problems. Combination 7 gives the best results.

The results illustrate that combination 7 with UC and SIA performs best. Although
combination 1 with SRC and SIA provides almost as good results on average. It is quite
clear that SIA has rather great improving effect for all the crossover operators but it takes
time. For instance, SIA reduces the difference from optimum by almost half for BOC, see
table 7.4. BOC and HLC do not perform well enough. Combination 7 is the most time
consuming one combination and combination 5 is the least time consuming of those that
are supplied with SIA.

Combination 7 is now applied to the rest of the small problems using the fast algorithm
and the results of all problems are illustrated in the table 7.7. The results of B-n41-k6,
B-n68-k9 and vrpnc2 are obtained from table 7.6
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Problem Diff. from Std. dev. Time
opt. (%) σ (ms)

E-n33-k4 4,14 1,99 2857
B-n41-k6 8,06 4,23 5008
F-n45-k4 4,91 2,59 753
P-n50-k7 7,27 3,64 4601
B-n56-k7 7,42 2,38 6019
A-n60-k9 12,82 1,38 6078
B-n68-k9 12,51 4,25 11027
F-n72-k4 25,3 7,62 14101
P-n76-k5 10,25 2,58 12075
B-n78-k10 13,58 1,91 10260
A-n80-k10 16,91 3,5 10836

vrpnc2 13,26 1,96 17548

Average 11,37 3,17 8430

Table 7.7: Results of solving all the small problems with the fast algorithm using combi-
nation 7, i.e. UC and SIA.

7.3.2 Small Problems and Slow Algorithm

In this subsection the combinations of operators are compared for solving the small prob-
lems with the slow algorithm. The results are shown in the tables 7.8 to 7.11. Each table
includes the results of each crossover operator with or without SIA. Different combina-
tions are explained on page 68 and the tuned parameters are shown in tables 6.6 and
6.9.

Combination 1 Combination 2

Problem Diff. from Std. dev. Time Diff. from Std. dev. Time
opt./best (%) σ (ms) opt./best (%) σ (ms)

B-n41-k6 2,41 1,73 46842 4,91 2 20774
B-n68-k9 4,03 1,8 100492 14,25 5,56 46985
vrpnc2 6,08 0,94 96782 18,41 1,66 59957

Average 4,17 1,49 81372 12,52 3,07 42572

Table 7.8: Results of solving the small problems with the slow algorithm using SRC and
SIA.
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Combination 3 Combination 4

Problem Diff. from Std. dev. Time Diff. from Std. dev. Time
opt./best (%) σ (ms) opt./best (%) σ (ms)

B-n41-k6 5,05 3,31 42002 6,12 3,56 19865
B-n68-k9 5,86 3,4 93619 19,51 6,11 45559
vrpnc2 5,28 2,09 142070 18,57 2,95 55418

Average 5,40 2,93 92564 14,73 4,21 40281

Table 7.9: Results of solving the small problems with the slow algorithm using BOC with
and without SIA.

Combination 5 Combination 6

Problem Diff. from Std. dev. Time Diff. from Std. dev. Time
opt./best (%) σ (ms) opt./best (%) σ (ms)

B-n41-k6 5,17 2,05 42782 10,75 3,87 20593
B-n68-k9 9,24 0,99 83666 12,54 2,18 44186
vrpnc2 31,81 3,74 68152 26,58 3,24 59867

Average 15,41 2,26 64867 16,62 3,10 41549

Table 7.10: Results of solving the small problems with the slow algorithm using HLC
with and without SIA.

Combination 7 Combination 8

Problem Diff. from Std. dev. Time Diff. from Std. dev. Time
opt./best (%) σ (ms) opt./best (%) σ (ms)

B-n41-k6 0,83 0,57 54246 3,63 2,83 37645
B-n68-k9 6,58 2,27 101244 10,53 1,89 85522
vrpnc2 7,2 2,07 165125 11,99 2,4 113309

Average 4,87 1,64 106872 8,72 2,37 78825

Table 7.11: Results of solving the small problems with the slow algorithm using UC with
and without SIA.

The results are also illustrated in the boxplot below. Note that the performance of each
combination is presented as average in the tables and as the median in the boxplot. Also
note that combinations 1, 3, 5 and 7 are with SIA and 2, 4, 6 and 8 are without SIA.
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Figure 7.2: The performance of the different combinations for the slow algorithm and
the small problems. Combination 1 gives the best results, but combinations 3 and 7 also
perform quite well.

Combination 1 with SRC and SIA is the best combination. However, combinations 3
with BOC and SIA and 7 with UC and SIA do also perform well. As for the fast algorithm,
application of SIA improves the results of the crossover operators considerably. On the
other hand, combinations with SIA are more time consuming. Both combinations with
HLC perform particularly bad compared to the other combinations.

In table 7.12 the results of applying combination 1 using the slow algorithm to solve the
small problems are shown. The results of problems B-n41-k6, B-n68-k9 and vrpnc2 are
from table 7.8.
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Problem Diff. from Std. dev. Time
opt. (%) σ (ms)

E-n33-k4 0,6 0,7 31216
B-n41-k6 2,41 1,73 46842
F-n45-k4 0,91 0,23 61341
P-n50-k7 2,09 1,1 42566
B-n56-k7 1,37 0,18 53058
A-n60-k9 3,29 1,52 55650
B-n68-k9 4,03 1,8 100492
F-n72-k4 8,86 1,24 156091
P-n76-k5 5,56 2,87 110854
B-n78-k10 6,67 1,27 86476
A-n80-k10 8,09 1,1 93596

vrpnc2 6,08 0,94 96782

Average 4,16 1,22 77914

Table 7.12: Results of solving all the small problems with the slow algorithm using com-
bination 1, i.e. SRC and SIA.

7.3.3 Comparison of Fast and Slow Algorithm for Small Prob-

lems.

Combination 7 with UC and SIA performed best for the fast algorithm and combination
1 with SRC and SIA provided the best results for the slow algorithm. By comparing the
results of tables 7.7 and 7.12 respectively, the slow algorithm with combination 1
turns out to give the best results for the small problems. The difference in the performance
is roughly 7%. Naturally, the slow algorithm is more time consuming. However, by looking
closer at the average time it is observed that 77914 ms are a little bit less than 1,3 min.
That is not particularly bad compared to both Taburoute and Hybrid Genetic Algorithm
in table 7.23 on page 85. Thus, the slow algorithm is selected and it will be used to
compare the algorithm to other metaheuristics.

7.3.4 Large Problems and Fast Algorithm

In order to choose the best combination of the operators, the combinations are compared
using the fast algorithm to solve the large problems. The following four tables illustrate
the results. Each table presents the average percentage difference from optimum, standard
deviation and time of using one of the crossover operators with and without SIA. The
combinations are explained on page 68 and the corresponding parameters are illustrated
in tables 6.6 to 6.9 in the previous chapter.
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Combination 1 Combination 2

Problem Diff. from Std. dev. Time Diff. from Std. dev. Time
opt./best (%) σ (ms) opt./best (%) σ (ms)

vrpnc3 15,84 3,13 29750 32,69 7,65 14954
vrpnc4 30,22 4,13 53300 75,43 7,89 33057
vrpnc11 51,91 7,61 54822 62,98 27,88 21717

Average 32,66 4,96 45957 57,03 14,47 23243

Table 7.13: Results of solving the large problems with the fast algorithm using SRC with
and without SIA.

Combination 3 Combination 4

Problem Diff. from Std. dev. Time Diff. from Std. dev. Time
opt./best (%) σ (ms) opt./best (%) σ (ms)

vrpnc3 18,98 1,27 20358 49,31 4,85 14253
vrpnc4 42,04 2,42 36679 101,19 6,66 31769
vrpnc11 51,64 7,15 33359 71,35 4,82 20769

Average 37,55 3,61 30132 73,95 5,44 22264

Table 7.14: Results of solving the large problems with the fast algorithm using BOC with
and without SIA.

Combination 5 Combination 6

Problem Diff. from Std. dev. Time Diff. from Std. dev. Time
opt./best (%) σ (ms) opt./best (%) σ (ms)

vrpnc3 8,89 1,93 28251 35,86 4,97 8163
vrpnc4 21,96 2,54 45412 85,93 16,76 17885
vrpnc11 28,93 2,32 69858 121,92 14,53 10596

Average 19,93 2,26 47840 81,24 12,09 12215

Table 7.15: Results of solving the large problems with the fast algorithm using HLC with
and without SIA.

Combination 7 Combination 8

Problem Diff. from Std. dev. Time Diff. from Std. dev. Time
opt./best (%) σ (ms) opt./best (%) σ (ms)

vrpnc3 8,69 1,23 35861 26,33 2,75 11565
vrpnc4 15,47 1,99 55290 41,04 4,47 26519
vrpnc11 24,93 3,3 53629 50,93 8,3 16606

Average 16,36 2,17 48260 39,43 5,17 18230

Table 7.16: Results of solving the large problems with the fast algorithm using UC with
and without SIA.

The results are also illustrated in the boxplot below. Note that the performance of each
combination is presented as average in the tables and as the median in the boxplot. Also
note that combinations 1, 3, 5 and 7 are with SIA and 2, 4, 6 and 8 are without SIA.
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Figure 7.3: The performance of the different combinations for the fast algorithm and the
large problems. Combination 7 gives the best results, but combination 5 also performs
quite well.

Combination 7 with UC and SIA is clearly the best one here. Combination 5 with HLC
and SIA performs a bit worse. Combinations 1 with SRC and SIA and 3 with BOC and
SIA do not provide good enough results. The performance of all combinations without
SIA is unacceptable, even though they are less time consuming. Combinations 1, 5 and 7
are almost equally time consuming but combination 3 is quite faster.

The following table illustrates the results of using the fast algorithm with combination 7
to solve all the large problems:

Problem Diff. from Std. dev. Time
opt. (%) σ (ms)

E-101-k8 8,92 3,29 25371
F-n135-k7 28,15 4,48 57096
G-n262-k25 14,17 1,16 131852

vrpnc3 8,69 1,23 35861
vrpnc4 15,47 1,99 55290
vrpnc5 19,84 1,8 93021
vrpnc11 24,93 3,3 53629

Average 17,17 2,46 64589

Table 7.17: Results of solving large problems with the fast algorithm using combination
7, i.e. UC and SIA.
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7.3.5 Large Problems and Slow Algorithm

The results of solving the large problems using the slow algorithm and different combina-
tions of operators are illustrated in the following four tables. The average performance is
presented as difference from optimum or best known values, standard deviation and time.
The combinations are explained on page 68 and the parameters that are used are shown
in tables 6.6 and 6.9 in the previous chapter.

Combination 1 Combination 2

Problem Diff. from Std. dev. Time Diff. from Std. dev. Time
opt./best (%) σ (ms) opt./best (%) σ (ms)

vrpnc3 6,00 2,3 200567 16,51 5,81 99297
vrpnc4 14,36 2,14 366507 37,07 3,69 125445
vrpnc11 31,37 7,32 386998 34,19 10,23 145847

Average 17,24 3,92 318024 29,26 6,58 123530

Table 7.18: Results of solving the large problems with the slow algorithm using SRC with
and without and SIA.

Combination 3 Combination 4

Problem Diff. from Std. dev. Time Diff. from Std. dev. Time
opt./best (%) σ (ms) opt./best (%) σ (ms)

vrpnc3 10,87 3,64 185866 17,37 4,46 137669
vrpnc4 19,96 4,53 344188 42,37 4,29 346149
vrpnc11 28,57 5,17 312109 38,89 9,96 201582

Average 19,80 4,45 280721 32,88 6,24 228467

Table 7.19: Results of solving the large problems with the slow algorithm using BOC with
and without SIA.

Combination 5 Combination 6

Problem Diff. from Std. dev. Time Diff. from Std. dev. Time
opt./best (%) σ (ms) opt./best (%) σ (ms)

vrpnc3 3,09 1,28 239140 21,85 2,84 95496
vrpnc4 15,81 2,96 457284 43,98 3,63 204748
vrpnc11 24,66 2,93 633075 53,75 14,75 130580

Average 14,52 2,39 443166 39,86 7,07 143608

Table 7.20: Results of solving the large problems with the slow algorithm using HLC with
and without SIA.
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Combination 7 Combination 8

Problem Diff. from Std. dev. Time Diff. from Std. dev. Time
opt./best (%) σ (ms) opt./best (%) σ (ms)

vrpnc3 3,27 1,78 202719 12,87 3,18 162174
vrpnc4 10,21 0,82 362012 21,11 3,46 270861
vrpnc11 18,63 1,04 374695 35,44 5,89 229125

Average 10,70 1,21 313142 23,14 4,18 220720

Table 7.21: Results of solving the large problems with the slow algorithm using UC with
and without SIA.

The boxplot below illustrates the results. Note that the performance of each combination
is presented as average in the tables and as the median in the boxplot. Also note that
combinations 1, 3, 5 and 7 are with SIA and 2, 4, 6 and 8 are without SIA.
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Figure 7.4: The performance of the different combinations for the slow algorithm and the
large problems. Combination 7 gives the best results.

Combination 7 with UC and SIA performs best when using the slow algorithm to solve
the large problems. All combinations with SIA perform relatively. Combinations 2, 4,
6 and 8 do not provide good enough results. Combination 3 with BOC and SIA is the
least time consuming of those with SIA. Combinations 1 and 7 are almost equally time
consuming and combination 5 requires the most time.

The following table shows the results of using the slow algorithm with combination 7 to
solve all the large problems.
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Problem Diff. from Std. dev. Time
opt./best (%) σ (ms)

E-101-k8 4,91 2,55 226514
F-n135-k7 17,98 3,36 537567
G-n262-k25 9,13 1,28 1308962

vrpnc3 3,27 1,78 202719
vrpnc4 10,21 0,82 362012
vrpnc5 14,28 1,73 889969
vrpnc11 18,63 1,04 374695

Average 11,20 1,79 557491

Table 7.22: Results of solving all the large problems with the slow algorithm using com-
bination 7, i.e. UC and SIA.

7.3.6 Comparison of Fast and Slow Algorithm for Large Prob-

lems.

Combination 7 with UC and SIA performed best for both the fast algorithm and the
slow algorithm. A comparison of the results of tables 7.17 and 7.22, shows that the
slow algorithm performs better than the fast one. The difference in the performance is
a little bit less than 6%. The slow algorithm is more time consuming. On average it
requires 557491 ms, which accounts for approximately 9,3 min. As before, accuracy is
considered more important than computation time, as long as it is within reasonable
limits. Consequently, the slow algorithm with combination 7 is chosen for the large
problems.

7.3.7 Comparison of the Algorithm and other Metaheuristics

Now it is time to compare the best algorithms that have been obtained in this project
to proposed results of the best metaheuristics. The slow algorithm with combination 1
performed best for the small problems and the slow algorithm with combination 7 provided
the best results for the large problems. Hereafter, the algorithms will be referred to as
SRC-GA and UC-GA, respectively.

In table 7.23 the final results are shown for 7 CMT problems. It was not the intention
of this project to focus specially on the CMT problems but the results of the best meta-
heuristics are proposed by the means of these problems. The CMT problems are actually
14. Those that are not in the following table also include maximum route time and a drop
time for each customer. The algorithm of this project does not support these factors and
those problems are therefore eliminated.

The results of the Tabu Search heuristics Taburoute, Taillard and Adaptive memory are
from [4]. They are explained shortly in section 2.1.4. The results of Taillard and Adaptive
memory present the best performance of several runs. Information about the how the tests
were made for Taburoute are missing. Although a comparison of the best performance of
several runs and the average performance of ten runs is really unfair, it gives a clue about
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the efficiency of the algorithms of this project. Luckily, Berger and Barkaoui present in
[2] the result of the Hybrid Genetic Algorithm (HGA-VRP) as an average performance.
Although, the number of runs is not given. The algorithm is explained shortly in section
2.1.4.

The results of SRC-GA for the small problems are taken from table 7.12 and the results of
UC-GA for the large problems are taken from table 7.22. Problems vrpnc1 and vrpnc12
were used for parameter tuning. Usually, it is not preferable to present the results of
the problems that were used for tuning. However, this is done here in order to make the
comparison based on more problems. Problem vrpnc1 was recalculated using SRC-GA
and the results of vrpnc12 were obtained using UC-GA.

Taburoute Taillard Adaptive HGA-VRP SRC-GA and
memory UC-GA

Problem Perf. Time Perf. Perf. Perf. Time Perf. Time
(%) (min) (%) (%) (%) (min) (%) (min)

vrpnc1 0,00 6,0 0,00 0,00 0,00 2,00 2,12 1,69
vrpnc2 0,06 53,8 0,00 0,00 0,57 14,33 6,08 1,61
vrpnc3 0,04 18,4 0,00 0,00 0,47 27,90 3,27 3,38
vrpnc4 0,08 58,8 0,00 0,00 1,63 48,98 10,21 6,03
vrpnc5 1,84 90,9 0,57 0,00 2,76 55,41 14,28 14,83
vrpnc11 2,75 22,2 0,00 0,00 0,75 22,43 18,63 6,24
vrpnc12 0,00 16,0 0,00 0,00 0,00 7,21 19,07 4,55
Average 0,68 38,01 0,08 0,00 0,88 25,47 10,52 5,48

Table 7.23: Comparison of SRC-GA and UC-GA and proposed results of three Tabu
Search heuristics and the Hybrid Genetic Algorithm. The results above the line are
obtained using SRC-GA and the results below the line are from using UC-GA. Algorithms
SRC-GA and UC-GA do not compete with the other metaheuristics.

The results in the table above illustrate that SRC-GA and UC-GA are outperformed by
the other metaheuristics. Even though the comparison is not perfectly reasonable, the
results are quite clear because the difference in the performance is rather large. The
HGA-VRP appears to be rather effective on average since its results are quite close to
the TS heuristics, which results propose their best performance. Of those algorithms that
present the time, SRC-GA and UC-GA are definitely faster with an average time that is
about 1

5
of the time HGA-VRP requires.

Courdeau et al. [4] make an analysis of the three Tabu Search heuristics above, among
others, in order to evaluate them in terms of accuracy, speed, simplicity and flexibility. The
results are illustrated in table 7.24. An effort has been made to evaluate the algorithms
SRC-GA and UC-GA together and HGA-VRP as well, with the help of the results in
table 7.23. The results can only be used for comparison, since they are mostly based on
personal evaluation. The flexibility of HGA-VRP is left empty because its results are only
illustrated for the CMT problems in [2].



86 Chapter 7. Testing

Taburoute Taillard Adaptive memory HGA-VRP SRC-GA/UC-GA
Accuracy High Very high Very high High Low
Speed Medium Low Low Medium High
Simplicity Medium Medium-low Medium-low Medium High
Flexibility High High High ? High

Table 7.24: Evaluation of SRC-GA, UC-GA and other metaheuristics.

When it comes to accuracy neither SRC-GA nor UC-GA perform well enough. On the
other hand, they score high on speed, simplicity and flexibility.

7.4 Summary

In this chapter the results of the testing have been illustrated. Combination 7 with UC
and SIA turned out to be the best one for the fast algorithm when solving the small
problems. For the slow algorithm, combination 1 with SRC and SIA gave the best results
for the small problems. The slow algorithm outperformed the fast one and was used for
further comparison. Combination 7 provided the best results for both the fast and the
slow algorithm when solving the large problems. The slow algorithm outperformed the
fast one. The best algorithms for the small and the large problems were named SRC-
GA and UC-GA and compared to current best metaheuristics. They were not accurate
enough, but they were quite fast. In the next chapter the results are discussed.
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Chapter 8

Discussion

In this chapter the results of the testing, as illustrated in previous chapter, are discussed.
The discussion is divided into five sections. The first four sections discuss the results of the
comparison of different combinations for both problem sizes and both types of algorithms.
The last one discusses the results in general and the final results.

8.1 Small Problems and Fast Algorithm

When the fast algorithm is applied to the small problems, SRC and UC perform best.
BOC and HLC provide a bit worse solutions. The pattern is the same whether the
operators are supplied with or without SIA. It is interesting how much effect SIA has.
The influence SIA has on HLC and UC indicates that in both operators considerably
many customers are inserted into the offspring by the means of the Sweep Algorithm.

It is also interesting how SRC outperforms BOC because BOC was actually thought of as
an extended version of SRC. It seems as if BOC performs particularly badly on B-n68-k9
compared to the other two problems. In order to try to find out why, the geography of
problems, B-n41-k6, B-n68-k9 and vrpnc2, is first considered. Figures 8.1, 8.2 and 8.3
show the position of the customers and the depot of the problems.
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Figure 8.1: The position of the customers and the depot for B-n41-k6. Note that the
depot is the diamond in (37,35).
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Figure 8.2: The position of the customers and the depot for B-n68-k9. Note that the
depot is the diamond in (87,39).
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Figure 8.3: The position of the customers and the depot for vrpnc2. Note that the depot
is the diamond in (40,40).

The figures illustrate that the customers of B-n41-k6 and B-n68-k9 are gathered in clus-
ters and the customers of vrpnc2 are uniformly distributed. BOC does not appear to
have problems with solving B-n41-k6. Thus, one can conclude that the relatively bad
performance for B-n68-k9 is not due to the geography of the problem. It is therefore
reasonable to compare the optimal solutions of B-n41-k6 and B-n68-k9. Figures 8.4 and
8.5 show the optimal solutions of B-n41-k6 and B-n68-k9.
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Figure 8.4: The optimal solution of B-n41-k6.
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Figure 8.5: The optimal solution of B-n68-k9.

No visible difference is between the structure of the solutions but when the utilisation of
the capacity is observed the difference becomes apparent. The capacity limit is 100 for
both problems. The total demands of the routes in B-n41-k6 are:
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1 2 3 4 5 6
95 100 94 100 99 79

And the total demands of the routes in B-n68-k9 are:

1 2 3 4 5 6 7 8 9
100 100 47 90 99 98 95 100 100

The optimal solutions of both problems have one route that has relatively small total
demand, i.e. route 6 in B-n41-k6 and route 3 in B-n68-k9. However, the total demand of
route 3 in B-n68-k9 is much smaller, where it uses less than half of the available capacity.
The conclusion is that BOC has some difficulties with obtaining good enough solution for
problems of the same kind as B-n68-k9 is.

8.2 Small Problems and Slow Algorithm

Combination 1 with SRC and SIA is the best one when using the slow algorithm to solve
the small problems. But combinations 3 with BOC and SIA and 7 with UC and SIA also
perform well. The effect of SIA is just as clear here as it was for the fast algorithm.

As was explained in the previous section, BOC has some problems with solving problem
B-n68-k6. Although, it appears as when BOC is applied with the slow algorithm, the
difference in performance of the problems B-n68-k9 and vrpnc2 becomes quite smaller
compared to when it is applied with the fast algorithm, see tables 7.14 and 7.19.

8.3 Large Problems and Fast Algorithm

It is interesting how HLC and UC clearly outperform SRC and BOC when the problems
become larger. Apparently, the randomness included in both SRC and BOC does not
provide accurate enough results and more sophisticated methods are needed to obtain
good solutions.

The performance of the four operators without SIA is quite poor. HLC performs partic-
ularly bad without SIA. That strongly indicates that too many customers are inserted
into the routes of the offspring by the means of the Sweep Algorithm. UC does not seem
to rely as much on SIA, thus it can be concluded that relatively few routes are moved
directly to the offsprings from the parent solutions.

It is also interesting how in general the algorithm is better able to solve vrpnc4 than
vrpnc11, because vrpnc4 has 150 customers but vrpnc11 has only 120 customers. In
figures 8.6, 8.7 and 8.8 the structure of the three problems is illustrated.
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Figure 8.6: The position of the customers and the depot for vrpnc3. Note that the depot
is the diamond in (35,35).
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Figure 8.7: The position of the customers and the depot for problem vrpnc4. Note that
the depot is the diamond in (35,35).
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Figure 8.8: The position of the customers and the depot for problem vrpnc11. Note that
the depot is the diamond in (10,45).

In problem vrpnc4 the customers are uniformly distributed but in problem vrpnc11 they
are gather in clusters. It appears as the distribution of the customers affects the per-
formance here. The best known solutions of the problems were not found so different
structure of the solutions can not be ruled out.

8.4 Large Problems and Slow Algorithm

The slow algorithm with combination 7 performs best for the large problems. Combina-
tions 1, 3 and 5 do also perform relatively well. It is interesting to see how the effect of
SIA is reduced compared to the fast algorithm. Combination 8 actually provides quite
good solutions without SIA.

As for the fast algorithm, most combinations perform worse on vrpnc11 than vrpnc4, even
though vrpnc11 has fewer customers. An effort was made to explain the difference in the
previous section.

8.5 The Results in general

In general, combination 7 with UC and SIA is the most effective combination, since
it was the best one 3 times out of 4. For the small problems combination 1 performs
also quite well but combination 5 is the second best for the large problems. The Local
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Search algorithm SIA is essential to obtain an effective algorithm. The performance of
the combinations without it is unacceptable. The overall performance of BOC is rather
bad.

Unfortunately, neither SRC-GA nor UC-GA are competitive to the best TS heuristics or
the HGA-VRP. The average performance of the algorithms together was 10,52% from the
optimum or best known values where the other metaheuristics are within 1%. Even though
the numbers for the TS heuristics are best of several runs it is estimated that difference
in performance of 10% is too much for the algorithms to be considered competitive. Also,
the results of HGA-VRP are average numbers of several runs and they are also within 1%
from the optimum or best known values.

It is unfortunate that the results of the TS heuristics and HGA-VRP are only presented
by the means of the CMT problems. The algorithms SRC-GA and UC-GA is not adjusted
particularly to the CMT problems and they were tuned using other types of problems as
well. It is interesting to see how UC-GA performs relatively well on problem G-n262-k25,
see table 7.22. That indicates that the algorithm does not become less effective as soon
as the problems become larger.

In table 7.24 the heuristics are compared by the means of the criteria speed, simplicity
and flexibility as well as accuracy. Even though the table is mostly based on personal
evaluation, it shows that the algorithms have something to contribute, because it is rel-
atively fast and moreover it is rather simple. Therefore, it would be very interesting to
see if some kind of a combination of HGA-VRP and UC with SIA would be promising.
The idea of HGA-VRP was shortly introduced in section 2.1.4. It uses so-called parallel
version of GA, which generates a number of subpopulations that evolve independently
using a serial GA, like has been done here. Once in a while the subpopulations interact.
HGA-VRP generates two subpopulations. For instance, in order to allow the algorithm to
obtain good solutions for problems of similar type as B-n68-k9, different operators could
be used for different populations. Using Geographical Merge on the one population and
not on the other will most likely help to obtain good solutions, where one route only uses
a small part of the capacity. Therefore, an algorithm would be obtained, which is able to
adapt to different problems with different kinds of optimal solutions.

8.6 Summary

In this chapter the results have been discussed. Combination 7 with UC with SIA has
provided some promising results, particularly for the larger problems. Although, the
results are not quite competitive with proposed results of TS heuristics and the Hybrid
Genetic Algorithm. For further work, a combination of HGA-VRP and UC with SIA is
suggested. In the next chapter the conclusion in presented.
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Chapter 9

Conclusion

The aim of this project was to design an efficient Genetic Algorithm in order to solve
the Capacitated Vehicle Routing Problem (VRP). A program was developed based on
a smaller program, with rather simple crossover and mutation operators, named Simple
Random Crossover and Simple Random Mutation. That program was designed by the
author and Hildur Ólafsdóttir in the course Large-Scale Optimisation at DTU in the
spring of 2003.

At first, three Local Search Algorithms were designed and implemented, in order to im-
prove single routes in the VRP, one at a time. The algorithms were named Simple Ran-
dom Algorithm, Non Repeating Algorithm and Steepest Improvement Algorithm. The
algorithms were compared based on 10 TSP problems with up to 50 customers. Sim-
ple Random Algorithm performed worst by far. The average difference from optimum
was 88,40±37,78%. Non Repeating Algorithm and Steepest Improvement Algorithm pro-
vided good results or 5,27±2,81% and 4,86±2,97% from optimum. Steepest Improvement
Algorithm was chosen for further use.

Three new crossover operators were developed; Biggest Overlap Crossover, Horizontal
Line Crossover and Uniform Crossover. In different ways, they all focus on the geogra-
phy of the problem, in order to try to provide good results. In the development process,
some drawbacks of the crossover operators were discovered. Therefore, two supporting
operators were made. Repairing Operator was designed for Simple Random Crossover
and Biggest Overlap Crossover, and for Horizontal Line Crossover and Uniform Crossover
Geographical Merge was developed. Eight combinations of operators were defined. Two
combinations for each crossover operator, with and without Steepest Improvement Algo-
rithm.

The test problems were divided into small problems defined as having less than 100 cus-
tomers and large problems with 100 customers or more. Additionally, a fast algorithm
with 10000 iterations and relatively small populations and a slow algorithm using 100000
iterations and larger population were defined. For both the small and the large problems,
the combinations of operators were compared using both fast and slow algorithm. Three
test problems of each size were used. When the fast algorithm was used to solve the small
problems, combination 7 with Uniform Crossover and Steepest Improvement Algorithms
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performed best. The difference from optimum or best known values was 11,28±3,48%.
Combination 1 with Simple Random Crossover and Steepest Improvement provided the
best results when the slow algorithm was used to solve the small problems. The results
were 4,17±1,49% from the optimum or best know values. For the large problems, combina-
tion 7 gave the best results when using the fast algorithm. That resulted in 16,36±2,17%
from best known values. When the slow algorithm was used for the large problems, the
best results were again obtained by combination 7. The difference from best known values
was 10,70±1,21%.

For each size, a choice was made between the fast and the slow algorithm. The algorithms
for the small problems were applied to additional 9 problems and the algorithms for the
large problems were applied to additional 4 problems. (Thus the testing was made with
12 small problems and 7 large problems.) For the small problems, the fast algorithm
was 11,37±3,17% from the optimal or best known values and the slow algorithm was
4,16±1,22%. Furthermore, the fast algorithm was 17,17±2,46% from the optimal or best
know values and the slow one was 11,20±1,79%, for the large problems. Thus, the slow
algorithm with combination 1 was chosen for the small problems and the slow algorithm
with combination 7 was chosen for the large problems. The algorithm for the small
problems was called SRC-GA and the algorithm for the large problems was called UC-
GA.

The following hypothesis was stated in chapter 1:

It is possible to develop operators for Genetic Algorithms efficient enough to solve large

Vehicle Routing Problems.

In order to verify the hypothesis, SRC-GA and UC-GA were compared to the Hybrid
Genetic Algorithm (HGA-VRP) and three Tabu Search heuristics: Taburoute, Taillard’s
Algorithm and Adaptive memory. These heuristics have proposed good results on prob-
lems referred to as the Christofides, Mingozzi and Toth problems. The comparison was
based on the results of 7 problems. Taburoute, Taillard’s Algorithm and Adaptive mem-
ory were 0,68, 0,08 and 0,00% from optimum or best known values and HGA-VRP was
0,88%. The results of Taburoute, Taillard’s Algorithm and Adaptive memory are the
best from several runs but the results of HGA-VRP are average results of several runs.
Together SRC-GA and UC-GA did not provide good enough results on these problems,
with an average performance of 10,52%. Thus the hypothesis was rejected.

However, SRC-GA and UC-GA are on average considerably faster than the other heuristics
and more importantly they present some very simple operators. Furthermore, they are
rather flexible. For further work focusing on large problems, it could be very interesting to
make some other hybrid genetic algorithm with Uniform Crossover and the corresponding
operators. That would result in an algorithm with a simple crossover and a number
of subpopulations that are each maintained parallel instead of serial, as was done here.
Hopefully, it would be able to provide relatively good results more quickly, compared to
the one presented in this project.
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Appendix A

Optimal Values for the Problem

Instances in Chapter 3

Problem Optimal value
kroD100-05 5902
kroD100-10 8553
kroD100-15 9997
kroD100-20 10922
kroD100-25 12173
kroD100-30 13480
kroD100-35 14065
kroD100-40 14542
kroD100-45 14707
kroD100-50 16319
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Appendix B

Results of Testing of Repairing

Operator in Chapter 4

B.1 Simple Random Crossover

Difference from optimum
Problem Diff. from Diff. from Diff. from Diff. from

sizes optimum (%) optimum (%) optimum (%) optimum (%)
32 8,21 23,33 33,49 31,53
44 5.84 17.78 20.5 29.68
60 6.2 18.08 23.63 29.13
80 5.84 14.92 23.59 27.9

Average 6,52 18,53 25,30 29,56

Standard deviation
Problem Std. dev. Std. dev. Std. dev. Std. dev.

sizes σ σ σ σ
32 4,45 5,5 6,17 5,01
44 1,38 2,38 3,62 6,16
60 1.69 4,08 4,26 4,41
80 1,74 5,26 7,13 3,98

Average 2,32 4,31 5,30 4,89
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B.2 Biggest Crossover Operator

Difference from optimum
Problem Diff. from Diff. from Diff. from Diff. from

sizes optimum (%) optimum (%) optimum (%) optimum (%)
32 11,76 22,39 26,99 34,42
44 6,56 18,85 23,5 32,33
60 6,71 20,41 22,3 32,48
80 10,03 18,23 25,92 32,66

Average 8,77 19,97 24,68 32,97

Standard deviation
Problem Std. dev. Std. dev. Std. dev. Std. dev.

sizes σ σ σ σ
32 7,95 4,42 4,58 4,73
44 3,05 6,64 3,04 2,12
60 4,29 5,24 5,88 3,74
80 1,85 3,79 3,96 1,95

Average 4,29 5,02 4,37 3,14
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Results of Parameter Tuning

C.1 Combination 1, SRC, SRM, RO and SIA

C.1.1 Small and Fast

A-n32-k5.vrp, M=50, IT=10000

Mutation \ Repair 0 50 100 200
0 15,48 11,56 9,62 5,28 5,94 1,39 5,66 0,8
50 5,99 1,6 3,14 2,19 5,89 0,51 3,47 2,3
100 4,8 4,08 5,15 2,19 3,42 2,26 3,9 2,64
200 14,52 4,52 8,88 2,31 6,91 1,4 6,48 3

A-n32-k5.vrp, M=100, IT=10000

Mutation \ Repair 0 50 100 200
0 13,57 3,21 6,76 2,44 5,79 3,39 5,36 2,57
50 8,65 6,76 4,29 1,86 4,21 2,21 3,93 2,26
100 6,51 0,67 5,1 1,79 4,72 2,3 5,84 0,1
200 10,59 3,62 6,35 1,7 6,63 1,34 6,33 2,25

A-n32-k5.vrp, M=200, IT=10000
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Mutation \ Repair 0 50 100 200
0 13,62 8,85 4,06 2,32 5,77 0,69 5,92 1,06
50 7,14 3,85 4,59 1,78 5,69 2,38 2,7 1,98
100 9,64 3,93 3,9 3 3,39 2,37 3,06 2,34
200 22,32 5,45 9,95 2,32 7,76 5,77 7,53 3,25

vrpcn1, M=50, IT=10000

Mutation \ Repair 0 50 100 200
0 44,51 8,07 16,63 3,89 15,3 0,9 7,94 3,12
50 14,98 8,82 11,37 5,39 7,49 4,09 10,54 4,82
100 23,43 13,81 13,46 4,27 10,6 5,46 7,3 5,15
200 18,86 5,52 12,38 3,5 21,71 6,12 12,25 2,61

vrpcn1, M=100, IT=10000

Mutation \ Repair 0 50 100 200
0 25,84 23,69 8,44 5,47 8,89 1,86 12,44 6,16
50 11,3 1,68 9,78 3,85 8,95 2,02 6,1 1,79
100 10,41 1,47 14,67 6,06 7,17 2,8 5,97 1,51
200 22,98 2,79 13,84 1,44 18,48 3,16 20,19 5,93

vrpcn1, M=200, IT=10000

Mutation \ Repair 0 50 100 200
0 30,22 17,81 11,87 4,63 9,33 4,82 6,16 0,72
50 17,59 4,98 11,37 2,11 12,06 1,82 8,63 3,86
100 18,1 0,87 8,95 3,97 10,48 1,48 14,41 7,35
200 30,16 3,38 20,89 1,4 22,86 2,57 19,94 1,8

C.1.2 Small and Slow

A-n32-k5.vrp, M=200, IT=100000
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Mutation \ Repair 0 50 100 200
0 12,19 5,66 8,27 1,92 9,85 2,23 4,74 2,06
50 6,38 1,95 3,32 3,22 2,86 2,61 1,79 2,05
100 2,73 1,75 4,62 3,07 2,93 3,05 1,48 2,14
200 3,44 3,56 3,88 2,44 2,91 2,29 1,81 1,92

A-n32-k5.vrp, M=400, IT=100000

Mutation \ Repair 0 50 100 200
0 8,62 5,93 7,78 2,63 5,46 2,38 4,11 1,26
50 2,22 1,55 4,13 2,75 4,31 2,07 1,12 2,24
100 2,24 1,1 2,7 1,76 3,32 2,13 0,92 0,75
200 2,6 3 2,45 2,32 1,76 2,3 2,96 2,65

vrpcn1, M=200, IT=100000

Mutation \ Repair 0 50 100 200
0 17,33 2,03 6,73 1,45 7,94 2,36 0 0,54
50 2,67 1,65 1,08 2,09 2,67 0,87 1,84 1,21
100 3,49 1,57 3,17 1,48 3,68 2,68 2,16 1,82
200 6,41 0,18 8,32 1,06 3,81 1,12 4,25 1,71

vrpcn1, M=400, IT=100000

Mutation \ Repair 0 50 100 200
0 4,57 1,36 5,97 2,7 3,3 3,19 3,68 2,65
50 1,84 0,63 1,21 1,04 0,7 0,5 1,14 1,56
100 5,59 1,47 1,21 0,63 2,92 2,18 2,1 1,27
200 7,43 0,62 7,68 3,27 7,11 0,73 4,57 0,56

C.1.3 Large and Fast

P-n101-k4.vrp, M=50, IT=10000
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Mutation \ Repair 0 50 100 200
0 17,33 1,95 16,42 4,13 12,16 2,35 12,92 2,3
50 14,3 2,35 16,65 2,55 16,09 1,33 13,39 2,71
100 14,8 3,94 16,24 3,35 13,48 1,87 14,1 2,99
200 23,67 3,83 18,47 3,71 18,24 1,56 18,94 2,27

P-n101-k4.vrp, M=100, IT=10000

Mutation \ Repair 0 50 100 200
0 16,56 3,55 13,77 2,4 15,62 3,91 12,25 2,16
50 18,18 4,96 15,45 3,77 14,92 2,26 14,19 2,24
100 18,15 1,52 15,62 1,62 18,91 2,66 16,45 2,39
200 23,94 0,84 20,53 2,39 22,64 2,32 20,91 2,59

vrpnc12, M=50, IT=10000

Mutation \ Repair 0 50 100 200
0 60,33 5,73 38,86 6,4 26,38 3,07 21,59 9,62
50 64,07 2,82 45,37 2,06 44,67 7,9 32,11 3,63
100 55,24 4,2 38,78 6,42 37,89 5,05 33,74 0,5
200 93,78 4,69 56,34 3,22 66,79 5,38 44,27 3,8

vrpnc12, M=100, IT=10000

Mutation \ Repair 0 50 100 200
0 82,93 25,96 41,75 6,11 42,93 5,88 31,67 1,97
50 77,36 14,71 52,97 3,97 51,46 12,39 42,03 2,65
100 76,99 5,5 49,92 2,07 60,69 8,83 47,03 2,21
200 105,69 4,37 76,83 4,47 73,5 5,57 63,01 8,54

C.2 Combination 2, SRC, SRM and RO

C.2.1 Small and Fast

A-n32-k5.vrp, M=50, IT=10000
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Mutation \ Repair 0 50 100 200
0 21,61 11,68 12,45 3,81 6,56 3,22 11,99 4,64
50 12,53 7,27 9,95 4,4 9,87 7,39 10,89 3,82
100 13,7 4,66 11,94 2,82 9,97 5,1 10,71 5,98
200 24,01 4,2 20,89 1,9 18,29 5,01 18,7 2,12

A-n32-k5.vrp, M=100, IT=10000

Mutation \ Repair 0 50 100 200
0 17,7 5,65 10,41 2,45 8,78 3,1 10,74 2,47
50 14,13 5,9 9,11 4,86 8,93 4,97 9,44 3,48
100 14,72 5,18 11,4 3,98 7,6 2,99 10 3,25
200 26,58 6,7 20,71 3,96 21,2 2,24 19,54 3,27

A-n32-k5.vrp, M=200, IT=10000

Mutation \ Repair 0 50 100 200
0 16,79 8,95 6,91 3,41 8,52 1,43 10,59 1,48
50 15,82 2,43 11,02 2,83 13,37 2,52 12,81 3,4
100 21,96 5,26 10,43 4,47 11,94 3,79 11,63 1,76
200 31,51 3,66 23,98 3,25 23,67 6,5 19,06 6,14

vrpcn1, M=50, IT=10000

Mutation \ Repair 0 50 100 200
0 33,02 11,5 17,02 2,89 21,4 3,96 15,68 5,14
50 14,73 1,98 22,92 11,49 18,73 3,9 18,1 2,35
100 24,51 2,82 19,11 5,09 21,02 4,22 16,38 3,53
200 36,57 5,26 31,81 9,83 34,29 3,16 31,56 1,49

vrpcn1, M=100, IT=10000

Mutation \ Repair 0 50 100 200
0 37,84 11,12 22,22 7,6 19,49 8,55 19,62 1,48
50 28,25 7,18 23,43 3,19 18,54 6,24 18,67 1,89
100 28,32 3,61 24,44 3,28 20,19 1,89 26,54 5,94
200 42,98 6,67 32,38 2,29 33,52 3,7 38,35 2,36

vrpcn1, M=200, IT=10000
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Mutation \ Repair 0 50 100 200
0 29,78 9,48 16,06 1,19 21,9 6,95 12,51 3,03
50 37,21 2,11 29,14 2,66 26,67 2,06 28,44 0,65
100 43,11 3,43 26,98 2,36 24,95 4,03 24,25 3,04
200 46,29 4,41 47,68 2,67 39,37 4,34 37,78 5,46

C.2.2 Small and Slow

A-n32-k5.vrp, M=200, IT=100000

Mutation \ Repair 0 50 100 200
0 9,9 4,97 8,42 1,33 8,32 4,71 5,48 2,5
50 3,57 2,66 2,98 1,95 3,88 3,26 5,33 3,37
100 5,64 4,21 3,93 2,26 3,6 1,28 3,47 2,75
200 8,7 3,69 7,7 1,36 8,11 2,71 8,62 4,05

A-n32-k5.vrp, M=400, IT=100000

Mutation \ Repair 0 50 100 200
0 12,63 3,83 6,94 3,67 6,58 1,41 3,65 2,14
50 4,77 3,04 2,55 3,15 2,83 2,61 3,19 1,88
100 5,48 1,86 3,44 4,6 2,3 0,65 4,64 2,14
200 11,99 4,4 10,31 3,39 7,47 2,44 7,32 2

vrpcn1, M=200, IT=100000

Mutation \ Repair 0 50 100 200
0 19,87 10,28 10,48 2,09 10,98 1,45 8,19 2,33
50 9,71 3,06 10,73 2,93 9,21 5,82 8,06 0,73
100 9,4 0,18 8,51 2,53 9,14 3,85 7,56 1,39
200 20,38 3,04 15,56 2,44 14,92 1,09 13,14 2,18

vrpcn1, M=400, IT=100000

Mutation \ Repair 0 50 100 200
0 29,27 21,63 13,08 3,86 9,46 3,43 8,38 4,04
50 8,32 0,24 10,35 3,75 7,11 1,56 7,68 0,77
100 10,79 1,6 6,86 0,27 6,1 2,7 6,86 3,91
200 19,56 6,21 16,7 2,09 14,6 2,03 16,7 1,9
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C.2.3 Large and Fast

P-n101-k4.vrp, M=50, IT=10000

Mutation \ Repair 0 50 100 200
0 34,89 5,84 25,87 5 28,49 7,69 23,32 2,68
50 32,86 7,7 35,83 2,39 33,07 4,88 36,95 4,16
100 31,07 5,73 33,33 3,67 36,04 3,29 33,48 5,11
200 49,07 7,57 40,53 3,42 46,73 5,08 45,58 3,11

P-n101-k4.vrp, M=100, IT=10000

Mutation \ Repair 0 50 100 200
0 47,49 3,32 44,38 4,68 40,62 4,38 38,65 4,63
50 54,27 6,67 49,07 2,85 49,81 7,55 48,34 7,22
100 55,48 4,69 51,89 6,93 47,72 4,16 53,13 4
200 65,23 6,41 62,44 6,65 67,25 4,09 59,91 3,37

vrpnc12, M=50, IT=10000

Mutation \ Repair 0 50 100 200
0 67,28 10,12 39,76 9,65 49,63 11,31 45,33 15,75
50 100,57 3,91 69,19 7,59 68,21 5,36 66,63 3,11
100 92,28 3,87 77,64 12,74 70,2 1,19 68,41 1,66
200 141,06 12,47 91,75 3,69 95,89 6,12 82,44 6,04

vrpnc12, M=100, IT=10000

Mutation \ Repair 0 50 100 200
0 110,16 9,68 61,3 5,4 71,5 2,11 45,33 5,79
50 133,01 13,02 86,5 2,75 98,54 10,05 93,9 7,85
100 148,01 8,72 91,02 9,44 89,02 2,75 85,73 7,68
200 168,01 8,03 113,33 7,55 117,93 6,83 102,68 2,45

C.3 Combination 3, BOC, SRM, RO and SIA

C.3.1 Small and Fast

A-n32-k5.vrp, M=50, IT=10000
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Mutation \ Repair 0 50 100 200
0 35,74 5,76 29,85 7,54 29,06 3,47 25,08 5,77
50 5,1 1,09 5,84 0,22 7,22 4,21 7,02 2,74
100 7,47 2,93 4,67 1,2 3,75 1,81 6,51 4,61
200 10,61 5,19 6,17 0,98 7,19 3,09 7,17 3,12

A-n32-k5.vrp, M=100, IT=10000

Mutation \ Repair 0 50 100 200
0 35,2 6,91 18,21 2,87 25,08 9,53 20,46 7,13
50 4,29 2,95 4,64 2,17 3,75 2,49 3,9 4,32
100 6,86 1,06 4,59 1,58 4,59 4,16 3,67 1,77
200 11,05 2,63 8,75 3,07 6,76 3,38 5,03 2,89

A-n32-k5.vrp, M=200, IT=10000

Mutation \ Repair 0 50 100 200
0 20,82 8 19,16 7,02 21,25 5,3 15,54 5,2
50 5,61 1,86 3,34 2,68 5,15 1,56 3,44 2,26
100 7,22 1,38 1,96 2,13 3,16 2,22 4,29 2,48
200 15,48 1,37 7,55 1,76 7,68 1,91 7,68 1,82

vrpcn1, M=50, IT=10000

Mutation \ Repair 0 50 100 200
0 58,22 17,2 40,44 7,91 42,41 2,89 32,51 8,39
50 15,37 7,14 10,67 4,98 8,63 2,03 11,87 4,13
100 5,59 1,75 12,89 4,27 7,37 3,23 13,9 3,1
200 15,37 1,06 21,71 5,04 14,35 1,1 15,17 2,91

vrpcn1, M=100, IT=10000

Mutation \ Repair 0 50 100 200
0 46,1 19,53 18,1 4,67 29,71 4,86 29,4 4,82
50 20,95 8,44 6,92 2,21 14,92 5,37 6,35 0,9
100 13,52 3,56 10,67 2,56 6,92 0,32 9,97 1,45
200 18,54 2,94 13,9 1,48 14,86 2,3 12,51 2,46

vrpcn1, M=200, IT=10000



C.3 Combination 3, BOC, SRM, RO and SIA 111

Mutation \ Repair 0 50 100 200
0 24,76 1,24 16,25 3,7 15,37 3,7 20,83 6,18
50 13,46 2,02 6,92 2,07 8,83 0,39 12,13 5,43
100 14,48 2,39 11,3 1,09 6,73 2,48 11,05 2,65
200 26,16 3,51 14,86 2,2 13,08 2,53 16,38 2,43

C.3.2 Small and Slow

A-n32-k5.vrp, M=200, IT=100000

Mutation \ Repair 0 50 100 200
0 18,19 8,17 18,27 7,29 19,97 5,42 9,77 3,52
50 2,58 2,54 4,29 2,18 2,47 0,75 4,03 1.94
100 5,18 0,63 2,73 2,12 2,37 2,91 2,55 2,56
200 3,98 1,92 3,24 2 3,6 2,68 2,65 2,52

A-n32-k5.vrp, M=400, IT=100000

Mutation \ Repair 0 50 100 200
0 11,81 8,56 11,02 3,42 10 2,58 8,24 2,38
50 4,18 1,78 2,93 2,52 2,6 2,54 1,73 2,06
100 4,82 0,93 4,59 1,55 4,03 2,15 3,7 2,06
200 1,53 1,8 1,79 2,04 3,7 1,91 2,86 1,75

vrpcn1, M=200, IT=100000

Mutation \ Repair 0 50 100 200
0 51,56 4,9 29,71 8,48 27,49 10,3 21,08 4,25
50 5,65 0,65 3,49 2,34 2,22 0,63 2,41 1,62
100 6,22 0,78 3,49 2,21 3,43 2,57 1,65 1,19
200 5,27 3,3 4,63 0,55 3,56 1,47 5,52 0,54

vrpcn1, M=400, IT=100000

Mutation \ Repair 0 50 100 200
0 14,73 5,46 15,87 4,96 17,14 11,59 14,54 3,9
50 3,49 0,24 1,27 0,78 3,94 1,36 2,1 1,79
100 4,19 1,5 6,1 0,71 3,75 0,65 1,65 1,66
200 6,16 0,65 5,14 1,64 4,83 1,65 6,03 0,91
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C.3.3 Large and Fast

P-n101-k4.vrp, M=50, IT=10000

Mutation \ Repair 0 50 100 200
0 30,07 6,51 34,04 5,94 26,02 4,07 30,04 3,89
50 14,48 2,6 11,45 2,73 15,33 4,05 12,63 3,22
100 15,42 4,21 14,63 2,84 14,48 3,56 11,92 3,26
200 18,47 2,82 16,09 2,42 14,86 0,86 18,09 4,59

P-n101-k4.vrp, M=100, IT=10000

Mutation \ Repair 0 50 100 200
0 31,16 4,44 29,81 3,79 30,07 4,21 32,92 3,19
50 17,94 1,95 14,6 2,08 14,86 2,07 13,6 1,76
100 15,95 4,62 14,95 3,47 12,75 3,24 13,01 1,22
200 24,55 3,51 20,38 2,66 21,09 1,59 15,89 1,86

vrpnc12, M=50, IT=10000

Mutation \ Repair 0 50 100 200
0 79,35 17,26 58,21 8,81 63,54 10,09 55,04 6,6
50 61,83 12,29 41,26 4,48 37,56 3,52 34,59 3,84
100 59,59 2,65 40,12 3,05 41,02 6,4 40,73 2,99
200 86,06 13,29 58,25 4,55 58,41 9,16 47,64 2,07

vrpnc12, M=100, IT=10000

Mutation \ Repair 0 50 100 200
0 102,15 26,52 72,52 6,44 60,33 4,46 47,03 9,72
50 68,98 5,03 46,38 1,59 42,76 0,51 52,52 7,27
100 58,13 3,56 44,55 5,93 46,83 3,14 40,61 2,58
200 81,71 7,92 60,24 2,94 64,19 5,72 55,93 12,02

C.4 Combination 4, BOC, SRM and RO

C.4.1 Small and Fast

A-n32-k5.vrp, M=50, IT=10000
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Mutation \ Repair 0 50 100 200
0 41,79 8,5 44,92 2,73 38,85 6,94 40,51 7,33
50 11,4 3,04 10,41 3,07 10,08 3,66 8,93 2,79
100 10,69 4,41 9,72 2,32 10,48 3,59 9,54 1,65
200 22,5 3,85 17,04 1,82 17,86 2,88 17,19 5,56

A-n32-k5.vrp, M=100, IT=10000

Mutation \ Repair 0 50 100 200
0 45,94 5,55 33,37 10,83 33,24 7,96 33,67 2,79
50 13,88 1,18 9,18 2,17 12,02 4,1 10,99 2,6
100 14,52 3,49 9,34 3,15 12,73 4,18 9,54 3,01
200 24,21 4,94 21,15 3,97 20 5,18 20,38 4,21

A-n32-k5.vrp, M=200, IT=10000

Mutation \ Repair 0 50 100 200
0 30,31 7,7 26,48 8,58 27,04 5,1 27,17 6,58
50 12,76 4,22 13,67 3,87 15,36 2,63 11,61 2,25
100 14,16 3,87 12,5 4,13 13,24 2,41 11,17 3,56
200 32,5 4 21,38 5,06 21,73 4,33 21,2 1,95

vrpcn1, M=50, IT=10000

Mutation \ Repair 0 50 100 200
0 54,35 18,03 58,22 4,49 48,63 6,61 56,38 13,9
50 30,22 15,68 15,62 3,9 12,76 3,83 17,78 3,58
100 15,56 4,8 17,65 3,73 17,59 4,82 16,7 1,8
200 34,41 4,82 37,71 1,17 27,68 0,09 28,7 3,46

vrpcn1, M=100, IT=10000

Mutation \ Repair 0 50 100 200
0 55,37 11,5 57,27 5,48 54,86 22,27 36,89 3,95
50 23,87 5,84 22,92 7,01 19,56 2,34 19,81 6,07
100 23,24 5,76 27,62 11,87 24,89 2,11 22,41 11,31
200 40,06 5,34 37,52 5,2 33,27 6,59 27,81 4,02

vrpcn1, M=200, IT=10000
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Mutation \ Repair 0 50 100 200
0 42,22 7,32 29,21 3,35 38,86 8,26 28,89 7,03
50 33,71 5,04 26,35 3,16 26,98 3,04 29,52 3,62
100 38,16 2,38 30,54 2,89 31,81 3,11 24 2,03
200 46,73 4,51 40,13 0,32 40,89 4,5 38,6 2,5

C.4.2 Small and Slow

A-n32-k5.vrp, M=200, IT=100000

Mutation \ Repair 0 50 100 200
0 29,34 7,56 18,09 6,7 21,71 7,83 27,22 6,17
50 5,08 2,41 3,7 1,83 4,9 2,07 5,89 3,39
100 4,49 2,49 5,18 1,02 3,78 3,06 5,46 1,16
200 6,86 4,35 9,03 2,21 8,67 3,69 7,45 1,4

A-n32-k5.vrp, M=400, IT=100000

Mutation \ Repair 0 50 100 200
0 20,82 2,45 15,99 6,93 19,26 5,96 16,94 5,56
50 5,31 1,21 3,49 2,18 3,21 2,09 5,1 4,55
100 4,67 3,22 4,11 2,04 2,7 1,96 5 4,68
200 11,28 2,05 8,32 3,51 8,39 2,21 6,96 1,5

vrpcn1, M=200, IT=100000

Mutation \ Repair 0 50 100 200
0 42,6 3,3 34,6 5,82 30,22 5,77 30,03 5,99
50 11,75 1,82 12,32 1,26 9,4 3,16 3,3 2,85
100 12,38 4,84 6,6 2,38 8,38 2,56 6,98 0,7
200 18,29 2,18 16,19 1,95 14,1 1,68 14,22 0,59

vrpcn1, M=400, IT=100000

Mutation \ Repair 0 50 100 200
0 27,05 10,35 29,46 15,18 32,76 4,85 28,89 3,06
50 10,1 0,41 7,05 3,56 5,97 1,06 7,05 2,24
100 8,95 2,56 9,33 2,57 5,02 2,03 4,89 2,05
200 19,68 2,01 14,67 1,23 16,44 1,71 14,35 3,14
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C.4.3 Large and Fast

P-n101-k4.vrp, M=50, IT=10000

Mutation \ Repair 0 50 100 200
0 56,65 4,56 50,63 5,89 55,8 8,58 55,01 4,88
50 36,71 5,27 25,7 4,92 29,49 2,67 33,86 4,67
100 30,95 4,48 28,11 1,14 25,35 2,83 29,84 3,96
200 46,75 6,7 40,09 1,56 39,24 1,68 38,33 1,04

P-n101-k4.vrp, M=100, IT=10000

Mutation \ Repair 0 50 100 200
0 62,47 6,54 62,53 14,32 57,97 6,57 61,7 6,52
50 47,96 5,77 43,64 7,51 40,7 3,18 39,09 4,28
100 46,55 7,67 46,46 5,09 43,82 3,42 41,41 3,23
200 61,85 7,29 52,28 4,44 58,09 4 53,86 5,02

vrpnc12, M=50, IT=10000

Mutation \ Repair 0 50 100 200
0 138,21 13,89 110,41 20,52 92,68 20,66 79,02 9,1
50 71,54 10,12 67,93 3,62 76,3 9,27 64,15 7,31
100 77,4 2,72 59,31 1,59 62,64 4,95 65,65 0,97
200 116,3 12,31 99,76 1,99 95,61 2,04 93,21 9,05

vrpnc12, M=100, IT=10000

Mutation \ Repair 0 50 100 200
0 142,76 23,66 92,56 6,14 78,78 10,85 84,76 2,33
50 105,57 7,3 81,06 1,06 84,15 2,8 74,55 4,41
100 110,93 10,73 86,63 4,37 89,02 9,91 76,99 8,42
200 125,81 7,13 106,99 3,16 110,57 4,62 94,76 8,56

C.5 Combination 5, HLC, SRM, GM and SIA

C.5.1 Small and Fast

A-n32-k5.vrp, M=50, IT=10000
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Mutation \ Merge 0 50 100 200
0 90,66 49,95 218,07 207,9 308,86 364,67 76,95 58,94
50 19,46 3,18 14,46 2,47 18,7 1,36 17,45 2,47
100 20,2 6,67 14,72 3,78 16,61 2,75 15,23 1,66
200 28,29 4,22 27,76 2,79 29,34 3,54 28,44 2,95

A-n32-k5.vrp, M=100, IT=10000

Mutation \ Repair 0 50 100 200
0 54,15 16,58 101,9 64,17 55,7 15,66 41,05 9,74
50 22,45 3,3 22,81 1,18 22,81 0,71 21,17 3,9
100 22,35 6,43 21,53 4,51 21,53 2,1 21,99 4,63
200 30,59 1,25 31,35 1,84 29,59 5,45 27,63 2,22

A-n32-k5.vrp, M=200, IT=10000

Mutation \ Merge 0 50 100 200
0 39,21 6,82 43,95 6,21 47,1 14,1 43,74 6,91
50 28,04 2,78 25,28 2,97 25,97 4,34 21,76 3
100 26,28 2,78 27,14 2,32 22,47 1,85 27,02 2,03
200 31,84 4,65 27,6 6,37 26,43 3,48 29,54 1,66

vrpcn1, M=50, IT=10000

Mut. \ Merge 0 50 100 200

0 1361,92 636,97 2096,19 2694,95 5129,62 6629,39 2060,16 1382,82
50 13,9 1,17 8,06 2,82 6,73 1,1 7,87 3,47
100 7,75 1,57 12,32 2,41 12,83 3,76 11,62 1,62
200 13,71 2,44 16,89 3,82 13,71 5,41 17,65 5,79

vrpcn1, M=100, IT=10000

Mutation \ Merge 0 50 100 200

0 874,5 431,89 825,96 901,68 223,28 62,6 431,77 329,87
50 14,48 0,54 7,81 3,25 11,17 1,71 7,87 2,38
100 11,3 2,53 11,37 4,63 8,63 2,83 8,38 2,44
200 16,63 4,69 13,59 4,09 16,25 2,89 14,67 3,97

vrpcn1, M=200, IT=10000
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Mutation \ Merge 0 50 100 200
0 156,81 39,58 599,28 576,89 206,1 5,44 185,37 11,51
50 10,54 1,56 12 0,62 9,27 3,76 8,13 6,24
100 10,29 5,13 9,21 3,03 10,41 2,09 9,46 3,7
200 19,68 3,76 15,62 3,26 19,37 0,8 15,05 4,61

C.5.2 Small and Slow

A-n32-k5.vrp, M=200, IT=100000

Mutation \ Merge 0 50 100 200
0 39,67 7,57 172,92 163,37 42,55 5,45 43,49 4,66
50 11,12 2,87 7,93 1,55 10,23 1,79 9,03 2,18
100 10,36 1,95 8,75 1,17 9,97 1,57 8,47 2,79
200 21,45 3,35 24,85 1,29 21,33 2,09 23,14 1,41

A-n32-k5.vrp, M=400, IT=100000

Mutation \ Merge 0 50 100 200
0 33,7 8,77 37,22 2,45 38,62 5,65 38,7 4,25
50 13,11 1,52 12,24 1,63 11,15 3,47 12,37 1,32
100 13,8 2,07 11,45 1,71 11,07 1,14 10,89 1,69
200 26,68 1,46 22,58 2,7 22,73 2,19 25,33 1,07

vrpcn1, M=200, IT=100000

Mutation \ Merge 0 50 100 200

0 3528,19 1330,88 2755,74 2682,38 664,98 675,82 1133,81 652,56
50 7,11 3,5 6,16 2,05 6,03 3,23 9,71 2,35
100 8,83 4,46 6,6 2,78 9,46 2,03 8,44 1,04
200 12,95 2,29 9,02 2,38 9,21 2,96 7,05 0,87

vrpcn1, M=400, IT=100000

Mutation \ Merge 0 50 100 200
0 1139,03 662,73 639,52 628,62 183,49 1,13 184,26 5,64
50 5,52 1,62 7,11 0,36 6,29 0,71 4,57 1,23
100 6,67 3,39 3,94 0,88 6,41 3,46 2,98 1,09
200 10,92 3,44 6,22 2,8 6,67 0,78 8,13 1,97
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C.5.3 Large and Fast

P-n101-k4.vrp, M=50, IT=10000

Mutation \ Merge 0 50 100 200
0 359,76 7,07 367,04 5,63 363,02 6,18 364,97 2,02
50 4,88 1,27 2,97 0,68 3,47 1,56 3,94 1,13
100 4,14 1,34 2,7 0,22 3,32 0,71 2,79 0,54
200 8,37 1,33 8,6 0,73 7,2 1,03 8,11 1,2

P-n101-k4.vrp, M=100, IT=10000

Mutation \ Merge 0 50 100 200
0 354,25 8,6 359,91 11,65 357,64 4,11 357,35 6,53
50 4,55 0,78 3,58 0,85 3,32 0,38 3,61 0,67
100 5,32 1,17 3,94 0,76 3,38 0,56 3,2 0,3
200 7,87 0,68 7,96 0,63 7,93 0,81 7,31 0,73

vrpnc12, M=50, IT=10000

Mut. \ Merge 0 50 100 200

0 939,43 621,54 1861,99 9,76 1265,73 875,78 480,49 8,99
50 25,04 2,5 22,97 2,28 23,54 1,9 24,51 0,34
100 27,4 2,29 23,17 2,18 22,07 2,15 24,11 0,47
200 32,52 1,36 30,69 1,31 29,59 1,4 25,65 3,26

vrpnc12, M=100, IT=10000

Mutation \ Merge 0 50 100 200
0 180,33 215,19 325,41 212,09 181,67 219,06 183,78 215,51
50 26,63 1,04 24,11 2,53 22,72 2,21 21,22 0,8
100 25,24 1,37 22,6 2,05 24,51 1,91 24,35 1,52
200 33,25 0,5 30,45 1,34 29,92 1,13 28,86 0,64

C.6 Combination 6, HLC, SRM and GM

C.6.1 Small and Fast

A-n32-k5.vrp, M=50, IT=10000



C.6 Combination 6, HLC, SRM and GM 119

Mutation \ Merge 0 50 100 200
0 286,99 109,2 394,89 480,67 196,12 104,65 205,32 67,9
50 30,26 3 30,43 1,41 31,02 3,25 29,59 1,99
100 29,26 4,59 28,89 2,96 31,66 1,66 33,34 2,83
200 42,32 5,87 44,08 6,39 39,97 4,96 43,8 2,65

A-n32-k5.vrp, M=100, IT=10000

Mutation \ Merge 0 50 100 200
0 131,15 13,76 99,64 9,13 106,54 17,21 129,94 53,61
50 38,16 1,75 36,38 2,62 37,78 4,22 36,28 2,2
100 37,22 2,49 37,35 2,23 34,62 5,85 34,82 4,39
200 48,06 4,17 46,99 2,84 46,61 2,3 44,82 4,25

A-n32-k5.vrp, M=200, IT=10000

Mutation \ Merge 0 50 100 200
0 90,57 3,36 91,29 13,4 99,79 17,04 93,04 20,33
50 45,23 4,55 44,52 4,09 50,13 1,63 41,43 4,31
100 43,01 3,15 46,25 3,53 48,37 3,28 40,64 2,42
200 49,95 4,41 49,67 5,01 49,21 4,74 52,14 1,1

vrpcn1, M=50, IT=10000

Mut. \ Merge 0 50 100 200

0 188,29 212,98 688,59 395,24 260,54 166,85 239,83 191,34
50 7,75 5,07 7,81 2,76 3,05 2,19 8,7 3,2
100 10,22 4,72 6,73 2,99 12,83 4,13 10,29 7
200 13,4 3,09 9,84 2,38 8,38 1,21 14,86 0,82

vrpcn1, M=100, IT=10000

Mutation \ Merge 0 50 100 200
0 38,04 13,69 48,03 39,06 39,56 22,86 37,17 6,75
50 8,19 1,95 5,46 2,33 10,73 2,07 9,33 3,9
100 8,38 3,56 3,05 2,73 4,13 2,44 6,67 1,02
200 11,94 2,82 9,9 3,42 10,35 4,89 9,71 2,35

vrpcn1, M=200, IT=10000
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Mutation \ Merge 0 50 100 200
0 41,87 8,09 18,1 3,7 29,93 2,48 31 5,79
50 4,63 2,89 8,19 3,82 3,87 3,77 5,46 3,82
100 8,7 4,66 9,14 1,73 5,4 4,57 7,62 2,3
200 12,89 6,06 11,43 4,75 8,89 1,63 14,54 0,55

C.6.2 Small and Slow

A-n32-k5.vrp, M=200, IT=100000

Mutation \ Merge 0 50 100 200
0 97,6 9,81 140,24 138,33 155,93 129,32 158,38 140,13
50 17,12 2,57 19,54 3,88 18,93 0,9 20,89 2,52
100 20,33 2,74 20,26 3,41 21,2 1,44 19,44 1,85
200 35,99 3,47 36,33 3,23 37,83 0,87 35,15 4,37

A-n32-k5.vrp, M=400, IT=100000

Mutation \ Merge 0 50 100 200
0 87,96 11,63 77,22 6,19 83,29 6,91 82,27 10,45
50 24,9 3,24 24,74 2,83 25,18 1,77 22,3 3,76
100 25,84 2,72 23,72 2,83 21,73 3,34 25,05 2,5
200 37,81 4,1 39,08 5,55 40,26 2,07 40 2,59

vrpcn1, M=200, IT=100000

Mutation \ Merge 0 50 100 200
0 1669,87 7,81 2261,78 2903,68 1074,54 1247,3 4329,62 2929,92
50 17,02 4,7 23,81 5,88 19,17 3,09 16,83 3,24
100 16,57 3,21 15,62 3,44 21,59 1,26 21,97 8,02
200 32,63 1,66 32,95 0,97 32,83 4,66 34,41 2,59

vrpcn1, M=400, IT=100000

Mutation \ Merge 0 50 100 200
0 856,94 586,58 687,9 705,9 185,4 7,41 185,4 5,76
50 22,1 3,12 21,08 1,8 21,27 1,53 24,13 1,86
100 23,81 5,2 23,24 4,36 28,32 3,04 22,48 0,81
200 37,52 2,75 36,76 2,06 36,32 1,32 34,67 3,06
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C.6.3 Large and Fast

P-n101-k4.vrp, M=50, IT=10000

Mutation \ Merge 0 50 100 200
0 450,86 2,87 455,07 7,48 449,31 6,05 449,44 5,57
50 51,34 6,57 39,68 8,93 35,3 5,14 38,68 8,54
100 35,95 3,36 36,33 4,55 33,89 1,2 32,89 6,76
200 63,08 5,15 66,46 8,43 62,94 3,72 65,32 7,89

P-n101-k4.vrp, M=100, IT=10000

Mutation \ Merge 0 50 100 200
0 447,13 5,09 450,91 4,85 447,89 8,97 446,81 3,75
50 46,08 3,88 35,42 2,16 37,3 3,78 42,79 5,34
100 51,04 9,43 38,88 2,52 38,09 1,69 40,88 3,57
200 62,64 7,58 67,28 1,71 66,7 5,94 61,44 4,33

vrpnc12, M=50, IT=10000

Mut. \ Merge 0 50 100 200

0 811,3 753,86 966,79 632,5 818,13 776,42 1286,83 873,05
50 48,74 1,26 39,07 5,59 40,98 4,15 44,92 2,91
100 49,51 2,37 44,11 1,1 46,22 1,83 43,29 3,74
200 58,29 2,48 50,2 3,34 56,54 4,35 54,76 2,28

vrpnc12, M=100, IT=10000

Mutation \ Merge 0 50 100 200
0 214,51 216,89 355,81 208,1 198,98 209,92 51,3 1,4
50 49,67 2,95 48,46 3,02 45,28 2,63 45,61 1,25
100 50,28 0,66 47,89 1,84 48,09 1,2 43,66 2,71
200 58,5 2,47 57,52 2,45 52,89 1,79 50,57 0,93

C.7 Combination 7, UC, SRM, GM and SIA

C.7.1 Small and Fast

A-n32-k5.vrp, M=50, IT=10000
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Mutation\Merge 0 50 100 200
0 196,58 131,62 269,83 225,37 306,02 228,42 231,49 117,76
50 9,52 2,86 4,31 2,44 2,98 3,23 6,07 4,17
100 11,35 4,29 5,43 3,81 4,87 2,67 7,65 1,98
200 7,32 3,41 7,98 2,94 6,05 2,04 4,95 2,84

A-n32-k5.vrp, M=100, IT=10000

Mutation\Merge 0 50 100 200
0 88,39 50,83 83,58 57,37 66,31 18,21 84,34 64,3
50 3,57 2,32 2,98 3,59 1,73 2,31 2,45 2,7
100 6,86 5,08 1,96 2,5 2,35 2,82 3,67 3,23
200 11,38 4,57 7,88 0,86 6,79 2,3 8,19 1,8

A-n32-k5.vrp, M=200, IT=10000

Mutation\Merge 0 50 100 200
0 65,28 18,45 71,43 7,92 68,95 49,39 33,04 18,89
50 6,2 3,23 4,87 2,84 2,14 2,62 5,79 4,67
100 6,51 1,53 5,23 2,75 3,85 3,11 2,83 2,39
200 10,03 4,31 7,09 3,91 4,34 2,81 6,45 2,49

vrpcn1, M=50, IT=10000

Mutation\Merge 0 50 100 200

0 217,21 195,86 112,13 66,77 305,81 235,59 450,38 196,97
50 7,3 4,61 12 2,24 9,71 2,24 8,32 8,14
100 9,4 3,14 8,83 6,8 7,05 3,56 9,71 2,7
200 12,19 2,16 13,59 2,38 11,68 4,4 13,52 2,59

vrpcn1, M=100, IT=10000

Mutation\Merge 0 50 100 200
0 95,04 70,68 102,44 66,02 56,72 30,86 78,44 79,36
50 7,11 1,63 4,44 2,61 8 2,66 7,37 0,45
100 11,43 3,27 4,89 2,68 7,81 2,64 9,71 6,84
200 10,16 5,84 5,46 5,38 12 3,77 8,19 2,18

vrpcn1, M=200, IT=10000
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Mutation\Merge 0 50 100 200
0 37,4 6,3 32,1 6,49 25,59 10,74 31,78 8,8
50 4,83 2,46 5,9 3,93 7,43 1,94 4,19 4,21
100 13,21 3,68 5,33 3,37 3,56 0,91 3,75 4,36
200 15,37 7,21 14,41 4,5 10,41 4,38 11,68 6,02

C.7.2 Small and Slow

A-n32-k5.vrp, M=200, IT=100000

Mutation\Merge 0 50 100 200
0 174,15 177,24 90,39 145,8 230,08 175,28 156,91 167,29
50 4,85 2,82 1,1 2,19 2,45 3,01 1,91 2,42
100 4,26 2,16 0 0 4,77 0,94 2,3 1,87
200 4,46 2,33 1,94 2,4 0,77 1,53 1,91 2,42

A-n32-k5.vrp, M=400, IT=100000

Mutation\Merge 0 50 100 200
0 16,58 3,28 14,03 4,2 13,88 2,28 14,95 3,11
50 3,44 2,76 0,03 0,05 2,19 2,21 3,47 2,84
100 2,78 1,7 2,63 2,23 3,01 2,54 0,77 1,53
100 2,58 2,35 0,71 1,43 2,3 2,4 1,02 1,91

vrpcn1, M=200, IT=100000

Mutation\Merge 0 50 100 200
0 25,65 3,77 21,46 2,75 21,18 1,49 23,98 3,32
50 5,27 0,24 2,29 1,89 1,97 1,36 1,65 2,33
100 3,17 4,22 3,75 3,24 3,24 1,5 1,78 1,1
200 1,84 1,45 3,81 2,18 0,83 1,04 2,98 2,34

vrpcn1, M=400, IT=100000

Mutation\Merge 0 50 100 200
0 26,1 1,65 16,32 4,2 16,25 3,6 74,02 80,37
50 2,67 1,36 -0,32 0,63 -0,51 0,36 -0,25 0,71
100 4,06 2,12 0,44 1,21 1,84 0,86 0 0,62
200 5,27 1,71 2,1 2,57 1,33 0,68 1,84 1,8
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C.7.3 Large and Fast

P-n101-k4.vrp, M=50, IT=10000

Mutation\Merge 0 50 100 200
0 74,57 3,18 74,6 1,03 72,1 2,38 71,48 3,69
50 10,43 3,35 8,49 2,23 9,72 1,42 7,99 4
100 13,3 1,78 8,4 2,8 8,55 1,06 7,81 3,53
200 15,15 1,71 12,48 3,11 11,89 3,5 9,81 1,77

P-n101-k4.vrp, M=100, IT=10000

Mutation\Merge 0 50 100 200
0 69,81 2,57 132,7 87,22 70,46 2,38 70,63 3,93
50 12,51 2,1 11,37 2,4 10,19 2,09 11,63 1,87
100 11,25 1,2 7,64 3,07 11,78 1,52 8,81 2,14
200 12,28 2,08 11,07 3,34 12,86 3,83 10,4 3,14

vrpnc12, M=50, IT=10000

Mutation\Merge 0 50 100 200
0 33,98 4,8 29,72 1,93 176,18 208,97 34,15 6,39
50 29,31 4,07 28,05 2,85 20,93 1,23 25,24 0,72
100 25,04 4,29 23,33 2,5 23,13 2,13 24,72 1,91
200 33,66 1,49 26,26 2,13 27,4 1,06 28,29 2,33

vrpnc12, M=100, IT=10000

Mutation\Merge 0 50 100 200
0 29,43 2,56 28,9 2,41 28,66 1,35 29,84 2,88
50 28,41 2,33 21,91 4,37 24,55 0,35 23,74 2,74
100 24,76 2,35 24,47 2,67 24,59 2,7 23,37 2
200 31,99 1,84 25,33 1,45 26,67 1,07 30,37 2,8

C.8 Combination 8, UFC, SRM and GM

C.8.1 Small and Fast

A-n32-k5.vrp, M=50, IT=10000
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Mutation\ Merge 0 50 100 200
0 321,15 251,46 182,14 121,11 353,58 481,9 448,54 303,37
50 12,6 4,43 10,28 6,98 6,94 2,92 8,93 4,67
100 15 5,33 12,86 3,91 10,66 4,27 5,71 2,88
200 14,92 2,23 11,07 4,77 13,06 2,73 13,52 3,53

A-n32-k5.vrp, M=100, IT=10000

Mutation\ Merge 0 50 100 200
0 92,13 47,42 80,17 52,34 116,55 63,02 67,8 11,5
50 10,79 2,6 8,75 3,2 9,57 4,21 6,51 4,5
100 14,52 7,6 8,49 5,68 10,23 2,08 9,18 1,8
200 18,34 1,55 11,07 3,87 15,43 4,45 14,16 2,64

A-n32-k5.vrp, M=200, IT=10000

Mutation\ Merge 0 50 100 200
0 58,19 19,82 50,47 13,9 64,44 8,73 59,39 8,29
50 9,08 3,41 9,74 5,35 10,74 6,85 11,43 4,62
100 12,24 1,59 5,89 3,19 6,66 2,7 9,41 2,13
200 15,56 3,16 15,36 4,47 16,02 4,8 19,23 6,28

vrpcn1, M=50, IT=10000

Mutation\ Merge 0 50 100 200
0 225,83 106,32 1118,17 565,71 598,66 442,08 286,81 296,9
50 22,67 0,82 23,11 8,88 18,67 3,77 19,68 3,55
100 19,3 2,99 15,87 0,59 17,08 3,41 21,97 5,26
200 19,75 3,2 18,22 2,11 21,08 1,66 25,65 1,39

vrpcn1, M=100, IT=10000

Mutation\ Merge 0 50 100 200
0 113,51 26,68 216,41 198,92 66,84 6,24 66,56 8,15
50 19,81 2,85 15,87 4 16,25 3,35 18,1 2,75
100 14,6 2,88 17,52 5,16 15,56 4,98 14,41 6,18
200 25,46 5,11 22,86 2,42 21,27 0,86 27,94 0,48

vrpcn1, M=200, IT=10000
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Mutation\ Merge 0 50 100 200
0 63,06 13,69 56,06 2,56 59,35 2,01 62,18 4,68
50 21,27 4,42 14,41 5,44 19,17 1,32 18,1 2,75
100 23,87 3,73 13,84 1,88 14,98 1,3 18,48 2,75
200 29,52 6,43 29,9 1,94 28,25 3,95 30,29 3,66

C.8.2 Small and Slow

A-n32-k5.vrp, M=200, IT=100000

Mutation\ Merge 0 50 100 200
0 253,71 161,43 312,18 140,47 179,65 173,59 180,31 174,09
50 9,39 1,94 3,67 1,95 2,98 2,48 3,01 2,72
100 6,66 1,8 4,44 2,67 5,03 1,81 2,42 2,16
200 4,87 1,88 5,66 3,56 5,61 3,32 3,98 1,18

A-n32-k5.vrp, M=400, IT=100000

Mutation\ Merge 0 50 100 200
0 103,55 131,92 99,34 134,15 26,43 5,36 163,19 164,38
50 8,14 3,49 2,09 2,09 4,13 2,48 4,54 2,14
100 2,65 2,03 5,77 3,16 2,35 2,53 3,11 1,91
200 4,44 2,64 5,92 3,54 4,34 3,29 4,67 2,21

vrpcn1, M=200, IT=100000

Mutation\ Merge 0 50 100 200
0 59,43 2,42 161,7 83,34 161,38 73,61 343 308,88
50 11,94 0,8 6,54 1,15 9,46 3,34 8,06 4,68
100 7,11 1,8 8,95 4,75 6,48 1,48 7,62 2,7
200 12,83 2,38 14,67 7,15 12,38 5,35 11,43 2,39

vrpcn1, M=400, IT=100000

Mutation\ Merge 0 50 100 200
0 46,29 1,95 100,32 83,03 152,93 80,96 98,46 85,1
50 12,38 1,27 5,59 2,8 5,14 1,48 6,92 4,38
100 7,81 1,62 6,41 3,59 7,43 3,64 9,9 2,97
200 12,38 0,82 11,17 1,59 11,87 2,6 11,94 1,26
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C.8.3 Large and Fast

P-n101-k4.vrp, M=50, IT=10000

Mutation\ Merge 0 50 100 200
0 380,48 40,92 278,24 110,21 294,39 88,65 368,25 9,69
50 30,95 2,94 34,01 7,66 26,84 5,25 30,34 3,86
100 34,3 5,47 27,72 4,78 29,19 2,67 23,52 5,28
200 36,77 4,17 38,03 5,02 38,68 6,19 34,36 2,49

P-n101-k4.vrp, M=100, IT=10000

Mutation\ Merge 0 50 100 200
0 353,16 4,2 286,49 88,46 264,85 115,61 1013,66 1388,97
50 38,09 5,04 32,13 2,78 32,13 4,57 30,1 3,86
100 40,18 5,9 35,92 6,86 34,3 5,84 29,37 4,72
200 38,77 4,65 40,56 4,8 38,77 2,77 37,18 3,31

vrpnc12, M=50, IT=10000

Mut.\ Merge 0 50 100 200

0 48,82 3,91 52,72 2,19 207,4 216,92 46,79 3,61
50 55,28 3,61 46,38 2,73 45,12 4,5 50,53 1,36
100 54,72 3,44 44,07 3,92 37,6 1,36 43,86 5,21
200 58,29 3,98 48,86 5,29 46,99 4,43 50,57 6,24

vrpnc12, M=100, IT=10000

Mutation\ Merge 0 50 100 200
0 47,97 1,79 40,93 2,91 46,83 2,45 44,35 1,88
50 44,07 2,09 40,28 3,18 37,07 3,88 40,69 3,88
100 49,35 2,88 41,46 3,39 39,19 1,15 42,76 0,96
200 48,74 5,35 44,92 0,98 43,33 2,69 43,9 2,8


