
Asynchronous Implementation
of Virtual Channels in On-Chip

Networks

Mathias Nicolajsen Kjærgaard

LYNGBY 2004

EKSAMENSPROJEKT

IMM-THESIS-2004-25

IMM



Trykt af IMM, DTU



Abstract

On-chip network has been proposed as a method to overcome two major
challenges in future SoC designs: The challenge of increasing design-effort
needed to implement reliable inter-module communication in SoCs, and the
projected bottleneck in non-scalable global wires.

Several proposals for NoC designs have already been proposed, but mostly
using synchronous approaches. This thesis investigates design of on-chip net-
work links using asynchronous circuits, and presents three link designs of
which two are providing virtual channels. The link designs have been im-
plemented using customizable macros, which are generating link instances
as verilog standard cell netlists. Link instances have been simulated with
back-annotated pre-layout timing estimations for a 0.18µm CMOS technol-
ogy. The implementations are evaluated on performance and cost to identify
the trade-offs present when choosing between the designs, and to determine
the penalty for increasing the number of channels on the link.

Keywords: System-on-Chip, Network-on-Chip, Virtual-Channels, Asyn-
chronous Design
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Chapter 1

Introduction

1.1 Background

For the past two decades we have witnessed an exponential growth in the
number transistors that can be placed inside a single chip. This is a result
both of increasing density and increasing die-size, and nothing indicates that
this evolution should not continue in the years to come[18].

To benefit from the advancements in production technology it is necessary
that system design process is evolving at the same pace. Two main trends for
enhancing system design productivity is an increasing level of abstraction and
an increased level of automation[18]. In the past the level of abstraction has
been raised from device level to gate and macro-cell level, and the latest step
is the use of intellectual property(IP) blocks to compose a system design.
With modern production technology it is possible to put entire computer
systems on a single chip with CPU, DSPs, memory and IO-controllers where
each of these modules are IP blocks. This design methodology is called
System-on-Chip(SoC) and is already in wide use.

Today SoCs most often use either ad-hoc global wiring or time-division
multiplexed buses for communication between modules on the chip. Ad-
hoc wiring may have a substantial influence on the design costs, and buses
are predicted to become a bottleneck for future SoC design because of the
shared medium. Network-on-Chip(NoC) has been proposed as solution to
these problems[34, 15, 5]. In the NoC design approach the global wires
are replaced with segmented wires(links) connecting network nodes. Each
module in the SoC is connected to a node in the network and in that way
acts as clients on the network.

Ideally a general purpose NoC could be designed and verified once and
for all, and then used in several SoC designs instantiated with appropriate
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parameters for the given application. If IP vendors use standard interface
between the NoC nodes and SoC IP cores, a NoC design could be just an-
other IP block that you buy along with other components needed for a SoC
design. It would also allow you to replace one network implementation with
another in a plug-and-play manner to fit new requirements. This decoupling
of communication and computation is considered a very important aspect of
NoC design.

Another challenge that arise from future technology advancements is that
the length of global wire does not scale as opposed to transistors and local
interconnect, and therefore global interconnect is projected to become a ma-
jor bottleneck in future deep sub-micron(DSM) integrated circuits[33]. NoC
design has the potential of increasing the wire utilization through sharing
and might help avoiding the bottleneck in global on-chip communication.

Decreasing clock cycles and increasing die sizes will render it impossi-
ble to distribute a single global clock signal. Time-of-flight(TOF) delays
alone will set a lower bound of approximately 220ps for corner-to-corner
communication[33]. RC-delays will however stay the dominant delay factor
in the near future, and the corner-to-corner delay will be considerably longer
than the 220ps limit posed by TOF[33]. This conflicts with the 12GHz
circuits projected for future 50nm technology[18] and calls for dividing the
chip into smaller modules with separate clock domains. This scenario is sup-
ported by the Globally Asynchronous - Locally Synchronous(GALS) design
methodology.

NoC offers a structured approach to the design of a GALS system with
the network being globally asynchronous part and the SoC modules being the
locally synchronous parts. Resent proposals for NoC architectures[27, 19]
does however use synchronous techniques, but asynchronous solutions has
also been proposed in [2] which presents the delay insensitive interconnect
network Chain.

An asynchronous design have several advances over synchronous NoCs.
Asynchronous circuits has low power consumption proportional to the activ-
ity in the network. Ideally an idle network would therefore have zero power
consumption. Asynchronous circuits use either matched delays or delay in-
sensitive techniques to obtain actual-case latency. This makes the circuits
more robust and since global wires in a NoC may have significant delay
variations due to cross-talk, temperature and process variations, it may also
improve performance compared to synchronous circuits which always assume
worst-case latency. Asynchronous circuits also have lower emission of elec-
tromagnetic noise since current spikes caused by the clock are avoided. The
drawback of asynchronous design is that it so far only is a small niche in the
area of chip design, and therefore it lacks of CAD and Electronic Design Au-
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tomation(EDA) tools with fluent design flows as we know from synchronous
design.

On-chip networks are very close related to multiprocessor networks and
much of the research done in this area can be used in the NoC-arena as
well. One example is the concept of virtual channels which was proposed
by William J. Dally as a means of avoiding deadlocks and reducing network
latency[14, 12]. Many studies have been made to investigate how the number
of virtual channels is influencing the performance of the network, and how
virtual channels can be used to support a variety routing protocols. The ac-
tual cost of implementing virtual channels in on-chip network link is however
unexplored and hence the subject of this thesis.

1.2 Objective

The objective of this project is to construct and evaluate implementations of
asynchronous on-chip network links with virtual channels. The implementa-
tions will be evaluated on power, area and performance to determine the cost
of adding virtual channels and to identify trade-offs between these parame-
ters when choosing link implementation. It will also be investigated how the
implementations are affected by future technology advancements.

1.3 Overview

Chapter 2 will give a short introduction to on-chip network and general net-
work concepts while pointing out distinctions between multiprocessor net-
works and on-chip networks. The link implementations in Chapter 4 has
high focus on regularity and customize-ability and therefore Chapter 3 will
go through the design flow and explain how these goals are achieved. This
chapter can be skipped if you just want to “get to the point”. Chapter 4
will present three implementations of on-chip network links, and go through
the design decisions for each of them. Chapter 5 will analyze and discuss
performance and cost parameters of the link implementations based on an
extensive set simulation results. Chapter 5 will also propose some future
improvements for the implementations, and at last Chapter 6 will conclude
this thesis.

Appendix A and B includes a few design-flow scripts and sample source-
code listings. Full source-code and all scripts are included on the CD enclosed
in this report. Content of the CD is listed in Appendix C. If the CD is missing
and you need the files, please contact the author(mnk@mnk.dk). A number of
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Chapter 2

On-chip Networks and
Virtual-channels

On-chip networks share many concepts with interconnection networks for
traditional multiprocessor systems which has been an area of active research
for many years. Basic knowledge of the area of multiprocessor networks is
assumed in the following discussion. A good introduction to the subject can
be found in [11].

When classifying networks it is traditionally done by identifying four key
properties which is topology, routing algorithm, switching strategy and flow
control mechanism[11]. In this chapter we will go through these properties
and relate them to on-chip networks.

2.1 Topology

According to [35, 15] the best choice for network topology in a NoC will
be the mesh or the torus. These topologies are straight forward to layout
on a chip due to the 2D square structure. The torus topology has twice
the bisection bandwidth of a mesh network at the expense of a doubled wire
demand[15]. The fat-tree topology which is the best choice from a connection
point of view and which is widely used in multiprocessor systems[11], suffers
from very complex wiring demands[34]. In [19] they argue that an irregular
application-specific topology often is the best choice, since many SoCs uses
modules with varying size and communication requirements unlike multipro-
cessor systems which are mostly homogeneous. Figure 2.1 shows the four
topologies mentioned here.

5
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TORUSMESH FAT−TREE APPLICATION SPECIFIC

Figure 2.1: Four network topologies considered for on-chip networks.

2.2 Routing Protocol

The routing protocol determines which route in the network a packet takes
when traveling from source to destination. The two main issues for a routing
protocol is deadlock avoidance and traffic shaping. A deadlock is the situa-
tion where the network halts because all buffers are full and there is a circu-
lar dependency somewhere that prevents communication to proceed. With
the store-and-forward routing scheme, deadlock can be avoided by structur-
ing the use of buffers in the network nodes, but with the wormhole routing
scheme a packet may span several network nodes at the same time and there-
fore a different approach must be taken. In [14] is presented a solution for
deadlock-free routing in a wormhole routed network using the concept of
virtual-channels. Section 2.4 has a detailed discussion on virtual-channels
and the benefits of using virtual-channels in a NoC design. The idea of
wormhole routing is to lower the demand for buffers in the network nodes by
starting to forward the packet to the next hop as soon as the first flit has ar-
rived. This approach also reduces the ideal latency of a packet transmission.
These properties of wormhole routing fit very well with the requirements of
a NoC design.

A routing protocol can either be deterministic or adaptive. In a deter-
ministic routing protocol the route is solely determined by which source and
destination the packet is traveling between. This routing scheme may lead
to congested areas in the network and poor utilization of the network ca-
pacity. Adaptive routing has the purpose of routing packet around failing
nodes and congested areas in the network to improve performance and fault
tolerance[13]. As in [27, 34] it will here be assumed that on-chip network
links newer fails or corrupts data, and hence it is only for performance rea-
sons that adaptive routing is employed. The NoC design presented in [19]
does however support data corruption on the links by applying CRC error-
detection, and future NoCs may even support failing links as a trade-of for
aggressive performance optimizations.
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Design-time knowledge of the traffic pattern in the network can be used
to place the modules in the network in a way that minimize congestion. In a
SoC design it might often be obvious which modules that need heavy inter-
communication and therefore should be placed close to each other. This is
different from multiprocessor systems which have uniform nodes and com-
munication patterns that depends on application software.

In the area of multiprocessor interconnection networks, several studies ex-
ists of performance relationship between deterministic and adaptive routing.
In [13] it is shown that adaptive routing can provide increased performance
while maintaining the network deadlock-free. Good performance result how-
ever requires that adaptive routing is accompanied by an increased number of
virtual channels[26]. The performance improvements of adaptive routing and
virtual channels comes with the cost of increased switch complexity which
results in longer delays and larger nodes[1].

2.3 Switching Strategy

Two main switching strategies exist. Circuit switching provides a reserved
point-to-point connection between the communicating nodes. Often this con-
nection offers some guaranteed services which makes it particular suitable for
streaming real-time data. To be able to make guarantees for data-transfers
made on a shared medium it is necessary to make reservations on connec-
tion setup. In [27] is presented a synchronous NoC which uses time-slots to
reserve bandwidth for a particular connection. In an asynchronous network
there is no global notion of time and therefore time-division is not possible.
Instead the reservation can be made on virtual-channels. As proposed in [6]
virtual-channels can be used to establish logically independent streams with
guaranteed service between nodes in a NoC. These logical streams/circuits
can be seen as static wormholes in the network, which is either established at
design time or dynamically using some kind of network configuration system.
In [6] it is investigated how many channels is needed on each link to estab-
lish an all-to-all network of these logical circuits, and for instance a 25 node
torus network would require 15 channels on each link. The implementation
of guaranteed service on a shared medium is closely related to flow control
mechanisms which is the subject of the next section.

The alternative to circuit switching is packet switching. In this switching
strategy data is not transmitted on a predefined circuit, but instead routing
informations is bundled with the data when it is transmitted. At the source,
a message is put into (possibly several) packets which consists of a header
and the payload data. The header contains the routing informations and
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possibly a sequence number. Each packet is then routed through the net-
work, and at the destination node the packets are assembled into the original
message. Often packet switched communication is used to provide best effort
service as opposed to guaranteed service. Best effort service does not give
any guaranties of latency or throughput, but instead it has better average
utilization of the network resources[11, 27].

2.4 Flow Control Mechanism

Network flow control can be performed at different levels in the network stack.
End-to-end flow control can be used to minimize congestion in the network
by throttling the injection of new traffic. In [13] throttling is achieved by
enforcing that incoming traffic may only use a subset of the channels on a
link. The result is a more stable network but a slightly increased latency.

Flow control must also be performed on link level. When more than one
data element are waiting to get transferred over the same network link, it is
the job of the flow control mechanism to decide in which order the elements
are transferred. In a network using store and forward routing this flow control
is performed at packet level, which means that when a packet is scheduled
for transmission, it will be transmitted as a whole and not just partial. The
packets are buffered in the network nodes until they are elected for transfer
by the flow control mechanism.

When using wormhole routing the packet will be divided into smaller
pieces(flits) and the flow control will be performed on flit level. The size of
a flit is often related to the physical implementation of the network link. For
instance the NoC design presented in [15] has a 256 bit wide data-path on
each link and therefore the flit is also 256 bit.

Since only the first flit(s) in a packet contains the routing information,
it is import that the following flits does not get lost from the head-flit. One
way to keep flits from the same packet associated with each other is to use
virtual channel flow control as proposed in [12]. Virtual channels are logically
independent channels with separate sets of input and output buffers but
sharing the same physical channel.

In virtual channel flow control each packet is assigned to a virtual channel
when the header flit arrives at the node. The selection of which virtual
channel a packet should be assigned to, depends on routing information and
flow control decisions. All subsequent flits from that packet will be switched
to the same virtual channel, and no other flits are allowed to mix in on this
virtual channel. In this way it ensured that all flits in a packet stay together.
When the last flit is transmitted from the source node, the head-flit may
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SWITCH SWITCH

Node A Node B

Client A Client B

LINK

NI NI

Figure 2.2: Two nodes in a network connected by a unidirectional link with
2 virtual channels.

already have arrived at the destination. In this situation the packet will
occupy exactly one virtual channel on each link on the route from source to
destination.

It is the job of virtual channel flow control to ensure that flits are not
transmitted over the physical channel unless there is free output buffer avail-
able for the given virtual channel. Otherwise the flit would either block
the link or it would have to be discarded, and neither of these choices are
acceptable. To avoid this situation the sending end of the link must have
information on the the buffer-status on the receiving end. This can be done
by hardwiring status flags for the output buffers on the link or by sending
credits in the opposite direction of the data, each time a flit-buffer is freed
in the receiving end[11].

Figure 2.2 show two nodes in a network with unidirectional links. Each
link has two virtual channels. The fat dotted lines on the figure indicates
two wormholes through which a packet is in the process of being transmitted.
Since they use separate virtual channels on the link, they will not block each
other if one of the packets is stalled.

Allocation of bandwidth to the virtual channels can be done using ran-
dom, round robin, priority or some other arbitration scheme. The best choice
depends on the application of the network, but in a NoC design the cost in
terms of area and latency may be the determining factors when choosing
arbitration scheme. As mentioned earlier is it possible to use virtual chan-
nels as medium for guaranteed service traffic. It requires however that the
flow control mechanism is aware that these channels require special care to
ensures that all service guarantees are met.
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2.5 Network Interface

The connection between network nodes and network clients are made through
a network interface(NI) which may have several responsibilities. In a GALS
design the NI must provide synchronization between the asynchronous net-
work and the synchronous SoC module. Many IP modules using standard
interfaces like Open Core Protocol[21] already exist, and therefore the NI
must also provide wrappers for these standard interfaces. The NI may also
provide high-level network abstractions like setup of circuit switched commu-
nication, multi-casting of data to several receivers or even a shared memory
abstraction. In [25] is presented an NI design with the features just men-
tioned.



Chapter 3

Design Flow

This chapter will go through the design flow used for the link implementa-
tions presented in the next chapter. As mentioned earlier design automation
is an important means for increasing productivity in chip design. The goal
is therefore that the link implementations presented here can be instanti-
ated as part of a complete NoC design in a fully automated process. For
a NoC design, instantiation parameters could be information like number
of modules, module sizes and guaranteed service requirements. From these
parameters, a new set of instantiation parameters for switch and link mod-
ules can be derived. The generated NoC instance is then assembled with
the system modules, and gate level simulations can be performed to verify
functionality. Layout of the NoC system will require tight integration with
floor-planning routines to ensure that modules and network components are
placed appropriately.

The link design presented in the next chapter will take following instan-
tiation parameters:

channel count is the number of channels supported by the link.

data width is the width of the data-path.

link length is the number of repeaters on each wire on the link.

3.1 Standard Cell Design

All circuits presented here are implemented using a generic standard cell
library to increase portability of the designs. The library used is CORE-
LIB8DHS HCMOS8D 1.8V which contains 777 combinatorial and sequen-
tial cells. This cell library is accompanied by several timing specifications

11
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for different operation conditions. The timing specification used here is the
1.95V /−40◦ best-case versions since this is the only version containing power
measurements. The reason for choosing CORELIB8DHS HCMOS8D 1.8V is
that the libraries was already installed and well-known in the department.

3.2 Synthesis of Control Circuits with Petrify

Some of the control circuits used in the link implementations are generated
by the asynchronous synthesis tool Petrify[10, 9]. Petrify is given a sig-
nal transition graph(STG) describing the behavior of the control circuit and
produces a speed-independent circuit implementing this behavior. An intro-
duction to the Petrify design flow and listing of the STG requirements posed
by Petrify can be found in [28]. Petrify can map the output circuit onto
a specific standard cell library if it is given a corresponding gate library in
the genlib-format. A script for translating the standard cell library files into
genlib-format has been created by Tobias Bjerregaard and the output from
this script was used in this project. For correct speed-independent operations
of the circuits generated by Petrify, the gates in the genlib-library must be
guaranteed hazard-free. Here it will be assumed that this is the case for the
CORELIB8DHS HCMOS8D library, but this assumption must be verified
before using the library in actual chip design.

The Petrify version used in this project is Petrify 4.2 which is public
available from the Petrify homepage[8]. This version introduce a number of
new features, which includes automatic generating reset signals in the output
net-list with the command line options -rst0 or -rst1. This functionality
does however include some bugs. The added gates are not mapped to the
standard cell library and segmentation fault has been experienced when
synthesizing complex circuits with the -rst option.

An example of a circuit element synthesized by Petrify is the Muller C-
element. Figure 3.1 shows the STG describing a C-element and the resulting
standard cell implementation is shown in Figure 3.2. This STG is drawn in
a program called Visual STG Lab(VSTGL) which can be downloaded from
the website at SourceForge[16].

3.3 Macro Expansion of Net-lists using GNU

m4

The GNU m4 macro processor is used to achieve a high level of customization
of the link implementations. All designs are described in Verilog files contain-
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Figure 3.1: STG describing a 2-input C-element

Figure 3.2: The AO5NHS complex gate used for C-element implementation



14 CHAPTER 3. DESIGN FLOW

ing embedded m4 macro definitions and expansions. When the description
files are processed through m4, the configuration parameters described ear-
lier will be used to make an actual instance of the link implementation. The
output from m4 is a number of Verilog net-lists which can be passed to Syn-
opsys for timing analysis as described below. A m4 definition file with some
standard constructs is listed in Appendix B.1.

3.4 Timing Estimations by Synopsys

Timing estimates are generated using Design Compiler r©(DC) from Synopsys.
The net-lists generated by the m4 macros are loaded into Design Compiler.
To avoid that DC makes optimizations to the design, all parts are marked as
don’t-touch. Optimizations done by DC are unwanted since they are aimed
for synchronous designs and may introduce logical hazards which will break
the asynchronous control circuits.

This also mean that we must take over an import task that DC would
normally perform on a synchronous circuit, namely to check for design con-
straint violations and to fix eventual problems. The most importing issue
here is scaling of gates which drives a large fanout net. This issue has been
solved by identifying all potential large-fanout net in each design, and then
inserted a m4 macro which created appropriate scaled buffers. This macro
uses the rule of thumb presented in [24] which says: select an optimum fan-
out of 4. The result is a chain of buffers where the input capacitance is
multiplied in each step until the wanted driving-strength is reached.

Most of the logic in the link implementations will be part of the network
nodes. Since a network node should be relatively small designs, the wire load
model is set to enclosed which results in a flat slope on the dependency
between fanout and wire-lengths.

The propagation delays estimated by DC are written to a Standard Delay
Format(SDF) file which is used for gate-level simulations as described in the
next section.

3.5 Net-list Simulation in ModelSim

ModelSim r© from Model Technology is used for simulation of the link im-
plementation. These simulations with back-annotated timing are used for
functional verification and for performance analysis. A library of functional
Verilog HDL descriptions is provided with the HCMOS8D standard cell li-
brary, and these has been compiled into a ModelSim simulation library.
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Figure 3.3: Structure of the link testbench.

Simulations of a link implementation is done by placing it in a behavioral
VHDL test-bench. The same test-bench is used for all links since they use
the same interface. As the link implementations themselves, the test-bench
is also parameterized with regard to the number of virtual channel. The
test-bench use text-files for stimuli input - one file for each virtual channel.
The stimuli files are generated by the Perl script listed in Appendix A. The
structure of the test-bench setup is illustrated in Figure 3.3. All source and
sink modules operate concurrently to ensure that no internal dependencies
in the test-bench will influence the performance measurements.

The test-bench ensures that the link behaves correctly with respect to
handshake protocol at the interface. Correct transmission of data is ensured
by the sink module which check all received data against the data file. If
errors occur during simulation then exception will be thrown and the simu-
lation will suspend.

During simulation the test-bench writes a transfer log-file with one entry
for each sent and received flit. After simulation this log-file is parsed to a
database which is used for statistical queries as described in Section 3.6.1.

At the same time all toggling information in the link cells are recorded into
a Value Change Dump(VCD) file. These toggling informations is used for
estimation of energy consumption in the link circuits which will be described
in Section 3.6.3.
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3.6 Design Evaluation Techniques

3.6.1 Throughput and Latency

The primary performance measures for networks are bandwidth and latency
and both depends one many factors in the network. Only the link implemen-
tation is in focus in this project and therefore it is not possible to make a
complete performance analysis for on-chip networks.

When describing link performance, the terms throughput and latency will
be used. Latency is the time passing from a flit is injected in the sending end
of the link, until it arrives at the receiving end of the link. Throughput will
describe the number of flits per time-unit that can be transported through
the link or through a single channel at maximum speed.

Latency and throughput on a channel will be affected by contention when
several virtual channels are eager to transmit at the same time. Therefore
simulations will be performed with varying link load scenarios.

Performance measures are obtained by by making queries to the sim-
ulation database described above. Sample queries are shown in Appendix
A.

3.6.2 Area Estimation

There is two area concerns for on-chip network links. The first concern is the
logic area used for implementation of flow control mechanism, signal coding,
pipeline buffers and wire repeaters. Estimations for these area measures can
be reported by DC using the report_area command.

The second area concern is the interconnect area consumed by the global
wires connecting network nodes. Since the area estimates made by DC are
pre-layout, they will not account for these long wires. Instead the global
interconnect area will be calculated using technology design rules and knowl-
edge of the number of wires in each link implementation.

3.6.3 Energy Measurements

Energy consumption is an important aspect for a NoC design. Only asyn-
chronous designs are presented here which means that the power consumption
is highly dependent on the activity in the network. In an idle network the
power will be equal to the leakage power of the circuit. Design Compiler has
a report_power function which calculates dynamic power on basis of circuit
capacitances and estimated circuit activities. The estimation of circuit activ-
ity is however targeted at synchronous designs and does not take the actual
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Figure 3.4: One stage in a quad-rail FIFO. Only one group(W = 2) shown,
but a wider FIFO is indicated by the dotted wires

activity into account. Therefore these estimates are not suitable for power
estimations in a asynchronous circuit.

It is however possible to provide Design Compiler with circuit activity
information using the Switching Activity Interchange Format(SAIF) format.
These activity informations can be extracted during simulation of the circuits
and should therefore be quite accurate. ModelSim does not provide direct
support for the SAIF file format, but the VCD file created by ModelSim can
be converted into a SAIF file using the Synopsys tool vcd2saif.

To verify that power calculations based on SAIF files are reliable, a sim-
ple FIFO is analyzed. The FIFO is using a delay insensitive 1-of-4 pipeline
latch[28, 3] as shown in Figure 3.4. A rough estimate of the power consump-
tion for the FIFO can be calculated by counting the number of standard-load
transitions involved in a handshake. The std.load of the HCMOS8D process
is given to 6fF in [29]. We will assume that all gates has an input ca-
pacitance equal to a std.load, which is not entirely correct since the input
capacitance to the AND/OR gates is a little below the std.load, whereas the
input capacitance to the C-element is a little higher. In theory the power
consumption of a 1-of-N coded FIFO is data-independent. In a real layout
some data dependence may arise due to cross-talk between code-words or
varying capacitive coupling on the wires. This analysis will leave out these
details and assume that power is data independent.

Below is summarized how the standard-load transitions of the FIFO-stage
in Figure 3.4 is counted. W will represent the bit-width of the FIFO.
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(a) The inverter driving one input on all latching C-gates has a fanout of
2 × W . When W > 2 the inverter must be scaled up as described in
Section 3.4. The input marked a is therefore accounted as 1/2 × W
std.loads.

(b) The C-gate input marked b makes one cycle for each handshake. The
contribution is thus 2 × W std.loads.

(c-f) At each handshake only one of the four data inputs makes a cycle. The
inputs marked c, d, e and f thus contributes 1/2 × W std.loads each.

(g) Both inputs on the C-gate doing completion detection makes a cycle
per handshake. This means a constant of 2 std.loads is contributed.

The total number of std.load cycles is:

(1/2 × W ) + (2 × W ) + 4 × (1/2 × W ) + 2 = 4.5 × W + 2

In [30] the following figure for power consumption in the HCMOS8D technol-
ogy is given: 35nW/Gate/MHz/Stdload. A 16 bit FIFO(W = 16) thus has
an estimated energy consumption of (4.5×16+2)Stdload×35fJ/Stdload =
2.6pJ/handshake. Table 3.1 show energy consumption reported by DC
for several FIFO configurations compared to calculated values as described
above. Actually DC is reporting a power estimate, and the numbers in col-
umn four has been calculated by dividing the power estimate by (activity ×
W × stages). The energy reported by DC includes wire switching energy
which is contributing with approximately 50% of the total. This explain why
the energy consumption reported by DC is approximately 2 times the values
calculated from std.loads. When W is increased from 16 to 32, the AND/OR
gates are replaced with gate trees and therefore DC is reporting increased
energy consumption. This is not covered by the std.load calculation above.
The last two rows has a lower activity because the data producer was throt-
tled. The results in Table 3.1 show that the use of SAIF files in DC makes
it possible to obtain credible energy estimations for asynchronous circuits
based on simulated activities in the circuits.

3.7 Automation of Design Flow

Some standard methodologies from software development have been applied
to the implementation project, to achieve a smooth development cycle with
easy test and simulation. This includes extensive use of GNU make for all
steps in the cycle. For customization of the link implementation, a configure
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W Stages Activity DC(simulated SAIF) Std.load calc.

16 16 322 313 162
16 32 319 305 162
32 16 208 357 159
32 32 208 350 159
32 16 87 362 159
32 32 87 354 159

Table 3.1: Power consumption(fJ/flit/stage/bit) on a FIFO with varying
W (bits), activity(flits/µS) and number of FIFO stages.

script is provided, which also is common in software development projects.
When the configure script run without parameters, it will explain which
parameters are need, as shown below:

[s973371@cstpro7 src]# ./configure

Usage: ./configure <LINK-IMPL> <CHANNEL-COUNT> <DATA-WIDTH> <STAGE-COUNT>

<LINK-IMPL> choose the link implementation(a number 1-3)

<CHANNEL-COUNT> is the number of channels on the link(must be a power of 2)

<DATA-WIDTH> is the width of the bundled-data interface for each channel

<STAGE-COUNT> is the number of buffers/latches on the link

When it has been decided which configuration to analyze, for instance for
power consumption, the following command can be executed:

[s973371@cstpro7 src]# ./configure 2 16 32 5

[s973371@cstpro7 src]# make power-report

This will initiate all the procedures described earlier in this chapter:

• Control circuit described as signal transition graphs will be synthesized
into gate level net-lists by Petrify.

• All macros in the link descriptions will be expanded by m4 using the
parameters given to the configure script.

• The resulting net-lists is compiled with DC and timing-information is
extracted from the design.

• A simulation is performed using the timing-information created by DC,
and the simulation results are added to the database.

• The VCD file produced by the ModelSim simulation is converted into
SAIF format.
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• The link design is loaded back into DC to make a power report using
the newly created SAIF file.

• Result from a throughput query is printed to the screen to facilitate
comparison of power and activity.

Appendix A show the Makefile for the project.



Chapter 4

Link Implementations

This chapter will present three asynchronous designs of a unidirectional NoC
link with support for multiple channels. All links will be presented in a
simple scale with only a few channels. When describing extensions to these,
N will denote the number of channels on the link. Figure 4.1 show a NoC
link and the context. The link is surrounded with a dashed line. In the
implementations presented here we will assume the flit-size to be the same
as the width of the data-path. The data width will be denoted W .

4.1 Asynchronous Design

All circuits presented here are using asynchronous design methodologies,
which are proved and well documented[28, 22] but not in wide commercial
use yet. The fundamental difference between synchronous and asynchronous
circuits is that the clock signal is replaced by implicit or explicit data-valid
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Figure 4.1: A unidirectional NoC link with N channels.
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information associated with each data element.
All designs will use 4-phase “return to zero”(RTZ) handshakes to avoid

the complications of 2-phase protocol as described in [28]. In the link ends all
circuits use bundled-data protocol, also called single rail in [22]. This reduces
the logic area of the link since bundled-data representation only needs half
the wires of a delay insensitive encoding like dual-rail or 1-of-4. Also the
link-ends after layout should have only a very limited extent on the chip,
and therefore delay matching can be made using tight timing assumptions.
The bundled-data protocol also avoids the synchronization over a possibly
wide data-path, which might decrease performance.

The long wires in the physical channel can be heavily influenced by cross-
talk which can cause the propagation delay to vary a lot. Therefore the
physical channel use delay insensitive encoding as described in Section 4.2.4.

4.1.1 Handshake Channels

The link designs will be presented as circuits composed of handshake com-
ponents which are communicating via handshake channels. Please note the
distinction between handshake channels and link channels described earlier.
The design diagrams will use the concept of static data-flow structures pre-
sented in [28], combined with the notions of handshake channel types pre-
sented in [22]. A short introduction will be given here.

In the following discussion we will assume that the bundled-data proto-
col is used on all handshake channels, even though a few handshake channels
in the link designs are using different protocols. A handshake channel con-
sists of a request and a acknowledge signal, and possibly some data. Three
types of handshake channels will be used, and these are shown in Figure 4.2.
The fat dot is marking the active party on the channel which is the compo-
nent driving the request signal, and the open circle is marking the passive
party which is the component driving the acknowledge signal. When data
is included on a handshake channel, an arrow will mark the direction of the
data-flow. On a push handshake channel, data is flowing from the active
to the passive party which means that data-valid information is encoded on
the request signal. On a pull handshake channel, data-valid information is
encoded on the acknowledge signal. The nonput handshake channel has no
data associated, and therefore it is only used for synchronization.

Figure 4.2 also show three basic handshake components, namely the fork,
join and latch component. The rest of the handshake components will be
presented as we go through the link implementations.

In [22] is presented the concept of data-valid schemes which defines how
data-valid information is encoded on the request(req) and acknowledge(ack)
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Figure 4.2: Handshake channel and component notation.

early

broad

ack

req

late

Figure 4.3: Data-valid schemes for a push handshake channel.

signals. Figure 4.3 shows the three main data-valid schemes on a push hand-
shake channel. Similar schemes is defined for a pull channel. The early
scheme defines that data may be released by the sender after ack ↑, but this
does not necessarily mean that the data actually is released. If for instance
the sender component guarantees that data remains valid until some time af-
ter req ↓, it might be possible to simplify the receiving component by taking
advantage of this guarantee. This scheme is called extended early and will
be used on some handshake channels in the implementations.

The data-valid schemes is used to reason about correct operation of the
circuits, and to identify the timing assumptions which must be verified after
a link has been instantiated. Generally, when operations are added to the
data-path, these operations must be accompanied by delay elements in the
control circuit. The data-path operations used in the link implementations
are however only simple mux and demux circuits with relatively short delays.
These delays may in most cases be matched by the internal delays in the
control circuits, and thereby delay insertion can be avoided.

4.1.2 Link Interface

All link implementations will use the same external interface to make them
directly comparable. This interface is an asynchronous 4-phase bundled-
data interface similar to the handshake channels described above. It has
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been chosen not to include input or output buffers in the implementations
since the links are tested directly in a test-bench. If the link is connected
to a switch in a real system, some buffers must be added in both ends to
improve performance and to decouple link activity from the switch[12].

When no buffers is included, link-level flow control must be performed on
the basis of the information available at the link interface. To emphasis the
fact that both sending and receiving end of a link channel must indicate that
they are capable of completing a flit transfer, before the transfer is actually
started, we will let both ends connect to an active handshake channel. In
the sending end, a req ↑ from the environment will indicate that a flit is
ready for transfer, and in the receiving end a req ↑ from the environment
will indicate that a free buffer is ready to receive a flit. Therefore the link is
passive in both ends, which means that the sending end will be connected to
push channels and the receiving end will be connected to pull channels.

4.1.3 Circuit Reset

We will assume an active HIGH reset signal is present at all nodes to initialize
the link. This reset signal can be a global reset signal or a signal generated
at each node on power-up. Since Petrify fails to insert reset signals in the
synthesized circuits, reset functionality must be inserted manually. This has
been done in all link implementations, but the reset functionality is left out
in all the circuit diagrams presented in the coming sections. For correct reset
of the link, all inputs must be set low, and reset set high, long enough for
the reset to propagate through the link-wires.

4.2 Basic Components

4.2.1 Passivator

The link is passive on both input and output channels and therefore some-
where in the link, the data must be transferred from a push channel to a
pull channel. The component making this conversion is a passivator [22] and
a non-latching version is depicted in Figure 4.4. As described in [22] this
passivator implementation requires a broad data-valid scheme on the input A
and guarantees an early data-valid scheme on the output B. If an isochronic
fork is assumed on the output of the C-element the passivator actually guar-
antees an extended early data-valid scheme. Later in this chapter it will be
discussed how we can benefit from this, and what implications it might have.
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Figure 4.4: A non-latching passivator.

Figure 4.5: A two input mutex with CMOS metastability-filter

4.2.2 Mutual Exclusion

The CORELIB8DHS HCMOS8D cell library does not have any cells for syn-
chronization and mutual exclusion(mutex) which is needed for the link im-
plementations. A basic mutex circuit as presented in [20] is shown in Figure
4.5. This is a transistor level implementation which is incompatible with
the choice of using pure standard cells. As mentioned in [28], it is possible to
implement the metastability filter using wide gates as shown in 4.6, but this
implementation oscillate in gate level simulation if both input are raised at
the same time. Therefore a behavioral mutex implementation will be used
for all simulations.

4.2.3 Arbitration

Two of the designs presented later in this chapter will implement virtual
channels sharing a single physical channel. Several virtual channels may

Figure 4.6: A two input mutex with standard cell metastability-filter



26 CHAPTER 4. LINK IMPLEMENTATIONS

M2

M2

M2 M2

M2

M2

M2

Ci1

Ci2

Ci3

Ci8

Co1

Ci4

Ci5
Ci6

Ci7

Co8

Co7

Co6

Co5

Co4

Co3

Co2
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try to access the physical channel simultaneously since they are operating
concurrently and with no dependencies among them. This means that the
arbitration for the channel must be a part of the link-implementation.

In [28] is presented a two input handshake arbiter which consists of three
elements: A mutual exclusion element, some circuitry to ensure that the
hole handshake is finished before the shared resource is released and at last a
standard merge element. The mutex presented in previous section only has
2 channels, but we will need N virtual channels. A N -channel mutex can
be constructed by using multiple 2 channel mutexs as described in [23]. The
“genex 3× 1” presented in [23] has been extended and a resulting 8 channel
mutex is shown in Figure 4.7.

The N -channel mutex is implemented as a recursive net-list macro which
is listed in Appendix B.2. This means that any number of channels is sup-
ported, but the delay in the mutex will increase when N is increased. The
delay of a N -channel mutex can be calculated as:

(log2(N) − 1) × (tpdAND
+ tpdOR

) + log2(N) × tpdMUTEX2

The N -channel mutex can be used to implement a N -channel handshake
arbiter. A 4-channel handshake arbiter is shown in Figure 4.8. This circuit
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is an extension of the handshake arbiter presented in [28]. Since information
on which channel is selected, is needed for multiplexing, the request signal is
encoded along with the selected channel as 1-of-N signal. Like the N -channel
mutex the handshake arbiter is defined as a recursive net-list macro.

The forward latency of the N -channel handshake arbiter can be calculated
as follows:

(log2(N) − 1) × (tpdAND
+ tpdOR

) + log2(N) × (tpdMUTEX2
+ tpdAND

)

The reverse latency is unaffected by N and only includes the latency in a
single C-element(tpdC

).

In the arbiter described above the active ports are on the left hand side
and the passive port is on the right hand side. Given the notion of data
flowing from left to right, this means that the arbiter is connected to push
handshake channels on both sides. The last link implementation does how-
ever make heavy use of pull channels which means that a arbiter supporting
pull input and output ports is needed. Figure 4.9 shows a pull arbiter with
two active input ports and one passive output port. When a request is re-
ceived on the output channel it is forwarded to both input channels. If both
input channels acknowledge this request, the first arriving acknowledge will
be selected, and the other will have to wait until the handshake has com-
pleted and a new request arrives on the output channel. The pull arbiter
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includes an explicit data valid signal on the output port, since the sel1 and
sel2 will be treated like bundled data.

The branch circuit accompanying the pull arbiter is shown in figure 4.10.
The branch also expects sel1 and sel2 to be bundled data. Had they been
encoded for delay insensitivity using dual-rail, the two AND-gates on the left
should be replaced with C-gates.

4.2.4 Delay-Insensitive Encoding and Decoding

All link implementations presented here use a delay-insensitive encoding on
the long wires. For the data part a 1-of-4 encoding as presented in [3] is used.
1-of-4 encoding is used partly because encoding and decoding is easy, and be-
cause repeater stages for this encoding are relatively cheap to implement[4].
1-of-2 encoding which is also known as dual-rail encoding has an even sim-
pler encoding and decoding, but suffers from a doubled energy consumption
compared to 1-of-4 and has therefore been discarded.

Encoding from bundled data protocol to 1-of-4 is handled by a single cell
from the cell library as shown in Figure 4.11. This encoder requires extended
early data-valid scheme on its input to ensure that the value on A1 and A2

is not changed while EN is high. DE24HS outputs are inverted which means
that an empty codeword is represented with Z1N to Z4N being logical high.
It is assumed that the DE24HS outputs are hazard free on transitions on the
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EN signal.

Decoding the 1-of-4 signal back to bundled data in the receiving end also
involves completion-detection. A decoding circuit is shown in Figure 4.12
which indicates a 6 bit data-path(3 groups of two bits). Fan-in of the OR
and the AND gate will be W/2. When W > 16 this is implemented as
two trees of AND and OR gates, since the largest AND/OR gate in the cell
library has a fan-in of 8. The 1-of-4 decoder guarantees the early data-valid
scheme on its output.
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Figure 4.13: Link channels implemented as actual physical channels.

4.3 Physical Channels

The first design strategy presented here is to use actual physical channels
to obtain multiple channels on a link. The motivation for investigating this
strategy, is that the concept of virtual channels is inherited from multiproces-
sor interconnection network, where link wires are relatively expensive com-
pared to router logic and buffers[12]. In on-chip network this relation may
however have changed, since there is a quite large amount wiring resources
on a chip when compared to inter-chip wiring. In [15] it is proposed to use
a 300 wires in each link in a NoC to realize a 256 bit wide flit. This is quite
different from most multiprocessor system which uses a channel width of 8
or 16 bits[11]. This implementation proposes to split the large wiring re-
sources into several narrow channels to avoid the control logic implementing
link level flow control. Thereby trading a lower bandwidth of the individual
virtual channel for reduced energy consumption and increased aggregated
bandwidth. The implementation will be used as a reference point for perfor-
mance and cost comparisons between the implementations. When referring
to this design we will call it Implementation 1 or imp. 1.

The structure of the link is outlined in Figure 4.13. The wire count in
this link is linear dependent of the N and therefore it is infeasible to use this
implementation when large number channels is needed. For small numbers
of channels it might however be a good solution because of its simplicity.

All channels in the link are identical and each has it own set of resources.
The structure of a single channel is outlined in Figure 4.14. It consists of a
passivator and the delay insensitive encoding and decoding. The box in each
end of the channel indicates the environment in form of input and output
buffers. These buffers are not included in the actual implementations. The
dotted rectangle covers the long wires between the nodes, and everything on
the left of rectangle is placed in the sending end of the link, and everything on
the right of the rectangle is belonging to the receiving end. These conventions
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Figure 4.14: A single physical channel.

is used in all design drawings presented here.

The passivator input port is connected directly to the link input and
therefore at least a broad data-valid scheme is required on the link input(see
Section 4.2.1). The passivator output is however connected to the 1-of-4
encoder which requires at least extended early data-valid scheme as described
in Section 4.2.4. This conflicts with the early scheme guaranteed by the
passivator. The extended early requirement from the 1-of-4 encoder will
only be met if an isochronic fork is assumed for the passivator acknowledge
outputs. In the prototype implementation this assumption does not hold
because of large fanout on input to the 1-of-4 decoder, but the conflict is
masked by a data-valid period in the link input which is longer than the
required broad scheme. This is actually a realistic situation if the input
buffers are using edge-triggered registers, but this timing assumption must
be verified when the link has been inserted in a NoC. Another way to solve
the conflict is to increase the data-valid period from early to broad between
the passivator and the 1-of-4 encoder. As described in [22] the conversion
from early to broad on a pull channel can only be performed by latching the
input data.

The 1-of-4 decoder is connected directly to the link output which means
that this implementation guarantees early data-validity on its output.

This implementation suffer from high interconnect usage when many
channels is required, and bad utilization of these wiring resource if the ma-
jority of bandwidth requirements is concentrated on small subset of these
channels.

4.4 Virtual-channels with Multiplexed Data-

path

To avoid the problems of high interconnect usage and bad utilization, several
virtual channels can be multiplexed onto a single physical channels. This is
the strategy for the link implementation presented in this section, and the
concept is illustrated in Figure 4.15. When referring to this design we will
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Figure 4.15: Link implementation with multiplexed datapath.
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Figure 4.16: Static data-flow structure of the link.

call it Implementation 2 or imp. 2.

Since the data-path is multiplexed, link level flow control must be em-
ployed. Different strategies for link level flow control exists, e.g. random,
round-robin or priority. This implementation will support an encapsulated
flow control module. This module can be replaced to support one of the
strategies just mentioned, but the performance results presented in the next
chapter will use the handshake arbiter illustrated in Figure 4.8 for flow con-
trol. The flow control strategy offered by this handshake arbiter is rather
“unfair” and may result in poor network characteristics, but as assurance
that only a single channel is selected at any time, the handshake arbiter
behaves correctly.

Figure 4.16 presents a overview of the second link implementation in a
version with two virtual channels. As in the previous section, the dotted rect-
angle is placeholder for the long wires between the sending and the receiving
end.

We will give a brief introduction to the circuit by going through a single
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flit transfer on the link. When employing link level flow control it must
always be ensured that the receiving end has buffer capacity to store the
flit, before it is sent of from the sending end. This is assured by the join
elements joining the sync handshake channel from the sending end with the
sync handshake channel from the receiving end. When a request signal is
present from both sync handshake channels, this virtual channel can engage
in the arbitration for the physical channel. The arbiter ensures that only
one channel is selected and outputs the selection as a 1-of-N encoded signal
which is forked to the multiplexers in the sending end and the demultiplexer
in the receiving end. The multiplexer select the correct data value and passes
it on to the 1-of-4 encoder.

The receiving end has two delay insensitive signals as input from the
sender; the 1-of-4 encoded data and the 1-of-N encoded virtual channel select
signal. The data is decoded back to bundled data and the demultiplexer
forwards the data to the correct virtual channel. When the output buffer
has accepted the data it will take down the request signal, which will send
back acknowledge on the data channel and initiate the return to zero cycle.

The acknowledge signal in each of the sync handshake channels from the
receiving end is redundant, since acknowledgment of the synchronization is
carried implicit in the sel handshake signal. Therefore the actual circuit
implementation has been optimized to remove these redundancies and this
reduces the number of link-wires by N . Each physical channel will have two
wires per bit in the data-path, two wires for each virtual channel and a single
wire for the acknowledge on the sel handshake channel.

Just as imp. 1, this implementation includes link wires in the handshake
cycle. When the latency in these wires increase in future technologies, this
will result in long cycle times, and a large part of the circuit being inactive
most of the time. The last design proposal will solve these problems.

4.5 Virtual-channels with Pipelined Data-path

The last design strategy is to use pipelining to improve throughput and circuit
utilization on a link with multiplexed data-path. The concept is illustrated
in Figure 4.17. When referring to this design we will call it Implementation
3 or imp. 3.

In multiprocessor networks it is not possible to pipeline the network links
since they are just plain cables, but in a on-chip network, link wires are
routed on top of silicon which easily can be used for pipeline buffers. A
prerequisite for gaining performance through pipelining is that the delay
in the pipeline latches them selves remains small compared to the delay in
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Figure 4.17: Link implementation with multiplexed and pipelined datapath.

the wires/combinatorial logic which is between the latches. Otherwise the
penalty in latency and power consumption will overrule the advances of an
increased throughput. Technology scaling is constantly increasing delay of
global wires relative to gate delays and therefore wire pipelining will be more
and more feasible in the future. A minimum sized corner-to-corner wire
in 50nm technology is expected to require 138 repeaters for optimal delay,
whereas the 180nm technology used here only requires 22[33].

Figure 4.17 hide the fact that input and output ports of a virtual channel
must be synchronized before a transfer is started, to prevent the link from
being blocked. A synchronization channel (without pipelining) for each vir-
tual channel will make this assurance. Figure 4.18 show the structure of the
circuit in a link with two virtual channels. As in the first implementation, a
passivator is used to connect the push and the pull side of the circuit. There-
fore broad data-validity is required at the link input. Each virtual channel
also has a fork and a join component which splits data from synchronization
in the sending end, and merges them back together in the receiving end. The
fork transfers the data-valid scheme from its input to its output, and there-
fore the input to the funnel component is early. Even though the output
from the horn component is extended early as we will see shortly, the join
will degrade data-validity at the link output to early [28].

By pipelining the data handshake channel it is possible to merge several
virtual channels onto the same physical channel and let them share the in-
creased bandwidth. The funnel and the horn components are responsible
merging and branching the data handshake channels, and Figure 4.19 shows
the internals of these components for a link instance with 4 virtual channels.
The construct is similar to the FLEETzero switching network presented in
[7]. This Funnel-Horn network does however not make any switching, since
flits are expected to arrive at the same handshake channel as they are inserted
to.
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Figure 4.18: Link implementation using a pipelined data-path to increase
overall throughput.

In the funnel, all input handshake channels are merged to a single hand-
shake channel using a binary tree structure. At each level of the tree, two
extra wires are added to the data-path, and these wires tell from which
subtree(left or right) the flit originated from. This information is dual-rail
encoded all the way from the merge to the branch module, but in the fun-
nel and horn latches these select wires are treated as bundled data to avoid
completion detection. The merge element must be arbitrating since the data
handshake channels coming from different virtual channels are not mutual
exclusive. Each merge element is constructed from the pull arbiter in 4.9
and a combinatorial multiplexer. In the horn which is placed in the receiv-
ing end, a similar tree of branch elements will guide the flit to the correct
output port based on the extra data added in the funnel. The branch ele-
ment is constructed from the pull branch in Figure 4.10 and a combinatorial
demultiplexer.

In a pipelined circuit it is the “slowest” stage that will determine the
performance of the whole circuit, and therefore the funnel and the horn com-
ponents has pipeline latches inserted at each level in the tree. The physical
link is pipelined using the latch described in Section 3.6.3, whereas the fun-
nel and the horn are pipelined using a bundled-data latch which is shown in
Figure 4.20.

The latch controller used inside the funnel and the horn is the simple
latch controller shown in Figure 4.21. This latch controller has a tight cou-
pling between input and output side which means that there is unnecessary
dependencies between the handshakes on the input and the output. These
dependencies will break the merging mechanisms described above, because a
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Figure 4.19: Funnel and horn structure with four virtual channels.
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Figure 4.21: A simple latch controler.
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Figure 4.22: Latch controller for the decoupling latch at input to the funnel.

virtual channel will not release the physical channel before the RTZ part of
the synchronization channel has started, which will not happen before the flit
has been transfered to the other end of the link. Therefore a latch which is
able to decouple the handshake on the output port is inserted at each input
in the funnel component. A latch controller with these capabilities is pre-
sented in [17]. Small adjustments has been made to fit it into a pull channel,
and the resulting STG is depicted in 4.22. The STG presented in [17] has
explicit added a internal variable to ensure complete state coding(CSC)[9],
whereas the STG in Figure 4.22 rely on Petrify to solve the CSC-conflict.

As seen in the STG in Figure 4.22, the decouple latch assumes early on its
input and produces early on its output. The merge and branch component
will produce early on the output when early is provided at the input. The
“simple” latch assumes early on the input but produces extended early on
its output[28]. This ensures that data-validity is correct at the input of the
1-of-4 encoder.

The flow control offered by the funnel-horn construct is a form of round
robin. If all channels are eager to transmit, they will share the link bandwidth
equally. This is caused by the tree structure of the arbiter circuits, and the
fact the arbiter will alternate between the inputs if both are eager. These
properties of the of the funnel-horn can be used to differentiate the service
guarantees on the channels. By making the tree unbalanced, some channels
connected closer to the root of the tree will obtain a larger share of the link
bandwidth. The concept is illustrated in Figure 4.23 where one channel is
guaranteed half the link bandwidth, one channel is guaranteed 1

4
and the last

two are guaranteed 1
8
. Any of the channels can however obtain a larger part

of the bandwidth than it is guaranteed, if other channels are not using their
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Figure 4.23: Funnel and horn in an unbalanced tree structure.

share. Therefore this form of guaranteed service will suffer from more jitter
than guaranteed service based on time-slot reservations. An upper limit for
throughput on a single channel will however be imposed by the sync channel.

The physical channel will have two wires for each bit in the data-path,
two wires for each virtual channel, 2 × log2(N) wires for virtual channel
identification and a single wire for acknowledge in the pipeline.

This implementation has the disadvantage that it only improves aggre-
gated throughput of the link and not the throughput of a single channel.
This is a limitation caused by the decision to leave output buffers out of the
link implementations, but it will not prevent us from estimating performance
of an implementation without this disadvantage. We will come back to this
in Section 5.7.



Chapter 5

Results and Discussion

This chapter will present performance and cost measurements for the link
implementations presented in previous chapter.

All measurements are based on simulation of the link implementations
with back-annotated pre-layout timing information. Each simulation trial
consists of 1000 flit transfers on each eager channel. There has been con-
ducted experiments with larger simulation datasets, but the changes in re-
sults were insignificant, and larger datasets made it infeasible to perform
simulations within reasonable time. Flit payload data is random in all sim-
ulations except dynamic power measurements which is also performed with
all-zero payload.

The variable parameter(number of channels, number of repeaters, flit-
width) in the simulation trials is using powers of 2 to be able to cover a larger
interval without excessive amount of simulation. Also, implementation 2 and
3 only supports channel counts which are a power of 2, because of recursive
definitions of binary tree-structures.

5.1 A sample on-chip network

To put the area and power measurements into perspective a sample NoC will
be presented here. The sample NoC is purely imaginative, but the design
decisions for the network will be based on the motivations presented in Chap-
ter 2, or by using decisions for similar sample network presented by others.
We will assume that basic structure is similar to the example presented in
[15]. The NoC system have 16 modules connected by a folded torus net-
work as shown in Figure 5.1. All links in the network are bidirectional but
communication in each direction is unrelated and therefore one bidirectional
link can be looked upon as two unidirectional links. The total number of

39
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Die
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Figure 5.1: A NoC sample.

unidirectional links is 64. As seen in the figure, a folded torus topology will
result in varying link-lengths when laid out in 2D. The length of the longest
links in a folded torus network can be calculated as:

2 × S√
N

where N is the number of nodes in the network and S is the length of the
die side. The long links can use scaled-up wires if uniform delays in all links
is important. The longest links in this sample NoC will bee half the length
of a die side.

We assume that the sample network system is using the 0.18µm VLSI
design platform HCMOS8[30], which is the platform used in the link im-
plementations. This platform is nearly five years old and already has two
successors, HCMOS9 which is a 0.13µm technology and COMS090 which is
a 90nm technology, and therefore the sample NoC will only be used as a ref-
erence point for projecting performance and cost in contemporary or future
technologies.

It is hard to predict module size for future SoC design, and the optimal
size will probably be very dependent on the application system. For the
sample NoC we will assume a module size of 500K gates. The HCMOS8D
has an average gate density of 85K/mm2, so with the assumption of 500K
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gates in each module, a module will take up 5.8mm2 of die area. With 16
nodes laid out as uniform tiles on the die plus some overhead for the network,
we end with a 100mm2 die. The long links in the sample network will be
5mm and a total link length is 64× (1/2× 5mm + 1/2× 2.5mm) = 240mm.
According to [33] the optimum distance between repeaters on global wires in
a 0.18µm technology is approximately 2mm. The long links in the sample
network would therefore require one or two repeaters for minimum latency.

We will assume a flit width of 16 bit and we will assume that each link
has 16 channels; 8 channels to support adaptive best effort routing, and 8
channels for guaranteed service reservations.

If nothing else is mentioned, the results presented in the following section
will use a 16 bit wide data-path, 16 link-channels and use 2 repeater/pipeline
stages on the physical wires between the link ends.

5.2 Performance

As mentioned earlier, latency and throughput are the two key performance
measures for networks and network components. The performance measures
presented here will mainly focus on throughput defined as “transfered flits
per second”, but latency measures will be presented in the end of Section
5.2.1.

When a link implements virtual channels, the performance seen by a
single channel will be highly dependent on activity on the others. In the
next section we will investigating the situation where only a single channel
on the link is active, and Section 5.2.2 will investigate the situation where
several channels are active.

5.2.1 Unloaded Link

In this section cycle time[28] will be used to describe the performance, and
we will define it as

cycletime =
1

throughput(flit/second)

on a unloaded link. We will use cycle time instead of throughput because the
phenomenons that we will spot in the performance graphs will be related to
circuit delays, and therefore easier to see in a time-graph.
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Figure 5.2: Cycle time on an idle link as a function of the number of channels.

Throughput with Varying Channel Count

The graphs in Figure 5.2 show how cycle time depends on the number of
channels in the link. In implementation 1, one would expect that the cycle
time is independent of the number of channels on the link, but Figure 5.2
show that the cycle time is slightly increasing. This is a result of the first
order gate-delay estimations made by DC. When estimating wire lengths it
is not only the fanout of the wire it selves, but also the total number of gates
in the module that has influence on the estimate. In an optimal layout of
this implementation, the cycle time/throughput would be independent of the
number of virtual channels. The effect of slightly increased gate-delays as the
the number of gates in the link increases will be present in all the following
results.

The cycle time of implementation 2 and 3 is increasing logarithmic with
the number of virtual channels. This is caused by the added delay in the
arbitration circuits, and it increases logarithmic because the arbiters are im-
plemented as trees. The graph shows that there is a significant throughput
degradation when implementing virtual channels. The next section will in-
vestigate if the lost bandwidth in a virtual channel link implementation can
be regained by using a wider flit. The performance of imp. 3 is a little better
than imp. 2, and the difference is increasing with the number of channels.
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Figure 5.3: Cycle time on an idle link as a function of the flit width(16
channels).

Throughput with Varying Flit Width

The flit width will also affect link performance. In the bundled-data part of
the links, a wider data-path increases the load on the control circuits driving
latches and multiplexers. The latency caused by the increased load can be
minimized by scaling the driver gates[32]. In the delay insensitive part of
the circuits, a wider data-path will also cause increased latency because the
hole data-path is synchronized at each pipeline latch. It may be possible to
avoid this by dividing the data-path into smaller gangs at the cost of extra
acknowledge wires. The performance measurements from simulation with
varying flit width is shown in Figure 5.3. As expected we see a logarithmic
increasing cycle time caused by the completion-detection tree getting deeper
as the data-path becomes wider. Above 16 bit the slope is however rather
flat, which means that it is feasible to increase link bandwidth by widening
the data-path. For imp. 3 the cycle time is increased by approx. 10% when
doubling the flit width from 16 to 32 bit.

Throughput with Varying Link Length

Future chip technology advances will increase delays in global wires compared
to gate delays, and here we will investigate how these changes will affect
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Figure 5.4: Cycle time on an idle link as a function of the number of repeaters
on the link(16 channels, 16 bit data).

link performance. Since simulations are performed with pre-layout timing
informations, the delays in link wires are not realistic. Therefore longer
link wires will be emulated by increasing the number repeaters between the
sending end and the receiving end. As seen in Figure 5.4 the cycle time on
the link is linear dependent on the the link wire delay. It is obvious that
the graph for imp. 3 is not what we desired from a pipelined version. As
described earlier, this is caused by the fact that a single channel can not
exploit the pipeline because it is limited by the synchronization handshake
channel. We will come back to this problem in Section 5.7. The graph has
a steeper slope for imp. 3 than imp. 2 because the delay through a pipeline
latch is longer than through a simple buffer.

Latency

At network level, latency describe the time passing from a packet is sent
until the packet is received. Often a packet is divided into several flits and
therefore packet latency at link level will depend on both link latency and
cycle time. We will defined link link latency as the time passing from valid
data and request signal is asserted at the input of a channel, to the data is
available at the output and the acknowledge signal goes high. Table 5.1 lists
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Implementation N Cycle time(nS) Latency(nS)

imp1 2 2.22 0.88
imp2 2 4.13 1.13
imp2 32 9.79 3.35
imp3 2 3.79 2.38
imp3 32 8.18 6.67

Table 5.1: Cycle time and latency for different link instantiations.

cycle time and latency for some link instances. In implementation 1 and 2
the difference between cycle time and latency is rather high. This is because
latency only includes the forward latency of the circuit, whereas cycle time
includes the full handshake. In implementation 3, the cycle time is closer
to the latency because decoupling in the pipeline lets the RTZ part of the
handshake take place concurrently with the data-transfer. The latency in
imp. 3 is approximately 2 times the latency of imp. 2. This is due to the
forward latency added by the pipeline latches.

5.2.2 Bandwidth Sharing

Now we will investigate how the performance is affected when several chan-
nels on the same link is transmitting. In implementation 1, the aggregated
throughput of the link is simply the throughput shown in Figure 5.2 multi-
plied with the number of channels. The total link throughput of implemen-
tation 2 and 3 when all channels are eager to transmit is shown in Figure
5.5 together with the throughput of a single channel. In implementation 2
the aggregated throughput is higher than what a single channel can achieve
alone, because the waiting channels are able to do some initial steps in the
handshake before they reach the arbitration.

Implementation 3 has a considerably higher aggregated throughput when
the number of active channels is raised. This is due to a better utilization of
the data pipeline. The agregated throughput should have been constant when
the number of virtual channels is increased, but it shows a slight decrease.
This is again caused by the first order delay estimations made by DC. In
imp. 3 link instances where log2(N) > W/2, completion detection of the
select signal will be in the critical path and total throughput will degrade
with higher channel count.

How the bandwidth shown in Figure 5.5 is divided between the virtual
channels can be seen in Figure 5.6. This figure show throughput on each
channel for a link instance with 8 virtual channels where all inputs are eager
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Figure 5.5: Total throughput of the link.

to transmit, but output 2 and 5 will not accept flits. As described earlier,
imp. 2 is unfair because only two channels are allowed to communicate. It
is random which couple of adjacent channels are chosen.

In imp. 3 the bandwidth is shared among all the channels willing to
transmit, but channels placed in a subtree together with blocked channels
will take over the unexploited bandwidth. Therefore channel 1 and 6 have
doubled throughput.

The results in Figure 5.5 are from a link with only two repeater stages
on the physical channel. Therefore it is possible for two active channels to
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Figure 5.6: Sharing of bandwidth on a link with 8 virtual channels. All but
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Figure 5.7: Total throughput of imp. 3 with varying number of virtual
channels.

fill up the pipeline. Figure 5.7 shows how the total throughput of imp. 3
is affected when the number of pipeline stages in the link is increased. The
graphs show that a long pipeline requires more channels to be fully utilized.
If the link has too few channels the pipeline becomes data-limited[28]. Link
instances reach full utilization of the pipeline when the number of channels
is higher than 1/4 of the number of pipeline stages. This means that only
about every fourth pipeline latch holds a data element, meaning that the
pipeline has a dynamic wavelength of approximately 4[28]. The variations
in throughput of link instances with 32 channels is again caused by the first
order delay estimations made by DC.

5.3 Area

Now we will compare the area cost-parameter for the link implementations
and investigate how it is affected by the number of channels on the link. The
area consumed by a NoC link is divided in cell area and interconnect area.
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5.3.1 Cell Area

The cell area reported by DC for link instances with varying number of chan-
nels is shown in Figure 5.8. These area measurements include both link logic
placed in the network nodes, and the logic implementing the repeater stages.
Implementation 3 is the most expensive in terms of cell area because of the
pipeline latches. If we assume that the sample network presented in Section
5.1 requires 16 bit flits and 16 channels on each link, then implementation 1
will occupy (64 × 38000µm2)/100mm2 = 2.4% of the total die area, imple-
mentation 2 will occupy 0.9%, and implementation 3 will occupy 4.9%.

When in future the feature size decreases two scenarios can be imagined.
Either both network and modules scale down or module complexity increases
resulting in increased communication demands. The latter will require wider
links. Therefore, in both cases, the link occupation of cell area will remain
at the level described above.

5.3.2 Interconnect Area

The area estimations just presented do not take interconnect area for the
physical channels into account. The number of wires on the link was given
for each implementation in the previous chapter. We will assume that all link
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wires are routed in one of the upper metal layers(metal5 or metal6 ) which
has a minimum width and spacing of 0.64µm. Given that the total length of
all links in the sample NoC presented earlier is approximately 240mm, the
interconnect area occupied by each wire in a link will be 240mm× (64µm +
64µm) ≈ 0.31mm2(the total die area is 100mm2). Figure 5.9 shows the
interconnect-area occupied by link wires in the sample NoC. The graph shows
that implementation 1 is infeasible if more than just a few channels are
desired.

Implementation 2 and 3 use almost the same amount of interconnect area.
Imp. 3 uses a little more because of the channel identification which is added
to the data-path. With two virtual channels and 16 bit flits, approximately
10% of an upper metal layer is used for NoC interconnect.

Since the global interconnect wires do not scale down and future NoC
will have higher communication demands, the link wire occupation of inter-
connect area will increase.
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5.4 Energy

We will now investigate another cost-parameter for the links, namely energy
consumption. First we will look into dynamic energy caused by network
activity and then we will consider idle power consumption in form of cell
leakage.

5.4.1 Dynamic Energy

Figure 5.10 shows how much energy it takes to transfer one flit from one
end to the other in each link implementation, and how data-dependent the
energy consumption is. The measurements include only switching power in
cells and in local interconnect, and not power dissipation in the link-wires.
Energy consumption in the data-path link-wires is data independent since
1-of-4 coding is used. In implementation 1 and 2 the link-wires will add
a constant contribution, since all control informations on the link are one-
hot coded. For implementation 3 the link-wire contribution will be slightly
increasing because the select signal is encoded as a log2(N) bit dual-rail gang.

As expected we see that the energy consumption on imp. 1 is unaffected
by the number of channels on the link. The energy consumption on imp. 2
is increasing slightly because of added complexity in arbiter and multiplexer
circuits. Increased multiplexer complexity is also the reason of larger data-
dependence. For imp 3 we see that it is quite expensive in terms of power,
to pipeline data on the link. There is a logarithmic increase of energy con-
sumption, since each time the number of channels is doubled, another level
is added to the funnel and horn structure, and therefore two extra pipeline
stages are added to the path a flit must travel. Imp. 3 also has larger and
increasing data-dependence because the pipeline registers in the funnel and
horn is using bundled data protocol.

The dynamic energy consumption in cells and local interconnect will scale
down with feature sizes, but since global interconnect does not scale, the
energy consumption in link wires will relatively increase in the future.

5.4.2 Leakage Power

Cell leakage power for the link instances with varying number of channel
is shown in Figure 5.11. As expected the leakage power is proportional to
the cell area shown in 5.8. If the sample network is using imp. 3 links and
16 virtual channels, the total leakage power for the NoC links will be 64 ×
5µW = 0.32W . Compared to the switching power of the link transmitting
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Figure 5.10: Energy consumption for transporting one flit through the link.
Flit payload data is either random or all-zero.

at maximum throughput, the leakage power is rather insignificant(approx.
1/1000).

Future technology generations will, however, suffer from increased cell-
leakage. The leakage power will therefore become an increasingly larger part
of the total link power consumption.

5.5 Quality of Measurements

The measurements presented in previous sections are based on pre-layout
wire estimates which may lead to some uncertainty in the results. Layout
of the designs was not performed due to the limited time available for the
project. It is however an interesting subject for further investigation, and
especially simulation with realistic wire delays on the link wires would be
valuable.

The behavioral mutex used in the simulations is also cause for some un-
certainty, but since it used in both virtual channel implementations, it should
not invalidate comparison of these implementations.

It has been assumed that the complex gates used in the implementations
are guaranteed hazard-free. If this assumption does not hold, these gates
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Figure 5.11: Leakage power in link instances with varying number of chan-
nels.

must be replaced by constructs of simple gates, which may increase latency,
area and power consumption.

5.6 Comparison of Virtual Channel Imple-

mentations

The results in previous chapter shows that generally imp. 3 has better per-
formance than imp. 2. The performance benefits of implementation 3 are
particular interesting on long links when pipelining is fully utilized. For in-
stance in a link with 32 repeater stages and 16 virtual channels, imp 3 has
over 5 times higher aggregated throughput than imp. 2.

The increased throughput offered by imp. 3 comes with the cost of larger
cell area and energy consumption because of the pipeline latches. These
latches may however reduce the requirements for buffers in the link ends,
and thereby make the actual area/energy penalty of imp. 3 less significant.

Imp. 2 has the advantage of using an encapsulated module for arbitration
which can be replaced if a different flow control mechanism is wanted. In imp.
3 the arbitration is distributed in the funnel component, and the offered flow
control depends on the structure of the funnel tree. The arbitration module
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used for imp. 2 in previous chapter is “unfair” since two eager channels can
starve all others forever, which is probably unacceptable in most networks.

5.7 Future Work

Due to the limited time available, some interesting implementation alterna-
tives and optimizations have been left out of the project. I will mention
a few possibilities here as an inspiration for further research in the area of
asynchronous NoC link implementations.

Purely Delay Insensitive

It was chosen in this project to use bundled data protocols in the link-ends
to reduce circuits area and to avoid the burden of completion detection.
The use of bundled data protocols does however suffer from the same timing
validation problems as synchronous circuits. A comparison of performance
and cost of a similar but purely delay insensitive link implementation with
the links presented here, would be an interesting subject for further research.
Such an implementation would reduce the need for timing analysis, which
would improve support for automatized link and NoC generation.

Credit based link-level flow control

Implementation 3 has significant improved aggregated throughput compared
to imp. 2, but this throughput can not be utilized by a single channel. As
described earlier, this is a limitation caused by the decision not to include
buffers in the link-implementations. The link has no knowledge of the number
of empty output buffers on a channel — only whether or not at least a single
buffer is free. This means that one flit at most may be on its way across the
link at any time. Not until this flit has been injected to the output buffer,
and that buffer has announced its willingness to accept another flit, can a
new flit from that particular channel be sent off from the sending end of the
link. If output buffers were included in the link implementation, information
on free buffers(credits) could be pipelined in the opposite direction of the
flits. This would allow a single channel to use the full throughput of the data
pipeline, if the number of buffers and pipeline stages is balanced correctly.
The concept is illustrated in Figure 5.12. If a funnel-horn structure is used
in the credit handshake channels, the number of link wires will be reduced
from 2×W + 2×N + 2× log2(N) + 1 to 2×W + 2× (2× log2(N) + 1), and
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Figure 5.12: Optimized pipelined link with credit system.

thereby removing the linear relation between number of virtual channels and
number of link wires.

Low Level Optimizations

None of the circuits presented here have been subject to low-level optimiza-
tions since the goal was to compare different implementation strategies, and
not to come up with a single optimized solution. All circuits could how-
ever benefit from different forms of optimization, and I will mention a few
possibilities here.

One way of improving the circuits is to implement critical parts of a design
using custom design at device level. The C-element which is widely used in
all link designs and currently implemented using a complex gate, would be
an obvious choice for such an optimization.

In [32] is presented a design process for creating complete asynchronous
circuits using custom layout for maximum performance. A family of FIFO
control circuits called GasP, which is using this design process, is presented
in [31]. These GasP circuits are used in the FLEETzero[7] chip mentioned
earlier. Some impressive performance is shown for the FLEETzero chip.
With up to 1.55GDI/s on a 0.35µm technology, it indicates that there is
plenty of room for performance improvements of the circuits presented here.
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All control circuits in the link designs use the 4-phase handshake protocol.
This protocol has redundant signaling which increase the latency and energy
dissipation[28]. The 2-phase handshake protocol, which has no redundancy,
does increase circuit complexity, but it may be viable in the link designs
because they contain no computation.





Chapter 6

Conclusion

Three asynchronous link designs for on-chip network have been presented.
For each design a customizable standard cell implementation has been cre-
ated. Customizability has been achived by embedding GNU m4 macro defi-
nitions and calls in the HDL files. With refinements this approach might be
usefull for defining complete NoC implementations.

Via an extensive set of simulation trials, these implementations has been
used to evaluate the link designs on cost and performance parameters. Which
of the implementations to choose for a given on-chip network depends on the
requirements for the system and properties of the technology in which the
system is implemented. If only a few channels are needed on each link, and
global interconnect is not the limiting factor in the system, then implemen-
tation 1 is the best choice. However, global interconnect is projected to be
the limiting factor in future technology, and therefore imp. 1 will become
infeasable.

If latency on link wires is short, imp. 2 will provide comparable per-
formance with imp. 3, but has a significantly lower cell area and energy
consumption than imp. 3. When wire delay increases in the future, per-
formance of imp. 2 will degrade, and imp. 3 will become the best choice.
Implementation 3 can be used to provide differentiated service guarantees
to the virtual channel on the link, as proposed. The drawback of imple-
mentation 3 consists in that a single channel can not utilize the increased
throughput. This issue must be addressed.

In the two virtual channel implementations are cycle time and energy
consumption increasing logarithmicly with the number of virtual channels
on a link, whereas logic area and interconnect area are increasing linearly
with the number of virtual channels. Since future technology will be wire
limited, the linear increase of interconnect area represents a problem for
implementation of large numbers of virtual channels. Given that this problem
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will be addressed, and that logic area will be a relatively cheap resource in
future technology generations, these results show that it will be possible to
implement a large number of virtual channels at a relatively low cost.



Appendix A

Design Flow Scripts

This appendix lists a few design-flow scripts. The rest is found on the en-
closed CD.

Project Makefile

CONFIG_FILE = config

include $(CONFIG_FILE)

M4 = m4 $(shell awk ’{print "-D" $$0}’ $(CONFIG_FILE))

SYNOPSYS_WORK = synopsys-work.tmp

SYNOPSYS_OUT = synopsys-out.tmp

MODELSIM_OUT = modelsim-out.tmp

DATA_DIR = data.tmp

SIMULATION_OUT = $(MODELSIM_OUT)/simulation-stdout.txt

STATIC_FILES = c2.v c3.v c.v SRLATCH.v passivator.v \

fork_pull.v join_pull.v arbiter_pull.v branch_pull.v

COMMON_FILES = $(patsubst %.v.in,%.v,$(wildcard *.v.in)) od_pull_lctl.v

CHANNEL_FILES = $(patsubst %.v.in,%.v,$(wildcard channel/*.v.in))

NOSYN_FILES = $(patsubst %.v.in,%.v,$(wildcard nosyn/*.v.in))

DYNAMIC_FILES = $(COMMON_FILES) $(CHANNEL_FILES) $(NOSYN_FILES)

TESTBENCH_FILES = tb.vhd sink.vhd source.vhd testbench.vhd

TESTBENCH_OUT = $(patsubst %.vhd,work/%/_primary.dat, $(TESTBENCH_FILES))

LINK_FILES = $(patsubst %.v.in,%.v,$(wildcard link${LINK_IMPL}/*.v.in))

SYN_FILES = $(LINK_FILES) $(COMMON_FILES) $(CHANNEL_FILES) $(STATIC_FILES)

CLASS_FILES = $(patsubst %.java,%.class,$(wildcard java/noc/analysis/*.java))

VSIM = vsim -L CORELIB8DHS -sdftyp /testbench/link1=$(SYNOPSYS_OUT)/link.sdf \

-quiet +nowarnTSCALE -t ps "work.testbench(structure)"

#PETRIFY_TM=-icsc2 -rst1 -tm2 -tm_ratio1 -nolatch

PETRIFY_TM=-icsc3 -tm2 -nolatch

all: link testbench

verilog: $(SYN_FILES)

testbench: $(TESTBENCH_OUT)

work/%/_primary.dat: %.vhd tb.vhd

vcom -93 $<

$(SYNOPSYS_OUT)/link.v: $(SYNOPSYS_WORK) $(SYNOPSYS_OUT) $(SYN_FILES)
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export DESIGN_FILES="{$(SYN_FILES)}" ; dc_shell -f compile.dcsh

mv $@ $@.tmp; sed ’s/\\in\[\([0-9]\+\)\]/int_\1/g’ $@.tmp > $@

work/link/_primary.dat: $(SYNOPSYS_OUT)/link.v $(NOSYN_FILES)

vlog $(SYNOPSYS_OUT)/link.v $(NOSYN_FILES)

link: work work/link/_primary.dat

debug: work link testbench data $(MODELSIM_OUT)

$(VSIM) -do "debug.do"

$(SIMULATION_OUT): work link testbench data $(MODELSIM_OUT) $(CLASS_FILES)

$(VSIM) -c -do "simulate.do" -std_output $(SIMULATION_OUT)

java -cp java:lib/mysql-connector-java-3.0.11-stable-bin.jar \

noc.analysis.SimulationAnalysis $(SIMULATION_OUT) $(CONFIG_FILE)

analysis: $(SIMULATION_OUT)

work:

vlib work

data: data.tmp data.tmp/in1.bin

power-report: $(SYNOPSYS_OUT)/link.v $(MODELSIM_OUT)/simulation.saif

dc_shell -f report-power.dcsh

area-report: $(SYNOPSYS_WORK) $(SYNOPSYS_OUT) $(SYN_FILES)

export DESIGN_FILES="{$(SYN_FILES)}" ; dc_shell -f report-area.dcsh

$(MODELSIM_OUT)/simulation.vcd: $(SIMULATION_OUT)

touch $@

$(MODELSIM_OUT)/simulation.saif: $(MODELSIM_OUT)/simulation.vcd

vcd2saif -i $< -o $@ -keep_leading_backslash

%.class: %.java

javac -d java $<

%.bin: $(CONFIG_FILE) $(DATA_DIR) generate-data.pl

./generate-data.pl $(CHANNEL_COUNT) $(DATA_WIDTH) $(DATA_DIR)/in%d.bin

%.tmp:

mkdir $@

%.g: %.stg

sed -e "/###/,$$ d" $< > $@

%.v: %.g

PETRIFY_LIB_PATH=../lib ; petrify -no $(PETRIFY_TM) -vl $@.tmp $<

sed -f fix-petrify-bugs.sed $@.tmp > $@

%.v: %.v.in $(CONFIG_FILE) macros.m4

${M4} $< > $@

%.vhd: %.vhd.in $(CONFIG_FILE) macros.m4

${M4} $< > $@

start: log db netlist

log:

mkdir log
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db:

mkdir db

netlist:

mkdir netlist

clean:

rm -rf log db netlist work *.tmp $(DYNAMIC_FILES) $(LINK_FILES)

./run-sql.sh sql/clear.sql DUMMY

Stimuli data generator

#!/usr/bin/perl

$all_eager = 1;

if($#ARGV != 2) {

print "Usage: ./generate-data.pl <CHANNEL-COUNT> <DATA-WIDTH> <FILENAME>\n";

print "<FILENAME> should use %d to place the channel number in the name.\n";

exit 1;

}

$channel_count=$ARGV[0];

$data_width=$ARGV[1];

$file_name=$ARGV[2];

for ($i=1; $i<=$channel_count; $i++) {

$file = ">".sprintf($file_name, $i);

open(OUTFILE, $file) or die "Can’t open file:".$file;

if ($i == 1 | $all_eager) {

$delay = 1;

} else {

$delay = 1000000+$i;

}

$format = sprintf("%010d %%0%dX\n", $delay, $data_width/4);

$offset = (16**3)*$i;

for ($j=1; $j<=1000; $j++) {

printf OUTFILE ($format, abs(rand(2**$data_width)));

# printf OUTFILE ($format, $offset+$j);

# printf OUTFILE ($format, 0);

}

close OUTFILE;

}

Simulation Database Queries

Throughput Query
-- Find average througput on the link

SELECT @PARAMETER@, count(*)/(max(recv) - min(sent)) as throughput,

CHANNEL_COUNT, LINK_IMPL, STAGE_COUNT, DATA_WIDTH
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FROM flit

GROUP BY DATA_WIDTH, CHANNEL_COUNT, LINK_IMPL, STAGE_COUNT;

Latency Query
-- Find average latency on channel 1

SELECT @PARAMETER@, avg(recv-sent) as latency,

CHANNEL_COUNT, LINK_IMPL, STAGE_COUNT, DATA_WIDTH

FROM flit

WHERE channel=1

GROUP BY DATA_WIDTH, CHANNEL_COUNT, LINK_IMPL, STAGE_COUNT;
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Net-list Macros

This appendix includes some sample net-list macros. Full source-code for
the link implementations is included on the CD enclosed with this report.
Appendix C presents an overview of the CD-content.

B.1 Some common m4 constructs
define(comment, ‘ifelse(HDL_LANG, vhdl, --, //) $1’)dnl

comment(‘macros.m4 included’)

changecom(‘/*’, ‘*/’)dnl

define(‘DATA_SIZE’, ‘[1:DATA_WIDTH]’)dnl

define(‘SEL_SIZE’, ‘[1:CHANNEL_COUNT]’)dnl

define(BUFFER, BFHS)dnl

define(‘for_each_channel’, ‘forloop(‘CHANNEL_NUMBER’, 1, CHANNEL_COUNT, ‘$1’)’)dnl

define(‘forloop’,

‘pushdef(‘$1’, ‘$2’)_forloop(‘$1’, ‘$2’, ‘$3’, ‘$4’)popdef(‘$1’)’)dnl

define(‘_forloop’,

‘$4‘’ifelse($1, ‘$3’, ,

‘define(‘$1’, incr($1))_forloop(‘$1’, ‘$2’, ‘$3’, ‘$4’)’)’)dnl

define(‘id’, ‘ifelse($#, 2, ‘$1‘’CHANNEL_NUMBER‘’_‘’$2’, ‘$1‘’CHANNEL_NUMBER’)’)dnl

define(‘CHAR’, ‘translit($1, ‘1-8’, ‘A-H’)’)dnl

dnl

dnl N_INPUT_GATE generates a N-input and/or gate from sdt. cells

dnl $1=CELL_NAME, $2=INPUT_COUNT, $3=INPUT_NAME, $4=OUTPUT_NAME,

dnl $5=COMPONENT_PREFIX, $6=MAX_GATE_INPUTS

define(‘N_INPUT_GATE’, ‘dnl

ifelse(eval($2>$6), 1, ‘dnl

forloop(‘J’, 1, eval($2/$6), ‘dnl

define(‘NNN’, $6)dnl

wire w_‘’$5‘’_‘’J;

$1 $5‘’_‘’J‘’(forloop(‘K’, 1, $6, ‘.CHAR(K)($3‘’eval((J-1)*$6+K)), ’).Z(w_‘’$5‘’_‘’J));

’)dnl end forloop

N_INPUT_GATE(‘$1’, eval($2/$6), w_‘’$5‘’_, $4, $5‘’_, $6)dnl

’, ‘dnl else $2>$6

define(‘NNN’, $2)dnl

ifelse($2, 1, ‘

assign $4 = $3‘’1;

’, ‘dnl else $2==1

$1 $5‘’_1(forloop(‘K’, 1, $2, ‘.CHAR(K)($3‘’eval(K)), ’).Z($4));

’)dnl end else $2==1
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’)dnl end else $2>$6

’)dnl end define

dnl

define(‘log2’, ‘ifelse($1, 2, 1, ‘eval(1+log2(eval($1/2)))’)’)dnl

define(‘log4’, ‘ifelse(eval($1<=4), 1, 1, ‘eval(1+log4(eval($1/4)))’)’)dnl

dnl

dnl $1=FANOUT, $2=INPUT, $3=OUTPUT, $4=NAME

define(‘BUFFER_CHAIN’, ‘ifelse(dnl

eval($1<=4), 1, ‘dnl

assign $3 = $2;

’, eval($1<=16), 1, ‘dnl

BFHSX4 $4 (.A($2), .Z($3));

’, eval($1<=64), 1, ‘dnl

wire $4‘’_W;

BFHSX4 $4‘’_1 (.A($2), .Z($4‘’_W));

BFHSX16 $4‘’_2 (.A($4‘’_W), .Z($3));

’, ‘dnl

wire $4‘’_W;

BFHSX8 $4‘’_1 (.A($2), .Z($4‘’_W));

BFHSX32 $4‘’_2 (.A($4‘’_W), .Z($3));

’)’)dnl

B.2 N-channel Mutex

dnl This file should be expanded with m4!!!

define(HDL_LANG, verilog)dnl

include(macros.m4)dnl

ifdef(‘OR_GATE’, , ‘define(OR_GATE, OR2HS)’)dnl

ifdef(‘AND_GATE’, , ‘define(‘AND_GATE’, AN2HS)’)dnl

ifdef(‘MUTEX2’, , ‘define(‘MUTEX2’, ‘mutex2’)’)dnl

module mutex (

forloop(‘I’, 1, CHANNEL_COUNT, ‘dnl

in‘’I,

out‘’I,

’)dnl

reset

);

forloop(‘I’, 1, CHANNEL_COUNT, ‘dnl

input in‘’I;

output out‘’I;

’)dnl

input reset;

define(‘mutex_macro’, ‘dnl

ifelse(eval($1==2), 1, ‘dnl

MUTEX2 mutex_2_1 (.in1($2‘’1), .in2($2‘’2), .out1($3‘’1), .out2($3‘’2));

’, ‘dnl else

forloop(‘I’, 1, eval($1/2), ‘dnl

wire in_‘’eval($1/2)‘’_‘’I, out_‘’eval($1/2)‘’_‘’I, dnl

int_‘’$1‘’_‘’eval(I*2-1), int_‘’$1‘’_‘’eval(I*2);

OR_GATE or_‘’$1‘’_‘’I (.A($2‘’eval(I*2-1)), dnl

.B($2‘’eval(I*2)), .Z(in_‘’eval($1/2)‘’_‘’I));

MUTEX2 mutex_‘’$1‘’_‘’I (.in1(int_‘’$1‘’_‘’eval(I*2-1)), dnl

.in2(int_‘’$1‘’_‘’eval(I*2)), .out1($3‘’eval(I*2-1)), .out2($3‘’eval(I*2)));

’)dnl end forloop

forloop(‘I’, 1, $1, ‘dnl

AND_GATE and_‘’$1‘’_‘’I (.A($2‘’I), dnl
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.B(out_‘’eval($1/2)_‘’eval((I+1)/2)), .Z(int_‘’$1‘’_‘’I));

’)dnl end forloop

mutex_macro(eval($1/2), in_‘’eval($1/2)_, out_‘’eval($1/2)_)dnl

’)dnl end ifelse

’)dnl end define

dnl

mutex_macro(CHANNEL_COUNT, in, out)dnl

endmodule

B.3 Impl. 1

dnl This file should be expanded with m4!!!

define(HDL_LANG, verilog)dnl

include(macros.m4)dnl

module link (

for_each_channel(‘dnl

id(in, data),

id(in, req),

id(in, ack),

id(out, data),

id(out, req),

id(out, ack),

’)dnl

reset

);

input reset;

wire reset_buf;

BUFFER_CHAIN(CHANNEL_COUNT, reset, reset_buf, _RESET_BUF)

for_each_channel(‘dnl

// Channel id()

input DATA_SIZE id(in, data);

input id(in, req), id(out, req);

output DATA_SIZE id(out, data);

output id(in, ack), id(out, ack);

wire id(req), id(req_reset), id(ack);

AN2AHS id(_AND_RESET) (.A(reset_buf), .B(id(req)), .Z(id(req_reset)));

passivator id(_PAS) (

.in_req(id(in, req)),

.in_ack(id(in, ack)),

.out_req(id(req_reset)),

.out_ack(id(ack))

);

channel id(_CHANNEL) (

.in_req(id(req)),

.in_ack(id(ack)),

.in_data(id(in, data)),

.out_req(id(out, req)),

.out_ack(id(out, ack)),

.out_data(id(out, data)),

.reset(reset)
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);

’)dnl

endmodule

B.4 Impl. 2

dnl This file should be expanded with m4!!!

define(HDL_LANG, verilog)dnl

include(macros.m4)dnl

module link (

for_each_channel(‘dnl

id(in, data),

id(in, req),

id(in, ack),

id(out, data),

id(out, req),

id(out, ack),

’)dnl

reset

);

for_each_channel(‘dnl

input DATA_SIZE id(in, data);

input id(in, req), id(out, req);

output DATA_SIZE id(out, data);

output id(in, ack), id(out, ack);

’)dnl

input reset;

wire Sreq, Rreq, Sack, Rack;

wire DATA_SIZE Sdata, Rdata;

for_each_channel(‘dnl

wire id(Srdy), id(rdy_req), id(Ssel), id(Rsel);

//enable id(enable)‘’(.ReqIn(id(in, req)), .Enable(id(Srdy)), .ReqOut(id(rdy_req)));

c2 id(enable)‘’(.A(id(in, req)), .B(id(Srdy)), .Z(id(rdy_req)));

’)dnl

handshake_arbiter _ARBITER1(

for_each_channel(‘dnl

id(.req_in)‘’(id(rdy_req)),

id(.ack_in)‘’(id(in, ack)),

id(.req_out)‘’(id(Ssel)),

’)dnl

.ack_out(Sack),

.reset(reset)

);

N_INPUT_GATE(‘OR‘’NNN‘’HS’, CHANNEL_COUNT, Ssel, Sreq, _O1, 8)dnl

mux _MUX1(

for_each_channel(‘dnl

id(.din)‘’(id(in, data)),

id(.sel)‘’(id(Ssel)),

’)dnl

.dout(Sdata)
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);

channel id(_CHANNEL) (

.in_req(Sack),

.in_ack(Sreq),

.in_data(Sdata),

.out_req(Rack),

.out_ack(Rreq),

.out_data(Rdata),

.reset(reset)

);

for_each_channel(‘dnl

wire DATA_SIZE id(out, data);

wire id(Rack);

c2 id(_C) (.A(id(Rsel)), .B(Rreq), .Z(id(Rack)));

\1bitBuffer id(_BUF_RDY) (.in(id(out, req)), .out(id(Srdy)));

\1bitBuffer id(_BUF_SEL) (.in(id(Ssel)), .out(id(Rsel)));

assign id(out, ack) = id(Rack);

assign id(out, data) = Rdata;

’)dnl

N_INPUT_GATE(‘OR‘’NNN‘’HS’, CHANNEL_COUNT, Rack, Rack, _O2, 8)dnl

endmodule

B.5 Impl. 3

dnl This file should be expanded with m4!!!

define(HDL_LANG, verilog)dnl

include(macros.m4)dnl

module link (

for_each_channel(‘dnl

id(in, data),

id(in, req),

id(in, ack),

id(out, data),

id(out, req),

id(out, ack),

’)dnl

reset

);

for_each_channel(‘dnl

input DATA_SIZE id(in, data);

input id(in, req), id(out, req);

output DATA_SIZE id(out, data);

output id(in, ack), id(out, ack);

’)dnl

input reset;

for_each_channel(‘dnl

wire id(Ssync_req), id(Ssync_ack), id(Sdata_req), id(Sdata_ack), dnl

id(SDdata_req), id(SDdata_ack), id(joined_req), id(joined_ack), dnl

id(Sdata_req_reset);

wire DATA_SIZE id(SDdata_data);

passivator id(_PASS) (
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.in_req(id(in, req)),

.in_ack(id(in, ack)),

.out_req(id(joined_req)),

.out_ack(id(joined_ack))

);

fork_pull id(_FORK) (

.in_req(id(joined_req)),

.in_ack(id(joined_ack)),

.out1_req(id(Ssync_req)),

.out1_ack(id(Ssync_ack)),

.out2_req(id(Sdata_req_reset)),

.out2_ack(id(Sdata_ack))

);

AN2AHS id(_AND) (.A(reset), .B(id(Sdata_req)), .Z(id(Sdata_req_reset)));

decouple_latch id(_DECOUPLE_L) (.in_req(id(Sdata_req)), .in_ack(id(Sdata_ack)), dnl

.in_data(id(in, data)), .out_req(id(SDdata_req)), .out_ack(id(SDdata_ack)), dnl

.out_data(id(SDdata_data)), .reset(reset));

wire id(Rsync_req), id(Rsync_ack), id(Rdata_req), id(Rdata_ack);

\1bitBuffer id(_BUF_SYNC_REQ) (.in(id(Rsync_req)), .out(id(Ssync_req)));

\1bitBuffer id(_BUF_SYNC_ACK) (.in(id(Ssync_ack)), .out(id(Rsync_ack)));

join_pull id(_JOIN) (

.in1_req(id(Rsync_req)),

.in1_ack(id(Rsync_ack)),

.in2_req(id(Rdata_req)),

.in2_ack(id(Rdata_ack)),

.out_req(id(out, req)),

.out_ack(id(out, ack))

);

’)dnl end for_each_channel

define(‘DEPTH’, log2(CHANNEL_COUNT))dnl

wire [1:eval(DATA_WIDTH+DEPTH*2)] link_in_data, link_out_data;

wire link_in_req, link_in_req_reset, link_in_ack, link_out_req, link_out_ack;

funnel _FUNNEL (

for_each_channel(‘dnl

.id(in_req)‘’(id(SDdata_req)),

.id(in_ack)‘’(id(SDdata_ack)),

.id(in_data)‘’(id(SDdata_data)),

’)dnl

.out_req(link_in_req_reset),

.out_ack(link_in_ack),

.out_data(link_in_data),

.reset(reset)

);

AN2AHS _AND_FUNNEL_RESET (.A(reset), .B(link_in_req), .Z(link_in_req_reset));

channel_select _CHANNEL (

.in_req(link_in_req),

.in_ack(link_in_ack),

.in_data(link_in_data),

.out_req(link_out_req),

.out_ack(link_out_ack),

.out_data(link_out_data),

.reset(reset)

);
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horn _HORN (

.in_req(link_out_req),

.in_ack(link_out_ack),

.in_data(link_out_data),

for_each_channel(‘dnl

.id(out_req)‘’(id(Rdata_req)),

.id(out_ack)‘’(id(Rdata_ack)),

.id(out_data)‘’(id(out, data)),

’)dnl

.reset(reset)

);

endmodule

B.6 Funnel

dnl This file should be expanded with m4!!!

define(HDL_LANG, verilog)dnl

include(macros.m4)dnl

define(‘MAX_DEPTH’, log2(CHANNEL_COUNT))dnl

module funnel (

for_each_channel(‘dnl

id(in_req),

id(in_ack),

id(in_data),

’)dnl

out_req,

out_ack,

out_data,

reset

);

for_each_channel(‘dnl

output id(in_req);

input id(in_ack);

input DATA_SIZE id(in_data);

’)dnl

input reset, out_req;

output out_ack;

output [1:eval(DATA_WIDTH+2*MAX_DEPTH)] out_data;

dnl $1=INPUT_COUNT, $2=INPUT_PREFIX, $3=OUTPUT_PREFIX, $4=UNIQE_PREFIX, <$5=DEPTH>

define(‘FUNNEL_MACRO’, ‘dnl

define(‘DEPTH’, ‘ifelse($#, 4, 2, $5)’)dnl

define(‘OUTPUT_PREFIX’, ‘ifelse(eval($1>2), 1, $4, $3)’)dnl

forloop(‘J’, 1, eval($1/2), ‘dnl

define(‘OUTPUT_INDEX’, ifelse($1, 2, ‘’, ‘J’))dnl

wire [1:eval(DATA_WIDTH+DEPTH)] OUTPUT_PREFIX‘’Idata‘’OUTPUT_INDEX, dnl

OUTPUT_PREFIX‘’data‘’OUTPUT_INDEX;

wire OUTPUT_PREFIX‘’Ireq‘’OUTPUT_INDEX, OUTPUT_PREFIX‘’Iack‘’OUTPUT_INDEX, dnl

OUTPUT_PREFIX‘’req‘’OUTPUT_INDEX, OUTPUT_PREFIX‘’ack‘’OUTPUT_INDEX;

arbiter_pull $4‘’ARB‘’J (

.in1_req($2‘’req‘’eval(J*2-1)),

.in1_ack($2‘’ack‘’eval(J*2-1)),

.in2_req($2‘’req‘’eval(J*2-0)),

.in2_ack($2‘’ack‘’eval(J*2-0)),
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.out_req(OUTPUT_PREFIX‘’Ireq‘’OUTPUT_INDEX),

.out_ack(OUTPUT_PREFIX‘’Iack‘’OUTPUT_INDEX),

.sel1(OUTPUT_PREFIX‘’Idata‘’OUTPUT_INDEX[eval(DATA_WIDTH+DEPTH-1)]),

.sel2(OUTPUT_PREFIX‘’Idata‘’OUTPUT_INDEX[eval(DATA_WIDTH+DEPTH-0)]),

.reset(reset)

);

mux‘’eval(DATA_WIDTH+DEPTH-2) $4‘’MUX‘’J (

.din1($2‘’data‘’eval(J*2-1)),

.din2($2‘’data‘’eval(J*2-0)),

.sel1(OUTPUT_PREFIX‘’Idata‘’OUTPUT_INDEX[eval(DATA_WIDTH+DEPTH-1)]),

.sel2(OUTPUT_PREFIX‘’Idata‘’OUTPUT_INDEX[eval(DATA_WIDTH+DEPTH-0)]),

.dout(OUTPUT_PREFIX‘’Idata‘’OUTPUT_INDEX[1:eval(DATA_WIDTH+DEPTH-2)])

);

latch‘’eval(DATA_WIDTH+DEPTH) $4‘’LATCH‘’J (

.in_req(OUTPUT_PREFIX‘’Ireq‘’OUTPUT_INDEX),

.in_ack(OUTPUT_PREFIX‘’Iack‘’OUTPUT_INDEX),

.in_data(OUTPUT_PREFIX‘’Idata‘’OUTPUT_INDEX),

.out_req(OUTPUT_PREFIX‘’req‘’OUTPUT_INDEX),

.out_ack(OUTPUT_PREFIX‘’ack‘’OUTPUT_INDEX),

.out_data(OUTPUT_PREFIX‘’data‘’OUTPUT_INDEX),

.reset(reset)

);

’)dnl end forloop

ifelse(eval($1>2), 1, ‘FUNNEL_MACRO(eval($1/2), $4, $3, $4‘’_, eval(DEPTH+2))’)dnl

’)dnl end define

FUNNEL_MACRO(CHANNEL_COUNT, in_, out_, _U)dnl

endmodule



Appendix C

CD Content

The enclosed CD contains all source files and design-flow scripts needed to
instantiate the link implementations presented in this thesis. Here is an
overview of the CD content:

/ Design flow scripts and source files common for the link implementations.

/nosyn/ Behavioral link modules.

/channel/ Modules implementing the physical channel(shared by all imple-
mentations).

/link1/ Modules specific for imp. 1.

/link2/ Modules specific for imp. 2.

/link3/ Modules specific for imp. 3.

/java/ Java program for parsing log-files.

/lib/ Library files for the Java program.

/sql/ SQL scripts for statistical queries

Full file-list:

./channel/1bitBuffer.v.in

./channel/Nbit1of4_select_latch.v.in

./channel/Nbit1of4latch.v.in

./channel/NbitBuffer.v.in

./channel/channel.v.in

./channel/channel_select.v.in

./channel/wires.v.in

./.synopsys_dc.setup

./.synopsys_vss.setup

./1of4dec.v.in

./1of4enc.v.in

71
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./1of4latch.v

./Makefile

./SRLATCH.v

./arbiter_pull.v

./branch_pull.v

./c.v

./c2.stg

./c2.v

./compile.dcsh

./configure

./d_latch.v.in

./debug.do

./fix-petrify-bugs.sed

./fork_pull.v

./generate-data.pl

./handshake_arbiter.v.in

./join_pull.v

./macros.m4

./modelsim.tcl

./mutex.v.in

./mutex2.v

./od_pull_lctl.stg

./passivator.v

./report-area.dcsh

./report-power.dcsh

./run-batch.sh

./run-sql.sh

./simulate.do

./sink.vhd

./source.vhd

./tb.vhd.in

./testbench.vhd.in

./java/noc/analysis/SimulationAnalysis.java

./lib/mysql-connector-java-3.0.11-stable-bin.jar

./link1/link.v.in

./link2/demux.v.in

./link2/link.v.in

./link2/mux.v.in

./link3/decouple_latch.v.in

./link3/demux.v.in

./link3/dr_latch.v.in

./link3/funnel.v.in

./link3/horn.v.in

./link3/latch.v.in

./link3/link.v.in

./link3/mux.v.in

./nosyn/mutex2.v.in

./nosyn/mutex_check.v.in

./sql/average-latency-channel-1.sql

./sql/clear.sql

./sql/create.sql

./sql/throughput-link.sql
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Glossary and Abbreviations

ASIC Application Specific Integrated Circuit

CPU Central Processing Unit

CSC Complete State Coding

DC Design Compiler r©

demux De-multiplexer

DI Delay Insensitive

DSM Deep Sub-micrometer

DSP Digital Signal Processor

FIFO First In - First Out buffer

HDL Hardware Description Language

IP Intellectual Property

mutex Mutual exclusion element

mux Multiplexer

NI Network Interface

NoC Network-on-Chip

RTZ Return To Zero

SAIF Switching Activity Interchange Format

SoC System-on-Chip

STG Signal Transition Graph

VCD Value Change Dump
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