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Abstract

The Minimum Description Length (MDL) approach to shape nilipseeks
a compact description of a set of shapes in terms of the cuatel of marks
on the shapes. It has been shown that the mark positiongingsitbom this
optimisation to a large extent solve the so-called pointeggondence prob-
lem: How to select points on shapes defined as curves so thaidints
correspond across a data set. However, this MDL approachramiecapture
important shape characteristics related to the curvatuteecurves, and oc-
casionally it places marks in obvious conflict with the humation of point
correspondence. This paper shows how the MDL approach ctmebtined
by adding a term to the cost function expressing the mismatcdurvature
features across the data set. The method is illustratedhwusites of adult
heads. The MDL method is able to solve the point corresparalproblem
and a classification of the heads into male and female imprdrematically
when using the MDL-generated marks.

Keywords: point correspondence problem, minimum desonpgéngth, shape
modelling, curvature, face recognition, silhouettes.

1 Introduction

1.1 The Point Correspondence Problem

This paper addresses the point correspondence problematistisal shape modelling,
which arises when 2D or 3D shapes are generated in terms o¥@ cusurface with no
landmarks. The problem is how to define points all over theesior surfaces so that the
points correspond across the set.

First we notice that the solution depends on what we mean dyéspondence”. A
number of possible qualities of a point assignment can bemerated:



1. A suitable class of experts should agree with the poirdgrteents.

2. The points should lead to good performance of some subseguocessing, e.g. a
classification task based on the shape points, or a patteogméion task e.g. an
active shape or active appearance model based on the points.

3. Cross validation: How well does a statistical shape mbdskd on the defined
points describe the points on new unseen shapes? This caedseirad by leave-
one-out cross validation.

4. The points should to be faithful to the shapes, i.e. thatp@hould not "cheat” by
avoiding some parts of the shape or by placing points todythén that the details
are not reflected in the point coordinates.

5. The point selection algorithm should behave consisténtthe limit of infinitely
densely placed points.

6. The algorithm should be practical, i.e. fast and with fesgmeters to tweak.
7. The algorithm should generalise from 2D to 3D.

8. Compactness of the shape model of the set as measured Mjptheost function
or a similar measure.

In 2001-2003 the Minimum Description Length (MDL) approagteived a lot of
attention [4],[5],[6],[8], because it scores well on marfytlee virtues above, and this
paper elaborates on the MDL framework starting by an armbfsihese virtues:

Item 1 has not been addressed in the MDL literature and isubject of the present
paper.

Item 2 was addressed by [7] who compared the use of MDL withuabmarks in the
subsequent AAM analysis. The use for classification is axtde in this paper in Section
3.2.

Item 3 was examined in [4],[5],[6]. It is not easy becauserti case should be fitted
to the model, i.e. its marks should be optimised before théuation can be made.

Item 4 was addressed in [6] which chose a master example wé&l fioints. It was
further analysed in [8] which proposed adding a controllieign to the cost imposing a
constraint on the average position of the marks.

Item 5 was addressed in [6] and [8]

Item 6 was addressed in [8] which published a fast Matlab edgtlea single essential
parameter, the desired accuracy of the modelling

Item 7 was addressed in [4], [5],[6].

Item 8 is a surrogate quality and sort of self-fulfilling andswsed by [4],[5],[6] to
show how much better the MDL result is compared to the manuabtion.

To summarise, items 1-3 are the fundamental goals, itemaré-fechnical properties,
while 8 - as explained below - is not an actual goal.

1.2 Ockhams’s Razor

The philosophy of Ockhams’s Razor is that the simplest ortroospact description is
truer. So the basic assumption is that if we select the pomthe curves so that we obtain
the simplest model, then the virtues 1-3 will be automalyciilfilled to a high degree.

High simplicity is interpreted as small description lengtimd the description length is



a functional of the eigenvalue spectrum. Of course one dgmmaowe Ockhams’s Razor;
ultimately inference is based on assumptions which canaqirbved. So item 8 should
not be regarded as a virtue - it is not the goal; it is rathemtie¢a-principle utilised to
obtain the real goals 1-3.

This paper focuses on how well the MDL approach addressaslitand 2, and how
the approach can be enhanced in this respect.

1.3 The Rehabilitation of Curvature

Often experts identify points of extreme curvature as laadksr But in the original for-
mulation of the MDL shape models, curvature was somewhatelisted as being less
"fundamental”:

Shape features (e.g. regions of high curvature) have been used to establish

point correspondences, with boundary length interpolation between these
points. Although this approach corresponds with human intuition, it is still
not clear that it isin any sense optimal. [4]

This paper reconciles the use of MDL with the use of shapeifeat This is done by
introducing an explicit curvature representation in the IMDrmalism.

The standard MDL method seeks compact description optsiions of the shape
points. But there is more information in a curve than its poss, and the curvatures
are proposed as another salient piece of information. Byireg the model to describe
both positions and curvatures we get a different optimum with point correspondences
that matches both positions and curvatures.

This state of affairs is not unusual in image analysis: sedgatien can be intensity-
based as in AAM [1], or edge-based as in ASM [2], and the resuilt in general differ.
The two features can be combined in a common optimisatiordding edge features to
AAM [3]. Intensity-based methods are in general more robusing to their larger basin
of attraction and they are less susceptible to noise, bug-bdged methods often agree
more accurately with the expert opinions.

One of the problems with curvature-defined landmarks is ith&tiological shapes
these points are not always born out clearly or uniquely leyitidividual shape, and in
this case the landmarks must be inferred from a more globdkgt Thus the problem
calls for a way to gracefully combine the position-definedespondences with curvature
signatures, which are not the same across the set, but resding to a statistical
model.

2 The Model

The description of the models falls in five sections:
1. The dynamic variables - the nodes.
2. The MDL cost of the mark positions.
3. The node cost stabilising the configurations.
4. The curvature cost.
5. The optimisation strategy.



2.1 The Dynamical Variables: The Nodes

The method was described in detail in [8] and is briefly re@dwere.

The algorithm applies to a set of shapes defined as curves gpabe. Shape sets
are classified into three kinds: Closed curves, open curitesixed end-points and open
curves with free end-points. The arc length along the cuswv®imalised to run from
Oto 1.

We are seeking a set of 2- 1 marks on each curve, whelés an integer, to represent
the shape. For closed shapes, the start- and end-pointdénlvand ) are identical.
The mark locations are specified in a hierarchical manndr lewels. For closed curves
with 65 marks, we specify on the first level the coordinatesnafk 0 and 32 by their
absolute arc length position. On the second level, mark t64&nare specified by pa-
rameters between 0 and 1. For example mark 16 can be anywhéhne curve between
mark 0 and 32, corresponding to the extremes 0 and 1. On tladekiel the marks 8, 24,
40 and 56 are specified in between already fixed marks. Thanisnued until level 6 so
that all marks are specified.

For openfixed-end curves, level 1 places only mark 32, while for ofere-end
curves there are three marks on level 1, namely 0, 32 and 64.

The end-marks are defined by two positive parameters dasgtire distance of the
end-marks from the curve ends.

The initial shape can be defined by marks placed evenly inesngth by setting all
parameters t@ = 0.5 (except for the end-marks). Alternatively a priori Wwiedge of
a good starting guess can be used. On closed curves mark [@l dfapproximately
aligned initially.

To save computation, the optimisation is usually only dama subset of marks, these
active marks are calleabdes, depending on the level of detail. The optimisation adjusts
the node parameters to optimise the correspondence ofeathttiks over the set of ex-
amples. The parameters of the passive marks are frozen abfigsponding to even
distribution in arc length.

2.2 The MDL Cost of the Mark Positions

Statistical shape analysis is performed on the mark posiiiothe usual way. The number
of marks isN = 2" for closed curves antl = 2- + 1 for open curves (free as well as
fixed). First the shapes are centred and aligned to the mege stormalised to one. The
covariance matrix of the aligned shapes is formed and p@h@omponent analysis is
performed yielding the eigenvalue spectrum. The objedtinetion is defined from the
eigenvalue spectrum and a parameigg.

Description Length= 5 Lm
Lm = 1+10g(Am/Acut) for Am > Acut (1)
Lm == Am/Acut fOI’ Am < Acut

This cost is continuous at,,; and independent dfl in the largeN limit.

2.3 The Node Cost of the Mark Positions

Some mechanism must be introduced to prevent that marksipile some regions and
dilute in others. [6] suggested fixing the marks of a mastammgle, and this works



approximately OK, but still means the master can become #ieioun the resulting sta-
tistical distribution.

A more satisfactory method was introduced in [8]. One inticeh a targed™9 for
the average parametes| "*"**for each nodé by means of a quadratic cost:
NodeCost= Z(a?"erage— a 92 72 2)

whereT is a chosen tolerance.

2.4 The Curvature Variation Cost

Curvature is computed along the shape as follows

ti=rip1—ri-
i i+1 i—1 o (3)
Ci = TN(riy1 —ri—1—2rj) -t /t;
wherer; is the 2-vector coordinates of point; is the tangent, ani is the normal. This
curvature expression is independent of the pose of the sirapé is 1 for a circle. The
curvatures; are then smeared with a Gaussian filter, which in this studysigma 1.5
(this should scale witiN). The smeared curvature value at maf for exampler is
denotedk;,. For open curves the curvature cannot be computed at the amd€lose to
the ends it also becomes noisier due to the smearing. Theradovature near the ends is
not included, and for the silhouette data set below usindl6darks, 5 curvatures at each
end are skipped, i.e. 55 curvatures are used.

The curvatures could now be weighted with a factor and apgend the aligned
position coordinates and included in the PCA. However, golimmethod is used here.
The following extra term to the cost function is construdiedheasures the compactness
of the curvature description of the set:

11 mean
CurvatureCost= C = Z(kar — Krean)2
L (4)
ki =3 Z Kir

Heresis the number of shapes a@ds a weighting factor for this term. The curvature
cost is independent of the resolution, as the other terntseicast function.

This simple curvature model states that all shapes haveathe survature signature,
and the cost measures the deviation from the mean.

2.5 Optimisation Strategy

The iterative optimisation can then begin. The nodes, e,@ré ordered according to
ascending level. Each node is associated with a step leingthlly set to 0.01. These 8
step lengths are automatically decreased by the algorithoaw the parameters a(node)
for each node and each example are probed, one at a time exgrtowdthe following
pseudo-code, which runs over a number of passes, until sitsdnas stabilised.



Loop over passes
Loop over nodes
Loop over 5 steps
Loop over examples
Loop over + and - step
Probe a(node) = a(node) +- step of example
Recompute marks of example
Do Procrustes of set
Do PCA of set
Compute new MDL
If new MDL is lower, accept and break loop
Undo a(node) change
End of +- step loop
End of example loop
If < 5} of a(node)’s changed, divide step(node) by 2
If >20% of a(node)’s changed, multiply step(node) by 2
End of step loop
End of node loop
End of passes loop

Intensity-based methods are often more robust than edggdimaethods, and likewise
we expect position- based shape matching to be more rolarsttirvature-based. Cur-
vature is a more futile feature; a given curvature featurestametimes be weaker or even
disappear, and curvature is more vulnerable to noise. Tdverthe curvature term is used
only in the later stages of optimisation to fine-tune the ltesfithe two other cost terms,
i.e. the following strategy is used:

1) Optimise with MDL position cost, i.e. without curvaturest.

2) Reset step lengths to 0.01.

3) Optimise with total cost including curvature cost.

4) Optionally repeat from 2 using a larger weighbn the curvature cost.

3 Results
3.1 The Silhouette Case

22 silhouettes of heads shown in Figure 2 are used as a testldasnaster example is
used - instead the node cost is used (WittD.05) so that the curves are represented by
marks, which on average are evenly distributed in arc le(sgth [8] for details). The start
and end locations of the shapes are also optimised, anderete cost requires that
an average of 12% is skipped in the top, and 7% in the bottormoti®s parameters are
optimised, chosen more finely near the lips and the eyes.

Acut = 0.032 is used, and the first 4 passes are performed without cuevegm lead-
ing to the result in Figure 1.

Then 6 passes are run with curvature cost @With 150, and this leads to the remark-
ably accurate assignment of points seen in Figure 2. Theatunes before and after the



inclusion of curvature cost are shown in Figure 3. At coneaag, MDL cost 35.85,
curvature cost 1896 and node cost 1.79. The entire optimisation takes 5 minutes on
a 1.2 GHz PC under Matlab. If the curvature cost is turned gim and the optimi-
sation continued, the solution stays close to the solutioRigure 2 and reaches MDL
cost= 3160, 313 lower than in Figure 1 - which thus is a local minimum. Hetloe
curvature cost also works as a catalyst for minimising theLMDst.
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Figure 1: MDL without curvature cost: Notice the problemgha top of the nose, and
at the joining of the lips. The points are the extremes of Umgature of the mean shape
after convergence expressed as interpolations of the @ gwnts. In addition, the start
and end of the shapes found by the algorithm are indicateaimng
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Figure 2: Result of MDL with curvature cost
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Figure 3. Smeared curvature before and after optimisatiitim thve curvature cost. The
before-plot shows three examples with bad upper limit ofrthse.

3.2 Classification of silhouettes

A quantitative comparison of marks placed by MDL and maryglhced marks is per-
formed according to the following analysis. An additiondl dilhouettes are collected,
yielding in total 20 male and 19 female adults. A manual aatiah of the silhouettes is
performed and an automatic MDL placement is generated.

A statistical model is made to predict the gender of the @affing logistic regres-
sion on a subset of the PCA scores as inputs, determined kybats elimination using
a classical statistical test for significance. The p-vahfgfie manual and MDL models
are determined. In addition a leave-one-out cross-vatidaif the regression models is
performed. The variable selection is also part of the leave-out process. The number
of correct classification is presented in Table 1. Finallyugnan observers are asked to
classify the silhouettes. The number of correct evaluatamd standard deviation among
the 8 evaluations are recorded as shown in Table 1.

p-value  Percentage correct

Manual marks 0.03 65
MDL marks 0.00003 85
Direct human scoring - 655

Table 1: Gender determination using various models.

From Table 1, it is seen that MDL gives significantly betterdeis of the gender
than manual marks, and it outperforms by far the direct huoteervers. It was found
important to include the chin of the faces to obtain this gpedormance (approximately
as much as in Figure 2) - as men have larger chins. For thismeaare was taken to
ensure that the two sets of marks on average cover the sameaofdhe front and the
chin. The direct human scoring uses the full curve, i.e.,etban covered by the marks,
but despite of this, it performs worse. Figure 4 shows a feangdes of classification
using MDL annotation.



Female Female Female Female Female

p(male)=0.000532 0.261 0.481 0.884 0.919
Male Male Male Male Male
p(male)=0.0456 0.459 0.54 0.795 0.994

L

Figure 4. Classification of silhouettes using MDL annotatidrue gender ang(male)
from logistic regression model.

4 Discussion and Conclusion

The curvature at markis defined solely fronr;_j, ri andri;1 so it may seem that the
curvature is redundant information. However, it amplifiesand-order derivative content
of the curve, which plays a negligible role in the PCA of thaigions. So the curvature
digs out more information from the curves. Of course thisusthonly be used when the
data is known to have sulfficiently low noise to allow for this.

The method unifies the intuitive idea of matching points vhiph curvature with the
MDL approach yielding automation, robustness and accur&@wgmputer vision rarely
allows for a unique and perfect solution; instead the mettemks an optimum, which is
a trade- off between competing and frequently contradjatequirements, and controlled
by the weighting facto€ of the curvature term.

The vision of the approach is that simplicity implies trutiiow we can see that this
truth depends on the input: Adding curvature explicitlymgpas the simplest solution. So
in order to find the truth, your representation of the datatrbaschosen carefully. If the
curve is noisy, curvature is not a true feature of the datah8anoral of the story is that
care is needed when defining the representation.

As for the faces the noise is not in the curvature but rathkmg-range x-y-positions:
Noise appears when the viewing of the head is not strictlgrédt but somewhat from
above or slightly towards frontal. Finally the distancelte head gives perspective dis-
tortions. These three degrees of freedom affects the wtatore than the curvatures.




The feature vector can either be position and curvatureridbestby a common PCA,
or it can be two separate cost functions of position and turgarespectively. In the
first case the model can exploit correlations between positand curvature and form a
compact description. In the latter case curvature andipositre required to be compact
by themselves. This paper explored the division of cost twimterms which is easy to
control and computationally fast, and it leads to a solutbthe point correspondence
problem for the silhouette case in excellent agreement ithan experts and based on
a principled approach. Classification of shapes was gréabyoved using the MDL
method.

Jesper Skjerning is acknowledged for providing the firstibeettes.

The Matlab software source code is available from www.imimak/~hht.
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