
Design of Hierarhial Ring networks UsingBranh-and-PrieTommy Thomadsen∗ Thomas Stidsen†Informatis and Mathematial ModellingTehnial University of DenmarkDK-2800 Kongens Lyngby, DenmarkMay 21, 2004AbstratWe onsider the problem of designing hierarhial two layer ring networks.The top layer onsists of a federal-ring whih establishes onnetion betweena number of node disjoint metro-rings in a bottom layer. The objetive is tominimize the osts of links in the network, taking both the �xed link estab-lishment osts and the link apaity osts into aount.The hierarhial two layer ring network design problem is solved in twostages: First the bottom layer, i.e. the metro-rings are designed, impliitlytaking into aount the apaity ost of the federal-ring. Then the federal-ringis designed onneting the metro-rings, minimizing �xed link establishmentosts of the federal-ring. A branh-and-prie algorithm is presented for thedesign of the bottom layer and it is suggested that existing methods are usedfor the design of the federal-ring. Computational results are given for networkswith up to 36 nodes.Keywords: Ring network design, Hierarhial network design, Branh-and-Prie.1 IntrodutionDesign of survivable ommuniation networks is important for at least two reasons.First of all there is a growing reliane on eletroni ommuniation in soiety. Se-
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ondly failures (e.g. a link failure) may have a large impat, given the high apaityof links.Self Healing Rings (or rings for short) have been widely used to ensure survivableommuniation for several reasons. First of all, the rings are pre-on�gured suhthat the only nodes that need to do re-routing in ase of a link failure are thetwo endpoint nodes of the failed link. Thus no ommuniation with other nodes isneessary making ring protetion fast. Furthermore the node equipment is heapto build and protetion does not require the involvement of an expensive networkmanagement system.Larger networks onsist of several interonneted rings, sine it is neither possiblenor bene�ial to restrit the entire network topology to a single ring. One possibleway to interonnet the rings is in a hierarhy. Hierarhial networks have existedfor deades and were introdued beause of the limited swithing apabilities inthe telephone systems. Hierarhies are still used sine they divide the network insubnetworks whih an to some extend be treated independently, easing maintenaneand upgrade.In this paper we onsider the design of hierarhial ring networks (HRNs), i.e. hi-erarhial networks where subnetworks are rings. We assume that ommuniationdemands are given and determine a HRN whih satis�es the ommuniation de-mands as heaply as possible. In reality this inludes both design and routing,but by modifying the problem, routing is impliitly onsidered as we shall see. Wepresent models and algorithms for two layers only, but both models and algorithmsan be generalized to more layers. We denote the ring in the top layer the federal-ring, and the (node disjoint) rings in the bottom layer, the metro-rings. See Figure 1for an example of a HRN. We onsider single homing, i.e. exatly one node fromeah metro-ring is in the federal-ring.
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Figure 1: A two layer hierarhial ring networkThe main ontribution of the paper is the implementation of a branh-and-priealgorithm whih an be used to solve the modi�ed problem of designing HRNs to2



optimality. To that end, we disuss our problem modi�ation and point out underwhat irumstanes an optimal solution for the modi�ed problem is optimal forthe original ombined design and routing problem. The problem modi�ation haspreviously been put forward and used for implementing heuristis but has in not beenanalysed in detail. Optimal solutions have previously been obtained for networkswith up to 12 nodes and used for omparison with heuristi values. Our branh-and-prie algorithm an in general solve instanes with 20 nodes and for problemswith speial struture up to 36 nodes.The outline of the paper is as follows. In Setion 2, we disuss related papers. InSetion 3 we onsider the modi�ation of the ombined design and routing problemto a pure design problem. In Setion 4, we give a mathematial formulation of themodi�ed problem and in Setion 5 we desribe how the modi�ed problem an besolved using branh-and-prie. In Setion 6 we give some omputational results and�nally we give some onluding remarks and some diretions for future researh inSetion 7.2 Previous workHRNs were introdued by Shi and Fonseka in [7℄ and were further developed in[8, 9, 10, 11℄. The papers desribe how the ombined design and routing problem ofHRNs an be modi�ed suh that a problem whih is in essene a pure design problemis obtained. We use the same idea in this paper. The papers present an enumerationsheme and heuristis whih solve the problem. The papers also onsider extensionsto the basi model, e.g. dual homing (i.e. two nodes from eah metro-ring is inthe federal-ring). The number of possible networks grows exponentially, makingthe enumerative sheme useless exept for small and trivial instanes (less than
10 nodes). The heuristis on the other hand make the model appliable to largenetworks, but give no guarantee on the quality of the solutions obtained.In [5℄ an integer linear program is presented for the pure design problem obtained byShi and Fonseka. Optimal solutions an in some ases be obtained using the model,for networks with up to 12 nodes and a maximum of 4 nodes in the metro-rings. Themodel, however, inadvertently allows metro-�rings� to onsist of more sub-rings andthus some of the nodes may be disonneted from the network. A sub-ring onsistsof at least 3 nodes, and thus a metro-ring will only onsist of more sub-rings if itontains at least 6 nodes. Sine the networks onsidered have a maximum of 4 nodesin eah metro-ring, the obtained results are not a�eted. The fous of the paperis a �partition, onstrut and perturb� heuristi. This heuristi is ompared withoptimal solution when these an be obtained and with Shi and Fonsekas heuristis.It is onluded that better results than Shi and Fonseka are in general obtained.In [3℄ problems where hub loation and network design is onsidered simultaneouslyare reviewed. The problem of designing a HRN is a speial ase of the problems3



reviewed in [3℄.3 Problem Modi�ationLet the network G(V, E) where V is the set of nodes and E is the set of possiblebidiretional links. Let D be the set of demands, let Rmet be the set of possiblemetro-rings and Rfed the set of possible federal-rings. For r ∈ Rfed or r ∈ Rmet,
r ⊂ E, i.e. r is a subset of links, and the links indue a ring. Let d′

ij, ij ∈ D denotethe demand for ommuniation �ow between node i ∈ V and j ∈ V . Also let ce bethe �xed ost for establishing link e and orrespondingly let the ost per apaityunit on link e be be.The purpose of modifying the problem is to obtain a formulation whih inludesrouting indiretly but is a pure design problem. The modi�ation also allows adeomposition of the total ost into osts for eah ring whih an be measuredindependently.The ost of a HRN is assumed to depend solely on the links used by the rings inthe network and the apaity of these links, i.e. the �xed ost and the apaity ostrespetively. Thus the ost of a HRN is as given in equation (1), where rfed ∈ Rfedis the federal-ring, R
met

⊂ Rmet is the set of node disjoint metro-rings overing allnodes and �nally CAPr is the minimal apaity required on eah link of ring r toservie the tra� �ow.
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be (2)We onsider unidiretional self-healing rings, for whih it holds that ommuniation�ow in the ring takes up apaity in all links in the ring. Thus if a demand ij ∈ Dtraverse a ring, it takes up apaity d′
ij in all links on the ring. Assume that RLis the average ring-length with respet to ce. An estimate of the apaity ost forsatisfying a given demand is RL if nodes are in the same metro-ring and 3RL ifnodes are in di�erent metro-rings, sine three rings are in that ase traversed (twometro-rings and the federal-ring). Also the apaity ost an be expressed as aworst ase ost, K (orresponding to that all demands traverse three rings) minus asavings obtained by handling ommuniation demands within metro-rings. Denoteby Dmet

r ⊂ D the set of demands handled within metro-ring r. In that ase the4



apaity ost an be estimated as follows.
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ij (4)The intuition behind this rewrite is, that minimizing the apaity ost orrespondsto maximizing the ommuniation demand handled within metro-rings. Note that

2RL will have to be experimentally determined. Di�erent values of 2RL will resultin di�erent ost strutures, e.g. a low 2RL will orrespond to the ase where theapaity ost is higher in the federal-ring than in the metro-rings.The ring length with respet to ce may be far from onstant (i.e. deviate onsiderablyfrom RL). However if the apaity ost re�ets a ost of node-equipment rather thana ost proportional to the distane between nodes, RL is thus proportional to thenumber of nodes in the rings. In that ase it makes muh more sense to have aknown, �xed RL orresponding to a known �xed number of nodes in the rings, andin partiular [7, 8, 9℄ study suh networks. For HRNs where the ring length is not
RL in all ases, optimal solutions for the modi�ed problem may not be optimal inthe original ombined design and routing problem.Note that the ost an now be deomposed into osts minus a reward for eah metro-ring plus a onstant K, whih an be measured independently. Thus the ost formetro-ring r ∈ Rmet is:
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ij where i and j are in di�erent metro-rings, i is in thefederal-ring and r is the metro-ring inluding i. In that ase equation (4) inludesa ost for routing d′
ij in r, but d′

ij need not be routed �from i via r to i� - there isno need to route it in r at all. Thus additional savings should be inluded if i is inthe federal-ring. This saving is inluded as a reward on nodes when the federal-ringis designed. The node reward is the sum of all demands starting or ending in thenode.4 The ProblemsGiven the modi�ation of the problem, the idea is now to selet the lowest ost setof metro-rings, whih inludes nodes exatly one, i.e. a set-partitioning problem.However, sine there are too many metro-rings to pregenerate all, we generate metro-rings when needed. Thus what we desribe is atually a olumn generation algorithm5



or, sine branhing is needed to get integer solutions, an integer programming olumngeneration algorithm, also known as branh-and-prie [1, 13℄.In this setion we will desribe the two problems we need to solve; the ring-partitioningproblem (whih is a set-partitioning problem) and the ring-generation problem. Wewill desribe the branh-and-prie algorithm in detail in Setion 5.When the metro-rings have been designed, the federal-ring is designed as the shortestring, whih inludes exatly one node from eah metro-ring and takes into aountnode rewards as desribed in the previous setion. This is a Generalized TravellingSalesman Problem whih an be solved using a branh-and-ut algorithm as donein [2℄. This problem seems to be easier than the ring-generation problem whih issolved many times, and thus the design of the federal-ring is not the bottlenek ofthe algorithm. We will not onsider the design of the federal-ring any further in thispaper.4.1 The Ring-Partitioning ProblemGiven a set of metro-rings R ⊂ Rmet, the ring-partitioning problem is the problem ofhoosing the lowest ost subset of metro-rings in R, suh that all nodes are overedexatly one. De�ne pir = 1 if node i is part of ring r, 0 otherwise. The variables
ur is 1 if ring r is seleted, 0 otherwise. The ring-partitioning problem is then:

min
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pir · ur = 1 ∀i ∈ V (πi) (7)
ur ∈ {0, 1} (8)The objetive (6) is the total ost of seleting metro-rings, where cr is de�ned inequation (5). Constraints (7) ensure that eah node is in exatly one metro ring andonstraints (8) are the integer domain onstraints. Finally πi are the dual variablesfor onstraints (7). The problem obtained by relaxing onstraint (8) is denoted therelaxed ring-partitioning problem. If branhing is neessary, additional onstraintsare added, see Setion 5.1. Rings are iteratively generated and added to R. Thering-generation problem is desribed in the following setion.4.2 The Ring-Generation ProblemThe objetive of the ring-generation problem is based on the ost in equation (5).However this ost does not inlude any information on whih other rings are in R,6



and thus it is possible that a node will never be inluded in any ring. The idea isto add a reward to the objetive, whih re�ets how di�ult a node is to over inthe ring-partitioning problem given the urrent set of rings R. A node is di�ultto over if e.g. a single ring r ∈ R ontains the node and thus r need to be seletedregardless of the ost. If a node i is di�ult to over a high reward is put on inluding
i in a ring. The reward used is the value of the dual variables in the optimal solutionto the ring-partitioning problem, πi.Let dij = RL · d′

ij, let n(r) ⊆ V be the nodes in r and let Dr ⊂ D be the setof demands whih start and end in r. Formally, we generate the ring with mostnegative redued ost, where the redued ost is given by the following equation.
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e is in the ring, 0 otherwise and zij = 1 if demand ij an be handled by the ring,otherwise 0. (Equivalently, zij = 1 if yi = 1 and yj = 1, otherwise 0.)For S ⊂ V , let δ(S) ⊂ E denote the set of edges with an endpoint in S and anendpoint not in S. Then the ring-generation problem an be stated as follows.
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xe ∈ {0, 1}, yi ∈ {0, 1}, zij ∈ {0, 1} (17)The objetive (10) orresponds exatly to the redued ost given in equation (9). Ifa node is seleted (yi = 1), two links should be inident to node i, whih is ensuredby onstraint (11). If both nodes i and j are seleted the variable zij = 1, whih isensured by the onstraints (12), (13) and (14). The number of nodes in the ringsis bounded by the hop onstraint (15). Subtour elimination onstraints (16) ensure7



that a single ring is generated and �nally integer solutions are ensured by the domainonstraints (17).We solve the ring-generation problem by branh-and-ut as desribed in [12℄, wherethe subtour elimination onstraints are generated as needed. Also [4℄ desribes utswhih may improve the performane of the branh-and-ut algorithm. The ring-generation problem is a generalization of the (Seletive) Travelling Salesman Prob-lem and of the Quadrati Knapsak problem and thus we denote it the QuadratiSeletive Travelling Salesman Problem.If branhing is neessary, additional terms are added to the objetive funtion andaddional onstraints are added. These additions are desribed in Setion 5.1.5 The Branh-and-Prie AlgorithmThe branh-and-prie algorithm is desribed in pseudo ode in Figure 2. The mainInumbent = In�nity.Branh-nodes = {Initial Relaxed Ring-Partitioning problem}while Branh-nodes 6= ∅ doSelet branh B ∈ Branh-nodesdoSolve relaxed ring-partitioning problem BSolve ring-generation problem, based on dual variables of Bif Redued ost of optimal ring < 0 thenAdd optimal ring to Bwhile Redued ost of optimal ring < 0Let Obj_val = Optimum of Bif the solution to the relaxed ring-partitioning problem is feasible (integer)and Obj_val < Inumbent thenUpdate inumbent: Inumbent = Obj_valFathom branhelse if Obj_val ≥ Inumbent thenFathom branhelseBranh: Add two branhes to Branh-nodesend while Figure 2: The Branh-and-Prie algorithmidea in a branh-and-prie algorithm is to perform the bounding in a branh-and-bound algorithm using olumn generation. The algorithm maintains an inumbent,i.e. the lowest ost feasible solution known, and a set of branh-nodes, i.e. a set of8



relaxed ring-partitioning problems. Initially the set of branh-nodes ontains thering-partitioning problem without any branhing deisions. A branh-node orre-sponding to a relaxed ring-partitioning problem is solved using olumn generation inthe inner while loop. It is resolved in eah iteration of the inner while loop and a ringis generated by the ring-generation problem. If no ring exists with negative reduedost the value of the ring-partitioning problem is a lower bound. This lower boundis used in the outer loop whih is the branh-and-bound part of the algorithm.In the outer loop it is heked whether the optimal solution to the relaxed ring-partitioning problem solution is feasible, i.e. integer, or if it is a lower bound only.If the solution is integer and better than the urrent inumbent, the inumbent isupdated and that branh is fathomed. If the solution is frational, the lower boundis ompared with the urrent inumbent and if it is worse, the branh is fathomed.If neither is the ase, branhing is performed.5.1 Ryan-Foster BranhingBranhing in a branh-and-prie algorithm is more ompliated than in a standardbranh-and-bound algorithm. We use Ryan-Foster branhing [6℄ to obtain integer so-lutions. This is possible sine all oe�ients of all onstraints in the ring-partitioningproblem are 0 or 1 and all right hand sides are 1, see onstraint (7).Consider onstraint i. Sine the right hand side is 1 and variables have to be integer,exatly one ring with pir = 1 has to be seleted (ur = 1). For all other seletedrings, pir = 0. We say that �node i is overed by ring r�. The idea is now to identifya set of rings S ⊂ Rmet and reate two branhes, 1) node i has to be overed by aring in S and 2) node i has to be overed by a ring not in S. The question is now,how do we selet i and S.Assume node i is partially overed by more than one ring, and assume ring r is oneof these rings (i.e. 0 < ur < 1). Usual variable branhing orresponds to letting
S = {r}, thus the branhes will be ur = 1 and ur = 0. This sort of branhingis not suitable in a olumn generation algorithm for several reasons all related tothe vast amount of variables that exists (but are not expliitly known). First ofall sine we set ur = 0 in the ring-partitioning problem, r usually has a negativeredued ost and hene when solving the ring-generation problem, r will be generatedagain. This an be handled by modifying the ring-generation problem to spei�allyexlude r. However, usually rings similar to r exists and thus these rings will begenerated instead. This means that the bound of the ur = 0 branh will not improvemuh when branhing and we have an unbalaned branh-tree where the depth isonsiderable.The idea is to let S ontain several rings and in partiular inlude rings whih havenot yet been generated (i.e. not in R). Thus in general S\R 6= ∅. Identify a frationalring (0 < ur < 1) and two nodes i and j with pir = 1 and pjr = 1. If the solution9



is frational, suh two nodes always exists. Let S = {r ∈ Rmet|pir = 1 ∧ pjr = 1},that is the rings that over both i and j. The two branhes are thus, 1) i and j areovered by the same ring and 2) i and j are overed by di�erent rings.A branh deision is identi�ed by a node-pair {i, j} and whether i and j should beovered by the same ring or not. For a ring-partitioning problem, we have severalsuh branh deisions of both types. Denote by BSAME ⊂ V 2 the set of branhingdeisions where node-pairs should be overed by the same ring and orrespondinglydenote by BDIFF ⊂ V 2 the set of branhing deisions where node-pairs shouldbe overed by di�erent rings. Then we add the following onstraints to the ring-partitioning problem whih implement the atual branhing.
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yi − yj = 0 ∀ {ij} ∈ BSAME (21)
yi + yj ≤ 1 ∀ {ij} ∈ BDIFF (22)Both onstraints allows rings where both yi = 0 and yj = 0, but onstraints (21)ensure that if node i is seleted, then so is j and vie versa. On the other hand,onstraints (22) ensure that rings generated inlude at most one of i and j.6 Computational ResultsTo test the branh-and-prie algorithm, problem instanes with between 10 and 20nodes are generated. The problem instanes are generated similarly to what is donein [12℄. The nodes are plaed in a plane with the oordinates uniformly distributedbetween 0 and 100. The �xed osts (ce) are determined as the Eulidean distane.10



Rather than generating both apaity osts (be) and the demands (d′
ij) and omputean average ring-length to obtain dij (as disussed in Setion 3), we generate dij only.The dij values are generated as uniformly distributed between 0 and an upper bound

u.Seleting a proper value of u is ritial. If u is seleted too small, then the optimalsolution is a single federal-ring inluding all nodes and no metro-rings. Using thesame value of u as in [12℄ proved su�ient. The upper bound u used is given in thefollowing equation.
u ≈

5
√

|V |3
(23)The value of u arise by onsidering the tradeo� between total average demand andthe shortest tour measured in �xed link osts for rings with |V |/2 nodes. We referto [12℄ for an in-depth explanation. The important observation is, that a tradeo�exists between the �xed link ost and the savings obtained from demands. As weshall see, the hop onstraint (15) is in most, but not all ases binding; thus a tradeo�exists. The tests were run on a 1200 Mhz SUN Fire 3800. We use CPLEX 9.0 tosolve linear programming models.For eah of 10, 12, 14, 16, 18 and 20 nodes, 10 di�erent random instanes aregenerated. We report results as averages over 10 instanes. We vary the maximalnumber of nodes in the metro-rings, m between 4 and min{10, |V | − 3}. In additionto this, we investigate networks with 25 and 36 nodes with m equal to 5 and 6respetively. It turns out, that sine |V |/m is integer for these networks, theyare easier to solve than networks for whih this is not the ase. The results aregiven in Table 1. The table shows the number of nodes, the maximum number ofnodes in metro-rings, the number of branh-nodes, the total time spent in seondsand the perentage spent on the ring-partitioning problem and the ring-generationproblem respetively. Finally the number of times that metro-rings are generated(this inludes ases where no metro-rings are atually found) and the number ofmetro-rings in the optimal solution are listed.For all problem instanes with up to 20 nodes, the branh-and-prie algorithm ter-minates in at most 3 hours (average worst ase is 73 minutes). Sine the designof HRNs are onsidered strategi problems, the omputational time is aeptable.As it an be seen, the bottlenek in the algorithm is the generation of rings whihonsistently takes more than 90% of the running time. The gradually inreasingrunning time for inreasing |V | may both be attributed to inreased running timefor eah ring-generation problem solved and to the inreasing number of metro-ringswhih are generated (seond last olumn). The number of branh-nodes is limited,making memory issues negligible. However, eah branh requires generation of asubstantial number of metro-rings, ausing substantially higher running time.Instanes where |V |/m is integer are easier than instanes where this is not thease. This is due to the inreased number of branh-nodes whih is aused by an11



|V| m #Branh Total Time Time Time #Rings #MetroNodes (se.) Part. Gene. Gene. Rings10 4 8.0 4.0 6.7% 93.3% 40.2 3.010 5 1.0 2.5 4.6% 95.4% 18.8 2.010 6 11.2 7.8 4.7% 95.3% 64.4 2.010 7 7.2 4.9 5.7% 94.3% 42.1 2.012 4 4.0 3.7 4.9% 95.1% 23.0 3.012 5 13.0 16.4 3.9% 96.1% 83.2 3.012 6 1.0 7.3 3.1% 96.9% 30.1 2.012 7 15.0 24.5 3.5% 96.5% 105.5 2.012 8 19.2 27.6 3.7% 96.3% 123.4 2.012 9 9.8 14.1 3.6% 96.4% 65.4 2.014 4 3.2 5.7 4.7% 95.3% 27.2 4.014 5 6.4 18.5 2.6% 97.4% 51.1 3.014 6 44.4 105.1 2.7% 97.3% 277.3 3.014 7 1.0 29.8 1.4% 98.6% 46.8 2.014 8 32.6 110.2 2.9% 97.1% 275.8 2.014 9 50.6 118.5 3.2% 96.8% 327.5 2.014 10 36.4 85.6 3.4% 96.6% 251.5 2.016 4 5.8 11.9 4.2% 95.8% 39.6 4.416 5 29.4 87.9 2.6% 97.4% 176.3 4.016 6 34.4 158.4 2.1% 97.9% 251.1 3.016 7 68.8 359.3 2.3% 97.7% 539.8 3.016 8 1.8 84.2 0.9% 99.1% 68.7 2.016 9 44.2 324.9 1.9% 98.1% 405.2 2.016 10 60.6 383.0 2.5% 97.5% 570.7 2.018 4 16.4 32.3 3.6% 96.4% 74.2 5.018 5 2.6 32.4 1.8% 98.2% 40.3 4.018 6 6.0 89.5 1.2% 98.8% 75.5 3.218 7 33.4 446.5 1.3% 98.7% 325.6 3.018 8 124.0 1183.7 2.1% 97.9% 1116.0 3.018 9 1.0 217.3 0.6% 99.4% 89.9 2.018 10 30.2 737.2 1.3% 98.7% 440.2 2.020 4 6.8 27.0 3.9% 96.1% 50.6 5.720 5 8.6 91.8 1.5% 98.5% 71.7 4.720 6 24.2 356.4 1.1% 98.9% 190.3 4.020 7 12.8 407.0 0.7% 99.3% 143.4 3.220 8 53.4 1854.6 0.9% 99.1% 659.6 3.020 9 179.8 4344.2 1.4% 98.6% 2026.2 3.020 10 1.0 688.0 0.3% 99.7% 117.8 2.025 5 11.2 302.0 1.0% 99.0% 110.8 5.936 6 21.0 5457.8 0.4% 99.6% 245.9 7.0Table 1: Computational Results. Averages over 10 instanes.12



inreased amount of frational variables. Espeially when |V |/m = 2, the possibilityof obtaining an integer solution without branhing is high. The speial ase whenall metro-rings and the federal-ring have the same number of nodes, i.e. |V |/m = mand |V |/m integer, is onsidered in [7, 8, 9℄. Sine |V |/m is integer, as disussedabove, suh instanes are easier to solve to optimality than instanes where this isnot the ase. The last two rows in Table 1 gives results for instanes with |V | = 25,
m = 5 and |V | = 36, m = 6. The most di�ult instanes with 36 nodes are solvedin less than 6 hours and on average over 10 instanes in just above 11

2
hour.For networks with up to 20 nodes, in most ases, the optimal solution ontainsexatly the minimum number of metro-rings needed, given m. Only in 22 ases outof 380 test runs in total, one more than the minimum number of metro-rings neededis in the optimal solution. In Table 1, this is the reason why the last olumn ontainsfrations. This indiates that the demand values are su�iently high to make themetro-rings pro�table and the hop onstraint (15) thus binding. On the other hand,sine some instanes exists for whih this is not the ase, the demand values are nottoo high.The results reported here involve the design of the metro-rings only. Reall that theproblem of designing the federal-ring is atually a Generalized Travelling SalesmanProblem and an thus be solved using methods from [2℄.6.1 Future ResearhIn order to be able to handle larger instanes in reasonable time, it is paramount toredue the time spent on ring-generation. Note that for eah branh-node, at leastone ring-generation problem has to be solved (the one giving no rings) to ensure thatthe value obtained when solving the ring-partitioning problem is indeed a bound.Thus it is inevitable that the ring-generation problem has to be solved at least asmany times as there are branh-nodes. The remaining number of times that ringsare generated an be redued, however, by e.g. pre-generating rings or by generatingmore rings at a time. The atual time spent on eah ring-generation problem anbe redued by using heuristis.As mentioned in Setion 3, the optimal solution of the modi�ed problem may notbe optimal in the original ombined design and routing problem. This is mainlyfor 2 reasons, 1) the metro-rings and the federal-ring is designed in separate (thusnon-optimal) stages and 2) the modi�ation assumes the apaity osts of rings arethe same. It seems possible but nontrivial to ope with 1) by inluding the federal-ring design in the branh-and-prie algorithm, but 2) is more di�ult. However,one initial approah to take is to investigate how muh the optimal solution forthe modi�ed problem deviates from the optimal solution to the original problem.This ould be done either by investigating very small instanes for whih optimalsolutions an be found or by �nding a lower bound on the original problem ost.13



Also it would be interesting to allow bidiretional instead of unidiretional self-healing rings. One possibility is to use the same problem modi�ation, and thusapproximate the bidiretional rings with unidiretional rings. However, in thatases there is even more reason to investigate 2).7 ConlusionIn this paper we have onsidered the problem of designing HRNs. A problem modi�-ation has been presented whih has previously been used to build heuristis for de-signing HRNs. A branh-and-prie algorithm is desribed, implemented and tested.For the modi�ed problem this algorithm �nds provably optimal solutions to net-works with up to 20 nodes in less than 3 hours. For problems with speial struture,the algorithm �nds provably optimal solutions with up to 36 nodes in less than 6hours. The omputational time depends heavily on the instanes onsidered, andin partiular it is possible to design onsiderably larger networks if the maximumnumber of nodes in metro-rings are small and/or if the maximum number of nodesdivides the number of nodes in the network. Algorithmi improvements whih ouldspeed up the algorithm have been suggested and we also suggest an investigation ofhow muh the optimal solution to the modi�ed problem deviates from the solutionto the original problem. In partiular this investigation is important if bidiretionalself healing rings are onsidered.Referenes[1℄ C. Barnhart, E.L. Johnson, G.L. Nemhauser, M.W.P. Savelsbergh, and P.H.Vane. Branh-and-prie: olumn generation for solving huge integer programs.Operations Researh, 46(3):316�29, 1998.[2℄ M. Fishetti, J.J Salazar Gonzalez, and P. Toth. A branh-and-ut algorithmfor the symmetri generalized traveling salesman problem. Operations Researh,45(3):378�94, 1997.[3℄ John G. Klinewiz. Hub loation in bakbone/tributary network design: areview. Loation Siene, 6(1-4):307�335, 1998.[4℄ V. Mak and T. Thomadsen. Polyhedral ombinatoris of the ardinality on-strained quadrati knapsak problem and the quadrati seletive travellingsalesman problem. Submitted for publiation, 2004.[5℄ A. Proestaki and M.C. Sinlair. Design and dimensioning of dual-homing hier-arhial multi-ring networks. IEE Proeedings-Communiations, 147(2):96�104,2000. 14
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